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Abstract

In this paper, we calibrate the coefficients for the one-dimensional Reynolds stress model (RSM) with the data
generated from the three-dimensional (3D) numerical simulations of upward overshooting in turbulent
compressible convection. It has been found that the calibrated convective and isotropic coefficients are almost
the same as those calibrated in the pure convection zone. However, the calibrated diffusive coefficients differ
significantly from those calibrated in the pure convection zone. We suspect that the diffusive effect induced by the
boundary is stronger than by the adjacent stable zone. We have checked the validity of the downgradient
approximation (DGA). We find that the prediction of the DGA on the third-order moments (TOMs) is
unsatisfactory. However, the prediction on their derivatives is much better. It explains why the performance of the
RSM is reasonable in application to the real stars. With the calibrated coefficients, we have solved the full set of
nonlocal turbulent equations on RSM. We find that the RSM has successfully produced the thermal adjustment
layer and turbulent dissipation layer, which were identified in the 3D numerical simulations. We suggest to use the
inflection point of the auto-correlation of temperature perturbation and the Péclet number as the indicators on
measuring the extents of the thermal adjustment layer and turbulent dissipation layer, respectively. This result may
offer a practical guidance on the application of the RSM in 1D stellar structure and evolution models.

Unified Astronomy Thesaurus concepts: Stellar structures (1631); Stellar interiors (1606); Stellar cores (1592);
Stellar convective zones (301); Hydrodynamical simulations (767)

1. Introduction

Core overshooting is an important physical process for the
evolutions of the intermediate and massive stars. The duration
of the hydrogen and helium burning stage can be considerably
affected, since more fuels are supplied through the extra mixing
induced by the overshooting process. Many studies have
confirmed that core overshooting is needed to explain the
observational results. For example, the study of double-lined
eclipsing binaries indicates that the overshooting parameter is
nonzero for stars more massive than M1.2  (Claret &
Torres 2017, 2018, 2019). Similarly, it has been found that
including the core overshooting can significantly decrease the
discrepancies between the theoretical and observed apsidal
motion rates in double-lined eclipsing binaries (Claret &
Gimenez 2010; Claret 2019). Recently, evidence from
asteroseismology also reveals that core overshooting is
required to reproduce the seismic observations of the Kepler
data (Deheuvels et al. 2016). While the mixing length theory
(Böhm-Vitense 1958) has been widely used in the treatment of
stellar convection, uncertainty arises in its application of
dealing with the energy transportation and material mixing in
the overshooting zone (Renzini 1987). To overcome this
problem, advanced nonlocal Reynolds stress models (RSMs)
have been developed (Xiong 1981; Canuto 1992; Xiong et al.
1997; Canuto & Dubovikov 1998; Li 2012, 2017). Despite the
complexity, applications of RSMs to stellar convection and
overshooting have shown promising results (Xiong & Deng
2001, 2010; Kupka & Montgomery 2002; Montgomery &
Kupka 2004; Li et al. 2018; Guo & Li 2019). The equations of
RSMs are incomplete unless closure relations are assumed for
the higher order moments. These approximated closure

relations induce truncation errors. The validity of these
approximations needs to be examined. In addition, the RSMs
usually contains undetermined coefficients. The values of these
coefficients need to be calibrated.
Numerical simulations provide useful insights into the turbulent

convection and overshooting in stars. Over the past years, much
effort (Chan & Sofia 1989; Grossman 1996; Kupka & Robinson
2006; Kupka & Muthsam 2007a, 2007b, 2007c; Garaud et al.
2010; Arnett et al. 2015; Cai 2018) has been devoted to bridge the
gap between the numerical simulations and the theoretical models.
In these works, different closure models were tested by the 3D
numerical simulation data. Although some of the testing results
have promising implications, their applications to stellar convec-
tion still remain challenging. In the calculation of stellar models,
the equations of RSMs have to be solved together with the thermal
structure equations. Previous attempts have shown that numerical
instability occurs in most cases when the closure models of higher
order moments are involved (Grossman 1996; Kupka &
Muthsam 2007b; Cai 2018). However, the calculation of RSMs
derived from the downgradient approximations (DGAs), seems to
be numerically stable (Cai 2018). In our previous calculation
(Cai 2018), we have calibrated the coefficients of Xiong’s 1D
RSM by the three-dimensional (3D) simulation data of efficient
turbulent convection in a pure convection zone. The convective
and isotropic coefficients are calibrated by a local steady
approximation in the convection zone. The diffusive coefficients
are calibrated by a power law approximation derived from the
boundary effect. In the stellar interiors, convectively stable zones
are usually attached to the convection zone. The diffusive effect
induced by boundary effect might be different from that induced
by the attached stable zone. In addition, the important overshooting
process needs to be investigated.
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In recent years, much attention has been paid to the numerical
simulations of the turbulent convection and overshooting
(Brummell et al. 2002; Brun et al. 2017; Hotta 2017; Käpylä
et al. 2017; Käpylä 2019; Korre et al. 2019). Most of them
studied the downward overshooting below a convection zone.
Browning et al. (2004) studied the upward overshooting in
massive stars, and they mainly focused on the effects of rotation
on upward overshooting. In a previous paper (Cai 2020a), we
studied the upward overshooting above a convection zone by
numerical simulations. We have found that the upper convec-
tively stable zone can be separated into three layers: the thermal
adjustment layer, the turbulent dissipation layer, and the thermal
dissipation layer. The theoretical work of Zahn (1991) explained
the difference between penetration (nearly adiabatic) and over-
shooting (non-adiabatic) from a physical point of view. In his
work, the penetrative and overshooting zones were also called the
nearly adiabatic layer and thermal adjustment layer, respectively.
Based on a RSM, Zhang & Li (2012) predicted that an additional
turbulent mixing layer exists. Our numerical result (Cai 2020a)
has shown a remarkable qualitatively agreement with the
theoretical prediction of the 1D RSM in Zhang & Li (2012). In
this paper, we take a further step to compare the 3D simulations
with 1D RSM quantitatively. Specifically, we mainly consider
the following questions. First, we calibrate the coefficients for the
1D RSM. Second, we test the validity of the DGA. Third, we link
the extent of overshooting distance with physical indicators.

2. The Model

2.1. The 1D Nonlocal RSM

In a previous paper, we have compared Xiong’s 1D nonlocal
RSM with the 3D simulations of efficient turbulent convection
in the Cartesian geometry (Cai 2018). Here, we extend the
previous research to compare the 1D nonlocal RSM with the
3D simulations on the upward overshooting of turbulent
convection (Cai 2020a). For the convenience of illustration, we
list the downgradient form of Xiong’s RSM here again. In the
Cartesian coordinates, the downgradient form of Xiong’s RSM
model is (Cai 2018):

r

b
q h r

¶
¶

-
¶
¶

¶
¶

- + =

u

t z
c

P

g
w

z
u

g w
T

g

c P
u

1 3

4

2

3

4

3
0, 1

w

e

w

2

2,
2 1 2 2

1,

2 3 2

2

2

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

( )

( ) ( )

r
q

q

h
r q

¶

¶
-

¶
¶

¶
¶

+
¶
¶

- 
¶
¶

+ + =

q

q

q

t z
c

P

g
w

z T

T

z

P

z
w

T

g

c P
u u

T

1 3

4

2
ln ln

2 3 0, 2

T

e c

2,
2 1 2

2

2

ad

1,

2 1 2
2

2

2

2

2

2

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

( )
( )

[( ) ] ( )

r
q

b
q

h
r q

¶

¶
-

¶
¶

¶
¶

+
¶
¶

- 
¶
¶

-

+ + =

q

q

q

w

t z
c

P

g
w

z
w

T

T

z

P

z
w g

T

g

c P
u u

u

w
w

T

1 3

4

ln ln

3 3 0,

3

T
w

e
w

c

2,
2 1 2

ad
2

2

2

1,

2 1 2
2

2

1 2

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )

[ ( ) ]

( )

r

b
q h r

¶
¶

-
¶
¶

¶
¶

- + + - =

w

t z
c

P

g
w

z
w

g w
T

g

c P
u c w c u

1 3

4

2
4

3
1 0,

4

w

e

w

2

2,
2 1 2 2

1,

2 1 2
3

2
3

2

2

2

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

( )

( ) [( ) ]

( )

where the symbol overline represents the temporal and

horizontal average of the quantity; u2, w2, qw
T
, and q

T

2

2 are the
auto- and cross-correlations of velocity and temperature
perturbations; u is the isotropic part of turbulent velocity; w
is the vertical velocity; θ is the temperature perturbation; P is
the pressure; T is the temperature; ρ is the density; β is the
expansion coefficient of gas; ηe=0.45 is the Heisenberg eddy
coupling constant; ∇ad is the adiabatic temperature gradient;

= k
rq

u ;c c c H

9

4 w p p1,
κ is the conductivity; q qc c c, ,w w1, 1, 1,2 2 are the

convective coefficients; q qc c c, ,w w2, 2, 2,2 2 are the diffusive
coefficients; and c3 is the isotropic coefficient.
Removing the time derivative terms and diffusive terms, we

obtain the local steady solution of the above equations
(Cai 2018):
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in the convectively unstable zone (∇−∇ad>0), where
∇=∂ ln T/ln P is the temperature gradient. With this local
steady solution, we can calibrate the convective coefficients c1

and isotropic coefficient c3 (Cai 2018). In Cai (2018), the
diffusive coefficients c2 were calibrated by assuming an
asymptotic power law solution near the top boundary. For
the turbulent convection with an upward convectively stable
zone, these diffusive coefficients can be calibrated through a
more direct method. In the DGA, the third-order moments
(TOMs) are assumed to be correlated with the second-order
moments (SOMs):
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Given the TOMs and SOMs, the diffusive coefficients can be
easily calibrated by the above relations. Previous calculation on
RSM shows that the convective effect dominates the diffusive
effect in the convectively unstable zone (see Figures 13 and 14
in Cai 2014). The diffusive term mainly plays the role in the
overshooting zone near the unstable/stable interface. Thus it is
unnecessary to include the convectively unstable zone when
calibrating these diffusive coefficients. In this paper, we use the
data in the convectively stable zone (∇−∇ad<0) to
calibrate c2.

2.2. The 3D Simulation Data

We calibrate the coefficients c c c, ,1 2 3 of the above 1D
model, by using 3D data from the simulations of the upward
overshooting of the turbulent convection (Cai 2020a). In the
3D simulation, the initial thermal background structure is
assumed in a piecewise linear polytropic state (the temperature
structure is piecewise linear but the heat conductivity is
piecewise constant):

h= + -T T z1 1 , 13i* ( ) ( )
r r = T T , 14mi

* *( ) ( )

= +p p T T , 15m 1i

* *( ) ( )

where the subscript ∗ represents the value at the interface; the
subscript Îi 1, 2{ } is the layer index; ηi is the thickness
parameter; mi is the polytropic index; z is the depth from the
bottom. In our settings, we choose the adiabatic polytropic
index mad=1.5, the polytropic index m1=1.0 in the layer 1
(0�z�1), and = + -m m S m m2 ad ad 1( ) in the layer 2
(1<z�1.5). As a result, the layer 1 is convectively unstable
and the layer 2 is convectively stable. The gravitational
acceleration h k= + = +g m F m1 1i i i itot( ) ( ) is kept constant
throughout the computational domain 0�z�1.5, where Ftot

is the total flux and κ is the conductivity. In all the simulations
cases, we set g=4 and η1=2. Given Ftot and κ1, the
parameters m2 and κ2 can be deduced from the above equation.
We have run a total of 13 cases based on this initial structure.
The parameters used in the simulations are listed in Table 1. In
this table, Pr(z)=cpμ/κi is the Prandtl number, =zRe( )
r mv L z1 is the Reynolds number, and m k=z z cPe Re p i( ) ( ) is
the Péclet number. Here cp=2.5 is the heat capacity at
constant pressure; μ is the dynamic viscosity; v″is the
averaged root mean square velocity in layer 1; and =L 1z1 is
the depth of layer 1.

2.3. The Measurement of Overshooting Distances

In Chan et al. (2010), it has been suggested to use the zeros
of the vertical velocity correlation coefficients (with the vertical
velocity at the convectively stable/unstable boundary) as the
proxies for the measurement of overshooting distances.
Following this work, we have separated the convectively
stable zone of upward overshooting into three layers: the
thermal adjustment layer, the turbulent dissipation layer, and
the thermal dissipation layer (Cai 2020a). The thermal
adjustment layer and the turbulent dissipation layer are
separated by the first zero-point of the correlation coefficient;
and the turbulent dissipation layer and the thermal dissipation
layer are separated by the second zero-point. The terminology
“thermal adjustment layer” used here is a little bit different
from that defined in Zahn (1991). In Zahn (1991), “thermal
adjustment layer” denotes the layer where the mixing is active
and the thermal structure is partially (non-adiabatically)
adjusted. He set the upper boundary of this layer at the
position where the Péclet number is unity. In our work, we also
found that the mixing is active and the thermal structure is
partially adjusted in this layer. However, the location of the
upper boundary is different. We found that the Péclet number at
the upper boundary of this layer is significantly larger than
unity. Apart from the work of Zahn (1991), we define the upper
boundary of the “turbulent dissipation layer” at the location
where the Péclet number is unity. Pratt et al. (2017) have
argued that averages are misleading when assessing over-
shooting distance. Instead, they used the statistical probability
density function of extreme events to make the assessment. As
mentioned in Korre et al. (2019), the correlation coefficients of
vertical velocity tend to capture the extreme events. Thus we
believe that our work shares some similarities with the work of
Pratt et al. (2017). Figure 1 shows the time variation of the
overshooting distance measured by the zeros of velocity
correlations. It clearly shows the difference of the two distinct
layers: a shallow thermal adjustment layer where convective
plumes penetrate frequently; and a deeper turbulent dissipation

3
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layer where convective plumes penetrate intermittently. This
result is consistent with that obtained in Pratt et al. (2017).

3. Results

3.1. Calibrated Coefficients for 1D RSM with 3D Data

Now we calibrate the coefficients for 1D RSM. The
coefficients c1 and c3 are calibrated by Equations (5)–(8) with
the data in layer 1. This local steady solution is obtained by
ignoring the diffusive terms, thus it is necessary to diminish the
effect from diffusion. For this reason, the data at the top of the
convection zone within Îz 0.7, 1.0( ) is excluded. Similarly,
the data in the region Îz 0, 0.4( ) is excluded to avoid the
undesirable boundary effect (Cai 2018). As a result,
the turbulent coefficients c1 are calibrated with the data in the

region zä(0.4, 0.7). The isotropic coefficient c3 is calibrated
by Equation (8). However, an additional constraint
 w u1 32 2 must be satisfied to make sure that c3 is non-

negative (Cai 2018). It is not guaranteed that this constraint
could always be satisfied in the chosen region zä(0.4, 0.7).
Thus the calibration of c3 needs special treatment. In our
previous work (Cai 2018), we calibrated c3 by using the data
point at the location (within the convection zone) where w u2 2

achieves the maximum value. Here we follow the same strategy
in this paper.
We calibrate the diffusive coefficients c2 by Equations (10)–

(12) with the 3D data. In the convectively unstable zone, the
convective effect dominates the diffusive effect. As the
diffusive term only plays a minor role in this region, it is
unnecessary to include this region when calibrating c2. For this
reason, we only use the data in the convectively stable zone to
calibrate c2. In an early paper (Chan et al. 2010), we have
suggested to use the zero-points of the vertical velocity as the
proxy of upward overshooting boundary. Following this work,
Cai (2020a) have identified three layers in the convectively
stable zone: the thermal adjustment layer (mixing both entropy
and material), the turbulent dissipation layer (mixing material
but not entropy), and the thermal dissipation layer (mixing
neither entropy nor material). In the thermal adjustment layer,
the thermal structure is adjusted so that the radiative flux is able
to balance the negative convective flux (Deng & Xiong 2008).
To capture this phenomena as accurate as possible, we calibrate
c2 with the data only in this thermal adjustment layer. In
addition, the diffusive terms include the derivatives of the
TOMs. A constant intercept will not affect the derivative. For
this reason, we keep the nonzero intercept when fitting the
TOMs by the SOMs.
Table 1 presents the coefficients calibrated from the 3D data.

The last two rows give the mean and standard deviation among
all the simulated cases for the calibrated coefficients,
respectively. The mean values of c w1, 2, qc1, 2, qc w1, , and c3 are
1.15, 4.97, 0.65, and 5.15, respectively. These values do not

Table 1
Estimated Coefficients of Xiong’s Nonlocal Model

Case S μ Ftot Pr Re Pe c w1, 2 qc1, 2 qc w1, c w2, 2 qc2, 2 qc w2, c3 qwcor ,[ ]
A1 1 1.25×10−4 0.00125 0.5 1102 550.8 1.22 7.33 0.64 0.36 0.26 0.20 7.30 0.59
A2 2 1.25×10−4 0.00125 0.5 1084 542.2 1.10 6.57 0.63 0.28 0.18 0.13 4.64 0.60
A3 3 1.25×10−4 0.00125 0.5 1062 530.9 1.16 4.76 0.62 0.26 0.14 0.09 5.60 0.60
A4 4 1.25×10−4 0.00125 0.5 1062 530.8 1.13 4.86 0.64 0.25 0.13 0.07 4.81 0.61
A5 5 1.25×10−4 0.00125 0.5 1059 529.6 1.10 4.50 0.62 0.24 0.10 0.04 4.27 0.61
A6 6 1.25×10−4 0.00125 0.5 1055 527.2 1.15 4.13 0.70 0.24 0.07 0.02 4.72 0.64
A7 7 1.25×10−4 0.00125 0.5 1034 516.9 1.14 2.87 0.70 0.27 0.08 0.02 5.24 0.67
B1 3 2.5×10−4 0.00125 1.0 509 509.0 0.99 5.94 0.61 0.30 0.12 0.09 3.98 0.62
B2 3 6.25×10−5 0.00125 0.25 2213 553.3 1.23 4.75 0.68 0.24 0.13 0.09 5.53 0.61
B3 3 3.125×10−4 0.00125 0.125 4489 561.1 1.28 4.32 0.68 0.22 0.14 0.09 5.80 0.61
C1 3 2.5×10−4 0.00250 0.5 669 334.5 1.07 6.52 0.62 0.36 0.19 0.13 4.39 0.61
C2 3 6.25×10−5 0.000625 0.5 1704 851.8 1.19 4.26 0.66 0.20 0.11 0.07 5.02 0.62
C3 3 3.125×10−5 0.0003125 0.5 2730 1364.2 1.23 3.76 0.66 0.15 0.07 0.05 5.66 0.61

avg L L L L L L 1.15 4.97 0.65 0.26 0.20 0.08 5.15 0.62
dev L L L L L L 0.08 1.27 0.03 0.06 0.09 0.05 0.86 0.02

Note. S is the stability parameter. μ is the dynamic viscosity. Ftot is the total flux. Pr is the Prandtl number. Re is the averaged Reynolds number. Pe is the averaged
Péclet number. The averages are taken both temporarily and spatially in the convectively unstable zone. q qc c c, ,w w1, 1, 1,2 2 are the convective coefficients.

q qc c c, ,w w2, 2, 2,2 2 are the diffusive coefficients. c3 is the coefficient measuring the isotropic level of fluid motions. q = q qw w wcor ,
T T

2
1 22

2
⎜ ⎟⎛
⎝

⎞
⎠[ ] represents the

correlation coefficient between vertical velocity and temperature perturbation. The last two rows give the averages and standard deviations of the estimated
coefficients.

Figure 1. Time variation of overshooting distances z−z0. z0=1 is the
location of the interface between convectively unstable and stable zones. δ1
is depth of the thermal adjustment layer. δ2 is the total depth of the thermal
adjustment layer and the turbulent dissipation layer.
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vary too much across different cases, with dispersions of 7%,
26%, 5%, and 2%, respectively. These calibrated coefficients
do not differ much from those estimated by the data of pure
convection zones (Cai 2018). Thus, we conclude that the
convective and isotropic coefficients could hardly be affected
by the adjacent stable zones. The last column also lists the
correlation coefficient between the vertical velocity and
temperature perturbation. As confirmed in previous simulations
(Cai 2018), these correlation coefficients are close to 0.6.

The mean values of the calibrated diffusive coefficients c w2, 2,
qc2, 2, and qc w2, are 0.26, 0.20, and 0.08, respectively. qc2, 2 is

close to the one estimated in Cai (2018). However, c w2, 2 and
qc w2, are much smaller than those calibrated in Cai (2018). The

methods for calibrations of the diffusive coefficients are
different in these two papers. Cai (2018) calibrated c2 by the
diffusive effect induced by the boundary conditions. It seems
that the diffusive effect induced by the boundary conditions is
stronger than by the adjacent stable zone. Now we check the
validity of the DGAs by comparing the left with the right hand

sides of Equations (9)–(12). Figure 2 depicts the TOMs and the
DGAs of these TOMs with the 3D data. Obviously, the
performance of the DGAs is unsatisfactory in the convectively
unstable zone. However, the DGAs do capture some properties
in the overshooting zone. For example, the dips and bumps of
qá ñw T2 2 , qá ñw T2 , and á ñw3 near the interface are replicated

by the DGAs. In addition, the widths of these dips and bumps
of DGAs agree well with the TOMs. DGAs correctly predict
the signs of the dips and bumps on qá ñw T2 and á ñw3 . However,
the prediction on the sign of qá ñw T2 2 is not good. In the 1D
RSM, the derivatives of the TOMs are involved in
Equations (5)–(8). Thus, the predictions on the derivatives of
the TOMs are more important than the TOMs themselves.
Figure 3 shows the derivatives of TOMs and DGAs. Now we
see that the derivatives of DGA can correctly predict the signs
of the bumps and dips of q¶ á ñw Tz

2 2 . Although the DGAs
differ significantly from the TOMs in the convectively unstable
zone, the differences between their derivatives are diminished.

Figure 2. The third-order moments and the downgradient approximations of third-order moments calculated from the 3D data of the case A3. Panels (a)–(d) show the
TOM (solid line) and DGA (dashed line) of á ñwu2 , qá ñw T2 2 , qá ñw T2 , and á ñw3 , respectively.
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3.2. Comparison between 1D and 3D Results

The full set of 1D RSM include the equations of the thermal
structures. As mentioned in Cai (2018), the mass, momentum,
and energy conservation equations in the 1D RSM are

r
¶
¶

=
m

z
, 16( )

r
r

¶ +
¶

= -
P u

z
g, 17

2( ) ( )

+ + =F F F F , 18r c k tot ( )

where m is the mass; g is the gravitational acceleration; =Fr

k- ¶
¶T
T

z
is the conductive flux (or radiative flux); r= qF c Twc p T

is

the convective flux; = - ¶
¶

F c w uk w
P

g z

3 3

8 2,
2 1 2 22 ( ) is the kinetic

energy flux; and Ftot is the total flux. Given the coefficients and
appropriate boundary conditions, we can solve the full set of 1D
RSM equations. We use the same boundary conditions as those

applied in 3D simulations (Cai 2018, 2020a), and we use the
calibrated coefficients in Table 1.
Figure 4 compares the fluxes between 1D and 3D results for

the case A3. Panel (a) presents the net conductive flux
Fr−Fad, where the flux transported by adiabatic temperature
gradient = + +F m m F1 1ad 1 ad tot[( ) ( )] is deducted from the
conductive flux. Both the 1D and 3D results show a bump in
the thermal adjustment layer. The size and amplitude of the
bump are well predicted by the 1D model. In this region, both
the material and entropy are mixed. The temperature perturba-
tion switches sign as the upward drafts cross the interface,
leading to an anti-correlation between the vertical velocity and
temperature perturbation. As a consequence, the convective
flux turns to be negative (see Figure 4(b)). To balance the
negative convective flux, the temperature gradient has to
increase to be super-adiabatic ∇>∇ad (see Figure 4(d)). The
entropy can hardly be mixed above the thermal adjustment
layer, thus almost all the energy is transported by conduction
over there. Apart from this similarity, the 1D result differs from

Figure 3. The derivatives of the third-order moments and the downgradient approximations of third-order moments calculated from the 3D data of the case A3. Panels
(a)–(d) show the TOM (solid line) and DGA (dashed line) of ¶ á ñwuz

2 , q¶ á ñw Tz
2 2 , q¶ á ñw Tz

2 , and ¶ á ñwz
3 , respectively.
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the 3D result in several aspects. First, the convective flux of the
1D result is almost equal to -F Ftot ad in the convectively
unstable zone. However, that of the 3D result can exceed

-F Ftot ad by about 30%. Second, the kinetic energy flux Fk of
the 1D result is negligible in the convectively unstable zone. By
contrast, Fk of the 3D result is negative and its magnitude is
comparable to that of the convective flux in this region. In the
stratified convection zones, the cold concentrated fast down-
ward flows overcome the hot broad slow flows in a horizontal
averaged sense, hence resulting in a downward Fk. As a
consequence, the enthalpy flux must excess the total flux to
achieve the energy balance. Third, the temperature gradient ∇
of the 1D result is subadiabatic at the top of convection zone.
The subadiabatic temperature gradient is also reported in Cai
(2014), where a simplified version of 1D RSM is solved. In
contrast, ∇ad of the 3D result is positive over there. This
difference can be explained by looking at the SOMs.
Figure 5(d) clearly shows that the vertical velocity of the 3D

case starts to decrease far before reaching the interface.
However, the vertical velocity of the 1D case still remains
large close to the interface. Also note that the temperature
perturbation of the 1D case increases dramatically near the
interface. As a result, more energy flux is carried by the
convection, and ∇ can be subadiabatic.
Figures 5(a)–(d) compare the SOMs between the 1D and 3D

results. Obviously, the 1D RSM predicts the SOMs much better
than the TOMs. The bumps and dips of SOMs shown in the 3D
data are well captured in the 1D RSM. The major difference is
that turbulent flows of the 3D case can “feel” the stability effect
much further away from the interface. Thus the entrance
velocity (at the interface) of the 3D case is much smaller. As
the entrance velocity is much larger for the 1D case, it would be
expected that the extent of the overshooting distance is further
in the 1D case. However, from the Figure 5(b), we see that the
temperature perturbation of the 1D case is significantly larger
than that of the 3D case. Although the entrance velocity is

Figure 4. Comparison between 1D and 3D results. Panels (a)–(c) present the fluxes Fr−Fad, Fc, and Fk. Panel (d) present the super-adiabatic temperature gradient
∇−∇ad. The vertical dashed lines (z=1.0, 1.09, 1.305) are the locations of the boundaries of thermal adjustment layer, turbulent dissipation layer, and thermal
dissipation layer. The shown case is A3. The vertical dashed lines shows the boundaries at the convectively stable/unstable zones, the first zero-point of vertical
velocity correlation, and the second zero-point of vertical velocity correlation.
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Figure 5. Comparison between 1D and 3D results. Panels (a)–(d) presents the profiles of the second-order moments á ñu2 , qá ñ2 , qá ñw T , and á ñw2 . Panel (e) presents the
profile of qá¶ ñTz

2 2 . Panel (f) presents the logarithm of Péclet number. The vertical dashed lines (z=1.0, 1.09, 1.305) are the locations of the boundaries of thermal
adjustment layer, turbulent dissipation layer, and thermal dissipation layer. The shown case is A3. The vertical dashed lines shows the boundaries at the convectively
stable/unstable zones, the first zero-point of vertical velocity correlation, and the second zero-point of vertical velocity correlation.
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larger, the braking effect is also stronger. As a result, the width
of the thermal adjustment layer does not deviate too much
between the 1D and 3D cases. One important question of
upward overshooting is on how to determine the extent of
overshooting distance. In our previous paper (Cai 2020a), we
use the first and second zeros of vertical velocity correlations
(with the vertical velocity at the interface) as the proxies. We
found that the first zero-point is the upper boundary of thermal
adjustment layer, and the second zero-point is the upper
boundary of turbulent dissipation layer. Theoretical analysis on
1D RSM (Zhang & Li 2012) suggested to use the peak of qá ñ2

as the boundary of thermal adjustment layer. However, it seems
that this peak in the 1D result is closer to the interface, than the
first zero-point (see Figures 5(b) and (e)). In the 3D simulation
of upward overshooting (Cai 2020b), we have also found that
this peak is closer to the interface when the stability parameter
is large. Thus the peak of qá ñ2 is not a good indicator on the
boundary of the thermal adjustment layer. From Figure 5(e), we
see that the inflection point ( q¶ á ñ =T 0z

2 22 or q¶ á ñ = 0z
22 ) is

a good candidate as the indicator. This location is closer to the
first zero-point, in both the 1D and 3D cases. In the analysis of
Zhang & Li (2012), they made an assumption that the diffusion
term of qá ñ2 is ignored. The peak value of qá ñ2 only guarantees

q¶ á ñ = 0z
2 , whereas the diffusion term of qá ñ2 still plays a

role. On the other hand, the inflection point guarantees
q¶ á ñ = 0z

22 , making the assumption more valid around this
point.

For the boundary of the turbulent dissipation layer, Zhang
& Li (2012) suggested to use the Péclet number =PeHp

r kc v Hp p 2 as the indicator ( =Pe 1Hp ), where =Hp

-¶ ¶z Plog is the pressure scale height. In Figure 5(f), we
see that this location agrees well with the second zero-point, for
both the 1D and 3D cases. Thus we confirm that the location of
PeHp=1 is a good indicator on the extent of the turbulent
dissipation layer.

4. Summary

In a previous paper (Cai 2020a), we have performed 3D
simulations on the upward overshooting in turbulent compres-
sible convection. With this simulated 3D data, we calibrate the
convective, diffusive, and isotropic coefficients for Xiong’s 1D
RSM. We calibrate the convective and isotropic coefficients (c1
and c3) with the data in the convectively unstable zone, and the
diffusive coefficients (c2) with the data in the convectively
stable zone, respectively. It has been found that the calibrated
coefficients c1 and c3 are close to those calibrated by the 3D
data of the simulations of the pure convection zone (Cai 2018).
However, the calibrated diffusive coefficients c2 deviate
significantly from those calibrated in Cai (2018). As Cai
(2018) calibrated c2 by the boundary effect, we suspect that the
diffusive effect induced by the upper boundary is stronger than
by the adjacent stable zone. With the 3D data, we have checked
the validity of the DGAs. We find that the prediction of the
DGAs on the TOMs is unsatisfactory in the convectively
unstable zone. The prediction on the features in convectively
stable zone, such as the dips and bumps, is much better.
Although the TOMs differ significantly from the DGAs in the
convectively unstable zone, the difference between their
derivatives is diminished. In Xiong’s 1D RSM, fortunately
only the derivatives of TOMs are involved in the turbulent
moments equations. For this reason, the performance of 1D

RSM is reasonable in the application to the real stars (Xiong &
Deng 2001, 2010).
Including the equations on thermal structures, we have

solved the full set of Xiong’s 1D nonlocal turbulent equations
with the calibrated coefficients. We find that the DGAs have
better performance in the prediction of the SOMs. Some
features like the bumps and dips in the overshooting zone are
well captured by the model. Most importantly, the RSM has
successfully produced the thermal adjustment layer and
turbulent dissipation layer, which were identified in the
previous 3D simulations (Cai 2020a). Comparing the 1D and
3D results, we have found two useful indicators on measuring
the extent of overshooting distance: the inflection point of qá ñ2

(close to the boundary of the thermal adjustment layer), and the
location point of PeHp=1 (close to the boundary of the
turbulent dissipation layer). Apart from these similarities,
there are also some differences between the 1D and 3D results.
The 1D RSM predicts a lower convective flux (and negligible
turbulent kinetic energy flux) in the convection zone. In
addition, the temperature gradient of 1D case turns out to be
subadiabatic below the interface, contrary to the superadibatic
temperature gradient obtained in 3D simulations. Subadiabatic
temperature gradient in the convection zone has been observed
in the 3D simulations of the overshooting in turbulent
compressible convection (Chan & Gigas 1992; Hotta 2017;
Käpylä et al. 2017). It seems that the subadiabatic temperature
gradient prefers to appear at the bottom of the convection zone.
In the absence of the convectively stable zone, Cai (2018) also
observed the subadiabatic temperature gradient near the bottom
of the convection zone. Recently, Korre et al. (2017) has
observed that the subadiabatic temperature gradient occurs at
the top of the convection zone in their simulations of the
weakly compressible convection (without adjacent stable zone)
in a spherical shell. This result is different from the other
findings. Since both the degree of compressibility and
geometrical shape can affect the result, it remains unclear
which effect causes this difference. Identifying the reason
requires more explorations on the parameter space. So far, both
our numerical simulations and the 1D nonlocal model have not
considered the effect of rotation. Rotation has an important
effect on convection and overshooting. For example, penetra-
tion depth may vary with latitudes because the Coriolis effect
differs at high and low latitudes (Browning et al. 2004; Pal
et al. 2008). In certain circumstances, vortices might appear
when the Rossby number is small (Käpylä et al. 2011). In even
more extreme rotation rates, the spherical shape of the star can
be deformed by the strong centrifugal force. Investigation of
the rotational effect is beyond the scope of this paper. We plan
to conduct this research in the future.

I thank D.R. Xiong for the helpful discussion on his
turbulent convection model. I was financially supported by
NSFC (Nos. 11503097, 11521101), the Guangdong Basic and
Applied Basic Research Foundation (No. 2019A1515011625),
the Science and Technology Program of Guangzhou (No.
201707010006), the Science and Technology Development
Fund, Macau SAR (No. 0045/2018/AFJ), and the Independent
Innovation Project of China Academy of Space Technology.
The simulations were performed on the supercomputers at the
Purple Mountain Observatory, and the National Supercomputer
Center in Guangzhou.
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