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Abstract
In this paper, inspired by the ‘MinimumDescription Length Principle’ in classical statistics, we
introduce a newmethod for predicting the outcomes of performing quantummeasurements and for
estimating the state of quantum systems.

1. Introduction

Needless to say, nowadays nearly all our physical knowledge is based on quantum theory. So an increasingly
important problem is to characterize quantum systems and to obtain information about them. In theway of
solving the problem,QuantumStatistical Inference (QSI) is a unique tool. Quantum statistical inference is the
quantumversion of classical statistical inference. To bemore precise, quantum statistical inference enables us to
obtain information about quantum systems by using outcomes of performing quantummeasurements. The
research subject was initiated in themiddle of the 1960s. The pioneers and thefirst researchers in the field are
Holevo, Yuen, Kennedy, Belavkin, etc. Since then till nowmany researchers in different countries have
conducted research into the subject and have extended it in different directions. Among other things, QSI
contains the subjectmatters, quantum estimation and quantumprediction, whichwill be considered in this
paper. To treat these problems the only tool at our disposal is performingmeasurements. Since quantum theory
is statistical in nature, we have to perform the same quantummeasurement in the same state of the quantum
systemmany times. But, as it is well-known, after performing ameasurement on a quantum system the state of
the system changes drastically. To overcome the difficulty, we usually assume that there are n quantum systems
described by the sameHilbert space and prepared independently and identically in the same state ρ (a density
matrix on) andwe perform the same quantummeasurement on each of them. In this way, we obtain a data set

=D x x x, ,... n1 2( ). By quantum estimationwemean techniques enabling us tofind an approximation of the
state ρwith the help of the data set D and by predictionwemean characterizing the probability of the outcome

+xn 1 given the previous outcomes Îx D. An appropriatemethod to solve the problems is to choose a setof
densitymatrices on  containing ρ, called a quantummodel and try tofind the state ρ bymethods, such as
MaximumLikelihood Estimation (MLE). To be able to act in this way, we have to parameterize the set in a
differentiablemanner. Unfortunately,MLEstimationwhich has been used by several authors gives rise to
overfitting2.Moreover, in general, we do not knowwhether the state ρ is in themodelor not. Inspired by the
works of J. Rissanen [1, 2], P. Grünewald [3], and others on theMinimumDescription Length Principle (MDL)
in classical statistics, one of our goals in this paper is to remedy this difficulty. Their works on the use of 2-part
codes [3] inMDL guided us to use sets of semi-densitymatrices in addition to quantummodels and call them
generalized quantummodels (formore detail see the beginning of section 3). As in classicalMDLwe base our
work on universal sources associatedwith quantummodels.Wewill show that in all interesting cases universal
quantum sources exist. It will be evident that the use of universal sources automatically protects against
overfitting.Moreover, we prove different versions of the consistency theorem showing that when the state ρ is in
the chosenmodel, the selected universal quantum source is asymptotically equivalent to it.

The organization of the paper is as follows:
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In section 2we introduce the notion ofQ-projectionwhich in this workwill act as projective quantum
measurement. At the end of section 2, it is proved that in quantum theory all results concerning prediction and
estimation proved in this paper are true for general quantummeasurements. In section 3 after some
explanations about theMDLprinciple and thewaywe have gone through to quantize themost important
notions involved inMDL,wewill define fundamental concepts, such as (generalized) quantummodels,
universal quantum sources, which is the core concept of this work, quantum source and quantum strategy. we
will also prove some important facts about them.At the end of the same section, we introduce the notion of good
quantum estimator and a large class of them. Section 4 is about quantumprediction and quantum estimation. In
section 5wewill introduce the notion of consistency and prove some theorems about it. In section 6, we give
examples that indicates the efficiency of thismethod.

Weemphasize thatwith thehelp of trace function, one can reduce theproblems treatedhere toproblems in the
classicalMDLmethods and solve themclassically. But indoing this the operator nature of important concepts like
universal quantumsource associatedwithquantummodels, quantumstrategy and conditional densitymatrix
conditionedondensitymatrixwill be lost. Evenworse, one cannot understand that these concepts are operators.
Moreover, treating theproblems in the realmof operator theory aremorenatural and simpler. In the samevein,
nearly all notations, definitions and conventionsused in thepaper is directly inspiredby their classical counterparts in
[3]. So that comparisonof classical andquantumframeworks shouldbe straightforward.

2.Q-Projection

Given a separableHilbert space , in general infinite dimensional, with inner product á ñ·∣· , the set ñ Î k k{∣ ∣ }
will denote an orthonormal basis of and its dual basis will be denoted by the set á Î k k{ ∣∣ }. The set of all
bounded operators (resp. self-adjoint bounded operators) onwill be denoted by B ( ) (resp. by BH ( )) and
the set of all positive operators (resp. densitymatrices) on will be denoted by + B ( ) (resp. by D ( )). Finally,
theHilbert space generated by trace class operators ofwith the following inner product will be denoted by

BT ( ),

á ñ = Î T S Tr T S T S Bfor all ,T T*∣ ( ) ( )

with associated norm =T T TTrT *( )  .
A positive operatorT is called a semi-densitymatrix if Tr T 1( ) and it is called a densitymatrix if

=Tr T 1( ) . Themappingwhich sends each nonzero semi-densitymatrixT to its associated densitymatrix T

Tr T( )
will be denoted byω.The collection of all complete sets ofmutually orthogonal (minimal) projections
=P p p, ,...1 2{ }on, with å == p 1n n1 (completeness), will be denoted by p ( ) (p 0( )).
Let =P p p, ,...1 2{ }and =Q q q, ,...1 2{ }be elements of p ( ).Then, the set Î -p q i j, 0i j{ ∣ } { }will be

denoted by PQ andwill be called the combination ofP andQ.We say thatP andQ commute if =PQ QP. In this
case clearly pÎ PQ ( ).More generally, a subset  of p ( ) is called commutative, if any two elements of it
commute. Let = P P P, ,..., k1 2{ }be a finite subset of p ( ). The combination of elements of  is

P = P Î = -= =P x x P i k, 1, 2 ,..., 0 .i
k

i i
k

i i i1 1{ ∣ } { }

When  is commutative, pP Î= Pi
k

i1 ( ).

Definition 1.Assume that ÎXj j J( ) is a family of subsets of a nonempty set X and for each Îj J , there exists
ÌI Jj such that È- = ÎX X Xj i I ij

. Then,

1. For each ÌI J , we say that the set È= ÎY Xi I i is a maximally connected union of the family ÎXj j J( ) if it
satisfies the following conditions:

(a) For each proper subset K of I ,

È ÈÇ ¹Î Î -X X .k K k i I K i( ) {}

(b)

ÈÇ =Î -Y X .i J I i( ) {}

The set of allmaximally connected unions of the family ÎXj j J( ) will be denoted by Î Xj J j. Clearly,  Î Xj J j is
a partition ofX.

2. For each ÌI J , the subset Ç= ÎZ Xi I i of X will be called aminimally connected intersection of the family

ÎXj j J( ) , if
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ÈÇ =Î -Z X .j J I j( ) {}

The set of allminimally connected intersections of the family ÎXj j J( ) is evidently a partition of X andwill be
denoted byÎ Xj J j.

Now assume thatX is an arbitrary non-empty set. Let the set of all partitions of X be denoted by X( )P . Let P
and Q be in X( )P .We say that Q isfiner than P andwewrite P P⪯ , if each elements of P is the union of some
elements of Q. It is evident that the set X( )P with the order relation P Q⪯ is a partially ordered set. Assume
that = Î Í P k K Xk{ ∣ } ( )P is a set of partitions of the setX. LetÈ = ÎÎ P X j Jk K k j{ ∣ }. Clearly È= ÎX Xj J j

and the family ÎXj j J( ) of subsets of the setX satisfies the conditions of definition 1. It is easy to see that for each
partition Î Pk wehave

 Î ÎX P X .j J j k j J j⪯ ⪯

Let partitions P and Q of the setX be such that for all Îk K wehave Q P P.k⪯ ⪯ Then, it is straightforward
to see that for each Îk K

 Î ÎQ X P X P.j J j k j J j⪯ ⪯ ⪯ ⪯

Therefore,  Î Xj J j (resp. Î Xj J j ) is the greatest lower bound (resp. the least upper bound ) of the partially
ordered set  andwill be denoted by  Î Pk K k (resp.  Î Pk K K ).

Definition 2. Let P and Q be in p ( ).We say that P isfiner than Q, andwewrite Q P⪯ if =PQ P. In this
case = =QP PQ P.( )

Wesay thatQ and P are consistent if theyhave a commonupperboundwith respect to this order relation.More
generally, a subset pÎ A ( ) is called consistent if it has anupper bound.Then clearly any subset of A is also
consistent.we say that a consistent set A ismaximally consistent if there is no consistent set B such that Ì

¹
A B.

Lemma1. Let p= Î Î P k Kk{ ( )∣ }. Then

1. If the set is consistent it has a least upper bound and a greatest lower bound.

2. If the set is finite and commutative, then it is consistent.

Proof.

1. Assume that the set  is consistent then it has an upper bound =R r r, ,1 2{ } which is a complete set of
mutually orthogonal projections of. Let Î Q . By definition Q R⪯ . Let Îq Q and letRq be the sumof
all elements Îr R such that q r . i.e. =qr r.Clearly = ¹R R 0q q

2 and = =qR R q Rq q q, since rq=r for

all Îr Rq. Therefore q−Rq is a projection and if - = - ¹q R q I R 0q q( ) , then there exists Îr R such
that q r and rRq=0which is a contradiction.Hence, =q Rq. Therefore for each Î Q , each Îq Q is
the sumof some elements ofR.
Let the order preservingmapping Q Q from p ( ) into R( )P be defined as follows, for each
Î q Q q q, , where q is the set of all summands of the projection q. Notice that q is the sumof some

elements ofR. Now it is clear that under thismappingwe have the following bijectivemaps.

  Î ÎP Pk K k k K k

  Î ÎP Pk K k k K k

wehave seen above that Î Pk K k (resp. Î Pk K k) is the least upper bound (resp. the greatest lower bound)of the
set ÎP k K,k{ }. Therefore, Î Pk K k(resp. Î Pk K k) is the greatest lower bound (rep. the least upper bound)of .

2. Assume that the set  isfinite and commutative. Then,  = PÎ ÎP Pk K k k K k. Therefore,  is consistent.

+

Definition 3. Let Î T B ( ) and p= Î Q q q, ,...1 2{ } ( ). ThenThe element

å=T q Tq ,Q
n

n n

will be called the Q-projection ofT (see also [4]). The set of all Q-projections of elements of B ( )will be
denoted by BQ ( ) and for each Î = Î q Q B qTq T B, .q ( ) { ∣ ( )}
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The set BQ ( ) is a complex subspace of the - C algebraB* ( ), and themapping Q̄ from B ( ) into BQ ( )
defined by Q T TQ¯ ( ) ≔ is a projection. ForT and S in B ( ) and pÎ Q ( )wehave =T S T S .Q Q Q Q Q( ) Therefore

BQ ( ) is a unital C*-subalgebra of B ( ). If pÎ Q 0( ) then evidently BQ ( ) is commutative.
Let  and ¢ beHilbert spaces. Let =P p p, ,...,1 2{ }and =Q q q, ,...,1 2{ }be complete sets ofmutually

orthogonal projections of theHilbert spaces  and ¢ . Then:

Ä = Ä Î P Q p q i j, ,i j{ }

is a complete set ofmutually orthogonal projections on Ä ¢  .LetT (resp. S) be a bounded operator on
(resp. ¢ ). Then:

Ä = å Ä = å Ä Ä Ä = Ä ÄT S p Tp q Sq p q T S p q T SP Q n m n n m m n m n m n m P Q, , ( )( )( ) ( ) .

Lemma2.

1. Themapping Q̄ is trace preserving.

2. IfT is self-adjoint, then TQ is also self-adjoint.

3. A necessary and sufficient condition forT to be positive is that for each pÎ Q T, Q( ) be positive.

4. Let pÎ Q 0( ) and Î T B ( ) be arbitrary. Then,TQ is always normal.

Proof.

1. = å = å ==
¥

=
¥T q Tq q T Tr TTr Tr Tr ,Q n n n n n1 1( ) ( ) ( ) ( ) since the sets of projections pÎQ H( ) are

complete.

2. If =T T*, then evidently =T TQ Q*( ) .

3. Let T 0; then, for each Îq Q , qTq 0. So that for each pÎ Q ( ) , T 0Q . Vice versa, if T 0Q for
each pÎ Q ( ), then, for each vector ñ Î ñá = á ñ v Tr v v T v T v, 0∣ (∣ ∣ ) ∣ ∣ , since any such ñáv v∣ ∣belongs
to some pÎ Q ( ). Therefore, T 0.

4. Since in this case BQ ( ) is a commutative algebra, the proof is clear.

+

Corollary 1.The restriction of themapping Q̄ to D ( ) is a convexmap from D ( ) onto DQ ( ).

Lemma3.

1. Themapping  Q B B: Q¯ ( ) ⟶ ( ) is continuous.

2. Themapping  Q B B: T Q¯ ( ) ⟶ ( ) is continuous in the trace norm topology.

Proof.

1. Let Î T B ( ) be a self-adjoint element of B ( ). Then, TQ  is equal to its spectral radius r. Let Îq Q and
let =qTq r  . Then

å= = T q Tq qTq TQ
n

n n       

Since any Î T B ( ) can bewritten as a combination of two self adjoint elements Q̄ is continuous.

2. Let Î T BT ( ). Then, for each Îq Q , qTqqT q qTT q.* * Therefore, = T T T T T TQ Q Q Q Q* * *( ) (( ) ) ( ) .
Since =T TTr TrQ( ) ( ),

= = =  T Tr T T Tr T T Tr T T T .Q T Q Q Q T
1 2 1 2 1 2( ( )) ( (( ) )) ( ( ))   

+

Lemma4. For each element Î T B ( ) and each p= Î Q q q, ,...1 2{ } ( )we have:

1. =T TQ if and only if for each Îq Q we have =qT Tq.
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2. Let =S SQ and for all Îq Q , =qSq qTq. Then, =S T .Q

3. Let T be a normal operator and f be a continuous function defined on a neighborhood of the spectrum of T . If
=T TQ then =f T f T .Q( ) ( ( ))

Proof.

1. Assume that = = åT T q TqQ n n n. Then, for each Îq Qn wehave

= = = =q T q T q Tq T q Tq .n n Q n n Q n n

Conversely, if for each Î =q Q Tq q T,n n n , then, completeness ofQ yields

å å= = =T q Tq q T T .Q
n

n n
n

n

2. By hypothesis, = = å = å =S S q Sq q Tq TQ n n n n n n Q.

3. The proof is a consequence of point 1 and of functional calculus.

+
Lemma5. Let Î T B ( ) and pÎ P Q, ( ). If P Q then:

1. = =T T T .P Q P P Q( ) ( )

2. ÌKer Q Ker P( ¯ ) ( ¯)

Proof. It is clear that for each element Îp P there exists exactly one element Îq Q0 such that = =q p pq p0 0
and for other elements Îq Q wehave = =qp pq 0. So

å= = =
Î

p T p p qTq p pq Tq p pTpQ
q Q

0 0( ) ( )

Therefore,

å å= = =
Î Î

T pT p pTp TQ P
p P

Q
p P

P( )

On the other hand for each Îq Q and each Îp P we have

å å

å å

= =

= =

=

Î Î

Î ¹ Î

qT q pTp qpTp

pTp pTpq

T q. 1

P
p P p P

p P qp p P

P

0

( )
∣

Therefore = =T T T .P Q P P Q( ) ( )
Since = = =P T T T P Q TP Q P¯ ( ) ( ) ¯ ( ¯ ( )), the proof of the second part is clear.

Lemma6. Let =T TQ be an invertible element of B .( ) Then =- -T T .Q
1 1( )

Proof. From lemma 3 and the fact that qT=Tq implies = -q TqT 1, it follows that =- -T q qT1 1. +

Let =T TQ be a normal operator. ThenTQ is called a pseudo-spectral decomposition ofT. Clearly, for each
Î q Q q, ( ) is invariant underT.

Lemma7.Assume thatTP is a pseudo-spectral decomposition of the operatorT. Then for each Î S B ( ), we have

= = =ST S T TS T S Tr TS Tr T Sand .P P P P P P P P( ) ( ) ( ) ( )

Proof.Wehave =ST ST .P P P( ) ( ) Therefore, for each Îp P wehave
= = =p ST p p ST p pSpTp pSp pTp .P( ) ( ) ( )( ) Therefore, =ST S TP P P( ) . The proof of the second equality is

the same. The third equality is evident. +

The previous lemmas lead to the following result.

Theorem1. Let Q be in p ( ). Then
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1. BQ ( ) is a unital C*-algebra.

2. B ( ) is a left and a right BQ ( )-module.

3. Themapping Q̄ from B ( ) into BQ ( ) is a BQ ( )-linear form.

4. A necessary and sufficient condition for BQ ( ) to be commutative is that Q be a complete set of mutually
orthogonalminimal projections.

Let S andTbe in B ( ). Then, in general ¹ST TS. But for all pÎ =Q S T T S, Q Q Q Q0( ) . This factmotivate
the following definition.

Definition 4. Let R be an n-ary relation on B ( ).We say that R isweakly true if, for each pÎ Q Q R, n
0( ) ¯ ( ) is

true, where Q Rn¯ ( ) is the image of R under Q Rn¯ ( ), the natural extension of  Q B B: Q¯ ( ) ( )
to  Q B B:n n

Q
n¯ ( ( )) ( ( ))

Remark 1.Any two elements of B ( ) alwaysweakly commute. For some relations, being true orweakly true are
equivalent. For example, if T S then clearly, this relation is weakly true.

Conversely, Assume that for each pÎ  Q T S, Q Q0( ) therefore for eachminimal projection
q qTq qSq, . Since for each vector Î v the projection > <v v∣ ∣ is contained in some pÎ Q 0( )we have

á - ñ v T S v 0.∣ ∣ Therefore, - T S 0.

The relationweakly equal will be denoted by=w.
Let r Î D ( ) be a diagonalmatrix. Clearly, we can consider ρ as a classical probability distribution

function. But if the densitymatrix ρ is not diagonal we cannot interpret it in this way. The following definition
serves to discriminate these two cases.

Definition 5. Let be a separableHilbert space and pÎ Q .0( ) Themapping n  B: ( ) ⟶ given by
n = -T T TQ( )  will be called Q-quantum complexity ofT .When n =T T0,( ) is called Q-classical and
when =T T0,Q will be called Q-maximally non-classical.

Example 1. Let  be a 2-dimensional Hilbert spacewith the standard basis ñ ñ0 , 1{∣ ∣ }. Let X Y Z, , be Paoli
densitymatrices on  and = ñá ñáQ 0 0 , 1 1 .{∣ ∣ ∣ ∣} Then, it is clear thatZ isQ-classical andX andY areQ-
maximally non-classical.

Important Remark. Let p= Î Q q q q, ,..., ,...n1 2{ } ( ) and let ρ be a densitymatrix on. Assume that we
perform the quantummeasurement described by the setQ ofmeasurement operators on the quantum system
with state space  in the state ρ. Then, as it is well-known the probability of outcome associatedwith qi is

rTr q qi i( ). Now, assume that Q P⪯ . Then as we have seen earlier qi can bewritten as sumof some elements of P.
say, = åq pi j j . Then

å å år r r r r= = = =Tr q q Tr q Tr p Tr p p Tr p p .i i i
j

j
j

j j
j

j j( ) ( ) ( ) ( ) ( )

In this work inmany cases we use only pÎ Q 0( ). Nevertheless, interpreted in quantum theory, as is evident
from the above fact, our results concerning prediction and estimationwill be true for all pÎ Q ( ).Moreover,
as it is well known [5] the outcomes of a generalmeasurement on the quantum system represented by theHilbert
space  can be realized by a projectivemeasurement on the tensor product of  and anotherHilbert space  .0

So, our results will be true for general quantummeasurement systems.

3.Quantummodel, quantum source and quantum strategy

Aswe said in the introduction ourwork in this paper inspired by theMinimumDescription Length Principle is
based on universal quantum sources associatedwith quantummodels. In this part, we define several versions of
universal quantum sources associatedwith a quantummodel and investigate some of their properties. In the
same section, we prove the existence of universal quantum sources and give a constructive way to build it.We
also define quantum strategy and treat its relation to universal quantum sources.

Before going further in this section let us give some comments on the use of semi-densitymatrices and on
our definition of universal quantum sources.

Theminimumdescription length principle is a powerful tool in statistical (inductive) inference. It is
essentially based on two important notions:

6
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3.1. 2-part coding
The estimation by 2-part code can be considered as amathematical formulation ofOccam’s Razer which says
that between different descriptions of a data set, the simpler is the better. Assume that these descriptions are
encoded in such away that they reflect their complexities. Then the descriptionwith the shortest code-length is
the better.

More precisely, letbe a nonempty set of probability density (mass) functions on a set and let Ì D n

be an i.i.d data set generated by Îp . Assume that elements of are encoded. For each Îp , the length
of its associated code-wordwill be denoted by L(p) and- p Dlog2 ( )will be denoted by L D p .( ∣ ) Let

= +Îp L p L D pargmin .p
̈ ( ( ) ( ∣ ))

Clearly for each Î +p L p L D p, ( ) ( ∣ ) is the length of an encoded description of the data setD and p ̈ is
chosen according toOccam’s Razer.

3.2. universal coding
Under above assumptions on and , assume that for each Î n p, n¯( ) is a probability density (mass)
function on n. The sequence = Îp p n

n¯ ( ¯ )( ) of probability density (mass) functionswill be called universal
with respect to, if for each > 0, each Îp , there exists Î n0 such that for all n n0 and all Î x n n( )

wehave

- - - p x p x nlog log .n n n n
2 2¯ ( ) ( ( ))( ) ( ) ( ) ( )

Formore details see [3].
Now let us explain briefly thewaywe have gone through to quantize these two notions.
Let theHilbert space  be the state space of a quantum systemA, which is prepared in an unknown state r0,

a densitymatrix on , and let p= Î Î Q q m Om 0{ ∣ } ( )whereO is the set of outcomes, be a projective
quantummeasurement system. Assume that is a nonempty set of densitymatrices on and ÎD On is the
set of outcomes of performing theQ-measurement on n quantum systems identical toA and prepared in the
same state r0. In performing theQ-measurement on the quantum systemA in an arbitrary state ρ the probability
of outcomem is

r r= = m Tr q Tr q qm m m( ) ( ) ( )

3.3. 2-part coding ⟶ semi-densitymatrix
Let elements ofbe somehow encoded and for each r Î let rL ( ) be the length of the code-word associated
with ρ and let r r= - Ä ÎL D Tr q qlog .m D

m m2( ∣ ) ( ) Then for each r Îwehave

r r r

r r

r

+ = - - Ä

= - Ä = - Ä

= - Ä Ä

r

r r

r

- Î

- Î - Î

Î - Î

L L D Tr q q

Tr q q Tr q q

Tr q q

log 2 log

log 2 log 2

log 2

L m D
m m

L m D
m m

L m D
m m

m D
m

L n m D
m

2 2

2 2

2

( ) ( ∣ ) ( )
( ( )) ( ( ))

( ( ) )

( )

( ) ( )

( ) ( )

But the function log2 is increasing and rÄ ÄrÎ - ÎTr q q2m D
m

L n m D
m( ( ) )( ) ( ) is also increasingwith respect to the

semi densitymatrices rr-2 L n( ) ( ) , as in the above classical case

r r r r= + = Ä Är r
r

Î Î
Î - Î

 L L D q qargmin argmax 2m D
m

L n m D
m̈ ( ) ( ∣ ) ( )( )( )( ) ( )

is an estimation of r0 according toOccam’s Razer. Notice that rr-2 L n( )( ) ( ) is a semi-densitymatrix.

3.4. Universal coding ⟶universalDensityMatrix
Let r n¯ ( ) and r¢ n¯ ( ) be two densitymatrix on .n( ) Assume that as in classical case for > 0 there exists Î n0

such that for all >n n0 and for all Îq Qn n( ) ( ) wehave

r r- - - ¢ Tr q q Tr q q nlog log .n n n n n n
2 2( ¯ ) ( ( ¯ ))( ) ( ) ( ) ( ) ( ) ( )

From the above inequality we have
r r r+ ¢ = ¢- - Tr q q Tr q q Tr q qlog log 2 log log 2n n n n n n n n n n n

2 2 2 2( ¯ ) ( ¯ ) ( ( ¯ ) )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) But the inequality

r r¢- Tr q q Tr q qlog log 2 .n n n n n n n
2 2( ¯ ) ( ( ¯ ) )( ) ( ) ( ) ( ) ( ) ( )

is equivalent to

r r- ¢-  q q2 0.n n n n n( ¯ ¯ )( ) ( ) ( ) ( )

In the following all tensor products ofHilbert spaces are topological tensor products.
The n-times tensor product of aHilbert space with itself will be denoted by  n( ) and in general, for each

Î ÄT B T T, n n( ) ≔ ⨂ . The sequence Î n
n( )( ) ofHilbert spaces will be denoted by  and for Î T n

n
( )

( )
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the sequence ÎT n n( )( ) will be denoted by ÄT . In this case we say that ÄT is an operator on  and if for all
Î n T, n( ) is a (semi-)densitymatrix, then ÄT will be called a (semi-)densitymatrix on  . A semi-density

matrix =Ä
ÎT T n n( )( ) on  is called nonzero if for all Î ¹n T, 0n( ) . In this case the associated density

matrix of ÄT is w =Ä

Î
T

T

Tr T n

n

n( )( )
( )
( )

( )
. Fromnowon semi-densitymatrices on  will be denoted by

r r= În
n¯ ( ¯ )( ) .The semi-densitymatrix r r= În

n¯ ( ¯ )( ) will be called

1. simple if r r=1¯ ( ) and for each rÎ n , n¯ ( ) is the tensor product of ρ and ( -n 1)-times tensor product
of w r .( )

2. a generalized quantum source if for each r r< Î =-n Tr1 , n
n

n1¯ ( ¯ )( ) ( ) .

3. regular if for each rn, n¯ ( ) is invertible

When for each rÎ =n Tr, 1n( ¯ )( ) , the generalized quantum source r r= În
n¯ ( ¯ )( ) will be called a quantum

source.
Let p= Î Q q q q, ,..., ,...n1 2{ } ( ) be a complete set ofmutually orthogonal projections of theHilbert

space  and let = Î I i i i, ,..., n
n

1 2( ) ( ) . Then the projection q q q...i i in1 2
⨂ ⨂ ⨂ will be denoted by qI

n( ) or

simply by q n( ) if there is no ambiguity. The set Î q II
n n{ ∣ }( ) ( ) will be denoted by Q .n( )

Definition 6. Let m= S M, ,( ) be ameasure spacewhereM is a generalized quantummodel. Then,Mwill be
called Bayesian if ò r m r


d ( ) exists and is a densitymatrix.

Lemma8. Let be a Bayesian generalized quantummodel which is ameasure space and let òr r m r=


d .n n¯ ( )( ) ( )

Then, the sequence r În
n( ¯ )( ) is a quantum source.

Proof. For each Î n clearly we have r r=+
+Tr .n

n n
1

1( )( ) ( ) Therefore,

ò òr r m r r m r r= = =+
+

+
+

 
Tr Tr d d .n

n
n

n n n
1

1
1

1( ¯ ) ( ) ( ) ( ) ¯( ) ( ) ( ) ( )

+

Lemma9. Let Î U B ( ) be a unitary operator and r̄ be a quantum source. Then r r= ÎU U U Un n n
n¯ ( ¯ ( ) )† ( ) ( ) † ( ) is

also a quantum source.

Proof.Obviously any element r Î+ +Bn n1 1¯ ( )( ) ( ) can bewritten as r = å Ä ñá+ R i jn
i j i j

1
, ,¯ ∣ ∣( ) where

Î R Bi j
n

, ( )( ) . Because r̄ is a quantum sourcewe have

år r= =+
+Tr Rn

n
i i i

n
1

1
,( ¯ ) ¯( ) ( )

So,

r r=
= å Ä ñá

+ + + +

=
¥

U U U U

U R U U i j U . 2

n n n n

i j
n

i j
n

1 1 1 1

, 1 ,

( ¯ ) ¯ ( )
( ( ) ) ∣ ∣ ( )

† ( ) ( ) ( ) † ( )

( ) † ( ) †

Therefore,

r

r r

= å ñá

= å
= å
= =

+
+

=
¥

=
¥

=
¥

Tr U U U R U Tr U i j U

U R U

U R U

U U U U 3

n
n

i j
n

i j
n

i
n

i i
n

n
i i i

n

n n n n

1
1

, 1 ,

1 ,

1 ,

( ¯ ) ( ( ) ) ( ∣ ∣ )

( ( ) )
( )( )
¯ ( ) ( ¯ ) ( )

† ( ) ( ) † ( ) †

( ) † ( )

( ) † ( )

( ) ( ) † ( ) † ( )

Therefore, rU U¯ † is a quantum source. +

In this work ln denotes natural logarithm and log denotes logarithm in base 2.

Definition 7. Let r and r¢ be densitymatrices. Then the quantum relative entropy of r and r¢ is

r r r r r r¢ = - ¢S tr log tr log( ) ( ) ( )

Definition 8. Letbe a quantummodel and r r= În
n¯ ( ¯ )( ) be a semi-densitymatrix on  . Let pÎ Q ( ).

We say that r̄ is

8
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1. universal relative to if for each r Î and for each > 0 there exists an Î n0 such that for all n n0

wehave:

r r- -  2 0.n n n¯ ( ) ( )

2. universal in the expected sense relative to if:

r r S n .n n( ¯ )( ) ( )

3. Q-universal relative to if for each r Î and for each > 0 there exists an Î n0 such that for all
n n0 wehave:

r r- -  2 0.Q
n n

Q
n¯ ( ) ( )

4. Q-universal relative to in the expected sense if

r r S n .Q
n

Q
n( ¯ )( ) ( )

In the above if  does not depend on r r, ¯ is called uniformly (Q-)universal.

Lemma10.With the above notations and conventions, 1 implies 2 and 3.

Proof.Clearly we have

r r
r r

r r r r r
r r r r r

r r r
r r

-
 + -

 + -

 + -

 + -



-











 








n log log

n log log

Tr n log log

n log log

S n

2 0

0

0

0

Tr 0.

. 4

n n n

n n

n n n n n

n n n n n

n n n

n n

1 2 1 2

1 2 1 2

¯
¯
( ) ( ¯ )( )

( ( ) ( ¯ )( ) )
( ¯ )

( ¯ ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

The other part is clear. +

Example 2. Letbe a Bayesian countable generalized quantummodel consisting of nonzero semi-density
matrices and letbe its associated quantummodel. Then for each element r Î* and each Î n wehave

år r r=
rÎ

 .n n n*¯ ( ) ( ) ( )

Now let  be given and let Î n0 be such that

r - Tr 2 .n0*( ) ( )

Then, for each n n0 we have

r r- -  2 0,n n n¯ ( ) ( )

where r w r= *( ). Therefore, r̄ is universal relative to.

Example 3. Letbe a quantummodel and let r̄ be a universal densitymatrix relative to andU be a unitary
operator. Then r -U U 1¯ is a universal densitymatrix relative to -U U 1where r r= Î- - U U U U1 1{ ∣ }

Theorem2. Let be a separable Hilbert space and pÎ Q 0( ). Letbe a quantummodel which is a compact
Riemannian sub-manifold of BT ( ) consisting of densitymatrices. Assume that

1. ¥p : 0,⟶ ] [ is a continuous function and ò r r =
 p dvol 1( ) ( )

2. There exists a positive real >c 0 such that

rrÎ Î Tr q q cmin max .q Q [ ( )]

9
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Moreover, for each Î n let òr r r r=
 p dvoln n¯ ( ) ( )( ) ( ) . Then the quantum source r În

n( ¯ )( ) is uniformly

Q-universal relative to.

Proof. Let > 0 be given and let d = - >-c 1 2 02( ) . Let r r= rÎ Tr q q cargmax .q [ ( )] Then for all

r r dÎ B ,q q* ( )we have

r r r r r r

r r r r r r d

- = - = -

- -   
q q q q q q q q

d

Tr Tr Tr

, .

q q q q q q

q q q q T q q

* * *

* * *

( ) ( ) ( ( ) ) ( )

( )

 

   

and it is straightforward to see that for all r r dÎ B ,q q* ( )we have

r r-q q q q2 .q q
2*

Since is compact as it is proved in [6] there exists a constant >v 0 such that for all r Î M wehave

r d vol B v, .( )
Let b r= rÎpmin ( ) and let Î k be such that b - v 2 k 2. Thenwe have

ò òr r r r r r r

b r d r r

=
r d

- - + 


 

 

q q p q qdvol p q qdvol

vol B q q q q2 , 2 .

B

q q
k

q

1

,

2 1 2

q

¯ ( ) ( ) ( ) ( )

( ( ))

( )
( )

( )

Let us denote ò r r r
 p dvoln( ) ( )( ) by r n¯ ( ) . Let Î n be greater than k. Then from the above it is evident that

for all r Îwehave

r r r- + -  q q q q q q2 2 .n n n k n n n n n n n n2¯( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

And for each r Îwe have

å år r r r= =
Î

-

Î

- q q q q2 2 .Q
n

q Q

n n n n

q Q

n n n n
Q
n

n n n n

¯ ( ¯ ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

Therefore, the quantum source r r= În
n¯ ( ¯ )( ) is uniformlyQ-universal relative to. +

Theorem3. Let be aHilbert space and let be a quantummodel, which is a compact Riemannian sub-manifold
of BT ( ) consisting of densitymatrices . Assume that ¥p: 0,⟶ ] [ is a continuous function such that
ò r r =
 p dvol 1( ) ( ) and for each pÎ Q 0( ) there exists a positive number >c 0Q such that

rrÎ Î Tr q q cmin max .q Q Q[ ( )] Then, with the above notations, the sequence r În
n( ¯ )( ) is a universal quantum

source relative to.

The proof is a consequence of the above theorem and remark 1.

Corollary 2. Let be a finite dimensional Hilbert space and let be a quantummodel, which is a compact
Riemannian sub-manifold of BT ( ) consisting of densitymatrices. Assume that ¥p : 0,⟶ ] [ is a continuous
function such that ò r r =

 p dvol 1( ) ( ) . Then, with the above notations, the sequence r În
n( ¯ )( ) is a universal

quantum source relative to.

The proof is evident.

Lemma11. S the set of all universal quantum source relative to the quantummodel is convex.

Proof. Let r1̄ and r2̄ be two universal quantum source relative to the quantummodel. Let r Î and > 0
be given. Then there exists Î n0 such that for =k 1, 2 and n n0 wehave:

r r- -  2 0.k
n n n¯ ( ) ( )

Letα andβ be two positive real numbers such that a b+ = 1. Then

ar br r a r r b r r+ - = - + -- - -   2 2 2 0.n n n n n n n n n n
1 2 1 2¯ ¯ ( ¯ ) ( ¯ )( ) ( ) ( ) ( ) ( ) ( ) ( )

Therefore S at each level n is convex. On the other hand,

ar br ar br+ = + Î S ,n n n n
1 2 1 2( ¯ ¯ ) ¯ ¯ ( )( ) ( ) ( ) ( )
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where r r= Î S S ,n n( ) { ¯ ∣ ¯ }( ) ( ) Therefore

ar br+ Î S .1 2¯ ¯

+

Before going further it is better to introduce the notion of conditional densitymatrix.

Convention 1. Let 1 and 2 beHilbert spaces, Î Ä T B 1 2( ) and Î + T B1 1( ).We denote

Ä ÄT T T I T T I•1 1 2 1 2
1
2

1
2≔ ( ) ( )

Here I2 is the identitymapping of 2.

Let 1 and 2 beHilbert spaces. Let r be a densitymatrix on theHilbert space r rÄ =  Tr,1 2 1 2( ) and
r r r= - • .2 1 1

1
∣ When =  n

1
( ) and r r= - -  , •m n

2 1
1( ) will be denoted by rm n∣ .

Now assume thatσ is a densitymatrix on 1. Then,

r s s r= Tr. •1 2 1( ∣ ) ( )∣

is clearly a positive operator on 2.Moreover,

r s s r s r r s r r

s r r s r r r s

s r r r s s

= = =

= =

= = =

- -

- - -

- -

Tr Tr Tr Tr Tr Tr

Tr Tr Tr Tr

Tr Tr

. • • • • •

• •

1.

1 2 1 1 1
1

1
1

2 1
1 1 2

1
1 2

2 1
1 2 1 2

1 2
1

1 2
1 1

1 2 1 2

( ( ∣ )) ( ( )) ( ( )) ( )

( ( )) ( ( ( )) )

( ) ( )

∣

Therefore, r s.( ∣ ) is a densitymatrix on 2.
Let r Î Ä D n( )( ) and Ä Î +q q Q .n n 1( ) ( ) Then r r= +q q q Tr q q•n n

n n1 1( ∣ ) ( ( ))( ) ( )
∣ is called the

conditional semi-densitymatrix of q conditioned on q n( ) under ρ.

Definition 9. Let be a separableHilbert space and let r r= În
nˆ ( ˆ )( ) , be a positive operator on  and

r r= În
n¯ ( ¯ )( ) where r r r r= • • •n n1 2¯ ˆ ˆ ˆ( ) ( ) ( ) ( ) , be also a positive operator on  . Then, the sequence

r r= În
nˆ ( ˆ )( ) is called a quantum strategy if the sequence r r= În

n¯ ( ¯ )( ) is a regular quantum source on  .
Clearly r r r=+ - +•n n n1 1 1ˆ ( ¯ ) ¯( ) ( ) ( ) and r r r=+ +•n n n1 1¯ ¯ ˆ( ) ( ) ( )

Lemma12. Let r În
n( ˆ )( ) be a quantum strategy and r În

n( ¯ )( ) be its associated quantum source. Then for each
Î T B ( ) and each r rÎ =n T T, n n n nˆ ˆ( ) ( ) ( ) ( ) if and only if r r=T Tn n n n¯ ¯( ) ( ) ( ) ( ) .

The proof is straightforward. +

Remark 2. For future applications wemention that because of the equality r r=+
+

n
n n

1
1ˆ ¯( )

∣ , quantum strategies

are also called quantum estimators. Let r În
n( ¯ )( ) be a quantum source. It is straightforward to see that

r În
Q n( ¯ )( ) is a Q-quantum source and gives rise to a Q-quantum strategy.

Definition 10.Aquantum estimator r În
n( ˆ )( ) is called goodwith respect to a quantummodel if its associated

quantum source is universalrelative to. Under conditions and notations of theorems 2 the quantum strategy
associatedwith the -Q universal quantum source òr r r r=

 p dvoln n¯ ( ) ( )( ) ( ) , is good.

Example 4. Letbe the following quantummodel.

r q= q  0 1 ,{ ∣ }

where rq is a 2×2-densitymatrix defined as follows

r
q q q

q q q
=

-

- -
q

c

c 1

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

( )

and  c0 1 is a real constant.
Let =Q q q,1 2{ }where = ñáq 0 01 ∣ ∣and = ñáq 1 12 ∣ ∣and ñ ñ0 , 1{∣ ∣ } is the standard basis of the 2-dimensional

Hilbert space =  .2 Then

r r r q
q

= + =
-q q qq q q q 0

0 1Q 1 1 2 2 ( )
is a diagonalmatrix.
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For simplicity we omit the index Q. Assume that Îq Qn n( ) ( ) consists of -k times q1 and - -n k( ) times q .2
Then for each q 0 1wehave

r q q= -q
-q q q1 .n n n k n k n( )( ) ( ) ( ) ( ) ( )

It is straightforward to see that themaximum likelihood estimator for q n( ) is rq q nˆ ( )( ) where q =q k n.nˆ ( )( )

Clearly is a Bayesian quantummodel. Aswe have proved earlier its associated universal quantum source

is r Î,n
n( ¯ )( ) where òr r q= q dn n

0

1
¯ ( ) ( ) and for Îq Qn n( ) ( ) as abovewe have

ò òr r q q q q= = -q
-q q q q d d q1 .n n n n n n k n k n

0

1

0

1⎛
⎝⎜

⎞
⎠⎟¯ ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

One can compute the above integral by partial integration and see that

r =
+

q q
n

q
1

1
.n n n

n

k

n

( )¯ ( )
( )

( ) ( ) ( ) ( )

In the sameway for = Ä Î+ +q q q Qn n n1
1

1( ) ( ) ( ) wehave

r =
+

+ + +
+
+

+q q
n

q
1

2
.n n n

n

k

n1 1 1
1

1

1

( )¯ ( )
( )

( ) ( ) ( ) ( )

Therefore

r
r
r

= =
+

+
=

+
+

+
+ + +

+
+

q q
q q

q q

n

n
q

k

n
q

1

2

1

2
.n n

n n n

n n n

n

k

n

k

1
1

1 1 1

1

1

1 1( )
( )

ˆ ( ∣ ) ¯ ( )
¯ ( )

( )

( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( )

The densitymatrix r + q.n n1ˆ ( ∣ )( ) ( ) is calledmodifiedmaximum likelihood estimator for q n( ) . Evidently, for large
Î n it is very close to rq q nˆ ( )( ) . Clearly, r +n 1ˆ ( ) is a good strategy.

Formany smooth parametric quantummodels r q= Î Qq { ∣ } like the above example an associated
modifiedmaximum likelihood estimator r r= În

nˆ ( ˆ )( ) is a good quantum strategy.Moreover, in these cases for
r r= În

n¯ ( ¯ )( ) the associated universal quantum sourcewe have

Theorem4. For each q Î Qwe have

r r =qS O nlog .n n( ¯ ) ( ( ))( ) ( )

The proof is the same as the proof in the classical case given in chapter 8 of [3] on page 246with simple
modifications.

4.Quantumprediction and quantum estimation

Aswe said in the introduction, quantumprediction and quantum estimation are themost important subjects of
quantum statistical inference. Following the classical works inMDLprinciple, ourmethod of statistical
inference is in general based on universal quantum source and use of it to do quantumprediction and quantum
estimation.

4.1.Quantumversion of classicalMDLprediction and estimation
Let be a separableHilbert space and let pÎ Q 0( ). Letbe aQ-quantummodel and let r Î + Bn

Q
nˆ ( )( ) ( )

be such that for Î -I n 1( ) wehave

r r= r
-

Î
- - -

q argmax q q• .
I
n n

I
n n

I
n1 1 1 1ˆ ( )( ) ( ) ( ) ( ) ( )

Clearly, r r= În
nˆ ( ˆ )( ) is themaximum likelihoodQ-quantum strategy associatedwith. Unfortunately, r̂ is

not good. But inmany cases (see the above example), amodified version of themaximum likelihoodQ-quantum
strategy, which is very close to the unmodified one and the difference between them tends rapidly to zero, is a
good one.

This goodQ-quantum strategy enables us to predict next outcome given the data -q .I
n 1( ) Moreover, let the

data -qI
n 1( ) be really generated by r Î M.Then aswewill see in the next chapter r-q •I

n n1 ˆ( ) ( ) can be considered as
an estimation of ρ.

12

J. Phys. Commun. 4 (2020) 025001 A SDAbad andMShahbazi



4.2.Quantumversion of classical two-part code estimation
Let be a separableHilbert space and let pÎ Q 0( ). Assume that is a generalized quantummodel. For
Î I n( ) , let rn̈ be defined as follows

r w r= r Îargmax q q .n I
n n

I
n

n n̈ ( ¯ )¯
( )

( ) ( )

If themaximum is achieved bymore than one ρwe choose the onewith themaximum trace. And if there is still
more than one ρ there is no further preference.More precisely, let us suppose that is a compact Riemannian
sub-manifold of theHilbert space á ñB , . .T T( ( ) ∣ ) consisting of semi-densitymatrices where for ρ and r¢ in

r r rrá ¢ñ = ¢B , TrT ( ) ∣ ( ) and mS, ,( ) be its associated canonicalmeasure space. To obtain rn̈, letZ be the set
of all extremumpoints of the smooth function r rh q q: Tr I

n n
I
n⟶ ( )( ) on, and let ¢Z be the set of all elements

r Î Z at which the bundlemap  Hessian h T T:( ) ⟶ is negative. Clearly, ¢Z is the set of allmaximum
points of h. Now, let r0 be the element of ¢Z with least trace. Then, r w r= .n 0̈ ( ) If there aremore than one r0 in
¢Z wedo not have any further preference among them. (Formore information aboutfinding extremumpoints

see [7])
In the next sectionwewill show that given the outcome qI

n( ) , it is an estimator of the state of the system.

5. Consistency and convergence

Consistency is a very important property of differentmethods of statistical (inductive) inferences. Let us explain
brieflywhatwemean by it.

Assume that is a separableHilbert space and is a quantummodel on . we say that amethod of
quantum statistical inference is consistent with respect to if for r Î0 and pÎ Q 0( ), we perform the
quantummeasurementQ on the quantum system  in the state r0 repeatedly and obtainmore andmore data
the state yielded by themethod ismore andmore close to the state r0 in some sense.

In this sectionwe investigate different approaches to consistency and convergence.

5.1. Consistency based on distinguishability
Let be a separableHilbert space and letT and S be in BH ( ) andλ be a complex number; Assume that ¹S 0 ,

l=T S and p is the orthogonal projection onto the image of S. Then, we put l=T S p. Let be a separable
Hilbert space and pÎ Q 0( ). Let r r= În

n¯ ( ¯ )( ) be a quantum source on  .* For each Î n let Pn be a unary
relation on Q .n( ) Then,

å r
Î

Tr q q
q Q P q

n n n

n n
n

n

( ¯ )
∣ ( )

( ) ( ) ( )
( ) ( ) ( )

will be denoted by r Pn¯ ( ). suppose that r r¢ = ¢ În
n¯ ( ¯ )( ) is another quantum source on*. For each Î n , and

each d > 0 let dPn be the unary relation

r
r

d
¢

>
q q

q q

n n n

n n n

¯
¯

( ) ( ) ( )

( ) ( ) ( )

on Q n( ) .

Definition 11.Under the above notations and conventions we say r¢¯ is asymptotically distinguishable from r̄ if
for all d > 0 wehave

r =d
¥ Plim 0.n n¯ ( )

Letbe a countable Bayesian set of generalized quantum sources on  andbe its associated set of
quantum sources. For each Î n , let us denote w r n( ¯ )( ) by r n( ) . For each Îq Qn n( )( ) ( ) define r n(̈ ) as follows:

r r= r Î q qmax .n M
n n nn

n( ) ̈ ¯( )
( ) ( ) ( )( )

and r r= ÎM .n
n{ ∣ }( ) Observe that r n(̈ ) depends on q n( ) .

Nowwe have the following important consistency theorem.

Theorem5. Let be a separable Hilbert space and pÎ Q 0( ). Let , and r n(̈ ) be as above. Let r Î*¯ and

̈be the subset of consisting of quantum sources asymptotically distinguishable from r* and
r r= ÎMn

n̈ { ∣ ̈ }( ) . Then

r r Î =¥ Mlim 0.n n n*( ̈ ̈ )( )

Proof. Let r Î Mn n̈ ̈
( ) . From the equality ( ) , for some r Î Mn n¯ we have
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r rq q q qn
n

n n n n*¯ ¯( ) ( ) ( ) ( ) ( )

Therefore,

r r r t
t

r
r
t

Î = Î M for some M
q q

q q

Tr

Tr
, .n n n

n n

n n n
* *

*
*⎧⎨⎩

⎫⎬⎭( ̈ ̈ ) ̈ ( ¯ )
(¯ )( )

( ) ( )

( ) ( ) ( )

Let us denote r
t

Tr

Tr

*( ¯ )
(¯ )

by d t( ). Assume that rn: n is a bijectivemapping from  onto ̈ and r= å =
¥m Tr .n n1( ¯ )

Let > 0 be given and let p r= - m Tr .*( ) suppose thatN is the least integer such that r på = Tr .n
N

n1( ¯ )
Let r=  n N1n

̈ { ∣ }and = -  ̈¯ ̈ ̈ .
Evidently,

r r r r r rÎ = Î + Î   .n n n* * *( ̈ ̈ ) ( ̈ ̈ ) ( ̈ ̈¯ )( ) ( ) ( )

and

r r r r r rÎ = Î + Î
¥ ¥ ¥

  lim lim lim .
n

n
n

n
n

n* * *( ̈ ̈ ) ( ̈ ̈ ) ( ̈ ̈¯ )( ) ( ) ( )

Assume that r Î ̈ and d r r r= Tr Tr*( ) ( ¯ ) ( ¯ ) Since r̄ is asymptotically distinguishable from
r r =d r

¥ P, lim 0n n* *( )( ) . Since ̈ is afinite set we have

å år r r rÎ = =
r

d r

r

d r

¥ ¥ Î Î ¥




 P Plim lim lim 0.
n

n
n

n
M n

n* * *( ̈ ̈ ) ( ) ( )( )
¯ ̈

( )

¯ ̈

( )

On the other hand by the fundamental coding theoremwehave

r d rd r P 1 .n*( ) ( )( )

Hence,

r r r

d r

r r

p r

Î = å

å

= å

= -
=

r
d r

r

r

Î

Î

Î



 






P

Tr Tr

m Tr

1

.

n n* *

*

*

( ̈ ¯ ̈ ) ( )
( )

( ¯ ) ( ¯ )
( ) ( ¯ )

( ) ̈¯ ( )

̈¯

̈¯

Therefore,

r r Î =
¥

lim 0.
n

n*( ̈ ̈¯ )( )

5.2. Consistency in terms of KL risk andCezaro averageKL risk

Theorem6. Let r̄ and r* beQuantum sources and r* be simple. Then

år r r r= r
=

- --S E S .n n w

i

n

i i i i
1

1 1i 1* **( ¯ ) ( ¯ )( ) ( )
∣( ) ∣( )( ) 

Proof.Assume thatQ is a complete set ofmutually orthogonalminimal projections. Assume that r
Q

n
n*( )

( ) and rQ
n

n¯ ( )
( )

are invertible. For simplicity we omit the subscript Q k( ). By definition and previous lemmas and theoremswe
have:

r r r r r r
r r r

r r r

r r r r

r r

= -

= -

= P P - P

= å -

= å r

= - = - = -

=
-

- - -

= - --

S

E S

Tr log log

Tr log log

Tr log log

Tr log log

. 5

n n n n n n

n n n

i
n

i i i
n

i i i
n

i i

i
n i

i i i i i i

i
n

i i i i

1 1 1 1 1 1

1
1

1 1 1

1 1 1i 1

* * * *

* *
* *

* * *

**

( ¯ ) ( ¯ )
( ¯ )

(( ( ))( ¯ ))

( ( ¯ ))

( ¯ ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

∣( ) ∣( ) ∣( )

( )
∣( ) ∣( ) ∣( )

∣( ) ∣( )( )





(See also [3].) +

Definition 12. Let r* and r̄ be quantum sources and r* be simple. and r*ˆ and r̂ be their associated quantum
strategies. Then, the standardKL-risk of r

n
*ˆ ( )

with respect to r nˆ ( ) is

r r r r= r
-RISK E S, .n

w n nn 1* **( ˆ ˆ ) [ ( ˆ ˆ )]( ) ( )( ) 
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And theCezaro average risk of r
n
*ˆ ( )

with respect to r nˆ ( ) is

år r r r r r= =
=

RISK nS n RISK, 1 1 , .n
n n

i

n

i
1

* * *¯ ( ˆ ˆ ) ( ¯ ) ( ˆ ˆ )( ) ( )

Theorem7 (Convergence theorem for quantumEstimators). Let  be a separableHilbert space and
pÎ Q .0( ) Let be a quantummodel on  and r̄ be aQ-universal quantum source with respect to. Then r̂

theQ-quantum estimator associated withQ-universal quantum source rQ
n¯ ( ) is Cezaro consistent with respect to.

In other words for all r Î* we have

å r r =
¥ =

n RISKlim 1 , 0.
n i

n

i
1

*( ˆ ˆ )

The proof is a consequence of the definition ofQ-universal source and theorem 6. +

Lemma13. Let f and F be two increasing positive real functions defined on + . If the function f/F is decreasing and
=f O F( ), then + - = + -f n f n O F n F n1 1 .( ) ( ) ( ( ) ( ))

Proof.Assume that there exists >c 0 such that for n large enouph f n cF n .( ) ( ) Let + = +f n c F n1 11( ) ( )
and =f n c F n0( ) ( ). Therefore,

+ - = + -f n f n c F n c F n1 1 .1 0( ) ( ) ( ) ( )

Since  c c c1 0 we have

+ - = + - + - + - f n f n c F n c F n c F n F n c F n F n1 1 1 1 .1 0 0( ) ( ) ( ) ( ) ( ( ) ( )) ( ( ) ( ))

Lemma14. Let + + f : ⟶ be a differentiable and integrable decreasing function. Assume that

ò=F x f x dx
x

0
( ) ( ) . The sequence un is defined as follow: =u 00 and for all Î = - n u f n1 , 1 .n ( ) Assume

that Îan n( ) is a sequence of non-negative real numbers. Then

1) If =a O u ,n n( ) Thenå = += a O F n 1i
n

i1 ( ( ) ). Conversely, if for n large enough the function
å += a F n 1i

n
i1 ( ( ) ) is decreasing andå = += a O F n 1i

n
i1 ( ( ) ), then =a O un n( ).

2) If =¥alim 0n n , then å =¥ = a nlim 0n i
n

i1 . Conversely, if for n large enough the function å = a ni
n

i1 is
decreasing and å =¥ = a nlim 0n i

n
i1 , then =¥alim 0n n .

Proof. 1) In approximating the integral by sumand remembering the fact that the function f is decreasingwe
have

å å= + = +
=

-

=

F n u O u O1 1 .
i

n

i
i

n

i
1

1

1

( ) ( ) ( )

Therefore,

å å= = + = +
= =

a O u O F n O O F n1 1 .
i

n

i
i

n

i
1 1

( ) ( ( ) ( )) ( ( ) )

Conversely, assume that å = +a O F n 1n
i1 ( ( ) ). Then there exists a constant Î c such that for all Î n

greater than some n0 we have å +a c F n 1n
i1 ( ( ) ). By the above lemmawe have

å å q= - + - =+

+

a a a c F n F n cf1 .n

n

i

n

i n1
1

1

1

( ( ) ( )) ( )

Where, q + n n 1.n Since f is decreasingwe have q f f nn( ) ( ). Hence, + +a cun n1 1. There-
fore, =a O u .n n( )

2) From the equality =¥alim 0n n it follows that for each > 0 there exists Î n1 such that for all

>n n1, we have a .n Suppose that for Î
å

 k ,
a

k

i n i1 . Let Î n be greater than -k n2 .1 Then

+ > +n n k n2 .1( ) So,

å å å= + < + < +
=

+

= =

+

 a a a k n n n2 .
i

n n

i
i

n

i
i n

n n

i
1 1

1

1 1

1

1

( ) ( )

Hence, <å = 2
a

n
i
n

i1
0

0
, where = +n n n .0 1 It is clear that for all n n0 wehave

å
<= 

a

n
2 .i

n
i1
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Therefore,

å
=¥

= a

n
lim 0.n

i
n

i1

Conversely, since for n large enough the sequence å = a

n
i
n

i1 is decreasing we have å
+

å=
+

= .
a

n

a

n1
i
n

i i
n

i1
1

1 Then,

å å+

=

+

=

a
n

n
a

1
.

i

n

i
i

n

i
1

1

1

( )

Therefore, +
å =a .n

a

n1
i
n

i1 But the sequence å = a

n
i
n

i1 is convergent. Therefore, the sequence an is also convergent.

Theorem8. Let r r= În
n* *( )( ) and r r= În

n¯ ( )( ) be -Q quantum sources on theHilbert space *. Then
1) if r r =¥RISKlim , 0n n

w*( ˆ ˆ ) then r r =¥ Slim 0.n n
n n w1 *( ¯ )( ) ( ) Conversely, if r rS

n
n n1 *( ¯ )( ) ( ) is

decreasing and r r =¥ Slim 0n n
n n w1 *( ¯ )( ) ( ) then r r =¥RISKlim , 0n n

w*( ˆ ˆ )
2) Let + + f : ⟶ be a differentiable and integrable decreasing function and let ò=F x f t dt.

x

0
( ) ( ) Then, if

r r =RISK O f n,n
w*( ˆ ˆ ) ( ( )) then

r r = +S O F n 1 .n n*( ¯ ) (( ( ) ))( ) ( )

Conversely, if
r r

+
S

F n 1

n n*( ¯ )
( ( ) )

( ) ( )
is decreasing and r r = +S O F n 1n n*( ¯ ) ( ( ) )( ) ( ) , then r r =+RISK O f n,n

w
1 *( ˆ ˆ ) ( ( ))

Proof.The proof is a consequence of the definitions and lemma 14. See also [3]. +

5.3. Consistency in terms of Renyi divergences andHellinger distance
Let be aHilbert space. Let r1 and r2 be densitymatrices. Then

1)The quantum relative entropy of r1 to r2 is

r r r r r r= -S Tr ln Tr ln .nat 1 2 1 1 1 2( ) ( ) ( )

2)TheHelinger distance of r1 and r2 is

r r r r= -He T
2

1 2 1
1 2

2
1 2 2( )  

3)Let l > 0 be a real number. The Renyi divergence of orderλ of r1 and r2 is defined as follows:

r r
l

r r= -
-

< >l
l l-d ln

1

1
.T1 2 1 2

1¯ ( ) ( ∣ )

Observe that

r r r r r r r r r r

r r r r r r

= - = - = + -

= - - < > =
He Tr Tr

Tr ln d

2

2 1 2 .

T

T

2
1 2 1

1 2
2
1 2 2

1
1 2

2
1 2 2

1 2 1
1 2

2
1 2

1
1 2

2
1 2

1
1 2

2
1 2

1 2 1 2

( ) [( ) ] ( )

( ( )) [ ∣ ] ¯ ( )

  



Let t= Î nn{ ∣ }be a countable quantummodel and let Îun n( ) be a sequence of nonzero real
numbers such thatå Î =n u 1n . The set consisting of all elements of the form tun n will be denoted by.
Let pÎ Q .0( ) For a  1, let r r= Îa a { ∣ }.Where, r r r=a

a-Tr .1[ ( )] Let ra
n¯ ( ) be defined as follows:

r r=a r aÎa aq q q qmax .n n n n n n¯ ( )( ) ( )

Assume that ra În
n( ¯ )( ) is a universal semi-densitymatrix for. Suppose rn̈ is defined as follows:

For Îq Qn n( ) ( ) ,

r r= rÎ q qargmax .n
n n n

n
̈ ( ) ( ) ( )

Observe that rn̈ depends on q n( ) . Let r t r= = rÎu argmax q q .k k k
n n n( ) ( ) ( ) Then evidently

r r=a
aq q u q q .n n n

k
n

n
n n¯ ̈( ) ( ) ( ) ( ) ( ) ( )

In the following, wewrite rn̈ instead of r .n
n̈( )

Theorem9. Let r* be the state of the system.Under the above notations and conventions for all a > 1and
l a< = -0 1 1 we have

r r r rr l aE d
n

S
1

.Q
n

nQ
n

nat Q
n

Q
n

Q
n * ** ( ¯ ( ̈ )) ( ¯ )( ) ( ) ( ) ( )( )  
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And for a = 2we have

r r r rr aE He
n

S
1

.Q
n

nQ
n

nat Q
n

Q
n2

Q
n * ** ( ( ̈ )) ( ¯ )( ) ( ) ( ) ( )( )  

Proof. (The proof is amodified version of the proof of theorem15.3 of [ ]). For simplicity we omit the indexQ.
Since l a= - -1 .1 wehave a l= -1 1 . Let r r r r= l l-A Tr .1* *( ̈) ( ̈ ) For each Îq Qn n( ) ( ) wehave

å

å

r r l r r
r

r
a

r r

r
r

a
r r

r
r

a
r r

r
r

a
r r

r r r r

a
r r

= - -

= +

= +

= +

+

=

+

l
a

a

a

r
r

a

a

r
r

l

a

r
r

l

r l a

r

r
r

l

-

Î

-

Î

-






q d q A

n
q

u q q

q q n
q

A

n
q

q q

q q n
q

u

A

n
q

q q

q q n
q

u

A

n
q

q q

q q n
q

u

A

E d
n

S

n
Tr E

u

A

1 1 ln

1
ln ln

1

1
ln ln

1
ln ln

1
ln ln

Therefore,
1

ln

q q

q q

n n
n

n n
n

n k
n

n
n

n n n
n

n

n
n n n

n n n
n

q q

q q k

n

n
n n n

n n n
n

q q

q q k

n

n
n n n

n n n
n

m

q q

q q m

n
m

n
n nat

n n

m

m

n
m

1

1

1

1

n
n

n

n n n

n
n

n

n n n

n
n

n

n n n

n

n

n
n

n

n n n

* *

*

*
*

*
*

*
*

* *

*

*

*

*

*

*
*⎜ ⎟⎛

⎝
⎞
⎠

( )

( )

( )

( )

¯ ( ̈ ) ( ) ( ̈ )
̈

¯ ( ̈)

¯ ( ̈)

¯ ( ̈)

¯ ( )

[ ¯ ( ̈ )] ( ) ( ¯ )

(
( )

)

( ) ( ) ( ) ( )

( )
( ) ( )

( ) ( ) ( )
( )

( )

( )
( ) ( ) ( )

( ) ( ) ( )
( )

̈

( )

( )
( ) ( ) ( )

( ) ( ) ( )
( )

̈

( )

( )
( ) ( ) ( )

( ) ( ) ( )
( )

̈

( )

( ) ( ) ( )

̈

( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )

( )

( ) ( )

( ) ( ) ( )

 









 



where q n( ) is a randomprojection under the densitymatrix r*with values in Q .n( )

Since pÎ Q 0( ) and

r r r r=Tr q q q q Tr q q Tr q qln ln ,n
k
n n n

l
n n n

k
n n n

l
n n( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Nowby Jensen’s inequality we have

å

å

å å

å

å
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n not

n n1
**[ ¯ ( ̈ )] ( ) ( ¯ )( ) ( ) ( ) ( ) 

Corollary 3. From the above theorem, theorem 6 and the relation between Renyi divergences andHellinger distance
explained above we have:

1. r r =r¥E Helim 0.n Q
n

nQ
n2

Q
n ** ( ( ̈ ))( ) ( )( ) 

3
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2. Let a > 1and l a< = -0 1 1 . Then,

r r =r l¥E dlim 0.n Q
n

nQ
n

Q
n ** ( ¯ ( ̈ ))( ) ( )( ) 

6. Applications

Aswe described before, estimation and prediction are themost important purposes of quantum statistical
inference and particularly this paper. In order to show the advantages of ourmethod, in this sectionwe explain
the usage of thismethod by two examples. Thefirst example that we choose is selecting a densitymatrix among
three oneswhich are originally considered in [8]. Formultiple ions quantum tomography, two famous
traditionalmethods, the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) are
used for estimation. Formore information please see [8].

In this case, the quantummodel consists of three one-ion states of different degrees of purity: a pure state,
onewith eigenvalues (0.95, 0.05), and the other with eigenvalues (0.72, 0.28). For each state, they simulated
datasets with varying numbers of repetitions n=10, 50, 100, 250, 500. Table 1, shows the number of times (out
of 1000 samples) that BIC andAIC chose correctly, [8].

Nowwe choose among these states with the quantumversion of classical two-part code estimation, semi-
densitymatrices.

Let

r =
-

= ñá ñáa b
b a

Q
1

, 0 0 , 1 1 .
⎡
⎣⎢

⎤
⎦⎥ {∣ ∣ ∣ ∣}

Let = ñáq 0 0ij
∣ ∣ then r =q q aqi i ij j j

and if = ñáq 1 1ij
∣ ∣ then r = -q q a q1i i ij j j

( ) .

r r r r= Ä Ä Är r- -q q q q q q q q2 2 .
I
n L n

I
n L

i i i i i in n1 1 2 2
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) 

Assume that Îq QI
n n( ) ( ) consists of -k times ñá0 0∣ ∣and - -n k( ) times ñá1 1 .∣ ∣ Then:

r = -r r- - -q q a a q2 2 1
I
n L n

I
n L k n k

I
n( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

Now let us calculate this for the states considered in [8]. In the following, when there is no ambiguity for we
omit q’s.

Example 5. For the states in [8], we define the following quantum generalizedmodel

r r r= = = =
1

3
1 0
0 0

,
4

9
0.95 0

0 0.05
,

2

9
0.72 0

0 0.281 2 3
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥{ }

r =
=r-q q

k n
2

1

3
0 Otherwise

I
n L n

I
n

1
1

⎧
⎨⎪
⎩⎪

( )( ) ( ) ( ) ( )

r =r- -q q2
4

9
0.95 0.05

I
n L n

I
n k n k

2
2( ) ( ) ( )( ) ( ) ( ) ( ) ( )

r =r- -q q2
2

9
0.75 0.25

I
n L n

I
n k n k

3
3( ) ( ) ( )( ) ( ) ( ) ( ) ( )

For each state, we simulated datasets with varying numbers of repetitions n=10, 50, 100, 250, 500. Table 2,
shows the number of times (out of 1000 samples) that the quantumversion of classical two-part code estimation
chose correctly.

As expected, for small sample sizes, n, the quantumversion of classical two-part code estimationmay select
thewrongmodel because it has a built-in preference for ‘simple’models. But for all large n, it will select the
correctmodel. Yet for the small n, it is far better than classicalmethods, like AIC andBIC. In the case of the pure
state because of the appropriate choice of weight, it nevermissed and always chose correctly. On the other hand,
it avoids overfitting and it didwell for themixed states too. AIC andBIC havemistakes even for the large number
of n. The comparison between tables 1 and 2will show the difference between using semi-densitymatrices and
common traditionalmodels.

In the next example, wewill show a concrete example of calculating a universal quantum source and
predicting the +n 1-th outcome by a quantum strategy.
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Example 6. Letbe the following quantum generalizedmodel

r r r= = = =
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andwewant to predict the +n 1-th outcome, after observing n measurements. Based onwhat we said in the
previous sections the -Q universal quantum source is as follows:

r = + +
- - -
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The quantum strategy associatedwith the above universalmodel is
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Table 1.AIC andBICModel Selection.

Measurement Repetition

10 50 100 250 500

State 1 BIC 987 990 994 992 996

AIC 945 944 919 927 930

State 2 BIC 25 83 183 394 706

AIC 77 312 502 802 942

State 3 BIC 384 973 998 997 988

AIC 594 992 998 997 998

Performance of BIC andAICmodel selection for 3 states: pure (state
1), almost pure (state 2), andmixed (state 3). This table is based on
the results in [8].

Table 2.The quantumversion of classical two-part code
estimation.

Measurement Repetition

10 50 100 250 500

State 1 1000 1000 1000 1000 1000

State 2 336 926 995 1000 1000

State 3 747 980 998 1000 1000

Performance of the quantumversion of classical two-part code

estimation for 3 states: r1 (state 1), r2 (state 2), and r3 (state 3).
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