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BRIEF COMMUNICATIONS

Variational principle for multidimensional
conservation laws and pressureless media

A.T. Aptekarev and Yu. G. Rykov

Multidimensional systems of n conservation laws often have a hyperbolic charac-
ter, and in the process of evolution of their solutions this can result in the appear-
ance of singularities (shock waves, fusion of masses). This is a motivation for seek-
ing universal ways of defining generalized solutions. In [1] (for n = 1,2) the author
proposed a family of functionals which are connected with the original system of
conservation laws so that the set of their extremal points determines a generalized
solution of the system. In the degenerate case of the system of equations of pres-
sureless gas dynamics this method can be implemented in the form of a particular
variational representation for solutions, which can be used to describe the process
of concentration of the substance; see [2] (for n = 2,3). This process corresponds
to conservation laws for the mass and the momentum, in contrast with models not
taking account of the conservation of momentum (see [3]), so it is of interest for
applications to astrophysics and, in particular, for investigations of the distribu-
tion of the hypothetical dark matter in the Universe. In this note we present this
variational principle in its multidimensional version.

Consider a quasi-linear system of conservation laws

—Utx +Zax ,x))) =0, (1)

where F; := (fi;,..., fn;) are sufficiently smooth (at least continuously differen-
tiable) functions of the variables (uy,...,uy), (£, %) := (t,21,...,Tm) € Ry x R™,
and the vector function U(t,x) := (ug,...,u,): Ry x R™ — R™ belongs to some

Banach space B (for instance, to BV, L1, L1 1oc, L™, and so on).

In the (¢,x)-space we look at the set X of continuously differentiable hyper-
surfaces S (of codimension 1) parametrized as ¢ = 7, x = x/(7,s), where s =
($1,--+,8m—1) and X = (X1,---,Xm). We set dz := dx; - -dzx,, (the usual vol-
ume element), dx := dxi A -+ A d,, (the oriented volume element), and dx; :=
dziA---ANdxj_1 Adxji1 A---Adry, (an oriented projection of the element of ‘hyper-
surface area’ leaving out the factor dz;). Now consider a functional J: ¥ — R"

given by .
J :/~~~/(Udz+Z(1)ij(U) thij>, (2)

where the integral is taken over S.
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Definition 1. Let 'y C ¥ be the set of hypersurfaces (which depends on the
function U under consideration) such that the integral in (2) is well defined, and let
Ay C T'y be the set of hypersurfaces such that the variation §J of the functional (2)
is well defined. A function U(t,x) € B is called a generalized solution of the
system (1) if each hypersurface S € Ay is critical for J, that is, 6J = 0.

Interpreting Definition 1 for a degenerate system of conservation laws, for the
system of equations of pressureless gas dynamics

pe + div, (pU) = 0,

0,x) = , U(0,x)=U , (3

{(pU)t—i—divw(pU@U) _0, p(0,x) = po(x) (0,x) ox), (3)

where p(t,x) is the density of the medium, U(¢,x) is the velocity vector, and U U
denotes the tensor product, we arrive at the following result.

Theorem 1. For the system (3) the functional J (see (2)) can be expressed by
J:=J(4) = / . / [Uo (a)— x;a] po(a) da, where the integral is taken over the

compact set A @ R™ and the variation of J is understood to be its variation with
respect to A.

From Theorem 1 we obtain the following test for the appearance of a singularity
in (3). Fix a point (¢,x) and some parametrization of the Lagrangian variables a,
that is, fix a function a = a(7,s) (recall that s = (s1,...,S$m—-1)).
Theorem 2. If there exist a parametrization a(t,s) and a value s = S such that the
T x —al(T7,s oa(r,s
function ®(1,8) := / Up(a(r,s)) — x—ars) po(a(r, §))L7) dt has more
0 t d(7,8)
than one global minimum with respect to T, then generalized solutions of (3) acquire
a singularity in the form of a concentration of masses (on a manifold of one dimen-
sion or another).

Theorem 2 generalizes to several variables the dynamics of fusion described in [4]
for the one-dimensional case.

For another hyperbolic system (the so-called continuous analogue of the Toda
lattice) a variational principle was proposed in [5] for a certain functional J(A)
defined on compact sets A € R™ in the case m = 1; the case m > 1 was considered
in [6]-[8].
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