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Abstract
We investigate a vacuum decay around an over-spinning naked singularity by
using the Israel junction condition. We found that if the Higgs field develops the
second minimum at higher energy scale, a spinning small-mass naked singular-
ity could cause the vacuum decay around it within the cosmic age. An event
horizon may form around the singularity due to the angular momentum trans-
port from the singularity to a vacuum bubble wall. The newly formed event hori-
zon leads to the increase of Bekenstein–Hawking entropy, which contributes
to the enhancement of the vacuum decay rate. We conclude that small-mass
naked singularities may be hidden by the event horizon within the cosmological
time.
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1. Introduction

The weak cosmic censorship conjecture [1] states that any naked singularities, except for the
Big Bang singularity, cannot exist in the Universe and those singularities should be hidden by
event horizons. The censorship mechanism to prevent the naked singularities to exist in the
Universe has been investigated mainly in a classical manner so far. For instance, it was pointed
out that a nearly-extremal black hole (BH) could be a naked singularity by capturing a particle
which carries a small amount of angular momentum [2], provided that relevant backreaction
effects are negligible [3, 4]. On the other hand, assuming a priori that a spinning naked singu-
larity exists in the Universe, the life-time of a spinning naked singularity surrounded by stellar
medium was estimated by taking into account matter accretion to the singularity [5, 6]. The esti-
mated life-time of the naked singularity is T ∼ 104

(
M�/M+

) (
10−13 g cm−3/ρ

)
years, where

M+ is the mass of the naked singularity and ρ is the density of accreting particles. This life-
time is inversely proportional to M+, and so if we consider a small-mass naked singularity, the
life-time may be longer than the cosmic age ∼ 1. 38 × 1010 years. Therefore the accretion to
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Figure 1. A schematic picture showing the formation of event horizon around the sin-
gularity due to the angular momentum transport to the vacuum bubble from the naked
singularity.

naked singularities would not provide the censorship mechanism and the cosmic censorship
conjecture may be drastically violated especially for the small-mass naked singularity.

In this letter we propose a novel scenario to explain the censorship mechanism for such a
small-mass naked singularity from the point of view of a semi-classical picture. It has been
well known that the extrapolation of the standard model up to very high energy scale would
lead to the possible Higgs metastability [7–21], and the vacuum decay due to this metastability
may be significantly promoted by microscopic BHs [22–28] or horizon-less compact objects
[29–31]. Since impurities usually catalyze phase transitions, there is no wonder that the Higgs
metastability may be catastrophic around such dense objects.

We will consider vacuum decay around a spinning naked singularity using the thin-wall
approximation, and will show that the vacuum decay involves the formation of event hori-
zon around the singularity due to the angular momentum transport to a vacuum bubble wall
(figure 1). This leads to the increase of Bekenstein–Hawking entropy [32–35] in the system,
which contributes to the enhancement of the decay rate. In the following we use the natural
unit � = c = kB = 1.

2. Dynamics of vacuum bubble

Here we calculate a vacuum decay rate around a highly spinning naked singularity of mass M+.
Especially, we here consider the first order phase transition by which the angular momen-
tum of a seed naked singularity is transferred to a vacuum bubble wall, and the event horizon
forms around the singularity. To this end, we will calculate the rate of a transition from a spin-
ning naked singularity (initial state) to a thin-wall vacuum bubble with a Kerr–anti-de Sitter
(Kerr–AdS) interior (final state) by using the Euclidean path integral. Then we will compare
it with the cosmic age. Note that here we implicitly assume that the difference in the vacuum
energy density between the true and false vacuum state is much smaller than the height of
the barrier of the Higgs potential1. This assumption is necessary to guarantee that the resulting
vacuum bubble has its ‘thin’ wall. Since here we consider a thin-wall bubble as a final state, the
resulting spacetime may be described by the Israel junction condition between the Kerr–AdS
and Kerr spacetime. Using the Boyer–Lindquist (BL) coordinates, a metric which covers the
Kerr–AdS spacetime has the form of

1 For instance, to model such a Higgs potential, sextic term of Higgs field was introduced in [24].
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ds2 = −Δr

Σ

(
dt − a sin2 θ

Ξ
dφ

)2

+
Σ

Δr
dr2 +

Σ

Δθ
dθ2 +

Δθ sin2 θ

Σ

(
adt − r2 + a2

Ξ
dφ

)2

, (1)

where Σ ≡ r2 + a2cos2 θ, Ξ ≡ 1 + H2r2, Δr ≡ (r2 + a2)(1 + H2r2) − 2GMr and Δθ ≡ 1 +
H2a2cos2 θ, M is the singularity mass, a is the spin parameter, and H is the Hubble param-
eter. The spacetime inside and outside the wall can be obtained by setting a = a+ > GM+,
H = H+ = 0 and M = M+ in (1), and the interior spacetime is also given by (1) with
a = a− ≥ 0, M = M−, and H = H− > 0, where M− is the remnant mass and H− is the Hub-
ble parameter at the true vacuum of Higgs field. Suffixes of + and − represent the exterior
and interior quantities. Let us assume that the radius of a nucleated vacuum bubble is much
larger than 2GM± and much smaller than 1/H−. In this case the metric near the wall can be
approximated by

ds2 � −f±(r±)dt2
± +

dr2
±

f±(r±)
+ r2

±dΩ2
2 −

2rs±a± sin2 θ

r±
dt±dφ, (2)

where f±(r) ≡ 1 − rs±/r + H2
±r2 and rs± ≡ 2GM±. Here we ignore the terms of the order of

O(a2
±/r2

±) in (1). One can eliminate the off-diagonal term in (2) by going to the co-rotating
(static) frame with the coordinate transformation of dφ→ dψ + (rs±a±/r3

±)dt [36], and the
static metric is given by

ds2 � g±μνdxμ±dxν± = −
(

f± +
r2

s±a2
± sin2 θ

r4
±

)
dt2

± +
dr2

±
f±

+ r2
±dΩ2

2. (3)

When we consider a vacuum bubble whose interior and exterior surfaces, denoted by ΣW+ and
ΣW−, respectively, are given by

ΣW± = {(t±, r±, θ±,φ±)|r± − R(τ (t±)) = 0} , (4)

the induced metric on ΣW± are

ds2 =

{
−

(
f± +

r2
s±a2

± sin2 θ

R4

)
ṫ2
± +

Ṙ2

f±

}
dλ2 + R2dθ2 + R2 sin2 θdψ2, (5)

= −dλ2 + R2dθ2 + R2 sin2 θdψ2, (6)

where we used −1 = g±00dt2
± + g±11dr2

±. The first Israel junction condition requires the con-
tinuity of the interior and exterior induced metrics, which is approximately satisfied as can be
seen from (6). This approximation is valid only when a2

±/r2
± � 1 and so in this letter we only

consider a case where a vacuum bubble is much larger than the Schwarzschild radius rs±. For
a more rigorous error estimation in the second Israel junction condition due to this approxima-
tion, see the appendix A. Let us next investigate the dynamics of the nucleated bubble by using
the second Israel junction condition between the exterior and interior geometry. In general the
radius of the wall is dynamical and its radius R is a function of the proper time on the wall
R = R(λ). Using the (t,ψ)-component of the Israel junction condition, one can confirm that
the total angular momentum of the system is conserved before and after the phase transition.
Since Ṙ = 0 at the moment when the wall is nucleated, the (t,ψ)-component of the extrinsic
curvature is given by [36]
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K(±)
tψ � 3rs±

2R2
a± sin2 θ, (7)

where we used rs± � R � 1/H− and ψ denotes the azimuthal angle in the co-rotating frame.
The angular component of energy flux of the wall Stψ is

Stψ = σR2 sin2 θφ̇, (8)

where a dot denotes the derivative with respect to the proper time of the wall λ, and σ is the
energy density of the wall. The Israel junction condition, K(+)

tψ − K(−)
tψ = 8πGStψ, leads to

φ̇ =
3(rs+a+ − rs−a−)

16πGσR4
. (9)

The angular momentum of the spinning wall is given by

L =

∫ π

0
dθ2π sin3 θσR4φ̇ = M+a+ − M−a−, (10)

which is nothing but the conservation of the angular momentum.
Using the (θ, θ)-component of the Israel junction condition, one can investigate the radial

motion of the wall. The (θ, θ)-component of the extrinsic curvature is given by

K(±)
θθ = Rṫ± f±

√
1 + ε4

±
ã2
±

4f±
sin2 θ, (11)

where ε± ≡ rs±/R, and ã± ≡ a±/GM±. The rotation effect, whose term is of the order of
ε4
±, can be ignored when rs± � R. Therefore, as long as we consider vacuum decays lead-

ing to the nucleation of large vacuum bubbles such that ε4
± � 1, we can ignore the rotation

effect in (11) even for ã+ � 1. Then, the (θ, θ)-component of the Israel junction condition
reduces to

ṫ+f+(R) − ṫ−f−(R)
R

= −4πGσ, (12)

and eliminating ṫ± from (12) one obtains

Ṙ2 + V(R) = 0, (13)

V(R) ≡ 1 − 2GM+

R
−

(
2GΔM/R3 + H2

− − Σ2

2Σ

)2

R2, (14)

where ΔM ≡ M+ − M− and Σ ≡ 4πGσ. This describes the spherical symmetric dynamics of
the bubble wall. The radius of the nucleated bubble, R0, satisfies V(R0) = 0 and we have two
solutions for R0 (see figure 2). The smaller bubble (R = Rmin

0 ) corresponds to the decaying
mode and the larger one (R = Rmax

0 ) is growing mode which is our interest here. Note that a
condition

r2
s± � (Rmin

0 )2 (15)

should be satisfied so that r2
s± � R2 holds in the whole dynamics of the Euclidean bubble

wall. Motivated by the Higgs vacuum decay, we take H = 10−8MPl and H/Σ = 5000 [24]
throughout the letter. Let us confirm if the condition (15) is satisfied in this set up. The mass of
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Figure 2. The potentials governing the position of the bubble wall withα = 10−8, 10−6,
and 10−4. The mass of the seed naked singularity is fixed as M+ = 103MPl.

the singularity could change due to the gravitational transition [23], and so we will calculate the
transition rate with various values of α ≡ −ΔM/M+. One finds that a large value of α leads to
a large-size vacuum bubble compared to the Schwarzschild radius (figure 2). Restricting to the
naked singularity of a+ � GM+, the parameter region of α � 10−6 gives ε+ � 10−4. In the
following, we therefore calculate the decay rate only for the case of a+ � GM and α ≥ 10−6

due to the limitation of (15).

3. Higgs metastability around a spinning singularity

Performing the Wick rotation, λE ≡ −iλ and τ± ≡ −it±, in the static metric (3), one can
calculate the on-shell Euclidean action, IE, that is the exponent of the decay rate [23]

IE �
∮

dλE

4G

[
(2Rf+ − R2f ′+)τ̇+ − (2Rf− − R2f ′−)τ̇−

]
− ΔA

4G
, (16)

where the integral part corresponds to the contribution from the Euclidean dynamics of the wall,
and ΔA is the change of the horizon area before and after the phase transition. We are forced
to assume that the naked singularity has no entropy to contribute to the Euclidean action since
the naked singularity has no horizon by definition. Although the detail of the naked singularity
is expected to be described by unknown physics such as quantum gravity, we believe that it is a
reasonable assumption if the Planckian area is the smallest area that can accommodate at most
one bit of information, and the naked singularity has its size comparable to or smaller than the
Planckian size.

However, the Planckian-size spinning singularity would have its spinning energy which
could contribute to the Euclidean action since the on-shell Euclidean action can be regarded
as free energy E multiplied by a Euclidean time period τ p. Now we can roughly estimate
the contribution of the singularity boundary to the action, given the angular momentum
M+a+ ∼ GM2

+, angular speed ∼ 
Pl/a2
+ (see [36]), and the Euclidean time period ∼ 
Pl of

the naked singularity2. In this case, the contribution to the action is ∼ τ pE:

2 Here we assume that the naked singularity has its Planckian size.
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Figure 3. The Euclidean action as a function of the rate of the angular momentum
transport from the seed naked singularity to the vacuum bubble wall. The red point shows
the minimum value of the action. We fixed M+ = MPl, ã+ = 1.001, and α = 0.01%.

τpE ∼ 
Pl ×
1
2

M+a+

Pl

a2
+

= O(1). (17)

Therefore, as long as the size of the naked singularity is comparable with the Planckian length,
the estimated contribution to the action is of the order of unity and we can safely ignore the
contribution, provided that the semi-classical approximation is valid, i.e. IE 
 1.

Moreover, the ignorance of the kinetic energy of the singularity gives an underestimate
(conservative estimation) of the transition rate. The Euclidean dynamics can be obtained by

changing the sign of Ṙ
2

in (13), that is, the Euclidean bubble is the oscillatory dynamics under
the effective potential of U(R) ≡ −V(R). The second term tells us that the increase of the
Bekenstein–Hawking entropy enhances the transition rate Γ since it has the form of

Γ ∼ 1
rs+

√
IE

2π
e−IE ∝ eΔA/4G, (18)

where we estimate the prefactor by taking a factor of
√

IE/2π for the zero mode associated with
the time translation of O(3) instanton, and we use the crossing timescale of over-spinning BH,
rs+, as a rough estimate of the determinant of fluctuations [23]. A vacuum decay, by which
the angular momentum of the naked singularity is transferred to the bubble wall, would be
catalyzed since the loss of angular momentum of singularity forms the event horizon and the
Bekenstein–Hawking entropy increases. To show this, we calculate the Euclidean action (16)
by changing the rate of the angular momentum transport (figure 3). This shows that the phase
transition by which all angular momentum of the singularity is transferred to the bubble wall
is the most likely to occur, and so in the following we restrict ourselves to this case. Such a
phase transition hides the naked singularity behind the newly formed event horizon, and so the
Higgs vacuum decay around the spinning naked singularity may be regarded as a censorship
mechanism.

We calculate the transition rate in the parameter range of 0.001 ≤ a+ ≤ 3,α ≥ 10−6, MPl ≤
M+ ≤ 103MPl and a− = 0 (figure 4). We then compare it to the relevant timescale tc, which is
the cosmic age/BH evaporation time3 for a+ > 1/a+ < 1, respectively. It is found that a naked

3 Here we take the evaporation timescale of tc = 104 × G2M3
+. The spin-dependence of the evaporation time [37] can

be negligible since the Euclidean action is more dominant in the decay rate.
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Figure 4. Contour plots of log10[tc × Γ] with (a) α = 10−4%, (b) α = 0. 1%, and (c)
α = 0. 3%. If tcΓ > 1 (red lines show tcΓ = 1), the vacuum decay may occur within the
cosmological timescale.

singularity catalyzes the phase transition within the cosmic age for α � 10−3 [see figures 4(a)
and (b) for the case ofα = 10−6 andα = 10−3]. Whenα � 10−3, a Planckian naked singularity
can be long-lived than the cosmic age [see figure 4(c) for the case of α = 0.003]. Therefore, it
is found that the spinning naked singularity may cause vacuum decay within the cosmological
timescale with the change of singularity mass by α < 0. 1% while the singularity would be
covered by the event horizon due to the angular momentum transport.

4. Conclusions

Let us summarize the main results of this letter. We first investigated a vacuum decay around
a spinning naked singularity by using the Israel junction condition. Our calculations are valid
when the nucleated bubble wall is thin compared to the radius of the bubble (thin wall approx-
imation), and rs± � R � 1/H± holds. Under these conditions, we found that the vacuum
decay, by which all angular momentum of the seed naked singularity is transferred to the
nucleated bubble wall, is most likely to occur. Such a vacuum decay involves the forma-
tion of event horizon around the singularity and the Bekenstein–Hawking entropy increases,
which enhances the decay rate significantly. Fixing the parameters of our model motivated
by the Higgs metastability [24], we also found that the small-mass naked singularities of
M+ < 103MPl may catalyze vacuum decays within the cosmological time scale and the singu-
larity mass may change by 0.0001% ≤ α < 0.1%, where the lower bound for α comes from
the limitation of (15). Although the small-mass naked singularities can be long-lived than the
cosmic age in the astrophysical point of view [5, 6], our scenario implies that the possible
Higgs metastability itself prevents them to exist in the Universe (in the present Higgs vacuum
state) in a quantum mechanical manner.
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Appendix A. Error in the second Israel junction condition

In this appendix, we estimate the error in the second Israel junction condition caused by a small
discontinuity of the induced metric δhμν . The second Israel junction condition is

K(+)
μν − K(−)

μν = −8πG lim
Δ→0

∫ Δ

−Δ

(Tμν −
1
2

hμνT)dx, (A1)

where hμν is the induced metric, Tμν is the energy momentum tensor in four-dimension and T
is the trace of Tμν . Let us suppose that there is a negligibly small discontinuity in hμν . In this
case, hμν can be expressed as

hμν = h(C)
μν + δHμν , (A2)

where h(C)
μν and δHμν are the continuous and dis-continuous components and

δHμν ∼ δhμνΘ(x), (A3)

where Θ(x) is the step function. Given T = Sδ(x), the second term in the right-hand side of
(A1), can be written as

4πG lim
Δ→0

∫ Δ

−Δ

hμνTdx

= 4πGh(C)
μν S + Sδhμν4πG lim

Δ→0

∫ Δ

−Δ

Θ(x)δ(x)dx

= 4πGh(C)
μν S + 2πGSδhμν.

(A4)

Therefore, a small discontinuity in the induce metric does not lead to singularity in the second
Israel junction condition and it is suppressed when δhμν/h(C)

μν � 1.
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