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MATHEMATICAL LIFE

On the 100th anniversary of the birth
of Aleksei Vasil’evich Pogorelov

Aleksei Vasil’evich Pogorelov was born on
3 March 1919, in Korocha (now in Belgorod
Oblast), in a farmer’s family. Because of col-
lectivization of family farms, his parents had
to flee in 1931 from their town to Kharkov,
where his father found work in the construc-
tion of the Kharkov Tractor Plant. In 1935
Pogorelov became a winner in a mathemati-
cal olympiad organized by Kharkov State Uni-
versity. After graduating from high school in
1937, he enrolled in the Department of Math-
ematics of the Faculty of Physics and Mathe-
matics at Kharkov State University, where he
was the best student in the department.

In 1941, when the war started, he was
sent to 11-month courses at the Zhukovsky
(Joukovski) Air Force Engineering Academy.
After the defeat of the Nazis in the battle of
Moscow this was extended to a full course of education. During this period, stu-
dents of the academy were periodically deployed to the front as aircraft mechanics
for several months at a time. For his part in World War II Pogorelov received the
Order of the Patriotic War of the 2nd degree. After graduating from the academy,
he was assigned to the Central Aerohydrodynamic Institute as a design engineer.
However, his wish to complete his university education and to engage seriously in
geometry brought him to Moscow State University. On the recommendation of
I. G. Petrovsky, the then dean of the Faculty of Mechanics and Mathematics, and
V.F. Kagan, a well-known geometer, Pogorelov was introduced to A.D. Aleksan-
drov, the founder of the theory of non-regular convex surfaces. There were many
new problems in that theory, and Aleksandrov posed one of these for Pogorelov.
A year later the problem was solved, and Pogorelov enrolled in the Faculty of
Mechanics and Mathematics for distant postgraduate studies in the field developed
by Aleksandrov, with N. V. Efimov as his advisor. After defending his Ph.D. thesis
in 1947, Pogorelov was discharged from the army and moved to Kharkov, where
he worked at the Research Institute of Mathematics and Mechanics of Kharkov
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State University and in the Department of Geometry of the university. In 1948 he
defended his D.Sc. thesis, in 1951 he was elected a corresponding member of the
Academy of Sciences of Ukraine, and in 1960 he was elected a corresponding mem-
ber of the Academy of Sciences of the USSR, in the Department of Mathematics.
From 1961 Pogorelov was an academician of the Academy of Sciences of Ukraine
and from 1976 an academician of the Academy of Sciences of the USSR, in the
Department of Mathematics. From 1950 to 1960 he was head of the Department of
Geometry at Kharkov State University and from 1960 to 2000 head of the Depart-
ment of Geometry at the Institute for Low Temperature Physics and Engineering of
the Academy of Sciences of Ukraine. From 2000 he lived in Moscow as a researcher
at the Steklov Mathematical Institute.

For his extraordinary research achievements Pogorelov was awarded:

e the Stalin Prize of the second degree (1950) for his investigations on the
theory of convex surfaces published in his paper “The rigidity of convex
surfaces” and in a series of papers in the journal Doklady Akademii Nauk
SSSR in 1948-1949;

e the Lenin Prize (1962) for his investigations of geometry ‘in the large’;

e the N.I. Lobachevskii Prize (1959) for his book Some questions in geometry
in the large in a Riemannian space;

e the N. M. Krylov Prize of the Academy of Sciences of Ukraine (1973);

e the State Prize of the Ukrainian Soviet Socialist Republic (1974) for his
solution of the multidimensional Minkowski problem:;

e the N.N. Bogolyubov Prize of the National Academy of Sciences of Ukraine
(1998) for his works on mechanics;

e the State Prize of Ukraine (2005).

Pogorelov was the author of three brilliant university textbooks on analytic geom-
etry, differential geometry, and the foundations of geometry. He was also the author
of a high-school textbook on geometry, which is still in use in Russian schools and
is republished each year.

1. Scientific interests

By the beginning of the 20th century mathematicians had developed methods
for solving local problems for regular surfaces, and by the 1930s there were meth-
ods for solving geometry problems in the large, based mostly on the theory of
partial differential equations. Mathematicians could do nothing in the case of
non-regular surfaces (with conical points or ridge points) or when the intrinsic
geometry is not determined by a regular positive-definite quadratic form but gives
just a metric space of rather general type. It was the prominent geometer Alek-
sandrov who made a breakthrough in investigations of non-regular metrics and
non-regular surfaces. He developed a theory of metric spaces with non-negative cur-
vature (which covered also the intrinsic geometry of general convex surfaces, which
are by definition domains on the boundary of an arbitrary convex body). Aleksan-
drov started investigating the connections between the intrinsic and extrinsic geom-
etry of non-regular convex surfaces. He proved that any metric with non-negative
curvature on a 2-sphere (for instance, non-regular metrics defined as metric spaces
with intrinsic metrics) can be immersed isometrically in 3-dimensional Euclidean
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space as a closed convex surface. However, the answers to the following fundamental
questions were unknown.

1. Is such an immersion unique up to motions?

2. If the metric on the sphere is regular and has positive Gaussian curvature,
then is the convex surface realizing this metric regular?

3. G. Minkowski proved that there is a closed convex hypersurface with pre-
scribed Gaussian curvature as a function of the normal vector under a certain
natural condition on this function. However, the following problem remained open:
if the function is regular on the sphere, then is the surface also regular?

Once these problems were solved, the theory developed by Aleksandrov would
become a generally accepted part of mathematics and could be used also in the clas-
sical regular case. And Pogorelov was the person who answered all three questions
in the affirmative. He used synthetic geometric methods and developed geomet-
ric methods for deriving a priori estimates for solutions of the Monge—Ampere
equations. On the one hand, he used these solutions to solve geometric problems,
and on the other hand, based on geometric considerations he constructed a gen-
eralized solution of the Monge-Ampere equation and then showed that for regular
right-hand sides such solutions were regular. In fact, in these pioneering works
Pogorelov laid the foundations of geometric analysis. On this path he obtain the
following fundamental results.

1) Let F; and F» be two isometric closed convex surfaces in 3-dimensional
Euclidean space or spherical space. Then they coincide up to a space motion
(1951).

2) A closed convex surface in a space of constant curvature is rigid outside
planar domains on it. This means that it admits only trivial infinitesimal
deformations (1959).

3) If a convex surface K in a space of constant curvature ¢ possesses a metric
in the class C* (k > 2) and if the Gaussian curvature of K is greater than
¢, then K is regular of class Ck~1< (1949).

For subdomains of convex surfaces, the assertions 1) and 2) fail: the local and
global properties of surfaces are essentially different. By proving 1) Pogorelov
finished the solution of a problem which had been open for more than a century.
The first result in this direction was obtained by Cauchy (1813) for the case of
closed convex polyhedra. Recall that two surfaces are said to be isometric if there
exists a map that takes one onto the other and preserves the lengths of curves.

Theorems proved by Pogorelov underlie his non-linear theory of thin shells. This
theory considers elastic states of a shell which differ by significant changes in the
original shape. Under such deformations the median surface of the thin shell under-
goes bending with preservation of the metric. This makes it possible to investigate
the loss of stability and the supercritical elastic state of convex shells under the
action of a given load using Pogorelov’s results for convex surfaces. Such shell
structures are very common elements of contemporary buildings.

Pogorelov generalized the assertions 1) and 2) for regular surfaces in a Rie-
mannian space. He also solved (1957) the Weyl problem for a Riemannian space
by showing that a regular metric on a 2-sphere with Gaussian curvature bounded
below by a constant can be immersed isometrically as a regular surface in a complete
simply connected 3-dimensional Riemannian space with curvature bounded above by
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a constant. In analysing the methods used in the proof of this result, the Abel prize
winner M. Gromov introduced pseudoholomorphic curves, which are now a major
tool in symplectic geometry.

A closed convex hypersurface is not only uniquely determined by its metric but
also by its Gaussian curvature as a function of the normal vector. In the second case
it is determined up to a parallel translation, as shown by Minkowski. However, is
it regular in the case when the Gaussian curvature k(n) is a regular function of the
normal? Pogorelov proved (in 1952 for 2-dimensional surfaces and in 1971 in the
multidimensional case) that if k(n) is a positive function in the class C* (k > 3),
then the support function is C**1¥-regular with 0 < v < 1.

The hardest part of the proof was to find a priori estimates for the derivatives
of the support function up to third order. Subsequently, S. T. Yau used Pogorelov’s
method to get a priori estimates of solutions of the complex Monge—Ampere equa-
tion. This was the main step in the proof of the existence of Calabi—Yau manifolds,
which are important for theoretical physics. The Monge-Ampére equation has the
form

|zij| = f(z1,. .., Tny 2,21, -+, 2Zn)-

A priori estimates in the Minkowski problem are estimates for the solution of the
Monge-Ampere equation with

1
E(1+ 22+ +a2)v/2+1 7

f=

No approaches to this fully non-linear equation were known at that time. Pogore-
lov developed a theory of the Monge-Ampere equation using geometric methods.
First, he began with polytopes and proved that generalized solutions exist under
natural assumptions on the right-hand side. Next, for regular solutions he found a
priori estimates for the derivatives up to third order. Finally, using these a priori
estimates he showed that strictly convex solutions are regular, and proved the
solvability of the Dirichlet problem and its regularity.

The Monge-Ampere equation is a significant part of the Monge-Kantorovich
transportation problem; it is used in conformal, affine, and Kéhler geometry, in
meteorology and financial mathematics. Pogorelov once said of the Monge—Ampere
equation: “This is a great equation with which I have had the honour to work.”

Among the most conceptual works by Pogorelov was a cycle of papers on smooth
surfaces with bounded extrinsic curvature. Aleksandrov developed the theory of
general metric spaces, which are a natural generalization of Riemannian manifolds.
In particular, he introduced the class of 2-manifolds with bounded curvature. They
exhaust the class of 2-manifolds with metric that can be uniformly approximated,
in a neighbourhood of each point, by Riemannian manifolds with absolute integral
curvatures (integrals of the absolute value of the Gaussian curvature) bounded by
a common constant.

Of course, there was the natural question of the class of surfaces in 3-dimensional
Euclidean space that carry such a metric with preservation of the connection
between the metric and the extrinsic geometry of the surface. As a partial answer
to this question, Pogorelov introduced the class of C'-surfaces satisfying the condi-
tion that their spherical image has finite area (where the multiplicity of the covering
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in a neighbourhood of each point is taken into account). Such surfaces are called
surfaces of bounded curvature. For such surfaces there is a very close connection
between the intrinsic geometry of the surface and its external shape: a complete
surface with bounded extrinsic curvature and non-negative (non-zero) intrinsic cur-
vature is either a closed convex surface or an infinite convex surface; a complete
surface with zero intrinsic curvature and bounded extrinsic curvature is a cylinder.

Pogorelov’s first paper on surfaces with bounded extrinsic curvature appeared
in 1953. However, in 1954 J. Nash published a paper on C'-isometric immersion,
the results in which were then improved by N. Kuiper in 1955. Their work showed
that, under rather general assumptions, a Riemannian metric on a 2-manifold can
be realized on a C'-smooth surface in 3-dimensional Euclidean space. Moreover,
such a realization can be implemented as freely as a topological immersion of the
manifold with metric in the ambient space. From this it is clear that for C''-surfaces
there can be no such connection between the extrinsic and intrinsic curvatures, even
with a nice intrinsic metric. And even when a C!-surface carries a regular metric
with positive Gaussian curvature, this does not mean that it is locally convex. All
this underscores that Pogorelov’s class of surfaces with bounded extrinsic curvature
([1], [2]) is a natural class.

2. Hilbert’s fourth problem

Pogorelov solved Hilbert’s fourth problem, posed by Hilbert in 1900 at the 2nd
International Congress of Mathematicians in Paris.

Statement of the problem [3]: find, up to isomorphism, all geometries that
have the aziomatic systems of the classical geometries (Euclidean, hyperbolic, and
elliptic), without the axioms of congruence involving the notion of angle and with
the triangle inequality as an added axiom.

In the planar case if we assume also the continuity axiom, then we arrive at
a problem posed by G. Darboux: find all variational problems in the plane whose
solutions are the plane straight lines [4].

For Desarguesian spaces G. Hamel proved that every solution of the Hilbert
problem can be represented in real projective space RP™ or in a convex domain in
RP™ if the congruence of line intervals is defined to be the equality of their lengths
in a certain special metric for which the straight lines in the projective space are
geodesics. Such metrics are said to be flat or projective. Thus, the solution of
the Hilbert problem was reduced to the problem of a constructive definition of all
complete flat metrics.

Hamel solved this problem under the assumption that the metric is sufficiently
regular [5]: he showed that a regular Finsler metric

F(Z‘,y) = F(xla"'axnvyh'"ayn)
is flat if and only if it satisfies the conditions

O*F? O*F?
dxiOyi  Oxd Oy’

iji=1,...,n.

However, simple examples show that regular flat metrics by no means exhaust all
the flat metrics. The axioms of the geometries under consideration ensure only that
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the metrics are continuous. Therefore, a complete solution of the Hilbert problem
presupposes a constructive definition of all continuous flat metrics.

Consider the set of oriented straight lines in the plane. A straight line is deter-
mined by the parameters p and ¢, where p is the distance from the origin to the line
and ¢ is the angle between the line and the z-axis. Then the set of oriented lines is
homeomorphic to a circular cylinder of unit radius with area element dS = dpdy.
Let v be a rectifiable plane curve. Then as M. Crofton showed in 1870, its length

can be defined as )
L=1//M@@@M%
Q

where ) is the set of straight lines crossing the curve and n(p, ¢) is the number of
points of intersection of the straight line and the curve.

A similar result also holds in the projective space.

On the set of straight lines in the projective plane RP? H. Busemann introduced
a completely additive non-negative measure o with the following properties:

1) o(7P) = 0, where 7P is the set of straight lines through the point P;

2) o(7X) > 0, where 7X is the set of straight lines intersecting a set X containing
a line segment;

3) o(RP™) is finite.

When we consider a o-measure in an arbitrary convex domain €2 in the projective
plane R P2, the condition 3) must be replaced by the condition that o(7H) < oo for
each set H in 2 such that the closure of H is disjoint from the boundary of €2 [6].

Using such a measure, we define a o-metric in RP?:

|z, y| = o(r[z,y]), (1)

where 7z, y] is the set of straight lines intersecting the line segment [z,y]. For this
metric the triangle inequality is a consequence of Pasch’s theorem.

Any o-metric in RP? is flat, that is, geodesics in this metric are straight lines
in the projective plane.

However, Busemann was far from the opinion that o-metrics exhaust all flat
metrics. He wrote: “The freedom in the choice of a metric with given geodesics is
for non-Riemannian metrics so great that it may be doubted whether there really
exists a convincing characterization of all Desarguesian spaces ...” [6].

The following theorem, established by Pogorelov in 1973 [7], [8], solved Hilbert’s
fourth problem.

Theorem 2.1. Fach flat 2-dimensional complete continuous metric is a o-metric.

In 1976, R. V. Ambartsumyan [9] gave another proof for Hilbert’s fourth problem
with n = 2.
In the case n = 3 Pogorelov proved the following theorem.

Theorem 2.2. Each flat 3-dimensional complete regular continuous metric is a
o-metric.

However, in the 3-dimensional case o-measures may be signed. Pogorelov showed
that in the 3-dimensional case each flat complete continuous metric is a limit of
regular o-metrics in the topology of uniform convergence on compact subdomains
of its domain of definition. He called such metrics generalized o-metrics.
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In his review [10] of Pogorelov’s book “Hilbert’s fourth problem” Busemann
wrote: “In the spirit of the time Hilbert restricted himself to n = 2, 3 and so does
Pogorelov. However, ... the real difference is between n = 2 and n > 2. Pogorelov’s
method works for n > 3, but requires greater technicalities.”

The multidimensional case of Hilbert’s fourth problem was studied by Z.I. Szabo.
In 1986, he proved a generalized Pogorelov theorem [11].

Theorem 2.3. Each n-dimensional Desarguesian space in the class C"t2 n > 2,
is generated by the Blaschke—Busemann construction. A o-measure that generates
a flat metric has the following properties:

1) the o-measure of the hyperplanes passing through any fized point is zero;

2) the o-measure of the set of hyperplanes intersecting two line segments [x,y]
and [y, z] with the points x, y, and z not collinear is positive.

In the same paper Szabo gave an example of a flat metric not generated by the
Blaschke-Busemann construction. Subsequently, R. Alexander [12] showed that
the flat metric in the Minkowski space with the norm

]| = max{|z1], [za, [zs]}

is not generated by the Blaschke-Busemann construction.

Szabo also described all flat continuous metrics in terms of generalized func-
tions [11].

The circle of topics related to Hilbert’s fourth problem is still under develop-
ment. A correspondence was discovered between flat n-dimensional Finsler metrics
and certain special symplectic forms on the Grassmannian manifold G(n + 1,2) in
E™1 [13]. Also, the statement of the fourth problem was extended to the case of
symmetric spaces [14].

Some problems in this theory are still open:

1) Hilbert’s fourth problem has not been solved for asymmetric distances;

2) the generalization of Hilbert’s fourth problem for rank-1 symmetric spaces
has not been established;

3) the metrics on RP™ such that the k-planes minimize the k-area (Busemann;
see [15]) have not been described.

3. The Dirichlet problem for the Monge—Ampére equation

We can state the Dirichlet problem for the Monge—Ampére equation in a bounded
domain 2 € R™:
T lu] := det ug, = o(x) > 0, u|a =1, (2)

where u;,; is the Hessian matrix of the function u. This problem has long attracted
the attention of experts in partial differential equations, in particular, because it is
a model problem in the theory of fully non-linear (that is, non-linear in the second
derivatives) second-order elliptic differential equations. It is well known that the
operator T, is elliptic on the set of convex functions on €2, and one of the central
problems was to describe conditions on the data in (2) that ensure solvability in the
classical sense, that is, in the cone of convex functions in the space C*(€Q), k > 2.
By 1953 this problem had been fairly thoroughly investigated in the 2-dimensional
case [16]. However, in the multidimensional case with € R™ n > 3, it remained


http://www.ams.org/mathscinet-getitem?mr=0550440

1142 Aleksei Vasil’evich Pogorelov

open up to 1970, and even its well-posedness in the space C*(Q) N C°(Q), k > 2,
was in question for n > 2.

In proving the existence of classical solutions of the Dirichlet problem for ellip-
tic equations, authors usually used continuation with respect to a parameter (the
method of continuity) or the Leray—Schauder theorem, and both require a set of
fairly strong a priori estimates. For (2) this must be an a priori estimate of a con-
vex solution in the space C?7(2). More precisely, in contrast to the linear theory
it was necessary

(i) to find an a priori estimate for the second derivatives of the solution u in C'(Q);

(ii) to find an a priori estimate of ||uzz|cog), @ > 0.

Methods for implementing the programme (i), (ii) for all values n > 2 were
developed only in the early 1980s, after Pogorelov ([17], [18]) introduced the notion
of a regular solution and worked out the theory of regular solutions of (2).

In 1958, Aleksandrov introduced the concept of a generalized solution of (2) in
the framework of the geometric theory of multidimensional convex surfaces, and he
proved by geometric methods that such a solution exists and is unique [19]. How-
ever, purely geometric methods are not enough to solve the problem of C*-regularity
of generalized solutions of (2) for k > 2, and it remained open till 1971, when
Pogorelov published the papers [20] and [21] (see also [17]).

In his book [17] (see §5.2) Pogorelov presented a completely transparent defini-
tion of a generalized solution of (2) and a proof of the generalized solvability of (2)
(Theorem 1 in §5.2).

Theorem 3.1. For each strictly convex domain §2, each positive continuous func-
tion ¢ on Q, and each continuous function ¢ on the boundary of Q) there exists a
unique generalized solution of the problem (2).

However, the main aim was to prove that for sufficiently smooth data in the
problem the generalized solution is regular. We remark that Pogorelov defined
a solution u of (2) to be regular if u € C*(Q) N C°(Q) for some k > 2. As a first
step, he solved the problem of a priori regularity in C?(Q) N C%(Q) (|17], §5.3).

Theorem 3.2. Let u(x) be a regular convex solution of (2) in Q that satisfies the
boundary condition uw = 0. Then the second derivatives of the solution interior
to  have an estimate depending on the maximum modulus of the solution and its
first-order derivatives, the function f and its first- and second-order derivatives,

and the distance from the point at which the estimate is considered to the boundary
of Q1.

For the proof, Pogorelov introduced the auxiliary function
w = —ue's/2ug,, (3)

where « is a fixed direction ([17], §5.3, (2)). Since the solution u(z) vanishes on the
boundary, w attains its maximum value at an interior point of the domain. Differen-
tiating (2) twice and analysing the result at a maximum point of w ([17], § 5.3) yields
the required estimate for the second derivatives of u. Thus, the a priori estimate in
Theorem 3.2 is obtained by classical methods in the theory of second-order elliptic
equations. We note that in Pogorelov’s argument the estimate in Theorem 3.2 was
an adequate substitute for an estimate in (i).
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The following theorem was central in Pogorelov’s theory ([17], § 2.3, Theorem 3).

Theorem 3.3. At each interior point of Q the third derivatives of the convex solu-
tion of (2) have an estimate which depends only on the second derivatives of the
solution, the derivatives of ¢ up to third order, and the distance from the point to
the boundary of Q2.

In his proof of this result Pogorelov used differential-geometric constructions due
to E. Calabi [22] to construct a certain auxiliary function, and then he derived the
desired estimate by analysing this function at a maximum point ([17], §3.3).

The C**+1@_regularity of solutions of (2) withk > 3and 0 < a < 1 for p € C*(Q)
is a simple consequence of Theorem 3.3, because this theorem opens the way to
applications of the machinery of Schauder a priori estimates from the linear theory
of elliptic equations. Indeed, let u € C3(£2) be a convex solution of (2), and let
© € C*(Q), with k > 3. Differentiating (2) in an arbitrary direction | and letting
v = uy, we have

o,

AYulv;; = ¢y, where AY = Bus;

i j=1,...,n (4)
It follows from Theorem 3.1 that equation (4) is uniformly elliptic in any interior
subdomain of €2, while Theorem 3.2 ensures that

Au] = (AY (uyy)) € CUHQ).

Furthermore, it follows from Schauder’s theory that v € C%%(Q) for any 0 < o < 1.
Since [ is arbitrary, the last inclusion is equivalent to u € C3%(Q2). But then
Alu] € CH(Q), so that u € C+*(Q2), and so on.

Theorems 3.2 and 3.3 provide a functional-geometric basis for proving regular-
ity of the generalized solution in Theorem 3.1 in the case of a linear boundary
condition ([17], §5.4, Theorem 4). In summary, [17] contains a complete proof of
the existence theorem for regular solutions of the Dirichlet problem (Theorem 7 in
§5.6), the first such result (originally published in 1971 in [21]) in the theory of the
multidimensional Monge-Ampere equation.

Theorem 3.4. The Dirichlet problem for equation (2) with a regular right-hand
side p(x) in a strictly convex domain Q always has a regular solution if the boundary
of Q and the function v prescribed as the boundary values of the solution are in the
class C2. The solution is in the class C**1® with k > 3 and 0 < a < 1 if ¢ is in
the class C*. The solution is analytic if o is.

It was a natural extension of Pogorelov’s theory to investigate regular solvability
of the problem (2) for a wider class of functions ¢. In 1977, sufficient conditions
were found in [23] for the existence of a regular solution of the problem

det uz, = f(x,u,u,) >0, =0, z€QCR" n>2 (5)

“‘asz

The proof was based on a system of a priori estimates deduced using the Pogorelov—
Calabi method (see [24], Chap. 17, comments).

In 1982 the problem (5) was treated in [25] as a problem in weighted spaces.
As a result, in addition to Theorem 3.4 the Leray—Schauder principle could also be
used to prove solvability of (5). Investigations along these lines are still going on.
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The proof of Theorem 3.2 (see [17], §5.4) follows the classical scheme for con-
structing a priori estimates in the theory of second-order elliptic equations, and
taking the function (3) as the auxiliary function allows one to extend the result of
Theorem 3.2 to a wide class of fully non-linear second-order equations.

The situation with Theorem 3.3 is different. Its proof involves a differential
geometric machinery developed by Pogorelov to construct a regular solution of
the Minkowski problem, and this theorem was a challenge to experts in elliptic
differential equations. In fact, without an analytic proof that the problem (2)
has a regular solution, this result could not be extended to a wider class of fully
non-linear equations. However, it seemed incredible that, among all fully non-linear
equations in the multidimensional case, only for the Monge—Ampere equation could
the Dirichlet problem have regular solutions (see Theorem 3.4).

New analytic methods for local analysis of the smoothness of second derivatives
of solutions of a wide class of fully non-linear second-order elliptic equations were
found by L.C. Evans [26] and N.V. Krylov [27] in the early 1980s. The most
concise statement and proof of this remarkable result were presented in [24]. For
applications to geometric problems we formulate a version of this theorem in other
terms.

Let Sym(n) denote the space of symmetric n x n matrices, let D C Sym(n) be
a connected domain, and let F' € C?(D).

Definition 3.5. We call a set Dp C D an F-centre if Dy is convex in Sym(n), F'
is (downwards) concave in Dp, and for each S € Dp
OF(S)

0 < A(S) < FY(S)¢& <A(S) for |¢| =1, where F(S) = prt (6)
iJ

We call Dy a maximal F-centre if for each S ¢ Dy at least one of the above
conditions fails to hold.

A simplest example here is the linear function F'(S;A) = (A,S5), where A is
a constant symmetric matrix. If A > 0, then Dy = Sym(n) is a maximal centre.
Otherwise, Drp = &, that is, the function F(S;A) has no centre. It is also well
known that in the case of the function F,(S) = det'/™ S the maximal F,-centre is
equal to the cone of positive-definite matrices. We denote it by K.

With the function F' and an n X n matrix 7(p) with p € R™ and det T # 0 we
associate the operator F[u] = F(S[u]), u € C*(Q), where

Slu] = U(zyy and u(zy) = 7T (U U (1), (ugj) = (Tikukﬁ]l»), i,j=1,...,n).
(7)

Theorem 3.6. Let F, 7, and f be C?-smooth parameters of the equation
F(u(ge)) = f(z,u,uz), x €, (8)

and let u € C*(Q) be a solution of it. Assume that U(ga) () € Dp for any x € Q' C
Q. Then for any B € (0;1),

teellcrs@y < C(B, ullczn, IF, fllcz, dist('; 092)). 9)
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Let us turn to the equation (2). The next result is a consequence of Theorem 3.6.

Theorem 3.7. Let Q be a bounded domain in R™, let Q' C Q, and assume that
o(x) = v >0 and p € C?(Q). Let u € C*Q) be a conver solution of (2). Then

Jor B € (0;1)
||uHC3,a(Q/) < C(V,ﬁ, ||uch(Q/), ||(PHC2(Q)7 diSt(Ql; c’)Q)) (10)

In fact, in the cone of convex functions equation (2) is equivalent to Fj,[u] =
©'/™. The latter equation is covered by Theorem 3.6 with F' = F,,, 7 = Id, and
f = @Y"(x), and (10) is a special case of the inequality (9).

Formally, Theorem 3.3 is a consequence of Theorem 3.7, but it was published
more than ten years before [26] and [27]. There is no doubt that it was this result of
Pogorelov that prompted the investigations by Krylov and Evans, which now form
a basis for the modern theory of fully non-linear second-order differential equations.

In Holder spaces it is convenient to use the method of continuity to prove exis-
tence theorems for classical solutions. However, for this method we need a priori
estimates for solutions in closed domains, and for the problem (2) we need a bound
in C%%(Q) for some a > 0. Sufficient conditions close to necessary conditions for the
a priori boundedness of solutions of (2) in C2(£2) were found in 1980 in the note [28].
As for the local estimates of Krylov and Evans, in 1983 M. V. Safonov developed
a method for extending them to closed domains, provided that the boundary and the
Dirichlet condition are at least C*-smooth [29]. All this led to existence theorems
for classical solutions of the Dirichlet problem for a wide class of fully non-linear
second-order elliptic equations (for instance, see [30]).

To formulate one contemporary version of the existence theorem for the prob-
lem (2), let ky[I'] denote the Gaussian curvature of a hypersurface I' ¢ RN+,

Theorem 3.8. Let ) be a bounded domain in R™, k > 2, and 0 < o < 1. Assume
that the following conditions are satisfied:

(i) 09 € C**2e K, 1[09Q] > 0, and ¢ € CF+22(0Q);

(i) ¢ € C**(Q) and ¢(z) > 0 for x € Q.

Then the problem (2) has a unique solution u in the cone of convex functions, and
it belongs to the space C*+2(Q). But if ¢» = 0, then the solution u is unique in
C?(9).

Let us compare the hypotheses of Theorems 3.4 and 3.8. On the one hand, the
inequality (10) is a valid replacement for Theorem 3.3 in the proof of Theorem 3.4,
so the smoothness assumption on ¢ can be replaced by the weaker condition ¢ €
Ck—Le with some 0 < a < 1.

On the other hand, Theorem 3.6 does not work when 9 and 1 are C? (see (i)),
whereas in Theorem 3.4 a C%-smooth boundary ensures that a solution exists whose
regularity depends on that of ¢(x).

We see that Theorems 3.4 and 3.8 are qualitatively different, but overlap. For
example, the following result holds.

Theorem 3.9. Let 99 € C*°, k,,_1[09Q] > 0, and ¢ € CH*(9Q) with some 0 <
a < 1. Then for any function p(z) > 0 in Q such that p € C*>*(Q)NC**(Q), and
k > 2, the cone of convex functions contains a unique solution u of the problem (2),
and moreover, u € C*T22(Q) N CH*(Q). On the other hand, if 1) = 0, then the
solution u is unique in C?(€).
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4. A generalization of the Minkowski problem

The main result obtained by Pogorelov in the first half of the 1970s was a regular
solution of the multidimensional Minkowski problem (see [17], § 3, Theorem 1).

Theorem 4.1. Let K(£) be a positive C™-regular function with m > 3 on the unit

hypersphere Q0 such that
Edw
-—— =0. 11
IR )

Then up to a parallel translation there evists a unique C™ 1®-regular (o > 0)
convex hypersurface with Gaussian curvature K (§). If K(£) is an analytic function,
then the hypersurface is also analytic.

Let »4[T)(M), i = 1,...,n, denote the principal curvatures of a hypersurface
I' € R*! at the point M, and let n[['](M) be the normal to the hypersurface
pointing into the domain €, where 9Q =T and || < co. Theorem 4.1 states that
the condition (11) ensures that a regular convex solution I' € R"*! of the equation

K, [[] = H wi=K@[l])), MeT, (12)

exists and is unique if the function K () on the hypersphere |{| = 1 is sufficiently
regular. In the theory of second-order differential equations there are methods for
proving existence theorems for classical solutions, based on constructing certain sys-
tems of a priori estimates. However, these methods cannot be applied to equations
in the form (12).

Pogorelov found an equivalent formulation of (12) which permitted an analytical
investigation of the multidimensional Minkowski problem, and he then developed
new methods for deriving a priori estimates suitable for the use of results in func-
tional analysis. More precisely, he reformulated the problem in terms of the support
function of the convex hypersurface, and for this function (12) becomes an equation
of Monge—Ampere type. The geometric analogue of the latter has the form

[[#(r) = (). where & = and ¢(£)=%, =1 (13

Let S, (R), 1 < m < n, denote the mth elementary symmetric function of the radii
of curvature R!, ..., R" of . In his note [31] Pogorelov called S,,(R) the curvature
function of order m of I" and stated the problem

Sc(RIT]) = @i (€), / Eon(€)dw =0, | =1, (14)

which he regarded as a generalization of the Minkowski problem. It was shown in
§4.4 of [17] that the problem (14) has a regular solution under a certain additional
condition on ¢ which led in §2 to a priori bounds for the Holder constants of the
second derivatives of the support function of the hypersurface. It was also noted
that for k < n the positivity of the curvature function does not ensure the positivity
of the principal radii of curvature. Now, after more than 45 years, it is clear that
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these difficulties are not essential: the problem with the Hélder constants is solved
by Theorem 3.6 without any additional assumptions about ¢;. To deal with the
second observation, we first make a slight algebraic digression.

In the late 1950s the prominent Swedish mathematician L. Garding (born four
days after Pogorelov) developed the theory of a-hyperbolic polynomials, which he
defined to be homogeneous polynomials P,,(x), z € RV, 0 < m < N, such that the
polynomial p,,(t;a) = Py, (z + at), t € R, has only real zeros. The central point
in Garding’s theory is the concept of the cone C(P,,;a) C RY. By definition, =
belongs to C(P,,; a) if all the zeros of p,,,(t; a) are negative, that is, P, (z +at) #0
for t > 0 ([32], p. 960). The following theorem is one of the core results in Garding’s
theory.

Theorem 4.2. The cones C(Pp;a) are convex. If b € C(Py,;a), then the polyno-
mial Py, is b-hyperbolic, and moreover,

C(Ppm;b) = C(Py;a).

Setting RY = Sym(n), N = n(n +1)/2, and a = Id, we can add to the set
of examples illustrating Definition 3.5. By the m-trace of a matrix S we mean
the sum of all principal minors of order m of S, and we denote the m-trace by
T (S), To(S) = 1. All the polynomials T;,, with m = 1,...,n are Id-hyperbolic;
let K,,, m=1,...,n, be the corresponding Garding cones. The following result is
a consequence of Theorem 4.2.

Corollary 4.3. The cone K, is the connected component of the domain of posi-
tivity of T, that contains the identity matriz.

In [33], K,, was defined constructively:
K,, ={S € Sym(n), T;(S) >0, i=1,...,m}, (15)
which implies the strict inclusion K; C K; for 0 <4 < j < n. Let
Fn=TY™S), SekK,.

It is known that the functions Fj,, are (downwards) concave on K,,, m =1,...,n,
and satisfy the inequality (6) (for instance, see [34]). Hence K, is an F),-centre.
Moreover, we can show that K, is the maximal F,,-centre.

Most authors prefer to formulate the above for diagonal matrices, that is, in terms
of the elementary symmetric functions S,,(A), A € R™. In particular, Pogorelov
introduced the curvature function of order m for a convex hypersurface as an ele-
mentary symmetric function of the radii of curvature ([17], §4). However, the
inclusion K™ ¢ K™ for 0 < m < n does not guarantee that all the R, i = 1,...,n,
are positive, and the a priori assumption that the hypersurface is strictly convex
must be justified by confirming an a priori lower bound for the radii of curva-
ture, whereas only an upper bound was given in [17]. Nevertheless, for regular
closed hypersurfaces the fact that the curvature function of any order is positive
does guarantee the strict convexity of the surface in an informal way. For a formal
verification of this, we present another series of examples illustrating Definition 3.5.
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In 1990, N.S. Trudinger [35] introduced the symmetric fractions

o
omi(A) = —(N), 0<l<m<n, (16)
ol
and noted that the cone K,, plays the same role for these fractions as for the
elementary symmetric function Sy, () (see [35], p. 157). In particular, if m = n,
D C R" is a connected component of the positivity domain of S, ;, and there exists
an element A € D that has positive components, then D = K,,, and moreover,

Omi(A) < am=0/m(\), \E K,,. (17)

We denote the ratio (16) with A = s[T'](M), where s = (311,...,5t,), by
Ky [T](M) and call it the (m,l)-curvature of the hypersurface I' at the point M.
We remark that the geometric invariant k,,, [I'] := ky, o[I'] was originally introduced
in [30].

The following lemma is a consequence of Corollary 4.3 and the inequality (17)
for m = n.

Lemma 4.4. Let  be a bounded connected domain in R"™ and let T = 09 be
a regular hypersurface. Assume that there exist numbers p and v with p > v >0
such that

V< kn,l[r](M) < B, MeTl. (18)

Then T is strictly convex, with Gaussian curvature positive at every point.

Let us rewrite (14) in the equivalent form

&dw
el=1 Knn—k(§)

where K, ,,_j is a prescribed regular function. Assume that the right-hand side of
(14) satisfies the inequalities 0 < v* < ¢p(€) < p*. Then every regular solution
of (19) satisfies (18) with [ = n — k, v = 1/u*, and p = 1/v* and the principal
curvatures of I' are positive by Lemma 4.4. In this sense the fact that the Pogorelov
curvature functions Sy (R)[I'] are positive ensures the following inequalities for 1 <
k< n:

kn,n—k[r] = Kn,n—k(n[r])a =0, (19)

R >0, i=1,...,n.

However, in contrast to the relationship between (12) and (13), in replacing (19)
by (14) we lose information. Namely, there is no analogue of Lemma 4.4 for solutions
of (14) for k < n, so we cannot estimate the radii of curvature of I' from below
using (14).

Let us turn to (19). To implement Pogorelov’s pioneering idea that the maximum
principle in the theory of second-order elliptic differential equations can be used in
the construction of a priori estimates, we must represent the operator k,, ,_x[I'] in
a form inheriting the regularity of the hypersurface I". The key notion here is the
curvature matrix J¢[I'] introduced in [36], [34], [37]. Using the terminology from
the preprint [37], we can describe it as follows.

Consider a regular hypersurface I' ¢ R**!, take a point M € T', and consider
a parametrization X[['] = (z1(0),...,2™(0)) of T in a neighbourhood of M, where
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6 ranges in a connected domain © in R™. Here we assume that X € C*(0), k > 2.
We introduce the following notation:

(=g Ou=0d Oo = Cw) ©0)

Here the n x n matrices 7 = 7[['] are defined so that
g ' =7rr",

where g[I'] = ((X;, X;))7;=1(0) is the metric tensor of I'. Namely, each matrix of
the form
T =18, To=+vg~ ', Be€O(n),
is admissible. The derivatives (- )¢; in (20) do not depend on the parametrization,
and therefore they were called invariant derivatives in [34].
Let n[I'](M) denote the normal to I at M. If T" is the boundary of a connected
domain, then n[I'] is always the inward normal.

Definition 4.5. We call the matrix

L%/[F] = (X(g)(g),l’l)(M) = (X(gg),n)(M), M e F, (21)
the curvature matrix of I'; and we call the functions
k
) =TI, Tl = 20 p=1..m 420,  (22)
q

the p- and (p, g)-curvatures of T, respectively.

The characteristics (21) and (22) are absolute geometric invariants, and they are
C*~2-smooth if the regular hypersurface I' is C*-smooth, where k > 2. More pre-
cisely, (21) defines the family of symmetric matrices { BT %,B}, B € O(n), where,
for example, % corresponds to 79 = /¢g~1. The eigenvalues of all the curvature
matrices coincide, up to order, with the principal curvatures of the hypersurface.
On the other hand, our freedom in the choice of the matrix 7 allows us to reduce
the curvature matrix at a fixed point M € I' to diagonal form, and therefore by the
orthogonal invariance of the trace of a symmetric matrix the curvatures (22) are
well defined and depend only on the hypersurface I.

It follows from the above that each of the equations (12), (14), and (19) is
equivalent to a fully non-linear second-order elliptic differential equation

Tpi(H0)) = f(M)>0, MeT, 0<I, (23)

for a suitable choice of the subscripts and for f(M) = f(n[I'](M)). The core feature
of the geometric problems (23) is that we can investigate them in the framework of
the modern theory of second-order elliptic partial differential equations.

We see that Pogorelov’s generalization of the multidimensional Minkowski prob-
lem and Garding’s theory of hyperbolic polynomials have brought about a new
field in both differential geometry and the theory of second-order partial differen-
tial equations. The reader can find examples of investigations in this field in [38]
and [39].

Pogorelov’s methods for deriving a priori bounds have been used in the theory
of the optimal transportation problem and in geometric optics [40], [41].



1150 Aleksei Vasil’evich Pogorelov

5. Right-angled polyhedra in Lobachevskii space

Pogorelov’s paper “A regular partition of Lobachevskian space” [42] was pub-
lished in the first issue of the journal Matematicheskie Zametki.' He started with
the following observation, which we cite here: “Let P be a closed convex polyhedron
with right dihedral angles in Lobachevskii space. By a mirror reflection of P at each
of its faces we obtain polyhedra that are then reflected at the faces not adjacent to
P, and so on. By continuing this operation indefinitely we fill the whole of space
with polyhedra equal to P. Such a partition of Lobachevskii space into equal poly-
hedra can be effected by a system of planes. Any two planes of this system either are
disjoint or intersect at right angles. (...) On the Lobachevskii plane it is possible
to construct a regular pentagon with any interior angles smaller than 37 /5. In par-
ticular, there exists a regular pentagon with right interior angles. From such plane
pentagons one can obviously construct a regular dodecahedron in Lobachevskii
space. All its dihedral angles are right angles, and hence the whole of Lobachevskii
space can be covered by such dodecahedra in the indicated manner”([42], p. 3).

The object of that paper was to find necessary and sufficient conditions for the
existence of a closed convex polyhedron of given structure with right dihedral angles
in Lobachevskii space. Here Pogorelov meant that two polyhedra P and P’ have
the same structure or are analogous if a correspondence can be established between
their faces, edges, and vertices that preserves the incidence relation. He proved the
following result.

Theorem 5.1 [42]. In order that a closed convex polyhedron which has right dihe-
dral angles and is analogous to a given polyhedron P exist in Lobachevskii space, it
is mecessary and sufficient that the following conditions be satisfied:

1) precisely three edges meet at each vertex of P;

2) each face of P has at least five sides;

3) every simple closed contour on the surface of P that separates any two of its
faces intersects at least five edges;

4) in Lobachevskii space there exists a polyhedron P’ that is analogous to P and
has acute dihedral angles.

A polyhedron P that is analogous to P and has right dihedral angles is uniquely
defined up to a motion and a mirror reflection.

Conditions 1) and 2) in Theorem 5.1 are combinatorial and easy to verify on
the basis of the 1-skeleton of the polyhedron (the graph formed by its vertices and
edges).

In Fig. 1 we present the Schlegel diagram of a polyhedron satisfying the condi-
tions 1) and 2), but not 3). The closed dashed curve is a simple closed contour
on the surface of the polyhedron that separates two of its facets (for example, the
central hexagonal facet and the ‘external’ hexagonal facet) but intersects only four
edges of it.

We remark that verifying the condition 4) is quite difficult for polyhedra with a
complicated combinatorial structure. Several years later E. M. Andreev [43] over-
came this difficulty by establishing necessary and sufficient conditions for a bounded
acute-angled polyhedron that is combinatorially analogous to a fixed polyhedron

Ltranslated as Mathematical Notes.
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Figure 1. Schlegel diagram of a polyhedron not satisfying the condition 3)

to exist in Lobachevskii space. Because of the importance of his result we present
its statement. We recall the following definition. Let I';,,...,I';, be facets of some
3-dimensional polyhedron such that each facet is adjacent to the next in the list, the
last is adjacent to the first, no other two facets are adjacent, and no three intersect
in one point. Then we say that I';,,...,I';, form an s-angled prismatic element.

Theorem 5.2 [43]. Let P be a bounded convex polyhedron with dihedral angles
@i; (M) at most 7/2 in the 3-dimensional Lobachevskii space H®. Then the dihedral
angles satisfy the following system of inequalities (depending only on the combina-

torial type):
O)O<O&ij <7T/2,
1) if T'sji is a vertex of P, then
Qij + Qi + Qg > T
2) if facets T';, T';, and Ty, form a three-angled prismatic element, then
Qi + i + oy < T
3) if four facets T';, T';, T'y, and Iy form a four-angled prismatic element, then
i+ o+ gy + oy < 2

4) if T's is a facet with edges I';s, T'js, Tis, and I'1s ordered successively, then

Qs + s + Qi + oy + o + oy < 3,

Qs + ags + auj 4 ag + o+ oy < 3T

We remark also that Andreev proved the following uniqueness result.

Theorem 5.3 [43]. Let P and P’ be two bounded convex polyhedra in the n-dimen-
sional Lobachevskii space H™ , n > 3. Let P ~ P’ and suppose that the corresponding
dihedral angles of these polyhedra are equal and do not exceed w/2. Then P and P’
are congruent.

Polyhedra satisfying the combinatorial conditions in Theorem 5.1 have recently
come to be called Pogorelov polyhedra. They are connected in a natural way with
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interesting constructions in 3-dimensional hyperbolic geometry and toric topology
(for instance, see the surveys [44] and [45]).

We recall that in answering affirmatively the question of the existence of closed
oriented hyperbolic 3-manifolds, Lobell constructed in 1931 the first example of
such a manifold by using eight copies of a right-angled 14-hedron [47] (see Fig. 2).
In [48] A.Yu. Vesnin proposed a method for constructing closed oriented hyper-
bolic 3-manifolds by using four-colourings of the facets of right-angled polyhedra,
and he showed that Lobell’s example can also be constructed using that method.
Namely, a four-colouring of the facets of a Pogorelov polyhedron determines an epi-
morphism of the reflection group of the polyhedron onto the eight-element Abelian
group Z/2Z.&7Z/2ZDZ/27 and leads to the construction of a hyperbolic 3-manifold.
The fundamental group of this manifold is a torsion-free index-8 subgroup of the cor-
responding right-angled Coxeter group. In [48] this method was used to construct
an infinite family of hyperbolic manifolds generalizing Lobell’s example, in [49]
their volumes were calculated, and in [50] it was shown that if the 1-skeleton
of a Pogorelov polyhedron contains a Hamiltonian cycle, then the corresponding
manifold can be represented as a multiplicity-2 branched cover of the 3-sphere, and
a method for describing the branch locus was indicated.

In [51] M. Davis and T. Januszkiewicz proposed a construction of manifolds
with a torus action that correspond to simple (on their vertices) polyhedra. Sur-
prisingly, such manifolds are cohomologically rigid precisely when the polyhedron
in question is a Pogorelov polyhedron [44]. This enabled V.M. Buchstaber and
T.E. Panov [52] to find necessary and sufficient conditions for four-colourings of
the facets of Pogorelov polyhedra to determine isometric hyperbolic 3-manifolds.

We see from Theorem 5.1 that Pogorelov polyhedra can have a rather com-
plicated combinatorial structure. The simplest example is a dodecahedron. The
example next in simplicity is a 14-hedron whose top and bottom bases are hexagons.
We present the Schlegel diagrams of these polyhedra in Fig. 2.

Figure 2. Schlegel diagrams of a dodecahedron and a 14-hedron

The class of Pogorelov polyhedra contains the interesting class of objects called
fullerenes. Recall that fullerenes are chemical compounds whose molecular struc-
ture is a 1-skeleton of a polyhedron each of whose vertices is incident to three edges
and each of whose faces is a pentagon or a hexagon. Investigations of molecules of
fullerenes have been closely connected with mathematics from the outset. Geom-
etry, topology, graph theory, number theory, and other areas of mathematics are
instrumental to a significant degree for classifying the structures of fullerenes and
predicting their unique physical and chemical properties. For more information on
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the mathematical theory of fullerenes the reader is advised to consult the collection
of papers [53] and An atlas of fullerenes [54].

By Theorem 5.3 a bounded right-angled hyperbolic polyhedron is completely
determined by its combinatorics. Moreover, it turns out that some of its geometric
parameters can be estimated in terms of just the number of vertices. Namely,
C. K. Atkinson [55] found the following two-sided bounds for volumes.

Theorem 5.4 [55]. Let P be a bounded right-angled hyperbolic polyhedron with N

vertices. Then
5’03

Ug
(N-2) 32 < vol(P) < (N —10) g
where vg is the mazximum volume of a hyperbolic octahedron, and v3 is the maxi-
mum volume of a hyperbolic tetrahedron. Furthermore, there exists a sequence of
bounded right-angled polyhedra P; with N; vertices such that the ratio vol(P;)/N;
tends to bvs/8 as i — oo.

The constants v3 and vg in the theorem have the numerical values

vg = 3A<g) = 1.0149416064096535 . . ., (24)

vg = 8A<Z) = 3.663862376708876.. .. . (25)

In fact, vg is the volume of a regular ideal hyperbolic tetrahedron with dihedral
angles 7/3, and vg is the volume of a regular ideal hyperbolic octahedron with
dihedral angles 7/2. Here A(#) denotes the Lobachevskii function

0
A(B) = —/ log |2 sin | dt.
0

In view of Theorem 5.3 it seems natural to list the Pogorelov polyhedra in
order of increasing volumes of their right-angled realizations in Lobachevskii space.
T. Inoue [56], [57] listed the first 825 bounded right-angled hyperbolic polyhedra
with their volumes. In particular, the last, 825th polyhedron in the list has volume
13.4204. ... Inoue also presented the Schlegel diagrams of the first 100 Pogorelov
polyhedra.

We underscore that the study of conditions for the existence of bounded right-
angled polyhedra in Lobachevskii space that Pogorelov [42] initiated in 1967 has
developed in recent years into intensive investigations of their geometric properties
and has led to interesting constructions in topology. It is rather exciting that, after
several decades, the class of combinatorial polyhedra that he described has turned
out to be of interest not only from a mathematical point of view, but also because
it contains a subclass of polyhedra important in structural chemistry.

A.A. Borisenko, A. Yu. Vesnin, and N. M. Ivochkina
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