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On a local holomorphic version of the
fundamental theorem of projective geometry

N. G. Kruzhilin

The fundamental theorem of projective geometry is the classical result that a map
RP" — RP" (CP" — CP"™) that takes (complex) straight lines to straight lines is
a projective transformation. In fact, the map here is only assumed to be injective.
Starting from the 1990s, local versions of this result appeared, where a (biholomor-
phic, homeomorphic, or just injective) map is originally defined in a subdomain of
a projective or a linear space (see, respectively, [1], [2], [3], and some other papers).

We consider here a local holomorphic version of the fundamental theorem of pro-
jective geometry in a ‘relaxed’ form, where we assume a priori that the map takes
to straight lines open subsets not of all straight lines but only of those lines whose
directions belong to a certain set. This setting has some interesting applications to
multidimensional complex geometry, which we will treat elsewhere.

So let U be a bounded convex domain in C", n > 2, and let f: U — C" be
a biholomorphic map. Let v € CP™ ! be the set of directions p € CP™ ! such
that for each (complex) affine straight line ! C C™ that has direction p the set
fINU) lies on some straight line.

Lemma 1. Let py € v be a limit point of v. Then for each straight line lo C C™
i direction po that intersects U the restriction f|l0 is a rational (vector-valued)
function.

Proof. Without loss of generality we can assume that f(U) is also a convex domain
in C". Let Ay be the projective line in CP™ O C" that contains f(lp N U), and
let p1,p2,... be a sequence of different points in v that tends to pg. For each
j = 1 consider the family L; of straight lines in C™ parallel to the direction p;
that have a common point with /g and intersect U. The straight lines in CP"™ that
contain the f-images of lines in L; form a connected holomorphic family A;; an
open subset of this family consists of straight lines whose ‘pre-images’ intersect [
within U, so that these lines themselves clearly intersect A\ within f(U). Hence all
the lines in A; intersect A¢ (in CP™). The correspondence between the points in
which the ‘pre-images’ of these lines intersect Iy and the points in which the lines
themselves intersect Ao produces an analytic (meromorphic) extension of f from
the subdomain lo N U of Iy to some larger convex subdomain V; of this line. Since
the V; are simply connected, such extensions agree pairwise and in combination
give an extension of f to the whole of the straight line Iy in C™.

Note that then the image of each point in V; \ V4, where j > k> 1 (which lies
on some straight line \; in A;, A\; D f(I; NU)) lies outside f(U) (because the part
of X\ that lies in f(U) is the f-image of I; N U, while for large values of j and k
the straight line /; intersects [y at a point quite distant from U). Hence points in

This work was supported by the Russian Science Foundation under grant no. 19-11-00316.
AMS 2010 Mathematics Subject Classification. Primary 32H04, 51A30; Secondary 32D15.

© 2019 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.


https://doi.org/10.1070/RM9925

1124 N. G. Kruzhilin

Ao N f(U) are not among the limit values at infinity of the meromorphic map of Iy
that we have constructed. Thus, this map cannot have an essential singularity at
infinity: it has a pole or a finite limit value there. That is, the restriction of f to [
is in fact a rational vector function. OJ

By the theorem stating that holomorphic maps that are rational in each variable
are rational (this goes back to Weierstrass and Hurwitz; for instance, see [4], §5,
Theorem 5), it follows from Lemma 1 that if v contains n limit points not lying on
one hyperplane, then f is a rational map.

On the other hand, since f is holomorphic, the set v must in fact have a complex
structure.

Lemma 2. The set v is a projective variety in cprt.

Proof. In view of Chow’s theorem it is sufficient to show that 7 is an analytic
subset of CP"~!. Fix points pp € CP" ! and X € U. Let [ be the line through
X in the direction py. Taking a point yg # X on [ N U, we consider a hyperplane
through this point that is transverse to [. Let Y be a small neighbourhood of yg
on this hyperplane; then the directions of straight lines which are close to pg can
be parametrized by points y € Y. We denote the straight lines through X in these
directions by .

It is easy to see that f takes the set I, NU to a straight line if and only if for each
scalar a € C close to 1 the vectors f(y)— f(X) and f(ay)— f(X) are linearly depen-
dent. For fixed X and a such a linear dependence can be expressed as the vanishing
of the n — 1 determinants of 2 x 2 matrices formed from the coordinates of these
vectors, that is, by holomorphic equations for y (or for the direction p € CP"~1).
It is clear that f takes each line in direction p to a straight line if and only if similar
equations are satisfied for each scalar a in a small neighbourhood of 1 and each
point in a small neighbourhood of X. That is, in a neighbourhood of py the set ~
is defined by a family of holomorphic equations (which has the cardinality of the
continuum). This means that v is an analytic set. O

Note that we do not say that all distinct irreducible components of v have the
same dimension.
In view of Lemma 2 we can state the above consequence of Lemma 1 as follows.

Theorem 1. Suppose that v does not fully lie on a hyperplane with the exception
of a finite set of points. Then f is a rational map.

It is easy to show that in dimension n = 3 we can refine Lemma 2 and Theorem 1
as follows.

Corollary 1. Let U be a domain in C3 and let f: U — C3 be a biholomorphic
map. Then one of the following cases holds:

1) the set vy is empty, finite, or a union of a line and a finite set of points;

2) v is a union of a conic distinct from a line and a finite set of points, and f
is a rational map;

3) v = CP?, and f is a projective map.
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