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Abstract
We construct rotating black holes in Einstein-scalar-Gauss–Bonnet theory 
with a quadratic coupling function. We map the domain of existence of the 
rotating fundamental solutions, we construct radially excited rotating black 
holes (including their existence lines), and we show that there are angularly 
excited rotating black holes. The bifurcation points of the radially and 
angularly excited solutions branching out of the Schwarzschild solution 
follow a regular pattern.

Keywords: Einstein-scalar–Gauss–Bonnet, roating hairy black holes,  
excited scalar fields

1.  Introduction

In general relativity (GR) the existence of asymptotically flat black holes is subject to severe 
constraints, often termed no-hair theorems (see e.g. [1–3]). In generalized theories of gravity, 
on the other hand, less restrictions may arise and thus these may lead to interesting new kinds 
of asymptotically flat black holes, that carry hair (see e.g. [4]). These hairy black holes might 
in fact represent contenders to explain current astrophysical observations [5, 6].

A particularly interesting class of generalized theories of gravity is represented by met-
ric theories with higher curvature terms. Such theories arise, for instance, in the low-energy 
limit of string theory, where these higher curvature terms are accompanied by a scalar field, 
the dilaton [7, 8]. The resulting black holes then carry scalar hair, as shown for the case of a 
Gauss–Bonnet (GB) term coupled to a dilaton [9–12].
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The physical properties of nonrotating hairy black holes can differ significantly from their 
GR counterparts, the Schwarzschild black holes. In particular, the presence of the scalar field 
will give rise to additional branches in the black hole quasinormal mode spectrum [12–15]. 
When set into rotation, the quadrupole moments of these hairy black holes can exhibit large 
deviations from those of Kerr black holes, and their angular momentum may even exceed the 
Kerr bound, j   =  J/M2  =  1 [16–21]. In constrast, the shadows of hairy black holes and their 
x-ray reflection spectrum will be very close to those of Kerr black holes [22, 23].

Einstein-dilaton-Gauss–Bonnet gravity is characterized by an exponential coupling 
function f (φ) to the GB term, whose exponent is linear in the dilaton field φ. Therefore 
Schwarzschild or Kerr black holes are not solutions of the theory: they are only approached 
asymptotically. If, however, one allows for other choices of the coupling function (the sim-
plest being a quadratic coupling function f (φ) ∝ φ2) Schwarzschild and Kerr black holes can 
be solutions of the theory, and an interesting new phenomenon can arise: curvature-induced 
spontaneous scalarization of black holes [24–32].

Spontaneous scalarization was first observed in neutron stars within scalar-tensor theory. 
Here the instability arises when the product −β0T , where β0 is the effective linear matter-
scalar coupling and T is the trace of the stress-energy tensor, is larger than some critical 
value [33]: spontaneous scalarization is induced by couplings with matter (see also [34, 35], 
and [42, 43] for matter-induced scalarization in black hole spacetimes). Later it was realized 
that spontaneous scalarization can occur for charged black holes in Einstein–Maxwell-scalar 
(EMs) theory, for certain choices of the scalar coupling function and coupling strength [36–
41]. This ‘charge-induced’ spontaneous scalarization presents many similarities with the case 
of curvature-induced spontaneous scalarization of black holes [24–32].

In Einstein-scalar-Gauss–Bonnet (EsGB) gravity, the presence of black holes with scalar 
hair that is spontaneously induced by curvature is associated with instabilities of Schwarzschild 
black holes. In particular, as the coupling constant λ/M  is varied, a set of bifurcation points 
arises, where branches of scalarized black holes emerge [24, 25]. Labelling these bifurcation 
points by the integer n, the scalarized solutions on the nth branch possess n radial nodes. Thus, 
besides the fundamental (n  =  0) scalarized black hole, one can have radially excited modes 
with n  >  0 . With every new bifurcation point the Schwarzschild black hole gains another 
unstable mode [28]. The stability of the fundamental static solution depends on the coupling 
function [24–30, 32] and on self-interaction terms, if they are present [31].

Recently [32], studied the fundamental (n  =  0) solution for rotating BHs in EsGB theory 
with a ‘Gaussian’ coupling function of the form e−φ2

, as well as its domain of existence and 
various of its physical properties. The domain of existence is quite broad for small rotation 
rates (as expected from the static solution), but it becomes narrower as rotation increases. This 
fact has been exploited in calculations of the shadow of such black holes, which might be used 
to put a bound on the coupling constant [32].

Here we consider the static and rotating black holes of EsGB theory with a simple quad-
ratic coupling function. We explore the domain of existence of the fundamental rotating black 
holes and consider their first radial excitations. Moreover, we show that the scalarized static 
and rotating black holes also possess angular excitations (labelled by an angular integer l). 
We determine the bifurcation points of the lowest excitations and determine the existence 
lines of some of the resulting radially and angularly excited rotating black holes. In section 2 
we describe the theory and the general properties of axially symmetric EsGB black holes. In 
section 3 we present our numerical results, and in section 4 we outline possible directions for 
future work.
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2.  General framework

2.1.  Action

The action of EsGB gravity is

S =
1

16π

∫
d4x

√
−g

[
R − 1

2
(∂µφ)

2 + f (φ)R2
GB

]
,� (1)

where φ is a (real) scalar field, f (φ) is the coupling function of the theory, and

R2
GB = RµνρσRµνρσ − 4RµνRµν + R2� (2)

is the Gauss–Bonnet invariant, which would not yield any modifications of the Einstein equa-
tions when f (φ) is a constant, because it corresponds to a boundary term in the action. This is 
no longer the case if the GB invariant couples to dynamical matter fields. Note that here and 
below we use geometrical units (c  =  G  =  1).

Here we consider the coupling function [25, 28]

f (φ) =
λ2

8
φ2,� (3)

i.e. a purely quadratic coupling. We will compare our results with those for a Gaussian coupling

f (φ) =
λ2

12

(
1 − e−3φ2/2

)
,� (4)

which was studied in [24, 28, 32].
Varying the action (1) with respect to the metric gµν, we obtain the generalized Einstein 

equations with contributions from the GB term

Eµν = Gµν − 1
2

T(φ)
µν + f (φ)Hµν + 4∇ρ∇σf (φ)Pµρνσ = 0,� (5)

where

Gµν = Rµν − 1
2

gµνR, T(φ)
µν = ∇µφ∇νφ− 1

2
gµν(∇φ)2,

Hµν = 2
(
RRµν − 2RµρRρ

ν − 2RρσRµρνσ + R ρσλ
µ Rνρσλ

)
− 1

2
gµνR2

GB,

Pµνρσ = Rµνρσ + 2gµ[σRρ]ν + 2gν[ρRσ]µ + Rgµ[ρgσ]ν .

� (6)

In the above relations, we denote by Pµνρσ the divergence free part of the Riemann tensor, i.e. 
∇µPµ

νρσ = 0. Obviously, the equations (5) can be written in an Einstein-like form

Gµν =
1
2

T(eff)
µν ,� (7)

where we have introduced an effective energy-momentum tensor that has acquired a contrib
ution arising from the GB term

T(eff)
µν = T(φ)

µν − 2T(GB)
µν ,� (8)

with

T(GB)
µν = f (φ)Hµν + 4∇ρ∇σf (φ)Pµρνσ.� (9)
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Variation of equation (1) with respect to the scalar field leads to a generalized Klein–Gordon 
equation,

∇2φ+
df
dφ

R2
GB = 0.� (10)

2.2. The ansatz and equations of motion

We would like to focus on stationary, axially symmetric spacetimes possessing two commut-
ing Killing vector fields, ξ and η, with

ξ = ∂t and η = ∂ϕ� (11)

in a system of adapted coordinates. Such spacetimes are typically described by a Lewis–
Papapetrou–type ansatz [44], which satisfies the circularity condition and contains four 
unknown functions. Here we employ the version of this ansatz originally introduced in [45], 
with the parametrization

ds2 = −beF0 dt2 + eF1
(
dr2 + r2dθ2)+ eF2 r2 sin2 θ(dϕ− ω

r
dt)2,� (12)

where r, θ, and ϕ are ‘quasi-isotropic’ spherical coordinates, and t is the time coordinate. Here 
b = (1 − r

rH
)2 is an auxiliary function, and rH denotes the isotropic horizon coordinate. The 

metric functions F0, F1, F2 and ω  depend on the coordinates r and θ. The scalar field is also a 
function of r and θ only:

φ = φ(r, θ).� (13)

2.3.  Boundary conditions and asymptotic behavior

2.3.1.  Large-r asymptotics.  We here consider solutions that approach a Minkowski spacetime 
background as r → ∞. This implies the following boundary conditions:

F0(∞) = F1(∞) = F2(∞) = ω(∞) = φ(∞) = 0 .� (14)

Since the scalar field is massless, one can construct an approximate solution of the field equa-
tions (5) and (10), that is compatible with these asymptotic conditions as a power series in 1/r.

2.3.2.  Expansion on the event horizon.  The event horizon of the (non-extremal) stationary 
black hole solutions resides at a surface of constant radial coordinate, r = rH > 0. Again, it is 
possible to construct an approximate (power series) solution, this time in terms of

δ =
r

rH
− 1.� (15)

Demanding that the metric functions and the scalar field, as well as their derivatives are not 
diverging at the horizon leads to the conditions

∂rF0(rH) =
1
rH

, ∂rF1(rH) = − 2
rH

, ∂rF2(rH) = − 2
rH

, ω(rH) = ωH, ∂rφ(rH) = 0,� (16)

where ωH is a constant. Note that, similar to the case of pure Einstein gravity, the equa-
tion Eθ

r = 0 implies that the ratio F0/F1 is constant at the horizon. This implies the constancy 
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of the Hawking temperature, and also represents a supplementary condition which is used as 
further test of numerical accuracy.

2.3.3.  Behavior on the symmetry axis.  Axial symmetry and regularity impose the following 
boundary conditions for the metric functions on the symmetry axis (i.e. at θ = 0,π):

∂θF0|θ=0,π = ∂θF1|θ=0,π = ∂θF2|θ=0,π = ∂θω|θ=0,π = 0,� (17)

while for the scalar field we impose

∂θφ|θ=0,π = 0.� (18)

Near the symmetry axis it is possible to construct an approximate form of the solutions as 
a power series, now in terms of θ (and π − θ, respectively). Further, the absence of conical 
singularities implies F1|θ=0,π = F2|θ=0,π.

All fundamental solutions discussed here are symmetric with respect to reflection across 
the equatorial plane, θ = π/2. Therefore, in the numerical calculations, it is sufficient to con-
sider the range 0 � θ � π/2 for the angular variable θ. Then the metric functions and the 
scalar field are required to satisfy Neumann boundary conditions in the equatorial plane:

∂θF0|θ=π/2 = ∂θF1|θ=π/2 = ∂θF2|θ=π/2 = ∂θω|θ=π/2 = ∂θφ|θ=π/2 = 0.
� (19)

Note that the scalar field of the first angular excitation possesses odd parity. In this case the 
boundary condition in the equatorial plane reads φ|θ=π/2 = 0.

2.4.  Physical properties

Let us now briefly address the physical properties of these black holes. Starting with the hori-
zon properties, we note that the metric of a spatial cross section of the horizon is

dΣ2 = hijdxidx j = r2
H

(
eF1 dθ2 + eF2 sin2 θdϕ2)∣∣

rH
.� (20)

The Killing vector field

χ = ∂t −
ωH

rH
∂ϕ� (21)

is orthogonal to (and null on) the horizon [44]. The boundary parameter ωH defined in equa-
tion (16) determines the horizon angular velocity ΩH

ΩH = − ξ2

ξ · η
= −gϕt

gtt

∣∣∣∣
rH

=
ωH

rH
.� (22)

The Hawking temperature TH = κ/(2π) is obtained from the surface gravity κ [44], where 
κ2 = − 1

2 (∇aχb)(∇aχb)|rH, yielding

TH =
1

2πrH
e(F0−F1)/2 .� (23)

The horizon area of the black holes is given by

AH = 2πr2
H

∫ π

0
dθ sin θe(F0+F2)/2.� (24)

Black holes in GR possess an entropy which is a quarter of the horizon area [44]. However, 
because of the scalar coupling to the GB term, the entropy of the EsGB black holes acquires 
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an extra contribution. Following Wald [47], the total entropy can then be given as an integral 
over the horizon

S =
1
4

∫

ΣH

d2x
√

h(1 + 2f (φ)R̃),� (25)

where h is the determinant of the induced metric on the horizon (defined in (20)), and R̃ is 
defined as the scalar curvature of the induced metric on a slice of constant time of the horizon. 
Explicitly, we have

R̃ = − e−F1

2r2
H sin θ

([
2(∂2

θF2 − 2) + (∂θF2)
2 − ∂θF1∂θF2

]
sin θ − 2 [∂θF1 − 2∂θF2] cos θ

)
,� (26)

where all functions are evaluated at r = rH.
Similar to GR solutions, the total mass M and the angular momentum J are read from the 

asymptotic behavior of the metric functions

gtt = −eF0 + eF2ω2 sin2 θ = −1 +
2M
r

+ . . . ,

gϕt = −eF2ω2 sin2 θ = −2J
r
sin2 θ + . . . .

� (27)

In addition, the solutions possess a scalar ‘charge’ D, which is determined by the 1/r term of 
the far-field asymptotics of the scalar field.

2.5.  Numerical approach

Let us briefly address the numerical approach employed to construct the EsGB black holes. 
The unknown metric and scalar field functions (F0, F1, F2,ω;φ) are obtained as solutions of 
a rather lengthy coupled set of partial differential equations (PDEs), subject to the associated 
set of boundary conditions, guaranteeing regularity and asymptotic flatness.

The only non-trivial components of the generalized Einstein equations  (5) are 
Et

t , Er
r , Eθ

θ , Eϕ
ϕ, Et

ϕ and Eθ
r . Following [45], we divide the resulting six equations  into two 

groups. Four equations for the metric functions are obtained from a suitable linear combina-
tion of Et

t , Eϕ
ϕ, Et

ϕ and Er
r + Eθ

θ. The remaining two equations  (Er
r − Eθ

θ and Eθ
r ) represent 

constraints. We solve the four equations  together with the scalar field equation  (10), each 
containing more than 340 independent terms, while we follow the two constraints to check the 
accuracy of the numerical solutions.

The domain of integration corresponds to the region outside the horizon. We therefore 
introduce a new radial variable x = 1 − rH/r , which maps the semi-infinite interval [rH,∞) 
to the closed interval [0, 1]. We then discretize the equations on a non-equidistant grid in x 
and θ. Typical grids used have sizes 91 × 51, and cover the integration region 0 � x � 1 
and 0 � θ � π/2. We perform the numerical calculations using the professional package 
FIDISOL/CADSOL [46], which is based on a Newton–Raphson method. The typical numer
ical error for the functions is estimated to be lower than 10−3.

For each solution we provide three input parameters, λ, rH and ΩH = ωH
rH

. After convergence 
has been reached, the physical properties are computed from the numerical solutions. In par
ticular, the mass M and the angular momentum J are obtained from the asymptotic behavior 
of the solutions (27), whereas the horizon area AH, the entropy S and the temperature TH are 
extracted from the horizon metric.

L G Collodel et alClass. Quantum Grav. 37 (2020) 075018
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3.  Results

Before we turn to rotating black holes, let us briefly recall the properties of static black holes 
in this theory [25, 28]. The bifurcation points of the sets of static scalarized black holes from 
the branch of Schwarzschild black holes have been obtained for the quadratic coupling func-
tion in [25], and they agree with those of the exponential coupling [24], since the latter reduces 
to the quadratic coupling in the limit of small scalar field. The fundamental (n  =  0) static 
branch thus arises at the bifurcation point M/λ = 0.587, where the Schwarzschild solution 
developes a zero mode, which turns into a first unstable radial mode for smaller M/λ. At the 
nth (n > 0) bifurcation point, the Schwarzschild solution developes the (n + 1)th unstable 
radial mode, while the associated nth branch of scalarized black hole solutions possesses n 
radial nodes and (n  +  1) unstable radial modes. Thus all scalarized black hole solutions are 
unstable, including the fundamental solution [28]. Furthermore we note that all branches of 
static scalarized black hole solutions exist only in a small domain that decreases with increas-
ing n, as illustrated by the solid blue curves in figure 1(a), where their scaled scalar charge 
Q/M is shown versus the scaled mass M/λ. Note, that the figure also contains some angularly 
excitated solutions (dashed red: l  =  1, green dots: l  =  2) discussed below.

In the following we present our results, starting with the domain of existence of the fun-
damental rotating solutions. Subsequently, we address rotating radial excitations and angular 
excitations.

3.1.  Fundamental rotating black holes

The fundamental static black holes exist only in a small interval of M/λ. As these black holes 
are set into rotation, this small interval shrinks further, as seen in figure 1(b) where we plot 
the scaled angular momentum J/λ2  as a function of the scaled mass M/λ. The boundaries of 
the domain of existence correspond to the ‘existence line’ to the left (solid blue line starting at 
M/λ = 0.587), and the critical (dashed blue) line on the right where hairy solutions cease to 
exist: beyond the critical line, there are only complex solutions for the scalar field.

The domain of existence resides fully within the domain of existence of the Kerr black 
holes for the angular momenta studied. As the scaled angular momentum J/λ2  increases, 
the domain of existence of the scalarized black holes tends towards the set of extremal Kerr 
black holes. We note that this behavior is rather similar to the case of exponential coupling 
[32]. However, in the latter case, the domain of static scalarized black holes extends from the 
existence point all the way to M/λ = 0, yielding a large domain of existence for small angular 
momenta J/λ2 .

In figure 2(a) we illustrate the domain of existence by plotting the scaled scalar charge Q/M 
as a function of the scaled angular momentum j   =  J/M2. The scalar charge decreases with the 
angular momentum, i.e. it decreases as we approach the extremal Kerr limit, where Q/M  =  0. 
On the other hand, figure 2(b) shows the domain of existence with respect to the coupling con-
stant. It also includes curves of constant ωH, which for constant rH corresponds to a constant 
angular velocity of the horizon ΩH (see equation (22)). Interestingly, the static curve does not 
describe the boundary curve here, but λ/M  can slightly exceed this curve for small rotation.

As demonstrated in figure  3(a), the scaled horizon mass MH/M  is typically slightly 
smaller than one. Again, for large angular momenta this is similar to the exponential coupling 
case, where, however, much larger deviations are observed for small angular momenta [32]. 
Figure 3(b) exhibits the domain of existence for the scaled area AH/16πM2.

L G Collodel et alClass. Quantum Grav. 37 (2020) 075018
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The horizon area is smaller than in the Kerr case, but nowhere are the deviations between 
the two very large. As noted in [32], large deviations are possible for Gaussian coupling func-
tions, and this can be used to put bounds on the coupling via the black hole shadow of M87 
[48].

Of considerable interest for such scalarized black holes is the calculation of the entropy, 
which differs from the corresponding value obtained from the horizon area. If the entropy for 
the scalarized solutions is larger than the entropy for Kerr (or Schwarzschild) black holes, this 
is an indication that the scalarized solutions will be stable. Here we do not expect stability, 
since static black holes are already known to be unstable. Indeed, figure 3(b) shows an explicit 
calculation of the scaled entropy, which is smaller than in GR (as expected). However, the 
domain of existence for the entropy of the scalarized solutions is extremely close to the case 
of Kerr black holes. The difference is highlighted in the lower inset of figure 3(b).

Figure 1.  Domain of existence of scalarized black holes: (a) fundamental and radially 
and angularly excited static solutions: scaled scalar charge Q/M versus scaled mass 
M/λ for even l (l  =  0: solid blue, l  =  2: green), scaled dipole moment P/M2 versus 
scaled mass M/λ (l  =  1: dashed red); (b) fundamental rotating solutions: scaled 
angular momentum J/λ2  versus scaled mass M/λ (existence line: solid blue, critical 
line: dashed blue). Also shown are the extremal Kerr solutions (solid red).

Figure 2.  Domain of existence of fundamental rotating scalarized black holes: (a) 
scaled scalar charge Q/M versus scaled angular momentum j   =  J/M2 (critical line: 
dashed blue, static solutions: solid black); (b) scaled coupling constant λ/M  versus 
scaled scalar charge Q/M (existence line: solid blue, critical line: dashed blue, static 
solutions: solid black), for several fixed values of the horizon parameter ωH = ΩHrH.

L G Collodel et alClass. Quantum Grav. 37 (2020) 075018
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3.2.  Excited static black holes

Scalarized black holes come in many variants. Besides the well-studied radial excitations, 
labeled by the integer n, there are also angular excitations and combinations of both. In the 
static limit, this is easily seen when expanding the scalar field in terms of spherical harmonics

φ =
∑

lm

fl(r)Ylm(θ,ϕ)� (28)

involving the integers l and m. We exhibit the bifurcation points of the lowest radially and 
angularly excited static scalarized black holes in figure 4, where the scaled coupling constant 
λ/M  is shown versus angular excitations, labelled by the integer l, for the lowest radial exci-
tations (labelled by the integer n). Interestingly, the observed pattern of bifurcation points is 
highly regular, formed by adjacent rhomboids (see also [51]).

Let us now consider the extension of the associated radially and angularly excited static 
solutions, restricting attention to their existence lines, where the scalar field equation is solved 
in the background of the Schwarzschild black hole. For these existence lines, figure  5(a) 
shows the scaled scalar charge Q/M (solid lines) and the scaled dipole moment P/M2 (dashed 
lines) as functions of the scaled mass M/λ. In particular, we show solutions with n = 0, l = 0 
(fundamental), n = 0, l = 1 (one angular excitation) n = 0, l = 2 (two angular excitations) 
and n = 1, l = 0 (one radial excitation). The dots in the figure indicate the bifurcation points 
from the Schwarzschild black holes for l  =  0 (blue), l  =  1 (red) and l  =  2 (green). Note that 
solutions with l  =  1 possess a parity-odd scalar field, therefore they do not carry scalar charge. 
The dipole term represents the lowest term in their asymptotic expansion, so in the figure we 
plot their dipole moment.

We can ask whether static excited black holes are stable. A glance at their entropy—as 
shown in figure 5(b)—indicates that not only the radially excited static solutions are unstable 
[28], but also the angularly excited solutions should be unstable.

Of course, one might also consider static solutions, that in the presence of backreaction will 
lose axial symmetry. Examples would be black holes labelled by the above set of 3 integers 
(n, l, m), where the azimuthal integer m �= 0, as in the solutions considered in [38]. For given 
integers n and l, these would possess a degenerate bifurcation point for all allowed values of 

Figure 3.  Domain of existence of fundamental and first radially excited rotating 
scalarized black holes: (a) scaled horizon mass MH/M  versus scaled angular momentum 
j  (critical line: dashed blue (fundamental), dashed red (first radially excited), static line: 
solid black, Kerr solutions: green); (b) scaled horizon area aH = AH/16πM2 and scaled 
entropy s = S/4πM2 versus scaled angular momentum j , (same linestyles as in (a)). 
The lower inset illustrates the small difference in entropy.

L G Collodel et alClass. Quantum Grav. 37 (2020) 075018
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m, but give rise to a set of l  +  1 distinct families of scalarized black holes, one with axial sym-
metry (m  =  0) and l without any continuous symmetry (m �= 1).

3.3.  Excited rotating black holes

Let us next consider excited rotating scalarized black holes. We show the existence line for 
several such black holes in figure 6(a). In particular, in addition to the fundamental solution 
for l  =  0, n  =  0 (blue), the figure exhibits the existence line for its first radial excitation l  =  0, 
n  =  1 (blue), together with the existence line of two branches of solutions starting from the 
bifurcation points l  =  2, n  =  0 and l  =  2, n  =  1 (green). As seen in the figure, the existence 

Figure 4.  Bifurcation points of excited static scalarized black holes: scaled coupling 
constant λ/M  versus angular integer l for the lowest radial excitations n; l  =  0 (blue), 
l  =  1 (red) and l  =  2 (green).

Figure 5.  Excited static scalarized black holes: (a) scaled scalar charge Q/λ for even 
l (l  =  0: solid blue, l  =  2: green), and scaled dipole moment P/λ2 (l  =  1: dashed red) 
versus scaled mass M/λ; (b) scaled entropy s = S/4πM2 versus scaled mass M/λ for 
the lowest radial and angular exitations. Bifurcation points: l  =  0 (blue), l  =  1 (red) and 
l  =  2 (green).

L G Collodel et alClass. Quantum Grav. 37 (2020) 075018
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lines l  =  2, n  =  0 and l  =  0, n  =  1 approach the set of extremal Kerr solutions quite rapidly. 
Also shown are the critical solutions with l = 0, n = 0 and l = 0, n = 1 (dashed).

In figure 6(b) we plot the existence lines as functions of the scaled coupling constant λ/M  
and of the scaled angular momentum j . Besides the fundamental rotating solution (n, l) = (0, 0), 
we show also the first radially excited solution (n, l) = (1, 0), and the second angularly excited 
solution (n, l) = (0, 2)4. The short black lines on the axis indicate the domain of existence of 
the static (0, 0) and (1, 0) solutions. We have also obtained part of the existence lines of fur-
ther excited solutions like the second angularly excited solution (n, l) = (0, 2); however, these 
remain challenging to fully map out.

4.  Conclusions

Spontaneously scalarized black holes can exist when the coupling function and coupling con-
stant satisfy certain conditions. In this paper we have studied curvature-induced scalarization 
mediated by the presence of a GB term. In particular, we have focused on a quadratic coupling 
function, extending previous studies of the fundamental (n  =  0) nonrotating static solution 
and of its radial excitations.

We have mapped out the domain of existence of rotating generalizations of these solutions, 
showing that the domain of existence is a small band starting from the static solutions and 
extending to larger angular momenta. This band shrinks as the angular momentum grows, 
approaching the extremal Kerr solutions. As for static black holes, the entropy of these rotat-
ing scalarized black holes is smaller than the entropy of Kerr black holes, suggesting that 
rotating scalarized black holes should also be unstable.

We have further considered excited (static and rotating) solutions considering also angular 
excitations with l  >  0. The bifurcation points form a simple regular pattern in (n, l), at least 
for small values of n and l. Branches of excited black holes emerge from these bifurcation 
points: this behavior is similar to the case of static, charge-induced spontaneously scalarized 

Figure 6.  Excited rotating scalarized black holes: (a) scaled angular momentum J/λ2  
versus scaled mass M/λ; (b) scaled coupling constant λ/M  versus scaled angular 
momentum j . Shown are (n, l) = (0, 0) (blue), (n, l) = (1, 0) (blue), (n, l) = (0, 2) 
(green) (existence lines: solid, critical lines: dashed).

4 The first radially excited branches of solutions have also been included in figure 3, where their scaled horizon 
mass, horizon area and entropy are shown.
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black holes [38]. Taking this similarity further, we conjecture that there should also exist static 
EsGB black holes without any continuous symmetry.

As long as axial symmetry is retained, the excited solutions can also be set into rotation, 
forming stationary sets of solutions. Here we have mainly explored the existence lines of these 
radially and angularly excited rotating black holes, but we also constructed solutions with 
backreaction.

While we do not expect stable spontaneously scalarized black holes for this theory, it 
should be possible to restore stability by adding higher-order terms to the coupling function 
[24, 28] or by including a potential term V(φ) for the scalar field [31, 49]. The latter approach 
is particularly attractive, since these corrections would emerge naturally in an effective field 
theory scenario.
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