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Abstract

In this paper, inspired by the ‘Minimum Description Length Principle’ in classical statistics, we
introduce a new method for predicting the outcomes of performing quantum measurements and for
estimating the state of quantum systems.

1. Introduction

Needless to say, nowadays nearly all our physical knowledge is based on quantum theory. So an increasingly
important problem is to characterize quantum systems and to obtain information about them. In the way of
solving the problem, Quantum Statistical Inference (QSI) is a unique tool. Quantum statistical inference is the
quantum version of classical statistical inference. To be more precise, quantum statistical inference enables us to
obtain information about quantum systems by using outcomes of performing quantum measurements. The
research subject was initiated in the middle of the 1960s. The pioneers and the first researchers in the field are
Holevo, Yuen, Kennedy, Belavkin, etc. Since then till now many researchers in different countries have
conducted research into the subject and have extended it in different directions. Among other things, QSI
contains the subject matters, quantum estimation and quantum prediction, which will be considered in this
paper. To treat these problems the only tool at our disposal is performing measurements. Since quantum theory
is statistical in nature, we have to perform the same quantum measurement in the same state of the quantum
system many times. But, as it is well-known, after performing a measurement on a quantum system the state of
the system changes drastically. To overcome the difficulty, we usually assume that there are # quantum systems
described by the same Hilbert space H and prepared independently and identically in the same state p (a density
matrix on H) and we perform the same quantum measurement on each of them. In this way, we obtain a data set
D = (x}, % ... X,,). By quantum estimation we mean techniques enabling us to find an approximation of the
state p with the help of the data set D and by prediction we mean characterizing the probability of the outcome
Xn+1given the previous outcomes x € D. An appropriate method to solve the problems is to choose a set M of
density matrices on H containing p, called a quantum model and try to find the state p by methods, such as
Maximum Likelihood Estimation (MLE). To be able to act in this way, we have to parameterize the set M ina
differentiable manner. Unfortunately, ML Estimation which has been used by several authors gives rise to
overfitting”. Moreover, in general, we do not know whether the state p is in the model M or not. Inspired by the
works of J. Rissanen [1, 2], P. Griinewald [3], and others on the Minimum Description Length Principle (MDL)
in classical statistics, one of our goals in this paper is to remedy this difficulty. Their works on the use of 2-part
codes [3] in MDL guided us to use sets of semi-density matrices in addition to quantum models and call them
generalized quantum models (for more detail see the beginning of section 3). As in classical MDL we base our
work on universal sources associated with quantum models. We will show that in all interesting cases universal
quantum sources exist. It will be evident that the use of universal sources automatically protects against
overfitting. Moreover, we prove different versions of the consistency theorem showing that when the state pis in
the chosen model M, the selected universal quantum source is asymptotically equivalent to it.

The organization of the paper is as follows:

2 The selection of an overly complex model that, while fitting observed data very well, predicts future data very badly.
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In section 2 we introduce the notion of Q-projection which in this work will act as projective quantum
measurement. At the end of section 2, it is proved that in quantum theory all results concerning prediction and
estimation proved in this paper are true for general quantum measurements. In section 3 after some
explanations about the MDL principle and the way we have gone through to quantize the most important
notions involved in MDL, we will define fundamental concepts, such as (generalized) quantum models,
universal quantum sources, which is the core concept of this work, quantum source and quantum strategy. we
will also prove some important facts about them. At the end of the same section, we introduce the notion of good
quantum estimator and a large class of them. Section 4 is about quantum prediction and quantum estimation. In
section 5 we will introduce the notion of consistency and prove some theorems about it. In section 6, we give
examples that indicates the efficiency of this method.

We emphasize that with the help of trace function, one can reduce the problems treated here to problems in the
classical MDL methods and solve them classically. But in doing this the operator nature of important concepts like
universal quantum source associated with quantum models, quantum strategy and conditional density matrix
conditioned on density matrix will be lost. Even worse, one cannot understand that these concepts are operators.
Moreover, treating the problems in the realm of operator theory are more natural and simpler. In the same vein,
nearly all notations, definitions and conventions used in the paper is directly inspired by their classical counterparts in
[3]. So that comparison of classical and quantum frameworks should be straightforward.

2. Q-Projection

Given a separable Hilbert space H, in general infinite dimensional, with inner product (-|-), the set { |k} |k € N}
will denote an orthonormal basis of H and its dual basis will be denoted by the set { (k||k € N}. The set ofall
bounded operators (resp. self-adjoint bounded operators) on H will be denoted by B(H) (resp. by By (H)) and
the set of all positive operators (resp. density matrices) on H will be denoted by B (H) (resp. by D (H)). Finally,
the Hilbert space generated by trace class operators of H with the following inner product will be denoted by
Br(H),

(TIS)r = Tr(T*S) for all T, S € By (H)
with associated norm || T|jr = / Tr(T*T).

A positive operator T'is called a semi-density matrix if Tr (T) < 1anditis called a density matrix if

Tr(T) = 1. The mapping which sends each nonzero semi-density matrix T'to its associated density matrix TrfT)

will be denoted by w.The collection of all complete sets of mutually orthogonal (minimal) projections
P = {p, p,>..yonH,with 3> _ p = 1(completeness), will be denoted by 7 (H) (7 (H)).

Let P = {p;, p, »..}and Q = {q;, g, »...} be elements of 7 (H).Then, the set {piqj|i, j€ N} — {0} willbe
denoted by PQ and will be called the combination of Pand Q. We say that Pand Q commute if PQ = QP. In this
case clearly PQ € m (H). More generally, a subset S of 7 (H) is called commutative, if any two elements of it
commute. Let P = {P}, P, ,..., P} be a finite subset of 7 (H). The combination of elements of P’ is

I P = (I \xilx; € P i = 1, 2,..,k} — {0}
When P is commutative, Hl—‘zlPi € m(H).
Definition 1. Assume that (X;);c; is a family of subsets of a nonempty set X and for each j € J, there exists
I; C Jsuchthat X — X; = Uier, Xi- Then,

1. For each I C J, we say that the set Y = U,/ X; is a maximally connected union of the family (Xj);c; if it
satisfies the following conditions:

(a) Foreach proper subset K of I,
UkeKXk m(LJieI—KXi) = {}.

()

Ym(Uiejfjxi) ={}.
The set of all maximally connected unions of the family (X;);c; will be denoted by Aje;X;. Clearly, Ajej X is
a partition of X.

2.Foreach I C J,thesubset Z = M;c;X; of X will be called a minimally connected intersection of the family
(X]- )jel ,if
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Z0WU,, X)) = 1)

The set of all minimally connected intersections of the family (X;);c; is evidently a partition of X and will be
denoted by VjesX;.

Now assume that X is an arbitrary non-empty set. Let the set of all partitions of X be denoted by B (X). Let P
and Qbein P(X). Wesay that Q is finer than P and we write P < P, if each elements of P is the union of some
elements of Q. Itis evident that the set J3(X) with the order relation P < Q isa partially ordered set. Assume
that P = {Pyk € K} C P(X) is a set of partitions of the set X. Let UkeKB_k = {Xjlj € J}.Clearly X = Uj¢;X;
and the family (Xj);c; of subsets of the set X satisfies the conditions of definition 1. Itis easy to see that for each
partition Py € P we have

NerXj = Pk < Vies X;.
Let partitions P and Q of the set Xbe such that forall k € K wehave Q < Py < P.Then, itis straightforward
to see thatforeach k € K
Q = Njej Xj = Py 2 Vjeg X; < P.

Therefore, AjcX; (resp. VjejX;) is the greatest lower bound (resp. the least upper bound ) of the partially
ordered set P and will be denoted by Axex Py (resp. Viex Pk)-

Definition 2. Let P and Q be in 7 (H). We say that P is finer than Q, and we write Q < P if PQ = P.In this
case QP = (PQ)* = P.

Wessay that Q and P are consistent if they have a common upper bound with respect to this order relation. More
generally, asubset A € 7 (H) is called consistent if it has an upper bound. Then clearly any subset of A is also

consistent. we say that a consistent set A is maximally consistent if there is no consistent set B such that A C B.
=

Lemmal.Let P = {P; € n(H)|k € K}. Then

1. If the set is consistent it has a least upper bound and a greatest lower bound.

2. Ifthe set is finite and commutative, then it is consistent.
Proof.

1. Assume that the set IP is consistent then it has an upper bound R = {7, nr,---} which is a complete set of
mutually orthogonal projections of H. Let Q € IP. By definition Q < R.Letg € Q andlet R, be the sum of
allelements r € Rsuchthatg > r.i.e. qr = r.Clearly qu =R, = 0and qR, = R4q = Ry,since rqg=r for
allr € R,. Thereforeq — R,isaprojectionandif g — R, = q(Iy — R;) = 0, then thereexists r € R such
that g > r and rR;, = 0 whichis a contradiction. Hence, g = R,. Therefore foreach Q € IP,eachq € Qis
the sum of some elements of R.

Let the order preserving mapping Q — Q from 7 (H) into J3(R) be defined as follows, for each
q € Q, q — g, where qisthe set of all summands of the projection q. Notice that q is the sum of some
elements of R. Now it is clear that under this mapping we have the following bijective maps.

NkekPr — Arex Pk
Vikek Pk — Viex Pk

we have seen above that Viex Py (resp. Akex Py) is the least upper bound (resp. the greatest lower bound) of the
set { Py, k € K}. Therefore, Akex Pr(resp. Viex Py) is the greatest lower bound (rep. the least upper bound) of P.

2. Assume that the set P is finite and commutative. Then, Vkex Py = Il;cxPx. Therefore, IP is consistent.

Definition3.Let T € B(H)and Q = {q,, 4, ,...} € 7 (H). Then The element
TQ = Z qn an’
n

will be called the Q-projection of T (see also [4]). The set of all Q-projections of elements of B(H) will be
denoted by B, (H) and foreach g € Q, B;(H) = {qTq|T € B(H)}.

3
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The set B (H) is a complex subspace of the C* — algebraB(H), and the mapping Q from B(H) into B (H)
definedby Q(T) := Ty isaprojection. For Tand Sin B(H) and Q € 7 (H) we have (T,Sq)q = T, So. Therefore
B (H) is a unital C*-subalgebra of B(H).If Q € 7, (H) then evidently B, (H) is commutative.

Let H and H' be Hilbert spaces. Let P = {p,, p, ,...,}and Q = {g,; 4, »...,} be complete sets of mutually
orthogonal projections of the Hilbert spaces H and H'. Then:

P®Q={p ®aq;ijecN}

is a complete set of mutually orthogonal projections on H & H'. Let T (resp. S) be abounded operator on H
(resp. H'). Then:

Tr ® Sq = 22,0, 1P, ® 4,59, = 20 (0, © 9,)(T @ S)(p, ® q,) = (T ® Shpsq.
Lemma 2.

1. The mapping Q is trace preserving.
2.If T is self-adjoint, then T, is also self-adjoint.
3. A necessary and sufficient condition for T to be positiveis that for each Q € w(H), Tp, be positive.

4.Let Q € my(H)and T € B(H) bearbitrary. Then, Ty, is always normal.
Proof.

L.Tr(Ty) = X,2,Tr(g,Tq,) = >,=,Tr(q,T) = Tr(T), since the sets of projections Q € w(H) are
complete.

2.If T = T*,thenevidently (Ip)* = Tg.

3.Let T > 0; then, for each g € Q, qTq > 0. So that for each Q € w(H), T;; > 0. Vice versa, if T, > 0 for
each Q € w(H), then, for each vector [v) € H, Tr(|v) (v|T) = (v|T|v) > 0,sinceanysuch |v) (v|belongs
tosome Q €  (H). Therefore, T > 0.

4. Since in this case B (HH) is a commutative algebra, the proof s clear.

Corollary 1. The restriction of the mapping Q to D (H) is a convex map from D (H) onto Dg (H).
Lemma 3.

1. The mapping Q : B(H) — Bq(H) is continuous.

2. The mapping Q : Br(H) —> Bq(H) is continuous in the trace norm topology.
Proof.

1.Let T € B(H) be a self-adjoint element of B(H). Then, || T, || is equal to its spectral radius . Let g € Q and
let||qTq|| = r. Then

IToll = 132 4,Ta, ] = llgTqll < [|T]]

Sinceany T € B(H) can be written as a combination of two self adjoint elements Q is continuous.

2.Let T € Br(H). Then, for each g € Q, qTqqT*q < qTT*q. Therefore, (T))*T, = (T*)q) To < (T*T)q.
Since Tr(Ty) = Tr(T),

I Tollr = (Tr(T*To)/? < (Tr((T*T))/? = (Tr(T*T)Y? = || T||r.

Lemma 4. For each element T € B(H) andeach Q = {q,, q, »...} € 7(H) wehave:

1. T = Tq ifand only if foreach g € Q wehave qT = Tq.

4
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2. LetS = Sqandforallq € Q, qSq = qTq. Then, S = T,.
3. Let T be a normal operator and { be a continuous function defined on a neighborhood of the spectrum of T. If
T = Tothen f(T) = (f (T))q-
Proof.

1. Assumethat T = T = 3°, q,1q,. Then, for each g, € Q we have
0,T = 4a,To = 4,14, = Togq, = Ta,
Conversely, iffor each g, € Q, Tq, = g, T, then, completeness of Q yields
To=4,Tq,=> 9, T=T
n "

2.Byhypothesis, S = So = >, 4,54, = >-. 4,19, = To.

3. The proof is a consequence of point 1 and of functional calculus.

|

Lemma5.Let T € B(H)and P, Q € w(H).If P = Q then:

1. Tp = (T)p = (Tp)o-

2. Ker(Q) C Ker(P)

Proof. Itis clear that for each element p € P there exists exactly one element g, € Q suchthat q,p = pq, =

and for other elements g € Q wehave gp = pq = 0. So

p(To)p = p(3_ aTa)p = pa,Ta,p = pTp
9€Q
Therefore,
(T = 3_ pTop = > pTp =T
peP peP
On the other hand for each g € Q and each p € P wehave
aTp=q3_ pIp =3 apTp
peEP peP
= X pTp=73pTpa
PEP|gp=0 peP
Therefore Tp = (I)p = (Tp)o-
Since P(T) = Tp = (Ip)p = P(Q(T)), the proof of the second part is clear.
Lemma 6. Let T = Ty, be an invertible element of B(H). Then T~' = (T ")q,.
Proof. From lemma 3 and the fact that gT = Tqimplies g = TqT !, itfollows that T~lq = qT~ .. [ ]
Let T = T beanormal operator. Then T is called a pseudo-spectral decomposition of T. Clearly, for each
q € Q, q(H) is invariant under T.
Lemma 7. Assume that Tp is a pseudo-spectral decomposition of the operator T. Then for each S € B(H), we have
(ST)p = SpTp and  (TS)p = TpSp Tr(TS) = Tr(TpSp).

Proof. We have (ST)p = (STp)p. Therefore, for each p € P we have

p(ST)p = p(STp)p = pSpTp = (pSp)(pTp). Therefore, (ST)p = Sp Tp. The proof of the second equality is

the same. The third equality is evident. |

The previous lemmas lead to the following result.

Theorem 1. Let Q bein 7 (H). Then
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1. Bo(H) is a unital C*-algebra.
2. B(H) is aleft and a right Bq(H)-module.
3. The mapping Q from B(H) into Bo(H) isa Bq(H)-linear form.

4. A necessary and sufficient condition for Bq(H) to be commutative is that Q be a complete set of mutually
orthogonal minimal projections.

Let Sand T be in B(H). Then, in general ST = TS. Butforall Q € m(H), So Ty = 1 Sq. This fact motivate
the following definition.

Definition 4. Let R be an n-ary relation on B(IH). We say that R is weakly trueif, for each Q € m(IH), Q"(R) s
true, where Q" (R) is the image of R under Q" (R), the natural extension of Q: B(H) — B (H)
to Q™ (B(H))" — (Bq(H))"

Remark 1. Any two elements of B(IH) always weakly commute. For some relations, being true or weakly true are
equivalent. For example, if T > S then clearly, this relation is weakly true.

Conversely, Assume that for each Q € m(H), T, > S, therefore for each minimal projection
q> qTq > qSq. Since for each vector v € H the projection |v > <v|is contained in some Q € 7, (H) we have
(v|T — S|v) > 0.Therefore, T — S > 0.

The relation weakly equal will be denoted by =".

Let p € D(H) be a diagonal matrix. Clearly, we can consider p as a classical probability distribution
function. But if the density matrix p is not diagonal we cannot interpret it in this way. The following definition
serves to discriminate these two cases.

Definition 5. Let H be a separable Hilbert space and Q € m(H). The mapping v : B(H) — R given by
v(T) = ||T — To||will be called Q-quantum complexity of T. When v (T) = 0, T is called Q-classical and
when T = 0, T will be called Q-maximally non-classical.

Example 1. Let H be a 2-dimensional Hilbert space with the standard basis {|0), |1)}. Let X, Y, Z be Paoli
density matriceson Hand Q = {|0)(0[, |1) (1|}. Then, itis clear that Zis Q-classical and X and Yare Q-
maximally non-classical.

Important Remark. Let Q = {q,, 4, ..., 4, >...} € 7(H) andlet pbe a density matrix on H. Assume that we
perform the quantum measurement described by the set Q of measurement operators on the quantum system
with state space H in the state p. Then, as it is well-known the probability of outcome associated with g; is

Tr(g; pq;)- Now, assume that Q < P.Then as we have seen earlier g; can be written as sum of some elements of P.
say, g; = 3; p;- Then

Tr(q;pq) = Tr(g;p) = Tr(Q_pip) = TrQ_ pipp) = D Tr(p;pp)).
j j j

In this work in many cases we use only Q € my(H). Nevertheless, interpreted in quantum theory, as is evident
from the above fact, our results concerning prediction and estimation will be true for all Q € 7 (H). Moreover,
asitis well known [5] the outcomes of a general measurement on the quantum system represented by the Hilbert
space H can be realized by a projective measurement on the tensor product of H and another Hilbert space H.
So, our results will be true for general quantum measurement systems.

3. Quantum model, quantum source and quantum strategy

As we said in the introduction our work in this paper inspired by the Minimum Description Length Principle is
based on universal quantum sources associated with quantum models. In this part, we define several versions of
universal quantum sources associated with a quantum model and investigate some of their properties. In the
same section, we prove the existence of universal quantum sources and give a constructive way to build it. We
also define quantum strategy and treat its relation to universal quantum sources.

Before going further in this section let us give some comments on the use of semi-density matrices and on
our definition of universal quantum sources.

The minimum description length principle is a powerful tool in statistical (inductive) inference. It is
essentially based on two important notions:
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3.1.2-part coding
The estimation by 2-part code can be considered as a mathematical formulation of Occam’s Razer which says
that between different descriptions of a data set, the simpler is the better. Assume that these descriptions are
encoded in such a way that they reflect their complexities. Then the description with the shortest code-length is
the better.

More precisely, let M be a nonempty set of probability density (mass) functionsonaset X andlet D C A"
beani.i.d dataset generated by p* € M. Assume that elements of M are encoded. For each p € M, thelength
ofits associated code-word will be denoted by L(p) and —log,p (D) will be denoted by L(D|p). Let

j = argmin, _ (L(p) + L(D|p)).

Clearly foreach p € M, L(p) + L(D|p)isthelength of an encoded description of the data set Dand p is
chosen according to Occam’s Razer.

3.2. universal coding

Under above assumptions on M and X, assume that for each n € N, 5 is a probability density (mass)
function on X". The sequence p = (p™),,cn of probability density (mass) functions will be called universal
with respect to M, if for each € > 0, each p € M, thereexists 1y € N such thatforalln > ngandall x™ € X"
we have

—log,p™ (x™) — (—log,p™ (x™)) < ne.

For more details see [3].

Now let us explain briefly the way we have gone through to quantize these two notions.

Let the Hilbert space H be the state space of a quantum system A, which is prepared in an unknown state p;,
adensity matrix on I, andlet Q = {g,,|m € O} € m(H) where Ois the set of outcomes, be a projective
quantum measurement system. Assume that M is a nonempty set of density matriceson Hand D € O"isthe
set of outcomes of performing theQ-measurement on n quantum systems identical to A and prepared in the
same state p,. In performing theQ-measurement on the quantum system A in an arbitrary state p the probability
of outcome m is

P(m) = Tr(q,,p) = Tr(q,,r4q,,

3.3.2-part coding —> semi-density matrix
Let elements of M be somehow encoded and for each p € M let L(p) be the length of the code-word associated
with pandlet L(D|p) = —log, Tr(®™<Pq, pq,,). Then for each p € M we have

L(p) + L(Dlp) = —log,2"? — log, Tr(®™<"q,,pq,,)
= —log,2 "W Tr(®""q,,pq,,)) = —log,(Tr(2"® @"<" q,,pq,))
— _10g2 Tr(®mqum(27L(p)p(n)) ®mED qm)

But the function log, is increasing and Tr (®™<Pq, (271 p™) @M€L g )isalso increasing with respect to the
semi density matrices 271" p(™  asin the above classical case

p = argmin,_  L(p) + L(D|p) = argmax,_,(®"<Pq, ) (271" p)(@"<Pq, )

is an estimation of p, according to Occam’s Razer. Notice that (2L p() is a semi-density matrix.

3.4. Universal coding — universalDensity Matrix
Let 5™ and p’ ™ be two density matrix on H. Assume that as in classical case for ¢ > 0 there exists np € N
such thatforall n > ngandforall g € Q™ wehave

—log, Tr(g™p™q™) — (~log, Tr(q™ p'™q™)) < ne.

From the above inequality we have
log, Tr (¢ p™q™) > log,27"¢ + log, Tr (g™ p' ™ gy = log, Tr (™ (27 p"™)q™) But the inequality

10g2 Tr(q(n)p(n)q(n)) > 10g2 Tr (q(n) (2*”6;,/("))q(?’l)).
is equivalent to

q(ﬂ) (p(n) _ 2—nfﬁ/("))q(n) > 0.

In the following all tensor products of Hilbert spaces are topological tensor products.
The n-times tensor product of a Hilbert space H with itself will be denoted by H™ and in general, for each
T € B(H), T®" := Q"T. The sequence (H™),c of Hilbert spaces will be denoted by H* and for T,y € H™

7
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the sequence (Tj,;)),en will be denoted by T%. In this case we say that T is an operator on H* and if for all

n € N, Ty, is a (semi-)density matrix, then T will be called a (semi-)density matrix on H*. A semi-density

matrix T® = (L)nen on H* is called nonzero ifforall n € N, Tp,;, = 0. In this case the associated density

matrix of T®is w(T®) = (%) . From now on semi-density matrices on H* will be denoted by
) ) neN

p = (p"),en.The semi-density matrix p = (p™), < will be called

1.simple if pY = p and for each n € N, p™ is the tensor product of p and (n — 1)-times tensor product

of w(p).

2.ageneralized quantum source if foreach 1 < n € N, p"=D = Tr, (p™).

3. regular if for each n, p™ isinvertible
When foreach n € N, Tr(p™) = 1, the generalized quantum source p = (p),,cn will be called a quantum
source.

LetQ = {g 4, >4, »--} € 7(H)beacomplete set of mutually orthogonal projections of the Hilbert

space Handlet I = (iy, iy ..., iy) € N. Then the projection g; ®q; ®.--&gq; willbe denoted by q\" or
simply by g if there is no ambiguity. The set { g™ |I € N®} will be denoted by Q.

Definition 6. Let M = (M, ¥, 1) be ameasure spacewhere M is a generalized quantum model. Then, M will be
called Bayesian if fM pdp(p) exists and is a density matrix.

Lemma 8. Let M be a Bayesian generalized quantum model which is a measure space and let p™ = f M pMdp(p).

Then, the sequence (p'™),c is a quantum source.

Proof. For each nn € N clearly we have T, | (p"*V) = p™. Therefore,
Thn (D) = [ Toa(p" D)dute) = [ p®dpip) = p.
M M

|
Lemma9. Let U € B(H) be a unitary operator and p be a quantum source. Then UpU™ = (U™ p™ (UT)M), _ is

alsoa quam‘um source.

Proof. Obviously any element p" " € B(H""") canbe writtenas p""+ = 37,/ R;; ® |i) ( jl where

R;;€B (H™). Because p is a quantum source we have

Try 1 (pUHD) = Z,‘Ri»i =p™

So,
(UpU '+ = gt Dyt
= Z?:](U(n)Ri,j(UT)(n)) & U|i> <]|UT )
Therefore,
Tr, 1 (UpU T HD = Zio;:l(U(")Ri,j(UT)(”)) Tr(Uli) (U™

= Ziil(U(")Ri,i(UT)("))

= U™ (T2, Ri)(UH™

= U(”)p(n)(UT)(n) — (UpU'I')(n) 3)
Therefore, Up Ufisa quantum source. -

In this work /n denotes natural logarithm and log denotes logarithm in base 2.

Definition 7. Let p and p’ be density matrices. Then the quantum relative entropy of p and p’ is
S(pllp") = tr(plogp) — tr(plogp”)

Definition 8. Let M be a quantum model and p = (p™), <y be a semi-density matrix on H*. Let Q € m (H).
We say that p is
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1. universal relative to M if for each p € M and foreach ¢ > 0 there existsan 1y € N such thatforalln > #n,
we have:

p(n) _ zfn(p(n) 2 0.

2. universal in the expected sense relative to M if:

S(p(n)Hp(n)) < ne.

3. Q-universal relative to M if for each p € M and for each ¢ > 0 there exists an ny € N such that for all
n > nywe have:

péﬂ) _ anfpg) > 0.

4. Q-universal relative to M in the expected sense if

S(po™|IpS) < ne.

In the above if € does not depend on p, p is called uniformly (Q-)universal.

Lemma 10. With the above notations and conventions, 1 implies 2 and 3.

Proof. Clearly we have
/—)(n) _ Z*ﬂfp(ﬂ) 2 0

= ne + logp™ — logp™ >0

= nep™ + (p(”))l/z(logp(”) — logp(”))(p(”))l/z >0

= Tr(nep™ + (p("))l/z(logf)(”) — logp(”))(p("))l/z) >0

= ne + Tr p™ (logp™ — logp™) > 0.

= S(p"||p"™) < ne. 4)
The other part is clear. |

Example 2. Let M be a Bayesian countable generalized quantum model consisting of nonzero semi-density
matrices and let M be its associated quantum model. Then for each element p* € M andeach n € N we have

P = 37 pm > px,
pEM

Now let € be given and let 7y € N be such that
Tr(p*) > 20w,
Then, for each n > nywe have
P — 2 p > 0,
where p = w(p*). Therefore, p is universal relative to M.
Example 3. Let M be a quantum model and let p be a universal density matrix relative to M and Ube a unitary

operator. Then UpU~!is a universal density matrix relative to U MU~ ! where UMU~! = {UpU~!|p € M}

Theorem 2. Let H be a separable Hilbert space and Q € m(H). Let M be a quantum model which is a compact
Riemannian sub-manifold of By (H) consisting of density matrices. Assume that

L. p: M — ]0, ool isa continuous function and fM p(p)dvoly(p) =1

2. There exists a positive real ¢ > 0 such that

minge g max,e m[Tr(gpq)] = c.
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Moreover, foreach n € Nlet p = fM p(p) p™dvoly(p). Then the quantum source (p), ¢y is uniformly

Q-universal relative to M.
Proof. Let ¢ > Obegivenandlet § = c(1 — 27¢/2) > 0.Let p, = argmax _ \,[Tr(qpq)] = c.Then forall
A € B(p, 8)wehave
Tr(ap9) — Traga) = Tr(q(p, — )9 = llale, — A4l
<oy = gl < llpy = Al < dpp A < 6.

and it is straightforward to see that for all p’; € B(p, 6)we have

g = 2-*qp,q.
Since M is compact as it is proved in [6] there exists a constant v > 0 such that forall p € M we have

volyB(p, 6) = v.
Let 8 = min,c pp(p) andlet k € Nbesuch that Bv > 27%</2. Then we have

515 —
ar"’q fM p(p)apqdvoly(p) > fB o) p(p)gpqdvol,,(p)

oy

> 27/2Bvol(B(p, §))qp,q = 2~ D 2qp,q.
Let us denote fM p(p)p™dvoly(p)by p™.Let n € N be greater than k. Then from the above it is evident that
forall p € Mwehave
q(")p(”)q(") > 2*(k+")f/2q(”)p(”)q(") > 2ne q(”)p(")q(").
Andforeach p € M wehave
P =3 @Mp™Mgy =27 S (g pg™) = 27 pl,

q(”) EQ(”) q(nJ GQ(”)

Therefore, the quantum source p = (p™),cy is uniformly Q-universal relative to M. [ |

Theorem 3. Let H be a Hilbert space and let M be a quantum model, which is a compact Riemannian sub-manifold
of By (H) consisting of density matrices . Assume that p: M — 10, oo[ is a continuous function such that
f/\/t p(p)dvolv(p) = land foreach Q € m(H) there exists a positive number cq > 0 such that

mingecqmax,e m[Tr(qpq)] = cq. Then, with the above notations, the sequence (P™)en is a universal quantum
source relative to M.

The proofis a consequence of the above theorem and remark 1.

Corollary 2. Let H be a finite dimensional Hilbert space and let M be a quantum model, which is a compact
Riemannian sub-manifold of By (H) consisting of density matrices. Assume that p : M — 10, ool is a continuous
function such that fM p(p)dvoly(p) = 1. Then, with the above notations, the sequence (p™),,cn is a universal

quantum source relative to M.
The proofis evident.
Lemma 11. Sy, the set of all universal quantum source relative to the quantum model M is convex.

Proof. Let p; and p, be two universal quantum source relative to the quantum model M.Let p € Mande > 0
be given. Then there exists 1y € Nsuchthatfor k = 1, 2and n > ny we have:

f’;fn) — 27nep > 0,
Let avand Bbe two positive real numbers such that « + 3 = 1. Then
apl(n) + ﬁpz(n) _ z—nfp(n) — O‘(p1(n) _ z—nrp(n)) + ﬁ(pz(n) _ z—nsp(n)) > 0.
Therefore Sy at each level n is convex. On the other hand,

(apy + Bp)" = ap” + 6p,” € (S,

10
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where (Sy)™ = {p™|p € Sy}, Therefore
ap; + Bp, € Su.

Before going further it is better to introduce the notion of conditional density matrix.

Convention 1. Let Hj and H, be Hilbert spaces, T € B(H; ® H,)and T; € B (H,). We denote
BT = (T @ D) T(L: ® b)
Here L is the identity mapping of H,.

Let Hj and H, be Hilbert spaces. Let p be a density matrix on the Hilbert space Hy ® Hb, p; = Tn(p)and
Py = Py *p- When Hy = H®™ and Hy = H®™~", p,'+p will be denoted by p,,,,
Now assume that o is a density matrix on Hj. Then,

p(lo) = Tr(o*py)
is clearly a positive operator on H,. Moreover,
Tr(p(|0)) = Tr(Tr(o*pyp,) = Tr(Tri(op; '*p)) = Tr(op,~"*p)
= Tr(Try(o*p; ) = Tr(a?p; *(Tn(p)) py /2 0'/?)
=Tr(a"?p; " ?p,p; /?0/?) = Tr(o) = 1.
Therefore, p(.|o) is a density matrix on H.

Let p € D(H™ ® H)and g™ ® q € Q"*V. Then p(qlq™) = q(Tri(q™+p,, 1,))q is called the
conditional semi-density matrix of q conditioned on g under p.

Definition 9. Let H be a separable Hilbert space and let p = (p),,cn, be a positive operator on H* and

p = (p"),eny where p = pep@e ... (M bealso a positive operator on H*. Then, the sequence

p = (p™),cn is called a quantum strategy if the sequence p = (p™), < is a regular quantum source on H*.
Clearly p"*D = (p)~Lep+D and p+D = pmepn+D

Lemma 12. Let (D), be a quantum strategy and (p™),,c be its associated quantum source. Then for each
T € B(M)andeachn € N, T™p™W = pMTW ifand only if T™p™ = pmT™,

The proofis straightforward. n

Remark 2. For future applications we mention that because of the equality p* ™V = p, | | |»» quantum strategies

are also called quantum estimators. Let (5™), <y be a quantum source. It is straightforward to see that
(™ Q)neN isa Q-quantum source and gives rise to a Q-quantum strategy.

Definition 10. A quantum estimator (p™), <y is called good with respect to a quantum model M if its associated
quantum source is universalrelative to M. Under conditions and notations of theorems 2 the quantum strategy
associated with the Q— universal quantum source p™ = f/vl p(p) p™dvoli(p), is good.

Example 4. Let M be the following quantum model.
M = {pl0 < 0 <1},
where pyisa2 x 2-density matrix defined as follows
NN )
a [m -y ]

and 0 < ¢ < lisareal constant.
Let Q = {q;, q,} where g, = |0) (0]and g, = |1) (1|and {]0), |1)} is the standard basis of the 2-dimensional
Hilbertspace H = C2 Then

_ _(9 o
P = DPeh T BP9 = \y 1 _ g

is a diagonal matrix.

11
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For simplicity we omit the index Q. Assume that g™ € Q™ consists of k— times g, and (n — k)— times g,.
Then foreach 0 < 6 < 1wehave

4™ p, g™ = OF(1 — )P g,

Itis straightforward to see that the maximum likelihood estimator for ¢ is pj e, where 0(q™) = k/n.
Clearly M is a Bayesian quantum model. As we have proved earlier its associated universal quantum source

. i

is (p),,cny, where p = j(; py™d0 and for g™ € Q™ asabove we have

1 1
4™ p (g = f 4 p, g™ do = (f k(1 — 9)(n—k>d9)q<n>,
0 0

One can compute the above integral by partial integration and see that

Hn n 1 n
40P (@) = ————q.
(n + D(k)
In the same way for gD = ¢ ® g, € Q"+ we have
q(n+l)p(n+l)(q(n+l)) — ;n“ (n+1)‘
(n + 2)(k+1)
Therefore
) i q(n+1)p(n+l)(q(n+l)) B (n + 1)(:) B k+1
Pl = e ey PEERL o
q™p™ (q™) (n+2)(k+1) n+2

The density matrix p"+1(.|q™) is called modified maximum likelihood estimator for g Evidently, for large
n € Nitisverycloseto pj ). Clearly, p" "D is a good strategy.

For many smooth parametric quantum models M = {p,|8 € ©} like the above example an associated
modified maximum likelihood estimator p = (p™),,cy is a good quantum strategy. Moreover, in these cases for
p = (p"™),en the associated universal quantum source we have

Theorem 4. For each § € © we have
S(py™[p™) = O(log(n)).

The proofis the same as the proof in the classical case given in chapter 8 of [3] on page 246 with simple
modifications.

4. Quantum prediction and quantum estimation

Aswe said in the introduction, quantum prediction and quantum estimation are the most important subjects of
quantum statistical inference. Following the classical works in MDL principle, our method of statistical
inference is in general based on universal quantum source and use of it to do quantum prediction and quantum
estimation.

4.1. Quantum version of classical MDL prediction and estimation
Let H be a separable Hilbert space and let Q € 7 (H). Let M be a Q-quantum model andlet p™ € B (H™)
be such that for I € N~ we have

(n—=1)

q, p = argmaxpeM(q(ni1),0(”71)611(”71)).

I

Clearly, p = (p™),,cy is the maximum likelihood Q-quantum strategy associated with M. Unfortunately, p is
not good. Butin many cases (see the above example), a modified version of the maximum likelihood Q-quantum
strategy, which is very close to the unmodified one and the difference between them tends rapidly to zero, isa
good one.

This good Q-quantum strategy enables us to predict next outcome given the data qI(”_ D, Moreover, let the

data qI(”’ U be really generated by p € M. Then as we will see in the next chapter ql("’ Dep™ canbe considered as
an estimation of p.

12
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4.2. Quantum version of classical two-part code estimation
Let H be a separable Hilbert space andlet Q € my(H). Assume that M is a generalized quantum model. For
I € N let p, be defined as follows

P, = w(argmax o o 47 P4;)-
If the maximum is achieved by more than one p we choose the one with the maximum trace. And if there is still
more than one p there is no further preference. More precisely, let us suppose that M is a compact Riemannian
sub-manifold of the Hilbert space (Br (H), (.|.)7) consisting of semi-density matrices where for pand p’ in
Br(®), (plp") = Tr(pp’) and (M, X, p)beits associated canonical measure space. To obtain ,, let Zbe the set
of all extremum points of the smooth function h: p — Tr(g,' p™q;") on M, and let Z’ be the set of all elements
p € Z atwhich the bundle map Hessian(h): TM — T M is negative. Clearly, Z’ is the set of all maximum
points of h. Now, let p, be the element of Z’ with least trace. Then, j, = w(p,). If there are more than one p, in
Z' we do not have any further preference among them. (For more information about finding extremum points
see[7])

In the next section we will show that given the outcome ql(”) ,itis an estimator of the state of the system.

5. Consistency and convergence

Consistency is a very important property of different methods of statistical (inductive) inferences. Let us explain
briefly what we mean by it.

Assume that H is a separable Hilbert space and M is a quantum model on H. we say that a method of
quantum statistical inference is consistent with respect to M if for p, € Mand Q € m(H), we perform the
quantum measurement Q on the quantum system I in the state p, repeatedly and obtain more and more data
the state yielded by the method is more and more close to the state p, in some sense.

In this section we investigate different approaches to consistency and convergence.

5.1. Consistency based on distinguishability

Let H be a separable Hilbert space and let Tand Sbe in By (H) and A be a complex number; Assume that S = 0,
T = ASand p is the orthogonal projection onto the image of S. Then, we put T/S = Ap. Let H be a separable
Hilbert spaceand Q € my(H). Let p = (p™),,cn be a quantum source on H*. For each n € N let P, be a unary
relation on Q™. Then,

Tr( z q™ pMg™)
4" €Q"|B(q")

will be denoted by 5 (B,). suppose that o’ = (p'™),,cy is another quantum source on H*. Foreach n € N, and
each 6 > 0let B’ be the unary relation

q(”) p/(")q(n)
q(n)p(n)q(ﬂ)
on QM.

Definition 11. Under the above notations and conventions we say p’ is asymptotically distinguishable from p if
forall § > 0 wehave

lim, . p(PY) = 0.

Let M be a countable Bayesian set of generalized quantum sources on H* and M be its associated set of
quantum sources. For each n € N, let us denote w (™) by p™. For each (4™) € Q™ define j, as follows:

(*) p(ﬂ) = max,mepy, q(n)p(n)q(n).

and M,, = {p™|p € M}.Observe that Py depends on qm.
Now we have the following important consistency theorem.

Theorem 5. Let H be a separable Hilbert space and Q € my(H). Let M, M and p,, be as above. Let p* € M and

M be the subset of M consisting of quantum sources asymptotically distinguishable from p* and
M, = {p™|p € M}. Then

lim,, . o0 p*(P(y € My) = 0.

Proof. Let p,, € M,,. From the equality (x), for some p, € M, we have

13
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q(n)/—)nq(n) > q(n)p*(n)q(n)

Therefore,
. .. ) g Tr(p™)
*(Doy € My) = p* for some 7 € M, .79 > .
PPy P {f " g g~ ()
Let us denote Tr(p ) by 0 (7). Assume that n: — p, is a bijective mapping from N onto Mandm = Tr (0D pn)

Lete > Obe glven andlet m = m — € Tr(p*). suppose that N is the least integer such that Tr (anl p) =
Let M = {pJ1 <n< Njand M = M — M.
Evidently,

P (B € M) = P (B € M) + P (B € M.
and
Tim p*(p € M) = Tim p*(p € M) + Tim p*(p € M.

Assume that p € M and 8(p) = Tr(p*)/ Tr(p) Since p is asymptotlcally distinguishable from
*, limy, o0 p*(P’S("’)) = 0. Since M is a finite set we have

lim p*(p, € M) < lim > PXPLPY) = > hm PXPLP) = 0.

=00 5e M peM ™
On the other hand by the fundamental coding theorem we have
pHPL) < 1/68(p).

Hence,
PPy € M) = 5, 0 PH(PLY)
< 1/5(p)
= 5, eu Tr(p) ) Tr(p
=(m — m)/ Tr(p")
=e.
Therefore,

lim p*(p, € M) =o.
n—oo
5.2. Consistency in terms of KL risk and Cezaro average KL risk

Theorem 6. Let p and p™* be Quantum sources and p* be simple. Then

n
S(p*m||pmy = ZE,)*"'*”S(Pﬁaq)HPu(i—l))-

Proof. Assume that Qis a complete set of mutually orthogonal minimal projections. Assume that p*f,’f)) and pé’(’))

are invertible. For simplicity we omit the subscript Q. By definition and previous lemmas and theorems we

have:
S(p*(”)Hp(”)) — Tr(p*(”) log p*(n) _ p*(”) log p("))
— Tr ) (log p*® — log p™)
= Tr((IIZ 1(P1|(, 1) (log I 1P,|(, D — log I1i_ 19 ;1))
=0, Tr(p* D (log g 1) — 10g Piyi-1)
=y, Epw—wS(p}ﬁ@,l)\lﬁﬂ(iq))- )
(Seealso [3].) [ |

Definition 12. Let p* and p be quantum sources and p* be simple. and ﬁ* and p be their associated quantum

strategies. Then, the standard KL-risk of p*(n) with respect to p is

"% A ~ ()
RISK, (p*, p) =" E juo=n[S(p* | p")]-

14
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And the Cezaro average risk of p*(n) with respect to p™ is

RISK, (0%, p) = 1/n8(p*®|p™) = 1/n" RISKi(p*, p).
i=1

Theorem 7 (Convergence theorem for quantum Estimators). Let H be a separable Hilbert space and

Q € my(H). Let M be a quantum model on H and p be a Q-universal quantum source with respect to M. Then p
the Q-quantum estimator associated with Q-universal quantum source pé") is Cezaro consistent with respect to M.

In other words for all p* € M we have
n
lim 1/”2 RISK;(p*, p) = 0.
n—ee i=1
The proofis a consequence of the definition of Q-universal source and theorem 6. [

Lemma 13. Let f and F be two increasing positive real functions defined on R*. If the function {/F is decreasing and
f= O(F),then f(n+ 1) — f(n) = OF(n + 1) — F(n)).

Proof. Assume that there exists ¢ > 0 such that for nlarge enouph f (n) < cF(n).Let f(n + 1) = gF(n + 1)
and f (n) = ¢oF (n). Therefore,

fn+1)—f(n) =qgFn+ 1) — cF(n).
Since g < ¢y < ¢ wehave
fn+1) —f(m)y=agFn+1) —cF(n) < cFm+1) — F(n) < c(F(n+ 1) — F(n)).
Lemma 14. Let f: Rt — R* be a differentiable and integrable decreasing function. Assume that
F(x) = j: f (x)dx. The sequence u,, is defined as follow: uy = O andforalll < n € N, u, = f(n — 1). Assume
that (a,,),cn is a sequence of non-negative real numbers. Then
DIfa, = O(u,), Then Y7, a; = O(F(n) + 1). Conversely, if for n large enough the function
>, a;/(F(n) + 1)isdecreasingand .7, a; = O(F(n) + 1), then a, = O(uy).

2)Iflim, . a, = 0, then lim,_,>_" , a;/n = 0. Conversely, if for n large enough the function Y7 , a;/nis
decreasingand lim,, ., >"_, a;/n = 0, then lim,_,,,a, = 0.

Proof. 1) In approximating the integral by sum and remembering the fact that the function fis decreasing we
have

n—1 n
F(n) =Y uj+ O() =Y uj+ O(1).
i=1 i=1

Therefore,

zn: a; = O(Zn: u;) = O(F(n) + O(1)) = O(F(n) + 1).

i=1 i=1
Conversely, assume that > a; = O(F(n) + 1). Then there exists a constant ¢ € R such thatforalln € N
greater than some g we have 3"} a; < c¢(F(n) + 1). By the above lemma we have

n+1

1=y, a;— a; <c(F(n+ 1) — F(n) = of (6,).
1 1

Where, n < 6, < n + 1.Since fis decreasing we have f (6,) < f(n).Hence, a,,,1 < cu, 1. There-
fore, a,, = O(u,).
2) From the equality lim,,_, . a,, = 0 it follows that for each ¢ > 0 there exists #; € N such that for all

Z’gk"lal < e.Letn € N begreater than k — 2n;. Then

n > n;, we have a,, < €. Suppose that for k € N,
2(n + my) > k + n.So,

n—+m ny n—+m
dYai=>ai+ > a;i<(k+ne<2n+ me.
i=1 i=1 i=n,
n g .
Hence,% < 2€,where ny = n + ny.Itisclear thatforall n > nywehave
0
n
@ < 2€.
n

15
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Therefore,

n
Zi:ﬂi

lim, .o =0.
n
: Yiai. . sl S
Conversely, since for n large enough the sequence ==— is decreasing we have ’Tll < == Then,
n n
1

n+ ( n -+ 1) n

S < D5,

i=1 noi=

E Z

Therefore, a,,; < =='%. But the sequence =='* is convergent. Therefore, the sequence a,, is also convergent.

Theorem 8. Let p* = (p*("))neN and p = (p("))neN be Q— quantum sources on the Hilbert space T*. Then

1) iflim,, oo RISK,,(p¥, p) =" 0 then lim,_, %S(p*(”) |p™) =" 0. Conversely, if%S(p*(”) | p™) is
decreasing and limnéoc%S(p*(”)Hp(”)) =" 0 then lim,,_, ., RISK,,(p*, p) =" 0

2) Let f: RY — R bea differentiable and integrable decreasing function and let F (x) = j; * f(t)dt. Then, if
RISK,,(p*, p) =" O(f (n)) then

S P = OF ™ + ).

SG*® | )

Fo D is decreasing and S (p*™||p™) = O(F(n) + 1), then RISK,,.1(p*, p) =" O(f (n))

Conversely, if

Proof. The proofis a consequence of the definitions and lemma 14. See also [3]. |

5.3. Consistency in terms of Renyi divergences and Hellinger distance
Let H be a Hilbert space. Let p, and p, be density matrices. Then
1) The quantum relative entropy of p, to p, is

Snat(mHPz) = Tr(p,Inp) — Tr(p,Inp,).
2) The Helinger distance of p, and p, is
He(pyllpy) = loy* = 03Il

3)Let A > 0beareal number. The Renyi divergence of order A of p; and p, is defined as follows:

6?)\(/)1||p2) = _1 l”(<P1|le A >1 ).

Observe that

He?(pyllpy) = 1p)/* = P2 |} = Tri(p)/* — pY/*)1 = Tr(p, + p, — 20,0,/
=2(1 — Tr(p,'?p,'/?) < [—2In<p|p}/* >1 1= di 2 (py]| po)-

Let M = {7,|n € N}Dbeacountable quantum model and let (u,),,cy be a sequence of nonzero real
numbers such that >~ n € Nu,, = 1. The set consisting of all elements of the form u,, 7, will be denoted by M.
Let Q € m(H).For a > 1,let M, = {p,lp € M}.Where, p, = [Tr(p)]*! p.Let g, ™ be defined as follows:

1", 9" = max, e ;m, (9", "9")-

Assume that (g, ™), < is a universal semi-density matrix for M. Suppose ), is defined as follows:
For q(n) c Q(ﬂ) ,

P = argmax,. v, 4" p™q".
Observe that j5, depends on g Let p, = ux 7 = argmax, 4™ p"™q™. Then evidently

(n) q(n)'

In the following, we write p, instead of p;”).

Theorem 9. Let p* be the state of the system. Under the above notations and conventions for all « > 1and
0< A=1-— 1/awehave

E so(dh (05" 155 < nat(p o (125
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And for « = 2 we have
E *(n)(Hez(p (")Hpég < nat(pQ(n)”p(n)

Proof. (The proof is a modified version of the proof of theorem 15.3 of [3]). For simplicity we omit the index Q.
Since A = 1 — a~Lwehavea = 1/1 — \.Let A(p*||p) = Tr(p*'p'~*). Foreach ¢ € Q™ wehave

q"d\(p*l|p,) = (=1/1 = Vg™ I A(p*™||p,)

Lo i q"p,g " Dy P N
n qmp"q™ s A (%)
4™ 5,9 /a
q(n A (4‘”"’*(”)4(”) ”"
q™p" g™ A" ()
4, 1-A
o o ()
T g T A (oH5)
( 43,9 )I_Au
< lq(n) In q(n)p*(n)q(n) N gq(n) In Z g p @ m
n q®p"q™  n mere AP (0¥p,)

Therefore,  E o [dy(p*™]|p,)] = (l)sm (p*™]| )
n

( 4", g™ )1*)\
PR B— u
@ ) () g (9 m
+ (—) Tr(Ep*m) In Z 1 p(n) 1 -

n meN A (P Hpm)

where g™ is arandom projection under the density matrix p* with values in Q.
Since Q € my(H) and

Tr (q(n)pgcn)q(n) In q(n)pgﬂ)q(n)) = Tr(q(n)pgcn)q(n)) Tr(ln q(”)pg’”q(“)),
Now by Jensen’s inequality we have

( 1" p,q" lfAu
a 20 g m
(—) Tr(Ep*w) In E Y

n meN A (p ||pm)

. 1-A
q("] an(”)
q<n)p*<n>q<n) Um

TrInE P Z
meN A(n) (p*”pm)

Um n) k() (n n) (1) o)yl —
In}> W Tr( Y, (@™ p*™g™) (g )an)q( N
meN PN Pm q"meQ™

Tr(H"(p**p‘mA))]

Um

— e [ Tr (0™,
meN| A(n) (p*Hpm) "

)ln _ HUm
meN| A(n) (p*Hpm)

:glnz adi.
n

—m— |4 (0¥ p,)
meN| A(n) (p*Hpm) "

But Y, ot = 1. Therefore, E +[d\(p™]|p)] < (%)sm,, (p*™[| ).

Corollary 3. From the above theorem, theorem 6 and the relation between Renyi divergences and Hellinger distance
explained above we have:

1.lim, o E o (He (55| A)) = .
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2. Leta > 1and0 < A =1 — 1/a. Then,

lim, o E xo(ch (65| 5g)) = .

6. Applications

As we described before, estimation and prediction are the most important purposes of quantum statistical
inference and particularly this paper. In order to show the advantages of our method, in this section we explain
the usage of this method by two examples. The first example that we choose is selecting a density matrix among
three ones which are originally considered in [8]. For multiple ions quantum tomography, two famous
traditional methods, the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) are
used for estimation. For more information please see [8].

In this case, the quantum model consists of three one-ion states of different degrees of purity: a pure state,
one with eigenvalues (0.95, 0.05), and the other with eigenvalues (0.72, 0.28). For each state, they simulated
datasets with varying numbers of repetitions n = 10, 50, 100, 250, 500. Table 1, shows the number of times (out
0f 1000 samples) that BIC and AIC chose correctly, [8].

Now we choose among these states with the quantum version of classical two-part code estimation, semi-
density matrices.

Let

p=lo P ] o= oo man.

Letq; = |0) (0] then a; Pq; = a4, andifqij = |1) (1| then q;,pq;, = a- a)qi]_.
" 2710 p™yg™ = 2710 (g, pg,) © (9, p9,) -+ (q; pa;)-
Assume that g™ € Q™ consists of k— times [0) (0] and (n — k)— times 1) (1]. Then:
ql(n) (TL(p)p(n))qI(n) — 27L(p)ak(1 _ a)(nfk)ql(n)

Now let us calculate this for the states considered in [8]. In the following, when there is no ambiguity for we
omitq’s.

Example 5. For the states in [8], we define the following quantum generalized model

M = _1f[1ro _ 4[095 o0 _2[072 0
=50 o ™79l o 005”79l o 028

1
— k=mn
g Q7LD )™ = 13

0 Otherwise

4
a" @0 g = S(0.99)4(0.05) 0

2
q" @ g = 5079402570

For each state, we simulated datasets with varying numbers of repetitions n = 10, 50, 100, 250, 500. Table 2,
shows the number of times (out of 1000 samples) that the quantum version of classical two-part code estimation
chose correctly.

As expected, for small sample sizes, n, the quantum version of classical two-part code estimation may select
the wrong model because it has a built-in preference for ‘simple’ models. But for all large n, it will select the
correct model. Yet for the small n, it is far better than classical methods, like AIC and BIC. In the case of the pure
state because of the appropriate choice of weight, it never missed and always chose correctly. On the other hand,
itavoids overfitting and it did well for the mixed states too. AIC and BIC have mistakes even for the large number
of n. The comparison between tables 1 and 2 will show the difference between using semi-density matrices and
common traditional models.

In the next example, we will show a concrete example of calculating a universal quantum source and
predicting the n + 1-th outcome by a quantum strategy.
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Table 1. AIC and BIC Model Selection.

Measurement Repetition

10 50 100 250 500

State 1 BIC 987 990 994 992 996
AIC 945 944 919 927 930
State 2 BIC 25 83 183 394 706
AIC 77 312 502 802 942
State 3 BIC 384 973 998 997 988
AIC 594 992 998 997 998

Performance of BIC and AIC model selection for 3 states: pure (state
1), almost pure (state 2), and mixed (state 3). This table is based on
the results in [8].

Table 2. The quantum version of classical two-part code

estimation.
Measurement Repetition
10 50 100 250 500
State 1 1000 1000 1000 1000 1000
State 2 336 926 995 1000 1000
State 3 747 980 998 1000 1000

Performance of the quantum version of classical two-part code
estimation for 3 states: p, (state 1), p, (state 2), and p; (state 3).

Example 6. Let M be the following quantum generalized model

1
M frd = —
P1 B

4
» P2 =17

7
s P3 = 15

D= o=
= o=
oo W
W= o
E R
W oo | —

and we want to predict the n + 1-th outcome, after observing # measurements. Based on what we said in the
previous sections the Q— universal quantum source is as follows:

- S ST R
LA 122/ \2 12\3)\3 12\4) \4 '
The quantum strategy associated with the above universal model is
p"1(10) {0l1g™)
1 (1 \k+1/1\(n=k) 4 (2\k+1/1\(n—k) 7 (1\k+1/73\(n—k)
0 Q) T+ E6) G 5l ()
1 (1\k/1\(n=h) 4 (2\k(1\(n=h) 7 11\k/3\(n—k)
GG T HSG)6)" 56 G)
1 6n+1 + 22n+k+5 + 7 % 32n7k71
12 X 6" 4 22n+k+2 1+ 7 % 32n7k
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