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BRIEF COMMUNICATIONS

Variational principle for multidimensional
conservation laws and pressureless media

A. I. Aptekarev and Yu.G. Rykov

Multidimensional systems of n conservation laws often have a hyperbolic charac-
ter, and in the process of evolution of their solutions this can result in the appear-
ance of singularities (shock waves, fusion of masses). This is a motivation for seek-
ing universal ways of defining generalized solutions. In [1] (for n = 1, 2) the author
proposed a family of functionals which are connected with the original system of
conservation laws so that the set of their extremal points determines a generalized
solution of the system. In the degenerate case of the system of equations of pres-
sureless gas dynamics this method can be implemented in the form of a particular
variational representation for solutions, which can be used to describe the process
of concentration of the substance; see [2] (for n = 2, 3). This process corresponds
to conservation laws for the mass and the momentum, in contrast with models not
taking account of the conservation of momentum (see [3]), so it is of interest for
applications to astrophysics and, in particular, for investigations of the distribu-
tion of the hypothetical dark matter in the Universe. In this note we present this
variational principle in its multidimensional version.

Consider a quasi-linear system of conservation laws

∂

∂t
U(t,x) +

m∑
j=1

∂

∂xj
(Fj(U(t,x))) = 0, (1)

where Fj := (f1j , . . . , fnj) are sufficiently smooth (at least continuously differen-
tiable) functions of the variables (u1, . . . , un), (t,x) := (t, x1, . . . , xm) ∈ R+ × Rm,
and the vector function U(t,x) := (u1, . . . , un) : R+ × Rm → Rn belongs to some
Banach space B (for instance, to BV , L1, L1,loc, L∞, and so on).

In the (t,x)-space we look at the set Σ of continuously differentiable hyper-
surfaces S (of codimension 1) parametrized as t = τ , x = χ(τ, s), where s =
(s1, . . . , sm−1) and χ = (χ1, . . . , χm). We set dx := dx1 · · · dxm (the usual vol-
ume element), dx := dx1 ∧ · · · ∧ dxm (the oriented volume element), and d̄xj :=
dx1∧· · ·∧dxj−1∧dxj+1∧· · ·∧dxm (an oriented projection of the element of ‘hyper-
surface area’ leaving out the factor dxj). Now consider a functional J : Σ → Rn

given by

J :=
∫
· · ·

∫ (
U dx +

m∑
j=1

(−1)jFj(U) dt ∧ d̄xj

)
, (2)

where the integral is taken over S.
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Definition 1. Let ΓU ⊂ Σ be the set of hypersurfaces (which depends on the
function U under consideration) such that the integral in (2) is well defined, and let
∆U ⊂ ΓU be the set of hypersurfaces such that the variation δJ of the functional (2)
is well defined. A function U(t,x) ∈ B is called a generalized solution of the
system (1) if each hypersurface S ∈ ∆U is critical for J, that is, δJ = 0.

Interpreting Definition 1 for a degenerate system of conservation laws, for the
system of equations of pressureless gas dynamics{

ρt + divx(ρU) = 0,

(ρU)t + divx(ρU⊗U) = 0,
ρ(0,x) = ρ0(x), U(0,x) = U0(x), (3)

where ρ(t,x) is the density of the medium, U(t,x) is the velocity vector, and U⊗U
denotes the tensor product, we arrive at the following result.

Theorem 1. For the system (3) the functional J (see (2)) can be expressed by

J := J(A) :=
∫
· · ·

∫ [
U0(a)− x− a

t

]
ρ0(a) da, where the integral is taken over the

compact set A ⋐ Rm and the variation of J is understood to be its variation with
respect to A.

From Theorem 1 we obtain the following test for the appearance of a singularity
in (3). Fix a point (t,x) and some parametrization of the Lagrangian variables a,
that is, fix a function a = a(τ, s) (recall that s = (s1, . . . , sm−1)).

Theorem 2. If there exist a parametrization a(τ, s) and a value s = s such that the

function Φ(τ, s) :=
∫ τ

0

[
U0(a(τ, s)) − x− a(τ, s)

t

]
ρ0(a(τ, s))

∂a(τ, s)
∂(τ, s)

dτ has more

than one global minimum with respect to τ , then generalized solutions of (3) acquire
a singularity in the form of a concentration of masses (on a manifold of one dimen-
sion or another).

Theorem 2 generalizes to several variables the dynamics of fusion described in [4]
for the one-dimensional case.

For another hyperbolic system (the so-called continuous analogue of the Toda
lattice) a variational principle was proposed in [5] for a certain functional J(A)
defined on compact sets A ⋐ Rm in the case m = 1; the case m > 1 was considered
in [6]–[8].
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