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Introduction

Tessellations of figures by other figures are a favourite subject of geometers: recall
crystalline lattices and parallelohedra, ball packings, Penrose tilings, and related
rhombus tilings. One of the areas that have been developing intensively over the
past thirty years concerns triangulations of so-called cyclic polytopes (see [27] and
the survey [28] by Rambau and Reiner in [25]). We want to discuss here the largely
parallel theory of cubillages of cyclic zonotopes, that is, tilings of zonotopes into
(combinatorial) cubes.

Odd as it may seem, motivations to develop this theory were not only geometric.
Though zonotopal (and fine zonotopal) tilings have long attracted the attention of
geometers (see, for example, [29] or the historical sketch in [35]), two papers that
are rather more algebraic or combinatorial have caused a revolution. One of them
was the 1998 study [20] by Leclerc and Zelevinsky, which concerned the problem
of quasi-commutativity of quantum minors and led to the study of rhombus tilings of
zonogons (see [4] for a survey of some achievements in this area). Another was the
1986 paper [23] by Manin and Shekhtman (also motivated by quantum subjects),
which was devoted to a generalization of the weak Bruhat order on the symmetric
group Sn; the resulting ordered sets B(n, d) have been called higher Bruhat orders.
A little later, Voevodskii (Voevodsky) and Kapranov [33] gave an interpretation of
these orders in terms of cubillages of cyclic zonotopes, of which the above rhombus
tilings provide a particular (two-dimensional) case. Significant advances in this area
were obtained by Ziegler [34], Galashin [13], and Galashin and Postnikov [14] (see
also [1]).

We are going to discuss all this (including our own results) in this paper. We
divide our presentation conditionally into two closely related parts: a geometric
part and a combinatorial (or set-theoretic) part. In the first part, we discuss zono-
topes and fine zonotopal tilings (cubillages) of zonotopes and introduce various
useful objects in a cubillage: pies, tunnels, and so on. We also introduce there our
main working tool, reductions and expansions, which are indispensable for inductive
reasoning.

After introducing these general concepts, we will restrict ourselves exclusively to
the case of cyclic (or, more correctly, totally positive) zonotopes Z(n, d). Cubillages
of just these zonotopes are related to higher Bruhat orders in the sense of Manin
and Shekhtman. When we work inside a fixed cubillage, the structure of the natural
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order ⪯ on the set of its cubes plays an important role. When we switch to com-
paring different cubillages, the concept of a flip — a certain local reorganization of
a cubillage— comes to the fore. Such a reorganization can most easily be explained
by taking the simplest (after the cube) zonotope Z(d + 1, d), a so-called capsid, for
example. It has only two cubillages, and replacing one by the other is called a flip.
In the general case, a flip is replacement of a ‘capsid’ fragment of a cubillage by
another (‘flipped’) fragment. The main fact concerning cubillages is that flips make
it possible to obtain any cubillage of the zonotope Z(n, d) from any other cubillage.

Another important concept is the concept of membranes, hypersurfaces of a spe-
cial form in a zonogon. We show that any membrane can be embedded in a cubil-
lage.

The combinatorial part of our paper relates cubillages to systems of subsets of
the set [n] = {1, 2, . . . , n}, which indexes the vectors generating a cyclic zonotope
Z(n, d). There are two methods to do this. The first method considers cubillages
from the point of view of their spectra. Each cubillage Q of Z(n, d) (d is the
dimension of the zonotope, whereas n is the number of direction vectors) specifies
a system Sp(Q) of subsets of [n] = {1, 2, . . . , n}, that is, a subset of 2[n]. The set-
system Sp(Q) uniquely determines the cubillage Q. This result raises the question
of which set-systems correspond to cubillages, since an answer makes it possible to
replace geometry by combinatorics. An answer found by Galashin and Postnikov
[14] is that set-systems of this kind have the so-called (d−1)-separation property and

are maximal by size
(
which is

(
n

⩽ d

))
. When maximality by size can be replaced by

maximality by inclusion, we speak about the purity of the corresponding relation.
There is a fundamental investigation of purity problems in [14]. However, that paper
is difficult to read, because its authors worked with arbitrary (not necessarily cyclic)
zonotopes and even with oriented matroids and therefore used the complicated
matroid terminology and techniques. We deliberately confine ourselves to the cyclic
case, which makes the presentation simpler and more accessible (in our opinion).
In the cases d = 2 and d = 3, the property of purity was proved in [20] and [13],
respectively. In the case d ⩾ 4 the answer is negative. To show this we discuss the
situation for n = d + 2 in detail and then show non-purity for n− 2 ⩾ d > 3.

The map of types suggests another transition from geometry to combinatorics.
With each cube of a cubillage we can associate its type, which is a subset of [n] of
size d. This defines a map (which is bijective, as is easy to show) of the cubillage

to the set
(

[n]
d

)
of subsets of size d in [n]. Using this bijection, one can transfer

the natural order ⪯Q from Q to
(

[n]
d

)
. It turns out that the transferred order

also determines the cubillage Q uniquely. Thus, instead of cubillages, one can
work with the class of so-called admissible orders on the discrete Grassmannian
Gr([n], d) =

(
[n]
d

)
. In this way we return to the origin of the theory, the definition

of higher Bruhat orders as admissible orders on the Grassmannian
(

[n]
d

)
. In the

geometric language, the higher Bruhat order B(n, d) is an order on the set Q(n, d) of
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cubillages of the zonotope Z(n, d), or equivalently, on the set M(n, d) of membranes
in the zonotope Z(n, d + 1).

Cubillages have numerous interrelations with other objects in the world of mathe-
matics. For example, there is a connection with the Kadomtsev–Petviashvili equa-
tions, which is so far mainly due to triangulations of cyclic polytopes. We have
already noted that the development of the theory was motivated by Zamolod-
chikov’s equations. Cubillages also provide a natural example of polycategories.
Cubillages and triangulations are related to representations of quivers and finite-
dimensional algebras (for example, see [26]). We will briefly discuss some such
‘external’ relations of cubillages in the appendices. There, as a rule, we will not
give exact definitions and results, indicating only the general outlines of a rela-
tionship. There are four appendices in this paper. They concern the relationship
with polycategories, the relationship with triangulations (and via them with the
Kadomtsev–Petviashvili equations), and a discussion of weak membranes, which
generalize the concept of membranes. A proof of the acyclicity theorem is also
given in an appendix.

First, geometric part

Here we give the basic geometric concepts and facts concerning cubillages of
zonotopes. A combinatorial (set-theoretic) standpoint will be used in the second
part. We try to illustrate everything using two-dimensional cubillages (rhombus
tilings), and sometimes give three-dimensional pictures.

1. Zonotopes

It is natural to begin by recalling facts about zonotopes1 and introducing termi-
nology. A cubillage is, roughly speaking, a regular filling (tiling) of a convex figure
by ‘cubes’ or, more precisely, parallelohedra.

What is a zonotope? We fix a real vector space V (of dimension d > 0) and
a finite set V = (v1, . . . , vn) of n vectors in it. A zonotope Z = Z(V) (generated
by V) is the Minkowski sum of the n line segments [0, vi], i = 1, . . . , n. In other
words, Z consists of points z of the form

∑
i αivi, where 0 ⩽ αi ⩽ 1 for any i =

1, . . . , n. We can also say that a zonotope is the projection of the unit n-dimensional
cube when the basis vectors of the space Rn are taken to the vectors vi. This is
a convex body symmetric with respect to its centre

∑ vi

2 .
Any parallel translation of a zonotope is also called a zonotope. Replacing the

vectors vi by −vi if necessary, we can assume that all of them look in the same
direction, say, upwards with respect to some horizontal hyperplane. Such an oper-
ation replaces the zonotope by a translated zonotope. Now our zonotope has the
lower (root) vertex 0 and the upper vertex v1 + · · ·+ vn.

The simplest example of a zonotope is a cube (more precisely, a parallelohedron,
which for brevity we call a cube). In this case, the system v1, . . . , vn forms a basis
in the space V (and n = d). In what follows, we will deal with fillings of zonotopes
by cubes.

1There is an extensive literature on zonotopes, including [2] and [35].
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It is fairly easy to describe faces of a zonotope (which are also zonotopes of
smaller dimension; see [35], Chap. 7, about coding of faces by signed vectors).
We will make this problem even simpler. First, we assume that the system V is
in general position, that is, that n ⩾ d and any d vectors in the system V form
a basis in V . From now on, this assumption always holds, because we are going to
deal with cubillages of a zonotope Z. Second, we restrict ourselves to describing
only the facets (faces of codimension 1) of Z. Clearly, facets of a general zonotope
are cubes of dimension d− 1.

To specify a facet, we fix d− 1 arbitrary vectors w1, . . . , wd−1 (a subsystem W)
in the system V. Let HW be the hyperplane spanned by W in V . It divides
the remaining vector points V–W into two parts, say, V+ and V−. This yields
two facets (opposite to each other) of the zonotope Z. One of them is formed by
the zonotope (cube) Z(W) rooted at the point

∑
V+, and the other is formed

by the same zonotope but rooted at the point
∑

V−. All facets are obtained in
this way. This shows that

a general zonotope Z has 2
(

n

d− 1

)
facets. (1.1)

We assume here implicitly that d > 1. The case of a one-dimensional zonotope is
somewhat out of the general picture due to its triviality: it is just the line segment
[0, v1 + · · ·+ vn].

We should also say something about vertices of a zonotope and their number.
This is surely well known, but we have not been able to find a good reference.
Therefore, we give a formula (and later discuss its proof):

the number of vertices v(n, d) of a zonotope Z is

2
(

n− 1
⩽ (d− 1)

)
= 2

((
n− 1
d− 1

)
+ · · ·+

(
n− 1

0

))
.

(1.2)

Another useful thing is to look at a zonotope along some direction. Assume
that the direction is specified by some non-zero vector w in V and projects (by
means of the map πw) the space V (and the zonotope Z in it) onto the quotient
space V ′ = V/Rw. For convenience, we again assume here that this vector w is in
general position with respect to the system V. In this case each facet F of Z is
projected injectively to V ′. The entire zonotope Z is projected onto the zonotope
Z ′ = πw(Z) = Z(πw(V)). The boundary ∂Z ′ (of dimension d − 2) is the bijective
image of some (also (d− 2)-dimensional) subcomplex of the boundary of Z, which
can be called the rim (with respect to this projection πw). The rim subdivides
the boundary of Z (non-strictly) into two hemispheres: the upper hemisphere (we
imagine that the projection πw is vertical and upwardly directed) and the lower
hemisphere.

It is convenient to introduce here the terms visible and invisible facets. Again,
we take a general vector w (along which we look at the zonotope Z). Let F be
a facet of Z. This facet F is said to be visible (in the direction w) if for a (relative
interior) point p of this facet, the point p − εw does not belong to Z (for small
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ε > 0). Then the point p+εw belongs to Z for small ε > 0. In other words, p is the
first point in the zonotope when we move from −∞ to +∞ along the line p + Rw.

The visible facets cover the lower hemisphere of the zonotope, while the invisible
facets cover the upper hemisphere. The projection of the upper hemisphere yields
one cubillage of the zonotope Z ′, whereas the projection of the lower hemisphere
yields another cubillage which is symmetric to the former. We will return to this
subject in the next section.

One can project not only along general directions but also, for example, along
the direction of the vector vi, denoting this projection by πi. The πi-projection
of the zonotope Z is again a zonotope Z ′ = Z/vi, which is generated (in the space
V ′ = V/Rvi) by the images of all the vectors v1, . . . , vn except for vi. However,
in this case the rim is not (d − 2)-dimensional but (d − 1)-dimensional (and it is
called a zone or a belt of the zonotope). The zonotope Z is the sum of the zonotope
Z(V − {vi}) and the line segment [0, vi].

After introducing these notions, we can proceed to a proof of (1.2). The zonotope
Z = Z(V) can be represented as the sum of the zonotope Z̃ = Z(V−{vn}) and the
segment [0, vn]. Its vertices are divided into visible and invisible vertices. However,
the visible vertices (with respect to the direction of vn) of Z̃ are the same as the
visible vertices of Z, and for invisible vertices (more precisely, vertices visible in
the opposite direction) the situation is analogous. The only difference is that these
two sets do not intersect in the first case, whereas they intersect in the second case
exactly in the set of vertices of the rim of the zonotope Z̃ in the direction vn. Thus,
the numbers of vertices of Z and Z̃ differ by the number of vertices of this rim,
that is, by the number of vertices of the zonotope Z ′ (being the projection of Z̃
along vn). This yields the relation

v(n, d) = v(n− 1, d) + v(n− 1, d− 1).

In view of Pascal’s rule, it remains to verify (1.2) in the cases d = 1 and d = n.

In the first case, the right-hand side is equal to 2
(

n− 1
0

)
= 2, which is consistent

with the fact that a line segment has two vertices. In the second case the right-hand

side is equal to 2
(

d− 1
⩽ d− 1

)
= 2(2d−1) = 2d, which is consistent with the fact that

a d-dimensional cube has 2d vertices.

2. Cubillages

A cubillage (a fine zonotopal, hyperrhombus, or parallelohedral tiling) is a regular
tesselation (a partitioning, a paving, or a tiling) of a zonotope by cubes. Specifically,
a cubillage Q of a zonotope Z is a set of d-dimensional parallelohedra Q1, . . . , QN

(called plates, tiles, or just cubes) covering Z so that the following two conditions
hold:

(1) two cubes can intersect only in a common face;
(2) facets of the zonotope Z are facets of some cubes in Q.
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More precisely, this is the definition of a cubillage for zonotopes of dimension
d > 1. By definition, a cubillage of a one-dimensional zonotope consists of n line
segments congruent to the segments [0, vi], i = 1, . . . , n.

A face of a cubillage is a face of some cube in Q.

Figure 1. Top and bottom view of a rhombic dodecahedron.

Example 2.1. Let Z be a zonotope Z(v1, . . . , vn), and let us project it along, say,
the direction of vn (denoting the projection by π; see Fig. 1). Then the projections
of facets of the visible part of the boundary of Z form a cubillage of the zonotope
Z ′ = Z(π(v1), . . . , π(vn−1)).

This construction is often viewed in the opposite direction. In this case the
vector system V = {v1, . . . , vn} is called a one-element lifting of the system V′ =
{π(v1), . . . , π(vn−1)} (using the vector vn). A one-element lifting of the system V′

yields a cubillage of the zonotope Z ′ = Z(V′). The famous Bohne–Dress theorem
(see [2] or [35]) states the converse result in a certain sense. We do not give an
exact statement of their theorem, since this would draw us away from our purposes.

The following fact, which is often simply included in the definition of a cubillage,
is useful.

Lemma 2.2. Let Q be a cube of some cubillage Q of a zonotope Z = Z(V). Then
any edge of this cube is congruent to some line segment [0, vi].

Proof. We can assume that d > 1. Let E be some edge of Q. When it is not
on the boundary of the zonotope, there are many cubes around it whose edges
are congruent to E. When going from one cube of this kind to another, we reach
the boundary of the zonotope sooner or later. Then everything follows from the
property (2) in the definition of a cubillage. □

In particular, any cube Q of a cubillage is congruent to the zonotope (cube)
Z(W), where W is a d-element subset of V. The set of indices (or colours, which
are understood as elements of the index set [n] = {1, . . . , n}) of this subset W is
called the type of this cube. In other words, the type of a cube Q is a subset τ(Q) =
{i1, . . . , id} of [n] such that Q is a shift of the zonotope (cube) Z(vi1 , . . . , vid

).
The type of a face of a cubillage is understood similarly. In particular, the type

of an edge of a cubillage is a one-element subset {i} of [n]. We orient each edge of
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the cubillage along the direction of the vector vi. A directed path from the lower
vertex 0 to the upper vertex v([n]) along edges of the cubillage is called a snake.
We will see later that an edge of colour i occurs exactly once in a snake. If c(i) is
the colour of the ith edge (arrow) of some snake, then we have a bijection of [n]
onto [n], that is, a permutation of [n]. This permutation can also be understood as
a linear order on [n] in which the minimal element is the colour of the first edge of
the snake.

Assigning to a cube Q of a cubillage Q its type τ(Q) results in a map τ =

τQ : Q →
(
V
d

)
to the set of d-element subsets of V.

Proposition 2.3. The map τ is a bijection. In particular, the number of cubes in

any cubillage is
(

n

d

)
.

We prove this in the next section. Here we give a simple corollary.

Corollary 2.4. The number of vertices of any cubillage is
(

n

⩽ d

)
.

Indeed, we choose some general direction w for projecting (viewing). It can be
seen from (1.2) that all but two vertices of each cube Q of a cubillage lie on the rim
of this cube. There is one interior vertex on the visible half-boundary of Q, and
similarly, there is one interior vertex on the invisible half-boundary. We denote the
latter vertex of the cube, the farthest from us, by h(Q). It is easy to see that
the map h (from Q to the set of vertices of Q) is injective. Its image contains
all vertices except for the ones on the visible part ∂−Z of the boundary of Z.
The π = πw-projections of the facets of ∂−Z form a cubillage of the zonotope Z ′ =

Z(π(V), d−1), which, by the induction assumption, has
(

n

d− 1

)
+· · ·+

(
n

1

)
+

(
n

0

)
vertices.

3. Pies

Let Q be a cubillage of a zonotope Z = Z(V), where V = {v1, . . . , vn}. In what
follows, we will consider various interesting subsets of Q: pies, tunnels, garlands
(tread-beads), stacks, capsids, and so on. We start with pies.

Definition 3.1. The pie of colour i ∈ [n] in a cubillage Q is the set Pi of cubes
of Q that contain the colour i in their types, that is,

Pi = {Q ∈ Q, i ∈ τ(Q)}.

(Some authors also call them de Bruijn sections.) The body of the pie Pi is the
union of the cubes in Pi as subsets of the vector space V , and is a closed subset
of the zonotope Z = Z(V). The body of the pie Pi intersects the boundary of the
zonotope in the belt of colour i (see § 1).

Main Lemma on pies 3.2. The body of the pie Pi is a trivial fibration over the
zonotope Z ′ = πi(Z) (where πi is the projection along the vector vi ; see above) with
fibre [0, vi].



Cubillages of cyclic zonotopes 1021

Proof. In each cube P of the pie P = Pi, we take the middle cross-section MP
parallel to a facet of the cube whose type does not contain the colour i (that
is, P is the (suitably translated) Minkowski sum of MP and the line segment
[−vi/2, vi/2]). These cross-sections glue together into a (d − 1)-dimensional
complex MP: the middle cross-section of the pie.

Let p be a point in MP. For sufficiently small ϵ > 0 we consider the ϵ-neighbour-
hood Ω(p, ϵ) of p in Z. If (a) p lies in the interior of the pie P, then Ω(p, ϵ) is the
d-ball with radius ϵ about p, which lies in the interior of the body of P. If (b) p lies
on the boundary of P, then p lies on the middle cross-section of the belt of colour
i in the boundary of Z, and Ω(p, ϵ) looks (up to a deformation) like a half-ball
containing a ‘disk’ in this belt.

Consider the section S(p, ϵ) = Ω(p, ϵ) ∩ MPi and its πi-image in Z ′. In the
case (a), the neighbourhood Ω(p, ϵ) (with a small ϵ) either belongs to one cube of
the pie or is divided into pieces of several cubes of the pie that contain a common line
segment through p which is parallel to vi. As a consequence, the cross-section S(p, ϵ)
is homeomorphic to a (d−1)-dimensional disk with centre p, and the projection πi is
injective on S(p, ϵ) and maps it to a small neighbourhood of the point πi(p) in the
interior of the zonotope Z ′. Similarly, in the case (b) the projection πi is injective
on S(p, ϵ) and maps it onto a small neighbourhood of πi(p), which is now on the
boundary of Z ′. (Note that the boundary of MPi is the middle cross-section of
the belt of colour i of Z, and it is bijectively mapped to the boundary of Z ′ by πi.)

Thus, πi defines a local homeomorphism of a small neighbourhood of each point
p of MP to a neighbourhood of the point πi(p) in Z ′, that is, it is an étale map
of MP to Z ′. In view of the fact that MP is compact, πi : MP → Z ′ is a finite
non-ramified covering (for example, see [3], Chap. I, § 4, Corollary 2 to Theorem 1).
Since the zonotope Z ′ is simply connected and MP is connected (which follows
from the connectivity of the middle cross-section of the belt of colour i in Z), this
covering has multiplicity one, that is, πi is a global homeomorphism between MPi

and Z ′. This implies the required assertion. □

Remark 3.3. Pies (or even better, their middle cross-sections) resemble hyperplanes
in their properties. Like the latter, they divide the zonotope into two domains
(before and after). In addition, any d pies intersect in a single cube (their middle
cross-sections intersect in one point). Thus, the system of all pies replaces an
arrangement of hyperplanes in a certain sense. It is not without reason that Manin
and Shekhtman began this theory with arrangements of hyperplanes.

The projection of the complex MPi (or of the entire pie Pi) yields a cubillage
πi(Pi) of the zonotope Z ′ = πi(Z) = Z/vi. This (d − 1)-dimensional cubillage is
denoted by Pi/vi and called the contraction of the pie of colour i in the cubillage Q.

The first consequence of the main lemma on pies is the above assertion about
snakes. Recall that a snake is a directed path along edges (arrows) of a cubillage
from the lower (root) vertex of the zonotope to the upper vertex. The colours of
the edges of a snake are stated to be bijective to the set [n], that is, each colour
i ∈ [n] occurs exactly once as the colour of an edge of a snake. Indeed, the pie Pi

of colour i divides the zonotope into three parts: the part below Pi, Pi itself, and
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the part above Pi. Our snake must intersect the pie (as we move from the root
to the top), and thus it must contain an arrow of colour i. Such an intersection is
unique since after intersecting the pie the snake is in the upper part of the zonotope
and can no longer leave it (all arrows of colour i in the pie point upwards).

This consequence makes it possible to introduce the important notion of the
spectrum (the set of colours) of a vertex of a cubillage, which will play a central role
in the combinatorial part of this study. Specifically, for a vertex v of a cubillage
we consider an upwards directed path from 0 to v along edges (arrows) of the
cubillage. Obviously, such a path exists (but may not be unique). This path is
a starting piece of some snake, and therefore the colours of its edges form a subset
of [n]. This subset does not depend on the choice of a path. We denote it by sp(v)
and call it the spectrum of v. The independence of the choice of a path can be seen
from another description of sp(v): a colour i belongs to sp(v) if and only if the pie
Pi lies below the vertex v (so that it separates v from the root vertex 0). We also
note that sp(v) does not depend on Q. Indeed, we have

v =
∑

i∈sp(v)

vi.

Along with pies, we can consider objects in a cubillage Q which are dual in
a certain sense and are called tunnels. We fix a subset D of [n] of size d − 1 and
include in a set TD the cubes whose type contains D (the tunnel of type D). Each
cube Q in TD has two facets of type D. Let F be a facet of this kind; then either
it is a facet of the zonotope Z or our cube Q is adjacent to another cube Q′ in TD

across this facet. Repeating this procedure with Q′, we obtain an adjacent cube Q′′,
and so on until we reach a facet of Z. (This construction was already used in the
proof of Lemma 2.2.) Thus, a tunnel is a set of several thick paths (or cycles) inside
a cubillage. In fact, we can easily see that a tunnel is a connected chain of cubes
going from one (visible) part of the boundary of Z to another (invisible) part. This
is indeed so, since each tunnel of type D intersects each pie Pi (where i /∈ D) in
exactly one cube (of type Di) and consists precisely of n− d + 1 cubes.

Let us now turn to the proof of Proposition 2.3 (which is close to Shephard’s
reasoning in [29] on the number of cubes in a cubillage of a zonotope). We use
induction on d. For d = 1 the assertion is trivial. Now let d > 1. We take some
d-subset D ⊂ [n] and show that there exists a unique cube Q of type D in our
cubillage Q. To do this we choose one of the colours in D (say, i) and consider the
pie Pi of colour i. Let πi : Z → Z ′ = πi(Z) be the projection along the vector vi.
As we said above, the projection of Pi yields a cubillage πi(Pi) of the zonotope Z ′.
By the induction assumption it contains a unique cube Q′ (of dimension d− 1) of
type D− i. The cube Q in Pi, projected onto Q′, has type (D− i)∪{i} = D. This
proves the existence and the uniqueness of a cube of type D.

4. Reductions and expansions

We continue deducing consequences of the structure of pies. Again, let us assume
provisionally (and for clarity) that the vector vi (of arbitrary colour) is directed
vertically upwards, so that we look at the zonotope Z from the bottom up. The pie
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P = Pi divides Z into three parts: the pie P proper; the part lying non-strictly
below P (including the lower boundary of P), which we denote by Z−; and the
upper part Z+.

Figure 2. A pie and its gradual reduction.

The reduction of a cubillage Q by a colour i is the cubillage Q−i of the zonotope
Z(V − {vi}) obtained as follows: the lower part Z− remains intact (along with all
its cubes), while the upper part Z+ is shifted downwards by the vector −vi (also
along with all its cubes). Then the pie P disappears, or better to say, contracts
to its lower boundary, thus turning into what we will later call a membrane. This
membrane M = Z−∩|Pi| is called the seam (or scar) remaining after the operation
of reduction. See Fig. 2.

The operation of reduction is invertible: if the membrane (seam) M is widened
by means of the line segment [0, vi] (by shifting the part of the reduced cubillage
lying above the seam by the vector vi), then we return to the original cubillage Q.
This inverse operation is called expansion.

Generally, if there are a cubillage Q̃ of the zonotope Z̃ = Z(V − {vi}) and
a membrane M (that is, a (d−1)-dimensional subcomplex of Q which is projected
bijectively onto Z̃ ′ = π(Z̃) under the vertical projection) in it, then we can expand
M by the vector vi and obtain some cubillage Q of the zonotope Z. This operation
is called the expansion of a membrane M in a cubillage Q̃ in the direction of vi.

Corollary 4.1. A cubillage of a zonotope Z(V) is determined by the set of its
vertices.

Proof. Let Q and R be two cubillages of the zonotope Z(V) which have the same
set of vertices. We choose some colour, say, n, and perform the reduction of this
colour in Q and R. As a result, we obtain two new cubillages Q−n and R−n

(of the zonotope Z(V − {vn})) with seams S and T . The seam S consists of the
merged vertices v and v′ such that sp(v′) = sp(v) ∪ {n}. For T the situation
is analogous. Hence these two seams coincide, as do the sets of vertices of the
cubillages Q−n and R−n. We deduce by induction that the cubillages themselves
coincide: Q−n = R−n. The original cubillages Q and R are obtained by the
n-expansion of the common seam S = T . Thus, they also coincide. □
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Since we are considering vertices of a cubillage, the question arises as to which
points (or collections of points) in the interior of a zonotope Z = Z(V) can be
vertices of some cubillage of this zonotope (can be embedded in a cubillage). One
requirement is evident (see above for the definition of the spectrum): these points
must be of the form v(S) =

∑
i∈S vi for some subset S ⊂ [n]. Points of this form

are called integer points, and this condition is assumed to hold in what follows.
We will return to this problem in the second part of our paper, but for now, we
just give a simple result in this direction. Specifically, we claim that any single
integer point can be embedded in some cubillage. In fact, even more is true: any
subzonotope can be embedded in some cubillage. More precisely, the set of vertices
of any subzonotope T ⊂ Z can be embedded in some cubillage of the zonotope Z.
We assume here that T is the shift of the zonotope Z(W) by an integer point v(S),
where W ⊂ V and S does not intersect the index set W.

Proposition 4.2. Any subzonotope T of a zonotope Z = Z(V) (and any cubillage
of T ) can be embedded in some cubillage of Z .

Proof. We use induction on n (or on the size of V−W). Let t(T ) be the upper vertex
of the subzonotope T . We assume first that this vertex is not the upper vertex of the
full zonotope Z. In this case, the set sp(t(T )) differs from [n]. Let i be an arbitrary
colour not belonging to sp(t(T )). Then T lies in the zonotope Z ′ = Z(V − {i})
and, by the induction assumption, can be embedded in some cubillage Q′ of the
zonotope Z ′ = Z(V − {i}). It remains to perform an expansion by the colour i.
See Fig. 3.

Figure 3. Subzonogon T in the zonogon Z(7, 2).

Hence, we can assume that the upper vertices of T and Z coincide. Arguing
symmetrically, we can assume that the lower (root) vertices also coincide. Then T
and Z coincide, and the assertion holds trivially. □

Expansion of the membrane M can be performed not only in the direction of the
vector vi but also in any close direction v′i. More precisely, it is not important that
these directions are close but only that vi and v′i point in the same direction with
respect to all plates ((d−1)-dimensional faces) of M . Expanding the membrane M
in the direction of v′i, we obtain another cubillage of another zonotope, though in
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a certain sense it resembles the old one, is similar to it. Let us briefly elaborate on
this.

When dealing with a zonotope Z(V) and its cubillages, we fixed some vector
configuration V. However, it is intuitively clear that small perturbations of V have
no effect on the structure of cubillages. More precisely: assume that we have two
configurations of vectors V = {v1, . . . , vn} and W = {w1, . . . , wn} (in the same
d-dimensional space V and with the same number n of vectors). Then V and W
are said to be similar if for any subset B ⊂ [n] of size d, the determinants det(vB)
and det(wB) have the same sign (or the corresponding bases vB and wB have the
same orientation).

Provided that the configurations V and W are similar, for any cubillage Q of
Z(V) we can naturally construct a similar cubillage Q′ of Z(W) that has the same
combinatorial structure as Q. To be precise, let Q be a cube of a cubillage Q; it
has a root vertex v and a type τ(Q) ⊂ [n]. There is a path P from the starting
vertex 0 of the zonotope Z(V) to the vertex v along arrows of the cubillage of the
zonotope Z(V). We take a corresponding path P ′ in Z(W) and regard its endpoint
v′ as the image of the vertex v. Clearly, this construction does not depend on the
choice of the path P . The image of Q is a cube of the same type as that of Q, which
is rooted at v′. We thus obtain a new set Q′ of cubes in Z(W), and we only need
to verify that these cubes do not overlap. It suffices to do this for adjacent cubes,
that is, if cubes Q and R of Q are adjacent (across a common facet F ), then their
images Q′ and R′ (which obviously have a common facet F ′) must be separated
by F ′.

Assume that the facet F (that is, a cube of dimension d−1) has type τ(F ). The
cubes Q and R are obtained by supplementing the vectors vτ(F ) with some vectors
vi and vj . Since they are separated by F , the orientations of the bases vτ(F )i and
vτ(F )j are opposite. Then the orientations of the bases wτ(F )i and wτ(F )j are also
opposite, which means that the cubes Q′ and R′ are separated by F ′.

This fact shows that the structure (and variety) of cubillages of Z(V) depends
only on the oriented matroid generated by the vector configuration V. We will
actively use this simple observation when we consider totally positive configurations.

5. Cyclic (totally positive) vector configurations

So far, configurations V of vectors in the space V have actually been arbitrary
(apart from the condition of general position). From now on, we restrict ourselves
to more special configurations commonly said to be cyclic or totally positive. Here
and below, we assume that V = Rd (with basis e1, . . . , ed). Moreover, the order in
which the vectors vi are indexed will now play an important role (that is, the set
of indices (colours) [n] will be endowed with the natural order 1 < 2 < · · · < n).

Definition 5.1. A vector configuration V = (v1, . . . , vn) is said to be totally posi-
tive (or, briefly, cyclic) if for any (increasing) collection of d colours i1 < i2 < · · · <
id in [n] the determinant of the matrix Mat(vi1 , . . . , vid

) formed by the column
vectors vij

is positive.
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Cyclic configurations are similar to each other and are determined by the two
numbers d and n ⩾ d. For this reason, in what follows the cyclic zonotope Z(V)
will be denoted simply by Z(n, d), while the set of its cubillages will be denoted by
Q(n, d).

A convenient representative for such a configuration can be obtained as follows.
We map the line R to Rd by the map

vd(t) = (1, t, t2, . . . , td−1).

(When d is clear from the context, we omit the index d and just speak of v. The
image of the line R under this map is called the Veronese curve or the moment
curve.) When we take a finite subset {t1 < · · · < tn} of R, we obtain a configuration
of vectors V consisting of the vectors vi = v(ti), i = 1, . . . , n. This configuration is
totally positive, as can be seen from the formula for Vandermonde determinants.

For cyclic configurations we note two properties which are important in what
follows. When some element k is excluded from [n], the configuration remains
cyclic. Thus, we can speak about the projections πk : Z(n, d) → Z([n] − {k}, d)
and the corresponding reductions of cubillages (see above). The second property
(applicable to Veronese configurations) consists in the following: when we use the
canonical projection π of Rd onto Rd−1 (the projection along the last basis vector ed,
or the ‘forgetting’ of the dth coordinate), a cyclic configuration is taken to a cyclic
configuration. In particular, we obtain the projection π : Z(n, d) → Z(n, d − 1),
which is useful for induction on d. We also note that this projection π (along
the dth coordinate axis) can be understood as the projection along the direction
of v(+∞), since the direction of the vector v(t) tends to the direction of ed for
large t. The interest in cyclic configurations is explained by the fact that cubillages
of cyclic zonotopes are closely related to higher Manin–Shekhtman orders, which
we will discuss in the combinatorial part of this paper.

We have already discussed the reduction of colours for general zonotopes. In the
case of cyclic zonotopes, the reduction of the highest colour n plays a particularly
important role. The thing is that the seam remaining after such a reduction is
a membrane with respect to the projection π along the dth coordinate axis. We
will go more into this in the next section.

6. Membranes

We recall the definition of a membrane in a cubillage.

Definition 6.1. Let Q be a cubillage of the cyclic zonotope Z = Z(n, k). A mem-
brane of Q or a membrane embedded in Q is a (d− 1)-dimensional subcomplex M
of Q that is projected bijectively onto the zonotope Z(n, d−1) (under the projection
π along the last, dth, coordinate).

The set of membranes of a cubillage Q is denoted by M(Q).
Therefore, a membrane is an (d−1)-dimensional film in Z (formed by faces of Q)

which is homeomorphic to the (d− 1)-dimensional disk whose border is exactly the
rim of the zonotope Z with respect to the projection π. A membrane subdivides
the zonotope into two parts: the part located non-strictly before the membrane
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(Z−(M )) and the part located non-strictly after it (Z+(M )). The projection of
cells of M (its (d − 1)-dimensional cubes called plates) yields a cubillage of the
zonotope Z ′ = Z(n, d− 1) = π(Z), which we denote by π(M ).

It is not a priori clear whether there even exist membranes or how many of them
there are. We will see later that there are a lot of them. For the present, we give
an example of two important membranes.

Example 6.2. We have already discussed this in § 2. Let us go back in the cyclic
case. We consider the visible part of the boundary of Z (in the direction of the dth
coordinate), which we denote by ∂−Z. Obviously, it is a membrane (of any cubillage
of the zonotope Z), and its projection π(∂−Z) yields a cubillage of the zonotope Z ′

which we say is standard (the corresponding rhombus tilings of a two-dimensional
zonogon were so called in [4]). The invisible part ∂+Z of the boundary yields an
antistandard cubillage of Z ′.

A universal way to obtain membranes is reduction of the highest colour. Let Q
be a cubillage of the zonotope Z = Z(n, d). Let Q̃ = Q−n be the cubillage of the
zonotope Z̃ = Z(n− 1, d) obtained by reduction of the colour n. Then the seam S
from this reduction is a membrane. In fact, replacing the vector vn by the dth basis
vector ed = (0, . . . , 0, 1) in Rd leads to a similar configuration of vectors. Therefore
(see § 4), we can expand the seam S in the direction of ed and obtain a cubillage
Q′ similar to Q. This means (see the main theorem in § 3) that S is projected
bijectively onto the zonotope π(Z) = Z(n, d− 1).

Conversely, given a membrane M in a cubillage Q̃ of the zonotope
Z̃ = Z(n − 1, d), we can expand this membrane in the direction of a new vector
vn = v(tn), where tn > tn−1. The thing is that the direction specified by vn is also
transversal to M (as is also the direction of v(+∞)). We discussed that in § 4. As
a result, we obtain a new cubillage Q of Z = Z(n, d). The ‘widened’ membrane
M + [0, vn] becomes the pie of the highest colour n in Q. Reducing this colour, we
return to the original cubillage Q̃.

Thus, the pair (Q̃, M ), where Q̃ is a cubillage of the zonotope Z̃ = Z(n− 1, d)
and M is a membrane in Q̃, determines a cubillage Q of the zonotope Z = Z(n, d).
All cubillages of Z can be obtained in this way. Indeed, let Q be an arbitrary
cubillage of Z. We take the pie P of colour n in it and reduce it. The seam S
from this reduction, as already mentioned, is a membrane for the reduced cubillage
Q̃ = Q−n of the reduced zonotope Z(n − 1, d). Expansion of this membrane S
takes us back to the original cubillage Q.

This discussion can be summarized as follows.

Proposition 6.3. Specifying a cubillage of the zonotope Z(n, d) is the same as
specifying the pair (Q̃, M ), where Q̃ is a cubillage of the zonotope Z(n − 1, d)
and M is a membrane for Q̃ .

In other words, there exists a natural surjective map

Q(n, d) → Q(n− 1, d).

Its fibre over any point Q ∈ Q(n−1, d) coincides with the set M(Q) of membranes
for Q.
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Example 6.4. The standard cubillage of the zonotope Z(n, d) can be obtained
from the standard cubillage of the zonotope Z ′ = Z(n− 1, d) using the rear mem-
brane ∂+Z ′ (the invisible part of the boundary of Z ′). See Fig. 7, where d = 2.

Indeed, we have defined the standard cubillage of Z(n, d) to be the image of the
front (visible) membrane ∂−Z(n, d+1) of the zonotope Z(n, d+1). But what does
the latter look like? The zonotope Z(n, d+1) can be obtained from Z(n−1, d+1) by
adding the line segment [0,vd+1(n)]. Correspondingly, its visible boundary consists
of the visible boundary ∂− of Z(n−1, d+1) plus facets of the form F +[0,vd+1(n)],
where F runs through the set of invisible facets (in the direction of the coordinate d)
of this visible boundary ∂−. When we project along the coordinate d + 1, the first
part turns into the standard cubillage of the zonotope Z ′ = Z(n− 1, d), while the
facets F turn into invisible facets of this Z ′, thus forming together the invisible
boundary of Z ′. Therefore, the second part is projected exactly onto the expansion
(by the colour n) of the rear (invisible) membrane of Z ′.

Similarly, the antistandard cubillage can be obtained by the expansion of the
front (visible) membrane ∂−Z ′ of the antistandard cubillage of the zonotope Z ′ =
Z(n− 1, d) by the colour n.

7. Cubes and flops

We consider more closely the case of the cube, that is, the zonotope C = Z(d, d).
It has only two membranes: the visible (front) membrane ∂−C and the invisible
(rear) membrane ∂+C, which yield the standard and antistandard cubillages of
the zonotope Z(d, d − 1) after the projection π. It can be seen from counting the
number of vertices of the rim (see (1.2)) that there is exactly one interior vertex t
on the front membrane (we call it the tail) and one interior vertex h on the rear
membrane (we call it the head).

We will speak more specifically about the spectra of these vertices. For this
purpose, we return to § 1, where we described the facets of a zonotope. We can do
the same here to describe the vertices t and h. Recall that the vectors v1, . . . , vd

were specified by numbers t1 < · · · < td, and let vi = v(ti). Take some numbers
s1, . . . , sd−1 alternating with the tj , that is, t1 < s1 < t2 < · · · < td−1 < sd−1 < td.
As a linear functional on the space Rd, take det(v(s1), . . . ,v(sd−1), ·). Note that
this functional is positive on the vectors vd and ed. It is also positive on the vectors
vi when i has the same parity as d, and it is negative on vi when the parity of i is
opposite to that of d. It follows that the head vertex h is the sum of vectors vi such
that d− i is even, while the tail vertex t is the sum of vectors vi such that d− i is
odd. Thus, sp(h) = {d, d−2, . . . }, whereas sp(t) = {d−1, d−3, . . . }. For example,
in the case d = 3 (see Fig. 4) we have sp(t) = 2 and sp(h) = 13 (here and below,
13 denotes the set {1, 3}). Obviously, the union of these sets (spectra) yields the
entire set [d].

The t → h arrow is called the chord of the cube C. In the case when d is even,
the chord is horizontal, whereas it raises by 1 for odd d, as can be seen from Fig. 4.
Here the difference between even and odd d manifests itself for the first time.

After considering an isolated cube, we pass to the general situation. Let Q be
a cubillage of the zonotope Z = Z(n, d) and let Q be some cube of this cubillage,
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Figure 4. The tail and the head.

Figure 5. Garland in the zonogon Z(5, 2).

with tail tQ, head hQ, and chord tQ → hQ. When we do this with each cube of the
cubillage, the chords give the structure of an oriented graph on the set of vertices
of Q. This graph consists of the paths (threads) connecting (interior) vertices of the
front membrane ∂−Z with (interior) vertices of the rear membrane ∂+Z. Each cube
is ‘strung’ on its chord, and the cubes strung on paths look like garlands (see Fig. 5).
Assuming that the vertices of the rim are connected with themselves by paths of
length 0, we obtain an interesting (and little studied) garland bijection of the set
of vertices of the front membrane to the set of vertices of the rear membrane of Z.
In fact, we obtain more: something like a braid going from the vertices of the front
membrane to the vertices of the rear membrane.

Of course, we cannot limit ourselves to boundary membranes. If M and M ′ are
two arbitrary membranes (in the same cubillage), then each garland pierces each
membrane exactly once. Thus, we obtain a garland bijection between the set of
vertices of M and the set of vertices of M ′. This shows again that the number
of vertices of each membrane is the same as that of the standard membrane. In
fact, we have more: all membranes in the zonotope Z(n, d) with even d have the
same number of vertices at each height. Or: each cubillage of the zonotope Z(n, d)
with odd d has the same number of vertices on each level.

Example 7.1. We illustrate the garland bijection using the standard cubillage of
the zonotope Z(4, 3) as an example. As already noted in the previous section, this
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cubillage is obtained from the cube C = Z(3, 3) using the expansion by the colour
4 of the rear side of this cube. The rear side ∂+C consists of three plates (rhombi),
and hence the standard cubillage of Z(4, 3) consists of four cubes: the original
cube C and the three cubes expanded from these plates. All this is shown in Fig. 6,
where the first cube C is pulled out and slightly moved away for clarity.

Figure 6. Garland map for the standard cubillage of the zonotope Z(4, 3).

The front side (or the membrane) of Z(4, 3) contains three vertices with the
spectra 2, 3, and 23, in addition to the peripheral vertices (lying on the rim). Since
the garland map γS is trivial on the rim, we need to see where these three vertices
2, 3, and 23 are mapped to by γS . It can be seen from Fig. 6 that 2 is first mapped
to the point 13, which is then mapped to the point 124. The point 3 is sent to 14,
while the point 23 is taken to 134. Finally, we have

γS :


2 7→ 124,

3 7→ 14,

23 7→ 134.

Reasoning similarly, one can verify that the garland map γA (for the antistandard
cubillage of Z(4, 3)) is structured as follows:

γA :


2 7→ 14,

3 7→ 134,

23 7→ 124.

However, this can also be seen from the following general considerations. An
arbitrary zonotope Z is symmetric with respect to its centre. We denote this
symmetry by α. For any cubillage Q we can consider the symmetric cubillage
αQ of the same zonotope Z. Then the standard cubillage is transformed into
the antistandard cubillage, and vice versa. We let S denote the vertices of the
zonogon on the front side of Z, and we let A denote the vertices on the rear side.
The involution α gives a bijection of S to A, and a subset X is mapped to its
complement [n]−X.
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Proposition 7.2. If γQ : S → A is a garland bijection associated with a cubil-
lage Q , then γαQ = α−1γQα.

Proof. Each chord of a cube Q is mapped to the oppositely directed chord of the
cube αQ by the involution α. □

Let M be a membrane in some cubillage Q. Assume that some cube Q of Q
touches the membrane along the entire visible boundary ∂−Q. (We will see below
that such a situation is not exceptional and is constantly encountered.) In this
case we can form a new membrane M ′ coinciding with M everywhere except that
this fragment ∂−Q is replaced by the new fragment ∂+Q. In other words, if the
membrane M was positioned ahead of the cube C, then it is now behind C. We
say that M ′ is obtained from M by a raising flop (while M is obtained from M ′

by a lowering flop).
This can be expressed slightly differently. We let Q−(M ) denote the collection

of cubes of Q located before the membrane M . Then Q−(M ′) is obtained by
adding exactly one cube Q to Q−(M ). Thus, the membrane is moved away from
us by raising flops, capturing cubes of the cubillage one by one in turn, until it
reaches the rear boundary of the zonotope.

8. Capsids and flips

After thoroughly treating the case of the cube, we naturally pass to the zonotope
Z = Z(d + 1, d) next in complexity. For brevity we will call this zonotope (or
a subzonotope of a larger zonotope Z(n, d)) a capsid.2

The capsid can be represented as a projection of the (d + 1)-dimensional cube
Ẑ = Z(d + 1, d + 1). The projection of the front membrane of this cube yields the
standard cubillage of the capsid Z. The projection of the tail tẐ yields the only
central vertex (not lying on the rim) of the standard cubillage, which we denote
by cst. Its spectrum sp(cst) is {d, d− 2, . . . }. This vertex is surrounded by cubes of
the standard cubillage of the capsid on all sides, and it is a vertex of each cube
of this cubillage. Symmetrically, the invisible membrane contains the central vertex
can of the antistandard cubillage of the capsid, with the spectrum {d+1, d−1, . . . }.
For example, for d = 2 we have

sp(cst) = 2 and sp(can) = 13,

while for d = 3 we have

sp(cst) = 13 and sp(can) = 24.

From Corollary 4.1 we conclude that the capsid has only the two cubillages
described above. Let us summarize the above.

Proposition 8.1. The capsid Z(d + 1, d) admits only two cubillages: the standard
and antistandard cubillages. The standard cubillage is characterized by the fact that
it contains the vertex cst with the spectrum {d, d−2, . . . } in addition to the vertices

2The term was borrowed from virology. It is the name of the protein shell of a virus, which is
usually polyhedral (like a rhombic dodecahedron, that is, Z(5, 3)).
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of the rim. Symmetrically, the antistandard cubillage is characterized by the fact
that it contains the vertex can with the spectrum {d + 1, d − 1, . . . } in addition to
the vertices of the rim.

The assertion about the two cubillages of the capsid can also be deduced from
Proposition 6.3, which says that specifying a cubillage of the capsid Z(d + 1, d) is
the same as specifying a membrane in the cube C = Z(d, d). However, the cube has
only two membranes: the visible part of the boundary ∂−C and the invisible part
of the boundary ∂+C. Correspondingly, the capsid Z(d + 1, d) has two cubillages.
One of them is obtained by the (d + 1)-expansion of the rear membrane ∂+C; this
is the standard cubillage. The other (antistandard) cubillage is obtained by the
expansion of the front membrane ∂−C. See Fig. 7.

Figure 7. Expansion of the membranes of the cube.

We now assume that there is a cubillage Q of an arbitrary zonotope Z(n, d) and
a fragment in it of the form Z(d + 1, d) (that is, the boundary of this capsid is
a subcomplex of the complex Q). The restriction of Q to this capsid Z(d + 1, d)
is the standard or antistandard cubillage. Replacing the cubillage of this fragment
by the opposite cubillage is called a flip (a raising flip if the standard fragment is
replaced by the antistandard one, and a lowering flip otherwise). Flips transform
Q into some new cubillage Q′ which differs from Q only locally, inside the capsid.

The connection of flips with the flops considered in the previous section is obvi-
ous. Assume that a cubillage Q of the zonotope Z(n, d) is obtained as the projection
of a membrane M in a cubillage Q̂ of the larger zonotope Ẑ = Z(n, d+1), and per-
form a (say, raising) flop with this membrane, thus replacing it by a membrane M ′.
Then the projection Q′ of the new membrane M ′ is obtained by applying a (raising)
flip to the cubillage Q′.

We will see below that there are many flips, at least in the sense that by using
lowering flips one can obtain the standard cubillage Qst from any cubillage Q.
However, regardless of this fact, we can introduce a notion of order on the set
Q(n, d). More precisely, Q ⩽ Q′ if the cubillage Q′ can be obtained from the
cubillage Q using a series of raising flips. To show that there are many flips, it is
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Figure 8. The relation ≺ on a cubillage of the zonogon Z(5, 2).

useful to introduce the important notion of the natural order on the set of cubes of
an arbitrary cubillage.

9. Ordering cubes in a cubillage

Let Q be a cubillage of the (cyclic) zonotope Z(n, d) ⊂ Rd. It turns out that
the cubes of this cubillage can be partially ordered in a natural way. Roughly
speaking, this is the ascending order of the dth coordinate. We can formulate this
more correctly: the order is based on whether one cube is positioned after another
when viewed in the direction of the dth coordinate.

Let Q be a cube of Q and let F be a facet of Q. Then this facet is said to be
visible (or illuminated) if there exists a line (in Rd) that is parallel to the coordinate
vector ed and that first intersects F and only then enters Q. The opposite (to F
in Q) facet is said to be invisible or shaded. Obviously, half of the 2d facets of
a cube are visible and the rest are shaded.

Now let Q and Q′ be two cubes of Q. Then Q is said to immediately precede Q′

(which we denote by Q ≺ Q′) if Q and Q′ are adjacent across a facet F which is
invisible for Q and visible for Q′. Thus, a binary relation ≺ (or more precisely, ≺Q)
is defined on Q.

Fig. 8 suggests the following generalization.

Proposition 9.1. The relation ≺ is acyclic.

This assertion (as well as the following lemma) is proved in Appendix D. The
lemma applies to the following situation. Let P = Pn be the pie of the highest
colour n in a cubillage Q of the zonotope Z = Z(n, d). Reduction of this pie yields
a cubillage Q̃ of the zonotope Z̃ = Z(n−1, d) and a seam (membrane) M in Q̃. By
projecting M along the dth coordinate axis ed, we obtain the cubillage Q′ = π(M )
of the zonotope Z ′ = Z(n, d− 1).

Now let Q and R be two cubes of P related by the immediate precedence relation
R ≺ Q. Reduction transforms the cubes Q and R into plates (facets) γ(Q) and
γ(R) of the membrane M . Their images under the projection π are cubes Q′ and R′
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of the cubillage Q′. It is obvious that Q′ and R′ are also adjacent in Q′ and can
be compared by the immediate precedence relation ≺′ in Q′.

Lemma 9.2 (on the reverse). If R and Q are cubes in the pie P and R ≺ Q, then
Q′ ≺′ R′ .

Figure 9. On the left, the cubes R and Q in a pie satisfy the relation
R ≺ Q. On the right, the cubillage Q′ obtained by contracting the pie is
shown. The reverse relation Q′ ≺ R′ holds for the corresponding cubes R′

and Q′.

A direct corollary of the lemma on the reverse is that the restriction of the
relation ≺ to the pie P (of colour n) is the reverse of the relation ≺′ for the
cubillage Q′ (here we identify the set P with Q′ via the maps P 7→ γ(P ) 7→ P ′).
This is shown for the zonotope Z(5, 2) in Fig. 9.

Definition 9.3. The natural order on a cubillage Q is the reflexive transitive clo-
sure of the relation ≺; we denote it by ⪯ or ⪯Q.

By definition, the relation ⪯ is a pre-order. The non-trivial part is that it is an
order, that is, it is antisymmetric (Q ⪯ Q′ and Q′ ⪯ Q imply that Q = Q′). It is
this fact that yields Proposition 9.1.

Example 9.4. Let Q and Q′ be two cubes in the same tunnel and let Q′ be posi-
tioned after Q as we go from the visible boundary of the zonotope toward the
invisible boundary. Then Q ⪯ Q′.

Example 9.5. Let the cube Q partially shade Q′, that is, assume that there is
a line parallel to the coordinate vector en that pierces (intersects in an interior
point) Q prior to Q′. Then Q ⪯ Q′. Indeed, we need to consider a chain of
cubes Q1, . . . , Qk crossed by this line on the way from Q to Q′. Then we have
Q ≺ Q1 ≺ · · · ≺ Qk ≺ Q′.

Note that we could start from this stronger shading relation and obtain (upon
transitive closure) the same relation ⪯.

Example 9.6. Let the cube Q′ be located immediately after a cube Q in some
garland (that is, the head of Q coincides with the tail of Q′; see § 7). Then Q
shades Q′, and in view of the previous example Q ⪯ Q′.
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Figure 10

Let Q be a cubillage and let Q−i be the reduction of Q by the colour i. As a set of
cubes, Q−i is identified with Q−Pi, and thus one can regard Q−i as a subset of Q.

Proposition 9.7. The restriction of the order relation ⪯ to Q−i is not weaker
than the order relation ⪯−i on Q−i .

In other words, if Q ⪯−i R for cubes Q and R in the reduced cubillage Q−i,
then Q ⪯ R.

To prove this fact we need to verify that if Q immediately precedes R in Q−i,
then Q ⪯ R. The relation Q ≺−i R means that the cubes Q and R are adjacent in
Q−i across a facet F , and Q is positioned before R. Then two cases are possible.
The first is where F is not a plate of the reduction seam S . Then Q and R are
adjacent even in Q, and everything is obvious. The second case is where F belongs
to the seam. Then it has been obtained by the reduction of the colour i in the cube
S = F + [0, vi]. Obviously, we have Q ≺ S ≺ R (in the cubillage Q; see Fig. 10).

10. The order on cubillage of a capsid

Proposition 9.7 works most simply for the standard cubillage. The thing is that
the reduction Q̃ = Q−n of the standard cubillage Q = Qst of the zonotope Z(n, d)
by the colour n is the standard cubillage (of the zonotope Z(n− 1, d)). Moreover,
contraction of the pie P = Pn of the colour n in Q yields the antistandard cubillage
of the zonotope Z ′ = Z(n−1, d−1). We can use these considerations to completely
describe the natural order on the standard cubillage. We will do this in the case
n = d + 1, that is, for the capsid.

Let Q be the standard cubillage of the capsid Z = Z(d + 1, d). The reduced
cubillage Q̃ is the trivial cubillage of the cube Z̃ = Z(d, d). The pie P (of the
colour n = d+1) adjoins the invisible (rear) part ∂−Z̃ of the boundary of Z̃. More
precisely, it is obtained as the sum of this rear part of the boundary and the segment
[0, vn]. Therefore, cubes in the pie have the form F +[0, vn], where F runs through
the invisible facets of the cube Z̃ (see Figs. 6 and 7). The relation Q ≻ Z̃ holds
for any cube Q of this kind. It remains to clarify the situation with the ordering
of the cubes of the pie P. By Lemma 9.2 on the reverse, this order is the reverse
of the order of the cubillage obtained by the projection π of the rear membrane
∂+Z̃, that is, of the antistandard cubillage of the smaller capsid Z ′ = Z(d, d − 1).
Hence, the order on the cubes of P is exactly the order on the standard cubillage of
the capsid Z(d, d− 1). Using induction on d, we deduce the following proposition.
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Proposition 10.1. The natural order on the standard cubillage of the capsid
Z(d + 1, d) is total (or linear).

Figure 11. The order on the standard tiling of the zonogon Z(3, 2).

In other words, this ordering is a chain of n = d + 1 elements. Moreover, we see
that even the relation ≺ is transitive in this case. (See Fig. 11 for an example in the
case n = 3.) The cube Z̃ is the minimal element with respect to this order. Note
that its type is [d] = [n]− n. The same induction as above shows that in terms of
cube types the order on the standard cubillage of the capsid Z(d + 1, d) coincides
with the lexicographic order ≺lex on the set Gr([d + 1], d) of subsets of [d + 1] of
size d. For example, for d = 6 this order is as follows:

12345 ≺ 12346 ≺ 12356 ≺ 12456 ≺ 13456 ≺ 23456.

For the antistandard cubillage of the capsid the order ≺ is also linear, but it
coincides with the reverse, antilexicographic, order ≺alex when expressed in terms
of types.

We leave as an exercise an analysis of the case next in complexity: the standard
cubillage of the zonotope Z(d + 2, d). An answer for the standard cubillage of the
zonotope Z(6, 4) is shown in Fig. 12.3

Figure 12. The standard cubillage of the zonotope Z(6, 4).

The following considerations play an important role in studying the natural
order on a general cubillage. Each capsid (that is, each subzonotope Z(d + 1, d) in

3We note an analogy with pictures of quivers in [26], Table 1. We also note that, in the general
case, the natural poset (to be precise, its Hasse diagram) of the standard cubillage Qst(d + r, d)
of the zonotope Z(d + r, d) coincides with the graph of the Ad-crystal corresponding to the rth
multiplicity of the last fundamental weight (see [8], (7.7) c).
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a cubillage Q) has its type K, which is a subset of [n] of cardinality d + 1. In turn,
let K ⊂ [n] be an arbitrary subset of cardinality d + 1. We consider the set F (K)
in Q that consists of the cubes Q ∈ Q whose types are contained in K. The number
of such cubes is d + 1, and they are parameterized by their types K − i, where i
runs through K. The union of these cubes is something like a ‘dispersed’ capsid
(an actual capsid consists of cubes that are closely pressed together). By reducing
the colours not contained in K, we press these cubes together. More precisely,
let QK denote the cubillage obtained from Q by the reduction of all colours not
contained in K. As a set of cubes, QK is identified with F (K). The cubillage
QK is a cubillage of the capsid Z(K, d), and therefore it is either standard or
antistandard. Since the natural order ⪯ on F (K) coincides with the order on QK

(see Example 9.4), it is, first, linear (that is, F (K) is a chain for ⪯) and, second,
either lexicographic or antilexicographic in terms of types. It is easy to see which of
the latter is the case. There is a maximal element, say, k, in the set K as a subset
of [n]. Thus, everything is determined by whether the cube Q of type K − k is
located before the pie Pk of colour k in Q (and then Q is the minimal element
in F (K) and the order is lexicographic) or after it (and then Q is maximal and the
order ⪯ on F (K) is antilexicographic).

Thus, the restrictions of ⪯ to such capsid-like systems F (K) in Q are linear
orders (chains). In turn, these chains determine ⪯ uniquely. More precisely, the
following proposition holds.

Proposition 10.2. The natural order ⪯ on a cubillage Q is the transitive closure
of the chains (F (K),⪯F(K)) over all K ⊂ [n] of size d + 1.

To prove this fact it suffices to verify that if Q ≺ R for cubes Q and R of Q,
then Q and R occur in some ‘dispersed’ capsid F (K). Indeed, we take K to be
the union of the types of Q and R. Since these cubes are adjacent, the cardinality
of K is d + 1.

Thus, the natural order ⪯ on a cubillage Q could be defined in terms of the
chains F (K) of cardinality d + 1 instead of in terms of the immediate precedence
relation ≺. We will return to this observation in the combinatorial part of the
paper.

11. Stacks and membranes

Definition 11.1. A set S of cubes in Q is called a stack if, together with each
cube Q in it, S contains the smaller cubes (with respect to ≺ or ⪯). In other words,
it is an order ideal in the poset (Q,⪯). The body of S is the subset of Z = Z(n, k)
that is the union of the cubes in S plus the set of points in the visible boundary
of Z.

The interest in stacks is due to the fact that they determine membranes in Q.
Indeed, when any line parallel to the dth coordinate axis goes in the zonotope Z,
it first crosses the body of S and then intersects the boundary of this stack at
some point and never returns back to S . The set of these ‘terminal’ points of
the stack forms a membrane M = M (S ) in the cubillage Q. Indeed, it consists
of facets of Q, and its projection onto Z ′ = π(Z) is bijective. Conversely, let M
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be a membrane in Q. When we take the union of all the cubes lying before the
membrane, we obtain a stack S (M ). Obviously, these operations are mutually
inverse, and we obtain the following proposition.

Proposition 11.2. The set S(Q) of stacks in a cubillage Q is connected with the
set M(Q) of membranes by a natural bijection.

Corollary 11.3. The zonotope Z(d + 2, d) has 2(d + 2) distinct cubillages.

Proof. According to Proposition 6.3, specifying a cubillage of the zonotope
Z(d + 2, d) is the same as specifying a membrane in some cubillage of the capsid
Z(d + 1, d). The latter has only two cubillages, the standard and antistandard
cubillages. The natural order on each of them is a chain (of length d + 1).
Correspondingly, there are d + 2 stacks. By the previous proposition, there are
d + 2 membranes. □

It is easy to see that the poset Q(d + 2, d) consists of two branches of a ring of
size 2(d + 2), as in Fig. 13.

Figure 13. A ring. Eight cubillages of the zonogon Z(4, 2) are shown.
Arrows denote raising flips. Alongside each cubillage, there is a cubillage
of Z(3, 2) and a membrane in it specifying the corresponding cubillage of
Z(4, 2) (see Proposition 6.3).
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The membranes in a cubillage Q are naturally ordered: a membrane M in Q
is said to be encountered earlier than a membrane M ′ if any line parallel to ed

intersects M no later than M ′. In terms of stacks, this is precisely the inclusion
relation for the corresponding subsets of Q. We deduce the following assertions
from this.

Proposition 11.4. (a) The set M(Q) of membranes of a cubillage Q is a dis-
tributive lattice.

(b) This lattice is graded (like any distributive lattice; see [30], § 3.4). The rank
of a membrane M is equal to the cardinality of the stack S (M ).

(c) For any membrane M that is not maximal, there exists a cube Q ∈ Q such
that all its visible facets are contained in M . Adding this cube leads to a membrane
M ′ that differs from M by a raising flop.

Thus, one can see from part (c) that any membrane M in Q can be connected
with the minimal membrane (the visible part of the boundary of the zonotope) by
lowering flops (and with the maximal membrane by raising flops). This also means
that the cubillage π(M ) of the zonotope Z ′ = Z(n, d− 1) can be transformed into
the standard cubillage of Z ′ by a series of lowering flips.

Corollary 11.5. Let Q be a cubillage of the zonotope Z = Z(n, d) and let v be
some vertex of this cubillage. Then there exists a membrane M of Q which passes
through v .

This is obvious when v is on the visible (front) boundary of Z. Otherwise, let
Q be the only cube in Q whose head is the vertex v: v = h(Q). It remains to take
the stack in Q generated by Q. The corresponding membrane passes through v.

As for two vertices of a cubillage, they do not necessarily lie on the same mem-
brane. The main obstacle has to do with the separation relation and is discussed
in § 16. Here we limit ourselves to the following observations. Let Mmin(v) be the
minimal membrane through a vertex v in a cubillage (we constructed this mem-
brane in the proof of Corollary 11.5), and let Mmax(v) be the maximal membrane
through v. The other membranes through v lie between these two. A vertex w of
a cubillage Q is said to be similar to a vertex v if w lies between the membranes
Mmin(v) and Mmax(v) (between meaning with respect to the last coordinate xd).

Corollary 11.6. A vertex w is similar to a vertex v if and only if there exists
a membrane through w and v .

This is obvious in one direction. We show that if w lies between the membranes
Mmin(v) and Mmax(v), then there exists a membrane through v and w. Let M be
an arbitrary membrane through w. For the required membrane we take the median
among Mmin(v), Mmax(v), and M .

The membranes Mmin(v) and Mmax(v) divide the zonotope Z into three parts:
before Mmin(v), after Mmax(v), and the middle part between them. A vertex w
is said to lie before (respectively, after) a vertex v if it is positioned strictly before
the membrane Mmin(v) (respectively, strictly after Mmax(v)). We can denote this
by w <Vert(Q) v. We thus obtain a binary relation <Vert(Q) on the set Vert(Q) of
vertices of Q, which is easily seen to be transitive and irreflexive. One can show
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(using the reduction of the colour n) that if w <Vert(Q) v, then the spectrum of the
vertex v is lexicographically larger than the spectrum of w.

12. Existence of flips

The notion of a flip was already introduced in § 8 as the replacement of a cubillage
of the capsid Z(d+1, d) in Z by the other cubillage. Here we prove the existence of
flips.

Theorem 12.1. Let Q be a cubillage of the zonotope Z = Z(n, k). If Q is not the
standard cubillage, then a lowering flip can be performed in it.

In other words, if it is impossible to perform a lowering flip in a cubillage, then
this cubillage is standard. Of course, the converse is also true: the standard cubil-
lage does not admit lowering flips. This can be seen, for example, from the fact
that the standard cubillage is realized as the visible (or front) membrane in any
cubillage of the zonotope Ẑ = Z(n, d + 1), and there is nowhere to go back from
this membrane.

Proof. Consider the pie P of colour n in Q. If it adjoins the invisible side of Z,
we just eliminate it from both Q and Z, thus obtaining a cubillage Q −P of the
zonotope Z(n− 1, d). If Q−P is the standard cubillage, then Q is also standard,
contrary to the assumption. Consequently, the cubillage Q −P of Z(n − 1, d) is
not standard, and by induction we can perform a lowering flip in it (and therefore
in Z).

Hence, we can assume that the pie P does not adjoin the invisible part of the
boundary of Z, and there are actually cubes behind this pie. Among these cubes
(strictly behind P) we take the minimal cube Q with respect to the natural order
⪯ on Q. This cube adjoins P along the whole of its visible side. Adding to Q
all the cubes in P that are adjacent to Q, we obtain the needed subzonotope
(capsid) Z0. Indeed, these cubes have the structure of products (sums) of the line
segment [−vn, 0] by visible facets of Q. Hence, we obtain a subzonotope of type
Bn, where B is the type of Q. This is a collection of cubes with which a lowering
flip can be performed (see § 8). □

As a result of such a lowering flip with the participation of the colour n, we
move the pie of the colour n by one cube toward the invisible boundary of the
zonotope Z. Proceeding in this way step by step, we move the pie right up to
the invisible boundary of Z. However, we could do this directly, in one ‘big’ step.
With this aim in view, we let Q+ denote the set of cubes of our cubillage Q that lie
behind the pie P = Pn. Then we shift this whole collection of cubes Q+ by the
vector −vn. As a result, this set is shifted right up to the front (visible) boundary
of P and forms a cubillage of the zonotope Z(n − 1, d). Adding to Z(n − 1, d)
the product (sum) of the invisible boundary of this zonotope by the line segment
[0, vn] (in other words, expanding this cubillage along the rear membrane of the
zonotope Z(n − 1, k) by the colour n), we obtain the original zonotope Z with
a new cubillage of it, in which the new pie P ′ of the colour n adjoins the invisible
side of Z. Such a significant restructuring of a cubillage can be called a large flip
or an avalanche (see Fig. 14).
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Figure 14. An avalanche.

As a result of such an avalanche, we obtain a cubillage Q̃ of the zonotope Z̃ =
Z(n−1, d). One can apply to it the same operation of lifting the pie of colour n−1,
and so on. This sequence of n avalanches can be called the standardization of the
cubillage Q, since it becomes increasingly more standard after each step (avalanche)
and is completely standard at the end of the process. The main advantage of
standardization is that it is canonical: whereas lowering flips can be performed in
different places and in different sequences, avalanches are uniquely determined.

Symmetrically, we can perform the antistandardization of a cubillage by pressing
the pie P to the visible boundary of the zonotope Z(n, d) (in the first step) and
then continuing in this way. As a result, we obtain the antistandard cubillage in n
steps.

We have already indicated how one can introduce an order ⩽ on the set Q(n, d)
of cubillages of the zonotope Z(n, d) using flips. Namely, we say that Q ⩽ Q′ if Q′

is reachable from Q using a sequence of raising flips. There can be no cycles in this
process, and thus this relation ⩽ is a real partial order relation on the set Q(n, d).
In fact, it was this poset that Manin and Shekhtman called the higher Bruhat order
and denoted by B(n, d). Theorem 12.1 states that this poset contains a minimal
element (the standard cubillage) and a maximal element (the antistandard cubil-
lage). Posets of this kind often turn out to be lattices. And indeed, the first Bruhat
poset B(n, 1) (the so-called weak Bruhat order) is a lattice. For small n, the poset
B(n, 2) is also a lattice (see [12] for a picture of the poset B(5, 2)). However, B(6, 2)
is not a lattice [34]. Moreover, this poset is in general not a poset of vertices of
a polyhedron [12]. Nevertheless, it is a graded (rank) poset.

13. Membranes in zonotopes

So far, we have been dealing with membranes in cubillages. Now we introduce
the more general notion of a membrane in the zonotope Z = Z(n, k). It is again
a (d − 1)-dimensional cube complex M in Z(n, k) such that the following two
properties (borrowed from membranes in cubillages) hold:

(1) M (more precisely, the body of M ) is projected bijectively onto π(Z) =
Z ′ = Z(n, d− 1);
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(2) the edges of M are congruent to vectors vi (however, for d > 2 this can be
deduced from the property (1) roughly as in Lemma 2.2).

The projections of cubes in M yield a (d−1)-dimensional cubillage of Z ′ which we
again denote by Q′ = π(M ). Conversely, let Q′ be a cubillage of Z ′. Then we can
construct a (unique) membrane M such that Q′ = π(M ). This can be done in the
following way. For any vertex v′ of Q′ we specify a vertex v as

∑
i∈sp(v′) vi. Then we

arrange these vertices into a cubillage by repeating the arrangement of the vertices
v′ into cubes in Q′. This can also be done in a slightly different way: we construct
the membrane M (more precisely, its body) as a certain natural (piecewise linear)
section over the zonotope Z ′ (a section with respect to the projection π). As we
already noted, each point in the cubillage Q′ can be expressed uniquely in terms
of the vectors v′i. It remains to rewrite this in terms of the vi. Thus,

the set M(n, d) of membranes in the zonotope Z = Z(n, d) is identified
with the set Q(n, d− 1) of cubillages of the zonotope Z(n, d− 1).

We illustrate this by an example with d = 3. A cubillage of the zonogon Z ′ =
Z(n, 2) is a rhombus tiling, which is a two-dimensional shape. A transition to
a membrane in Z = Z(n, 3) makes it more salient: this is like the transition from
a plane drawing to a three-dimensional model. Flips, which look like artificial
reshuffles of rhombi, turn into more vivid flexures of films (membranes). However,
our membranes are still ‘hanging in the air’. The following statement corrects this
defect.

Theorem 13.1. For any membrane M in Z = Z(n, d) there exists a cubillage Q
of this zonotope for which it is a membrane.

In other words, M can be embedded in some cubillage Q.

Proof. We let Z−(M ) denote the domain in Z before the membrane M . We will
use Theorem 12.1. By means of lowering flops of M (more precisely, we perform
flips of the cubillage π(M ) and then lift them to membranes) we obtain a series of
membranes going from M to the front membrane, that is, to the visible part of the
boundary of Z. Thus, we obtain a cubillage of Z−(M ).

We can do the same with the domain Z+(M ) behind the membrane. In combi-
nation, they yield a cubillage including the membrane M . □

Moreover, when we make the canonical standardization of the cubillage π(M ),
we obtain the canonical (or standard) cubillage of the domain Z−(M ) in the zono-
tope Z. We see that this cubillage is standard from the fact that it is impossible
to perform a lowering flip in it.

We can proceed symmetrically with the domain Z+(M ) lying in Z behind the
membrane M . We obtain the canonical (antistandard) cubillage of this domain.
Upon uniting these two cubillages we obtain a cubillage Q of the entire zonotope Z,
in which M is a membrane. This standard-antistandard cubillage of the zonotope
Z is called the canonical extension of the membrane M (or the canonical lift of the
cubillage π(M )). (See Fig. 15 for the case of the zonotope Z(6, 2).)

Remark 13.2. Arguing as in the proof of Theorem 12.1, we can show that if a cubil-
lage of Z−(M ) is non-standard (see above), then a lowering flip can be performed
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Figure 15. The stages of a canonization. A rhombus tiling and a membrane
(snake) M in it are shown. The figure on the left shows the first step of the
standardization for the domain before the membrane: constructing a part
of the pie of colour 6. Constructing all pies in the domain before the mem-
brane is completed in the central figure, that is, the standardization of this
domain is shown. The figure on the right shows the (anti)standardization
of the domain behind the membrane.

in it. This fact shows that cubillages of Z−(M ) (as well as cubillages of the entire
zonotope) are related by flips. A similar observation is true for a cubillage of
Z+(M ).

Membranes serve as a kind of means of connecting cubillages having successive
dimensions. A cubillage Q can be represented as a network of membranes and thus
as a network of cubillages of one dimension lower. Recall that Q(n, d) is the set of
cubillages of the zonotope Z(n, d). Cubillages Q in Q(n, d) and Q′ in Q(n, d− 1)
are said to be consistent if Q′ can be lifted to a membrane M in Q (so that
Q′ = π(M )). The consistency relation can be considered as a correspondence c
from Q(n, d) to Q(n, d − 1). The above canonical lifting of cubillages produces
a section can: Q(n, d− 1) → Q(n, d) of this correspondence c.

The abundance of relationships among cubillages motivates us to look at them
from a categorical standpoint. We will discuss this in Appendix A on polycategories.

Second, combinatorial part

The combinatorial approach to cubillages is understood as the study of systems
of subsets of the base set [n] that are generated by cubillages. We already dealt with
this when we considered types of cubes of a cubillage. However, when only types of

cubes are taken into account, any cubillage yields the entire set
(

[n]
d

)
= Gr([n], d),

called the Grassmannian. To reflect the specifics of a particular cubillage Q, we
need to transfer the natural order ⪯Q to Gr([n], d). This throws a bridge between
the geometric approach and the approach by Manin and Shekhtman [23], [24] and
Ziegler [34]. We recall that Manin and Shekhtman, the creators of higher Bruhat
orders, worked precisely in terms of orders on Gr([n], d).

The notion of a spectrum opens up another way to combinatorics. By combining
the spectra of all vertices of a cubillage Q into one system Sp(Q), we obtain an
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interesting system of subsets of [n]. The main property of systems of this kind is
the property of separation, which was first discovered by Leclerc and Zelevinsky
[20] in the case d = 2 and then was generalized and studied by Galashin and
Postnikov [13], [14].

In our paper we will constantly have to deal with subsets and systems of subsets
of [n]. The base set [n] itself can be understood as an analogue of an n-dimensional
vector space (over an arbitrary field or the one-element ‘field’ F1). From this
standpoint, a subset of [n] of cardinality k should be understood as an analogue
of a vector subspace of dimension k. Because of this, we call the set of all subsets of
cardinality k the discrete Grassmannian and denote it by Gr([n], k)

(
instead of the

more common notation
(

[n]
k

))
. An analogue of a complete flag of subspaces is an

unrefinable chain of subsets of [n], which is in fact a linear order on [n]. Recall that
we regard [n] as a set (chain) with the natural order (1 < 2 < · · · < n), which looks
as if we have fixed some complete flag.

For convenience of identification, elements of the base set [n] are called colours
and usually denoted by i, j, . . . , and subsets of [n] are denoted by X, Y, . . . and
often simply called sets. For brevity, a set of the form X ∪ {i} is usually denoted
by Xi. Subsets of 2[n] are called set systems and are denoted by handwritten letters
(like S or X ).

14. Admissible orders

Let Q be a cube of some cubillage Q of the zonotope Z(n, d). It determines
two sets (and is determined by them): the spectrum sp(b(Q)) ⊂ [n] of the lower
(root) vertex b(Q) and the type τ(Q) ⊂ [n]. These two subsets do not intersect,
and the second has cardinality d. In fact, this is the above-mentioned coding by

signed vectors, Q 7→ τ(Q)
sp(b(Q))

. By Proposition 2.3 the type map τ yields a bijection

from the set Q of all cubes of the cubillage Q onto the Grassmannian Gr([n], d).
Transferring the natural order ⪯ on Q by means of this bijection τ (see § 9), we
obtain some order ⪯Q on the Grassmannian Gr([n], d).

Proposition 14.1. The order ⪯Q determines the cubillage Q .

In other words, the order ⪯Q on Gr([n], d) makes it possible to uniquely recon-
struct the cubillage Q.

Proof. Assume that there are two cubillages Q1 and Q2 of the zonotope Z = Z(n, d)
producing the same order on Gr([n], d). Let S be an (order) ideal in Gr([n], d).
We will show, using induction on the cardinality of S , that the cubes (in Q1

and Q2) corresponding to S (that is, τ−1(S )) are identically placed in Z. Let
K ∈ Gr([n], d) be the maximal element in S and let S ′ = S − {K}. By the
induction assumption, the cubes corresponding to S ′ are identically placed in Z.
They lie in the front part with respect to some membrane M ′. Then the cube Q1

(in Q1 of type K) adjoins some part (capsid) of M ′ by its whole visible boundary,
in exactly the same way as the cube Q2 (in Q2 of type K). Thus, they adjoin the
same part of M ′ and therefore coincide. □
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We can explain this in a slightly different way. Let Q1 and Q2 be cubes in the
cubillages Q1 and Q2, respectively, with the same type (say, K). Let b1 = b(Q1)
and b2 = b(Q2) be their root vertices. It suffices to show that b1 = b2. We take any
visible facet F1 of Q1 (with type K − i for some i ∈ K) and consider the part of
the tunnel of type K − i passing from F1 to the front boundary of the zonotope Z.
We do not know how this tunnel goes, but we know that it consists of cubes Q
which (a) lie in the ideal S and (b) contain K − i in τ(Q). This tunnel reaches
the front boundary of Z by the unique facet F̃ of type K − i. We denote its root
vertex by b̃. Then we have b1 = b̃ +

∑
j(±)vj , where the sum is taken over the j

such that K − i + j belongs to S , and the signs are the signs of the determinant
det(. . . vk . . . vj), where k runs through K − i. Since this expression depends on
K − i and S but not on Q, we have b2 = b1.

This assertion raises the question of what conditions distinguish orders of the
form ⪯Q. Proposition 10.2 suggests one such condition. A subset K of [n] of
cardinality d + 1 is called a parent , while the system F (K) of subsets of K of car-
dinality d is called its family. (In other words, F (K) is the image of Gr(K, d)
in Gr([n], d) under the natural embedding. Manin and Shekhtman called this
a packet.) A family has two distinguished linear orders, namely, the lexicographic
order ⪯lex and the antilexicographic order ⪯alex (the reverse of the former order).
If K = {i1 < i2 < · · · < id+1}, then the lexicographic order ⪯lex on M (k) has the
form

K − id+1 < K − id < · · · < K − i1,

while the antilexicographic order has the reverse form.

Definition 14.2. A partial order ⪯ on Gr([n], d) is said to be admissible if its
restriction to any family F (K) (where K is an arbitrary set of cardinality d + 1)
is the lexicographic or antilexicographic order.

Of course, any strengthening of an admissible order (in particular, any linear
extension) is also admissible. Manin and Shekhtman dealt just with linear admis-
sible orders.

In these terms, Proposition 10.2 states that an order on Gr([n], d) induced by
some cubillage is admissible. It turns out that this condition is not only necessary
but also sufficient in a certain sense.

Theorem 14.3. Let ⪯ be an admissible order on Gr([n], d). Then there exists
a (unique: see Proposition 14.1) cubillage Q such that ⪯ is a strengthening of ⪯Q .

To clarify the idea of the proof, we imagine that the order ⪯ has already arisen
from a cubillage Q. Let P be the pie of colour n. We reduce the colour n. As
a result, the pie is contracted to a membrane M , while the cubillage Q is reduced
to the cubillage Q′ = Q−n of the zonotope Z ′ = Z(n − 1, d). The cubillage Q′

as a set of cubes is naturally embeddable in Q. The restriction of the natural
order of Q to Q′ is stronger than the natural order on Q′ (Proposition 9.7). Thus,
the restriction of ⪯ to Gr([n − 1], d) is an admissible order. By induction we can
recover Q′. It remains to reconstruct also the membrane M . But it is specified
by the set of (types of) cubes in Q′ located before the membrane, or, which is the
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same, by the set of cubes in Q located before the pie. Let Q be such a cube and
let T ⊂ [n − 1] be its type. We consider the parent K = Tn and its family as
a set of cubes in Q. This family starts with Q, and then go cubes in the pie P,
since their types contain the colour n. It follows that Q is the minimal member of
this family. Conversely, if Q is behind the pie, then Q is the maximal member of
the family. Thus, the cubes (in Q′) before the membrane M are the ones whose
type T is minimal in the family with parent Tn. (This explanation can be regarded
as a third proof of Proposition 14.1.)

Let us now proceed to the proof, which is the inversion of the previous arguments.
We start with an admissible order ⪯ on Gr([n], d) and restrict it to Gr([n−1], d) ⊂
Gr([n], d). Clearly, this is again an admissible order on Gr([n−1], d). By induction,
it arises from some cubillage Q′ of the zonotope Z ′ = Z(n − 1, d). We now form
the subset T of Gr([n − 1], d) consisting of those T such that the restriction of ⪯
to the family F (Tn) of the parent Tn is the lexicographic order.

We claim that T is an ideal with respect to the natural order ⪯′ on Q′. Indeed,
let Q ∈ T and R ≺ Q, so that R immediately precedes the cube Q in the cubil-
lage Q′ (see § 9). We need to show that R also belongs to T . Assume the con-
verse: the restriction of ⪯ to the family of the parent τ(R)n is the antilexicographic
order. In particular, τ(R) is the maximal element in the family F (τ(R)n). In turn,
τ(Q) is the minimal element in F (τ(Q)n). The cubes R and Q have a common
facet F . Thus, its type τ(F ) is contained in both τ(R) and τ(Q). Therefore, τ(F )n
belongs to both the family F (τ(R)n) and the family F (τ(Q)n). This implies that
τ(Q) ⪯ τ(F )n ⪯ τ(R). By transitivity, τ(Q) ⪯ τ(R). However, this contradicts
the fact that R ≺ Q, and therefore τ(R) ≺ τ(Q).

Thus, T is an ideal in Q′. This ideal specifies a membrane M in Q′. By expand-
ing the colour n in this membrane, we obtain a cubillage Q (see Proposition 6.3).
It remains to verify that the original relation ⪯ is not weaker than the relation ⪯Q,
that is, if a cube R immediately precedes a cube S in Q (R ≺ S), then τ(R) ⪯ τ(S).

This is evident when R and S are in Q′. It is almost evident when one of
the cubes is in the pie P (obtained by expansion of the membrane M ) and the
other is not. Assume, for example, that S is in the pie and R is not. Then R
is located before the pie. By the construction of T , the family F (τ(R) ∪ τ(S))
is ‘lexicographic’ and τ(R) is the minimal member of this family, which implies that
τ(R) ⪯ τ(S).

It remains to consider the case when R and S are in the pie. Upon reducing all
the colours not contained in τ(R) ∪ τ(S), we can assume that our cubillage Q is
one of the two cubillages of the capsid, for which the assertion is obvious due to
results in § 10. This completes the proof of Theorem 14.3.

Theorem 14.3 provides a bridge between the geometric approach (cubillages) and
the Manin–Shekhtman approach based on admissible orders on the Grassmannians
Gr([n], d). Such a relationship was announced by Voevodskii and Kapranov in [33]
and was described in greater detail in [32], Theorem 2.1.

A certain inconvenience in describing cubillages in terms of admissible orders is
that distinct orders can lead to the same cubillage. We have already noted that
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if ⪯ is an admissible order, then any strengthening ⪯′ of it is also an admissi-
ble order, and produces the same cubillage as does ⪯. To restore uniqueness, we
can work with minimal admissible orders. Clearly, these are precisely the orders
generated (in the sense of transitive closure) by restrictions to all kinds of fami-
lies in Gr([n], d). These minimal admissible orders are determined by indicating
whether the family F (K) of each parent (a set K of size d + 1) is ordered lex-
icographically or antilexicographically. In other words, they are specified by the
map σ : Gr([n], d+1) → {+,−}, where + corresponds to ‘lexicography’. Of course,
this assignment σ cannot be arbitrary: it is necessary that an acyclic relation be
obtained as a result (cf. Proposition 9.1). The problem of which assignments yield
acyclicity (and therefore lead to cubillages) will be discussed in the next section.

15. Inversions

Section 13 makes it possible to consider cubillages of the zonotope Z(n, d−1) as
membranes in the zonotope Z(n, d) of dimension larger by one. This gives another
way to specify cubillages.

Let Q′ be a cubillage of the zonotope Z ′ = Z(n, d− 1). We realize it as a mem-
brane M = M (Q′) in Z = Z(n, d). According to Theorem 13.1, there exists
a cubillage (as a rule, more than one) Q of Z which includes M . This membrane
divides the cubes of Q into the ones positioned before and after M . We combine
the cubes before M into a set Q−(M ). Of course, this set depends on the cubil-
lage Q containing M . However, the set of types of cubes in Q−(M ) depends only
on M and not on Q. This can be seen from the following lemma.

Lemma 15.1. Let Q be a cube of a cubillage Q located before (respectively, after)
a membrane M , and let K = {k1 < k2 < · · · < kd} be the type of Q. Then
there exists a vertex v of M such that K ∩ sp(v) = {kd, kd−2, . . . } (respectively,
K ∩ sp(v) = {kd−1, kd−3, . . . }).

Proof. We reduce all the colours distinct from the ones of K. As a result, we obtain
a zonotope Z ′ = Z(K, d) (consisting of only the cube Q = Z ′) and a membrane M ′

in Z ′. Assume that Q was before the membrane M . Then the cube Q = Z ′ is also
before M ′, that is, the membrane M ′ is the invisible part of the boundary of Q.
Let v′ be the head h(Q) of Q (see § 7). As we know, its spectrum is {kd, kd−2, . . . }.
Let v be the pre-image of v′ in M , that is, the vertex of M that is reduced to v′.
Clearly, sp(v) differs from sp(v′) only by colours not contained in K, and this
implies that sp(v) ∩K = {kd, kd−2, . . . }.

We reason similarly in the case when K is located after the membrane. □

Remark 15.2. A less technical argument is as follows. Cubillages of the domain in
Z(n, d) located before a membrane M can be obtained one from another using flips
(see Remark 13.2). And flips do not change the types of cubes but only permute
them.

Let Q be a cubillage of the zonotope Z(n, d), let M be the corresponding mem-
brane in Z(n, d + 1) (Q = π(M )), and let Q′ be some cubillage of Z(n, d + 1)
containing M (which exists by Theorem 13.1).
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Definition 15.3. The system of inversions Inv(Q) of a cubillage Q is the sys-
tem τ(Q′

−(M )) in Gr([n], d + 1) (which is independent of the choice of Q′ by
Lemma 15.1). The system Inv(Q) is also denoted by Inv(M ).

The same arguments as in the proof of Lemma 15.1 (with the reduction of all
colours not contained in the type of Q) give another description of the system of
inversions.

Proposition 15.4. A parent T ∈ Gr([n], d+1) belongs to Inv(Q) if and only if the
family of this parent in Gr([n], d) is antilexicographically ordered by the relation ⪯Q .

In other words,

Inv(Q) = {T ∈ Gr([n], d + 1) such that the restriction of ⪯Q to Gr(T, d)

is the antilexicographic order}.

For example, the system Inv for the standard cubillage is empty. On the contrary,
Inv for the antistandard cubillage is the whole of Gr([n], d). When we perform
a raising flip in Q, we add one more cube to the pre-membrane cubes. Thus, the
system Inv(Q) is enlarged by one element in this case.

An important property of the system of inversions Inv(Q) is that this system
makes it possible to uniquely reconstruct Q.

Proposition 15.5. The map Inv : Q(n, d) → 2Gr([n],d+1) is injective.

Proof. It follows from Proposition 14.1 that the order ⪯Q determines the cubil-
lage Q. The order ⪯Q is generated by orders on families, whereas the system
Inv(Q) shows which family is ordered antilexicographically. □

As in the previous section, this raises the problem of what systems in Gr([n], d)
are inversive, that is, arise (using Inv) from cubillages of the zonotope Z(n, d− 1).
This problem was solved by Ziegler [34] (though the foundation for the solution was
laid earlier by Las Vergnas [19]). We introduce the following definition.

Definition 15.6. A set S in Gr([n], d) is said to be consistent if the family F (T )
of any parent T ⊂ [n] of cardinality d + 1 intersects S in a starting or ending
segment of F (T ) (where F (T ) is structured in the lexicographic order).

Lemma 15.7. For any membrane M in Z(n, d) the system Inv(M ) forms a con-
sistent subset of Gr([n], d).

Proof. We embed M in a cubillage Q of the zonotope Z = Z(n, d). Let ⪯ be
the natural order on Q and let ⪯Q be the corresponding (admissible) order on the
Grassmannian Gr([n], d). We know from § 11 that Inv(M ) is an ideal with respect
to ⪯Q. On the other hand, for any family F (T ) the order ⪯Q induces the lexi-
cographic or antilexicographic order. In the first case, the intersection of Inv(M )
with F (T ) is an ideal with respect to the lexicographic order, that is, a starting
segment. In the second case, it is an ideal with respect to the reverse order, that
is, an ending segment. □



Cubillages of cyclic zonotopes 1049

Theorem 15.8. Let S be a consistent subset of Gr([n], d). Then there exists
a (unique, according to Proposition 15.5) membrane M in the zonotope Z = Z(n, d)
such that S = Inv(M ).

Proof. We consider the subsystem S ′ of S that consists of the sets S ∈ S not
containing the colour n. The system S ′ lies in Gr([n− 1], d) and is also consistent.
Therefore, by induction S ′ is realized by some membrane M ′ in Z ′ = Z([n−1], d):
S ′ = Inv(M ′). We complete this membrane to form a cubillage Q′ of the zono-
tope Z ′ (Theorem 13.1) and then we perform the expansion by the colour n of M ′

in Q′. We obtain a cubillage Q of the zonotope Z, whose reduction Q−n is Q′.
In particular, the membrane M ′ is thickened to the pie P of colour n in Q. The
cubes of Q whose types belong to S −S ′ lie in P.

We assert that S is a stack (an ideal) in the cubillage Q. Then M is the
membrane corresponding to S . For a proof we need to verify that if R ≺ S are
two cubes of the pie P and S belongs to S , then R also belongs to S . The cubes
R and S are adjacent, and therefore the union of their types T = τ(R) ∪ τ(S) has
cardinality d + 1. We consider the family F of this parent T , which is ordered
lexicographically. The minimal element (starting member) of this family is T − n.
Let Q be a cube of type T − n in Q. This cube does not belong to the pie P, and
consequently it lies before or after the pie.

Consider the case when Q lies before the pie. Then it is the minimal element with
respect to the natural order ⪯ on Q, and the family F is ordered lexicographically.
Since S is consistent, the whole interval between τ(Q) = T − n and τ(S) (and, in
particular, the set τ(R)) belongs to S . Hence R belongs to S .

The case where Q lies after the pie can be considered similarly. In this case Q
is the maximal element (with respect to the restriction of ⪯ to the family F ) and
τ(Q) does not belong to S . Hence, the natural order ⪯ on F is antilexicographic:
the cube R goes after S, and, again by consistency, R belongs to S . □

We see that there are two equivalent (better to say, cryptomorphic) descriptions
of cubillages of the zonotope Z(n, d): as (minimal) admissible orders on Gr([n], d)
(Manin and Shekhtman) and as consistent subsets of Gr([n], d+1) (Ziegler). Given
these descriptions, we can reformulate various notions and constructions concerning
cubillages in the relevant language. For example, a raising flip corresponds to the
enlargement of a consistent set by one element. Thus, the relation ⩽ for cubillages
(see § 8) is in agreement with the inclusion relation for consistent sets: if Q ⩽ Q′,
then Inv(Q) ⊂ Inv(Q′). The converse is true if d = 1 (a classical property of
the weak Bruhat order) or d = 2 [11], [10], but fails for large d (Ziegler gave
a counterexample for d = 3 in [34]). In the next section we give another description
(initiated by Leclerc and Zelevinsky [20] and developed by Galashin and Postnikov
[14]) in terms of systems Sp(Q) of the spectra of vertices of the cubillage.

16. Separation relation

Recall that each vertex v of a cubillage Q of the zonotope Z(n, d) is associated
with the subset sp(v) of [n], the spectrum of this vertex (see § 3). When v runs
through all vertices of Q, we obtain the system Sp(Q), which is a subset of 2[n].
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By Corollary 4.1 the system Sp(Q) uniquely determines Q. Therefore, there arises
the natural question of the properties of such systems.

The first property of such a system is its size. Corollary 2.4 states that the

cardinality of Sp(Q) is
(

n

⩽ d

)
. This is surely not enough to characterize such

systems. The second important structure property is that any two sets in Sp(Q)
are (d− 1)-separated.

Definition 16.1. Let r be a positive integer. Two subsets X and Y of [n] are
said to be r-separated if there is no increasing chain i0 < i1 < · · · < ir+1 (of size
r + 2) such that the elements with even indices belong to one of the set differences
X − Y and Y − X, while the elements with odd indices belong to the other. We
denote this symmetric and reflexive relation by Sr. A system of subsets is said to
be r-separated if any two members of it are r-separated.

In other words, X and Y are r-separated if the set [n] can be divided into r + 1
successive intervals I0, . . . , Ir (some of which may be empty) so that X − Y is in
one part of these intervals and Y −X is in the other part.

It is convenient to specify these intervals by dividers (separators), that is, by
r points c1 ⩽ c2 ⩽ · · · ⩽ cr on the real line so that the interval Ii consists of the
integer points x satisfying ci < x < ci+1 (we assume that c0 = 0 and cr+1 = n+1).

The relations Sr become weaker with increasing r: S0 ⊂ S1 ⊂ · · · ⊂ Sn. We
consider several first terms of this series of relations.

Example 16.2. The relation XS0Y means that the sets X and Y are comparable
by inclusion: X ⊂ Y or Y ⊂ X. We can also say that the relation S−1 is the
equality relation = .

Example 16.3. S1 is the strong separation relation introduced by Leclerc and
Zelevinsky in [20]. It means that when we eliminate the common part, either X
lies to the left of Y (X < Y ) or Y lies to the left of X.

Example 16.4. S2 is the chord separation relation studied in [13].

The separation relation Sr is directly connected with the spectra of cubillages,
as shown by the next proposition.

Proposition 16.5. Let Q be a cubillage of the zonotope Z(n, d). Then for any
two vertices v and w of Q , the sets sp(v) and sp(w) are (d− 1)-separated.

In other words, the system Sp(Q) is (d−1)-separated. For example, the system
Sp(T ) is 1-separated for any rhombus tiling T (this was noted in [20]). There is
another, special case. As in § 7, we consider the cube Z(d, d). It has two distin-
guished points, the tail t and the head h. The spectrum of the head is {d, d−2, . . . },
while the spectrum of the tail is {d − 1, d − 3, . . . }. Taken together, their ele-
ments alternate and cover the whole of [n]. Therefore, the sets sp(h) and sp(t) are
(d− 1)-separated (but not (d− 2)-separated). When we flatten (project) this cube
onto the capsid Z(d, d− 1), t turns into an interior (central) point of the standard
cubillage of the zonotope Z(d, d−1) and it is easy to verify that it is (d−2)-separated
from all other vertices of this cubillage. However, it is not (d − 2)-separated from
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the projection of the point h, which is the central point of another cubillage, the
antistandard one.

Proof of Proposition 16.5. Assume that X = sp(v) and Y = sp(w) are not (d− 1)-
separated. Then there exist elements (colours) i0 < i1 < · · · < id such that i0, i2, . . .
belong to, say, X − Y , while i1, i3, . . . belong to Y −X. Performing the reduction
of all colours distinct from i0, . . . , id, we obtain a cubillage of the capsid Z(d+1, d).
There are two points v′ and w′ in this cubillage (the images of v and w under
the reduction) with the spectra i0, i2, . . . and i1, i3, . . . . However, as we have seen
above, these points belong to different cubillages: one of them (v′ for odd d and w′

for even d) is in the standard cubillage, while the other is in the antistandard
cubillage. □

The following proposition gives a description of the spectrum of the standard
(and the antistandard) cubillage of Z(n, d).

Proposition 16.6. Let v be a vertex of the standard cubillage of the zonotope
Z(n, d). Then there exists a decomposition [n] = I0⊔I1⊔· · ·⊔Id into d + 1 successive
intervals such that sp(v) = Id−1 ⊔ Id−3 ⊔ · · · . Conversely, any set of this form is
the spectrum of some vertex of the standard tiling.

For the antistandard cubillage, the spectra of vertices have the form Id⊔Id−2⊔· · · .

Proof. The standard cubillage of Z(n, d) can be obtained from the standard cubil-
lage of Z(n − 1, d) by expanding (adding) the colour n along the rear (invisible)
membrane (see Example 6.2). Therefore, the spectrum of the standard cubillage
consists of two parts: the first part includes sets of the form Id−1∪Id−3∪· · · , where
the intervals Id, Id−1, . . . , I0 are from [n− 1], while the second part is obtained from
the spectra of vertices of the rear membrane (the invisible part of the boundary of
Z(n − 1, d)) by adding the colour n. However, the rear membrane is actually the
antistandard cubillage of the zonotope Z(n− 1, d− 1). The spectra of its vertices
have the form Jd−1 ∪ Jd−3 ∪ · · · , where the intervals Jd−1, . . . , J0 are again from
[n−1]. In the first case we need to correct the interval Id by replacing it by Id∪{n}
(note that Id either contains the colour n− 1 or is empty). In the second case we
add the new interval Jd = {n}. □

For example, in the case d = 1 the spectrum of the standard cubillage of
Z(n, 1) consists of the (n + 1) intervals [k], k = 0, 1, . . . , n. Correspondingly,
the spectrum of the antistandard tiling consists of the complementary intervals
[n], [n− 1 . . . n], . . . , [n− k . . . n], . . . , ∅.

In the case d = 2 the spectrum of the standard rhombus tiling consists of arbi-
trary intervals in [n], whereas the spectrum of the antistandard tiling consists of
co-intervals (the complements of intervals).

In the case d = 3 the spectrum of the standard cubillage consists of the so-called
sesquilateral intervals, that is, sets of the form [1, i] ∪ [j, k], where 0 ⩽ i ⩽ j ⩽
k − 1 ⩽ n.

As a consequence of Proposition 16.6, we obtain a description of the spectra
of peripheral vertices, that is, zonotope vertices. These are precisely vertices that
belong simultaneously to the standard and antistandard cubillages. It is convenient
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to introduce the notion of the interval rank of a subset X ⊂ [n] as the smallest
integer r such that X is representable as the union of intervals I1 ⊔ · · · ⊔ Ir.

Corollary 16.7. A set X is the spectrum of a peripheral vertex of the zonotope
Z(n, d) if and only if the sum of the interval ranks of X and the complement [n]−X
is at most d.

In particular, if the size of some set X is at most (d−1)/2 (that is, 2|X| ⩽ d−1),
then the corresponding point v(X) is peripheral, that is, a vertex of Z(n, d). In
other words, interior (not lying on the boundary of the zonotope) integer points
appear only at height h ⩾ d/2. This fact is closely related to a phenomenon
which is usually mentioned in discussions of cyclic polytopes (for example, see [35],
Example 0.6): any set of vertices of cardinality at most (d−1)/2 of a cyclic polytope
belongs to some face of this polytope.

Corollary 16.8. The spectrum of a peripheral vertex is (d−1)-separated from any
subset of [n].

This correlates with Proposition 6.3, which states, in particular, that any integer
point can be embedded in some cubillage.

17. Separation and cubillages

We have already deduced that for a cubillage Q of the zonotope Z(n, d) the

system Sp(Q) is (d− 1)-separated and has cardinality
(

n

⩽ d

)
. We now proceed in

the reverse direction and show that a system with these properties can be obtained

as the spectrum of some cubillage. To begin with, we show that
(

n

⩽ d

)
is the upper

bound for the cardinality of a (d− 1)-separated system in [n].

Proposition 17.1. Let S be a (d− 1)-separated system of subsets of [n]. Then it

has cardinality at most
(

n

⩽ d

)
.

Proof. We divide S into two parts: the part S0 whose elements do not contain
the colour n and the part S1 whose elements contain the colour n. We let S2

denote the system of sets of the form X − n, where X runs through S1. It is
obvious that S2 has the same cardinality as S1. It is easy to see that S0 ∪S2 is a
(d− 1)-separated system in [n− 1], and therefore by induction its cardinality is at

most
(

n− 1
⩽ d

)
.

Now consider the intersection T = S0 ∩ S2. It consists of sets X ⊂ [n − 1]
belonging to S such that Xn also belongs to S . We claim that the system T
is (d − 2)-separated. Indeed, assume that there are sets X and Y in T that are
not (d − 2)-separated. Hence, there is a sequence i0 < i1 < · · · < id−1 such that
its elements with even indices belong to (say) X − Y , while the elements with odd
indices belong to Y − X. But then the sequence i0 < i1 < · · · < id−1 < id = n
has the same property either for X̃ = Xn and Y or for X and Ỹ = Y n. This
contradicts the assumption that S is (d− 1)-separated.
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Again by the induction assumption, T has cardinality at most
(

n− 1
⩽ d− 1

)
.

Therefore, the cardinality of S , which is equal to the sum of the cardinalities
of S0 and S2, that is, the sum of the cardinalities of S0 ∪S2 and S0 ∩S2, does
not exceed (

n− 1
⩽ d

)
+

(
n− 1

⩽ d− 1

)
=

(
n

⩽ d

)
. □

In view of Proposition 17.1, (d−1)-separated systems in [n] of cardinality
(

n

⩽ d

)
are said to be maximal by cardinality, as opposed to systems maximal by inclusion.
The next result was established by Galashin and Postnikov [14] in a slightly more
general case (they did not restrict themselves to cubillages of cyclic zonotopes).

Theorem 17.2. Let S be a (d− 1)-separated system of cardinality
(

n

⩽ d

)
in [n].

Then it has the form Sp(Q) for some (unique) cubillage of the zonotope Z(n, d).

Proof. This is close to the proof of Proposition 17.1. We again divide S into S0

and S1 and define S2 as above. It follows from the proof of Proposition 17.1 that

S0 ∪S2 has cardinality
(

n− 1
⩽ d

)
, while the intersection S0 ∩S2 has cardinality(

n− 1
⩽ d− 1

)
. We can assume by induction that the system S0 ∪S2 is realized

by some cubillage Q′ of Z(n − 1, d), while the intersection S0 ∩S2 is realized by
a cubillage Q′′ of Z(n− 1, d− 1). Obviously, Q′′ is realized by a membrane M in
the cubillage Q′. It remains to take Q to be the expansion by the colour n of the
cubillage Q′ along this membrane. At the level of spectra, this reduces to replacing
all the sets X in S2 by Xn. Then Sp(Q) = S0 ∪S1 = S . □

Thus, we obtain yet another cryptomorphic implementation of cubillages. It is
again possible to reformulate various constructions in these new terms.

We give another interesting example of separated systems.

Proposition 17.3. Let M1 and M2 be two membranes in the zonotope Z(n, d)
such that Inv(M1) ⊂ Inv(M2). Then the system Sp(M1) ∪ Sp(M2) is (d − 1)-
separated.

Proof. Assume that this is not the case, and some sets X ∈ Sp(M1) and Y ∈
Sp(M2) are not (d − 1)-separated. Then there exists a sequence of elements i1 <
i2 < · · · < id+1 of [n] that alternately lie in X − Y and Y − X. We consider the
case where the elements id+1, id−1, . . . are in X−Y (while the elements id, id−2, . . .
are in Y −X) and form the d-element set K = {i1, . . . , id}. Applying Lemma 15.1
to X, we deduce that the set K is inversive for the membrane M1 and thus also
for M2. However, according to Lemma 15.1 the set X is not inversive for M2.

One can similarly analyze the case when the elements id+1, id−1, . . . are in Y −X.
But now they form a d-element set K ′ = {i2, . . . , id+1}. By Lemma 15.1 it is
non-inversive for the membrane M2 and thus also for M1. However, according to
the same lemma, the set K ′ is inversive for M1. □
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18. Purity and extendability

The following question arises from Proposition 17.1: when is a (d− 1)-separated
system S of subsets of [n] extendable to a system of maximal cardinality, that

is, to a (d − 1)-separated system of cardinality
(

n

⩽ d

)
? In terms of § 4 this ques-

tion can be reformulated as follows: When can the corresponding set of integer
points of the zonotope Z(n, d) be embedded in some cubillage of this zonotope?
When this is the case, the system S is said to be extendable (or, more precisely,
(n, d)-extendable). If each (d − 1)-separated system in [n] is extendable, then the
property of purity is said to hold for the pair (n, d).

For example, we have seen in § 4 that any one-element system (that is, any subset
of [n]) is extendable. According to Theorem 13.1, any membrane can be embedded
in a cubillage. We now show that any two-element system is extendable.

Proposition 18.1. Let X and Y be two (d− 1)-separated subsets of [n]. Then the
two-element system {X, Y } is extendable.

Proof. We prove this proposition using induction on n. Assume that the colour i
does not lie in X and Y . Then these sets can be regarded as subsets of [n]− i. By
induction, X and Y can be embedded in a cubillage Q of the zonotope Z([n]− i, d).
It remains to perform the expansion by the colour i (see § 4) with respect to the
invisible part (in the direction of vi) of the boundary of this zonotope.

We reason similarly in the case when the colour i lies in both X and Y . But
now we need to perform the expansion by the colour i with respect to the visible
part (in the direction of vi) of the boundary of the zonotope.

Hence, everything reduces to the case when X and Y are the complements of
each other in [n]. Using the interval representation, we see that X and Y are formed
by alternating intervals in some decomposition I0 ⊔ I1 ⊔ · · · ⊔ Ir of the chain [n]
into successive non-empty intervals. By the (d− 1)-separation of X and Y we have
r < d. This means that the sets X and Y (more precisely, the points v(X) and
v(Y ) realizing them) belong to the periphery of the zonotope Z(n, d) and can thus
be embedded in any cubillage. □

As we shall see in the next section, this assertion already fails for three sets.
This means that purity may not hold for every pair (n, d). For which pairs does it
hold?

It is trivial that purity holds for d = 1. For d = 2 purity was established
by Leclerc and Zelevinsky [20] (see also our survey [4]). For d = 3 purity was
established by Galashin [13]. In addition, purity holds for n = d + 1 (capsids)
for trivial reasons. These cases exhaust purity, as was shown in [14]. In the next
section we consider the case n = d + 2 for d ⩾ 4 in detail and give simple explicit
examples of non-extendable systems. To extend these results to the case n > d + 2
the following two facts are useful.

Proposition 18.2. A system S ⊂ 2[n] is (n, d)-extendable if and only if (consid-
ered as a system of subsets of [n + 1]) it is (n + 1, d)-extendable.

Proof. Let S be (n, d)-extendable. Then it is (d − 1)-separated and is realized as
a subset of vertices of some cubillage Q of Z = Z(n, d). Assume that a cubillage
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Q′ of Z(n + 1, d) is obtained from Q by means of the expansion by the colour
n + 1 with respect to the invisible (rear) membrane of Z. Since Q ⊂ Q′, S can be
embedded in Q′.

Conversely, assume that S can be embedded in a cubillage Q′ of Z(n+1, d). Let
P = Pn+1 be the pie of colour n+1 in Q′. Since the sets in S do not contain the
colour n+1, this system of vertices lies (non-strictly) before the pie P. Therefore,
by reducing P we obtain a cubillage Q of Z in which S can be embedded. □

Proposition 18.3. Let S be a (d − 1)-separated system of subsets in [n] and let
n′ = n+1. We form a system S ′ ⊂ 2[n+1] as S ′ = {Xn′, X ∈ S }. The system S
is (n, d)-extendable if and only if the system S ∪S ′ is (n + 1, d + 1)-extendable.

Proof. Assume that S is an (n, d)-extendable system, that is, can be embedded in
a cubillage Q of the zonotope Z(n, d). We realize Q as a membrane M in some
cubillage Q′ of the zonotope Z(n, d + 1); thus, S forms a part of the vertices
of M . Finally, let Q′′ be the expansion of Q′ by the colour n′ with respect to this
membrane M . It is a cubillage of the zonotope Z(n + 1, d + 1). In this case M
extends to the pie P of colour n′ in Q′′. The system S is on one (visible) side of
this pie, whereas S ′ is on the other (invisible) side of P. It follows that S ∪S ′

can be embedded in Q′′.
Conversely, assume that the system S ∪ S ′ (as a set of integer points in the

zonotope Z ′′ = Z(n + 1, d + 1)) can be embedded in a cubillage Q′′ of the zono-
tope Z ′′. We consider the pie P of colour n′ in Q′′. It is clear that S is located
on one side of this pie, whereas S ′ is located on the other side (and is obtained
from S by a shift by the vector vn′). The reduction of this pie yields a cubillage
Q′ of Z ′ = Z(n, d + 1). The pie P is contracted to a membrane M , while S and
S ′ merge into one system S of points on this membrane. It remains to project
this membrane and obtain a cubillage Q of Z(n, d) containing S as a subset of
vertices. □

Corollary 18.4. Let S be a non-extendable system in the zonotope Z(d + r, d) and
let r ⩽ r′ and d ⩽ d′ . Then there exists a non-extendable system in the zonotope
Z(d′ + r′, d′) as well.

We noted above that any membrane can be embedded in a cubillage. Now let
us show that not every pair of (d − 1)-separated membranes can be embedded
in a cubillage. We use an example constructed by Ziegler in [34]. Namely, he
constructed two membranes M1 and M2 (specified as consistent systems) in the
zonotope Z(8, 4) which have the following two properties:

(1) Inv(M1) ⊂ Inv(M2);
(2) these two membranes cannot be embedded in the same cubillage of Z(8, 4).
To be fair, it must be said that Ziegler formulated the property (2) in slightly

different terms. By Proposition 17.3, the union of the spectra of M1 and M2 is
a 3-separated system in Gr([8], 4), but this system is not extendable to a system
maximal by cardinality. This is also an example of non-purity.
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19. The case of Z(6, 4)

In this section we study the question of extendable/non-extendable systems of
points in Z(d + 2, d). In § 11 we discussed cubillages of such zonotopes and showed
that there are 2n of them, where n = d + 2. Let us consider the case of Z(6, 4)
more closely (in the case of Z(5, 3) all 2-separated subsystems are extendable). This
simple example shows almost all the effects of the general case Z(d + 2, d).

For small n − d almost all integer points are on the boundary of the zonotope
Z(n, d). For example, for n = d + 1, only two points are not on the boundary.
There are 2n non-peripheral points in the case n = d + 2. Indeed, by (1.2) the
number of peripheral points is

2
((

d + 1
d− 1

)
+ · · ·+

(
d + 1

0

))
= 2(2d+1 − 1− (d + 1)) = 2n − 2n.

Since all peripheral points are (d−1)-separated from all points, we need to analyze
the separation of these 2n non-peripheral points (sets). It is here that we start to
assume that n = 6 and d = 4.

In this case, there are 52 = 64 − 12 peripheral points (sets). We write 12
non-peripheral points (sets) explicitly. As Corollary 16.7 shows, peripheral points
are given by decomposing the segment [n] into d successive intervals. Then we need
to take the union of either the even intervals or the odd intervals. In the case where
d = 4 and n = 6, the non-peripheral points (sets) are the ones that cannot be
included (alternately) in four intervals but have to engage five or six (non-empty)
intervals. Clearly, either these are one-element intervals (and then there are six
of them) or almost all of them are one-element intervals with a single two-element
interval (and then there are five intervals). We write these 12 sets as rows of the
following table:

1 3 5
1 3 5 6
1 3 6
1 3 4 6
1 4 6
1 2 4 6

2 4 6
2 4
2 4 5
2 5
2 3 5

3 5

It is convenient to arrange these 12 sets in a circle, as on a clock face, by placing
135 at the 6 o’clock position and its complement 246 at the 12 o’clock position
(see Fig. 16).

Which sets among these 12 sets are 3-separated? We can verify that a set and
its complement and also the two neighbours of this complement are non-separated.
That is, a set and any of the three sets ‘opposite’ to it form non-separated pairs.
This can also be seen from the fact that five successive sets on a clock face can
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Figure 16. Clock face.

be embedded in the same cubillage (and yield all the 12 cubillages of the zonotope
Z(6, 4)). For example, the numbers from 1 o’clock to 5 o’clock (namely, the sets
24, 245, 25, 235, and 35) can be embedded in the standard cubillage. It can be
seen from this description of 3-non-separation that three sets (at the 12 o’clock, 4
o’clock, and 8 o’clock positions, that is, the sets 246, 235, and 136) form (along
with the periphery) a maximal-by-inclusion 3-separated system of 52+3 = 55 sets,
whereas the maximum by cardinality is 52 + 5 = 57. This shows that there is
a system of cardinality 55 in Z(6, 4) which is not (6,4)-extendable (and is maximal
by inclusion).

A similar argument shows that in Z(d+2, d) there is a (d+2, d)-non-extendable
system (for d ⩾ 4).4 It is interesting to note that in the case d = 8 we can
indicate five numbers (0, 4, 8, 12, and 16) on a clock face with 20 ‘hours’ that yield
a maximal-by-inclusion 7-separated subsystem of this 20-element non-peripheral
system. In combination with the periphery, this gives a 1009-element maximal-by-
inclusion 7-separated system of subsets of the set [10], whereas the maximum by
cardinality is 1004 + 9 = 1013. The difference is 1013 − 1009 = 4 = d/2, which
suggests that the cardinality of a maximal-by-inclusion (d − 1)-separated system
differs from the maximum by cardinality at most by d/2.

Along with Corollary 18.4, this yields the Galashin–Postnikov theorem [14]: if
d ⩾ 4 and n ⩾ d + 2, then there exists an (n, d)-non-extendable system of subsets
of [n], that is, there is no purity for such (n, d).

20. Weak separation

In addition to the concept of strong separation (1-separation in our terms),
Leclerc and Zelevinsky proposed and developed the concept of weak separation.
Below we generalize this concept for arbitrary k. Weak k-separation can be under-
stood as both a weakening of k-separation and a strengthening of (k+1)-separation.

4Non-purity for d = 7 was actually stated in [26], Proposition 8.1.
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We recall that two subsets A and B of [n] are said to be (k+1)-separated if there
exists a decomposition [n] = I0 ⊔ I1 ⊔ · · · ⊔ Ik+1 of [n] into k +2 successive intervals
such that the set A − B lies in the union I0 ⊔ I2 ⊔ · · · of the intervals with even
indices, while B −A lies in the union I1 ⊔ I3 ⊔ · · · of the intervals with odd indices
(or vice versa). We also say that A surrounds B if max(A−B) > max(B −A); in
other words, A is lexicographically larger than B.

Definition 20.1. Two sets A and B are said to be weakly k-separated if one of the
following two properties holds:

(1) A and B are k-separated;
(2) A and B are (k + 1)-separated (but not k-separated), and if A surrounds B,

then the cardinality of A does not exceed that of B.

For example, let k = 0. Then weak 0-separation of sets A and B means that
either one of them is contained in the other one, or A−B < B−A and the cardinality
of A is not less than that of B. For example, the set 123 is weakly 0-separated
from 45 and 456 but not from 4567. The main justification of the concept we have
introduced is that for k = 1 it coincides with weak Leclerc–Zelevinsky separation.
Indeed, what does (2) mean in this case? It means that A and B can be included
in three intervals and if A surrounds B, then A surrounds B and the cardinality of
A does not exceed that of B.

It is obvious that k-separated sets are weakly k-separated and weakly k-separated
sets are (k + 1)-separated. If A and B have the same cardinality, then weak
k-separation is equivalent to (k + 1)-separation.

It is worth noting here that weak separation properties depend on whether k is
odd or even. As we show in Proposition 20.2, the cardinality of a weakly k-separated

system with odd k does not exceed
(

n

⩽ k + 1

)
(the same estimate as for k-separated

systems; see Proposition 17.1). If k is even, then there is no estimate of this type.
For example, for k = 0 and n = 5 we have the following weakly 0-separated system
of 12 sets:

{∅, 5, 4, 45, 34, 345, 234, 134, 124, 123, 1234, 12345},

whereas
(

5
⩽ 1

)
= 5 + 1 = 6. The weak 0-separation of this system can be verified

directly. A rather general method to construct weakly separated systems using
weak membranes will be proposed in Appendix D.

Proposition 20.2. Let k be an odd integer. Then the cardinality of a weakly

k-separated system of subsets of [n] does not exceed
(

n

⩽ k + 1

)
.

Proof. We prove this proposition using induction on k. For k = −1 the assertion
is evident, since strong 0-separation is just equality. Therefore, the size of such

a system is 1 =
(

n

0

)
. For k ⩾ 1 we start arguing as in the proof of Proposition 17.1.

Let W be a weakly k-separated system in [n]. We divide it into two parts: the part
W0 whose elements do not contain the colour n and the part W1 whose elements
contain the colour n. Let W2 consist of the sets of the form X − n, where X runs



Cubillages of cyclic zonotopes 1059

through W1. It is clear that W0 ∪W2 is again a weakly k-separated system (now

in [n− 1]). By induction its size does not exceed
(

n− 1
⩽ k + 1

)
.

Let D denote the system of sets X such that X is in W0, and its ‘counterpart’

Xn is in W1. We assert that the cardinality of D does not exceed
(

n− 1
⩽ k

)
. As

in the case of Proposition 17.1, Proposition 20.2 follows from this estimate. The
following three lemmas prove the indicated estimate.

Lemma 20.3. Let two subsets A and B of D have the same cardinality. Then they
are (k − 1)-separated.

Proof. The property of (k− 1)-separation means that (A−B) and (B−A) cannot
be alternately included into a decomposition of [n−1] into k intervals, that is, that
k + 1 intervals must be used for this. Assume that such a arrangement has the
scheme ABAB . . . AB (a word with k + 1 letters). We compare B and An in this
case. These two sets can be included in k + 2 intervals. However, the cardinality
of the surrounding set An exceeds that of the surrounded set B, which contradicts
the fact that An and B are weakly k-separated. The case of the scheme BA . . . BA,
when we compare the sets A and Bn, can be analyzed similarly. □

Let Di denote the subsystem of sets of cardinality i in D . We will supplement
it with two other systems of subsets of [n − 1]. To define them, we consider two
auxiliary systems S and A . To describe these, consider a decomposition of [n− 1]
into k intervals: [n−1] = I0⊔· · ·⊔Ik−1. The union of the odd intervals (I1⊔· · ·⊔Ik−2)
in this decomposition yields an element of S , while the union of the even intervals
yields an element of A . Let Si denote the subsystem of S formed by sets of size i,
and define Ai similarly.

Lemma 20.4. The union of systems Sn−1⊔· · ·⊔Si+1⊔Di⊔Ai−1⊔· · ·⊔A0 forms
a weakly (k − 2)-separated system of subsets of the set [n− 1].

Proof. The proof is a consequence of the following three simple observations. The
first is that a set in Sl is weakly (k − 2)-separated from any set whose cardinality
is not larger. In fact, it has the form I1 ⊔ · · · ⊔ Ik−2 for some decomposition
[n − 1] = I0 ⊔ · · · ⊔ Ik−1 into k intervals. The condition on the cardinality yields
strong (k− 1)-separation, that is, weak (k− 2)-separation. The second observation
is that a set in Al is weakly (k− 2)-separated from any set whose cardinality is not
smaller, for the same reasons. The third observation is that sets in Di are weakly
(k − 2)-separated in view of Lemma 20.3 (they are (k − 1)-separated and have the
same cardinality). □

By the induction assumption the system Sn−1⊔· · ·⊔Si+1⊔Di⊔Ai−1⊔· · ·⊔A0

has cardinality at most
(

n− 1
⩽ k − 1

)
. On the other hand, the system S (as the

spectrum of the standard cubillage of the zonotope Z(n− 1, k− 1)) has cardinality(
n− 1

⩽ k − 1

)
. Thus, the cardinality of Di does not exceed the difference between the

cardinality of S0 ⊔S1 ⊔ · · · ⊔Si and the cardinality of A0 ⊔ · · · ⊔Ai−1. It remains
to find this difference.
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Lemma 20.5. The indicated difference is equal to the number of vertices of the
standard cubillage (in fact, of any cubillage) of the zonotope Z(n− 1, k) at height i.

Given this equality, we can quickly complete the proof of Proposition 20.2.
Indeed, the size of Di does not exceed the number of vertices of the standard
cubillage at height i. Therefore, the size of the whole system D does not exceed

the number of vertices of the standard cubillage of Z(n − 1, k), that is,
(

n− 1
⩽ k

)
.

But this is precisely what we needed to prove.

Proof of Lemma 20.5. Here geometry comes into play. We consider the zonotope
Z = Z(n−1, k). Elements of the system S are realized as the spectra of vertices of
the visible part of the boundary of Z, while elements of the system A are realized
as the spectra of vertices of the invisible part of the boundary. We truncate Z at
height i. Then elements of S0 ⊔S1 ⊔ · · · ⊔Si are realized as vertices of the visible
part of this truncated piece (cup), while elements of A0 ⊔ · · · ⊔Ai−1 are realized as
vertices of the invisible part (except for those located at height i).

We now take the standard cubillage of Z and consider garlands in it (see § 7),
more precisely, those beginning at points in the visible part of the cup boundary.
Each garland intersects somewhere another part of the cup boundary, which is ether
the invisible boundary of the cup or its upper horizontal base (ceiling). Any vertex
of the cubillage of this invisible part of the cup boundary is obtained in this way. It
follows that the difference in question is exactly equal to the number of vertices of
the cubillage at height i. Thus, Lemma 20.5 is proved, and with it Proposition 20.2.
□

Finally, we can pose the question of the purity of the weak separation relation.
For k = 1 a positive answer was obtained in [4]. However, the answer is negative
already for k = 3. To give a counterexample, we turn again to § 19, that is, to the
system of subsets of the set [6] = {1, . . . , 6}. In this case, there are 52 peripheral
points (sets) that are 3-separated from any subsets of [6]. We assert the following.

(a) The three sets 25, 1356, and 1246 are weakly 3-separated. They are even
3-separated (see § 19).

(b) Taken together with the peripheral points (sets), these three sets form
a non-extendable (maximal-by-inclusion) weakly 3-separated system of size 52+3 =

55, whereas
(

6
⩽ 4

)
= 57. Non-extendability can be verified directly. For example,

the set 25 is 4-separated from the sets 136, 1346, and 146, but it is not weakly
3-separated, for reasons of size.

On the other hand, note that the non-extendable 3-separated system
{246, 235, 136}, regarded as weakly 3-separated, admits an extension by adding
the two sets 146 and 245.

Appendix A. Polycategorical view of cubillages

We will try to give some idea of this rather sophisticated construction invented
by Manin, Shekhtman, Kapranov, and Voevodsky ([24], [33], [17]).
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It is based on the idea that cubillages can be interpreted as morphisms. However,
between what objects do these morphisms act? They act between cubillages of
smaller dimension. These latter, in turn, can be regarded as morphisms. In this way,
we arrive at not just a category but rather at a polycategory. Roughly speaking,
a polycategory is a system of categories such that the set Hom(a, b) for any objects
a and b of the same category is in turn the set of objects of another, higher-level
category.

To tune in to this polycategorical standpoint, we return to rhombus tilings.
Assume that there are two membranes in a tiling, that is, two snakes in the zono-
gon Z(n, 2) which pass from the lower vertex ∅ to the upper vertex [n]. We also
assume that the second membrane M2 goes to the right of the first membrane M1.
Then we can say that M1 ⩽ M2 if a (partial) rhombus tiling can be embedded
between these membranes (or, which is equivalent, both membranes are embed-
ded in some rhombus tiling). Interpreting membranes (snakes) as linear orders on
(or permutations of) the set [n], we obtain a (weak) Bruhat order.

However, we can act more subtly and say that we are interested not only in
the existence of tilings connecting M1 with M2 but also in the connecting tilings
themselves. In other words, a morphism from M1 to M2 is understood as an arbi-
trary (partial) tiling T between M1 and M2. Thus, instead of a Bruhat poset,
we obtain a Bruhat category such that permutations (or linear orders on [n]) are
objects of it, the tilings connecting them are morphisms, and composition of mor-
phisms is obtained by taking the union of the tilings. In fact, we obtain more: two
tilings T1 and T2 between M1 and M2 can also be compared by raising flips. So
Hom(M1, M2) is not just a (rather rich) set but also a poset! And composition of
morphisms (tilings) is consistent with these posets.

Once we have embarked on this path, it would be a sin to stop. We can say
not just that tilings T1 and T2 are linked by raising flips, but that such a link is
a morphism (now of the next, second level). A link is a certain (partial) cubillage
now in the zonotope Z(n, 3). And this construction can be continued by raising the
dimension further and further until we obtain the zonotope (cube) Z(n, n), which
has only the one trivial cubillage.

This is an outline of this polycategorical picture.
In the following example, we give only the most interesting fragment of the

polycategorical canvas, and in a very simple case. Namely, we take n = 3 and
describe only the first, second, and third levels of the resulting ‘pagoda’.

Objects of the first level are vertices of the cube Z(3, 3), that is, subsets of the
base set [3] = {1, 2, 3}. But what can be regarded as the morphisms? It seems
natural to assume that an arrow goes from X to Y if X ⊂ Y . However, we obtain
only the poset 2[3] in this way. The cubillage point of view says that we need to
look at a morphism as a path from X to Y , a partial snake from X to Y . The
composition of snakes is obvious: given a snake from X to Y and a snake from Y
to Z, we must just attach them one to the other, thus obtaining a snake from X to Z.

Objects of the second level are partial snakes. When there are two snakes a and
b with the same startpoint and the same endpoint, the question arises of whether
it is possible to tessellate the domain between them by rhombi. Morphisms on the
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Figure 17. Snakes in the zonogon Z(3, 2).

second level (between a and b) are precisely rhombus tilings of the domain between
a and b (we need to assume here that b lies to the right of a). In our case with
n = 3, there can be either one tiling of this kind (as on the left in Fig. 17) or no
such tilings (as in the middle in the same figure); here snakes go from ∅ to [3].

However, there is a unique exception (in our simple case), when two pavings
or tilings (the standard and antistandard ones) are possible between the snakes
123 and 321 (here we understand the abbreviation 123 as a linear order on the
set {1, 2, 3}). Thus, drawing the part of the second level containing only complete
snakes (from ∅ to [3], that is, the six linear orders on the set [3]), we obtain the
picture shown in Fig. 18.

Figure 18. Partial polycategory picture in the case n = 3.

We would like to draw attention to the fact that there are two morphisms (the
standard and antistandard tilings) from the snake 123 to the snake 321. These
two morphisms as objects of the third level are also connected by a (third-level)
morphism, which we show by a double arrow ⇒ . Of course, there are also many
trivial (isolated) objects on the third level.

We complete the story of the polycategorical view of cubillages with this example.
Details of the formalism were given by Manin and Shekhtman [24] and by Kapranov
and Voevodskii [33], [17]. The notion of a polycategory was discussed briefly in [22]
and in more detail in [21]. We also note that the Zamolodchikov equation was
treated in the polycategorical language in [16].
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Appendix B. Interrelation with
triangulations and the Tamari–Stasheff poset

Almost simultaneously with the introduction of cubillages as a form of higher
Bruhat poset, Tamari–Stasheff posets appeared (in [17] by Kapranov and Voevod-
skii), which are largely parallel to Bruhat posets and closely related to them. Several
studies have been devoted to this topic (see the survey [28]).

To define these posets, we again consider a cyclic configuration of vectors C(n, d).
The endpoints of these vectors are points on the hyperplane in Rd given by the equa-
tion x1 = 1, that is, on the hyperplane at height 1. The convex hull of these points
v1, . . . , vn is called a cyclic polytope and is denoted by P (n, d). It is the intersection
of the zonotope Z(n, d) with the above hyperplane and has dimension d − 1. For
d > 2 the points vi are vertices of this polytope.

Instead of cubillages of Z(n, d), we now consider triangulations of the polytope
P (n, d), that is, decompositions of it into (d− 1)-dimensional simplices whose ver-
tices are in the set {v1, . . . , vn}. For d = 2, this is a partition of the line segment
[v1, vn] into subsegments. For d = 3, it is a partition of a convex n-gon into n− 2
triangles, and so on. We denote the set of triangulations by TS(n, d).

Triangulations are similar to cubillages in many respects. For example, there
are standard and antistandard triangulations (or lower and upper triangulations
in the terminology of [28]) among them, which are obtained as restrictions of
the corresponding cubillages. In particular, these triangulations exhaust the sets
TS(d + 1, d). Replacement of the standard triangulation by the antistandard tri-
angulation in TS(d + 1, d) is called a raising flip. A similar thing (a raising flip)
can be done for any n if we manage to find a fragment of the form of the standard
triangulation in TS(d + 1, d). We say that T ⩽ T ′ if T ′ is reachable from T
by a series of raising flips. This gives the structure of a poset on the set TS(n, d),
which is known as the Tamari–Stasheff poset.

Example B.1. Consider the case d = 2. Specifying a triangulation here is speci-
fying a partition of the segment [t1, tn] into smaller segments so that the endpoints
of these segments are some of the points ti. Any subset of {t2, . . . , tn−1} defines
such a partition into segments. A typical raising flip is the replacement of two
successive segments [ti, tj ] and [tj , tk] (ti < tj < tk) by [ti, tk], that is, it is actually
the removal of tj from the subset. We see that the Tamari–Stasheff poset in this
case is (anti)isomorphic to the Boolean lattice of subsets of {2, . . . , n− 1}.

Figure 19. Five triangulations of the pentagon P (5, 2).

Example B.2. The case d = 3 is more interesting. We take n points on the
parabola y = x2 sorted in ascending order of x. The convex hull of these points
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Figure 20. Five binary trees corresponding to the triangulations in Fig. 19.

is the cyclic polygon P = P (n, 3). We take some triangulation of it and enter the
triangle with the side [v1, vn] (from above). Then we exit from it across either of
the other sides. If we leave P in this case, then the path ends. If we find ourselves
in another triangle of the triangulation, then the process continues: we again exit
through one of the two other sides of this triangle; and so on. As a result, we obtain
what is called a plane binary tree (with n − 2 non-root vertices corresponding to
triangles of the triangulation); see Figs. 19 and 20. In [31] (Exercise 6.19), 65
other ways to specify the set of such trees were described, among which we should
distinguish the method of placing the parentheses ‘correctly’ in a row of n−1 letters.
Tamari used this method when he defined his poset TS(n, 3).

To speak not just about the set TS(n, 3) but also about a partial order on it, we
need to define raising flips more precisely. They are structured as follows: we take
a triangulation fragment shown on the left in Fig. 21 and replace the diagonal (ik)
of the tetragon by the other diagonal (jl).

Figure 21. Triangulation flip.

Figs. 19 and 20 show five triangulations of the pentagon and the corresponding
binary trees.

In addition to the obvious analogy with cubillages, there is a more clear-cut
relationship between triangulations and cubillages. Let Q be a cubillage of the
zonotope Z(n, d). When this zonotope is intersected by the hyperplane x1 = 1,
we obtain precisely the polytope P (n, d). The sections of the cubes by the same
hyperplane yield a triangulation of P (n, d), and this gives a natural map

sec : Q(n, d) → TS(n, d).

The triangulation T = sec(Q) gives a full idea of the cubes at the bottom of the
cubillage Q (that is, the ones rooted at 0) but says little about how the cubes above
are placed. Therefore, there is no reason to hope that the map sec is injective. Even
very simple examples show that there is no injection. At the same time, there is
good reason to hope that the following conjecture is true.

Conjecture B.3. The map sec : Q(n, d) → TS(n, d) is surjective.
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In any case, this is true for d ⩽ 3. In the case d = 2 this is a simple exercise.
The case d = 3 can be derived from [6], § 7, or from the results in [13].

We remark that the relationship between the Tamari and Bruhat posets was
also mentioned in [28] (see § 8.3 there), but it was another map that was discussed
there. As for the map sec, it was discussed in [9], where it was said to be surjective.
However, the Tamari poset was understood there in a slightly different way, more
‘combinatorial’. The whole of [9] was devoted to application of Tamari posets to
soliton solutions of the Kadomtsev–Petviashvili equation. There are several other
papers concerning the relationship between the Kadomtsev–Petviashvili equation
and cubillages (triangulations), among which we note [18], the most recent one.

We also note that the map sec : Q(n, d) → TS(n, d) is consistent with flips.
When we perform a flip in a cubillage Q, it can induce a flip in the triangulation
sec(Q). More precisely, when we perform a flip in some capsid rooted at 0, we
obtain a flip of the corresponding triangulation. If the capsid lies ‘high’, then the
flip of the cubillage has no effect on the triangulation. In any case, this means that
the map sec : Q(n, d) → TS(n, d) is consistent with the poset structures.

Appendix C. Weak membranes

This appendix is a direct continuation of the material in §§ 9–11. On the other
hand, it borders on the subjects concerning triangulations of cyclic polytopes in
Appendix B.

The concept of a membrane in a cubillage was introduced in § 6. It is a (d− 1)-
dimensional subcomplex of a cubillage that is bijectively projected onto the π-
projection of the whole zonotope Z(n, d) along the dth coordinate vector ed. A weak
membrane is understood similarly. It is also some (d−1)-dimensional film in Z(n, d)
that is bijectively projected onto the projection of the whole zonotope. However,
there are two distinctions. The first is that this latter film is no longer a subcomplex
of the cubillage Q: it is a subcomplex of some refinement of this cubillage. The
second is that we project not along the vector (direction) ed but along the vector
ed +εe1, where ε is a small positive number, that is, we look at the zonotope almost
in the direction of ed but also a little bit from the bottom up. In other words, the
projection πε along ed + εe1 maps the point x = (x1, x2, . . . , xd) ∈ Rd to the point

πε(x) = (x1 − εxd, x2, . . . , xd−1) ∈ Rd−1.

More precisely, the cyclic zonotope Z = Z(n, d) grows from the point 0 ‘upwards’
to height n, and all its vertices, as well as the vertices of the cubillage Q, are at
integer heights. We dissect Z and all the cubes of Q by the horizontal hyperplanes
Hk given by the equations x1 = k, where k runs through the integers from 1
to n − 1. As a result, each cube Q is cut into d parts called fragments. Each
fragment is a hypersimplex (in the terminology of [15]). Fig. 22 shows a dissection of
a three-dimensional cube into three fragments: a lower tetrahedron, an octahedron,
and an upper tetrahedron.

We obtain a partition of Z, though no longer into cubes, but rather into finer
fragments (hypersimplices), and we denote it by Q≡ and call it the refinement (or
fragmentation) of the cubillage Q.
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Figure 22. Dissection of the three-dimensional cube into three fragments.

The refined cubillage Q≡ has the same vertices as Q. However, we are more
interested in facets of Q≡, or facets of its fragments. They are divided into vertical
facets (fragments of facets of cubes of Q) and horizontal facets, which lie in some
hyperplanes Hk. (Both are hypersimplices, though now of dimension d− 1.) Most
facets of a fragment P are vertical, and only two are horizontal (or one, if the
fragment is a simplex).

A weak membrane (or w-membrane) in a cubillage Q is a subcomplex W of the
refinement of Q that is bijectively (homeomorphically) projected onto the zono-
tope πε(Z) (of smaller dimension) by the projection πε along the vector ed + εe1.
Ordinary membranes (from § 6; they can be called strong membranes) can also
be understood as weak membranes. Like strong membranes, weak membranes
are homeomorphic to the (d − 1)-dimensional disk whose border is the rim of the
zonotope Z (with respect to π or πε). They also divide Z into two parts: the
part (Z−(W )) before the membrane and the part (Z+(W )) after the membrane;
each of these parts is also fragmented. The projections (by πε) of cells of a mem-
brane yield some partition of the zonotope πε(Z) into plates (hypersimplices), which
can be called hypercombi, by analogy with the concept of a combi in dimension 2
(see [5], [6]). This is an interesting object, but we will not deal with it yet.

The main distinction between weak and strong membranes is that the former
can have horizontal parts (ledges or balconies); see Figs. 23 and 24.

The simplest examples of w-membranes (we call these principal membranes) are
obtained as follows. Let Q be a cubillage of the zonotope Z = Z(n, d). We go
(from top down) first along the front (visible) part of the boundary of Z to level k,
0 ⩽ k ⩽ n. We then go horizontally along this level k to the invisible (rear) part
of the boundary. Finally, we go down to 0 along the rear boundary. The left-hand
picture in Fig. 24 shows the principal w-membrane (with k = 2) for a tiling of
the zonogon Z(5, 2), while the right-hand picture shows the one for a cubillage
of the zonotope Z(5, 3) (this is a front view and a slightly bottom-up view; the
cubillage itself is not shown).

In these cases there are ledges only at height 2. In the general case ledges can
occur at any height. All membranes are principal for the trivial cubillage of the
cube Z(d, d).
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Figure 23. Weak membrane in the rhombus tiling; three balconies can be seen.

Figure 24. Examples of principal membranes.

Note that triangulations of the cyclic polytope in Appendix B can be understood
as principal weak membranes (for k = 1).

The main thing we want to discuss here is an analogue of the natural order on the
set of fragments of the refined cubillage Q≡. We proceed exactly as in § 9. Namely,
we introduce the concept of immediate precedence ≺ for fragments. However, we
project using not the map π but the slightly modified map πε (and correspondingly
we consider the visible and invisible facets of fragments). Here we note the following.
Assume that a fragment P (in a cube Q) immediately precedes a fragment P ′ (in
a cube Q′): P ≺ P ′. Then the following two cases are possible:

(1) P and P ′ lie on the same level (between the hyperplanes Hk and Hk+1), and
then Q ≺ Q′;

(2) P and P ′ are separated by a hyperplane Hk, and then Q = Q′ and P lies
under P ′.

This remark helps us prove the following analogue of Proposition 9.1.

Assertion C.1. The relation ≺ on Q≡ is acyclic.

Indeed, let
P1 ≺ · · · ≺ Pm
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be a directed path in Q≡. Let Ql be the cube of the cubillage Q containing the
fragment Pl. Then we obtain a directed path Q1, . . . , Qm in Q such that adjacent
cubes either are connected by the relation ≺Q or coincide. By Proposition 9.1, if
the relation ≺Q occurs at least once on this path, then Q1 is distinct from Qm and
thus P1 is distinct from Pm. Therefore, we can assume that all the Ql are the same
cube Q. Then all the Pl are fragments of Q. Now the assertion is obvious, since
each next fragment is higher than the previous fragment by one level.

Based on this assertion, we can close the relation ≺ transitively and obtain an
order relation ⪯ on Q≡, which again is said to be natural. Exactly as in § 11, we
can introduce the concept of a stack (or an ideal) for this order and can identify
weak membranes (for Q) with stacks. This simple observation is useful because
a stack can be disassembled by removing some maximal element (fragment) (with
respect to the order ⪯). In terms of weak membranes, we obtain the concept of
a weak (lowering) flop. An important consequence is that the minimal (and now
strong) membrane is reachable from any weak membrane by a series of such weak
lowering flops. Moreover, the set of weak membranes (in Q) is a distributive lattice
(as in Proposition 11.4).

However, with this the analogies come to an end in part, and the situation starts
to depend on whether d is even or odd. We return to the simplest cubillage of the
cube Z(d, d). The refinement of this cube has d fragments. And the vertices of
almost all fragments (except for the middle ones) all lie on the rim of the cube. As
we know from § 7, only two vertices, denoted by t and h (the tail and the head),
are not on the rim. Both these vertices belong to either one middle fragment (when
d is odd) or one middle section (when d is even; see Fig. 4). This fact affects the
number of vertices of a weak membrane. When we remove a non-central fragment
from the stack S (W ) of pre-membrane fragments (by an appropriate lowering flop),
the number of vertices of the weak membrane does not change. However, when
we remove central fragments, the situation becomes more complicated. Removing
the above-positioned fragment (with even d) results in an increase in the number
of membrane vertices by 1, removing the below-positioned fragment results in its
decrease by 1, and removing the only central fragment (with odd d) does not change
the number of membrane vertices.

Conclusion C.2. For an odd d all weak membranes have the same number of ver-

tices, equal to
(

n

⩽ d− 1

)
. For an even d the number of vertices of weak membranes

can vary (in what ranges?).

For example, Fig. 23 shows a tiling of the zonogon Z(5, 2) with a weak membrane
having 12 vertices (instead of the ‘normal’, six).

We now recall Proposition 20.2, which asserts that (for odd d) the cardinality

of a weakly (d− 2)-separated system in [n] does not exceed
(

n

⩽ d− 1

)
. This fact

suggests the following two conjectures.

Conjecture C.3 (cf. Proposition 16.5). The spectrum of any weak membrane
in Z(n, d) is a weakly (d− 2)-separated system.
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Conjecture C.4 (cf. Theorem 17.2). Let d be odd and let W be a weakly (d− 2)-

separated system of size
(

n

⩽ d− 1

)
. Then it is realized as the spectrum of some

weak membrane in the zonotope Z(n, d).

In any case, both conjectures are true for d ⩽ 3 (see [6]). Conjecture C.3 was
proved in [7] for odd d, along with other assertions concerning weakly separated
systems.

Appendix D. Proof of the acyclicity

In this appendix we prove Proposition 9.1, which asserts that the relation ≺
on the set of cubes of a cubillage Q is acyclic. In fact, we establish a stronger
result: the relation ≺ is acyclic not only on the set of cubes of a fixed cubillage Q
but also on the set C of all cubes of all cubillages. An (abstract) cube is an arbitrary
d-dimensional cube C in the zonotope Z(n, d) spanned by some set of vectors in V
and growing from an integer point. Such a cube is specified by indicating its root
v(X) (X ⊂ [n]) and its type T ⊂ [n]; T has cardinality d and does not intersect
X. As shown in Proposition 6.3, such a cube can be embedded in a cubillage.
The set of all cubes in Z(n, d) is denoted by C (n, d). It consists of all cubes of all
cubillages of Z(n, d).

We introduce a binary relation ≺ on C (n, d) in the same way as in § 9. Recall
that Q ≺ Q′ if these cubes Q and Q′ are adjacent across a common facet F that is
invisible in Q and visible in Q′. The following stronger assertion implies Proposi-
tion 9.1.

Theorem D.1. The relation ≺ on the set C (n, d) is acyclic.

To prove this theorem, we express the relation ≺ combinatorially. Assume that
a cube Q is (X, T ) and a cube Q′ is (X ′, T ′) and that Q ≺ Q′. We let F denote the
facet across which these cubes are adjacent. Combinatorially, this facet is (S, J),
where S is the root of the facet and J is its type. Obviously, J = T ∩ T ′ and J has
cardinality d− 1. Let T = Ji and T ′ = Jk for some colours i and k. The root of F
can be either the head of the vector vi or its tail. In the first case we have S = Xi,
and in the second case X = S. Similarly for k. Thus, one of the four cases shown
in Fig. 25 is possible.

Now we need to express the fact that F is invisible in Q. To do this we assume
provisionally that the facet F is rooted at zero. Let

J = {j1 < j2 < · · · < jd−1}.

Then the linear equation det(vj1 , . . . , vjd−1 , ·) = 0 defines a hyperplane contain-
ing F . The fact that this facet is invisible in Q means that the vector vi lies in the
positive half-space when the root of F is its head, and lies in the negative half-space
when the root of F is its tail. In other words, det(vj1 , . . . , vjd−1 , vi) < 0 in cases I
and II and > 0 in cases III and IV.

Symmetrically, the facet F is visible in Q′ if the vector vk is in the positive
half-space in cases II and IV and if it is in the negative half-space in cases I and III,
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Figure 25. Four variants of cubes adjacent across a facet F of type J .

that is, the determinant det(vj1 , . . . , vjd−1 , vk) must have the sign + or the sign −,
respectively.

This takes us back to the problem of signs of determinants, which we discussed
in § 5. Namely, points j1 < j2 < · · · < jd−1 on the segment [n] subdivide this seg-
ment into d intervals, which are conveniently numbered from right to left. The zero
interval consists of the points (integers) lying strictly above jd−1; the first interval
consists of the points between jd−2 and jd−1, and so on; the last interval consists
of the points lying strictly below j1. If an integer j lies in an interval with even
index, then the determinant det(vj1 , . . . , vjd−1 , vj) is positive, and if this interval
has an odd index, then the determinant is negative. We can say that j is even with
respect to J if j lies in an interval with even index. Otherwise, this integer is said
to be odd with respect to J .

We summarize. Assume that we have a facet F given as a pair (S, J) and a cube
Q = (X, T ) such that F is a facet of Q. Thus, T = Ji for some i not belonging
to J . This facet F is invisible in Q if and only one of the following two conditions
holds:

(a) X = S and i is odd with respect to J ;
(b) X = S − i and i is even with respect to J .
Symmetrically, assume that F is a facet of a cube Q′ = (X ′, T ′), so that T ′ = Jk.

This facet F is visible in Q if and only if one of the following two conditions holds:
(a′) X ′ = S and k is even with respect to J ;
(b′) X ′ = S − k and k is odd with respect to J .
Hence, Q ≺ Q′ if and only if the following combinations take place: (a) and (a′)

(case II in Fig. 25), (a) and (b′) (case I), (b) and (a′) (case IV), or (b) and (b′)
(case III).

Accordingly, we have expressed the relation ≺ combinatorially. We now divide
the whole set C of cubes into three groups, or levels: C0, C1, and C2. The cubes
(X, T ) such that colour n is not contained in either X or T belong to the zero
level C0; the first level (the pie of colour n) C1 consists of the cubes such that n
belongs to the type T ; the second level C2 includes the cubes such that n ∈ X. The
following assertion is basic.

Lemma D.2. The level is monotonically non-decreasing with respect to ≺.
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Proof. Let Q ≺ Q′. We let l and l′ denote the levels of Q and Q′, respectively. We
need to verify two things. First: if l′ = 0, then l = 0. Second: if l = 2, then l′ = 2.

We start with the second assertion. Assume that l = 2 (that is, n belongs to X)
but n does not belong to X ′. Since X ′ contains X in case (a′), this case is not
realizable and (b′) takes place. But then k = n, and n is always even, so we arrive
at a contradiction.

Let us now verify the first implication. Assume that l′ = 0, while l > 0. This
means that n belongs to neither X ′ nor T ′ and at the same time belongs to either
X or T . The colour n cannot belong to X, as we have just shown. Thus, n ∈ T =
Si = (T ′−k)∪{i}. Since n does not belong to T ′, we have i = n. But the colour n
is always even, hence the case (a) holds when X = S − i = S − n. Consequently,
n belongs to S and thus to X ′ = Sk. This is a contradiction. □

We now proceed to a proof of the theorem using induction on n. The assertion
of the theorem is true for n = d since there is only one cube. Let d < n.

Assume that there is a cyclic monotonic path

Q0 ≺ Q1 ≺ · · · ≺ QN = Q0.

By the previous lemma this path lies completely on one of the levels, namely, the
zeroth, first, or second level.

If the cycle lies on the zeroth level, then it is in the zonotope Z(n− 1, d), which
contradicts the induction assumption.

If the cycle lies on the second level, then we replace each root Xi by Xi − n.
We again obtain a cyclic path in Z(n − 1, d), which is impossible in view of the
induction assumption.

It remains to consider the case when the cyclic path lies on the first level, that is,
if Qi = (Xi, Ti) for i = 0, . . . , N , then n ∈ Ti for all i. In this case, replacing each
set Ti by the reduced set T̃i = Ti−n, we obtain a path Q̃0, . . . , Q̃N in Z(n−1, d−1),
where Q̃i = (Xi, T̃i). The main observation is that we again obtain a cycle, although
it has the opposite orientation, which contradicts the induction assumption. This
observation follows from the next lemma, on the reverse.

Lemma D.3. Assume that cubes Q = (X, T ) and Q′ = (X ′, T ′) in C (n, d) are
such that

Q ≺ Q′.

Let n ∈ T, T ′ and let T̃ = T − n and T̃ ′ = T ′ − n. Then the cubes Q̃ = (X, T̃ ) and
Q̃′ = (X ′, T̃ ′) in the zonotope Z̃ = Z(n− 1, d− 1) satisfy the reverse relation

Q̃′ ≺̃ Q̃,

where ≺̃ is the corresponding relation on the set C (n− 1, d− 1).

Proof. Let J = T ∩ T ′. Clearly, J also contains n. We set J̃ = J − n. The reason
for the reverse relation is that, since J = J̃n, the parity of any colour i with respect
to the set J̃ is opposite to the parity of this colour with respect to J . □
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combinatoire”, C. R. Acad. Sci. Paris, Sér. A-B 286:21 (1978), A981–A984.

[20] B. Leclerc and A. Zelevinsky, “Quasicommuting families of quantum Plücker
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