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Abstract

Knowledge of the black hole mass function (BHMF) and its evolution would help us understand the origin of BHs
and how BH binaries formed at different stages in the history of the universe. We demonstrate the ability of a
future third-generation gravitational-wave (GW) detector—the Einstein Telescope (ET)—to infer the slope of the
BHMF and its evolution with redshift. We perform a Monte Carlo simulation of the measurements of chirp signals
from binary BH systems (BBH) that could be detected by ET, including the BH masses and their luminosity
distances (dL). We use the mass of a primary black hole in each binary system to infer the BHMF as a power-law
function with slope parameter α. Taking into account the bias that could be introduced by the uncertainty of
measurements and by the selection effect, we carried out the numerical tests and found that only 1000 GW events
registered by ET (∼1% of its yearly detection rate) could accurately infer the α with a precision of α∼0.1.
Furthermore, we investigate the validity of our method to recover a scenario where α evolves with redshift as

( )a a a= +
+

z z

z0 1 1
. Taking a thousand GW events and using dL as the redshift estimator, our tests show that

one could infer the value of evolving parameter α1 accurately at the uncertainty level of ∼0.5. Our numerical tests
verify the reliability of our method. The uncertainty levels of the inferred parameters can be trusted directly for
several sets of the parameters we assumed, yet they should not be treated as general.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Black holes (162)

1. Introduction

The masses of astrophysical black holes (BHs) are known to
cover a wide range, from stellar to supermassive ( ~ M1010 ). The
discovery of coalescing binary black holes (BBHs) in the LIGO
gravitational-wave (GW) detectors provided substantial evidence
of stellar-mass BHs (The LIGO Scientific Collaboration &
The Virgo Collaboration 2016a), while supermassive BHs are
supposed to exist in the centers of almost all galaxies (Lynden-
Bell 1969; Kormendy & Richstone 1995). GWs provide a direct
way to study inspiralling BBH systems, enabling derivation of
their basic parameters including mass, spin, and luminosity
distances(The LIGO Scientific Collaboration & The Virgo
Collaboration 2017, 2019a). This creates the opportunity to not
only measure the properties of BHs (The LIGO Scientific
Collaboration & The Virgo Collaboration 2019b), but also answer
some fundamental questions concerning cosmography(Cai &
Yang 2017; Liao et al. 2017; Ding et al. 2019), GW speed(Collett
& Bacon 2017; Fan et al. 2017), or strong lensing of GWs
(Piórkowska et al. 2013; Biesiada et al. 2014; Ding et al. 2015).

Nevertheless, it is still unclear how BHs formed (Fryer 1999;
Fryer & Kalogera 2001; Mirabel 2017). In particular, the number
and mass distribution of stellar-mass BHs in the universe still need
to be clarified. The recent detections of GW events have launched
a new era of gravitational-wave astronomy (e.g., The LIGO
Scientific Collaboration & The Virgo Collaboration 2016a, 2016b,
2019a) and provided new opportunities to study BBH system
formation channels. At present, however, observations cannot
firmly select basic formation scenarios like the evolution
of isolated pairs of stars (Bethe & Brown 1998; Portegies
Zwart & Yungelson 1998), chemically homogeneous evolution

(de Mink & Mandel 2016; Marchant et al. 2016), dynamic binary
formation in dense clusters (Kulkarni et al. 1993; Portegies Zwart
& McMillan 2000), and other channels introduced in The LIGO
Scientific Collaboration & The Virgo Collaboration (2019b).
Inferring distributions of BH mass could be the key to
distinguishing these scenarios and learning more about the
physical process and evolutionary environment of binary BH
formation.
The current GWTC-1 catalog of binary coalescences

detected by LIGO/Virgo GW interferometers includes 10
BH–BH binaries and 1 neutron star binary (NS–NS;
GW170817) binary (The LIGO Scientific Collaboration &
The Virgo Collaboration 2019a). Assuming the BH mass
function (BHMF) is parameterized as a two-sided truncated
power law, Kovetz et al. (2017) estimated that further LIGO
measurements would provide thousands of BBHs and constrain
the BHMF slope parameter α at 10% precision. More recently,
the LIGO collaboration has used 10 BBH merger events and
constrained the BHMF power-law index to a = -

+1.6 1.7
1.5

(90% credibility; The LIGO Scientific Collaboration & The
Virgo Collaboration 2019b). In the next decade, the number of
detected coalescences of BBH systems is expected to be
increase rapidly with improvements of the detector sensitiv-
ities. Particularly, the third-generation gravitational-wave
detector Einstein Telescope (ET) is capable of detecting
104–108 coalescing BBHs per year (Abernathy et al. 2011).
Moreover, since this instrument could detect GW events from
the distant universe up to z∼17 (Abernathy et al. 2011), the
wide redshift range of the BBH inspiral events enables us to
study α as a function of redshift. In this study, we use the
Monte Carlo (MC) approach to simulate GW events from BBH
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mergers that could be measured by the ET. We construct a
mock BBH merger catalog to examine their ability to constrain
the BHMFs, taking into account the data noise level and
selection bias realistically.

This paper is organized as follows. In Section 2 we describe
the simulation of the BBH inspiral events detectable by ET
using the MC approach. In this section, we assume the initial
assumptions for the BH mass function used further as true
values to be recovered from the data. In Section 3, we introduce
the theoretical framework to reconstruct the BHMFs, consider-
ing the noise realization and the selection effects. Furthermore,
we take a further step by considering the power-law index α as
a function of redshift and explore how to use luminosity
distance as a redshift estimator and detect such evolution. We
present our results in Section 4. The discussion and conclusions
are given in Section 5. Throughout this paper, we assume a
standard concordance cosmology with H0=70 km s−1 Mpc−1,
Ωm=0.30, and ΩΛ=0.70.

2. Data Simulation

In this section we describe the simulation of a realistic mock
catalog of GW signals from BBHs detectable by the future ET
interferometric detector. Numerical predictions of BBH
inspirals detectable by ET have been discussed in many works,
and it has been forecasted that the yearly detection rate of
BBHs would be of order ~ -104 8 (Abernathy et al. 2011) or at
least∼105 according to less optimistic yet realistic scenarios
(Piórkowska et al. 2013; Biesiada et al. 2014). More recently,
Yang et al. (2019) developed the approach of a MC simulation
to predict the detection rate by explicitly considering each BBH
inspiral event sampled from the outcome of the population
synthesis model, which provides a way to mimic a realistic
BBH GW catalog. The backbone of this approach is to use
random seeds to build up a mock universe that includes a
sufficient volume of BBH inspiral events with essential
parameters that are related to this study. For further details,
see Yang et al. (2019, Section 2, therein); we provide a brief
summary of the key points below.

2.1. Detection Criteria

For a specific BBH inspiral event at redshift zs, the ET’s
corresponding signal-to-noise ratio ρ is defined as (Abernathy
et al. 2011)

⎛
⎝⎜

⎞
⎠⎟( )

( ) ( ) ( )


r z= Q
+ r

d z

z

M
f8

1

1.2
, 1

L s

0 0
5 6

max

where r0 is the detector’s characteristic distance parameter and
ζ( fmax) is the dimensionless function reflecting the overlap
between the GW signal and the ET’s effective bandwidth. For
simplicity, we followed Taylor & Gair (2012) and approxi-
mated ( )z fmax as unity.0 is the intrinsic chirp mass defined

as ( )
( )

=
+

 m m

m m0
1 2

3 5

1 2
1 5 , where m1 and m2 are the respective

masses of the BBH components. Θ is the orientation factor
determined by four angles as (Finn & Chernoff 1993)

[ ( ) ] ( )i iQ = + ++ ´F F2 1 cos 4 cos , 22 2 2 2 2 1 2

where: ( )q f y q f y= + -+F 1 cos cos 2 cos 2 cos sin 2 sin 21

2
2 ,

and ( )q f y q f y= + +F́ 1 cos sin 2 cos 2 cos sin 2 cos 21

2
2 are

so-called antenna patterns. The four angles (θ, f, ψ, ι) respectively

describe the direction to the BBH system relative to the detector
and the binary orientation relative to the line of sight between it
and the detector. They are independent and one can assume that
they are ( )q f p y p icos , , , cos distributed uniformly over the
range [−1, 1]. The GW signal is considered detectable if its ρ is
over the detecting threshold, i.e., ρ>ρ0=8.

2.2. MC Approach

We aim to build up a sufficient volume of BBH systems in
the mock universe by randomly generating the key parameters
for each BBH system as specified below. The first key
parameter is the redshift zs. We sample the merging BBH
systems according to the yearly merger rate in a redshift
interval [ ]+z z dz,s s s :

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ˜ ( )

( )
( ) 

p=
+

dN z
c

H

n z

z

r z

E z
dz4

1
. 3s

s

s

s

s
s

0

3
0

2

where the intrinsic BBH merger rate ( )n zs0 is the one predicted
by the population synthesis model (using StarTrack code6)
in Dominik et al. (2013), ˜( )r zs is the dimensionless comoving
distance to the source, and ( )E zs is the dimensionless
expansion rate of the universe at redshift zs. Other key
parameters include the four angles ( )q f y i, , , in the
Equation (2) and the masses of each BH in the binary system
(i.e., m1 and m2). For the purpose of randomly generating the
BH masses, we follow the previous works (Kovetz et al. 2017;
Fishbach et al. 2018; The LIGO Scientific Collaboration & The
Virgo Collaboration 2019b) and assume that m1 follows a
power-law distribution with a hard cut at both maximum and
minimum mass:

( ∣ ) ( ) ( )
( )

a = - -a P m M M m m M M m, , ,
4

1 max min 1 1 min max 1

where  is the Heaviside step function. Then, the secondary
mass, m2, is sampled from a uniform distribution between
[ ]M m,min 1 . Let us note that we only take m1 to reconstruct the
BHMF, thus the assumption of the distribution for m2 actually
does not affect the inference for the shape of BHMF. For the
purpose of the simulation, however, all these parameters are
necessary to determine the value of Θ and0 in Equation (1).
We combine them with their redshift zs to generate the ρ of
each BBH inspiraling system. We only collect events that have
r r> = 80 , meaning that events with ρ<8 are too faint to
detect.
Concerning the BHMF we consider two scenarios. In the

first scenario, the exponent α is constant, hence the shape of the
BHMF is fixed throughout the redshift range probed by the ET.
In the second scenario, we consider that α varies as a function
of redshift according to

( ) ( )a a a= +
+

z
z

z1
, 50 1

such that the α(z) would transform gradually from α0 to
α0+α1 through low z to high z. We do not have any clear
physical precedent for how could α evolve with redshift,
particularly which analytical expression would describe it

6 The data are taken from http://www.syntheticuniverse.org.
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reliably. Therefore, the above ansatz is actually a suitable
form of the first-order Taylor expansion of α as a function
of the scale factor a (around the present value a(t0)=1,
where ( ) =

+
a t

z

1

1
).

2.3. Estimation of Parameter Error

We aim to produce the mock data set of the future GW
events representative of the ET measurements. In order to
consider the measurement uncertainties in a realistic way, we
distribute random statistical uncertainties into the simulated
data as described below.

The quantities measurable from the BBH inspiral waveform
are comprised ofdL, redshifted chirp mass ( )+ z1 0 and ρ.
Individual masses m1 and m2 are derived from the combination
of the chirp mass and the total massm1+m2, which can also be
extracted from the chirp waveform. Let us note that physical
quantities inferred from the LIGO detections had asymmetric
upper and lower uncertainty limits, hence they followed the
skewed distributions. Therefore, instead of the symmetric
Gaussian distribution, we assume that the simulated mock
measurements follow the log-normal distribution with a
standard deviation of 0, dL, and m1 equal to 0.17, 0.35,
and 0.2, respectively. For instance, if m1,fid is the true value for
m1, the probability density used to simulate the measured value
is

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )

s p s
= -

-
P m

m

m m1

2
exp

log log

2
. 6

m m
1

1

1 1,fid

1 1

We set up the uncertainties for0, dL, and m1 by taking the
results of Ghosh et al. (2016) as a reference, who explored the
expected statistical uncertainties with which the parameters of
BH binaries can be measured from GW observations by next-
generation ground-based GW observatories. Note that the
assumed uncertainty level of these quantities only affects the
uncertainty of the inferred parameters (i.e., the precision) and
would not affect the validity test of our method (i.e., the
accuracy).

Having clarified the MC approach and defined the data’s
uncertainty level, we are capable of producing the mock GW
data set. For the purposes of demonstration, we list an example
of 1000 BBH inspiral events as simulated in one realization of
the MCMC seeding process.

3. Theoretical Framework

In this section, we describe the fitting procedure for the
parameterized BHMFs. In principle, the modeling for a data set
that follows a power-law distribution like that Equation (4) is
very straightforward. To derive the posterior of the parameters,
one only needs to combine all the measured median values
together in a joint likelihood:

( ∣ ) ( ∣ ) ( )a aµ
=

P M M m P m M M, , , , 7
i

imax min 1
1

total

1, max min

where m1,i is the primary mass inferred from the ith GW event.
However, the median values of simulated m1, as shown in
Table 1, actually deviate from the initial power-law distribu-
tion. This deviation stems from several real effects. In
Sections 3.1 and 3.2, we introduce them and explore how to
account for them.

3.1. Measurement Uncertainty

The intrinsic value of primary BH mass (i.e., m1,fid) follows a
power-law distribution, however the measured m1 is scattered
by the log-normal distribution, which does not follow a power-
law function anymore (Koen & Kondlo 2009). In theory, if the
event X follows a power-law distribution and its observed
values are subject to log-normal uncertainty, then the observed
event +X e, with e denoting the error (uncertainty), is
distributed according to the convolution of the power law
and log-normal distribution. Assuming that the noised data
follow the log-normal distribution, we convolved the intrinsic
power law to describe likelihood as

( ∣ ) ˆ ( ∣ ) ( )a aµ
=

P M M m P m M M, , , , , 8
i

imax min 1
1

total

1, max min

where P̂ is the power-law function convolved with the log-
normal distribution using a standard deviation of 0.2, as we
assumed. We illustrate the effect of such a convolution in
Figure 1.

3.2. Selection Effect

The GW observations have a tendency to discover more
significant events, known as Malmquist bias. For example, the
GW systems with higher values m1 tend to produce stronger
signals and thus have a higher probability of being detected. As
a result, the final BHMFs are biased toward the high-mass end
if this effect is not correctly taken into account.

Table 1
Illustration of the Mock GW Catalog

Object ID m1 Luminosity Distance Chirp Mass SNR
(Me) (Mpc) (Me) (ρ)

(1) (2) (3) (4) (5)

ID1 -
+8.14 1.48

1.80
-
+25356.8 4596.4

5614.1
-
+9.91 1.80

2.19 18.512

ID2 -
+43.93 7.96

9.73
-
+12956.9 2348.7

2868.7
-
+28.64 5.19

6.34 46.953

ID3 -
+5.05 0.92

1.12
-
+8617.6 1562.1

1908.0
-
+3.60 0.65

0.80 9.836

ID4 -
+13.93 2.53

3.08
-
+47473.1 8605.4

10510.7
-
+10.97 1.99

2.43 17.563

ID5 -
+11.37 2.06

2.52
-
+21485.0 3894.6

4756.8
-
+10.68 1.94

2.36 31.107

ID6 -
+21.67 3.93

4.80
-
+9446.1 1712.3

2091.4
-
+7.64 1.39

1.69 31.624

ID7 -
+32.20 5.84

7.13
-
+69317.4 12565.1

15347.1
-
+19.35 3.51

4.28 13.496

ID8 -
+7.73 1.40

1.71
-
+25104.5 4550.7

5558.2
-
+6.68 1.21

1.48 9.612

ID9 -
+35.63 6.46

7.89
-
+16321.8 2958.6

3613.7
-
+10.96 1.99

2.43 16.202

ID10 -
+18.78 3.40

4.16
-
+54375.1 9856.5

12038.8
-
+15.16 2.75

3.36 29.232

... ... ... ... ...
ID991 -

+29.40 5.33
6.51

-
+40765.1 7389.5

9025.5
-
+29.79 5.40

6.59 28.134

ID992 -
+6.41 1.16

1.42
-
+16026.7 2905.2

3548.4
-
+4.54 0.82

1.01 17.550

ID993 -
+10.27 1.86

2.27
-
+33207.9 6019.6

7352.3
-
+8.57 1.55

1.90 8.037

ID994 -
+21.26 3.85

4.71
-
+56088.6 10167.1

12418.2
-
+16.01 2.90

3.54 19.871

ID995 -
+14.35 2.60

3.18
-
+29022.0 5260.8

6425.6
-
+13.50 2.45

2.99 14.230

ID996 -
+22.50 4.08

4.98
-
+49038.7 8889.2

10857.3
-
+18.48 3.35

4.09 11.636

ID997 -
+5.42 0.98

1.20
-
+23537.5 4266.6

5211.3
-
+4.54 0.82

1.01 12.562

ID998 -
+25.07 4.55

5.55
-
+19555.4 3544.8

4329.6
-
+18.81 3.41

4.16 17.846

ID999 -
+5.70 1.03

1.26
-
+24024.9 4355.0

5319.2
-
+3.61 0.65

0.80 23.020

ID1000 -
+39.23 7.11

8.69
-
+31835.1 5770.7

7048.4
-
+22.31 4.04

4.94 15.884

Note. The catalog of 1000 simulated BBH inspiral events is used to test the
inference of the BHMF from the data attainable with the ET. The reported
values are the medians, with errors corresponding to the 16th and 84th
percentiles, assuming a = 1.6, =M M5min , =M M50max . Note that these
mock data are resimulated with each realization.
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To overcome this selection effect, we introduce the selection
factor η for the GW event, which is the detection probability of
one event in a repeated simulation. The meaning of this factor η
is straightforward—if one GW event has η=0.2, it means that
this event has an 80% probability of being missed. In other
words, four equivalent events would have been missed. Thus,
for this event, one needs to recalibrate this influence by
enhancing the likelihood by a power of 5 (i.e., =L L1 0.2 5) to
recover the intrinsic probability value. Hence, to account for
the selection effect, we calculate the likelihood as

( ∣ ) ˆ ( ∣ ) ( )a aµ h

=

P M M m P m M M, , , , , 9
i

imax min 1
1

total

1, max min
1

where η is directly determined by the probability distribution of
ρ, i.e., ( )h r= >P 8 . In order to use the Equation (1) to
calculate ρ, the distribution function of Θ is taken from the MC
simulations; the0 and dL are adopted from the mock data set,
as demonstrated in Table 1. Yet, the redshift zs is the unknown
parameter since it is non-measurable in the GW detectors; one
can only take the dL as a redshift estimator. Note that the
observed dL and0 are both considered to have random noise,
which follows the asymmetric distribution (i.e., log-normal).
Thus, the intrinsic probability distribution (not the errors to be
convolved) of their product, and thus of η, is also asymmetric.
Considering the random distributions of the dL and0, we
performed the numerical tests and found that the distribution of
1/η could be well described by the log-normal distribution with
multiplicative standard deviation as ( )s h= -log 3median ; see
Figure 2. Recall that in a log-normal distribution, the expected
value is higher than the true value (i.e., median value) by a
factor of se 22

. We consider this skewness and recalibrate the
inferred expected value of 1/η to the median value, in order to
assign a non-biased 1/η to the calculation.

3.3. Luminosity Distance as a Redshift Estimator

In the previous section, we took dL as the redshift estimator
to derive the redshift and hence the selection factor η. Let us
denote such an inferred redshift as zinf. To derive zinf, we take
the observed luminosity distance, i.e., dL(z), and find the

inverse solution of the integral function based on a fixed
cosmological model.
Once the cosmological model is assumed, indirect inference

of zs offers an opportunity to model the BHMF slope as a
function of redshift. Therefore, we are able to investigate the
second scenario described by Equation (5) as

( ∣ ( ))
ˆ ( ∣ ) ( )

a a

a aµ  h
=

P M M m d z

P m z M M

, , , ,

, , , , . 10

L

i i i

0 1 max min 1

1
total

1 inf, 0 1 max min
1

We present our inference for the BHMF using the mock data
in the next section.

4. Result

We fit the mock data to the BHMF model to infer the
distribution of the best-fit parameters. To avoid the bias and
estimate the scatter, we adopt the realization approach. In each
realization, we simulate 1000 BBH inspiral GW events and
infer the best-fit parameters using minimization of the chi-
square objective function. We keep increasing the volume of
realizations until the inferred best-fit parameters converge.
In the first scenario, we consider the slope α as a constant.

We performed numerical tests assuming three different
sets of parameters, taking α as 0.8, 1.6, and 2.4, with

=M M5min , =M M50max . We calculate the likelihood
with Equation (9) to infer the best-fit parameters in each
realization. It has been discussed that no black holes with
mass greater than M50 are expected from stellar evolution
and through supernovae(Woosley 2017; Wiktorowicz et al.
2019). In Figure 3, we present the posterior distribution of the
inferred parameters for the three parameter sets. We find that
all the parameters are recovered accurately, which confirms
the validity of our method. The uncertainties for the inferred
parameters of the 68% confidence interval are Δα∼0.1,

– D ~M M1 3max and – D ~M M0.2 0.3min . We also note that
the uncertainty for ΔMmax increases with increasing α. This is
reasonable given that for higher α values, the BH mass (i.e.,
m1) tends to be distributed lower, resulting in a lower
constraint power on the high-mass end. Clearly, the
uncertainty levels cannot be treated as the universal range

Figure 1. Convolution of a power-law distribution with a log-normal
distribution with σ=0.2. The convolution makes distribution shallower,
smooths the breaking edge at m1=5Me, and makes the slope less steep. Figure 2. Assuming a set of dL and0 following the log-normal distribution,

we randomly produce a corresponding histogram of 1/η in order to assess its
probability distribution. The result shows that the skewed distribution could be
well described by a log-normal distribution with ( )s h= -log 3median .
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for the general case, but only apply when the set of initial
parameters is close to the tested ones. Moreover, these
uncertainty levels are related to the assumed measurement
uncertainties, including 0, dL, andm1, as discussed in
Section 2.3.

In the second scenario, α evolves with redshift according to
Equation (5). We consider four sets of parameters assuming α0

as 0.8, 1.6, 2.4, and α1, including 0.7 and 1.2. We present
the results in Figure 4. The figure shows that all the assumed
parameters can be recovered accurately. With one more
parameter included in the second scenario, the uncertainty
levels are as follows: Δα0∼0.4, Δα1∼0.5–0.7, D ~Mmax
– M2 4 , and – D ~M M0.2 0.3min . We note that there is a
degeneracy between α0 and α1, which is understandable given
that they are strongly related by Equation (5). However, for the
four sets of parameters we tested, this degeneracy does not
affect the inferred uncertainty level for α0 and α1.

We highlight that in this second scenario, it is the inferred
uncertainty of a1 that matters the most. Our result shows that,
with only 1000 GW measurements in the future, the inferred
value of α1 would reach a precision of Δα1∼0.5–0.7.
Limited by the computing power, we could not use numerical
tests to get a universal uncertainty level for the general case.
However, given the four sets of tests as shown in Figure 4, it is
likely that 1000 GW measurements could distinguish the
evolution of the BHMF at the 1σ confidence level when α1

deviated from 0 by a value of 0.5. Moreover, we conjecture that
the precision of an inference increases with the sample size as a
function of N . Thus, for the four sets of tests, the 1 year of ET
measurements (∼105 in total) would decrease the uncertainty
levels by a factor of 10. We also note that the distribution of the
best-fitted parameters (α0, α1) does not follow the Gaussian
distribution, but rather a large fraction of it is concentrated at
the center.

5. Conclusion and Discussion

The third-generation gravitational-wave detector, the ET, is
very powerful and capable of detecting ∼105 GW events per

year, at redshifts up to z∼17. In this study, we investigated
how detections of the BBH mergers could improve our
knowledge of the black hole mass function (BHMF).
We performed a MC simulation to estimate the uncertainty

level of BHMF parameters inferred from GW signals by BBHs
that would be detected by ET. As a starting point, we assumed
that the BHMF for the primary BH mass followed a power-law
distribution with hard cuts as described by Equation (4). Based
on the BBH intrinsic merger rate predicted by StarTrack,
we randomly simulated the key parameters of the BBH
systems, including the chirp masses, redshifts, and orientation
factor,s and calculated their corresponding signal-to-noise ratio
ρ for the ET. We collected the events whose ρ exceeds the
detecting threshold and injected log-normal noise into the
detected parameter, including BH mass, chirp mass, and
luminosity distance as mock data.
We built up a theoretical framework and explored using

mock measurements to infer the BHMF. We took into account
the measurement uncertainties and the selection effect, which
could bias the inference. We performed the test using
realizations, 1000 GW events adopted per realization, and
estimated the distribution of the best-fitted parameters of the
BHMF, including the power-law slope α, the maximum BH
mass Mmax and the minimum BH mass Mmin in the first
scenario. Furthermore, in the second scenario, we considered α
to evolve as a function of redshift as described by Equation (5),
and used the luminosity distance as a redshift estimator to test
this evolution. We summarize our main results as follows:

1. Using our method based on Equation (9), the tested
parameters are all recovered accurately, as shown in
Figure 3, which confirms the validity of our tests and
highlights the importance of correctly considering the
measurement uncertainty and selection effect.

2. We assumed α within a scenario in which it is evolving
with redshift as ( )a a a= +

+
z z

z0 1 1
. Taking the

measured dL as a redshift estimator and testing with four
parameter sets, we are able to recover the true value of α1

accurately, as shown in Figure 4.

Figure 3. One- and two-dimensional distributions for the best-fitted parameters in the first scenario, based on three sets of parameters with 1000 BBH inspiral GW
events. The BHMF is assumed as a power law with a hard cut at Mmin and Mmax, and a constant slope (α) across all the redshifts. The blue lines indicate the true value
as assumed in the simulation.

5

The Astrophysical Journal, 891:76 (7pp), 2020 March 1 Ding et al.



3. Given the fixed sets of parameters, our results show that a
volume of 1000 measurements of BBHs events could
infer the parameters with uncertainties level at Δα∼0.1,

– D ~M M1 2max , and – D ~M M0.2 0.3min for the first
scenario. For the second scenario, the inferred uncertain-
ties are Δα0∼0.4, –aD ~ 0.5 0.71 , – D ~M M2 4max ,
and D ~ -M M0.2 0.3min . In the future, the 1 year
detection rate of ET (∼105 in total) would increase the
sample size by a factor of 100. If the precision of the
inference increases with the sample size as a function of

N , we conclude that the one year BBH sample by ET
would be able to deliver the parameters with uncertainties
reduced by a factor of 10 with respect to those reported in
this paper.

We point out a few circumstances that might weaken
generality this work. First, we have adopted a template of
intrinsic BBH merger rate based on the predictions by a
standard model in StarTrack, which can be different from
the realistic one. Of course, the intrinsic BBH merger rate is
unknown, which is related to the lack of detailed knowledge of
different variables such as BBH masses, explosion mechanism,
metallicity history, and time delay distribution. With a different
BBH merger rate template, the simulated mock events (i.e., the
ones in the Table 1) would follow a different redshift
distribution, which could slightly change the inference of the
uncertainties of the inferred parameters. Second, for the sake of
simplicity, we simulated the value of the secondary BH mass
m2 by assuming that two masses of BBHs have independent

Figure 4. Same as Figure 3 but for the second scenario, where the α of the BHMF is evolving with redshift as ( )a a a= +
+

z z

z0 1 1
; four sets of parameters are

assumed.
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distributions, which probably is not exactly true. One can
expect that these two limitations would affect the prediction of
the yearly detection rate of the GW events and their redshift
distribution; however, their influence on our final inferred
contours of the BHMF (i.e., Figures 3 and 4) is likely not very
significant. The numerical tests done in this work confirmed the
validity of our method. However, limited by the sets of tests,
the uncertainty of the inferred parameters in both scenarios
applies directly to the fixed sets of parameters and should not
be applied to the general case.

In this work, we focused on the inference of the BHMF using
the mass properties of the BBH. However, it is worth noting that
our approach could be extended to address other problems. For
example, one could infer the spin of the BH (The LIGO Scientific
Collaboration & The Virgo Collaboration 2019b), and the mass
function for the binary of the NS–NS, NS-BH system, though
these events are detectable at lower redshift ( <z 4). In addition,
using the luminosity as a redshift estimator, one should also be
able to reconstruct the BBH intrinsic merger rate (Fishbach et al.
2018) and the cosmological parameters.
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