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Characterization of the function spaces associated with
weighted Sobolev spaces of the first order on the real line

D. V. Prokhorov, V.D. Stepanov, and E. P. Ushakova

Abstract. A brief survey of results on the characterization of the spaces

associated with given classes of function spaces is presented. It is shown

that the situation differs in general for ideal and non-ideal spaces. In the

second case the notion of associated space splits into two. In the main body

of the text a complete description is given of the function spaces associated

with weighted Sobolev spaces of the first order on the real line.
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Introduction

Let X be a function space with norm ||-|/x. Alongside the notion of the dual

(adjoint) space X* of all bounded linear functionals on X one has the well-known
notion of the space X' associated with X and also the problem of describing X’.
In a number of classical cases these spaces are isometrically isomorphic.
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Banach function spaces. Let (R, m) be a space with a complete o-finite mea-
sure, let 9t be the set of measurable functions, and let 9T C 9 the subset of
non-negative functions. We present several definitions and results known from [3],
Chap. 1.

Definition 1. A Banach function norm is a map p: 9™ — [0, oo satisfying the
following axioms:

(P1) p(f) = 0 if and only if f = 0 almost everywhere (a.e.), p(af) = ap(f) for
each a > 0, and p(f + g) < p(f) + p(9);

(P2) if 0 < g < f a.e., then p(g) < p(f);

(P3)if 0 < fn T f a.e., then p(f) 1 p(f) (the Fatou property);

(P4) if m(E) < oo, then p(xg) < oo, where x g is the characteristic function of

the set E;
(P5) if m(E) < oo, then [, f < Cgp(f).
Let p be a Banach function norm. Then

X=A{f eM: [[fllx := p(lf]) < oo}

is called a Banach function space. In terms of the associated norm p’ with

g i=swl [ 1o remr o<1} gewr
one defines the associated space
X' = {geM: |lgllx = p'(lg]) < oo}

Proposition 1. If X is a Banach function space, then so also is X', both spaces
are complete, X = X", and Holder’s inequality [ |fg| < |/ fllx|lgllx: holds.

Proposition 2. If X is a Banach function space and X' is the associated space,
then for each g € X'

gl = sup{/fg: Fem, |flx < 1}
=sw{’/fg‘r Fem flx < 1} =sup{/fg|: Fem, |flx < 1};

and here X and X' can be interchanged.

Definition 2. A Banach function space X is said to have an absolutely continuous
norm if

Ifxe.llx —0
for each f € X and each sequence of sets {E,,} C R such that Xg, — 0ae.

Proposition 3. If X is a Banach function space with an absolutely continuous
norm, then X* = X'. In particular, if X' is also a space with an absolutely contin-
uous norm, then X and X' are reflexive.
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There is a well-known problem of describing the space associated with a given
Banach function space: this involves establishing an explicit functional equal or
equivalent to the associated norm. A similar problem can be stated for a cone,
a lattice, and so on.

We give a few examples.

Example 1. For 1 < p < oo let

1/p
x=ry={remiinl,=( [1rr) " <o},

1 1
X’ = Lp/ and Hf”X/ = ||pr,7 Where Z; + ? — 1

Then

Example 2. For 1 < p < oo let X = Ces,[0,00) be the Cesaro space

lgllx := </0°°(31: /O |g|)p>1/,,.

Illx: = I f I, where  fH(t) = eSS>S;1p|f(S)|

Then

(see [24]).

Note that the norm || f!||,/ is not absolutely continuous, and therefore the Banach
function space Ces,[0, 00) is not reflexive.

If Lé is the cone of non-negative non-increasing functions on [0, co) that are inte-
grable to the power p, then by a theorem of Sawyer describing the space associated
with the cone L} (Theorem 1 in [44]),

Cesp|0,00) = [Lé,]/

1 00 oo 1 x pN\ 1/p
[ — [Tra= ([T [a) )
(L] fEL;,, f#£0 Hf”p’ 0 0 Z Jo

Example 3. For 1 < p < oo and I = [0, 1], let X = LP)(I) be the grand Lebesgue
space [18] with

and

1/(p—e¢)
Iflx = sup <6/|f(x)|p€dx) .
1 I

0<e<p—

Equivalent expressions for the norms of X and X’ are found in [10] and [6]:

1 1/p
1l ~ sup <1logt>1/P< / [f*]p) 7
o<t<1 t

1 , t , l/p’dt
ol = [ (1=Togt) 7 ( / [g*}p) d
0 0 t
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where g* is the decreasing rearrangement of g. These expressions were used in [19]
and [20] to obtain a characterization of the space associated with the cone of
non-increasing functions in L?)(I) in the form

sup
0<fem! Hf||Lm(1)

Ag(z) = 1 /Omg and A'g(z):= / M

x Y
It was also shown that the above operators are bounded on the grand Lebesgue
space.

[ 161 Vgl + [ 161 1400 ooy

where

As we noted above, a description of the associated space is a topical problem
in describing optimal function spaces containing a prescribed cone (for instance,
see [16] and the references there). Under fairly general assumptions we can show
that the associated space of the space associated with this cone is optimal.

Since the early 1990s there has been rapid development in the field of Lorentz
analysis: questions involving the characterization of boundedness for classical oper-
ators acting in weighted Lorentz spaces, where a central role is played by the con-
struction of the space associated with a prescribed cone of monotone functions
(see [14] and [13]). We now give an example of spaces associated with the cone
of quasi-concave functions; such spaces are closely connected with Lorentz gamma
spaces.

Example 4. Let M! C M* be the subset of non-increasing functions on [0, ).
For 0 < p < oo and a weight v € 9™ we define the weighted cone of monotone
functions X = £, , C M} of the form

Ly = {f ML |l = (/000(1 /0 f)pv(t) dt)l/p - oo}

for 0 < p < o0 and

1 t
Loy = {f €M | flloow := esssup(/ f)v(t) < oo}
>0 \Tt Jo

for p = co. Here we assume that the non-degeneracy conditions

1 oo
0</M<oo and / z*pv(z)dz:/ v =00
(z+1)P 0 1

hold; otherwise all results reduce to a few pathological situations. Let

t 00
Po(t) := %/0 v and Qpu(t) := ptp71[ s Pu(s) ds.

If }
llgllx: := sup fo flgl

fem! (fOOO [Pﬂpv)l/p )
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then [47]
00 1 /t )P’ Pu(z)Q,u(z) )”p'
'’ R sup — — L , 1<p< oo,
lollx ( / (;ﬁjt 0) o p
1117 Plgl(1)
s rsup 1IN g <,
ol ~ sup G 00 p
P t
lgllx = sup Dy

>0 PQyu(t)’

and
lgllxr = / G p=oo,
oo

3

where the measure d\ is constructed from the weight function v, and G(z) :=
@ supy, Plg|(t).

Spaces associated with non-ideal function spaces. A function space X is
said to be ideal if

VigeM: feX, |gl<|fl] = geX, lgllx <Ifllx-

For ideal function spaces we have Proposition 2. However, for a non-ideal func-
tion space the definition of the associated space X’ splits into two cases. Let

’szz{geimz /fg|<oon€X}.

For g € ®x consider the functionals

1 1
Jx(g)=  sup \ / fg| wd Txg)= s[5l
Fex: |Ifllxo 1fllx fex: |Iflxzo I fllx

which define norms on the linear space ®x and thus determine the associated
spaces X’ and X’ given by

X"={g€Dx: [lgllx = Jx(g) < oo}
and

X" :={g€Dx: [lglx = Ix(g) < oo}
Example 5. Let X = C[0,1]. Then by Riesz’s classical theorem

Ix(9) =Ix(g) = llgll1-

Example 6. Let X = H'(R) be the Hardy space on the real line. Then by a the-
orem of Fefferman [8] (see also [9] and [46], Chap. IV, §1.2)

1
Tx(q) ~ llgllsmo == sup — / 9 — a1l,
cr 1] Jr
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where BMO denotes the space of functions of bounded mean oscillation, the supre-
mum is taken over all intervals of the real line, and

1/
g1 ‘= | 9-
1 Jr

However, using the atomic decomposition of functions in H!(R), we can show that

JIx(9) = llglco-

Hence ®x = Lo, and Jx(g) # Jx(g) in general. Moreover, there exist an f €
H'(R) and a g € BMO such that
JAEE
R

([46], Chap. IV, §6.2).

Thus, for all function spaces we have the embedding X’ C X’, but in general
X’ # X' for non-ideal spaces.

The aim of describing the associated space is to realize the duality principle,
which is the equality

ITx—y =T lly'—x

of the norms of a linear operator T' and the associated operator 7" such that

/ngdp: / fT'gdp forany fe X and geY’.
s s
In particular, if Y is an ideal space, then

Jx (T
ITlxey = sup X9
o2, el

Use of the duality principle is a key to investige the action of operators from classical
analysis in new function spaces ([1], [2], [7], [15], [44], [45]).

In this paper we characterize the associated spaces X’ and X’ in the case when
X is a weighted Sobolev space of the first order on the real line, with the same
parameters of integration for the function and its derivative. We also describe
these spaces completely (see the definitions and the history of the question in §1).
Our method is based on the Oinarov-Otelbaev constructions (see §3) for the norm
of a Sobolev space and on boundedness results for the Hardy—Steklov operators,
which we present comprehensively here (see §4).

Throughout the paper, products of the form 0-occ are set equal to 0. The relation
A < B means that A < ¢B for a constant ¢ which depends only on the parameter p;
A~ B is equivalent to A < B < A. We use the signs := and =: to introduce new
quantities. For 1 < p < oo we set p' :=p/(p — 1).
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1. Weighted Sobolev spaces on the real line

Let —oo <a <b< oo, I:=(ab),and 1< p < oo, and let L' be the Lebesgue
measure on the real line. We let 9(1) denote the set of all Lebesgue-measurable
functions on I, and let M (I) denote the subset of non-negative functions in M (7).
Let W11 loe(I) denote the space of functions u € L{ (I) that have a generalized
derivative Du € Li (I).

For functions vg,v1 € MT(I) such that 1/v; € LIOC(I), vo,v1 € L (I), and
lvoll1(ry > 0 we define the weighted Sobolev space

W) = {u € Wijoo(D) : [ullwyr) < oo},

p

where
[ullwa(ry = llvoullLe(ry + lv1DullLe(r),

and we define subspaces of this space,

001 . ) .
W,(I):={f € AC(I): supp f is a compact subset of I,
lvoflocry + o1 f'llper < oo}

s _ 0o 001 . 1
and W, (1) = W}(I), the closure of W, (I) in me()f).
If X is one of the spaces W (I), Vi/pl(I), and W) (1), then we set

@X::{geLloc /|f |dx<ooforallf€X}

Note that

©W1( ) C :DWl( ) C 9001(1) Llloc(I)

and the first two embeddings are proper, in general.
For a fixed Lebesgue-measurable function g € ® x consider the functionals

Ixle):= oo ||f||
fex: ||f”w1(1)7£0 Wl

and

JIx(g) = z)|dx,

|f(x
fex: ufnwlmgéo Hf”Wl /

which define norms on Dy that correspond to the associated spaces X " and X/,
respectively. Note that for X e {W, (I),W, (I)}, g € Dx if and only if Jx(g) < oc.
This is a consequence of [42], Lemma 2.4 and Theorems 2.5 and 2.6.

For X = W}(I) or X = Wpl (I) the first two-sided bound for Jx(g) in terms of
an integral functional was obtained by Oinarov [30] as part of a characterization
of Hardy’s inequality with three weights

lgfllLacry < Cllvoflloery + llvrfllLe ), few,(I);
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for ¢ = 1 the best constant C here is equal to J wi(I) (g) (see also earlier alternative
results in [34], [25], [27], [38], [5], and [26]). However, the functionals in [30] do
not have the properties of a norm and cannot be used in a duality principle. This
defect was subsequently corrected in [31], [32], and [7], but the duality principle
based on the corresponding functionals could only be applied to positive operators.
Furthermore, the results in [31], [32], and [7] were obtained under the additional
assumption that W (I) = W}([).

2. Properties of the functionals Jx(g), Jx(|g|), and Jx(g)

In [40]-[42] we proved the set-theoretic equality X' = X' for a space X €
{W(I),W}(I)} and found sharp two-sided bounds for the norms of elements of the

spaces X" and X' associated with an X € {W, (I, VVp1 (I)} in terms of integral func-

tionals involving the weight functions vy and vy, in the case when WZ}(I ) =W, (I)

(for the model case where I = (0,00)); we also showed that for X = I(/)[(}pl (I) there
is no equality X’ = X’ in general. We recall the main results in [40]-[42] involving
the functionals Jx (g), Jx(|g|), and Jx(g).

Theorem 2.1. Let I CR, 1 < p < oo, g€ M), vg,v1 €MT(I), 1/v1 € Lﬁ;c(I),
vo,v1 € LY, (I), and |[vol[L1(ry > 0. Then

loc

Jwi(g) <oo = Juim(g) < oo,

']Wpl(l)(g) <oo <= ']Wpl(l)(g) < 0.

Corollary 2.1. Let I CR, 1< p<oo,g€ M), vg,v1 €MT(I), 1/v1 € L{’OIC(I)7
Vo, V1 € L (I), ||U0HL1(I) > 0, and

loc
X =WI) or X=WI).
Then X" =X’ and for each g € X' there exists a constant Cy such that
Collgllxr < llgllx < llgllx-

Remark 2.1. The following equalities hold:

Jwr(19D) = Iwzy(9)s Ty ([9)) = Tvia (1) (9), and J;Ig;([)(lg\)=3 (9)-

OOl
wi(I)

In this paper, which complements the results in [40], [43], [37], [41], and [42], we
give a complete characterization of the functionals Jx(g) and Jx(g) for

X =WNI), X=WI), and X=W!I).

3. Oinarov—Otelbaev construction

The construction below is mainly borrowed from [30] (see also [7], [42], and the
earlier papers [33] and [28]).
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Let I :=(a,b) CR, 1< p < o0, vg,v1 €M (1), 1/v1 € v (I), vo,v1 € LY. (1),

loc loc

and [lvg|| 1y > 0. Note that for each interval I’ C I with £'(I") > 0 we have

/vl_p > 0.

First assume that [ vl_p/ < 00. Then there exists a ¢ € (a,b) such that

c b
[or = [ (3.1)

and there exist two non-negative strictly increasing functions 7,(z) with € (a, (]
and 8 (z) with z € [¢,b) such that

and

and
Do = {(z,y) €R*: z € (a,c], a —x <y < Ta(z);
x € e, b), —0p(x) <y<b—uz},
where for a = —oo and b = +o0, or for a = —oo and b = +00 we make appropriate

modifications. Also, let
Df :={(x,y) € Do: y > 0}.

Note that
(z,y) € Dy <= (z,xz+y) €D,

we have the inclusion Dy D D, and
(r,y) € Dy <+= (v,2+y)eDn{y=>0}.

Moreover, it follows from (3.1) that for (z,y) € Dd N {x € [¢,b)} we have

xT , T+y ,
/ vy ¥ 2/ v P (3.2)

In fact, if x € [¢,b) and 2 + y < b, then



1084 D.V. Prokhorov, V.D. Stepanov, and E. P. Ushakova

Similarly, if (z,y) € D§ N {z € (a,c]}, then (3.2) holds. Indeed,

x , 474 () , Tty ,
[ = [
a x T

The converse is also true: if x € (a, ], y > 0, and (3.2) holds, then

z+y , T , T+7q () ,
—-p - _ —-p
/ vyt < / vy = / CA )
z a z

and therefore 0 < y < 7,(z), so that (x,y) € D N{x € (a,c]}.

In the case when [;v;” = oo the constructions are similar. Leaving out the
definitions of the sets D and Dy in this case, we write down only the expressions
for DJ . If there exists an e € (a, b) such that

e b
/ ’
/vlp<oo and /vlp:oo,
a €

then 7,(z) is defined for all = € (a,b) and
D} = {(z,): 2 € (a,0), 0 < y < (@)},

But if for some e € (a,b) we have

€ / b ’
/ v;? =00 and / v P < oo,
a €

Df = {(x,y): x € (a,b), 0 < b—z}.

then

When there exists an e € (a,b) such that

€ / b ’
-’ _ - _
/U1 —/vl = 00,
a [

D == {(x,y): x € (a,b), 0 < y}.

In any case, if (z,y) € Dar , then (3.2) holds, and since the integral is monotonic,
for any (z,y) € Dg there exists a unique §(z,y) > 0 such that

x , Tty ,
/ v ¥ :/ v P (3.3)
z—08(z,y) T

In the original paper [30] (see also [31], [32], [7], and [42]) the quantity J(z,y) was
defined in a certain domain D by the equality

we have

x , x4y ,
0(z,y) ::sup{d>0: / v ¥ </ v, (2 —d, 1] CI},
r—d T
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and inequality was allowed to hold in (3.3), but this case was then ruled out in the
subsequent steps.
For z € I let
D (z) :=={y > 0: (z,y) € D{’}

be the cross-section of D(T by the line with abscissa x € I, and let

1

U1

d*(z) = sup{y € D (2): lvoll o ((a—5a.0).a+9)) < 1}7
L7 ((z—3(2,y),z+y))

d (z) :=d(x,d (), p (2)=z—d (z), ph(z):=z+d" (2),
AY(@) = [ p @) NI, A () = [ ()] N T,
Az) = [p=(2),p*@)]N1, 2~ =y (x), 2t =p"(2)

We use the notation
ap :=inf{zx e I: x —d™ (z) > a}
and
bo :=sup{x € I: x +d*(z) < b}.

Let e € (a,b) be a point such that ||vol|zr((a,e)) > 0 and [[vo||zr((e,p)) > 0, and let

1
ha = || ||U0||Lp((a7e)) and hb = ||— HUOHL;)((e’b)).
YLILY ((a.e) YLILY ((e,b))
Then
a<a<b (a<ay & hg <o), a<by<b (bg<b & hy < o0),
ha=hy =00 < WHI)=WI). (3.4)
Moreover,
[ = e e, (3.5)
A~ (z) AT ()
put(z) <bfor any x € (a,bg), u~ (x) > a for any x € (agp,b),
1
— ||U0||LP(A(z)) <1, z € (a,b), (3.6)
YLy (A(x))
and
1
— lvollLra@y =1, z € (ao,bo).
VLI L (A(2))

The equivalence (3.4) was established in [30], Lemma 1.6. Lemma 3.1 below was
proved in Lemma 1.1 in [30], and our Lemma 3.2 is a consequence of Lemma 2.1
in [32].
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Lemma 3.1. Let I := (a,b) CR, 1 < p < o0, vg,v1 € MT(I), 1/v1 € v (1),

loc

vo,v1 € Ly (1), and |lvollp1(ry > 0. Then p~ is a strictly increasing continuous

function on [ag,b) N I that is continuous on (ag,b), and ™t is a strictly increas-
ing function on (a,bo] NI that is continous on (a,by). If h, < 0o, then
pt(@+0)=a and p (z)=a=p (ag+0) forallx € (a,an
If hy < 00, then
p (b—0)=b and p(z)=b=put(by—0) for all x € [by,b).

If hg = o0, then

t
pt(a+0)=a* ::inf{tEI: / v>0}.

If hy = oo, then

b
pw (b—0)="0b" ::sup{tGI: / v>0}.
¢

Lemma 3.2. Let I := (a,b) C R, 1 < p < o0, vg,v1 € MT(I), 1/v; € Lﬁ;C(I),
vo,v1 € LY, (I), and |[vol[z1(ry > 0. Then

p~ € ACioe((ag, b)) and ut € ACioe((a,bo))-

Fort € I let

Vo(t) ;:/ e Vi(t) ;:/ o?,
A(t) A(t)

V() = / i V) = /
A= (t) At (1)

Note that for any ¢t € I we have Vi (t) = 2V, (t) = 2V;7(¢) by (3.5). We also have
Vi(t) > 0 since p~(t) <t < p*(t).

Lemma 3.3. Let [ := (a,b) C R, 1 < p < o0, vg,v1 € MT(I), 1/v; € L{’OIC(I)7
vo,v1 € LY (I), and ||vol[z1(ry > 0. Then

loc
Vi € ACoc (I)
Proof. 1. Let h, = hy = co. Then ag = a, bg = b, and
po,pt € ACoc(I)

by Lemma 3.2. Fix [a, 3] C (a,b) and note that pu~(«),ut(8) € I and Vi(z) =
G(p*(z)) — G(p~ (2)), where
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Since = and pT belong to AC([a, 8]) and are increasing functions and since G €
AC([p (), uT(8)]), it follows that Vi € AC (e, A]).
2. Let h, < 0o. Then for each t € (a,b) the integral

/a t 0P = G(t)

exists. Note that Vi(z) = 2(G(z) — G(p~(x))) for x € T and G € ACioc(I). We
show that
Gopu~ € AC\oc(1).

Fix a closed interval [a, 8] C (a,b). If 8 < ag, then Go ™ = 0 on [«, f], so that
Gopu~ € AC([a, f]). Suppose that 8 > ag. Then fix € > 0. By Lemma 3.1 there

= ~ Uz
exists a to € (ap, 3) such that [ (t0) vt < 3 Since

ool (=54) )

ap + to
2 )

Gopu eAC([“O‘;tO, D

Hence, there exists a §g > 0 such that for any system of non-overlapping inter-
vals {(c;,5;)} such that

and the function p~ belongs to AC ({ ﬁ]) and is increasing, we have

[Oéj,ﬁj] C |:a0;_t0 ,6:| and Z |ﬂ] — Oéj| < 50
J

we have

_ _ €
D NG o )(B) = (Gop )(ay)| < 5
J
Take § € 0,min{(507 to—gao}) Then for any system of non-overlapping inter-
vals {(c;,5;)} such that
[, B5] C [e, 8] and ij — o] <6,
J

we have

Z [(Gon™)(B)) = (Gop)(ay)|

S D ST SR (VS [CA R ]

J:lag,B5]C(asto]  jiley,B;]1C[(ao+t0)/2,0]
p~ (to) . e
< / v P+ 5 <e

3. The case hy < 00 is treated similarly. O
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By Lemma 1.3 in [30], for f € AC)oc(I) such that f(a + 0) = 0 for h, < co and
f(b—10) =0 for hy < oo we have

1

sup | f(s)] <27
U1

sEA(x)

[ fllwra@): z el (3.7
LP' (A% (x))

4. Hardy—-Steklov operators
Let —0o < a; < b; < o0 and I; := (a;,b;), i = 1,2, and let

Y eMT () and we M ()

be weight functions. For ¢; > 1 and g2 > 0 we consider a Hardy—Steklov operator

¥(z)
M) = (o) [ )i dy, (41)
¢(z)
from L% (1) to L%(I5), where the boundary functions ¢ and 1 satisfy the inequal-
ities
—oo < a1 < P(z) <YP(z) Kby <oo onlp

and the following conditions:

(i) ¢ and 1 are locally absolutely continuous and strictly increasing on Is;
(ii) ¢(az) = ¥(az) = a1, ¢(z) < ¢(z) for x € I, and ¢(bz) = ¥ (be) = by.
(4.2)
The integral operators H with variable limits of integration arise in certain problems
concerned with the properties of operators acting in function spaces ([7], [30], [31]).
The two limiting cases of operators H when ¢(z) = a; or ¢(z) = by are very well
understood. In particular, much is known about the Hardy integral operator

(@) =w(o) [ " Hw)9) dy, (43)

acting from L% (I) to L%(I) [22], [23]. In the literature (for instance, see [11]
and [36]) the reader can find precise characteristics of boundedness of two basic
types of operator H: L% (I) — L%(I). They have the form of functionals (or
boundedness constants) equivalent to the norm ||H||pe(;)—pe2(r) and depending
only on the fixed parameters of the problem: the weight functions, the boundary
functions, and the integration parameters ¢;, i = 1, 2. The Muckenhoupt functional
Ay and the Maz’ya—Rozin functional Byg,

b 1/q2 t N\ Va4
AM=sup</ wq2) </ 19‘“) (1<q < g <o)
tel t a

and

br b r/q1 t T/ 1/r
Bugr = (/ U wq2] [/ 19‘11] w(t) dt) (0<gz<q1<o0, 1 >1),
a t a
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where ¢} = ¢;/(¢; —1),i=1,2,and 1/r = 1/g2 — 1/q1, and also the dual constants
(AM)* = AM and

(Puin)” = </ab ub qu] " [/at 19‘13} r/qéﬂ@d (t) dt> v

with respect to them, relate to the first type of boundedness characteristics for
H: L% (I) — L%(I). The second type, characteristics alternative to Ay and Byg,
includes the Tomaselli functional At and the Persson—Stepanov functional Bpg, of
the form

t z a2 1/q2 o —1/¢
Ar = sup(/ [/ 19‘11} w?(z) dm) (/ 19q1> (1<q <gq2<o0)
tel a a a

and

b t x , q2 r/q1
Bpg = (/ [/ {/ ﬂql} w®(x) dm]
t q2—7/q 1/r
X {/ 19’11} w(t) dt> 0< g2 <@ <00, q1 >1),

respectively, and also the boundedness constants dual to these functionals
(see [36]). The functionals Ay and Byr are basic boundedness characteristics for
the operator H acting from L% (I) into L92(I), and they are usually used in the
further analysis of the properties of H and in applications of these properties. The
alternative boundedness constants At and Bpg have proved to be indispensable,
in particular, in investigations of the non-linear geometric mean operator

G1(w) = exp( 5 [ tou st dy)

(see [35]) and also in certain other problems [52].

The first steps in devising a scale of boundedness characteristics for the Hardy—
Steklov operator H that is similar to the above scale for H were made in [12],
[17], and [4]. The most noticeable progress in this direction was achieved when the
notion of the fairway function [50] was introduced into the problem of characterizing
a bounded operator (4.1) acting from L% (1) to L% (1I5), with boundary functions
¢ and v satisfying (4.2).

Definition 4.1 ([48], [50]). Given boundary functions ¢ and ¢ satisfying (4.2),
a number ¢; € (1,00), and a weight function ¥ such that

0<9(y) <oo foralmostallyel; and o€ Lﬁ;lc(ll),

the fairway function o is a function such that ¢(z) < o(x) < ¢(x) for x € I and

o(x) W)
/¢ . 94 (y) dy = / 9 (y) dy. (4.4)
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Slightly later, in [51], the dual fairway p was introduced, which also opened up
new ways of characterizing the (L% — L92)-boundedness of H.

Definition 4.2 ([29], [51], [53]). For given boundary functions ¢ and v satisfying
(4.2), a positive number g2, and a weight function w such that

0<w<oo ae only and we L (),

a dual fairway function p must satisfy the inequalities ¥~ 1(y) < p(y) < ¢~ (y)
on I; and the equality

p(y) )
/ w®(x)dr = / w®(x)dx forally € I. (4.5)
L €)) r(y)

Here ¢! and ¢! are the inverse functions of ¢ and v, respectively.

Definitions 4.1 and 4.2 show that both the fairways o and p are strictly increasing,
almost-everywhere differentiable functions on Iy and Iy, respectively ([41], § 2.2.1).

The first result in [48] was the determination of boundedness characteristics
of the Muckenhoupt (Ap) and Maz’ya—Rozin (Bygr) type for the operator
H: L1 (1) — L%2(I3) for all ¢; and ¢ satisfying 1 < ¢; < oo and 0 < g2 < 00, in
terms of the fairway o:

¢ (o(t) /g2 w(t) N\ Va4
/ qu) (/ 19'11) (1< q1 € ¢ <0),
L CIO)) (1)

¢~ (a(1)) /o
BMR = BU = (/ |:/ wq2:|
I LWy=1(a(1))

() /4 1/r
X {/ ﬂql} w®(t) dt) 0<g<q <oo0, ¢1>1).
¢

(t)
(4.6)
From duality, but only for ¢; > 1, ¢ = 1,2, the dual functionals (A,)* and (B,)*
with respect to Ay and Byg appeared in [50] and [51], expressed in terms of the
(A,)* = sup (

fairway p:
67N \Vaz g pule()) N\ V/dh
/ w‘”) </ 19‘11) (1< q € g2 <),
tel \ Jop=1(t) o(p(t))

6N qr/ap (@) qr/n 1r
VAT e A R
Ly B(p(1))

A full scale for the boundedness characteristics of Muckenhoupt and Maz’ya—
Rozin type for operators H: L% (I;) — L%(I5), expressed in terms of both the
direct fairway o and the dual fairway p, was presented in [29] (see also [53]) for
all g > 1 and ¢2 > 0. In particular, in [29] the validity of the boundedness
constant (B,)* was extended to the case 0 < g2 < ¢1 < 00, ¢1 > 1, and two fur-
ther pairs of functionals (Ay)*, (B,)* and A,, B, were found, which, like A,, B,
and (A,)*, (B,)*, are mutually dual for ¢; > 1, i = 1,2 (see details in [29] or [53]).

Ay = A, = sup<

tels
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This completed the determination of a base scale of boundedness characteristics of
the first type for Hardy—Steklov operators (4.1) acting from L9 (1) to L% (I3). The
above functionals were used in [29] to characterize the embeddability of a certain
class of AC-functions in a fractional Sobolev space, and also in [7], [40], and [42] to
find two-sided bounds (of alternative forms to the bounds presented here) for the
norms of the spaces associated with weighted Sobolev spaces.

The first alternative boundedness characteristics of type At and Bpg for the
Hardy—Steklov operator H were found in [49], where it was shown that the norm
1H|l Lor (1,)— 192 (1) is equivalent to the functional

N O TCORS K2 1/qz w(t) N\ Vo
Ar =1 A, = sup(/ [/ 19‘11] w®(x) dm) </ 19‘11)
telz \ Jo=1(o(1)) #(z) #(t)

(4.7)
when 1 < ¢; < g2 < 0o, and to the functional

o) [ pa) Y v/
Bps =: B, = (/ [/ {/ 19‘11} w®(x) dm}
Io LJo=1(s(t)) ¥ (x)

() qre—T/a 1/r
« [ / 19‘11} W% (1) dt) (4.8)
#(t)

when 0 < g2 < @1 < 00, ¢1 > 1 (see also [50], Theorem 4.2). In [49] the functionals
A, and B, were successfully applied to the problem of characterizing the bound-
edness of the geometric mean operator of Hardy—Steklov type which has the form

Gr(x) = exp(M /¢ 1:)()) log f).

By duality the following two boundedness characteristics for H: L9 (I;) — L% (1)
are consequences of the relations

[Hl Lor(r)—ro2(12) = Ao and ||| s (1)~ Loz (1) = Bo

forg; >1,:=1,2:

R G (3)) 6~ (y) 4 , 1/q} ¢ L(t) —1/q
(A,)" sup( / [ / qu] 9% (y) dy) < / w@) ,
tely p=H(p—1(t)) P=1(y) Y=1(t)

P T M) (o (W) @ v/
(Bps>*=(/ [/ {/ qu} ﬁql<y>dy]
L o1y W1

() a-r/a 1/r
« [ / qu] 19q1(t)dt> . (4.10)

Y(t)

Together with A, and B, the functionals (A,)* and (Bps)* form part of the corre-
sponding system of alternative boundedness characteristics of the second type for
an operator H from L' (1) to L9 (I3). A full scale for such boundedness constants
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for H: LT (I;) — L% (I3) was found for all ¢; > 1 and g2 > 0 in [54], where all pos-
sible forms of such characteristics, expressed in terms of both the direct fairway o
and the dual fairway p, were found. A full system of boundedness constants of the
second type, apart from A,, B,, (A,)*, and (Bps)*, also includes the functionals

o (W(e () /a2 Pl tB) N\ Vo
(Ay)" = Sup(/ @‘Dw‘h) (/ 19‘11) ,
telx \ Jo=1(p(a=1(1))) d(o=1(t))
A CICa () r/axp re(o”t () q-r/az 1/r
mor = ([ [ ] ] i)
I Lo~ (¢(o=1 (1)) (o=1(¢))
P C o () NG YA’/ (R O)) —1/a;
A, = Sup(/ Qq1§q1> (/ wq2> ,
telz \Jp=t(yp=1(p=1(1))) Y= (1)

B. — IBq2>1 <<Bq2<17 q>1,
g Bq2<1 < Bq2>17 CI< ]-7

p e T (1)) T/ e (e (@) —r/d 1/r
b= ([ [/ o] [ ] )
I L p=t(yp=1(p=1(1))) =1 (p=1(t))

and
¥(t) rlaip e (e () —-r/aqy 1/r
b= ([ [ s [ [ ] )
I LJg(t) ‘1(9‘1(75))
where O(z) := Mm) 9% and Q(y f ha w‘”, and also the functionals
(Bp)* _ ( q2 >1) (BZIZ>1)*7 g2 > 1,
( q2>1) (E;;>1> (Bz;g<l) + (]B;;;<1)*a q2 < 17
[ t ! !’ T/q2 ’ ’ !’ 1/T
G = ([ [ [, o] Cowpriioioar)
L W11
rope (o7 H(®) v/ L, 1/r
(]B%;;>1)* = (/ / qugql} [Q(t)]Q1_T/Q2/l9QI () dt) ,
I LJt
ropt ., r/qh , ., 1/r
B = ([ | [ atioi] ot
I L g(p(t))
and
ropee®) /e o, 1/r
(]B%;;Q)* = (/ / qungl] [Q(t)}Q1_""/Q219Q1 (t) dt) ,
nLJe

where (B,)* ~ (Bpg)* for go > 1. Constants of type A are usually valid for
1 < ¢1 < g2 < oo, while characteristics of type B are equivalent to the norm
| H Lar (1y)— a2 (1) for 0 < g2 < g1 < o0 and g1 > 1 (see [54] for details).

To conclude this section note that for 0 < ¢ < 1 and all 0 < g2 < oo the
operator H is bounded from L% (I;) to L% (l3) only in the trivial case [39]. For
q1 = 1,00 or g2 = 1,00 a precise equality for the norm ||| e (7,)—ra2(1,) can be
derived from a general theorem ([21], Chap. XI, § 1.5, Theorem 4).
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5. Two-sided bounds for the functionals J{,"% (9)
D

I
Let
V+ — ap, y=a,
) {w-)-l({y}), € (a, 5= (b~ 0));
I/_( )_ {bo, y:bv
T ), e (a4 0),b),

Note that v*: [a,u” (b—0)) — [ag,b) is a strictly increasing function on
[a,u™ (b—0)), while v~ : (u*(a+0),b] — (a, bo] is strictly increasing on (1™ (a+0), b].
Consider the functionals

, v () 4 1/p
Gr.+(9) = </Ulp (t)/ g(z) dx dt> ,
I t
and
(@) oI ()| [ Y ) vt (y) @ TNV
G g:z( v / vy y/ g(x) dx dy dt) .
I’“ 1 VPO oy ¢

Theorem 5.1. Let I := (a,b) CR, 1 < p < oo, and g € Li (I). Assume that
vo,v1 € MH(I),1/vy € Ly, (I),vo,v1 € LY, (1), [Jvollr(ry > 0, and let n= (b—0) = b

loc loc

and p*(a+0) =a. Then

Jﬁ;;(])(g) ~ GI,M_ (g) + ®I7V+ (9)7

where the constants of equivalence can be taken to depend only on p.

Proof. We start by proving the inequality

JWZ}(I) (9) S G- (9) + &1+ (9).

Fix f € W, (I) and note that

fIVim € ACic (1),

because f, V" € ACioc(I) and Vi~ > 0 on I. Furthermore, the integral

sup{supp f} ,
A= / v ?
p~ (inf{supp f})
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is finite: for a = ao this is because v; s Li (I), and for a < ag it follows from
the relations v;? € Li (1) and h, < co. We have

/f dgc_/v1 Vl_g(”;) (z) dz

Vi (x)

Here, the integrals (in the third equality) can be interchanged by Fubini’s theorem,
since f has a compact support, f/V;" is bounded on

I
- /fvfp/(y) /yu+(y)g($) /o) dx dy.

[inf{supp [}, sup{supp f}],

and g,v; e L} .(I), because

/I‘|/Jj2| |g(x)|da:/lvfpl(y)mfm(y) dy

sup{supp f} |fg‘ sup{supp f} ,
< / — / Ul_p < OQ.
inf{supp f} ‘/1 p~ (inf{supp f})

Continuing the chain of equalities, we write

e~ v [ o [ ] a2

Since for y € I we have

ly,v*(y)] I and g, (Vf_> € L, (1),
1

it follows that

[ e

Moreover,
ORI
[vmt)} i [ gto)as

- vt (y)
[erway [
1 Y

sup{supp f} , sup{supp f} Y
< / Ul_p : / ‘ {_]
p~ (inf{supp f}) inf{supp f} Vi

vt (sup{supp f})
3 9] < co.
inf{supp f}
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[ [ s [[[L)
/I{V{(t(t)}/dt/t ) o) umy) g} "

Hence

~—

Setting

Gy (1) = / v1p<y>[/:+(y)g}dy, Gy (t) = /tmt)g(x)dx, tel,

in place of (5.1) we can write down the decomposition

[ ) [ fO0)®)
/If(;v)g(x) dx = ) G- (t)dt /1 V(2 G, (t)dt

F) v (y) L
+ /1 7‘/17@) Gy+(y)dy = 1—II +1IL

From Holder’s inequality with exponents p and p’ and the equality V4 = 2V~
we get that

£ (®)]
1<2 [ K G (01t S Cap @I 0l (52)
Note that for € (a,ag) we have V" (z) = [T v 7. Consequently,

(Vi) (z) = vfpl (z) for £L'-almost all x € (a,ag).
Furthermore, from (3.5) we get that for x € (bg, b)

’

Vi@ = Vi) = | S

so that )
(Vi) (x) = —v7 P () for L'-almost all x € (bg, b).

Now let ¢ € (ag,by) or let ¢ = ag if ag = by, and let

F(x)::/vlp, zel.

Then F € ACie(I). The functions p~: (ag,b) — I and ut: (a,by) — I are
increasing. Therefore,

(Fou™)(x)= vfp/(u_(x)) (n™)(z) =0 for L'-almost all = € (ag,b), (5.3)

’

(Fou™)(z)=v{? (u"(z)) (u")(x) >0 for L'-almost all z € (a, by).
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Differentiating (3.5), we get that for £!-almost all x € (ag, by)
20" (@) = (Fou)'(2) + (Fou®)(x)
which yields
(Fou ) (z) < 21)1_1)/ (x) for £'-almost all z € (ag, bo). (5.4)

Since
Vi (x) = F(z) = (Fop)(x),
for £1-almost all = € (ag, by) we have

’

(Vi) @) = oy (2) = (F o p™) (@)] < 3v;7 (@),

Note also that for £!-almost all = € (b, b)

v (@) — (Fop™) ()= (V) (2) = v (2).

Hence
(Fou ) (x)= 2111_1’/ (x) for £'-almost all z € (bg, b). (5.5)

Summarizing, we obtain
[(Vi) (z)] < 3v1_p/ (z) for £'-almost all z € I. (5.6)

To estimate the quantities [II| and [III|, we define a sequence {£x }, .7, of points
in I. If hy = hy = oo, then we set £y = ¢ € I and define the &, for all £ € Z so that

Eor1 =" (1" (&),
Sr-1=v" (1 (&))-

If hy < oo and h, = oo, then we set & = ag and for £ € N we choose & in
accordance with (5.7). Similarly, if h, = co and hy < 0o, then we set &y = by, and
for —k € N we choose & in accordance with (5.8). Finally, if h, < oo and hy, < oo,
then we define the string {&x}5 ., where 0 < K < oo, as follows. Let & = ag
and £x = bg. Here if ag = bg, then K = 0, and if v (" (ag)) > bg, then K = 1.
Otherwise K > 1, and for 1 < k < K —1 we choose the ¢, in accordance with (5.7)
so that {x 1 < &{x. Then I C (J,z A(&)- By (5.6),

SOV (@) ‘ / -

—o =G ()| dtE S 1f(t) = f(&)]

/A@k) vi@p A= (&) *

40

_ vy B
IR [ g G (Ol = e+ 11 (59)

v " (1)
Vi ()2

|G- (2)] dt
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where f(§, ) := 0 for hq < 0o (in this case §; = a). Using Holder’s inequality again
and taking into account the inclusion [y, v (y)] D [y, &x] for y € A~ (&), we obtain
o)

et = / e W G- ()] dt
</ \/ t])z G- () dt
< </A<gk>”1p “”(/ﬁ Tt p<(>]) G ”‘”)pl dy>l/p/”f il e

. I 4 e
< </A_(£k)v1” (y)(/y [E_(E)])Qm”_(t)mt) dy> 1 01l oA (e0))-
(5.10)

t
) f’(y) dy

To estimate IIj, o, in view of (3.7) we write

1/p’
|f<s,:>|5(/ ) T
A-(60) W2 (AL )

In combination with (3.5) this yields

M2 < </A+(§k)v1_p/(y) dy>1/p/(/A o [1‘}/}1_ (()f G- (t )|dt>||f|w;(A(gk))~

For y € AT (&, ) we have the inclusions

™ (), v ()] 2 v (y), &kl D A7 (&),

which show that

’

o vt (y) ] —p’ (t) P 1/p
s ([ oo [ B G 0ld) a) Il
’ AT ! ~w) Vi (@) WE(AED)

o v (y) Ul_p (t) p’ 1/p’
S (/A(gk)vlp (y)(/y(y TARGE IG#(t)|dt) dy) 1w acery

= G- k(@I lwiaey: (5.11)
From (5.9), (5.10), and (5.11) we obtain
fOV)' (@)
foeol et €

Similar calculations with A™ in place of A~ in (5.9) give an upper bound for the
same integral over AT:

FOWY®
/Mgk) A

(0]t S G s gia- i romienr

0] S G s ysicosictyr
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Since A~ (&) UA(&) and A(&) UAH (&) lie in the interior of
Dpoi= A(&k—1) UA(E) U A(Ek+1),

it follows that

FOVY @)
/A@ ARG

Using Holder’s inequality and bearing in mind that each point in I belongs to at
most two intervals A(€) and therefore to at most four intervals T'y, we obtain

0] dt S G (@)

Vi)
I)/i t)]2( ) ‘dt N ZG/L k Hf||W1 (Tx)

f(t
1| <
| | zk:/ﬁ(ik)
%4 1/p
< (ZG#,k(g)p) <Z||f€vg(rk>)
k

([erw(] (()) [V(Sf G )dt>p/ dy)l/pl||f|wg(1)

= G- (@) fllwr - (5.12)

Similarly, we find that

[ITT| < /
Z A(Er) Vi

V+(y) o P (t) I 1/p’
7 L G,+(t)|d d 1
([ <y)(/y(y) 16, @lat) o) o
= G @)l oo 5.19

To estimate the functionals G- (g) and G,+(g) on the right-hand sides of (5.12)
and (5.13), consider the inequality

A

) Gyt (t)‘ dt

A

’

(/IIH*h(y)I”' dy)l/p/ < C(/I|h(x)p/ dx)l/p (5.14)

v()
H*h(t) := u(t) /(t) h(z)w(x) dz,

acting from L (I) to L¥'(I). The transformation adjoint to H* has the form

for the operator

ut(x)
Hh(z) :== w(z) /_( ) h(t)u(t) dt = Hyh(z) + Sh(x) + Hph(z)

ut (@) ut b
= w(w) [X(a,ao](l’)/ +X(a0,bo)(9ﬁ)/ X[bo,b) (© / ] dt
a p(z w
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and acts on LP(I). Here
Hq: LP((a, p* (ao)]) — LP((a,a0]) and  Hy: LP([u (bo), b)) — LP([bo, b))
are Hardy operators with a variable (upper or lower) limit of integration, and
H: LP((a, b)) — L"((ao, bo))

is a Hardy—Steklov operator with two variable limits of integration. By Definition 1
in [48], for p~, pT, and u the fairway is the function o, : I — R such that

() , l‘+ (z) ,
/ up:/ uP  forall z € 1.
p(2) ou(x)

Let u = 1/v;. Then u?" = vl_pl and in view of (3.5), 0, (z) = z. By analogy with
the proof of Theorem 1 in [48] we can show that

[N = 17 || Lo (a,b))—L? ((a0,b0))

vH(t) 1/p wt () N '
< sup </ X(ambo)w”) (/ v1p> . (5.15)
t€(ao,bo) \ Jv—(t) p=(t)

For the norms of H, and H, we have the estimates

ao 1/p ut(t) - 1/p’
| Hall := ”HaHLP((a,;ﬁ'(%)])—’LP((a,ao]) S sup (/ wp) (/ Uy p)
te(a,ao] v (t) a

(5.16)
and
vh(t) Upyopb N
[Hbll := [ Hbll Lo (i~ (50) ) —LP(b0,0) S SUP (/ wp) </ U1p>
t€bo,b) bo (1)
(5.17)
(for instance, see [41], Lemmas 1.10 and 1.11, or [50], Lemmas 2.1 and 2.2).
Let w = v} ? /Vi. Then it is known that for each a > 0
O
[ vt s v (5.18)
v (1)

(as concerns the proof, see [42], (4.10), or [41], (3.2.18)). For the w under consid-
eration this yields the inequality

vt (t) v (¢) ,
/ o e = | | eV S A
v—(t v—(t

for any measurable £ C I. Therefore,

[Holl S 1, [|22] S 1, and [[Hy| S 1.
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Hence, applying the inequality (5.14) for

_ L |Gu‘| _ L |Gu+|
h=h,- = oV and h=h,+ = o

to (5.12) and (5.13), respectively, we obtain the required estimates
| < Grp- @I fllwray and [ S S+ ()| fllwrn)-

In combination with (5.2) this completes the proof of this part of the theorem.
To prove that

[e]e] > —
JW;(I)(Q) 2 Gr,-(9) +67,+(9),

consider sequences {ay }$° and {by}7° such that any | @ and by T b, a1 < by, and
let In :=[an,bn]. For x € T let

Fa) = [ i) [ [ e OO sen G- (011G, (01t ay

and

Note that
by , T T
fvle) = {/M(m) o ] /u‘(w) fueyde= /u‘(fv) fateydt,
where ,
Fi(t) = xry oy " OV [sen G- (D] |G- ()P
and

Here we have

1 V+(bN) p'—1 by ,
St vy [ [ ]| <o
I z€lan,bn] an an

[ 1l <o

Hence, Fy € AC)oc(I) (see the proof of Lemma 3.3). Furthermore,

and

suppFy C [an,v T (by)] C 1.

We can show in a similar way that §y € AC).(I) and the support of Fy is
a compact subset of I.
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Now by Fubini’s theorem,
by ) )
Jo@Fx@de = [ o OWAGI 16, (OF dt = Gxle) <o (519
and
by )
/Ig(x)SN(:E) dzx = / v P (8) |G+ (B)|P dt =: &n(g) < . (5.20)

For estimates of ||[Fyvol|r»(ry and [|§nvoll (1), consider the inequality

(/zvg(x) pd$>l/p < C(/I h(y)|P dy)l/p, (5.21)

which is dual to (5.14) for w = vp and u = 1/vy; the best constant C ~ ||H,|| +
|22]] + || Hp|l in this inequality has the form of the sum of the right-hand sides
of (5.16), (5.15), and (5.17). Since

ut (@)
[, roma

ViE(t) S Vi(rs (1)

and for measurable subsets E of I we have

v (t) t vh(t)
/ X U = / X U+ / X 2 < Vol (8)) + Vo(rt (),
v (t) v=(t) t

it follows from (3.6) for z = v*(t) that C' < 1. Applying (5.21) to the function
h(t) = haey (£) = X1 (7 7 OVA)] G (O
we arrive at the estimate
IFnvollery S [Gw(g)]'P- (5.22)
Similarly, if in (5.21) we set
h(t) = hgy (t) = XN (t)vi_p (t)‘Gqu (t)|p,_1a

then we obtain
I§nvollzery < [Sn(9)]M7 (5.23)

For estimates of ||Fyv1| rr(ry and ||§'y 01l zr (1), we find from the definitions of F
and §n that

Fy () = [ / h } f1(#) = fale) = Fi(@)VY () = Fys(2)

and

Ty (@) = X1y (@)o; 7 (2)[sg0 Gy ()] |Gt (2) P~ =2 G ()
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for £'-almost all z € (a, ag). Moreover,
P (o) = Fwa () ~ Xt @017 @)@ [ = Fra@) ~ Fate)
n—(x
and
Sn (@) = Fna(2) = X(ao) (@)Fna (e (@) (1) () = Fna (@) + Fva(2)
for £'-almost all = € (ag,b). We have
||FN,11)1||1£p(1) =2"PGyn(g) and H3N71U1Hizﬂ(1) = &n(9)- (5.24)

For an estimate of ||Fx ov1| (1) let

Eo :={t € (ap,b): (u™)'(t) > 0},
Ey:={t € (ap,b): vi(p~ (t)) < oo},
Es :={t € (ap,b): vi(t) > 0},

and

Es :={t € (ao,b): (Fopu™)'(t)=vy? (u™ () (n") ()}
Then £1((ag,b) \ E3) =0 by (5.3), we have

or()or ™ (™ (@) () (2) = 0
for x € (ap,b) \ ﬂf:O E;, and in view of (5.4), (5.5), and (5.3) the estimate
o (2) < 27 [(F o p) (@) 7/ = 2/ [o P (™ (@) (™) ()] P/

=27 () @) (0 ()

holds for £'-almost all = € ()7_, E;. Hence, for £'-almost all z € (ag, b) we have

[on(@)or ™ (= (@) () (@) < 277 0% (u (2)) () (2). (5.25)

Using the above inequality and making the substitution u~(x) = y, we arrive at
the following estimate for the norm ||Fx 2v1 | zr(1):

, vt(y) P 1/p
||IFN,2v1||Lp<I>5( [ w| [ @@ dy) (520

Let us turn to the inequality (5.14) (with p in place of p’) for the operator H* with

’

weights w = 1/(v1V4) and u = v%fpl (so that u? = v; ¥ and o,(z) = x) and also
to the estimates (5.15)—(5.17). It follows from (5.18) that for measurable E C I,

o ot o, ,
/—(t) xgw” _/—(t) xe-v P Vi P SV
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Therefore,
[Holl 1, 121/ S 1, and [Hy| $1,

that is, || H*|| < 1. Applying (5.14) with h = hp, to the right-hand side of (5.26),
we obtain

(/Ivlp/(y)

Hence

v (y) P\ 1P
[ @@l ] ) S el = Br]

~(v)

IFN 201 Lo (r) S [Gn(g)]M.

Taking (5.24), the equality Fn2(z) = Fn1(p~ (x))(p~ ) (z), and (5.25) into account,
we arrive at the inequalities

IFyvLlerny S [Gx(9)]V? and (¥ villiey S [Bx(9)]"7.
In combination with (5.22) and (5.23) this implies that
IEnllwiy S Gn(@)]"? and  [|Fnllwia) S B (9)]"7.

Hence it follows from (5.19) and (5.20) that

Tity 1 9) 2 B (o) +[Bx ()] 7"

Letting N — o0, we obtain the required inequality

oo > -
Tir ) (9) R Gru=(9) + 810+ (g),

which now shows that fo’{?l([) (9) = Gy~ (9) + &1+ (g). Theorem 5.1 is proved. O

Remark 5.1. Similarly, for I := (a,b) C R, 1 < p < oo, and g € L (I), the
following estimate holds under the assumptions that vo, v1 € M+ (1), 1/v1 € LY (1),
vo, v1 € Lip (1), llvollzicry > 0, p= (b= 0) = b, and p*(a +0) = a:

loc

Jﬁl?;([)(g) ~ Gy ut(9)+61,,-(9),

with equivalence constants depending only on p, where

&r.,-(9) = (/Iyl—l’/(t) /Vt(t) o(2) de 2 dt>1/p’

and

/

p 1/p’
dt) |

() , t
/ v ¥ (y)/ g(x) dx dy
t v

Grueel9) = (/f m )
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6. Estimates for the norms of elements of
the spaces associated with [W (I)] and [W (I)]
Corollary 6.1. Let I := (a, b) CR,1<p<oo,and g€ L (I). Assume

that vo, v, € MY (1), 1/vy € LIOC(I)7 vo,v1 € LY (I), and |lvo| 11y > 0, and let
p=(b—0)="b and p*T(a+0) =a. Then

JW;(I)(Q) = J&;}}(I)(g) V‘;I(I)(|9|) ~ Gr - (19]) + &1+ (9]) = &1+ (l9]).

loc

Proof. 1t is clear that
Jip1 ) (9) 2 ‘]&?;(1) (9)-

To prove the reverse inequality, fix an f € WZ}(I) If Joo  (g9) = oo, then the

wyI)

oo
reverse inequality holds, and therefore we assume that J&%(I) (9) < 0. Since W, (I)
P

is dense in Vi/pl(l), there is a sequence {f,} C W, (I) such that ||f — fullwi() — 0

as n — 00. Because f € WZ}(I ), there exists an equivalent function f € AC),.(1),
and we have f(a 4 0) = 0 for h, < oo and f(b— 0) = 0 for hy < co. We also have
I C Upez A(&k) (see the proof of Theorem 5.1). By (3.7), fu(z) — f(x) on each
A(&). Then f,(z) — f(z) on I, and by Fatou’s lemma

161 = [ 170 < tmint [ Ifugl < 355, , @ timint 1wy
I (I) n—00
@ fllwrn-

= Joo
W (I)
It follows, in particular, that if JW,}(I) (9) < oo, then g € D‘;V;(I). Now we observe
that for any function f € W, (I) its absolute value |f| belongs to W, (I) and
I llwry = I1f 1w r)- Hence

Ioos 9 = T

(lgl)-
Now Theorem 5.1 and the estimate G; ,- (|g]) < &;,,+(|g|) yield the required result.
O

Corollary 6.2. Let I := (a b) CR,1<p<ooandg € L (I). Assume that
Vo, V1 € m+< ) 1/U1 € Lloc(I) Vo, V1 € Lloc( )7 HUOHLl(I) >0, and letﬂ_(b_o) =b
and pt(a+0) =a. Then

Hin(9) <o = Gru-(lg]) + &1+ (lg]) < oo

Furthermore,
JW;([)(Q) ~ Gy - (9) + 610+ (9)-

The proof follows the scheme of the proof of Theorem 3.7 in [41].
In order to estimate Jyw1(r)(g) and Jyw(r)(g) we need the following lemma.
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Lemma 6.1. Let I := (a,b) CR, 1 < p < o0, vg,v1 € MT(I), 1/v1 € v (1),

loc

vo,v1 € LY, (1), |lvollrry > 0, and ag < by. Assume that f € W(I), and let

loc

f € AC\oc(I) be a representative of f. Let

a 71 xT
- —p’
vy v;”, x € (a,ap),
a a

w(z) =141, x € [ag,bo] N1,

N
(/ vlp) /v;p7 x € (by, b),
b[) xr

and let fo == wf. Then fo € WD), lfollwiry < Cllflwiry, and f = fo on
[ao,bo] NnI.

Proof. Let I be some interval in I and let ¢ € ACioc(I). For t,x € I we have

wu><uﬁd

1
+lotwl < |

lordl oy + 161 (6.1)

L¥'(I)

Multiplying (6.1) by vo(t), raising to the power p, and integrating over I with
respect to t, we obtain

1 ~
|ww|mmmn<Hm el + ldlingy, 2 €T (62

Lr

Assume that 0 < ||v0HLp(;) < oo and let ’01 Lp/(f)HUO”LD(T) = 1. It follows
from (6.2) that
1
swlo <[ L] el
zel TllLe' (1) P
so that
17 , 1 p/71 1 p/
o S < || swlst@n< | L] olyn 63
YLllLe'(T) wel ULilLe (1) v
Since f € AC),.(I), for any =t € I we have
_ _ b 1
/ !
O -F@l=|[ 7| <ol lom| 5| <Moo 60
T U1 Lr' (1) U1 L' ()

Assume that h, < co. Then for each o € (a,b) we have

1

U1

< 00.
L ((a,c))

Hence, taking account of (6.4) with I := (a,0), we see by the Cauchy criterion
that the limit f(a + 0) exists. Similarly, we prove that f(b — 0) exists for hjy < 0.
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Hence, fo(a+0) =0 for he < 0o and fo(b—0) = 0 for hy < co. Since |fo| < |f],
it follows that [[vo follLr (1) < [[vofllzr(r)- Moreover, fo € ACioc(I), fo =W f +wf’,
and [[vyw f'||Le(ry < [|v1f]|Ler)- Furthermore, for £'-almost all z € I

-1

( / o ) vi”(2), € (a,a0),

W'(z) =<0, x € (ag,bo),
b —1
—(/ vl_p> v P (x), x € (bo,b).
bo
Let )
K(z):=|— llvoll v (A(a))» rel.
VLllLy (A())

Take ¢ € (ag, bg). Then a < ¢~ and ¢t < b. If h, < oo, then 1/v; € L¥ ((a,¢™)) and
vo € LP((a,c")), so that K is continuous on (a,c). Bearing in mind that K(x) =1
for x € (ap,bo), we get that K(ag) = 1. In particular,

1

. Nvoll e (A(ao)) € (0,00).
L Le (A(an))

Similarly, for hy < co we have K(by) = 1 and
1

— Nvoll e (abo)) € (0,00).
YLlle’ (A(bo))

Applying (6.3) to ¢ = f, I = A(ap), and T = A(by), we find that

£ llw (aao))

. 1P
ot ooy < ||
L (A(ao))

and

= 1
017" FllLr(age)) < Hvl 1wz (ao))-

p
L’ (A(bo))
It follows that

lo16” fllzo(ry < I fllwzcacaoy + 1 lwraee) < 20 fllwac-

Thus, || follwy (1) < 3| fllw1(r)- Lemma 1.6 in [30] implies that fo € WI}(I) O

Let g € Ll (I). Setting
ao , t p 1/p’ b , b

Ai(g) == (/ vy P (¢) / g dt> , As(g) == (/b v P (t)/ g
a a 0 t

b =1/p| b

and As(g) := (/ vé’) / g‘

we observe that JWI}([)(g) = JW;(I)(|g|) and J‘;VI}(I)(g) = JWI}(I)(\gD (see
Remark 2.1).

P 1/p'
dt> 7
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Theorem 6.1. Let [ := (a,b) CR, 1 < p < 00, vg,v1 € MT(I), 1/v; € LIOC(I)7
vo,v1 € Ly, (I), [lvoll iy > 0, ag < by, and g € L, (I). Then

Jwin(9) = Ai(lg]) + A2(l9]) + Tyirs 1y (9)- (6.5)

Proof. If a = ag and b = by, then W}(I) = W, (I), and (6.5) holds. Assume that
a < ag or by < b.
Upper estimate. Suppose that Al(\g|)+A2(|g\)+JW;(1) (g9) < oo. Since A;(|g])+

As(|g]) is finite and g € L{ (1), it follows that

/ 9] < oo.
(a,a0)U(bo,b)

Fix some f € W, (I). Let fo € Wp1 (I) be the function constructed from f as in
Lemma 6.1. Then we have

LﬂmzlfﬂmﬁﬁUm+A?m
zlwprf+ﬂm)WMM+ame
+AXL:f+ﬂQOmnm
:_/:0 f’(t)(/: |g) dt—i—f(ao)/aao 9l + b folgl
+l:ﬁ@(lﬂﬂ>ﬁ+f@ﬂéﬁ%

where the integrals can be interchanged because

ap _ t _
/|fm(/goa<Aﬂwmwmme<m

/|f (/‘m) < As(gDlor 7 oo ooy < 00
We have

fao) [“ral= [ s [Cra= [T o [ul)as [T o [Ca)a
[ [y [ f )
= [ ( [1al)ars [ o

and
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7o) / ol = / <></ gl)dt+/fo|g
Thus,
/f\gl [ - f())(/:|g|)dt+/b:<f<> st ))(/tb9|>dt+Lbfo|g|,

so that

Similarly,

flg‘ 1(1gDller (f6 = F)lwe (a.aon) + A2(lgDllvr(f" = fo)ll Lo (oo )

+ Ty (oD follwa
< [Ax(lgl) + Aa(lgD) + Ty oy (9D v -

Lower estimate. Assume that Jwam (9) < co. By Lemma 1.6 in [30], for a < ag
the space W, (I) contains a function n, € C'(I) equal to one in a neighbourhood
of a and to zero in a neighbourhood of b. Therefore, the finiteness of JWpl(I) (9)
implies that g € L'((a,ao)). Similarly, g € L*((bo, b)) for by < b.

Using test functions Fy, F, € W, (I) of the form

Fie) = Xoan(@) [ o7 0 [ t |g|)p/1 it

and
T , b p’—1
Fy(x) == X(bo,b)(x)/ v P (t)</ |9|) dt,
bo t
we obtain
b ap , t P ,
[ ml= [ o [a) @ adar
a a a
and
b b, b 4 ,
[ mal= [ o [1al) @ = o
a b[) t
Furthermore,

ao , —19p ,
IFoily = [ @) @) |/ 4z = astio”
a

r
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and by Holder’s inequality

1Flt, = [ b ([ o
[ e[ ]/ e
= [Moro|[ 10 ' ([ ][ }/ iz )

, 1 p ,
< A(lgl)? (nvonm(A(ao» ) — Au(lg))”.
L?' (A(ao))

vy
Similarly, || Fyou[17, () = A2(lg))?" and || Fevoll}, ;) < A2(|g])”
Combining all the estimates, we arrive at (6.5). O

N

dt} dzr

Theorem 6.2. Let [ := (a,b) CR, 1 < p < 00, vg,v1 € MT(I), 1/v, € LIOC(I)
vo,v1 € LY (I), [|lvolli(ry > 0, ag < by, and g € Lloc( ). Then

JW;(I)(Q) <o = JW;(I)(Q) < 0. (6.6)

In addition,
Jwin)(9) = Ai(g) + A2(9) + Jyia 1) (9)-

Proof. The assertion (6.6) was proved in [42], Theorem 2.5. Let Jw1(1)(g) < oo.
Then by Theorem 6.1, A1 (|g]) + Az2(|g]) < oo and [, .54,
estimate is established by the same argument as in the proof of Theorem 6.1, with |g|
replaced by g. To prove the lower estimate we use test functions F} o, Fo o € Wpl(I )
of the form

b lg] < co. The upper

and

bop'-1 b
/ g sgn [/ g} dt. (I
t t

Theorem 6.3. Let [ := (a,b) CR, 1 < p < 00, vg,v1 € MT(I), 1/v, € LIOC(I)7
vo,v1 € Ly, (I), |lvollLr(ry >0, ap = by, and g € LIOC(I). Then

Jwrn(9) = Ar(lg]) + A2(lg]) + As(lg))-

Fyo(z) := X(bo,b)(x)/b v P (1)

Proof. Upper estimate. Assume that A;(|g]) + A2(lg]) + As(lg|) < oco. Fix an
arbitrary f € W, (I). Then we have

/abflgl - [ f’(@(/ﬂt |g|) dt+f(ao)/ab |g|+/b:’ m)(/tb g|> "
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Note that since a = p~(ag), b = p*(bo), and ag = by, it follows that A(ag) = I,
and therefore [|1/v1| o (p)llvollze(r) < 1. Using (6.2) for I = I and z = ao, we get
that

Vm>ﬂ (gD F (o) ool zory < As(lgl L Fllw o

Hence

b
/ﬂ4<mmwwmw+@mmwmm

For the lower estimate use the test functions F1, Fa, and F3 := x(q)- U

Theorem 6.4. Let [ := (a,b) CR, 1 < p < 0o, vg,v1 € MT(I), 1/v, € LIOC(I)7
vo,v1 € LY (I), ||vollLr(ry > 0, ao—bg, andgELlOC( ). Then

Moreover,

Jwin(9) = Ai(g) + A2(g) + As(g).

Proof. The assertion (6.7) was proved in [42], Theorem 2.5. Since Jyw1(r)(g) < oo,

it follows that A;(|g|) + A2(lg|) + As(]g]) < oo. The upper estimate is proved by
the same argument as in the proof of Theorem 6.3, with |g| replaced by g. For the
lower estimate use the test functions Fy g, F5 o, and F3. O

7. Examples
Example 7.1. Let I = (0,00), 1 < p < 00, vo(t) =t~ 1, v1(t) = 1, and

| Fllws ey == </0 |f(z ;lpdx>1/p+ (/Ooo|f’(x)|pd:c>1/p.

Then ag = 0, by = oo, and p~ (t) = (1 — a)t, where « € (0,1); furthermore, the
equivalence (3 4) ensures that W) (1) = VVp1 (I). Thus, by Theorem 5.1

oo , t y/(1—a) P’ 1/p’
Joo  (g) = (/ t=P / (/ g) dy dt)
W) ) 0 (1—a)t \ J¢
co| pt/(1—a) |7’ 1/p’
=+ </ / g dt) .
0 t

It follows from Corollary 6.1 that

00 t/(1—o) ' 1/p’
JWé(U(g)—JW,}(n(g)—Jv"&;(n(g)”</o (/t 'g|) dt) |

However, using the method from [42], we can show that

—_ 7l p’
QWI}(I)_LIOC(I) and ®W1 = £P (1),
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where

0= {se b sloloriy = ([ ([ |g|)pl dt)w <o),

JWT}(I)(Q) = Jvi/pl([)(g) =J

and

{;[3;(1) (9) = ||9||):p'(1)'

We can also show that
| poo [P 1/p ,
Jmmg)z(/ [ s dt) L g,
P 0 t

Example 7.2. Let I = (0,00), vo(t) =1, v1(t) = 1, and

Al = ( I If(x)l”dw>1/p " ( I |f’(a:)|”dx>1/p.

Then ag = 1/2, by = oo, and

1
0, 0<t< =,
po(t) = 11 2 vit)=t+3
t_fa 7<ta
2" 2
Hence
| pt+1/2 (P 1/p’ 1/2 ot y+1/2 p’
o= LU o) (L)
Wi () o |Je 0 0o \Jt

ol pt y+1/2 P 1/p’
Sl )] )
1/20Jt—1/2 \ Jt
by Theorem 5.1.

Example 7.3. Let I = (0,1), vo(t) =1, v1(t) = 1, and

1 1/p 1 1/p
g = ([ voras) " ([ir@pa)
0 0
Then ag = by = 1/2 and
t v 1/p’ 1 1
L)L
0 1/21Jt

P’ 1/p'
dt) n

1/2
Jwin(9) = (/
0

by Theorem 6.4.

1
I
0
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