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We provide corrections to a typo and an error in the original paper.

1.  Correction to the typo

The correct version of equations (3.1) and (3.12) in the main text is,

γij := e−4φγij, γij := e4φγij,� (1.1a)

ϕ̂ij := e−4ψϕij, ϕ̂ij := e4ψϕij.� (1.1b)

2.  Correction to the error in appendix A.1

This section replaces the first part of appendix A.1, up to (A.25).
Consider the spatial parts γ = eTδe and ϕ = mo

Tδmo of two Lorentzian metrics g, f . In [1], 

it is established that the existence of the real square root 
(
g−1f

)1/2
 implies,

β := q + αn = q + αe−1pλ−1,� (2.1a)

β̃ := q − α̃ñ = q − α̃m−1pλ−1,� (2.1b)

χ = eTδΛsRmo = χT.� (2.1c)

To be more precise, the freely specifiable spatial vielbein mo is used to compute the viel-
bein Rmo such that the spatial part χ of the geometric mean metric h = g#f  is given by 
χ = eTδΛs(Rmo). This is obtained by imposing (2.1c) and solving it for the Euclidean 
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orthogonal transformation R in terms of Λs and the vielbeins e, mo. Such a solution always 
exists, as it is part of the polar decomposition of the invertible matrix Ro [1, 2] (see (3.7) in 
the main text). For the sake of simplicity, we define the new vielbein of ϕ to be m := Rmo; we 
have the freedom to do that since mo

TRTδRmo = mo
Tδmo, implying that ϕ is blind to this 

choice. The interaction terms are not affected as well, since they always contain both Λs and 
R, irrespective of this choice. The matrix Λs explicitly appears in them. On the contrary, R 
does not appear explicitly, but it is taken into account implicitly inside m .

We define the bimetric interactions as [3],

n := e−1v, ñ := m−1v,� (2.2a)

Q := e−1Λs
2e, Q̃ := m−1Λs

2m,� (2.2b)

D := m−1Λs
−1e, D̃ := e−1Λs

−1m,� (2.2c)

B := D−1 = e−1Λsm, B̃ := D̃−1 = m−1Λse,� (2.2d)

V := −md
d∑

n=0

βnen(D̃), Ṽ := −λ−1 md
d∑

n=0

βnen−1(B),� (2.2e)

U := −λ−1 md
d∑

n=0

βnYn−1(B), Ũ := −D̃md
d∑

n=0

βnYn−1(D̃),� (2.2f )

(QŨ) := QŨ = −Bmd
d∑

n=0

βnYn−1(D̃), (Q̃U) := Q̃U = −λ−1Q̃md
d∑

n=0

βnYn−1(B),� (2.2g)

where en(X) are the elementary symmetric polynomials of the linear operator X,

en(X) = X[a1
a1 Xa2

a2 . . .Xan]
an ,� (2.3)

and Yn(X) is defined as,

Yn(X) :=
n∑

k=0

(−1)n+kek(X)Xn−k.� (2.4)

See [3] for more details about the properties of en(X) and Yn(X). Note that d  is the dimension 
of the spacetime, that is, d = N + 1. Hence, some terms in the summations will be zero. The 
β(n) parameters are d  +  1 real dimensionless constants appearing in the bimetric interaction 
potential, together with the energy scale m [4]. We define the bimetric sources (respectively, 
the bimetric energy densitites, the bimetric currents and the bimetric spatial stress–energy 
tensors) as [3],

ρb = −en(B), jbi = −γik(QŨ)
k

jn j, Jb
ij = γik

[
Vδk

j − (QŨ)
k

j + W−1Uk
j

]
,

� (2.5a)

ρ̃b = − λen−1(B)

det (me−1)
, j̃bi = − jbi

det (me−1)
, J̃b

ij =
ϕik

[
Ṽδk

j − (Q̃U)
k

j + W Ũk
j

]

det (me−1)
,

� (2.5b)
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where the summation −md∑d
n=0β(n) is understood in front of all the bimetric sources. Note 

the relation between the two bimetric currents jbi, j̃bi, which implies the relation (A.35) 
between the momentum constraints in the main text.

Here we compute the expressions for the bimetric interaction and sources in the (c)BSSN 
formalism. We require that the symmetrization condition (2.1) holds for the BSSN variables 
as well. Since the shifts are the same in the BSSN formalism, we require conditions (2.1a) 
and (2.1b) to stay the same. The condition (2.1c) should instead lead to its analog in the BSSN 
formalism,

◦
χ = eTδ

∗
Λs

∗
Rm̂o =

◦
χ

T,� (2.6)

where 
∗
Λs,

∗
R are the BSSN counterparts of the spatial part of the Lorentz boost (3.8) and the 

orthogonal transformation in (3.7) in the main text, whose expression is unknown yet.
We start by computing the conformal decomposition of the objects in the Lorentz frame. 

The requirement that (2.1a) stays the same implies,

β = q + αe−1pλ−1 = q + αe−1ξ
∗
p

∗
λ
−1

⇐⇒ pλ−1 = ξ
∗
p

∗
λ
−1

,� (2.7)

where the scalar ξ accounts for the conformal decomposition of pλ−1. It follows that,

p

(1 + pTδp)1/2 =
ξ

∗
p

(1 +
∗
p

T
δ

∗
p)1/2

⇐⇒ p = ξ

(
1 + pTδp

1 +
∗
p

T
δ

∗
p

)1/2
∗
p.� (2.8)

We apply pTδ to (2.8) and obtain,

pTδp

(1 + pTδp)1/2 =
ξpTδ

∗
p

(1 +
∗
p

T
δ

∗
p)1/2

= ξ2
(

1 + pTδp

1 +
∗
p

T
δ

∗
p

)1/2 ∗
p

T
δ

∗
p

(1 +
∗
p

T
δ

∗
p)1/2

,

� (2.9)
which is equivalent to

pTδp

1 + pTδp
=

ξ2 ∗
p

T
δ

∗
p

1 +
∗
p

T
δ

∗
p

⇐⇒ ∗
p

T
δ

∗
p =

pTδp

ξ2(1 + pTδp)− pTδp
.� (2.10)

Hence, in general, we can rescale p as in (2.8) with a generic ξ when we recast the equa-
tions into the (c) BSSN formulation, as long as we satisfy (2.10). However, there is no need 
to rescale it since this is an unnecessary complication. Indeed, we can always satisfy (2.8) and 
(2.10) by choosing ξ = 1, which implies p =

∗
p. It immediately follows,

p =
∗
p =⇒ λ = (1 + pTδp)

1/2
=

(
1 +

∗
p

T
δ

∗
p
)1/2

=
∗
λ� (2.11a)

=⇒ v = pλ−1 =
∗
p

∗
λ
−1

=
∗
v� (2.11b)

=⇒ Λs = (1 + ppTδ)
1/2

=
(
1 +

∗
p

∗
p

T
δ
)1/2

=
∗
Λs,� (2.11c)

which implies (see (A.23) in the main text),

R :=
(
δ−1Ro

TδRo

)1/2
Ro

−1 = e2(φ−ψ)
(
δ−1 ∗

Ro

T

δ
∗
Ro

)1/2
e−2(φ−ψ)

∗
Ro

−1
=

∗
R.� (2.12)

Using (3.11) in the main text and (2.11c), (2.12) and m̂o = e−2ψmo (which follows from (3.11) 
in the main text), the spatial part of the symmetrization condition (2.1c) can be written as,
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χ = eTδΛsRmo = e2(φ+ψ)eTδΛsRm̂o =: e2(φ+ψ) ◦
χ

= χT = (eTδΛsRmo)
T
= e2(φ+ψ) (eTδΛsRm̂o)

T
=: e2(φ+ψ) ◦

χ
T,

� (2.13)

that is, if χ is symmetric, its BSSN counterpart 
◦
χ is also symmetric, as desired.
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