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Abstract
We analyze junction conditions at a null or non-null hypersurface Σ in a large 
class of scalar–tensor theories in arbitrary n(� 3) dimensions. After showing 
that the metric and a scalar field must be continuous at Σ as the first junction 
conditions, we derive the second junctions conditions from the Einstein 
equations and the equation of motion for the scalar field. Subsequently, we 
study C1 regular matching conditions as well as vacuum conditions at Σ both 
in the Jordan and Einstein frames. Our result suggests that the following 
configurations may be possible; (i) a vacuum thin-shell at null Σ in the Einstein 
frame, (ii) a vacuum thin-shell at null and non-null Σ in the Jordan frame, and 
(iii) a non-vacuum C1 regular matching at null Σ in the Jordan frame. Lastly, 
we clarify the relations between the conditions for C1 regularity and also for 
vacuum Σ in the Jordan and Einstein frames.
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1.  Introduction

For given two spacetimes, can one attach them at a hypersurface Σ? If so, what kind of config-
urations of Σ is possible? How smooth is the spacetime at Σ? These are well-defined problems 
in gravitation physics and have a variety of applications. The basic equations to answer these 
problems are called the junction conditions which are obtained from the field equations and 
describe the relation between the discontinuity of the metric and the matter field on the junc-
tion hypersurface Σ embedded in a bulk spacetime.

In general relativity, a manifestly covariant formalism of the junction conditions has been 
formulated in the sixties by Israel for non-null (namely, timelike or spacelike) Σ, which relates 
the jump of the extrinsic curvature of Σ to the energy-momentum tensor for a matter field on 
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Σ [1]. By the Israel junction conditions, it is shown that the spacetime is C1 (continuously dif-
ferentiable) and hence regular at Σ if and only if there is no matter field on Σ. If the spacetime 
is C0 and hence there is a jump of the extrinsic curvature at Σ, the matching hypersurface Σ 
is refered to as a thin-shell or a singular hypersurface. In general relativity, a matter field is 
required on Σ for this C0 matching and then Σ is refered to as a massive thin-shell4.

Obviously, Israel’s formulation does not work for null hypersurfaces because the extrinsic 
curvature is necessarily continuous when Σ is null. (See section 3.11.3 in [3].) Indeed, it took 
more than twenty years until the extension of Israel’s formalism for null hypersurfaces was 
developed by Barrabès and Israel [4]. After being applied in several contexts [5–10], this 
extension has been reformulated by Poisson [11]. Poisson’s new formulation makes system-
atic use of the null generators of the hypersurface and provides a simple characterization of 
the thin-shell energy-momentum tensor in terms of the jump of the transverse curvature at Σ. 
(See [12] for recent developments in the research of junction conditions.)

Alternatively, the junction conditions can also be obtained from the variational principle. 
This method relies on the action principle under Dirichlet boundary conditions for a com-
posite manifold made out of two submanifolds joined at a non-null hypersurface Σ [13]. 
The action contains surface terms and its extremum yields not only the field equations  in 
the bulk spacetime but also the junction conditions at Σ. In contrast, derivation of the junc-
tion conditions in this method is still unknown in the case where Σ is null. This is because a 
general well-defined action principle has not been established on null hypersurfaces. (See, 
for instance [14–16].)

The junction conditions have been studied also in scalar–tensor theories, which are natural 
generalizations of general relativity and contain a non-minimally coupled scalar field to grav-
ity. Extensions of Israel’s formalism for non-null Σ have been presented in a class of scalar–
tensor theories [17–20]. However, these analyses did not consider the case where Σ is null. 
Although the junction conditions have been studied both for null and non-null Σ in a class of 
four-dimensional scalar–tensor theories in [21, 22], the analyses were performed only in the 
Einstein frame and therefore non-minimal couplings for the scalar field were not taken into 
account. As far as the authors know, a study of the junction conditions for null Σ in the Jordan 
frame is absent in the literature in spite of their potential importance for future applications. 
One of the purposes of the present paper is to fill this gap.

In this article, we study junction conditions at a null or non-null hypersurface Σ in a large 
class of scalar–tensor theories in arbitrary n(� 3) dimensions, in which a real scalar field 
with self-interaction potential is non-minimally coupled to gravity. The article is organized as 
follows. In the next section, we will present the action and the field equations of the system 
both in the Jordan and Einstein frames. In section 3, we will derive the junction conditions 
in the case where the matching hypersurface Σ is non-null and study the C1 regular matching 
conditions and the vacuum conditions at Σ in both frames. In section 4, we will perform the 
same analysis as in section 3, but in the case where Σ is null. For this purpose, we adopt the 
formalism presented in [11]. In section 5, we will clarify the relations between the conditions 
for C1 regularity and also for vacuum Σ in the Jordan and Einstein frames and apply the result 
to two different exact solutions. Our results are summerized in the final section. Some techni-
cal details are presented in two appendices.

4 In contrast, a vacuum thin-shell is possible in a class of quadratic curvature gravity called Einstein–Gauss–Bonnet 
gravity [2].
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2.  Action and field equations in scalar–tensor theories

2.1.  Preliminaries

Our basic notations follow [3] and [23]. We use the conventions for the curvature tensors 
such that [∇ρ,∇σ]Vµ = Rµ

νρσVν  and Rµν = Rρ
µρν. The Minkowski metric has the signature 

(−,+, · · · ,+) and Greek indices run over all spacetime indices. We adopt the units such that 
c  =  1 and κn denotes the n-dimensional gravitational constant.

We consider an n(� 3)-dimensional Lorentzian (bulk) spacetime M, of which line ele-
ment is written as

ds2
n = gµν(x)dxµdxν .� (2.1)

Let ∂M be an (n − 1)-dimensional non-null hypersurface as a boundary of M, defined by 
Φ(x) =constant and let y a be a set of coordinates on ∂M. Since the location of ∂M in M is 
described by xµ = xµ(y), the line element on ∂M is given by

ds2
n−1 = hab(y)dyadyb,� (2.2)

where

hab(y) := gµνeµa eνb , eµa :=
∂xµ

∂ya .� (2.3)

While gµν and gµν are respectively used to raise or lower Greek indices, the induced metric 
hab and its inverse hab are used to raise or lower Latin indices, respectively. For a given vector 
vµ, its components on ∂M in the coordinates y a are given by va := eµa vµ. Covariant derivative 
of va(:= eµa vµ) on ∂M is given by Davb ≡ eµa eνb (∇µvν).

Figure 1.  A schematic figure of a spacetime M with a spacelike boundary (left) or a 
timelike boundary (right), denoted by ∂M.

L Avilés et alClass. Quantum Grav. 37 (2020) 075022



5

A unit normal vector nµ of ∂M is given by

nµ :=
ε∇µΦ

(εgρσ∇ρΦ∇σΦ)1/2 ,� (2.4)

which satisfies nµnµ = ε, where ε = 1 (−1) corresponds to the case where ∂M is a timelike 
(spacelike) hypersurface. (See figure 1.) Because Φ is constant on ∂M and hence independent 
of y a, nµeµa = 0 is satisfied. The Stokes’ theorem for a vector field vµ in M is expressed as

∫

M
dnx

√
−g∇µvµ = ε

∫

∂M
dn−1x

√
|h|nµvµ.� (2.5)

A projection tensor defined by hµν := gµν − εnµnν satisfies hµνnν = 0 and hab = hµνeµa eνb  
(and therefore hµν = habea

µeb
ν). The extrinsic curvature (or the second fundamental form) Kµν 

of ∂M and its trace are defined by

Kµν := h ρ
µ hσ

ν∇ρnσ

(
≡ 1

2
Lnhµν

)
,� (2.6)

K := gµνKµν = ∇µnµ.� (2.7)

If a symmetric tensor Aµν  is tangent to ∂M, i.e. Aµνnν ≡ 0, it admits a decomposition on 
∂M such that

Aµν = Aabeµa eνb ,� (2.8)

where Aab(y) = Aµν(x)eµa eνb  is an (n − 1)-dimensional tensor on ∂M. Since Kµν is symmetric 
and tangent to ∂M as hµν, we can write

Kµν = Kabeµa eνb ⇔ Kab = Kµνeµa eνb ,� (2.9)

which show K = gµνKµν = habKab.

2.2.  Jordan frame

In this work we deal with a class of scalar–tensor theories in n(� 3) dimensions characterized 
by a non-minimally coupled real scalar field φ endowed with a self-interaction potential V(φ). 
Our system is described in the Jordan frame by the following action:

IJ =

∫

M
dnx

√
−g

(
f (φ)R − 1

2
(∇φ)2 − V(φ)

)
+

∫

M
dnx

√
−gL(m)

M

+ 2ε
∫

∂M
dn−1y

√
|h|f (φ)K,

�
(2.10)

where (∇φ)2 := gµν(∇µφ)(∇νφ) and 
√
−gL(m)

M  is the Lagrangian density for matter fields 
other than φ. The last term in equation (2.10) is a boundary term leading a well-defined action 
principle under Dirichlet boundary conditions, δgµν |∂M = 0 = δφ|∂M. This term will be 
used to provide an alternative derivation of the junction conditions for non-null hypersurfaces 
in section 3.5.1. For simplicity, here we do not consider the case where the boundary ∂M 
consists of several spacelike and timelike portions.

The action (2.10) provides the following field equations in the Jordan frame:

2f (φ)Gµν + gµν

(
1
2
(∇φ)2 + V(φ)

)

− (∇µφ)(∇νφ)− 2∇µ∇ν f (φ) + 2gµν�f (φ) = Tµν ,
� (2.11)

L Avilés et alClass. Quantum Grav. 37 (2020) 075022



6

�φ+ f ′(φ)R − V ′(φ) = 0,� (2.12)

where a prime denotes derivative with respect to the argument and the energy-momentum ten-
sor Tµν for other matter fields is defined by

Tµν := −2
∂L(m)

M
∂gµν

+ gµνL(m)
M .� (2.13)

We assume that: (a) the Lagrangian density for matter fields 
√
−gL(m)

M  does not depend on the 
scalar field φ, and (b) the matter fields are minimally coupled to gravity. In consequence, the 
energy-momentum tensor (2.13) does not contribute to the energy-momentum tensor on the 
matching hypersurface Σ.

The action with a typical non-minimally coupled scalar field is realized with the following 
form of f (φ):

f (φ) =
1

2κn
− 1

2
ξφ2,� (2.14)

where ξ is the non-minimal coupling parameter. However, the analysis throughout the text is 
done for an arbitrary C1 function f (φ), namely f (φ) and its first derivative are both continu-
ous (and hence finite). In order to simplify the descriptions in the following analysis, we define

Eµν : = 2f (φ)Gµν + gµν

(
1
2
(∇φ)2 + V(φ)

)

− (∇µφ)(∇νφ)− 2∇µ∇ν f (φ) + 2gµν�f (φ),
�

(2.15)

Π := �φ+ f ′(φ)R − V ′(φ),� (2.16)

so that the field equations (2.11) and (2.12) are described as Eµν = Tµν and Π = 0, respectively.

2.3.  Einstein frame

The scalar–tensor theory in the Jordan frame (2.10) is often compared with the following 
theory:

IE =

∫

M
dnx

√
−ḡ

(
1

2κn
R̄ − 1

2
(∇̄ψ)2 − V̄(ψ)

)
+

∫

M
dnx

√
−ḡL̄(m)

M

+
ε

κn

∫

∂M
dn−1y

√
|h̄|K̄,

�
(2.17)

Figure 2.  A non-null hypersurface Σ partitions a spacetime into two regions M+ and M−.
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which is called the Einstein frame of the theory. As adopted in equation  (2.17), we will 
describe geometric quantities in the Einstein frame with bars.

As in the Jordan frame, under an assumption that L̄(m)
M  does not depend on ψ, the action 

(2.17) provides the following field equations:

Ḡµν − κn

{
(∇̄µψ)(∇̄νψ)− ḡµν

(
1
2
(∇̄ψ)2 + V̄(ψ)

)}
= κnT̄µν ,� (2.18)

�̄ψ = V̄ ′(ψ),� (2.19)

where T̄µν is defined by

T̄µν := −2
∂L̄(m)

M
∂ḡµν

+ ḡµνL̄(m)
M .� (2.20)

As in the Jordan frame, we assume (a) the Lagrangian density for matter fields 
√
−ḡL̄(m)

M  does 
not depend on the scalar field ψ and (b) the matter fields are minimally coupled to gravity, so 
that the energy-momentum tensor (2.20) does not contribute to the energy-momentum tensor 
on the matching hypersurface Σ.

2.4.  Proper mapping between the Jordan and Einstein frames

By a conformal transformation and a redefinition of the scalar field such that

ḡµν = (2κnf (φ))2/(n−2)gµν ,� (2.21)

ψ(φ) := ±
∫ √

2(n − 1)f ′(φ)2
+ (n − 2) f (φ)

2(n − 2)κnf (φ)2 dφ,� (2.22)

the action in the Jordan frame (2.10) is mapped to the action (2.17), where

V̄(ψ) := (2κnf (φ(ψ)))−n/(n−2)V(φ(ψ)),� (2.23)

L̄(m)
M := (2κnf (φ(ψ)))−n/(n−2)L(m)

M .� (2.24)

(See appendix A for details.)
Here it should be emphasized that matter fields other than the scalar field may violate a 

proper mapping between the Jordan and Einstein frames [24]. In general, under the assump-

tion that L(m)
M  is independent of φ, required to give the field equations (2.15) and (2.16) in 

the Jordan frame, the conformally transformed action (2.17) in the Einstein frame does not 

give the equation of motion (2.19) for ψ. This is because L̄(m)
M  may depend on ψ, as seen in 

equation (2.24). Then, not only T̄µν depends on ψ, but also there appear additional terms in 

the equation of motion (2.19) for ψ. An exception is the case where L(m)
M  is for a conformally 

invariant matter field such as an electromagnetic field in four dimensions. In such a case, 
√
−gL(m)

M =
√
−ḡL̄(m)

M  holds and then the equation of motion (2.19) for ψ is obtained in the 
Einstein frame.

Also, independent of the extra matter fields, a proper mapping between two frames is vio-
lated for the following non-minimal coupling

L Avilés et alClass. Quantum Grav. 37 (2020) 075022
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f (φ) = − n − 2
8(n − 1)

(φ− φ0)
2,� (2.25)

where φ0 is a constant5. With this form of f (φ), the integrand in equation (2.22) is identically 
zero. As a result, ψ is constant and there is no inverse transformation φ = φ(ψ) even locally.

These observations are summarized in the following lemma, where the assumption (ii) 

includes the vacuum case, L(m)
M = L̄(m)

M ≡ 0.

Lemma 1.  Suppose that

	 (i)	�f (φ) is a C1 function and not in the exceptional form (2.25), and
	(ii)	�

√
−gL(m)

M =
√
−ḡL̄(m)

M  holds.

Then, there is a proper mapping between the Einstein frame (2.17) and the Jordan frame 
(2.10) by a conformal transformation (2.21) and redefinitions (2.22)–(2.24).

3.  Junction conditions for non-null hypersurfaces

3.1.  Setup

We consider a non-null hypersurface Σ which partitions a spacetime into two regions M+ and 
M−. (See figure 2.) Hence Σ is a part of both ∂M+ and ∂M−. In M+, the metric and the 
scalar field are g+

µν and φ+, respectively, which are functions of the coordinates xµ+. In M−, 
the metric and the scalar field are g−

µν and φ−, respectively, which are expressed in coordinates 

xµ−. We set the same coordinates y a on both sides of Σ, and we choose nµ, the unit normal to 
Σ, to point from M− to M+.

Now we assume that continuous canonical coordinates xµ, which are different from xµ±, 
can be introduced in an open region containing both sides of Σ. Actually, the metric and scalar 
field in M± are not described as g±

µν and φ± in terms of xµ. Nevertheless, hereafter in this sec-
tion, we keep using the same expressions in the canonical coordinates for simplicity as long 
as there is no risk of confusion.

Here we use distributions6 to derive the junction conditions. The hypersurface Σ is consid-
ered to be pierced by a congruence of geodesics that intersect it orthogonally. The proper dis-
tance (or proper time) along the geodesics is denoted by l, and the parametrization is adjusted 
so that l  =  0 when the geodesics cross Σ. Our convention is that l is negative in M− and posi-
tive in M+. Now we introduce the Heaviside distribution Θ(l), equal to  +1 if l  >  0, 0 if l  <  0, 
and indeterminate if l  =  0. The distribution Θ(l) satisfies

Θ(l)2 = Θ(l), Θ(l)Θ(−l) = 0,
dΘ
dl

= δ(l),� (3.1)

where δ(l) is the Dirac distribution, which verifies δ(l) = δ(−l). It is important to remark that 
Θ(l)δ(l) is not defined as a distribution. The metric gµν and the scalar field φ are expressed in 
the canonical coordinates xµ as

gµν = Θ(l)g+µν +Θ(−l)g−
µν ,� (3.2)

5 The coupling (2.25) with φ0 = 0 makes the sector 
√
−g{ f (φ)R − (∇φ)2/2} in the action (2.10) conformal invari-

ant.
6 We follow the classical textbooks [25] and [26] on distributions. Due to its nonlinear nature, there are technical 
subtleties and problems in the use of distributions in general relativity. (See [27] for a review.)
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φ = Θ(l)φ+ +Θ(−l)φ−,� (3.3)

which are distribution-valued tensors.
Since the following equations hold along the geodesics,

εdl2 = gµνdxµdxν , ε
∂l
∂xµ

dl = gµνdxν ,� (3.4)

where ε = 1 (−1) if Σ is timelike (spacelike), a displacement away from Σ along one of the 
geodesics is described by dxµ = nµdl , where nµ is given by

nµ = ε∂µl� (3.5)

and nµnµ = ε holds. The factor ε in equation (3.5) is in order for nµ to point from M− to M+. 
In the canonical coordinates xµ, the following relations hold:

[nµ] = [eµa ] = 0,� (3.6)

where eµa  is defined by equation (2.3). Here [X] is defined by

[X] := X+ − X−,� (3.7)

where X± are X’s evaluated either on the  +  or  −  side of Σ. The first of equation (3.6) follows 
from the relation dxµ = nµdl  and the continuity of both l and xµ across Σ, while the second 
follows from the fact that the coordinates y a are the same on both sides of Σ.

3.2.  Continuity of gµν and φ: first junction conditions

The metric gµν and the scalar field φ are expressed as equations (3.2) and (3.3) in canonical 
coordinates xµ, respectively. Differentiating them, we obtain

∂ρgµν = Θ(l)∂ρg+
µν +Θ(−l)∂ρg−µν + εδ(l)[gµν ]nρ,� (3.8)

∂µφ = Θ(l)∂µφ+ +Θ(−l)∂µφ− + εδ(l)[φ]nρ.� (3.9)

Thus, to removed the last terms in the right-hand sides which generate terms proportional to 
Θ(l)δ(l) in the Einstein equation (2.15) and the equation of motion (2.16) for φ, we impose 
continuity of the metric gµν and the scalar field φ across Σ:

[gµν ] = [φ] = 0.� (3.10)

This set of conditions is dubbed as the first junction conditions. By equation (2.3), [gµν ] = 0 
is equivalent to [hab]  =  0, which means that the induced metric on Σ is the same on both sides 
of Σ. The difference of the numbers of equations [gµν ] = 0 and [hab]  =  0 is n, which coincides 
with the number of the coordinate conditions [xµ] = 0.

Hereafter, we impose the conditions (3.10) and the derivatives (3.8) and (3.9) then become

∂ρgµν = Θ(l)∂ρg+
µν +Θ(−l)∂ρg−µν ,� (3.11)

∂µφ = Θ(l)∂µφ+ +Θ(−l)∂µφ−.� (3.12)

Since the metric and the scalar field are continuous across Σ in the canonical coordinates xµ, 
the tangential derivatives of the metric and scalar field are also continuous. Thus, if ∂ρgµν and 
∂ρφ are to be discontinuous, the discontinuity must be directed along the normal vector nµ. 
Therefore, there must exist a tensor field ωµν  and a scalar field M such that

[∂µgαβ ] = nµωαβ , [∂µφ] = nµM.� (3.13)
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Namely, ωµν  and M are defined by

ωαβ := εnµ[∂µgαβ ], M := εnµ[∂µφ],� (3.14)

respectively.

3.3.  Discontinuity of geometric and physical quantities

From equations (3.2) and (3.11), we obtain

Γµ
νρ = Θ(l)Γ+µ

νρ +Θ(−l)Γ−µ
νρ,� (3.15)

where Γ±µ
νρ is the Christoffel symbols constructed from g±

µν. Then, a straightforward calcul
ation with equations (3.5) and (3.13) reveals

∂σΓ
µ
νρ = Θ(l)∂σΓ+µ

νρ +Θ(−l)∂σΓ−µ
νρ + εδ(l)[Γµ

νρ]nσ ,� (3.16)

where [Γρ
σµ] is given by

[Γρ
σµ] =

1
2
(ωρ

σnµ + ωρ
µnσ − ωσµnρ).� (3.17)

By equations (3.6) and (3.17), we obtain

[∇µnν ] = −[Γσ
µν ]nσ

=
1
2
(εωµν − ωσµnνnσ − ωσνnµnσ),

� (3.18)

and hence the jump of the extrinsic curvature (2.6) and its trace are given by

[Kµν ] = h ρ
µ h σ

ν [∇ρnσ]

=
1
2
(εωµν − ωµσnσnν − ωνρnρnµ + εωρσnρnσnµnν),

� (3.19)

[K] = gµν [Kµν ] =
1
2
(εω µ

µ − ωµνnµnν).� (3.20)

By equation (2.9), we obtain

[Kab] = [Kµν ]eµa eνb =
1
2
εωµνeµa eνb .� (3.21)

On the other hand, using equation (3.17), we obtain the Riemann tensor as

Rρ
σµν = Θ(l)R+ρ

σµν +Θ(−l)R−ρ
σµν + δ(l)R̃ρ

σµν ,� (3.22)

where the δ-function part of the Riemann tensor is given by

R̃ρ
σµν := ε([Γρ

σν ]nµ − [Γρ
σµ]nν)

=
1
2
ε(ωρ

νnσnµ − ωρ
µnσnν − ωσνnρnµ + ωσµnρnν).

� (3.23)

Equation (3.23) shows that the δ-function parts of the Ricci tensor and the Ricci scalar are 
expressed as

R̃σν = R̃µ
σµν =

1
2
ε(ωνµnµnσ + ωσµnµnν − ω µ

µ nσnν − εωσν)

= −ε[Kσν ]− [K]nσnν ,
� (3.24)
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R̃ = gσν R̃σν = −2ε[K].� (3.25)

From equations (3.24) and (3.25), the δ-function part of the Einstein tensor G̃µν  is given as

G̃µν = R̃µν − 1
2

gµν R̃ = −ε ([Kµν ]− hµν [K]) .� (3.26)

A C1 regular matching of two spacetimes M+ and M− at Σ is defined by 
[gαβ ] = [∂µgαβ ] = 0. The following lemma provides several different expressions of a C1 
regular matching, among which the condition (i) means that the full Riemann tensor is cer-
tainly non-singular at Σ.

Lemma 2.  If [gαβ ] = 0 holds, the following six conditions are equivalent: (i) R̃ρ
σµν = 0, 

(ii) [Kµν ] = 0, (iii) [Kab]  =  0, (iv) ωµν = 0, (v) [∂µgαβ ] = 0, and (vi) [Γρ
σµ] = 0.

Proof.  Equation (3.21) shows that the conditions (ii), (iii) and (iv) are equivalent. By equa-
tions (3.13) and (3.14), the conditions (iv) and (v) are equivalent. Next we show that the condi-
tions (i) and (ii) are equivalent. By equation (3.19), [Kµν ] = 0 implies

ωµν = εωµσnσnν + εωνρnρnµ − ωρσnρnσnµnν .� (3.27)

Substituting this into equation (3.23), we obtain R̃ρ
σµν = 0. On the other hand, if R̃ρ

σµν = 0 
holds, we have R̃σν = R̃ = 0 and then equations  (3.24) and (3.25) show [Kµν ] = 0. Since 
we have shown that the conditions (i)–(v) are equivalent, we complete the proof by showing 
that the conditions (iv) and (vi) are equivalent. The condition (iv) implies the condition (vi) 
by equation (3.17). The condition (vi) implies the condition (i) by equation (3.23), which is 
equivalent to the condition (iv).� ■ 

In the following subsections, we will derive the junction conditions from the equation of 
motion (2.12) for φ and the Einstein equation (2.11). For this purpose, differentiating equa-
tion (3.12), we obtain

∂µ∂νφ = Θ(l)∂µ∂νφ+ +Θ(−l)∂µ∂νφ− + εδ(l)Mnµnν ,� (3.28)

where we used equations (3.5) and (3.13). From the above expression, we obtain

∇µ∇νφ = Θ(l)∇µ∇νφ
+ +Θ(−l)∇µ∇νφ

− + εδ(l)Mnµnν ,� (3.29)

�φ = Θ(l)�φ+ +Θ(−l)�φ− + δ(l)M.� (3.30)

Finally, using the following expression; 

∇µ∇ν f (φ) = f ′(φ)∇µ∇νφ+ f ′′(φ)(∇µφ)(∇νφ),� (3.31)

we obtain

∇µ∇ν f (φ) = Θ(l)∇µ∇ν f (φ+) + Θ(−l)∇µ∇ν f (φ−) + εf ′(φ)δ(l)Mnµnν ,
� (3.32)

�f (φ) = Θ(l)�f (φ+) + Θ(−l)�f (φ−) + f ′(φ)δ(l)M.� (3.33)

3.4.  Second junction conditions

3.4.1.  Equation of motion for a scalar field.  Here we derive the junction condition from the 
equation of motion (2.12), namely Π = 0, where Π is defined by equation (2.16). Using equa-
tions (3.3), (3.25) and (3.29), we write down Π as
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Π = Θ(l)Π+ +Θ(−l)Π− + δ(l)Π̃,� (3.34)

where the δ-function part Π̃ is given by

Π̃ := M − 2εf ′(φ)[K].� (3.35)

The equation of motion (2.16) on Σ gives Π̃ = 0, namely

M = 2εf ′(φ)[K].� (3.36)

We shall refer to this condition as the junction condition from the equation of motion for a 
scalar field. This junction condition is a constraint between the metric and scalar field on Σ. 
For a minimally coupled scalar field, namely f (φ) = 1/(2κn), this condition is simply M  =  0, 
which means continuity of nµ∂µφ at Σ.

3.4.2.  Einstein equations.  Next let us derive the junction conditions from the Einstein 
equation (2.11), namely Eµν = Tµν, where Eµν  is defined by equation (2.15). Using equa-
tions (3.26), (3.32) and (3.33), we write down Eµν  as

Eµν = Θ(l)E+
µν +Θ(−l)E−

µν + δ(l)Ẽµν ,� (3.37)

where the δ-function part Ẽµν  is given by

Ẽµν = −2εf (φ) ([Kµν ]− hµν [K]) + 2Mf ′(φ)hµν .� (3.38)

Since the bulk matter fields do not contribute to the energy-momentum tensor on Σ under the 
assumptions (a) and (b) in section 2.2, we can write Tµν as

Tµν = Θ(l)T+
µν +Θ(−l)T−

µν .� (3.39)

By equations (3.37) and (3.39), the Einstein equations Eµν = Tµν on Σ give Ẽµν = 0, namely

εf (φ) ([Kµν ]− hµν [K]) = Mf ′(φ)hµν .� (3.40)

We shall refer to equation (3.40) as the junction conditions from the Einstein equations, which 
are other constraints between the metric and scalar field on Σ. Under the conditions (3.40), 
there is no matter field on Σ other than φ. We shall describe this situation as ‘Σ is vacuum’ 
throughout this paper. For a minimally coupled scalar field, namely f (φ) = 1/(2κn), equa-
tion (3.40) reduces to [Kµν ] = hµν [K], which is the same as the general relativistic case.

Figure 3.  A schematic figure of a spacetime consisting of two portions M+ and M− 
which are separated by a hypersurface Σ, of which sides are denoted by Σ±. This 
figure shows the case of ε+ = ε− = −1 ((∂M− − Σ−) ∪ (∂M+ − Σ+) is spacelike) 
and ε = 1 (Σ is timelike), but there are other possible configurations.
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For embedding configurations of Σ with Ẽµν �= 0, the Einstein equations require an addi-
tional matter field on Σ for consistency. Then, Σ is no more vacuum and the Einstein equa-
tions on Σ become

Ẽµν = tµν ,� (3.41)

where tµν is the energy-momentum tensor of the matter field on Σ.
We have now derived the junction conditions (3.36) and (3.41) in the scalar–tensor theories 

(2.10) in the Jordan frame, namely

−2εf (φ) ([Kµν ]− hµν [K]) + 2Mf ′(φ)hµν = tµν ,� (3.42)

M = 2εf ′(φ)[K].� (3.43)

Since hµν, Kµν, and tµν are symmetric and tangent to Σ, we can write equation (3.42) in terms 
of intrinsic coordinates y a on Σ such that

−2εf (φ) ([Kab]− hab[K]) + 2Mf ′(φ)hab = tab,� (3.44)

where hab and Kab are defined by equations (2.3) and (2.9), respectively, and tab := tµνeµa eνb . 
The trace of equations (3.42) with (3.43) gives

2ε
{
(n − 2) f (φ) + 2(n − 1) f ′(φ)2} [K] = t.� (3.45)

Thus, if (n − 2) f (φ) + 2(n − 1) f ′(φ)2 �= 0 holds at Σ, we can rewrite equations (3.42) and 
(3.43) in the following alternative forms:

2εf (φ)[Kµν ] = −tµν +
f (φ) + 2f ′(φ)2

(n − 2) f (φ) + 2(n − 1) f ′(φ)2 hµν t,� (3.46)

M =
f ′(φ)

(n − 2) f (φ) + 2(n − 1) f ′(φ)2 t.� (3.47)

3.5.  Some notes on junction conditions

3.5.1.  Derivation by the variational principle.  Actually, the junction conditions (3.42) and 
(3.43) can be derived also by the variational principle. Now the spacetime consists of two parts 
M+ and M− separated by a non-null hypersurface Σ such as figure 3. In such a spacetime, 
the action is given by

IJ =

∫

M+

dnx+
√
−g+

(
f (φ+)R+ − 1

2
(∇φ+)2 − V(φ+) + L(m)

M+

)

+

∫

M−

dnx−
√
−g−

(
f (φ−)R− − 1

2
(∇φ−)2 − V(φ−) + L(m)

M−

)

+ 2ε+

∫

∂M+−Σ+

dn−1z+
√
|ζ+|f (φ+)K+ + 2ε−

∫

∂M−−Σ−

dn−1z−
√
|ζ−|f (φ−)K−

+ 2ε
∫

Σ+

dn−1y
√
|h|f (φ)K+ + 2ε

∫

Σ−

dn−1y
√
|h|f (φ)K− +

∫

Σ

dn−1y
√

|h|L(m)
Σ ,

� (3.48)
where Σ+(−) denotes a side of Σ in M+(−). (See appendix B for details.) ε+, ε−, and ε inde-

pendently take their values ±1 and φ±|Σ = φ. Here 
√

|h|L(m)
Σ  is the Lagrangian density for the 
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matter field other than φ on Σ and we used zi
± and ζ±ij  for the coordinates and induced metric 

on the boundary ∂M± − Σ±, respectively.

Under the assumptions that L(m)
M±

 and L(m)
Σ  do not depend on φ± and φ, respectively, vari-

ation of the above action, with the boundary condition δg±
µν |∂M±−Σ± = 0 = δφ±|∂M±−Σ±, 

provides the Einstein equation (2.11) and the equation of motion for the scalar field (2.12) in 
the bulk spacetimes M+ and M−, as well as, the junction conditions (3.42) and (3.43) on Σ, 
where tµν = tabea

µeb
µ is given by the energy-momentum tensor tab for other matter fields on Σ 

defined by

tab := −2
∂L(m)

Σ

∂hab + habL(m)
Σ .� (3.49)

The details of derivation are presented in appendix B.

3.5.2.  Comments on the matter field on Σ.  Here we should comment on the energy-momen-
tum tensor tab on Σ. We have seen in equation (3.49) that tab is obtained from its Lagrangian 
density in the variational approach. In such a case, Dbtab = 0 holds and hence the energy-
momentum conservation is satisfied on Σ under the assumptions in the following lemma7. 
(See appendix E in [23].)

Lemma 3.  Let 
√
|h|L(m)

Σ  be a matter Lagrangian density for a matter field Ψ (not necessary 
to be a scalar field) on a non-null hypersurface Σ. If the bulk action does not contain Ψ, then 
the energy-momentum tensor tab defined by equation (3.49) satisfies Datab = 0.

Proof.  The matter action is given by

I(m)
Σ :=

∫

Σ

dn−1y
√
|h|L(m)

Σ .� (3.50)

The variation of the action (3.50) on a non-null hypersurface on Σ results in the following 
form:

δI(m)
Σ =

∫

Σ

dn−1y
√
|h|

(
−1

2
tabδhab + Ẽ(Ψ)δΨ

)
+

∫

∂Σ

dn−2z
√
|h̃|

(
F̃abδhab + F̃(Ψ)δΨ

)
,� (3.51)

where zi and |h̃| are the coordinates and the determinant of the induced metric at the bound-
ary of Σ, respectively. By assumptions, variation of the bulk action does not generate any 
term proportional to δΨ on Σ. Thus, the action principle on Σ with the boundary conditions 
δhab = δΨ = 0 at ∂Σ gives Ẽ(Ψ) = 0 as an equation of motion for Ψ on Σ.

Using the equation of motion Ẽ(Ψ) = 0 and the boundary conditions δhab = δΨ = 0 at ∂Σ, 
we can rewrite the variation (3.51) as

δI(m)
Σ = −1

2

∫

Σ

dn−1y
√
|h|tabδhab.� (3.52)

Now we use the fact that the action is diffeomorphism invariant on Σ, namely the coordi-

nate invariant, and therefore δI(m)
Σ = 0 holds for such variations. If the diffeomorphism is 

7 In contrast, the energy-momentum tensor introduced in (3.41) has no such a requirement.

L Avilés et alClass. Quantum Grav. 37 (2020) 075022



15

generated by an infinitesimal vector field wa on Σ, we have δhab = Lwhab = 2D(awb), where 

Lw is the Lie derivative along wa. Then, from equation (3.52), δI(m)
Σ = 0 implies

0 = −1
2

∫

Σ

dn−1y
√
|h|tabD(awb) = −

∫

Σ

dn−1y
√
|h|tabDawb

= −
∫

Σ

dn−1y
√
|h|

(
Da(tabwb)− (Datab)wb)

= −ε

∫

∂Σ

dn−2z
√
|h̃|natabwb +

∫

Σ

dn−1y
√
|h|(Datab)wb

=

∫

Σ

dn−1y
√
|h|(Datab)wb,

�

(3.53)

where we used the Stokes’ theorem (2.5) and the boundary condition wa  =  0 at ∂Σ. Since the 
above equation is satisfied for an arbitrary generator wa, Datab = 0 is concluded.� ■ 

The junction conditions from the Einstein equation  (3.41) can be written as Ẽab = tab, 
where

Ẽab : = Ẽµνeµa eνb
= −2εf (φ) ([Kab]− hab[K]) + 2Mf ′(φ)hab.

� (3.54)

Divergence of Ẽab is written as

DaẼab = −2εf (φ)[Rνσ]eνbnσ − 2εf ′(φ)(Daφ) ([Kab]− hab[K]) + 2Db(Mf ′(φ)),
�

(3.55)

where we used the Codazzi equation:

Rµνρσeµaeνbeρcnσ = DaKbc − DbKac ⇒ Rνσeνbnσ = DcKbc − DbK.� (3.56)

We note that, if [∂ρgµν ] is non-vanishing at Σ, we have DaẼab �= 0 in general (even in general 
relativity). Therefore, by lemma 3, the junction conditions Ẽab = tab require (i) an embedding 
configuration satisfying DaẼab ≡ 0 or (ii) violation of the assumption in lemma 3, which 

means that L(m)
Σ  depends on φ.

While to achieve the case (i) is rather difficult in the Jordan frame, there is a simple example 
of such configurations of Σ in the Einstein frame. In the Einstein frame, where f (φ) = 1/2κn 
holds, equation (3.55) reduces to

DaẼab = − ε

κn
[Rνσ]eνbnσ

� (3.57)

and hence [Rνσ]eνb nσ = 0 is required for DaẼab = Datab = 0. This condition is accom-
plished for any non-null Σ embedded in an Einstein space because Rµν ∝ gµν  implies 
[Rνσ]eνb nσ ∝ [gνσ]eνb nσ = 0. The condition [Rνσ]eνb nσ = 0 is also satisfied for the following 
spacetime:

ds2 = −F(r)dt2 + F(r)−1dr2 + r2γijdzidz j,� (3.58)

if the shell is described by t = t(τ) and r = r(τ), where τ  is a parameter and γijdzidz j  is the 
line element on an (n − 2)-dimensional Einstein space.

Next let us consider the case (ii), namely the case where L(m)
Σ  depends on φ(= φ±|Σ). As 

an example, we consider L(φ)
Σ (∈ L(m)

Σ ) for φ on Σ as in the bulk:

L(φ)
Σ := f (φ)R− 1

2
(Dφ)2 − V(φ),� (3.59)
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where (Dφ)2 := hab(Daφ)(Dbφ) and R is the Ricci scalar constructed from hab. Then, the 
equation of motion for φ on Σ becomes

DaDaφ+ f ′(φ)R− V ′(φ) = −Π̃,� (3.60)

where Π̃ is defined by equation (3.35). In this case, the energy-momentum tensor t(φ)ab  for φ 
on Σ, defined by

t(φ)ab := −2
∂L(φ)

Σ

∂hab + habL(φ)
Σ ,� (3.61)

satisfies Dat(φ)ab �= 0 if Π̃ �= 0. However in general, it is highly nontrivial whether there exists 
a configuration of Σ with this tab. There is even a possibility that the junction conditions 
Ẽab = tab and the equation of motion (3.60) do not allow any solution.

In summary, when the energy-momentum tensor of a matter field on Σ is assumed to come 
from a Lagrangian density, the junction conditions (3.41) in the Jordan frame severely con-
strain the configuration of Σ with non-vanishing [∂ρgµν ].

3.6.  Conditions for C1 matching and vacuum Σ

3.6.1.  Jordan frame.  Now let us study the conditions for a C1 matching and also for vacuum 
Σ. The following proposition shows that M  =  tab  =  0 is a necessary and sufficient condition 
for a C1 matching at Σ in the Jordan frame if f (φ) �= 0 holds there.

Proposition 1 (J-regularity at non-null Σ).  Suppose in the Jordan frame that

	 (i)	�f (φ) is a C1 function,
	(ii)	�[gµν ] = [φ] = 0 holds at a non-null hypersurface Σ, and
	(iii)	�the second junction conditions at Σ are given by equations (3.43) and (3.44).

Then, the C1 regularity at Σ implies M  =  tab  =  0. Moreover, M  =  tab  =  0 and f (φ) �= 0 at Σ 
implies the C1 regularity at Σ.

Proof.  By lemma 2, the C1 regularity at Σ is equivalent to [Kab]  =  0. Then, the proposition 
follows from equations (3.43) and (3.44).� ■ 

In the special case where f (φ) = 0 holds at Σ, M  =  tab  =  0 is just a necessary condition for 
a C1 regular matching. Actually, M  =  tab  =  0 only implies f ′(φ)[K] = 0 in this case.

The following proposition shows the conditions for vacuum Σ (tab ≡ 0).

Proposition 2 (J-vacuum at non-null Σ).  Let φΣ be the value of φ at a non-null hyper-
surface Σ. Then, under the assumptions (i)–(iii) in proposition 1, tµν ≡ 0 is realized at Σ only 
in one of the following four cases:

	 (I)	�[Kµν ] = M = 0,
	(II)	�f (φΣ) = [K] = M = 0,
	(III)	�f ′(φΣ) = f (φΣ) = M = 0, or
	(IV)	�2(n − 1)f ′(φΣ)

2
+ (n − 2) f (φΣ) = 0, (n − 1)[Kµν ] = [K]hµν, and M = 2εf ′(φΣ)[K].

Proof.  If 2(n − 1)f ′(φΣ)
2
+ (n − 2) f (φΣ) �= 0 holds, equations  (3.46) and (3.47) with 

tµν ≡ 0 show that there are two possibilities [Kµν ] = M = 0 or f (φΣ) = [K] = M = 0. If 
2(n − 1)f ′(φΣ)

2
+ (n − 2) f (φΣ) = 0 holds, equations (3.42) and (3.43) with tµν ≡ 0 reduce 
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to

f ′(φΣ)
2 {(n − 1)[Kµν ]− [K]hµν} = 0,� (3.62)

M − 2εf ′(φΣ)[K] = 0,� (3.63)

and hence there are two possibilities f ′(φΣ) = f (φΣ) = M = 0 or (n − 1)[Kµν ] = [K]hµν 
with M = 2εf ′(φΣ)[K].� ■ 

While the case (I) in proposition 2 is the same as that in the Einstein frame, the cases 
(II)–(IV) are characteristic in the Jordan frame, which suggest the possibility of a vacuum 
thin-shell, where the spacetime is vacuum but C0 at Σ. (See [2] for such a vacuum thin-shell in 
Einstein–Gauss–Bonnet gravity.) While the constraint on the jump of the extrinsic curvature at 
Σ is different from [Kµν ] = 0 in the cases (II) and (IV), there is no constraint [Kµν ] in the case 
(III). We note that the first condition in the case (IV) is always satisfied in the theory with the 
non-minimal coupling (2.25), which does not admit the Einstein frame.

3.6.2.  Einstein frame.  While the total action in the Jordan frame is given by equation (3.48), 
it is described in the Einstein frame as

IE =

∫

M+

dnx+
√

−ḡ+
(

1
2κn

R̄+ − 1
2
(∇ψ+)2 − V̄(ψ+) + L̄(m)

M+

)

+

∫

M−

dnx−
√
−ḡ−

(
1

2κn
R̄− − 1

2
(∇ψ−)2 − V̄(ψ−) + L̄(m)

M−

)

+
ε+
κn

∫

∂M+−Σ+

dn−1z+
√
|ζ̄+|K̄+ +

ε−
κn

∫

∂M−−Σ−

dn−1z−
√

|ζ̄−|K̄−

+
ε

κn

∫

Σ+

dn−1y
√
|h̄|K̄+ +

ε

κn

∫

Σ−

dn−1y
√

|h̄|K̄− +

∫

Σ

dn−1y
√
|h̄|L̄(m)

Σ ,

�

(3.64)

where ε+, ε−, and ε independently take their values ±1 and ψ±|Σ = ψ.
Since the bulk matter fields do not contribute to the energy-momentum tensor on Σ under 

the assumptions (a) and (b) in section 2.2, we can write T̄µν as

Figure 4.  A null hypersurface Σ divides the spacetime into two regions M+ and M−.
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T̄µν = Θ(l)T̄+
µν +Θ(−l)T̄−

µν .� (3.65)

Under the assumptions that L̄(m)
M±

 and L̄(m)
Σ  do not depend on ψ± and ψ, respectively, varia-

tion of the above action, with the boundary condition δḡ±
µν |∂M±−Σ± = 0 = δψ±|∂M±−Σ±, 

provides the Einstein equation (2.18) and the equation of motion for the scalar field (2.19) in 
the bulk spacetimes M+ and M−, as well as, the following junction conditions on Σ:

−ε
(
[K̄µν ]− h̄µν [K̄]

)
= κnt̄µν ,� (3.66)

M̄ = 0,� (3.67)

where M̄ := εn̄µ[∂µψ]. t̄µν in equation (3.66) is given by t̄µν = t̄abea
µeb

µ, where

t̄ab := −2
∂L̄(m)

Σ

∂h̄ab
+ h̄abL̄(m)

Σ .� (3.68)

From the junction conditions (3.66) and (3.67), one can easily show the following 
proposition.

Proposition 3 (E-regularity and E-vacuum at non-null Σ).  Suppose in the Einstein 
frame that

	 (i)	�[ḡµν ] = [ψ] = 0 holds at a non-null hypersurface Σ, and
	(ii)	�the second junction conditions at Σ are given by equations (3.66) and (3.67).

Then, the C1 regularity at Σ is equivalent to t̄ab ≡ 0.

Proof.  By lemma 2, the C1 regularity at Σ is equivalent to [K̄ab] = 0. Then, the proposition 
follows from equation (3.66) and its trace.� ■ 

4.  Junction conditions for null hypersurfaces

4.1.  Setup

In the case where Σ is null, our setup follows [11]. (See also sections 3.1 and 3.11 in [3] and 
the book [28].) Our convention is such that M− is in the past of Σ, and M+ is in the future. As 
in the case where Σ is non-null, a null hypersurface Σ can be described as Φ(x) = 0. However, 
unlike the non-null case, the form of a unit normal vector (2.4) cannot be used in the case of 
null Σ since (∇µΦ)(∇µΦ) = 0 is then satisfied. In the null case, we introduce a normal vec-
tor kµ to Σ as

kµ = −∇µΦ,� (4.1)

where the sign is chosen so that kµ is future-directed when Φ increases toward the future. 
Since (∇µΦ)(∇µΦ) = 0 holds everywhere on Σ, its derivative is directed along kµ so that one 
can introduce a scalar κ such that κkµ = ∇µ((∇νΦ)(∇νΦ))/2. Then, equation (4.1) shows 
that kµ satisfies a geodesic equation; 

kν∇νkµ = κkµ,� (4.2)

which implies that Σ is generated by null geodesics and kµ is tangent to these generators8.

8 Hereafter we use the term ‘generator’ (or null generator) as defined on page 49 of [3] below figure 2.7 therein. 
Note that this definition is different from the one given for generator within the Lie algebra/group context.
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We parametrize the geodesics by λ and then a displacement along each generators is 
given by dxµ = kµdλ. λ is an affine parameter if ∇µ((∇νΦ)(∇νΦ)) = 0 is satisfied, namely 
(∇νΦ)(∇νΦ) is zero not only on but also in a neighbourhood around Σ. We let the param
eter λ on the null generators be one of the coordinates on Σ and the other n  −  2 coordinates 
θA are introduced to label the generators. (See figure 4.) The coordinates ya = (λ, θA) on Σ 
are assumed to be the same on both sides of Σ. As for non-null Σ in the previous section, we 
assume that continuous canonical coordinates xµ, distinct from xµ±, can be introduced in an 
open region containing both sides of Σ. Hereafter we will describe geometrical and physical 
quantities in terms of the canonical coordinates xµ.

The tangent vectors eµa := ∂xµ/∂ya  on each side of Σ are naturally separated into a null 
vector kµ that is tangent to the generators, and n  −  2 spacelike vectors eµA that point in the 
directions transverse to the generators. kµ and eµA are written as

kµ := eµλ =

(
∂xµ

∂λ

)

θA

, eµA =

(
∂xµ

∂θA

)

λ

,� (4.3)

which satisfy

kµkµ = 0 = kµeµA .� (4.4)

In the canonical coordinates xµ, both kµ and eµA are continuous across Σ and hence we have 
[kµ] = [eµA ] = 0. The remaining inner products

σ±AB(λ, θC) := g±µνeµA eµB� (4.5)

are non-vanishing, and we assume that they are also continuous across Σ:

[σAB] := σ+AB − σ−AB = 0.� (4.6)

The (n − 2)-tensor σAB := σ+AB(≡ σ−AB) is the induced metric on Σ:

ds2
Σ = σABdθAdθB.� (4.7)

The condition (4.6) ensures that the intrinsic geometry on Σ is well-defined. The basis is com-
pleted by adding an auxiliary null vector Nµ which satisfies

NµNµ = 0, Nµkµ = −1, NµeµA = 0,� (4.8)

and hence Nµ is continuous across Σ. The completeness relations of the basis are given as

gµν = −kµNν − Nµkν + σABeµA eνB,� (4.9)

where the inverse metric σAB on Σ is the inverse of σAB .
We introduce a congruence of timelike geodesics γ  that arbitrarily intersect Σ, of which 

tangent vector is uµ. Geodesics are parametrized by proper time τ , which is adjusted so that 
τ = 0 at Σ, τ < 0 in M−, and τ > 0 in M+. Then, the metric gµν and the scalar field φ are 
expressed as distribution-valued tensors in the canonical coordinates xµ as

gµν = Θ(τ)g+µν +Θ(−τ)g−µν ,� (4.10)

φ = Θ(τ)φ+ +Θ(−τ)φ−.� (4.11)

A displacement along a member of the congruence is described by

dxµ = uµdτ ,� (4.12)
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which is continuous across Σ, namely [uµ] = 0. The hypersurface Σ is described by τ(xµ) = 0 
and its normal vector kµ is proportional to the gradient of τ(xµ) evaluated at Σ. Hence, the 
expression of kµ compatible with equation (4.12) is

kµ = −(−kνuν)
∂τ

∂xµ
.� (4.13)

4.2.  Continuity of gµν and φ: first junction conditions

Differentiating equations (4.10) and (4.11) and using equation (4.13), we obtain

∂ρgµν = Θ(τ)∂ρg+
µν +Θ(−τ)∂ρg−

µν − (−kηuη)−1[gµν ]kρδ(τ),� (4.14)

∂µφ = Θ(τ)∂µφ
+ +Θ(−τ)∂µφ

− − (−kηuη)−1[φ]kρδ(τ).� (4.15)

As in the case where Σ is non-null, to removed the δ pieces appearing in the right-hand sides, 
which generate terms proportional to Θ(τ)δ(τ), we impose [gµν ] = [φ] = 0, namely continu-
ity of the metric and φ across Σ, and then we have

∂ρgµν = Θ(τ)∂ρg+
µν +Θ(−τ)∂ρg−

µν ,� (4.16)

∂µφ = Θ(τ)∂µφ
+ +Θ(−τ)∂µφ

−.� (4.17)

Now we characterize the discontinuous behaviors of ∂ρgµν and ∂µφ. The continuity condi-
tions on the fields guarantee that the tangential derivatives of the metric and scalar field are 
also continuous, namely

[∂ρgµν ]kρ = 0 = [∂ρgµν ]e
ρ
A,� (4.18)

[∂µφ]kµ = 0 = [∂µφ]e
µ
A .� (4.19)

The only possible discontinuity is therefore in Nρ∂ρgµν and Nµ∂µφ, namely the transverse 
derivatives. In view of equation (4.8), there exist a tensor field γµν  and a scalar field W such 
that

[∂ρgµν ] = −γµνkρ, [∂µφ] = Wkµ.� (4.20)

Namely, γµν  and W are defined by

γµν := Nρ[∂ρgµν ], W := −Nµ[∂µφ],� (4.21)

respectively.

4.3.  Discontinuity of geometric and physical quantities

We have seen [kµ] = [eµA ] = [Nµ] = [uµ] = 0 in the canonical coordinates xµ. Differentiation 
of the metric proceeds as in the non-null case, except that we now write τ  instead of l, and we 
use equation (4.13) to relate the gradient of τ  to the null vector kµ. Thus, we obtain a Riemann 
tensor that contains a singular part given by

Rρ
σµν = Θ(τ)R+ρ

σµν +Θ(−τ)R−ρ
σµν + δ(τ)R̃ρ

σµν ,� (4.22)

R̃ρ
σµν := −(−kηuη)−1([Γρ

σν ]kµ − [Γρ
σµ]kν)� (4.23)
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where [Γρ
σν ] is the jump in the Christoffel symbols across Σ.

Equation (4.20) implies

[Γρ
σµ] = −1

2
(γρ

σkµ + γρ
µkσ − γσµkρ),� (4.24)

so that the δ-function part of the Riemann tensor can be written as

R̃ρ
σµν =

1
2
(−kηuη)−1(γρ

νkσkµ − γρ
µkσkν − γσνkρkµ + γσµkρkν).� (4.25)

We see that kµ and γµν  give a complete characterization of the singular part of the Riemann 
tensor, and the δ-function terms of the Ricci tensor and the Ricci scalar are easily determined 
as

R̃σν =
1
2
(−kηuη)−1(γµνkµkσ + γµσkµkν − γkσkν),� (4.26)

R̃ = (−kηuη)−1γµνkµkν ,� (4.27)

respectively, where γ := γµ
µ. Finally, the singular part of the Einstein tensor is given by

G̃µν =
1
2
(−kηuη)−1(γν

ρkρkµ + γµ
ρkρkν − γkµkν − gµνγρσkρkσ).� (4.28)

The factor −kηuη depends on the choice of observers correponding to uµ who makes measure-
ments on the shell.

On the other hand, differentiating equation (4.17), we obtain

∂µ∂νφ = Θ(τ)∂µ∂νφ
+ +Θ(−τ)∂µ∂νφ

− − (−kηuη)−1Wkµkνδ(τ),� (4.29)

where we used equations (4.13) and (4.20). From the above expression, we get

∇µ∇νφ = Θ(τ)∇µ∇νφ
+ +Θ(−τ)∇µ∇νφ

− − (−kηuη)−1Wkµkνδ(τ),
� (4.30)

�φ = Θ(τ)�φ+ +Θ(−τ)�φ−.� (4.31)

Finally, using the following expression

∇µ∇ν f (φ) = f ′(φ)∇µ∇νφ+ f ′′(φ)(∇µφ)(∇νφ),� (4.32)

we find

∇µ∇ν f (φ) = Θ(τ)∇µ∇ν f (φ+) + Θ(−τ)∇µ∇ν f (φ−)− (−kηuη)−1f ′(φ)Wkµkνδ(τ),� (4.33)

�f (φ) = Θ(τ)�f (φ+) + Θ(−τ)�f (φ−).� (4.34)

For later use, we introduce the projections

γA := γµνeµA kν , γAB := γµνeµA eνB.� (4.35)

By the completeness relation (4.9), the vector γµνkν admits the following decomposition:

γµνkν =
1
2
(γ − σABγAB)kµ + (σABγ

B)eA
µ − (γρσkρkσ)Nµ.� (4.36)

For a consistency check, from the above expression, we obtain γµνkνNµ =  
(1/2)γµν(kµNν + kνNµ) = γµνkµNν, where the last equality holds because of the symmetric 
nature of γµν .

L Avilés et alClass. Quantum Grav. 37 (2020) 075022



22

Since kµ is not normal but tangent to Σ, we introduce a transverse curvature Cab that prop-
erly represents the transverse derivative of the metric:

Cab :=
1
2
(LNgµν)eµa eνb = (∇µNν)eµa eνb ,� (4.37)

where we have used that Nµeµa = 0 and an identity (∇νeµa )e
ν
b ≡ (∇νeµb )e

ν
a . In the canonical 

coordinates xµ, the jump of the transverse curvature at Σ is given by

[Cab] = [∇µNν ]eµa eνb =
1
2
γµνeµa eνb .� (4.38)

We therefore have

[Cλλ] =
1
2
γµνkµkν , [CAλ] =

1
2
γA, [CAB] =

1
2
γAB.� (4.39)

As in lemma 2 for non-null Σ, the following lemma provides several different expressions 
of a C1 regular matching condition, [gαβ ] = [∂µgαβ ] = 0, in the case where Σ is null.

Lemma 4.  If [gαβ ] = 0 holds, the following five conditions are equivalent: (i) R̃ρ
σµν = 0, 

(ii) [Cab]  =  0, (iii) γµν = 0, (iv) [∂µgαβ ] = 0, and (v) [Γρ
σµ] = 0.

Proof.  The conditions (ii) and (iii) are equivalent by equation (4.38). The conditions (iii) 
and (iv) are equivalent by equations (4.20) and (4.21). Now we show that the conditions (i) 

and (ii) are equivalent. If [Cab]  =  0 holds, we have γµν = 0 and hence R̃ρ
σµν = 0 is satisfied 

by equation (4.25). On the other hand, if R̃ρ
σµν = 0 holds, equation (4.25) gives

γρνkσkµ − γρµkσkν − γσνkρkµ + γσµkρkν = 0.� (4.40)

Acting kρkν, kρeνA, and eρAeνB on the above equation, we respectively obtain γρνkρkν = 0, 
γρνkρeνA = 0, and γρνeρAeνB = 0, and hence [Cab]  =  0 is concluded. Since we have shown that 
the conditions (i)–(iv) are equivalent, we complete the proof by showing that the conditions 
(iii) and (v) are equivalent. The condition (iii) implies the condition (v) by equation (4.24). 
The condition (v) implies the condition (i) by equation (4.23), which is equivalent to the con-
dition (iii).� ■ 

4.4.  Second junction conditions

4.4.1.  Equation of motion for a scalar field.  Here we derive the junction condition from the 
equation of motion (2.12), namely Π = 0, where Π is defined by equation (2.16). Using equa-
tions (4.27) and (4.31), we write down Π as

Π = Θ(τ)Π+ +Θ(−τ)Π− + δ(τ)Π̃,� (4.41)

where the δ-function part Π̃ is given by

Π̃ := (−kηuη)−1f ′(φ)γµνkµkν .� (4.42)

Thus, the equation of motion Π = 0 on Σ gives Π̃ = 0, namely

f ′(φ)γµνkµkν = 0.� (4.43)

We shall refer to this condition as the junction condition from the equation of motion for a 
scalar field. For a minimally coupled scalar field, namely for f (φ) = 1/(2κn), this condition 
is trivially satisfied.
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4.4.2.  Einstein equations.  Next let us derive the junction conditions from the Einstein 
equation (2.11), namely Eµν = Tµν, where Eµν  is defined by equation (2.15). Using equa-
tions (4.28), (4.33) and (4.34), we write down Eµν  as

Eµν = Θ(τ)E+
µν +Θ(−τ)E−

µν + δ(τ)Ẽµν ,� (4.44)

where, the δ-function part Ẽµν  is given by

Ẽµν : = (−kηuη)−1

×
{

f (φ)(γνρkρkµ + γµρkρkν − gµνγρσkρkσ) + (2f ′(φ)W − f (φ)γ) kµkν

}
.

� (4.45)

Under the assumptions (a) and (b) in section 2.2, we can write the bulk energy-momentum 
tensor Tµν as

Tµν = Θ(τ)T+
µν +Θ(−τ)T−

µν ,� (4.46)

which means that the bulk matter fields do not contribute to the energy-momentum tensor 
on Σ. By equations (4.44) and (4.46), the Einstein equations Eµν = Tµν on Σ give Ẽµν = 0, 
which we shall refer as the junction conditions from the Einstein equations, which are the 
conditions for vacuum Σ.

For embedding configurations of Σ with Ẽµν �= 0, the Einstein equations require an addi-
tional matter field on Σ for consistency, so that Σ is no more vacuum. The Einstein equa-
tions on Σ then become

Ẽµν = tµν ,� (4.47)

where tµν is the thin-shell energy-momentum tensor on Σ, which is written as

tµν = (−kηuη)−1

×
{

f (φ)(γνρkρkµ + γµρkρkν − gµνγρσkρkσ) + (2f ′(φ)W − f (φ)γ) kµkν

}
.

� (4.48)
The expression of tµν can be simplified if we decompose it in the basis {kµ, eµA , Nµ}. Using 
equation (4.36) and involving once more the completeness relation (4.9), tµν is written as

tµν = (−kηuη)−1 {µkµkν + jA(kµeA
ν + eA

µkν) + pσABeA
µeB

ν

}
� (4.49)

with

µ := 2f ′(φ)W − f (φ)σABγAB,� (4.50)

jA := f (φ)σABγ
B,� (4.51)

p := −f (φ)γµνkµkν� (4.52)

tµν is the surface energy-momentum tensor of the null shell, where the factor (−kηuη)−1 rep-
resents the dependence of the observers which make measurements on the shell. The quanti-
ties µ, j A, and p  are respectively interpreted as the shell’s surface density, a surface current, 
and an isotropic surface pressure [11]. In the special case where j A and p  are vanishing, the 
surface energy-momentum tensor (4.49) is equivalent to a null dust fluid.

Equations (4.2) and (4.8) show
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κ = −Nµkν∇νkµ = −Nµeνλ∇νeµλ = (∇νNµ)eνλeµλ = Cλλ� (4.53)

where we used equation (4.37) at the last equality. Combined with equation (4.39), we obtain

[κ] = [Cλλ] =
1
2
γµνkµkν .� (4.54)

In the general case f ′(φ) �= 0, the junction condition (4.43) gives γµνkµkν = 0. Then, equa-
tions (4.52) and (4.54) show p   =  0 and [κ] = 0, respectively. Thus, in scalar–tensor theories, 
the surface energy-momentum tensor of a null shell must be pressureless in contrast to general 
relativity. In additon, by equation (4.2), [κ] = 0 implies that we can use the same affine param
eter for the null generators in both sides of the null hypersurface Σ [4].

By equation (4.39), the surface quantities (4.50)–(4.52) can be expressed in terms of the 
transverse curvature such that

µ = 2f ′(φ)W − 2f (φ)σAB[CAB],� (4.55)

jA = 2f (φ)σAB[CλB],� (4.56)

p = −2f (φ)[Cλλ].� (4.57)

In summary, we have obtained the junction conditions (4.43) and (4.49) in the Jordan frame 
at a null hypersurface Σ as

tµν = (−kηuη)−1 {µkµkν + jA(kµeA
ν + eA

µkν) + pσABeA
µeB

ν

}
,� (4.58)

f ′(φ)[Cλλ] = 0,� (4.59)

where µ, j A, and p  are defined by equations (4.50)–(4.52) (or equivalently equations (4.55)–
(4.57)) and γµν  and W are defined by equation (4.21).

4.5.  Conditions for C1 matching and vacuum Σ

4.5.1.  Jordan frame.  Now let us study the conditions for a C1 matching at Σ and also for 
vacuum Σ.

Proposition 4 (J-regularity at null Σ).  Let φΣ be the value of φ at a null hypersurface 
Σ. Suppose in the Jordan frame that

	 (i)	�f (φ) is a C1 function,
	(ii)	�[σAB] = [φ] = 0 holds at Σ, and
	(iii)	�the second junction conditions at Σ are given by equations (4.58) and (4.59).

Then, the C1 regularity at Σ implies j A  =  p   =  0 and µ = 2f ′(φΣ)W . If f (φΣ) �= 0 holds, 
j A  =  p   =  0 and µ = 2f ′(φΣ)W  at Σ imply [Cλλ] = [CλA] = σAB[CAB] = 0.

Proof.  By lemma 4, the C1 regularity at Σ is equivalent to [Cab]  =  0. Then, the proposition 
follows from equations (4.55)–(4.57).� ■ 

The above proposition suggests a possibility of a C1 matching at Σ with non-vanishing µ if 
f ′(φΣ)W �= 0 holds. This non-vacuum C1 matching is characteristic in the Jordan frame and 
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clearly shows that [Cab]  =  0 and tµν = 0 are not equivalent in this frame. We also note that 
σAB[CAB] = 0 is a weaker condition than [CAB]  =  0.

Now let us obtain conditions for vacuum Σ (tµν ≡ 0) in the case where Σ is null.

Proposition 5 (J-vacuum at null Σ).  Let φΣ be the value of φ at a null hypersurface Σ. 
Then, under the assumptions (i)–(iii) in proposition 4, tµν ≡ 0 is realized at Σ only in one of 
the following three cases:

	 (I)	�f (φΣ) = 0 and f ′(φΣ) = 0,
	(II)	�f (φΣ) = 0 and [Cλλ] = W = 0, or
	(III)	�[Cλλ] = 0, f ′(φΣ)W = f (φΣ)σ

AB[CAB], and [CλA] = 0.

Proof.  With tµν = 0, equations (4.58) and (4.59) reduce to

f ′(φ)W = f (φ)σAB[CAB],� (4.60)

f (φ)σAB[CλB] = 0,� (4.61)

f (φ)[Cλλ] = 0,� (4.62)

f ′(φ)[Cλλ] = 0.� (4.63)

The proposition follows from equations (4.60)–(4.63).� ■ 

4.5.2.  Einstein frame.  Under the assumptions (a) and (b) in section 2.3, we can write the bulk 
energy-momentum tensor T̄µν as

T̄µν = Θ(τ)T̄+
µν +Θ(−τ)T̄−

µν ,� (4.64)

which means that the bulk matter fields do not contribute to the energy-momentum tensor t̄µν 
on Σ. Since the junction condition (4.43) is trivially satisfied, the junction conditions in the 
Einstein frame are

t̄µν = (−k̄η ūη)−1
{
µ̄k̄µk̄ν + j̄A(k̄µeA

ν + eA
µk̄ν) + p̄σ̄ABeA

µeB
ν

}
,� (4.65)

where

µ̄ := −κ−1
n σ̄AB[C̄AB],� (4.66)

j̄A := κ−1
n σ̄AB[C̄λB],� (4.67)

p̄ := −κ−1
n [C̄λλ].� (4.68)

Therefore, t̄µν ≡ 0 at Σ is equivalent to

σ̄AB[C̄AB] = [C̄λB] = [C̄λλ] = 0.� (4.69)

The following proposition clarifies the relation between vacuum Σ ( t̄µν ≡ 0) and a C1 match-
ing at Σ in the Einstein frame.

Proposition 6 (E-regularity and E-vacuum at null Σ).  Suppose in the Einstein frame 
that
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	 (i)	�[σ̄AB] = [ψ] = 0 holds at a null hypersurface Σ, and
	(ii)	�the second junction condition at Σ is given by equation (4.65).

Then, the C1 regularity at Σ implies t̄µν = 0. t̄µν = 0 at Σ implies [C̄λλ] = [C̄λA] = σ̄AB[C̄AB] = 0.

Proof.  By lemma 4, the C1 regularity at Σ is equivalent to [C̄ab] = 0. Then, the proposition 
follows from equations (4.66)–(4.68).� ■ 

While proposition 3 shows that t̄µν ≡ 0 and [K̄µν ] = 0 are equivalent in the case where Σ 
is non-null, proposition 6 shows that t̄µν = 0 is just a necessary condition for [C̄ab] = 0 in the 
case where Σ is null because σ̄AB[C̄AB] = 0 is weaker than [C̄AB] = 0.

5.  Relation between the conditions in Jordan and Einstein frames

In this section, we study the relation between C1 matchings in Jordan and Einstein frames 
and also the relation between the conditions for vacuum Σ. As seen in section 2.4, the matter 
Lagrangian densities may introduce anomalies which violate the correspondence between the 
Jordan and Einstein frames. Indeed, as shown in appendix A in the case where Σ is non-null, 
there is a proper mapping between the Jordan frame (3.48) and the Einstein frame (3.64) only 
when the non-minimal coupling f (φ) does not satisfy equation (2.25) and the extra matter 
fields in the bulk and on Σ are conformal invariant, namely Tµν = T̄µν  and tab = t̄ab, includ-
ing vacuum cases. Only in such cases, there exists a proper correspondence between the field 
equations and junction conditions in two frames.

Even if there is no proper correspondence between them, one can study the relation of the 
C1 regular matchings in the Jordan and Einstein frames because it is a purely geometrical 
concept. Naively thinking, the C1 regular matchings in two frames seem to be equivalent; 
however, we will see that there are some exceptional cases. We first show the following lemma 
for later use.

Lemma 5.  Let φΣ be the value of φ at a null or non-null hypersurface Σ. If f (φ) is a C1 
function and not in the exceptional form (2.25), then [φ] = 0 and [ψ] = 0 are equivalent. If 
f (φΣ) �= 0 holds in addition, then [gµν ] = 0 and [ḡµν ] = 0 are equivalent.

Proof.  Since f (φ) is in the C1-class and not in the exceptional form (2.25), equation (2.22) 
with a fixed sign in the right-hand side shows that ψ(φ) is a continuous and monoton-
ic function. Thus, there exists a continuous inverse function φ(ψ) and hence [φ] = 0 and 
[ψ] = 0 are equivalent. Since f (φΣ) is assumed to be non-zero and finite at Σ, the relation 
ḡµν = (2κnf (φ))2/(n−2)gµν shows that [gµν ] = 0 is equivalent to [ḡµν ] = 0.� ■ 

In the case of f (φΣ) = 0, the geometric information in the other frame cannot be obtained 
so that one has to study the other frame individually. Actually, f (φΣ) = 0 is a part of the 
J-vacuum conditions (II) and (III) for non-null Σ in proposition 2 as well as the J-vacuum 
conditions (I) and (II) for null Σ in proposition 5. In the following subsections, we will see that 
2(n − 1)f ′(φΣ)

2
+ (n − 2) f (φΣ) = 0 is also such an exceptional case.

5.1.  Non-null hypersurfaces

Using equations (A.4) and (2.22), we obtain
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εn̄µ∂µψ = ±ε(2κnf (φ))−1/(n−2)

√
2(n − 1)f ′(φ)2

+ (n − 2) f (φ)
2(n − 2)κnf (φ)2 nµ∂µφ,

� (5.1)
while equation (A.6) gives

K̄µν = (2κnf (φ))1/(n−2)
(

Kµν +
f ′(φ)

(n − 2) f (φ)
nσ(∂σφ)hµν

)
.� (5.2)

From the above equations, we first clarify the relations of the C1 regularity at Σ in the Jordan 
and Einstein frames.

Proposition 7 (Relation of C1-regularities at non-null Σ).  Let φΣ be the value of φ 
at a non-null hypersurface Σ. Suppose that f (φ) is a C1 function, not in the exceptional form 
(2.25), and satisfies f (φΣ) �= 0. Then,

	 (i)	�under the assumptions in proposition 1 in the Jordan frame, [Kµν ] = 0 implies [K̄µν ] = 0, 
and

	(ii)	�under the assumptions in proposition 3 in the Einstein frame, [K̄µν ] = 0 implies [Kµν ] = 0 
if 2(n − 1)f ′(φΣ)

2
+ (n − 2) f (φΣ) �= 0.

Proof.  By lemma 5, [φ] = [gµν ] = 0 and [ψ] = [ḡµν ] = 0 are equivalent. Then, equa-
tions (5.1) and (5.2) give

M̄ = ±(2κnf (φ))−1/(n−2)

√
2(n − 1)f ′(φ)2

+ (n − 2) f (φ)
2(n − 2)κnf (φ)2 M,� (5.3)

[K̄µν ] = (2κnf (φ))1/(n−2)
(
[Kµν ] +

εf ′(φ)
(n − 2) f (φ)

Mhµν

)
.� (5.4)

[Kµν ] = 0 in the Jordan frame implies M = tµν = 0 by the junction conditions (3.42) and 
(3.43), which shows [K̄µν ] = M̄ = 0 by equations (5.3) and (5.4). On the other hand, [K̄µν ] = 0 
in the Einstein frame implies M̄ = t̄µν = 0 by the junction conditions (3.66) and (3.67), which 
shows [Kµν ] = M = 0 by equations (5.3) and (5.4).� ■ 

The above proposition does not assume a proper correspondence between the Jordan and 
Einstein frames. If there is, the statement (i) leads t̄µν = 0 by proposition 3, while the state-
ment (ii) leads tµν = 0 by proposition 2.

Now we clarify the relation of the vacuum Σ conditions in the case where there is a proper 
correspondence between two frames.

Proposition 8 (Relation of vacuum non-null Σ).  Let φΣ be the value of φ at a non-
null hypersurface Σ. Suppose that

	 (i)	�f (φ) is a C1 function, not in the exceptional form (2.25), and satisfies f (φΣ) �= 0,
	(ii)	�there is a proper correspondence between the Jordan and Einstein frames, and
	(iii)	�the assumptions in proposition 1 in the Jordan frame and in proposition 3 in the Einstein 

frame hold.

		 Then, J-vacuum condition (I) or (IV) in proposition 2 implies E-vacuum. E-vacuum im-
plies the J-vacuum condition (I) if 2(n − 1)f ′(φΣ)

2
+ (n − 2) f (φΣ) �= 0 holds.
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Proof.  By equations (5.3) and (5.4), both J-vacuum conditions (I) and (IV) in proposition 2 
imply M̄ = [K̄µν ] = 0, which shows t̄µν = 0 by proposition 3. By proposition 3, E-vacuum 
t̄µν = 0 is equivalent to [K̄µν ] = 0, which shows tµν = 0 by proposition 7.� ■ 

5.2.  Null hypersurfaces

While ūµ = uµ holds, ḡµν = (2κnf (φ))2/(n−2)gµν shows that the relations between the 
pseudo-orthonormal basis and the induced metric in the Jordan and Einstein frames are

N̄µ = (2κnf (φ))−1/(n−2)Nµ, k̄µ = (2κnf (φ))−1/(n−2)kµ,� (5.5)

σ̄AB = (2κnf (φ))−2/(n−2)σAB, ēµA = eµA ,� (5.6)

which satisfy the following completeness condition in the Einstein frame:

ḡµν = −k̄µN̄ν − N̄µk̄ν + σ̄ABēµA ēνB.� (5.7)

Now let us clarify the relations of the C1 regularity at Σ in the Jordan and Einstein frames.

Proposition 9 (Relation of C1-regularities at null Σ).  Let φΣ be the value of φ at a 
null hypersurface Σ. Suppose that f (φ) is a C1 function, not in the exceptional form (2.25), 
and satisfies f (φΣ) �= 0. Then, the following two statements hold:

	 (i)	�[Cab] = f ′(φΣ)W = 0 in the Jordan frame implies [C̄ab] = 0, and
	(ii)	�[C̄ab] = W̄ = 0 in the Einstein frame implies [Cab]  =  0 if 

2(n − 1)f ′(φΣ)
2
+ (n − 2) f (φΣ) �= 0.

Proof.  Since f (φΣ) is non-zero and finite, equations  (5.5) and (5.6) show that 
[Nµ] = [kµ] = [σAB] = [eµA ] = 0 are equivalent to [N̄µ] = [k̄µ] = [σ̄AB] = [ēµA ] = 0. Also, by 
lemma 5, [φ] = 0 and [ψ] = 0 are equivalent. Then, the following relations

−N̄µ∂µψ = −

√
2(n − 1)f ′(φ)2

+ (n − 2) f (φ)
2(n − 2)κnf (φ)2 (2κnf (φ))−1/(n−2)Nµ∂µφ,

� (5.8)

N̄ρ∂ρḡµν = (2κnf (φ))−1/(n−2)Nρ∂ρ((2κnf (φ))2/(n−2)gµν)

= (2κnf (φ))1/(n−2)
(

2
n − 2

f (φ)−1f ′(φ)Nρ(∂ρφ)gµν + Nρ∂ρgµν

)
,

�

(5.9)

give

W̄ =

√
2(n − 1)f ′(φ)2

+ (n − 2) f (φ)
2(n − 2)κnf (φ)2 (2κnf (φ))−1/(n−2)W� (5.10)

[C̄ab] = (2κnf (φ))1/(n−2)
(
− 1

n − 2
f ′(φ)
f (φ)

Wgµνeµa eνb + [Cab]

)
,� (5.11)

where we used [Cab] = [∇µNν ]eµa eνb = (1/2)Nρ[∂ρgµν ]eµa eνb . The proposition follows from 
equations (5.10) and (5.11).� ■ 
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The above proposition is purely geometrical and does not assume the second junction con-
ditions. In fact, even with the second junction conditions, the C1 matching conditions at null 
Σ in the Jordan and Einstein frames are not equivalent.

Next we clarify the relations of vacuum Σ conditions in the case where there is a proper 
correspondence between two frames.

Proposition 10 (Relation of vacuum null Σ).  Let φΣ be the value of φ at a null hyper-
surface Σ. Suppose that

	 (i)	�f (φ) is a C1 function, not in the exceptional form (2.25), and satisfies f (φΣ) �= 0,
	(ii)	�there is a proper correspondence between the Jordan and Einstein frames, and
	(iii)	�the assumptions in proposition 4 in the Jordan frame and in proposition 6 in the Einstein 

frame hold.

		 Then, the J-vacuum condition (III) in proposition 5 is equivalent to E-vacuum.

Proof.  Equation (5.11) gives

[C̄λλ] = (2κnf (φ))1/(n−2)[Cλλ],� (5.12)

[C̄λB] = (2κnf (φ))1/(n−2)[CλB],� (5.13)

[C̄AB] = (2κnf (φ))1/(n−2)
(
− 1

n − 2
f ′(φ)
f (φ)

WσAB + [CAB]

)
,� (5.14)

σ̄AB[C̄AB] = (2κnf (φ))−1/(n−2)
(
− f ′(φ)

f (φ)
W + σAB[CAB]

)
.� (5.15)

E-vacuum ( t̄µν = 0) is equivalent to equation (4.69). By equations (5.12), (5.13) and (5.15), 
equation (4.69) is equivalent to the J-vacuum condition (III) in proposition 5.� ■ 

5.3.  Examples of vacuum C1 matching at null hypersurface

Here we present two examples of the vacuum C1 matching at a null hypersurface. Since extra 
matter fields do not exist in the bulk spacetime, there is a proper correspondence in the Jordan 
and Einstein frames in both cases.

5.3.1.  Roberts-(A)dS  solution in the Einstein frame (n  =  4).  Let us consider the Einstein-Λ 
system with a massless scalar field φ in four dimensions, of which action is given by

IE =

∫

M
d4x

√
−ḡ

(
1

2κ
(R̄ − 2Λ)− 1

2
(∇̄ψ)2

)
+
ε

κ

∫

∂M
d3x

√
|h̄|K̄,� (5.16)

which corresponds to the Einstein frame with V̄(ψ) = Λ/κ.
In this system, we consider the following topological generalization of Roberts-(A)dS solu-

tion [29, 30]:

ds2 = ḡµνdxµdxν

=

(
1 − Λ

6
uv

)−2(
−2dudv + (−kuv + D1v2 + D2u2)η̄AB(z)dθAdθB

)
,

� (5.17)
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in the coordinates xµ = (u, v, θA), where A, B = 2, 3. In the above solution, D1 and D2 are 
constants and η̄AB is the metric on a two-dimensional space of constant curvature with its 
Gauss curvature k = 1, 0,−1. For k2 − 4D1D2 > 0, the scalar field ψ is real and given by

ψ =




± 1√
2κ

ln

∣∣∣∣ u
√

k2−4D1D2+(ku−2D1v)

u
√

k2−4D1D2−(ku−2D1v)

∣∣∣∣+ψ0 for D1 �= 0,

± 1√
2κ

ln

∣∣∣∣D2 − k v
u

∣∣∣∣+ψ1 for D1 = 0,
� (5.18)

where ψ0 and ψ1 are constants. For k2 − 4D1D2 < 0, ψ is ghost and given by

ψ = ±i

√
2
κ

[
arctan

(
ku − 2D1v

u
√

4D1D2 − k2

)
+sign(D1v)

π

2

]
+ ψ2,� (5.19)

where ψ2 is a pure imaginary constant. If k2 − 4D1D2 = 0, the field equations give ψ =con-
stant and R̄µν

ρσ = (Λ/3)(δµρ δ
ν
σ − δµσδ

ν
ρ ), namely the spacetime is maximally symmetric. With 

Λ = 0, the solution (5.17) reduces to the Roberts solution [31].
In [32], it has been presented that a vacuum C1 matching is possible between two 

Roberts-(A)dS spacetimes with different values of D2 at a null hypersurface Σ given by u  =  0. 
The induced metric h̄ab on Σ is

ds2
Σ = h̄abdyadyb = D1v2η̄ABdθAdθB(= σ̄ABdxAdxB)� (5.20)

and therefore D1 �= 0 is required, where ya = (v, θA) is a set of coordinates on Σ. For D1 �= 0, 
the value of ψ on Σ is constant containing ψ0 or ψ2, so we can always set ψ be continuous at 
Σ by choosing the value of ψ0 or ψ2 in the spacetime attached.

The basis vectors of Σ defined by ēµa := ∂xµ/∂ya  are

ēµv
∂

∂xµ
= k̄µ =

∂

∂v
, ēµA

∂

∂xµ
= δµA

∂

∂θA ,� (5.21)

and the bases are completed by N̄µdxµ = −dv. They satisfy N̄µēµv (≡ N̄µk̄µ) = −1 and 
N̄µēµA = 0 on Σ. Using the following expression

∇̄νN̄µ = ∂νN̄µ − Γ̄α
νµN̄α = −Γ̄v

νµN̄v

=
1
2

ḡvu(∂ν ḡµu + ∂µḡνu − ∂uḡµν),
� (5.22)

and ḡuv = −(1 − Λuv/6)2, we compute the non-zero components of C̄ab as

C̄vv = (∇̄νN̄µ)ēµv ēνv = ḡvu∂vḡvu =
Λ

3
u
(

1 − Λ

6
uv
)−1

,� (5.23)

C̄AB = (∇̄νN̄µ)ē
µ
A ēνB = −1

2
ḡvu∂uḡAB

=
1
2

{
Λ

3
v
(

1 − Λ

6
uv

)−1

(−kuv + D1v2 + D2u2) + (−kv + 2D2u)
}
η̄AB,

� (5.24)
and hence

C̄vv|Σ = 0, C̄AB|Σ =
1
2

v
(

1
3
ΛD1v2 − k

)
η̄AB.� (5.25)
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Since h̄ab and C̄ab|Σ do not contain D2, two Roberts-(A)dS spacetimes (5.17) with the 
same nonzero D1 but different D2 can be attached at u  =  0 in a C1 regular manner, where 
[h̄ab] = [C̄ab] = 0 are realized. Then, by proposition 6, t̄µν = 0 holds and hence there is no 
massive thin-shell at Σ. As a special case, a Roberts-(A)dS spacetime can be attached to the 
past (A)dS spacetime at u  =  0 and the resulting spacetime may represent black-hole or naked-
singularity formation from a regular initial datum.

Lastly, let us see whether W̄ := −N̄µ[∂µψ] is vanishing or not at u  =  0. With the following 
expression; 

N̄µ ∂

∂xµ
=

(
1 − 1

6
Λuv

)2
∂

∂u
,� (5.26)

we obtain

(N̄ρ∂ρψ)|Σ = ±
√

k2 − 4D1D2√
2κD1v

� (5.27)

for k2 − 4D1D2 �= 0 with D1 �= 0. Since the above expression contains both D1 and D2, 
W̄ �= 0 holds when two Roberts-(A)dS spacetimes (5.17) with the same nonzero D1 but differ-
ent D2 are attached at u  =  0. Therefore, proposition 9 does not work and the C1 regularity at Σ 
in the Jordan frame is not clear in this case. However, since t̄µν = 0 holds at Σ, tµν = 0 also 
holds in the Jordan frame under the assumptions in proposition 10.

5.3.2.  Generalized Xu solution in the Jordan frame (n  =  3).  Another example is presented in 
the three-dimensional gravity coupled to a non-minimally self-interacting scalar field φ in the 
presence of a negative cosmological constant Λ:

IJ =

∫
d3x

√
−g

(
1

2κ
(R − 2Λ)− 1

2
(∇φ)2 − 1

16
Rφ2 − αφ6

)

+
ε

κ

∫

∂M
d2x

√
|h|

(
1 − κ

8
φ2
)

K,
�

(5.28)

which is the Jordan frame with

f (φ) =
1

2κ

(
1 − κ

8
φ2
)

,� (5.29)

V(φ) = − 1
κl2

+ αφ6,� (5.30)

where l is the AdS radius defined by l−2 := −Λ. To simplify the expressions in the following 
argument, we introduce a constant β defined by

β :=
512αl2 − κ2

8κl2
.� (5.31)

In this system, there is the following generalized Xu solution [33, 34]:

ds2 = −f (v, r)dv2 + 2dvdr + r2dθ2,� (5.32)

φ(v, r) =
a(v)√

r + κa(v)2/8
,� (5.33)

L Avilés et alClass. Quantum Grav. 37 (2020) 075022



32

where the metric function f (v, r) is given by

f (v, r) =
r2

l2
− B0a(v)− B0κa(v)3

12r
.� (5.34)

Here B0 is a parameter in the solution and the function a(v) is given by

a(v) =
2B0

3κ
v� (5.35)

for β = 0 and

1
2
ln

(
(a − a0)

2

a2 + a0a + a2
0

)
−
√

3 arctan
(

2a + a0√
3a0

)
=

3a2
0β

4

(
v − 2

√
3π

9βa2
0

)

� (5.36)
for β �= 0. Here B0 is an integration constant and a0 is defined by

a0 := −ε

∣∣∣∣
8B0

3κβ

∣∣∣∣
1/3

,� (5.37)

where ε is the sign of 8B0/(3κβ), and hence we have B0 = −(3/8)κβa3
0 . In the solutions 

(5.35) and (5.36), we have set another integration constant such that a(0) = 0 without loss 
of generality. B0  =  0 gives the massless BTZ spacetime and the behavior of a near v = 0 for 
β �= 0 is given by

a(v) � 2B0

3κ
v,� (5.38)

which is the same as equation (5.35) for β = 0.
Actually, the generalized Xu solution (5.32) for v � 0 can be attached to the massless BTZ 

spacetime for v � 0 with φ ≡ 0 (and hence [φ] = 0 is realized). On the null hypersurface Σ 
defined by v = 0, we install coordinates ya = (λ, θA) which are the same on both past and 
future sides of Σ. Here λ is an arbitrary parameter on the null generators of Σ and θA label the 
generators, where the index A is always A  =  1 in the three-dimensional case. We identify  −r 
with λ and set θA = θ on Σ in the spacetime (5.32).

The parametric equations xµ = xµ(λ, θA) describing Σ are v = 0, r = −λ, and θ = θ. The 
line element on Σ is one-dimensional and given by

ds2
Σ = habdyadyb = λ2dθ2(= σABdθAdθB),� (5.39)

where ya = (λ, θ) is a set of coordinates on Σ. Using them, we obtain the tangent vectors of 
Σ defined by eµa := ∂xµ/∂ya  as

eµλ
∂

∂xµ
= − ∂

∂r
, eµθ

∂

∂xµ
=

∂

∂θ
.� (5.40)

Table 1.  Summary of the main results in the present paper. In all the cases, continuity 
of the metric and scalar field at Σ is required as the first junction conditions.

Σ Frame 2nd junction conditions C1 matching Vacuum Σ J-E relation

Non-null Jordan Equations (3.42) & (3.43) Proposition 1 Proposition 2 Propositions 7 & 8
Einstein Equations (3.66) & (3.67) Proposition 3 Proposition 3

Null Jordan Equations (4.58) & (4.59) Proposition 4 Proposition 5 Propositions 9 & 10
Einstein Equation (4.65) Proposition 6 Proposition 6
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An auxiliary null vector Nµ given by

Nµ ∂

∂xµ
=

∂

∂v
+

1
2

f (0, r)
∂

∂r
� (5.41)

completes the basis. The expression Nµdxµ = −( f (0, r)/2)dv + dr shows NµNµ = 0, 
Nµeµλ = −1, and Nµeµθ = 0. Then, the only nonvanishing component of the transverse curva-
ture Cab := (∇νNµ)eµa eνb  of Σ is

Cθθ =
1
2

rf (0, r) =
r

2l2
.� (5.42)

Since equations (5.39) and (5.42) do not contain B0, [σAB] = [Cab] = [φ] = 0 is realized and 
therefore a C1 regular matching is achieved at Σ.

On the other hand, W �= 0 holds at v = 0 because equations (5.41) and (5.33) show

(Nµ∇µφ)|Σ =
2B0

3κr1/2 ,� (5.43)

which contains B0. Nevertheless, since equation  (5.29) shows f ′(φΣ) = 0 with 
φΣ = 0, the J-vacuum condition (III) in proposition 5 is satisfied at v = 0. In this case, since 
f (φΣ) = 1/2κ �= 0 holds, both C1 regularity and vacuum Σ are realized in the Einstein frame 
by propositions 9 and 10.

6.  Summary

In the present paper, we have studied junction conditions in a large class of scalar–tensor theo-
ries in arbitrary n(� 3) dimensions. We have treated both null and non-null junction hypersur-
faces Σ under the three assumptions: (a) the Lagrangian density for bulk matter fields does not 
depend on the scalar field, (b) the matter fields are minimally coupled to gravity, and (c) the 
energy-momentum tensor on Σ does not contain the same scalar field in the bulk spacetime. 
As a consequence of the assumptions (a) and (b), the bulk energy-momentum tensor does not 
contribute to the energy-momentum tensor on Σ.

While the metric and scalar field must be continuous on Σ as the first junction conditions, 
the jumps of their first derivatives and the matter field on Σ are related as the second junction 
conditions given from the Einstein equations and the equation of motion for the bulk scalar 
field treated as distributions [11]. We have confirmed that the resulting junction conditions are 
compatible with the ones derived in the variational method pioneered in [13] in the case of 
non-null Σ.

To the best of the authors’ knowledge, the junction conditions in the Jordan frame have 
been derived for the first time in the present paper in the cases of spacelike Σ with n �= 4 and 
null Σ with arbitrary n(� 3). In the Jordan frame, the junction conditions at timelike Σ were 
previously derived in four dimensions [18] and also in arbitrary dimensions [20]. In [17], the 
authors derived the junction conditions at non-null Σ in a general scalar–tensor theory which 
contains our action (2.10) in the absence of additional matter fields. However, a signature ε 
(which is s in [17]) is missing in the surface term B4 in equation (3.3) in [17], which is required 
to be consistent with the result in general relativity.

Subsequently, we have clarified the C1 regular matching conditions and the vacuum con-
ditions at Σ both in the Jordan and Einstein frames. At non-null Σ in the Einstein frame, 
the C1 regularity (E-regularity) is equivalent to the vacuum Σ condition (E-vacuum). In the 
Jordan frame, in contrast, while the C1 regularity (J-regularity) implies vacuum Σ (J-vacuum), 
J-vacuum does not necessarily imply J-regularity. In other words, J-regularity is a sufficient 
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condition for J-vacuum which suggests a possibility of vacuum thin-shell at non-null Σ in the 
Jordan frame.

The situations are different in the case where Σ is null. In this case, E-regularity and 
E-vacuum are even not equivalent. Actually, E-regularity is a sufficient condition for E-vacuum 
so that there is a possibility of vacuum thin-shell at null Σ. To compound matters, J-regularity 
and J-vacuum do not necessarily imply each other, which suggests that both non-vacuum C1 
regular matching and vacuum thin-shell may be possible at null Σ in the Jordan frame. The 
main results obtained in the present paper are summarized in table 1.

Lastly, we have clarified the relations between the sufficient conditions for the C1 regularity 
in the Jordan and Einstein frames and also between the vacuum Σ conditions, which allow us 
to identify the properties of the junction hypersurface Σ in the other frame. We have adopted 
these results to two concrete exact solutions; The Roberts-(A)dS solution in the Einstein frame 
in four dimensions and the generalized Xu solution in the Jordan frame in three dimensions.

As demonstrated in these two examples, all the results in the present paper may provide a 
firm basis for applications in a variety of contexts, which would clarify the effects of the non-
minimal coupling of the scalar field to gravity. Additionally, to construct concrete examples 
of the following configurations is an interesting task: (i) a vacuum thin-shell at null Σ in the 
Einstein frame, (ii) a vacuum thin-shell at null and non-null Σ in the Jordan frame, and (iii) a 
non-vacuum at null Σ in the Jordan frame. We leave these problems for future investigations.

Acknowledgments

CM thanks Hokkai-Gakuen University for a kind hospitality, where a part of this work was car-
ried out. This work has been partially funded by the Fondecyt Grants 1161311 and 1180368. 
LA thanks the Conicyt Grant 21160827. The Centro de Estudios Científicos (CECs) is funded 
by the Chilean Government through the Centers of Excellence Base Financing Program of 
Conicyt.

Appendix A. Transformation from Jordan to Einstein frame

In this appendix, we consider a conformal transformation from the following action in the 
Jordan frame:

IJ =

∫

M
dnx

√
−g

(
f (φ)R − 1

2
(∇φ)2 − V(φ)

)
+2ε

∫

Σ

dn−1y
√
|h|f (φ)K

+

∫

M
dnx

√
−gL(m)

M +

∫

Σ

dn−1x
√
|h|L(m)

Σ .

�

(A.1)

By a conformal transformation gµν(x) = Ω(x)2ḡµν in n dimensions, the Ricci scalar is 
transformed as

R = Ω−2 {R̄ − 2(n − 1)�̄ lnΩ− (n − 1)(n − 2)(∇̄ρ lnΩ)(∇̄ρ lnΩ)
}

,
� (A.2)

which is shown by the following transformation of the Christoffel symbol:
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Γµ
ρσ =

1
2

gµα(∂σgαρ + ∂ρgασ − ∂αgρσ)

=
1
2
Ω−2ḡµα

{
∂σ(Ω

2ḡαρ) + ∂ρ(Ω
2ḡασ)− ∂α(Ω

2ḡρσ)
}

= Γ̄µ
ρσ + (∂σ lnΩ)ḡµ

ρ + (∂ρ lnΩ)ḡµ
σ − (∂α lnΩ)ḡµαḡρσ.

�

(A.3)

We consider the case where the matching non-null hypersurface Σ is described by Φ(x) = 0 
in both frames. In this case, the unit orthogonal vector of Σ is transformed as

n̄µ := (εḡρσ∇ρΦ∇σΦ)
−1/2∇µΦ = Ω−1(εgρσ∇ρΦ∇σΦ)

−1/2∇µΦ = Ω−1nµ
� (A.4)

and hence the projection tensor is transformed as

h̄µν := ḡµν − εn̄µn̄ν = Ω−2(gµν − εnµnν) = Ω−2hµν .� (A.5)

Using these results, one can show that the extrinsic curvature and its trace are transformed as

Kµν = h ρ
(µh σ

ν)∇ρnσ = h̄ ρ
(µh̄ σ

ν)(∂ρnσ − Γα
ρσnα)

= h̄ ρ
(µh̄ σ

ν)

{
∂ρ(Ωn̄σ)−

(
Γ̄α
ρσ + (∂σ lnΩ)ḡα

ρ + (∂ρ lnΩ)ḡα
σ − (∂β lnΩ)ḡαβ ḡρσ

)
Ωn̄α

}

= Ωh̄ ρ
(µh̄ σ

ν)

{
∇̄ρn̄σ + (∂β lnΩ)ḡαβ ḡρσn̄α

}
= Ω

{
K̄µν + h̄µν(∂β lnΩ)n̄β

}
�

(A.6)

and

K = gµνKµν = Ω−1ḡµν
{

K̄µν + h̄µν(∂σ lnΩ)n̄σ
}

= Ω−1K̄ + (n − 1)Ω−1(∂σ lnΩ)n̄σ .
� (A.7)

Putting the above expressions into the action (A.1) in the Jordan frame, we obtain

IJ =

∫

M
dnx

√
−ḡ

{
Ωn−2f (φ)

(
R̄ − 2(n − 1)�̄ lnΩ− (n − 1)(n − 2)(∇̄ρ lnΩ)(∇̄ρ lnΩ)

)

− 1
2
Ωn−2(∇̄φ)2 − ΩnV(φ)

}
+2ε

∫

Σ

dn−1x
√
|h̄|Ωn−2f (φ)

(
K̄ + (n − 1)(∇̄σ lnΩ)n̄σ

)

+

∫

M
dnx

√
−ḡΩnL(m)

M +

∫

Σ

dn−1x
√
|h̄|Ωn−1L(m)

Σ

=

∫

M
dnx

√
−ḡ

{
Ωn−2f (φ)

(
R̄ − (n − 1)(n − 2)(∇̄ρ lnΩ)(∇̄ρ lnΩ)

)

+ 2(n − 1)∇̄ρ(Ωn−2f (φ))∇̄ρ lnΩ− 1
2
Ωn−2(∇̄φ)2 − ΩnV(φ)

}

+ 2ε
∫

Σ

dn−1x
√
|h̄|Ωn−2f (φ)K̄ +

∫

M
dnx

√
−ḡΩnL(m)

M +

∫

Σ

dn−1x
√
|h̄|Ωn−1L(m)

Σ ,

�

(A.8)

where we used the Stokes’ theorem (2.5) at the second equality.
Setting Ω = (2κnf (φ))−1/(n−2), we obtain the action in the Einstein frame:

IE =

∫

M
dnx

√
−ḡ

{
1

2κn
R̄ − 2(n − 1)f ′2 + (n − 2) f

4(n − 2)κnf 2 (∇̄φ)2 − ΩnV(φ)

}

+
ε

κn

∫

Σ

dn−1x
√
|h̄|K̄ +

∫

M
dnx

√
−ḡΩnL(m)

M +

∫

Σ

dn−1x
√

|h̄|Ωn−1L(m)
Σ .

�

(A.9)
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By a redefinition of the scalar field (2.22), we finally write down the action in the Einstein 
frame in the following canonical form:

IE =

∫

M
dnx

√
−ḡ

{
1

2κn
R̄ − 1

2
(∇̄ψ)2 − V̄(ψ)

}

+
ε

κn

∫

Σ

dn−1x
√
|h̄|K̄ +

∫

M
dnx

√
−ḡL̄(m)

M +

∫

Σ

dn−1x
√

|h̄|L̄(m)
Σ ,

�

(A.10)

where

V̄(ψ) := (2κnf (φ(ψ)))−n/(n−2)V(φ(ψ)),� (A.11)

L̄(m)
M := (2κnf (φ(ψ)))−n/(n−2)L(m)

M ,� (A.12)

L̄(m)
Σ := (2κnf (φ(ψ)))−(n−1)/(n−2)L(m)

Σ .� (A.13)

As explained in section 2.4, for a proper mapping between the bulk equations in the Jordan 
and Einstein frames, assumptions in lemma 1 are required. For a proper mapping between 

the junction conditions in two frames, one needs 
√
−gL(m)

M =
√
−ḡL̄(m)

M  in addition, which 
includes the vacuum case L(m)

Σ = L̄(m)
Σ ≡ 0.

Appendix B.  Junction conditions from variational principle for non-null Σ

In this appendix, we derive the junction conditions in the Jordan frame by the variational 
principle in the case where the matching hypersurface Σ is non-null. For this purpose it is 
convenient to start with the following action:

I0 = IM + I∂M,� (B.1)

where the bulk ( IM) and boundary ( I∂M) actions are given by

IM :=
∫

M
dnx

√
−g

(
f (φ)R − 1

2
gµν(∇µφ)(∇νφ)− V(φ) + L(m)

)
,� (B.2)

I∂M := 2ε
∫

∂M
dn−1y

√
|h|f (φ)K.� (B.3)

In general relativity ( f (φ) = 1/2κn), equation  (B.3) reduces to the Gibbons–Hawking 
term [35]. Such a boundary term has been constructed also in Einstein–Gauss–Bonnet gravity 
[36, 37] and further generalized in Lovelock gravity [38], which is the most general quasi-
linear second-order theory of gravity in arbitrary dimensions [39].

In the following, we assume that gµν and φ are continuous at ∂M and matter Lagrangian 

density 
√
−gL(m)

M  does not depend on φ.

B.1.  Useful formulae

For variation, we will use

δgµα = −gναgµρδgνρ, δgνα = −gµαgνρδgµρ.� (B.4)
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Jacobi’s formula shows

δ
√
−g = −1

2
√
−ggµνδgµν� (B.5)

and

δ
√

|h| = −1
2

√
|h|habδhab = −1

2

√
|h|hµνδhµν = −1

2

√
|h|hµνδgµν .� (B.6)

While Γρ
µν  is not a tensor, its variation δΓρ

µν is a tensor given by

δΓρ
µν =

1
2

gρα(∇νδgαµ +∇µδgαν −∇αδgµν),� (B.7)

which gives

δRρ
σµν = ∇µδΓ

ρ
νσ −∇νδΓ

ρ
µσ,� (B.8)

δRσν = ∇ρδΓ
ρ
νσ −∇νδΓ

ρ
ρσ.� (B.9)

We can rewrite the term f (φ)gµνδRµν such that

f (φ)gµνδRµν = ∇ρJρ − (∇µ∇ρf (φ))δgρµ + (�f (φ))gµνδgµν ,� (B.10)

where

Jρ := f (φ)
(
−∇µδgρµ +∇α(gµνgραδgµν)

)
+(∇µf (φ))δgρµ − (∇αf (φ))gµνgραδgµν .� (B.11)

From equation (2.4), we obtain

δnµ =
1
2
εnµnαnβδgαβ ,� (B.12)

δnµ = −gµαnβδgαβ +
1
2
εnµnαnβδgαβ .� (B.13)

Using this, after lengthy but straightforward calculations, we obtain

δK = −1
2
(∇αnβ)δgαβ +

1
2
εnαnµgβν(∇µnν)δgαβ

− 1
2

nβhαµ(∇µδgαβ −∇βδgαµ)−
1
2

hρµ∇ρ(hµαnβδgαβ).
� (B.14)

B.2.  Variation with respect to φ

First let us consider variation with respect to φ. Using integration by parts and used the Stokes’ 
theorem (2.5), variation of the bulk action (B.2) leads

δφIM =

∫

M
dnx

√
−g

(
�φ+ f ′(φ)R − V ′(φ)

)
δφ−

∫

∂M
dn−1y

√
|h|(εnµ∇µφ)δφ.� (B.15)

On the other hand, variation of the boundary term (B.3) simply leads

δφI∂M = 2ε
∫

∂M
dn−1y

√
|h|f ′(φ)Kδφ.� (B.16)

L Avilés et alClass. Quantum Grav. 37 (2020) 075022



38

Since matter Lagrangian density 
√
−gL(m)

M  does not depend on φ, variation of the total 
action (B.1) with respect to φ reduces to the following form:

δφI0 =

∫

M
dnx

√
−gE(φ)δφ+

∫

∂M
dn−1y

√
|h|F(φ)δφ,� (B.17)

where

E(φ) := �φ+ f ′(φ)R − V ′(φ),� (B.18)

F(φ) := ε (2f ′(φ)K − nµ∇µφ) .� (B.19)

B.3.  Variation with respect to gµν

Next let us consider variation with respect to gµν. Using integration by parts and the Stokes’ 
theorem (2.5), variation of the bulk action (B.2) leads

δgIM =

∫

M
dnx

√
−g

(
Eµν − 1

2
Tµν

)
δgµν + ε

∫

∂M
dn−1y

√
|h|nρJρ

=

∫

M
dnx

√
−g

(
Eµν − 1

2
Tµν

)
δgµν

+ ε

∫

∂M
dn−1y

√
|h|

{
f (φ)nσhµν

(
∇µ(δgσν)−∇σ(δgµν)

)

− nσ(∇µf (φ))gµνδgσν + nσ(∇σf (φ))gµνδgµν

}
,

�

(B.20)

where Jρ is defined by equation (B.11) and

Eµν : = f (φ)Gµν +
1
2

gµν

(
1
2
(∇φ)2 + V(φ)

)

− 1
2
(∇µφ)(∇νφ)−∇µ∇ν f (φ) + gµν�f (φ),

�

(B.21)

with

Tµν := −2
∂L(m)

M
∂gµν

+ gµνL(m)
M .� (B.22)

On the other hand, variation of the boundary term (B.3) leads

δgI∂M = ε

∫

∂M
dn−1y

√
|h|

[
f (φ)

{
(Khαβ − Kαβ)δgαβ − nβhαµ(∇µδgαβ −∇βδgαµ)

}

+ (∇ρf (φ))hραnβδgαβ − hρµ∇ρ( f (φ)hµαnβδgαβ)

]
.

�

(B.23)

The last term in the above integrand is a total derivative term on ∂M and becomes a surface 
integral at ∂∂M, namely the boundary of ∂M because for a given vector vµ, we have
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h ρ
µ ∇ρvµ = hµρ∇ρvµ = eµa eρb hab∇ρvµ = habDbva = Dava.� (B.24)

Hence, we have

δg(IM + I∂M) =

∫

M
dnx

√
−g

(
Eµν − 1

2
Tµν

)
δgµν

− ε

∫

∂M
dn−1y

√
|h|

{
f (φ)(Khµν − Kµν) + nσ(∇σf (φ))hµν

}
δgµν

+ (surface integral at ∂∂M),

�

(B.25)

where we used equation (B.4).
Now we have shown that variation of the total action (B.1) with respect to gµν reduces to 

the following form:

δgI0 =

∫

M
dnx

√
−g

(
Eµν − 1

2
Tµν

)
δgµν −

∫

∂M
dn−1y

√
|h|Fµνδgµν

+ (Surface integral at ∂∂M),
� (B.26)

where

Fµν := εf (φ)(Khµν − Kµν) + εnσ(∇σf (φ))hµν .� (B.27)

B.4.  Derivation of the junction conditions

Assume that the spacetime M consists of two parts M+ and M−. In a situation where M+ 
and M− are connected at a non-null hypersurface Σ as described in figure 3, we propose the 
following action

IJ =

∫

M+

dnx+
√
−g+

(
f (φ+)R+ − 1

2
(∇φ+)2 − V(φ+) + L(m)

M+

)

+

∫

M−

dnx−
√
−g−

(
f (φ−)R− − 1

2
(∇φ−)2 − V(φ−) + L(m)

M−

)

+ 2ε+

∫

∂M+−Σ+

dn−1z+
√
|ζ+|f (φ+)K+ + 2ε−

∫

∂M−−Σ−

dn−1z−
√
|ζ−|f (φ−)K−

+ 2ε
∫

Σ+

dn−1y
√
|h|f (φ)K+ + 2ε

∫

Σ−

dn−1y
√
|h|f (φ)K− +

∫

Σ

dn−1y
√
|h|L(m)

Σ ,

�

(B.28)

where Σ± are the sides of Σ with normal vectors nµ
± pointing outward, so that the boundary 

of each M± is ∂M± = (∂M± − Σ±) ∪ Σ±, and ε+, ε−, ε independently take their values 

±1 and φ±|Σ = φ. Here we used zi
± and ζ±ij  for the coordinates and induced metric on the 

boundaries ∂M± − Σ±, respectively.
From the results obtained in the previous subsections, variation of the action (B.28) with 

the boundary conditions δg±µν = δφ± = 0 at ∂M± − Σ± leads
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δgIJ =

∫

M+

dnx+
√
−g+

(
E+
µν − 1

2
T+
µν

)
δg+µν +

∫

M−

dnx−
√
−g−

(
E−
µν − 1

2
T−
µν

)
δg−µν

−
∫

Σ+

dn−1y
√
|h|F+

µνδgµν −
∫

Σ−

dn−1y
√
|h|F−

µνδgµν +

∫

Σ

dn−1y
√
|h|

(
−1

2
tµν

)
δgµν

+ (Surface integral at ∂∂M±),
�

(B.29)

where

tµν := −2
∂L(m)

Σ

∂gµν
+ gµνL(m)

Σ ,� (B.30)

and

δφIJ =

∫

M+

dnx+
√
−g+E+

(φ)δφ
+ +

∫

M−

dnx−
√
−g−E−

(φ)δφ
−

+

∫

Σ+

dn−1y
√

|h|F+
(φ)δφ+

∫

Σ−

dn−1y
√

|h|F−
(φ)δφ.

�
(B.31)

Choosing the normal vector nµ to Σ such that it points from M− to M+ , we have nµ
− = nµ = −nµ+ 

and hence K+(nµ+) = −K+(nµ) and K−(nµ−) = K−(nµ). They show F+
µν(n

µ
+) = −F+

µν(n
µ), 

F−
µν(n

µ
−) = F−

µν(n
µ), F+

(φ)(n
µ
+) = −F+

(φ)(n
µ), and F−

(φ)(n
µ
+) = F−

(φ)(n
µ), and consequently 

we have
∫

Σ+

dn−1y
√
|h|F+

µνδgµν = −
∫

Σ

dn−1y
√

|h|F+
µνδgµν ,� (B.32)

∫

Σ−

dn−1y
√
|h|F−

µνδgµν =

∫

Σ

dn−1y
√
|h|F−

µνδgµν ,� (B.33)

∫

Σ+

dn−1y
√
|h|F+

(φ)δφ = −
∫

Σ

dn−1y
√

|h|F+
(φ)δφ,� (B.34)

∫

Σ−

dn−1y
√
|h|F−

(φ)δφ =

∫

Σ

dn−1y
√
|h|F−

(φ)δφ.� (B.35)

Therefore, equations (B.29) and (B.31) finally reduce to

δgIJ =

∫

M+

dnx+
√
−g+

(
E+
µν − 1

2
T+
µν

)
δg+µν +

∫

M−

dnx−
√
−g−

(
E−
µν − 1

2
T−
µν

)
δg−µν

+

∫

Σ

dn−1y
√
|h|

(
F+

µν −F−
µν − 1

2
tµν

)
δgµν + (Surface integral at ∂∂M±),

�

(B.36)

and
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δφIJ =

∫

M+

dnx+
√
−g+E+

(φ)δφ
+ +

∫

M−

dnx−
√
−g−E−

(φ)δφ
−

−
∫

Σ

dn−1y
√
|h|(F+

(φ) −F−
(φ))δφ.

�

(B.37)

Hence, by the variational principle, we obtain the Einstein equations E±
µν = (1/2)T±

µν and 

the equation of motion for a scalar field E±
(φ) = 0 in the bulk spacetimes M± as well as the 

junction conditions [Fµν ] = (1/2)tµν  and [F(φ)] = 0 on Σ. The bulk field equations are in the 
following form:

2f (φ)Gµν + gµν

(
1
2
(∇φ)2 + V(φ)

)

− (∇µφ)(∇νφ)− 2∇µ∇ν f (φ) + 2gµν�f (φ) = Tµν ,
�

(B.38)

�φ+ f ′(φ)R − V ′(φ) = 0,� (B.39)

where we have omitted ± sign for simplicity, while the junction conditions at Σ are written as

2εf (φ) ([K]hµν − [Kµν ]) + 2εf ′(φ)nσ[∇σφ]hµν = tµν ,� (B.40)

2f ′(φ)[K]− nµ[∇µφ] = 0.� (B.41)
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