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We provide corrections to a typo and an error in the original paper.

1.  Correction to the typo

The correct version of equations (3.1) and (3.12) in the main text is,

γij := e−4φγij, γij := e4φγij,� (1.1a)

ϕ̂ij := e−4ψϕij, ϕ̂ij := e4ψϕij.� (1.1b)

2.  Correction to the error in appendix A.1

This section replaces the first part of appendix A.1, up to (A.25).
Consider the spatial parts γ = eTδe and ϕ = mo

Tδmo of two Lorentzian metrics g, f . In [1], 

it is established that the existence of the real square root 
(
g−1f

)1/2
 implies,

β := q + αn = q + αe−1pλ−1,� (2.1a)

β̃ := q − α̃ñ = q − α̃m−1pλ−1,� (2.1b)

χ = eTδΛsRmo = χT.� (2.1c)

To be more precise, the freely specifiable spatial vielbein mo is used to compute the viel-
bein Rmo such that the spatial part χ of the geometric mean metric h = g#f  is given by 
χ = eTδΛs(Rmo). This is obtained by imposing (2.1c) and solving it for the Euclidean 
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orthogonal transformation R in terms of Λs and the vielbeins e, mo. Such a solution always 
exists, as it is part of the polar decomposition of the invertible matrix Ro [1, 2] (see (3.7) in 
the main text). For the sake of simplicity, we define the new vielbein of ϕ to be m := Rmo; we 
have the freedom to do that since mo

TRTδRmo = mo
Tδmo, implying that ϕ is blind to this 

choice. The interaction terms are not affected as well, since they always contain both Λs and 
R, irrespective of this choice. The matrix Λs explicitly appears in them. On the contrary, R 
does not appear explicitly, but it is taken into account implicitly inside m .

We define the bimetric interactions as [3],

n := e−1v, ñ := m−1v,� (2.2a)

Q := e−1Λs
2e, Q̃ := m−1Λs

2m,� (2.2b)

D := m−1Λs
−1e, D̃ := e−1Λs

−1m,� (2.2c)

B := D−1 = e−1Λsm, B̃ := D̃−1 = m−1Λse,� (2.2d)

V := −md
d∑

n=0

βnen(D̃), Ṽ := −λ−1 md
d∑

n=0

βnen−1(B),� (2.2e)

U := −λ−1 md
d∑

n=0

βnYn−1(B), Ũ := −D̃md
d∑

n=0

βnYn−1(D̃),� (2.2f )

(QŨ) := QŨ = −Bmd
d∑

n=0

βnYn−1(D̃), (Q̃U) := Q̃U = −λ−1Q̃md
d∑

n=0

βnYn−1(B),� (2.2g)

where en(X) are the elementary symmetric polynomials of the linear operator X,

en(X) = X[a1
a1 Xa2

a2 . . .Xan]
an ,� (2.3)

and Yn(X) is defined as,

Yn(X) :=
n∑

k=0

(−1)n+kek(X)Xn−k.� (2.4)

See [3] for more details about the properties of en(X) and Yn(X). Note that d  is the dimension 
of the spacetime, that is, d = N + 1. Hence, some terms in the summations will be zero. The 
β(n) parameters are d  +  1 real dimensionless constants appearing in the bimetric interaction 
potential, together with the energy scale m [4]. We define the bimetric sources (respectively, 
the bimetric energy densitites, the bimetric currents and the bimetric spatial stress–energy 
tensors) as [3],

ρb = −en(B), jbi = −γik(QŨ)
k

jn j, Jb
ij = γik

[
Vδk

j − (QŨ)
k

j + W−1Uk
j

]
,

� (2.5a)

ρ̃b = − λen−1(B)

det (me−1)
, j̃bi = − jbi

det (me−1)
, J̃b

ij =
ϕik

[
Ṽδk

j − (Q̃U)
k

j + W Ũk
j

]

det (me−1)
,

� (2.5b)
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where the summation −md∑d
n=0β(n) is understood in front of all the bimetric sources. Note 

the relation between the two bimetric currents jbi, j̃bi, which implies the relation (A.35) 
between the momentum constraints in the main text.

Here we compute the expressions for the bimetric interaction and sources in the (c)BSSN 
formalism. We require that the symmetrization condition (2.1) holds for the BSSN variables 
as well. Since the shifts are the same in the BSSN formalism, we require conditions (2.1a) 
and (2.1b) to stay the same. The condition (2.1c) should instead lead to its analog in the BSSN 
formalism,

◦
χ = eTδ

∗
Λs

∗
Rm̂o =

◦
χ

T,� (2.6)

where 
∗
Λs,

∗
R are the BSSN counterparts of the spatial part of the Lorentz boost (3.8) and the 

orthogonal transformation in (3.7) in the main text, whose expression is unknown yet.
We start by computing the conformal decomposition of the objects in the Lorentz frame. 

The requirement that (2.1a) stays the same implies,

β = q + αe−1pλ−1 = q + αe−1ξ
∗
p

∗
λ
−1

⇐⇒ pλ−1 = ξ
∗
p

∗
λ
−1

,� (2.7)

where the scalar ξ accounts for the conformal decomposition of pλ−1. It follows that,

p

(1 + pTδp)1/2 =
ξ

∗
p

(1 +
∗
p

T
δ

∗
p)1/2

⇐⇒ p = ξ

(
1 + pTδp

1 +
∗
p

T
δ

∗
p

)1/2
∗
p.� (2.8)

We apply pTδ to (2.8) and obtain,

pTδp

(1 + pTδp)1/2 =
ξpTδ

∗
p

(1 +
∗
p

T
δ

∗
p)1/2

= ξ2
(

1 + pTδp

1 +
∗
p

T
δ

∗
p

)1/2 ∗
p

T
δ

∗
p

(1 +
∗
p

T
δ

∗
p)1/2

,

� (2.9)
which is equivalent to

pTδp

1 + pTδp
=

ξ2 ∗
p

T
δ

∗
p

1 +
∗
p

T
δ

∗
p

⇐⇒ ∗
p

T
δ

∗
p =

pTδp

ξ2(1 + pTδp)− pTδp
.� (2.10)

Hence, in general, we can rescale p as in (2.8) with a generic ξ when we recast the equa-
tions into the (c) BSSN formulation, as long as we satisfy (2.10). However, there is no need 
to rescale it since this is an unnecessary complication. Indeed, we can always satisfy (2.8) and 
(2.10) by choosing ξ = 1, which implies p =

∗
p. It immediately follows,

p =
∗
p =⇒ λ = (1 + pTδp)

1/2
=

(
1 +

∗
p

T
δ

∗
p
)1/2

=
∗
λ� (2.11a)

=⇒ v = pλ−1 =
∗
p

∗
λ
−1

=
∗
v� (2.11b)

=⇒ Λs = (1 + ppTδ)
1/2

=
(
1 +

∗
p

∗
p

T
δ
)1/2

=
∗
Λs,� (2.11c)

which implies (see (A.23) in the main text),

R :=
(
δ−1Ro

TδRo

)1/2
Ro

−1 = e2(φ−ψ)
(
δ−1 ∗

Ro

T

δ
∗
Ro

)1/2
e−2(φ−ψ)

∗
Ro

−1
=

∗
R.� (2.12)

Using (3.11) in the main text and (2.11c), (2.12) and m̂o = e−2ψmo (which follows from (3.11) 
in the main text), the spatial part of the symmetrization condition (2.1c) can be written as,

Class. Quantum Grav. 37 (2020) 079501
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χ = eTδΛsRmo = e2(φ+ψ)eTδΛsRm̂o =: e2(φ+ψ) ◦
χ

= χT = (eTδΛsRmo)
T
= e2(φ+ψ) (eTδΛsRm̂o)

T
=: e2(φ+ψ) ◦

χ
T,

� (2.13)

that is, if χ is symmetric, its BSSN counterpart 
◦
χ is also symmetric, as desired.
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Abstract
Numerical integration of the field equations in bimetric relativity is necessary 
to obtain solutions describing realistic systems. Thus, it is crucial to recast 
the equations  as a well-posed problem. In general relativity, under certain 
assumptions, the covariant BSSN formulation is a strongly hyperbolic 
formulation of the Einstein equations, hence its Cauchy problem is well-posed. 
In this paper, we establish the covariant BSSN formulation of the bimetric 
field equations. It shares many features with the corresponding formulation 
in general relativity, but there are a few fundamental differences between 
them. Some of these differences depend on the gauge choice and alter the 
hyperbolic structure of the system of partial differential equations compared 
to general relativity. Accordingly, the strong hyperbolicity of the system 
cannot be claimed yet, under the same assumptions as in general relativity. 
In the paper, we stress the differences compared with general relativity and 
state the main issues that should be tackled next, to draw a roadmap towards 
numerical bimetric relativity.

Keywords: ghost-free bimetric theory, Hassan–Rosen bimetric theory, 
bimetric relativity, BSSN formulation, numerical relativity
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1.  Introduction

The Hassan–Rosen bimetric theory, or bimetric relativity (BR), is an extension of general 
relativity (GR) describing the nonlinear interaction of two metrics gµν and fµν [1, 2]. Its 
unambiguous definition and spacetime interpretation are established in [3], and the complete 
Hamiltonian analysis of it is performed in [4]. The study of this theory is well-motivated. 
First, its cosmology is compatible with local gravity tests, and in particular with the recent 
observations of gravitational waves [5], since it describes the dynamics of both a massless and 
a massive spin-2 field, allowing for gravitational waves propagating with the speed of light. In 
addition, BR provides us with self-accelerating cosmological solutions [6–9] and a framework 
where the gravitational origin of dark matter can be studied [10–13]. This motivates further 
exploration of the theory and the work to obtain solutions to its field equations describing 
realistic physical systems. These are needed to compare the predictions of the theory against 
the observational data, possibly confirming or falsifying the theory.

At first, introducing a second metric in the same spacetime may sound exotic, but turns out 
to be necessary to make a spin-2 field massive2. In GR, it is possible to couple a spin-2 field 
(the metric) to spin-0 and spin-1 fields. Hence, it is natural to try and see if and how a second 
spin-2 field can be coupled to the metric. Then, the question about the physical meaning of 
the second metric arises. In BR, independent matter sources are minimally coupled to only 
one of the two metrics [14, 15]. This implies that a test particle coupled to the metric gµν fol-
lows the geodesics determined by this metric, exactly as in GR. The interaction with fµν is 
only experienced indirectly. The key difference is that the metric gµν is not determined by the 
Einstein field equations (EFE), but rather by the bimetric field equations (BFE) which account 

2 There is no way to construct a dynamical mass term with only one metric, since gµνgµν = 4, the spacetime 
dimension.
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for the interaction between the metrics. For more details about BR, we refer the reader to the 
review in [16].

The field equations governing the dynamics of the two metrics have been solved analyti-
cally in some important cases (see [16] and references therein). In the majority of those cases, 
they are reduced to a set of ordinary differential equations. This is done, e.g. by imposing 
spherical symmetry and staticity—the radial coordinate is the sole independent variable—or 
spatial homogeneity and spherical symmetry—the time coordinate is the sole independent 
variable. Other exact solutions are equivalent to those of GR, which one can always obtain 
in BR in vacuum under the conditions established in [17, 18], and in the presence of external 
matter sources under other conditions [17].

We are interested in solving the bimetric field equations to obtain more realistic solutions, 
e.g. the spherical gravitational collapse of matter. In this case, very few results can be obtained 
analytically (see, e.g. [19]) and the numerical integration of the BFE becomes indispensable. 
In addition, the BFE are now a system of partial differential equations (PDEs)—both the time 
and radial coordinate are independent variables—and, as such, it is desirable to recast them 
as a well-posed problem before integrating them. Well-posedness can be naively thought of 
as the concept of ‘stability against small perturbations’ for PDEs [20]. The concept of well-
posedness for first-order systems of PDEs is introduced in section 1.1.

In GR, the EFE can be recasted in a variety of well-posed forms (see, e.g. [21, chap-
ter 5]), one of them being the Baumgarte, Shapiro, Shibata, Nakamura, Oohara and Kojima 
(BSSNOK or, more commonly, BSSN) formulation [22–26] (see also [27] for a pedagogi-
cal introduction), with its covariant generalization [28]. One begins by rewriting the EFE 
as a Cauchy problem. This can be accomplished doing a N + 1 decomposition, where the 
EFE split into a set of constraint equations not involving time derivatives, and a set of evolu-
tion equations involving first-order time derivatives. Then, in the free evolution scheme, one 
finds the appropriate initial data by solving the constraint equations, and evolves them by 
solving the evolution equations only. In [29] it is proven that the constraints stay satisfied in 
the free evolution scheme, and the same holds in BR [30]. If one adopts the free evolution 
scheme, as we do, only the well-posedness of the Cauchy problem arising from the evolution 
equations is relevant.

Following the path outlined by numerical relativity, we would like to recast the BFE as a 
well-posed problem. The first step, i.e. the N + 1 decomposition of the BFE, was established 
in [31]. In this paper, we present the covariant BSSN (cBSSN) formulation of the BFE. The 
choice of the BSSN formulation is motivated by the fact that it is one of the most widely 
used in numerical relativity, allowing for stable long-term numerical evolution—see, e.g. sec-
tion 11.4.5 in [32]. A future research goal is to obtain stable long-term bimetric simulations, 
hence, as the starting point, we followed closely what people are doing in numerical relativ-
ity. Examples of guiding lights are the Einstein Toolkit [33] and SENR/NRPy  +  [34], which 
are both using the BSSN formulation. We show that, even though the cBSSN formulation of 
the EFE, together with the standard gauge and some other technical assumptions, is strongly 
hyperbolic and therefore its Cauchy problem is well-posed and suitable for the numerical 
integration [28], we cannot yet say if the cBSSN formulation of the BFE is also strongly 
hyperbolic. The reason is that the lapse functions of the two metrics are dependent [4, 35, 36].  
Their ratio, after a first-order reduction of the equations, involves the dynamical fields algebra-
ically3. This ratio appears in the evolution equations in both the metric sectors and, depending 
on the gauge choice, its first and second spatial derivatives can appear in the equations of one 
or both sectors. These spatial derivatives affect the hyperbolic structure of the system of PDEs 

3 The shift vectors are dependent as well, and their relation contains the ratio between the lapses.

F Torsello et alClass. Quantum Grav. 37 (2020) 025013
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compared to GR, hence the result about the strong hyperbolicity of the cBSSN formulation 
of the EFE cannot be directly extended to the cBSSN formulation of the BFE. In the paper, 
we discuss in more detail these issues and stress the similarities and differences compared to 
GR. Observe that the bimetric features described in the paper, such as the discussion about the 
gauge fixing, the relations between lapses and shifts, and how these affect the well-posedness 
of the problem, do not depend on the chosen formulation and need to be accounted for in any 
formulation of the BFE.

We stress that recasting the BFE as a well-posed Cauchy problem, suitable for numerical 
integration, is a powerful strategy to obtain interesting physical solutions in BR. For example, 
since the Birkhoff theorem is not valid in BR [37], a non-static spherically symmetric system, 
generically, emits gravitational radiation which is longitudinally polarized, coming from the 
helicity-0 mode of the massive spin-2 field. This could happen during a spherically symmetric 
gravitational collapse, or for non-static spherically symmetric black holes. This can provide us 
with predictions from BR that can be tested against the observational data in the future, which 
is one of the motivations of our work, inspired by the success of numerical relativity.

1.1.  Structure of the paper

In section 1.3, we concisely introduce the concepts of well-posedness and strong hyperbolic-
ity for a system of (first-order) PDEs. In section 2, we very briefly introduce bimetric relativity 
and review its N + 1 formulation. In section 3, we introduce the BSSN formulation with its 
covariant extension and emphasize the differences between BR and GR. In section 4, we dis-
cuss gauge fixing in bimetric relativity and qualitatively describe how it affects the hyperbolic 
structure of the evolution equations. We summarize our results and state our view about what 
the next challenges in this field are in section 5. The appendix includes explicit equations and 
technical details.

1.2.  Notation

Consider the spatial metrics γ , ϕ and χ and their determinants. We shall denote the deter-
minant of a spatial metric with ∆, and define the following notation referring to the metric 
sectors,

∆, no accent : quantity refers to the g-sector,

∆̃, tilde : quantity refers to the f -sector,
#

∆, hash : quantity refers to the h-sector,
∆, boldface : quantity refers to the Lorentz frame.

∆, overbar : quantity refers to the g-sector in BSSN,

∆̂, wide hat : quantity refers to the f -sector in BSSN,
◦
∆, circle : quantity refers to the h-sector in BSSN,
∗
∆, boldface, asterisk : quantity refers to the Lorentz frame in BSSN.

We denote tensors both with and without their indices, e.g. the metric g or gµν. Greek indices 
run from 0 to d − 1, where d  is the dimension of spacetime; latin indices run from 1 to d − 1; 
boldface indices are spatial Lorentz indices and run from 1 to d − 1.

F Torsello et alClass. Quantum Grav. 37 (2020) 025013
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1.3.  Well-posedness and strong hyperbolicity

When dealing with PDEs, it is important to be able to write the mathematical boundary value 
problem arising from them in a well-posed way. A ‘mathematical boundary value problem’ is 
a differential problem with some specified boundary or initial data, such as the Dirichlet prob-
lem or the Cauchy problem. The definition of a well-posed problem given in [20, p 226] was 
introduced for the first time by Hadamard in [38] and reads: ‘A mathematical problem which 
is to correspond to physical reality should satisfy the following basic requirements: (1) the 
solution must exist. (2) The solution should be uniquely determined. (3) The solution should 
depend continuously on the data [...]’. As stated in [39, p 8], the first two requirements charac-
terize the mathematical determinacy of the problem, whereas the third requirement character-
izes its physical determinacy and the possibility to apply numerical methods to solve it. We 
stress that, from the numerical viewpoint, well-posedness is highly desirable, since it entails 
that small errors in the initial data implies controllable errors in the numerical solution4.

It is important to emphasize that, contrary to Hadamard’s opinion, ill-posed systems can 
in fact be physically relevant (see e.g. [39]). Examples of ill-posed problems can be found in 
[44]. However, in these cases the ill-posedness is acceptable, as it has to do with the physical 
description of the system. This is not the case in relativity (general or bimetric).

Following [27, section 11.1], we now give the definition of a strongly hyperbolic system 
containing first-order time and spatial derivatives. The generalization to systems involving 
second-order spatial derivatives—as the (c)BSSN system in GR and BR—can be found in 
[45]. Consider the system of PDEs given by,

∂tui + Aki
j∂ku j = Si,� (1.1)

where ui is the n-dimensional vector containing the unknown functions to solve for, Si is the 
source n-vector and each of the Ak are n × n matrices of constant coefficients. Consider an 
arbitrary unit covector nk, and define the ‘principal symbol’ or ‘characteristic matrix’ of the 
system (1.1) as,

Pi
j := nkAki

j.� (1.2)

The system (1.1) is called ‘strongly hyperbolic’ if, for all unit covectors nk, the principal sym-
bol Pi

j has real eigenvalues and a complete set of eigenvectors. Strongly hyperbolic first-order 
systems of PDEs lead to well-posed Cauchy problems [46, theorem 6.2.2].

2. The bimetric field equations and their standard N + 1 formulation

The BFE can be written [47]5,

Gg
µ
ν = κg (Vg

µ
ν + Tg

µ
ν) , Gf

µ
ν = κf (Vf

µ
ν + Tf

µ
ν) ,� (2.1)

where Gg and Gf  are the Einstein tensors for the two metrics g and f , Tg and Tf  are two inde-
pendent stress–energy tensors, Vg and Vf  are the bimetric stress–energy tensors that couple the 
metrics, and κg and κf  are the two Einstein gravitational constants. The bimetric stress–energy 
tensors may or may not satisfy the energy conditions (for the energy conditions, see [48]). In 

4 Note that the requirement of well-posedness also applies to the case of ordinary differential equations (ODEs). In 
that case, the well-posedness of the Cauchy problem  is established by the Picard–Lindelöf theorem [41–43] (also 
called the Picard–Lipshitz theorem, or the fundamental theorem of ODEs), see also [40, ch. 1].
5 We choose the same sign convention as in [31], for the sign in front of the bimetric interaction potential in the 
action.
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particular, note that in vacuum, if one of them satisfies the null energy condition, the other 
does not [49]. When one of them does, it can be interpreted as a stress–energy tensor arising 
from the other spin-2 field. One example of this can be found in [37].

A fundamental feature about the bimetric stress–energy tensors is that they are non-deriva-
tive, i.e. they are not defined in terms of the derivatives of the metrics, but are functions of the 

square root matrix S =
(
g−1f

)1/2
 only, where the principal branch of the matrix square root 

function is assumed [3]. This allows us to rewrite the BFE (2.1) as,

Gg
µ
ν = Teff

g
µ
ν Gf

µ
ν = Teff

f
µ
ν ,� (2.2)

with Teff
g

µ
ν := Vg

µ
ν + Tg

µ
ν and Teff

f
µ
ν := Vf

µ
ν + Tf

µ
ν.

The BFE are then formally equivalent to two sets of Einstein equations coupled via the 
effective stress–energy tensors only. Then, one can recast them in the standard N + 1 decom-
position by following the same steps as in GR. One defines a spacelike hypersurface embedded 
in the spacetime, where the initial data are specified, and projects the Einstein equations both 
on the hypersurface and on the direction orthogonal to it (see, e.g. [27, 32]). The sources are 
now the sum of the external matter sources and the bimetric stress–energy tensors, whose 
decomposition has to be computed. This was done independently in [1, 4] and [31] following 
different approaches. The result is a set of evolution equations, a set of constraints similar to 
those of GR, and the bimetric conservation law (BCL) Cb = 0 (the so-called secondary con-
straint), which is crucial in eliminating the Boulware–Deser ghost [50], as explained in [4]. 
Here, we follow the approach in [31], to which we refer the reader for the details. The N + 1 
BFE computed in [31] are written explicitly in appendix A.2.

The bimetric conservation law Cb = 0 must be preserved in time, therefore ∂tCb = 0. This 
is called the ‘preservation of the bimetric conservation law’ (PBCL), and provides a relation 
between the lapse functions of the two metrics, of the form [4, 35, 36]

α

α̃
= −

Wf

Wg
=: W = scalar field independent of the lapses and the shifts.� (2.3)

Unfortunately, the explicit expression for W  is very complicated, even in spherical symmetry. 
See [36] and the addendum to this paper in the supplementary material (available at stacks.iop.
org/CQG/37/025013/mmedia) for its expression in the standard 3 + 1 and cBSSN formalisms, 
respectively. Note that the existence of the relation between the lapses is consistent with the fact 
that bimetric relativity is invariant under the action of a diffeomorphism group acting in the same 
way on both sectors. In other words, we are free to choose one coordinate system for both metrics. 
In the N + 1 decomposition, this translates in the freedom to choose one lapse function and one 
shift vector only, as explained in more detail in section 4.

3. The covariant BSSN formulation of the bimetric field equations

This section is devoted to the discussion of the BSSN and cBSSN formulation of the standard 
3 + 1 BFE. We will mainly focus on the differences compared with GR. The explicit equa-
tions are presented in appendices A.1, A.3 and A.4.

3.1. The BSSN formulation

When rewriting the bimetric standard 3 + 1 equations  (equations (A.32a), (A.33a) and 
(A.36a)) in the BSSN formulation, the starting point is the definition of the conformal metrics  
[27, section 11.5]
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γij := e−4φγij, γij = e4φγij,� (3.1a)

ϕ̂ij := e−4ψϕij, ϕij = e4ψϕ̂ij,� (3.1b)

which are assumed to have determinants equal to 1. This renders the conformal metrics ten-
sor densities of weight  −2/3, and the conformal factors scalar densities of weight 1/6. The 
conformal structure implies

φ =
1

12
log(∆), ψ =

1
12

log(∆̃).� (3.2)

We also decompose the traceless part of the extrinsic curvatures as follows

Aij := e−4φAij = e−4φ
Å

Kij −
1
3
γijK
ã

,� (3.3a)

Âij := e−4ψÃij = e−4ψ
Å

K̃ij −
1
3
ϕijK̃
ã

.� (3.3b)

Likewise, the conformal traceless extrinsic curvatures are tensor densitites of weight  −2/3. The 
indices of the conformal tensors are raised and lowered by the conformal metrics of the cor-
responding metric sector. In the BSSN formulation, the ‘conformal connections’ are defined as,

Γ
i

:= γ jkΓ
i
jk, Γ̂i := ϕ̂ jkΓ̂i

jk,� (3.4)

where Γ
i
jk, Γ̂i

jk are the Christoffel symbols of the conformal metrics γij, ϕ̂ij. The conformal 

connections transform as in equation  (11.45) in [27]. The new dynamical variables in the 
BSSN formulation are the conformal metrics γij, ϕ̂ij, the conformal factors φ,ψ, the traces of 
the extrinsic curvatures K, K̃ , the conformal traceless parts of the extrinsic curvatures Aij, Âij 
and the conformal connections Γ

i
, Γ̂i. With the appropriate transformation rules for these geo-

metrical objects, the BSSN equations are covariant under spatial coordinate transformations 
not involving the time coordinate [28].

In order to evolve the system in time, one needs to choose a gauge. The BSSN equations are 
strongly hyperbolic if one chooses the standard gauge, introduced below, and enforce that Aij 
is traceless during the evolution [25, 26, 28]. The standard gauge consists in the 1 + log slicing 
for the lapse α [51], and the Γ-driver condition for the shift β [52],

∂tα = β j∂jα− 2αK,� (3.5a)

∂tβ
i = β j∂jβ

i +
3
4

Bi� (3.5b)

∂tBi = β j∂jBi + ∂tΓ
i − β j∂jΓ

i − ηBi,� (3.5c)

where Bi is an auxiliary variable and η is a freely specifiable real constant. As explained in 
[28], the Γ-driver condition (3.5b) and (3.5c) is not spatially covariant. Suppose we have some 
initial data on the spacelike hypersurface, written in Cartesian coordinates. We can rewrite 
them in spherical coordinates by using the transformation rules for the tensors densities and 
the conformal connections. We then evolve these initial data according to the BSSN equa-
tions with the standard gauge, up to some time tf . Since the Γ-driver condition is not covari-
ant, the dynamical variables at tf  are not related by the same transformation rules for tensor 
densities and conformal connections. Therefore, the dynamical variables at tf  in Cartesian 
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coordinates and spherical coordinates differ geometrically. This problem can be solved by 
rewriting the BSSN equations and the standard gauge according to a procedure presented in 
[28] (see also [53]) and summarized in section 3.3.

In BR, the rewriting of the evolution equations (BEE) and the constraint equations (BCE) 
in terms of the BSSN dynamical fields mimics the analog computation in GR, whereas the 
rewriting of the BCL has no analog in GR. Actually, the parts of the equations not involving 
the bimetric interactions are exactly the same as in GR. The bimetric BSSN constraint and 
evolution equations are listed in appendix A.3. The differences compared with GR are:

	 1.	�The presence of the bimetric conservation law Cb = 0.
	 2.	�The fact that the lapse function and the shift vector of one of the metrics g and f  are not 

freely specifiable.
	 3.	�The effective sources include both the contribution from the external matter sources and 

the bimetric sources.

The parts involving the bimetric interactions can be rewritten in the BSSN formulation by 
determining how the spatial vielbein e, m of the spatial metrics γ,ϕ transform under the con-
formal change (3.1). This is discussed in the next subsection.

3.2. The BSSN formulation of the bimetric interactions

The N + 1 decomposition of the BFE as formulated in [31] relies on the parametrization with 

respect to the geometric mean metric h = g#f := g
(
g−1f

)1/2
 of the metrics g and f 6. In this 

parametrization, the spatial metrics are written in terms of their vielbeins. In matrix notation,

γ = eTδe, ϕ = mTδm,� (3.6)

where the spatial vielbein e is freely specifiable and the spatial vielbein m  is defined as

m := Rmo, δ−1RTδ = R−1,

R =
Ä
δ−1Ro

TδRo

ä1/2
Ro

−1, Ro := δ−1mo
−1,TeTδΛs,

�
(3.7)

where the freely specifiable vielbein mo of ϕ is rotated into m  by the orthogonal transforma-
tion R, and δ  is the spatial part of the Minkowski metric, i.e. the Euclidean metric7. The 
transformation R is determined by the requirement that the geometric mean h exists [54]. The 
operator Λs is the spatial part of a Lorentz boost with boost vector v = λ−1p and Lorentz fac-
tor λ = (1 + pTδp)1/2. It can be written as Λs = (I+ ppTδ)1/2 = I+ ppTδ/(λ+ 1), and 
the 4-dimensional Lorentz boost itself can be written as

Λ =

Ç
λ pTδ

p Λs

å
.� (3.8)

See appendix A.1 for more details. In this framework, the real spatial vector p, called ‘separa-
tion parameter’, defines the shift vectors β and β̃, respectively of the metrics g and f , in terms 
of the shift vector q of the geometric mean metric h,

β := q + α n = q + α e−1pλ−1, β̃ := q − α̃ ñ = q − α̃m−1pλ−1.� (3.9)

This is the most general parametrization of the bimetric N + 1 decomposition [31].

6 In index notation we have hij = gik

[(
g−1f

)1/2
]

k
j.

7 For the sake of clarity, we write δ  explicitly in every equation where it appears, because it is needed to raise and 
lower the Lorentz indices.
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Since all the spatial bimetric interactions terms, defined in [31] and reported in appendix A.1,  
depend on the spatial vielbeins, on Λs and R, their rewriting in the BSSN formalism relies 
on the conformal decomposition of these variables. The conformal decomposition of the viel-
beins read,

γ = e−4φγ =⇒ eT δ e =
(
e−2φeT

)
δ
(
e−2φe

)
,� (3.10)

which tells us that

e = e−2φe, m̂ = e−2ψm,� (3.11a)

e−1 = e2φe−1, m̂−1 = e2ψm−1.� (3.11b)

From (3.11) and the conformal decomposition of Λs and R, reported in appendix A.1, we can 
derive the BSSN formulation of all the spatial bimetric interactions and sources. The explicit 
derivations are presented in appendix A.1.

3.3. The covariant extension of the BSSN formulation

As we outlined in section 3.1, the BSSN formulation with the standard gauge is not spa-
tially covariant. As described in [28], this is a problem when comparing the same physical 
system in different coordinates. Therein, the BSSN formulation was generalized making 
it spatially covariant, obtaining the cBSSN formulation. Since the computations in [28] 
do not alter the expressions of the matter sources in the evolution equations, the covari-
ant generalization applies to both metric sectors in BR8. As a consequence, the bimetric 
sources have the same expression as in the BSSN formulation, given by (A.26a), (A.28a) 
and (A.31a)9.

Having a covariant version of the BSSN formulation is important in BR, since it allows us 
to safely use spherical coordinates. Since the Birkhoff theorem is not valid in BR, see, e.g. 
[37], a spherically symmetric solution of the BFE does not need to be static. From one side, 
this may be interpreted as an undesired feature of the theory; on the other hand, it makes the 
study of spherically symmetric systems much more interesting in BR than in GR, as discussed 
in the Introduction. Specifically, spherically symmetric systems in BR emit longitudinally 
polarized gravitational radiation, which can be tested against observational data.

In addition, using spherical coordinates made it possible to compute both the ratio between 
the lapses W  appearing in (2.3) and the separation parameter p appearing in (3.9) in the dif-
ference between the shifts (see [31, 36] and appendix A.5 for more details). Note that p is also 
known in the most general β(1)-model [4, 55], where the explicit expression for ñ = m−1pλ−1 
in (3.9) is computed10.

In the BSSN formulation, the determinant of the conformal metric γ  is taken to be 1, mak-
ing it a scalar rather than a scalar density. This also alters the transformation properties of the 
metric and the extrinsic curvature, making them tensor densities. In the cBSSN formulation, 
nothing is assumed on the transformation properties of the determinant of the conformal met-
ric. The new conformal decomposition of the metrics and the extrinsic curvatures becomes,

8 The computations in [28] are made in vacuum, but it is straightforward to add an external source and generalize 
them.
9 As a general rule in this context, every computation that does not concern the matter sources in the evolution and 
constraint equations in GR can be directly translated in BR without modification.
10 Knowing ñ, p =

[
1 − (mñ)T(mñ)

]−1/2
mñ.
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γij := e−4φγij, γij = e4φγij,� (3.12a)

ϕ̂ij := e−4ψϕij, ϕij = e4ψϕ̂ij,� (3.12b)

which is the same as before, without the restriction on the determinants ∆ and ∆̂, and

Aij := e−4φAij = e−4φ
Å

Kij −
1
3
γijK +

1
3
γijA
ã

,� (3.13a)

Âij := e−4ψÃij = e−4ψ
Å

K̃ij −
1
3
ϕijK̃ +

1
3
ϕijÂ
ã

,� (3.13b)

K := K − A, K̂ := K̃ − Â.� (3.13c)

The tensors A  and Â are not traceless, as can be seen by comparing (3.13) with (3.3). The con-
formal connections in (3.4) are made covariant by introducing two background connections 

ΓB
i
jk, Γ̂B

i
jk  [56]. It is possible, but not necessary, to introduce two background metrics whose 

Levi–Civita connections serve as the background connections. We define the new dynamical 
variables,

Λ
i

:= γ jk�Γ
i
jk = γ jk

(
Γ

i
jk − ΓB

i
jk

)
, Λ̂i := ϕ jk�Γ̂

i
jk = ϕ jk

(
Γ̂i

jk − Γ̂B
i
jk

)
.

� (3.14)
Since the difference between two Christoffel symbols is a tensor, our set of dynamical vari-
ables includes tensors only, i.e. γij,ϕij,φ,ψ, Aij, Âij, K, K̂,Λ, Λ̂. The standard gauge (3.5) in the 

cBSSN formalism reads [28],

∂tα = β jDBjα− 2αK,� (3.15a)

∂tβ
i = β jDBjβ

i +
3
4

Bi,� (3.15b)

∂tBi = β jDBjB
i +
Ä
∂tΛ

i − βiDBjΛ
iä− ηBi,� (3.15c)

which is manifestly covariant. The explicit bimetric cBSSN constraint and evolution equa-
tions are written in appendix A.4.

We emphasize that the background connections are completely arbitrary, and in GR, there is 
no preferred connection to be chosen. In BR, a third metric h is defined11. Hence, we can choose 
the Levi–Civita connection of the conformal spatial metric 

◦
χ to define the covariant conformal 

connection in (3.14). The consequences of this choice are described in more detail in [58].
In the cBSSN formulation, the determinants ∆, ∆̂ of the conformal metrics and the traces 

A, Â are left undetermined, making the cBSSN evolution equations in (A.45a) and (A.47a) 
incomplete [28]. We must choose how these quantities evolve, in order to be able to evolve the 
full system. Following [28], we choose ∂tA = ∂tÂ = 0. Regarding the determinants, there are 
two natural choices, referred to as ‘Lagrangian’ and ‘Eulerian’ [28, 59, 60], given by

∂t∆ = 0, ∂⊥∆ = ∂t∆− Lβ∆ = ∂t∆− 2∆Diβ
i = 0,� (3.16)

11 Actually, in the space of pseudo-Riemannian metrics built on our manifold, we have a path of metrics connecting g 

and f , corresponding to a geodesic of the trace metric and parameterized by hα = g
(
g−1f

)α , α ∈ R (see [31, 57]).
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with analog expressions for the f -sector. In BR, we need to specify the evolution of the deter-
minants and the traces in both sectors. More details on this can be found in [58]. The expres-

sion for ∂tΛ
i
 in (3.15c) is explicitly substituted with the Lagrangian formulation of (A.45e).

4.  Well-posedness and gauge choices

As established in [31], the three lapses and shifts of g, f  and h are related by,

α2 = H2λW, α̃2 =
H2λ

W
, α = Wα̃,� (4.1a)

β = q +
α

λ
e−1p, β̃ = q − α̃

λ
m−1p, β̃ = β − α̃

λ

(
W e−1 + m−1)p,

� (4.1b)

where λ =
√

1 + pTδp and H  is the lapse of h. We are free to choose one lapse function and 
one shift vector, exactly as in GR; the other four quantities are determined by (4.1).

When imposing a gauge in BR, it can be written in terms of any of the three lapse functions 
or the shift vectors. Suppose, for example, that we choose the standard gauge with respect to 
g in (3.15). This gauge can be rewritten in terms of the lapse functions α̃, H  and the shift vec-
tors β̃, q by using (4.1). Hence, we can impose the standard gauge with respect to g by gauge 
fixing, say, H  and β̃. We say that we ‘choose a gauge condition with respect to a metric’, to 
emphasize that the geometry of the slicing is determined by that metric. In addition, we say 
that we ‘gauge fix’ one of the lapses and shifts. The same gauge choice (or gauge condition) 
can be expressed via different, but equivalent, gauge fixings. It follows that, in BR one can 
have ‘mixed’ gauges, i.e. one can choose the 1 + log slicing with respect to χ, and the Γ-driver 
condition with respect to ϕ. In this case, h would determine the time slicing, whereas f  would 
determine the spatial gauge. If these gauges are singularity avoiding or horizon penetrating for 
any of the metrics remains an open question. See [58] for a study of the ‘mean gauges’, i.e. the 
gauge choices with respect to the mean metric h.

In GR, the cBSSN formulation is strongly hyperbolic if one chooses the standard gauge 
and fulfills some other technical conditions [28]. In BR, the well-posedness of the evolution 
equations involves both of the metric sectors. Suppose that we fix the lapse and shift of one 
metric to be determined by the standard gauge. Now, the bimetric source Jbi

j appearing in the 
evolution equation for the conformal extrinsic curvature (A.5a) contains the ratio of the lapses 
W . The general explicit expression of W  is not known, but it can be computed explicitly in 
spherical symmetry ([36] and the supplementary material to this paper). In that case, W  is a 
lengthy expression—roughly, it fills two pages—which depends on the radial derivatives of 
the dynamical fields. If the radial derivatives can not be replaced by algebraic expressions, 
W  will affect the characteristic matrix in (1.2) and alter the hyperbolic structure of the equa-
tions in the g-sector compared with GR. Following the procedure described in [61], which 
promotes the logarithmic radial derivatives of the dynamical fields to be new dynamical vari-
ables, thus achieving a first-order reduction of the system, one ends up with an expression for 
W  which only depends on three radial derivatives, namely,

∂rp
1, ∂r

Å
A2 +

1
3

K
ã

, ∂r

Å
Â2 +

1
3

K̂
ã

.� (4.2)

Here, p1 is the only nonzero component of p and A2, Â2 are the A
θ
θ, Âθ

θ components of 
the conformal extrinsic curvatures (see appendix A.5 for more details). By using the two 
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momentum constraints (A.54b), (A.54e) and the BCL (A.57) rewritten according to the 
procedure in [61], these three derivatives can be substituted with expressions involving the 
dynamical fields only algebraically. In more detail, the BCL can be solved for ∂rp

1, and the 
momentum constraints can be solved for ∂r(A2 + K/3) and ∂r(Â2 + K̂/3)12. This means that 
the ratio of the lapses W  is a purely algebraic expression in the dynamical fields, and, as 
such, does not enter the characteristic matrix in (1.2) and does not alter the hyperbolicity of 
the equations in the g-sector compared with GR. Therefore, if we choose the standard gauge 
(3.15) for α and β, the equations in the g-sector are strongly hyperbolic.

Note that the algebraicity of W  in the dynamical fields is compatible with the fact that, in 
the case of static spherically symmetric black hole solutions in BR (see [62–64] and reference 
therein) the function describing the ratio of the lapses, τ  in [64], is determined by an algebraic 
relation. This relation corresponds precisely to the PBCL ∂tCb = 0. Also, this confirms that 
the bimetric stress–energy tensors (of which the spatial bimetric interactions are the projec-
tions [31]) are non-derivative and cannot spoil the hyperbolic structure of the equations com-
pared with GR (in spherical symmetry).

On the other hand, we need to consider the f -sector as well. The equations in the f -sector 
formally appear the same as in the g-sector, but now the lapse and shift of f  are determined 
by (4.1). As a consequence, the ratio of the lapses appears wherever the lapse and shift of f  
appear. Since there are terms involving first and second spatial derivatives of the lapse and 
shift, they contain first and second spatial derivatives of W . Hence, they contain the spatial 
derivatives of all the dynamical fields, and we cannot eliminate all of them by using the 
constraints. Therefore, the hyperbolic structure of the PDEs in the f -sector is drastically dif-
ferent compared with GR. This means that one cannot carry over the GR results to BR, and 
additional steps are needed towards a definite answer regarding the strong hyperbolicity of the 
equations.

Instead of using (4.1) to replace the lapse of f , we could equivalently use it to determine 
its value on the initial hypersurface, and impose the preservation in time of the PBCL (2.3) 
by setting its time derivative to 0. This gives an evolution equation for the lapse of f , which 
becomes a dynamical variable.13 Hence, with this choice, the principal symbol of the system 
of PDEs is largely different than in GR. For example, the evolution equation for the lapse of 
f  involves the time derivative of the ratio of the lapses W which nontrivially alters the hyper-
bolic structure compared with GR.

The analysis above holds in the case of spherical symmetry, which is presented in appendix 
A.5. This study suggests that the ratio of the lapses, W , always contains some spatial deriva-
tives of the dynamical fields which can be eliminated by using the constraints, but the hyper-
bolicity is altered compared to GR by the spatial derivatives of the lapses and shifts involving 
W . Therefore, the computation of W  in the general case is a prerequisite for the study of the 
well-posedness of any formulation of the BFE.

A possible gauge choice, which preserves the symmetry of the equations between g and f  
and modifies the hyperbolic structures of both sectors in a more symmetric—and hopefully 
better-behaved—way, is to fix the lapse and the shift of h. In this case, we see from (4.1) that 
W  appears in the spatial derivatives of the lapses and shifts of both g and f , thus modifying 
the hyperbolic structure in both sectors. This is investigated in more detail in [58], where both 
the standard gauge and the maximal slicing for H  and q are computed.

12 Note that, in this way, we can freely specify p on the initial hypersurface, and the value of these three derivatives 
will depend on this choice.
13 More in general, this is an evolution equation for the lapse that we do not gauge fix.
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5.  Summary and outlook

In this paper, we presented the covariant BSSN formalism of the bimetric field equations. We 
emphasized why this formulation is important in bimetric relativity and we stressed the dif-
ferences with the analogous formulation of the Einstein field equations, summarized below.

	 1.	�In addition to the Hamiltonian and momentum constraints for both metrics, there is an 
additional bimetric conservation law (the so-called secondary constraint) Cb = 0 that, in 
the free evolution scheme, has to be solved for the initial data on the spacelike hypersur-
face.

	 2.	�The sources in the equations include both the external matter sources and the bimetric 
sources in (A.5). After a first-order reduction of the PDEs, the bimetric sources do not 
contain the derivatives of the dynamical fields. Hence, they do not alter the hyperbolic 
structure of the equations compared to GR.

	 3.	�Bimetric relativity is diffeomorphism invariant. This provides us with the possibility to 
choose one lapse function and one shift vector of any of the metrics, γ , ϕ or their geo-
metric mean χ. The remaining lapses and shifts are determined by (4.1).

	 4.	�The relation between the lapses is established in [4, 35] by imposing the preservation of 
the bimetric conservation law in time, ∂tCb = 0, and it is computed explicitly in [36] for 
spherically symmetric spacetimes in the standard 3 + 1 formulation. The expression in 
the covariant BSSN formalism is given in the supplementary material of this paper. The 
ratio between the lapses, W , is a lengthy algebraic expression in terms of the dynamical 
fields and their spatial derivatives. Since the evolution equations  involve the spatial 
derivatives of W , the hyperbolic structure of the system of PDE is different compared 
with the corresponding equations in GR. The hyperbolic structure is changed in either one 
of the two metric sectors, or in both, depending on the gauge choice.

Other than these four differences, the system is analogous to the covariant BSSN formulation 
of the Einstein field equations presented in [28]. In particular, from the viewpoint of numer
ical relativity, the bimetric fields equations can be tackled numerically in the same way as the 
Einstein field equations. However, since we showed that the results in GR cannot be carried 
over to BR in a straightforward way, and the well-posedness of the problem is not proved yet, 
we do not know how successful this can be. Nonetheless, the equations do offer some stimu-
lating challenges:

	 1.	�The computation of W  and p is necessary to be able to solve the bimetric equations in 
any formulation. At present, W  is only computed under the assumption of spherical sym-
metry, whereas p is computed in spherical symmetry and in the most general β(1)-model; 
we refer the reader to [4, 36, 55] for more details.

	 2.	�Investigating if the bimetric covariant BSSN evolution equations, together with a suitable 
gauge, are strongly hyperbolic is of great importance and depends on the computation of 
W . Since the latter is known in spherical symmetry, one can study the hyperbolicity of the 
evolution equations in (A.58).

	 3.	�The choice of the gauge is essential in bimetric relativity (as it is in GR as well). In [58], 
we study some possible gauge choices which alter the hyperbolic structure of the evolu-
tion equations  in both sectors. In particular, we investigate the gauge conditions with 
respect to the geometric mean metric h.

	 4.	�The challenge is to integrate the bimetric BSSN equations numerically in spherical sym-
metry, e.g. for a gravitational collapse of matter or a non-static black hole solution. The 
numerical computation of both W  and p significantly reduces the accuracy of the integra-
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tion. We have written a Mathematica/C  +  + code to perform the simulations, see [65] for 
results obtained using the standard 3 + 1 equations. The results concerning the cBSSN 
formulation will be the subject of another work. We remind the reader that, since the 
Birkhoff theorem is not valid in bimetric relativity (see, e.g. [37]), the spherically sym-
metric case is very interesting to study. One can look for both vacuum and non-vacuum 
spherical solutions with nontrivial dynamics, and perhaps gravitational wave emission. 
This can potentially lead to results that could directly be compared against observational 
data.
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Appendix.  Explicit equations and computations

A.1. The BSSN decomposition of the bimetric interactions and sources

Consider the spatial parts γ = eTδe and ϕ = mo
Tδmo of two Lorentzian metrics g, f . In [54], 

it is established that the existence of the real square root 
(
g−1f

)1/2
 implies

β := q + αn = q + αe−1pλ−1,� (A.1a)

β̃ := q − α̃ñ = q − α̃m−1pλ−1,� (A.1b)

χ = eTδΛsRmo = χT.� (A.1c)

To be more precise, the freely specifiable spatial vielbein mo is used to compute the viel-
bein ΛsRmo such that the spatial part χ of the geometric mean metric h = g#f  is given 
by χ = eTδ(ΛsRmo). This is obtained by imposing (A.1c) and solving it for the Euclidean 
orthogonal transformation R in terms of Λs and the triangular vielbeins e, mo. Such a solu-
tion always exists, as it is part of the polar decomposition of the invertible matrix Ro [54, 
66] (see (3.7)). For the sake of simplicity, we define the new vielbein of ϕ to be m := Rmo 
rather than ΛsRmo; we have the freedom to do that since ϕ = mo

TRTΛs
TδΛsRmo = 

mo
TRTδRmo = mo

Tδmo, implying that ϕ is blind to this choice. The interaction terms are 
not affected as well, since they always contain both Λs and R, irrespective of this choice. The 
matrix Λs explicitly appears in them. On the contrary, R does not appear explicitly, but it is 
taken into account implicitly inside m .
We define the bimetric interactions as [31],

n := e−1v, ñ := m−1v,� (A.2a)

Q := e−1Λs
2e, Q̃ := m−1Λs

2m,� (A.2b)

D := m−1Λs
−1e, ‹D := e−1Λs

−1m,� (A.2c)

B := D−1 = e−1Λsm, B̃ := ‹D−1 = m−1Λse,� (A.2d)
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V := −md
d∑

n=0

βnen(‹D), Ṽ := −λ−1 md
d∑

n=0

βnen−1(B),� (A.2e)

U := −λ−1 md
d∑

n=0

βnYn−1(B), Ũ := −‹Dmd
d∑

n=0

βnYn−1(‹D),� (A.2f )

(QŨ) := QŨ = −Bmd
d∑

n=0

βnYn−1(‹D), (Q̃U) := Q̃U = −λ−1Q̃md
d∑

n=0

βnYn−1(B),� (A.2g)

where en(X) are the elementary symmetric polynomials of the linear operator X,

en(X) = X[a1
a1 Xa2

a2 . . .Xan]
an ,� (A.3)

and Yn(X) is defined as,

Yn(X) :=
n∑

k=0

(−1)n+kek(X)Xn−k.� (A.4)

See [31] for more details about the properties of en(X) and Yn(X). Note that d  is the dimen-
sion of the spacetime, i.e. d = N + 1. Hence, some terms in the summations will be zero. The 
β(n) parameters are d  +  1 real dimensionless constants appearing in the bimetric interaction 
potential, together with the energy scale m [1]. We define the bimetric sources (respectively, 
the bimetric energy densitites, the bimetric currents and the bimetric spatial stress–energy 
tensors) as [31],

ρb = −en(B), jbi = −γik(QŨ)
k

jn
j, Jb

ij = γik

î
Vδk

j − (QŨ)
k

j + W−1Uk
j

ó
,

�

(A.5a)

ρ̃b = − λen−1(B)

det (me−1)
, j̃bi = − jbi

det (me−1)
, J̃b

ij =
ϕik

[
Ṽδk

j − (Q̃U)
k

j + W Ũk
j

]

det (me−1)
,

�

(A.5b)

where the summation −md∑d
n=0βn is understood in front of all the bimetric sources. Note the 

relation between the two bimetric currents jbi, j̃bi, which implies the relation (A.35) between 
the momentum constraints.

Here we compute the expressions for the bimetric interactions and sources in the (c)BSSN 
formalism. We require that the symmetrization condition (A.1) holds for the BSSN variables 
as well. Since the shifts are the same in the BSSN formalism, we require conditions (A.1a) 
and (A.1b) to stay the same. The condition (A.1c) should instead lead to its analog in the 
BSSN formalism,

◦
χ = eTδ

∗
Λs

∗
Rm̂o =

◦
χT,� (A.6)

where 
∗
Λs,

∗
R are the BSSN counterparts of the spatial part of the Lorentz boost (3.8) and the 

orthogonal transformation in (3.7), whose expression is unknown yet. This naturally leads us 
to define the vielbeins of ϕ̂ in the BSSN formalism as,

m̂1 :=
∗
Λsm̂, m̂ :=

∗
Rm̂o,� (A.7)

analogously to the standard N + 1 formalism,

m1 := Λsm, m := Rmo.� (A.8)
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We start by computing the conformal decomposition of the objects in the Lorentz frame. 
We have,

ϕ = mo
Tδmo = mo

T
Ä
RTδR

ä
mo = mTδm = mTΛs

TδΛsm = m1
Tδm1.

� (A.9)
Since ϕ = e4ψϕ̂, from (A.9) and (3.11) it follows,

mo = e2ψm̂o, m = e2ψm̂, m1 = e2ψm̂1.� (A.10)

Using (A.7), (A.8) and (A.10) we can write,

m1 = Λsm = Λs
(
e2ψm̂

)
,� (A.11)

m1 = e2ψm̂1 = e2ψ
( ∗
Λsm̂

)
,� (A.12)

implying,

Λsm̂ =
∗
Λsm̂.� (A.13)

The tetrad m̂  is a set of three Lorentz vectors m̂a
1, m̂a

2, m̂a
3. The operator Λs

a
b acts in the 

Lorentz frame and therefore it is blind to the spacetime index. This means that (A.13) is a set 
of three equations. Let us denote any of the three Lorentz vectors m̂a

i  with u. Then (A.13) 
becomes,

Λsu =
∗
Λsu =⇒

Ç
I+

ppTδ

λ+ 1

å
u =

Ç
I+

∗
p

∗
pTδ

∗
λ+ 1

å
u =⇒ ∗

p =

Ç
pTδu

λ+ 1

å( ∗
λ+ 1
∗
pTδu

)
p.� (A.14)

The coefficient in front of p in (A.14) is a Lorentz (and spacetime) scalar, i.e. p and 
∗
p are col-

linear, p = ξ
∗
p. Next, we apply Λs to (A.13) from the left,

ΛsΛsu = Λs
∗
Λsu.� (A.15)

Two boosts with collinear boost vectors commute [67, p 50]. This implies that their spatial 
parts commute as well. Indeed, 

0 =

Ç
λ pTδ

p Λs

å(∗
λ

∗
pTδ

∗
p

∗
Λs

)
−

(∗
λ

∗
pTδ

∗
p

∗
Λs

)Ç
λ pTδ

p Λs

å
� (A.16)

=

(
λ
∗
λ+ pTδ

∗
p λ

∗
pTδ + pTδ

∗
Λs

∗
λp+Λs

∗
p p

∗
pTδ +Λs

∗
Λs

)
−

(∗
λλ+

∗
pTδp

∗
λpTδ +

∗
pTδΛs

λ
∗
p+

∗
Λsp

∗
ppTδ +

∗
ΛsΛs

)
,

� (A.17)
and since  p = ξ

∗
p and 

∗
p are collinear, the spatial part of (A.17) reads,

0 = p
∗
pTδ +Λs

∗
Λs −

∗
ppTδ −

∗
ΛsΛs

= ξ
∗
p

∗
pTδ +Λs

∗
Λs − ξ

∗
p

∗
pTδ −

∗
ΛsΛs = Λs

∗
Λs −

∗
ΛsΛs,

� (A.18)

i.e. the spatial parts commute. Hence (A.15) becomes,

ΛsΛsu =
∗
ΛsΛsu� (A.19)

and using Λsu =
∗
Λsu (from (A.14)) in (A.19) we get,
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Λs
2u =

∗
Λs

2u =⇒
(
I+ ppTδ

)
u =
Ä
I+

∗
p

∗
pTδ
ä
u.� (A.20)

It follows that,

ppTδu =
∗
p

∗
pTδu =⇒ ξ2 ∗

p
∗
pTδu =

∗
p

∗
pTδu =⇒ ξ2 = 1 =⇒ ξ = ±1.� (A.21)

The case ξ = −1 changes (A.1a) and (A.1b) by introducing a minus sign in front of p. 
Therefore, we choose ξ = 1 and get14,

p =
∗
p =⇒ λ =

(
1 + pTδp

)1/2
=
Ä

1 +
∗
pTδ

∗
p
ä1/2

=
∗
λ� (A.22a)

=⇒ v = pλ−1 =
∗
p

∗
λ
−1 =

∗
v� (A.22b)

=⇒ Λs =
(
1 + ppTδ

)1/2
=
Ä

1 +
∗
p

∗
pTδ
ä1/2

=
∗
Λs.� (A.22c)

Let us now compute the BSSN version of Ro, introduced in (3.7). From (3.11), (A.10) and 
(A.22c) it follows that,

Ro := δ−1mo
−1,TeTδΛs = e2(φ−ψ)δ−1m̂−1,T

o eTδΛs = e2(φ−ψ)
∗
Ro� (A.23)

which implies,

R :=
Ä
δ−1Ro

TδRo

ä1/2
Ro

−1 = e2(φ−ψ)
(
δ−1 ∗

Ro
Tδ

∗
Ro

)1/2
e−2(φ−ψ)

∗
Ro

−1 =
∗
R,� (A.24)

consistently with (A.9) and (A.10). Using (3.11), (A.10), (A.22c) and (A.24), the spatial part 
of the symmetrization condition (A.1c) can be written as,

χ = eTδΛsRmo = e2(φ+ψ)eTδΛsRm̂o =: e2(φ+ψ) ◦χ

= χT =
(
eTδΛsRmo

)T
= e2(φ+ψ)

(
eTδΛsRm̂o

)T
=: e2(φ+ψ) ◦χT,

�
(A.25)

i.e. if χ is symmetric, its BSSN counterpart 
◦
χ is also symmetric, as desired.

In light of (3.11), (A.22) and (A.24), we compute the BSSN decomposition of bimetric 
interactions,

n := e−1v = e−2φe−1v = e−2φn, ñ := m−1v = e−2ψm̂−1v = e−2ψn̂,
�

(A.26a)

Q := e−1Λs
2e Q̃ := m−1Λs

2m

= e−2φ
Ä

e−1Λs
2e
ä

e2φ = e−2ψ
Ä

m̂−1Λs
2m̂
ä

e2ψ

= e−1Λs
2e = Q, = m̂−1Λs

2m̂ = Q̂,
�

(A.26b)

14 Choosing ξ = −1, i.e. changing the sign of p, is equivalent to changing the sign of v = pλ−1 = p
(
1 + pTδp

)−1/2,  

where v is the boost vector and λ the Lorentz factor of the boost in (3.8). Therefore, changing the sign of p is 
equivalent to consider the boost Λ−1 rather than Λ in the parametrization (3.8), which is an arbitrary choice that one 
can make. This choice would introduce a minus sign in the relation between the shifts (A.1a) and (A.1b), the latter 
remaining consistent. Since the two choices are equivalent, and we do not want to change the parametrization in 
recasting the bimetric standard 3 + 1 decomposition into the bimetric (c)BSSN decomposition, we choose ξ = 1 
without losing generality.
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D := m−1Λs
−1 e‹D := e−1Λs

−1m

= e−2ψ
Ä

m̂−1Λs
−1e
ä

e2φ = e−2φ
Ä

e−1Λs
−1m̂
ä

e2ψ

= e2(ψ−φ)
Ä

e−1Λs
−1m̂
ä
= e2(φ−ψ) D,= e2(ψ−φ)

Ä
e−1Λs

−1m̂
ä
= e2(ψ−φ)D̂,

�

(A.26c)

B := D−1 = e2(ψ−φ)B, B̃ := ‹D−1 = e2(φ−ψ)B̂.� (A.26d)

We note the following property of the elementary symmetric polynomials,

en( fX) = ( fX)[a1
a1( fX)a2

a2 · · · ( fX)an]
an

= (f n)X[a1
a1 Xa2

a2 · · ·Xan]
an = f nen(X),

� (A.27)

where f  is a scalar field. We use this property to compute the bimetric interactions in terms of 
the BSSN variables,

V := −md
d∑

n=0

βnen(‹D) = −md
d∑

n=0

βnen(e2(ψ−φ)D̂) = −md
d∑

n=0

βne2n(ψ−φ)en(D̂)

� (A.28a)

Ṽ := −λ−1 md
d∑

n=0

βnen−1(B) = −λ−1 md
d∑

n=0

βnen−1(e2(ψ−φ)B)

= −λ−1 md
d∑

n=0

βne2(n−1)(ψ−φ)en−1(B)

�

(A.28b)

U := −λ−1 md
d∑

n=0

βnYn−1(B) = −λ−1 md
d∑

n=0

βn

n−1∑
k=0

(−1)n−1+kek(B)Bn−1−k

= −λ−1 md
d∑

n=0

βn

n−1∑
k=0

(−1)n−1+kek(e2(ψ−φ)B)e2(n−1−k)(ψ−φ)B
n−1−k

= −λ−1 md
d∑

n=0

βn

n−1∑
k=0

(−1)n−1+kek(B)e2k(ψ−φ)e2(n−1−k)(ψ−φ)B
n−1−k

= −λ−1 md
d∑

n=0

βne2(n−1)(ψ−φ)
n−1∑
k=0

(−1)n−1+kek(B)B
n−1−k

= −λ−1 md
d∑

n=0

βne2(n−1)(ψ−φ)Yn−1(B),

�

(A.28c)
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Ũ := −‹Dmd
d∑

n=0

βnYn−1(‹D) = −‹Dmd
d∑

n=0

βn

n−1∑
k=0

(−1)n−1+kek(‹D)‹Dn−1−k

= −e2(ψ−φ)D̂md
d∑

n=0

βn

n−1∑
k=0

(−1)n−1+kek(e2(ψ−φ)D̂)e2(n−1−k)(ψ−φ)D̂n−1−k

= −e2(ψ−φ)D̂md
d∑

n=0

βn

n−1∑
k=0

(−1)n−1+kek(D̂)e2k(ψ−φ)e2(n−1−k)(ψ−φ)D̂n−1−k

= −D̂md
d∑

n=0

βne2n(ψ−φ)
n−1∑
k=0

(−1)n−1+kek(D̂)D̂n−1−k

= −D̂md
d∑

n=0

βne2n(ψ−φ)Yn−1(D̂).

�

(A.28d)

From (A.2g), (A.26b), (A.28c) and (A.28d) it follows,

(QŨ) = −QD̂md
d∑

n=0

βne2n(ψ−φ)Yn−1(D̂) = −Bmd
d∑

n=0

βne2n(ψ−φ)Yn−1(D̂),

� (A.29)

(Q̃U) = −λ−1Q̂md
d∑

n=0

βne2(n−1)(ψ−φ)Yn−1(B).� (A.30)

We compute the bimetric sources in (A.5a) in terms of the BSSN variables,

ρb := md
d∑

n=0

βnen(B) = md
d∑

n=0

βnen(e2(ψ−φ)B) = md
d∑

n=0

βne2n(ψ−φ)en(B),

� (A.31a)

ρ̃b := λmd
d∑

n=0

βnen−1(‹D)det
(
em−1) = λmd

d∑
n=0

βnen−1(e2(ψ−φ)D̂)det
Ä

e2(φ−ψ)em̂−1
ä

= λmd
d∑

n=0

βne2(n−1)(ψ−φ)e2N(φ−ψ)en−1(D̂)det
(
em̂−1)

= λmd
d∑

n=0

βne2(n−1−N)(ψ−φ)en−1(D̂)det
(
em̂−1) ,

�

(A.31b)

jb := md
d∑

n=0

βnγ(QŨ)n = −md
d∑

n=0

βne4φγBe2n(ψ−φ)Yn−1(D̂)e−2φn

= −md
d∑

n=0

βne2nψ−2(n−1)φγBYn−1(D̂)n,

�

(A.31c)
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j̃b := −jbdet
(
em−1) = det

Ä
e2(φ−ψ)em̂−1

ä
md

d∑
n=0

βne2nψ−2(n−1)φγBYn−1(D̂)n

= det
(
em̂−1) md

d∑
n=0

βne2N(φ−ψ)e2nψ−2(n−1)φγBYn−1(D̂)n

= det
(
em̂−1) md

d∑
n=0

βne2(n−N)ψ−2(n−1−N)φγBYn−1(D̂)n,

�

(A.31d)

Jb := (VI − (QŨ) + WU)

= −md
d∑

n=0

βn

Ä
e2n(ψ−φ)en(D̂)I − e2n(ψ−φ)BYn−1(D̂) + Wλ−1e2(n−1)(ψ−φ)Yn−1(B)

ä

= −md
d∑

n=0

βne2n(ψ−φ)
Ä

en(D̂)I −BYn−1(D̂) + Wλ−1e2(φ−ψ)Yn−1(B)
ä

,

�

(A.31e)

J̃b :=
Ä
ṼI − (Q̃U) + W−1Ũ

ä
det

(
em−1)

= −md
d∑

n=0

βn

Ä
λ−1e2(n−1)(ψ−φ)en−1(B)I − λ−1Q̂e2(n−1)(ψ−φ)Yn−1(B)

+W−1D̂e2n(ψ−φ)Yn−1(D̂)
ä

det
Ä

e2(φ−ψ)em̂−1
ä

= −md
d∑

n=0

βne2(n−N)(ψ−φ)
Ä
λ−1e2(φ−ψ)en−1(B)I − λ−1Q̂e2(φ−ψ)Yn−1(B)

+W−1D̂Yn−1(D̂)
ä

det
(
em̂−1) .

�

(A.31f )

We remind the reader that N = d − 1 is the dimension of the spacelike hypersurface, in our 
case N = 3, and I is the N × N  identity. Note that both the bimetric interactions and sources 
can be computed starting with the physical vielbeins and metrics e, m, γ,ϕ, or with the con-
formal vielbeins and metrics e, m̂, γ, ϕ̂ and the conformal factors φ,ψ.

A.2. The bimetric standard N + 1 equations

The bimetric standard N + 1 evolution equations read [31],

∂⊥γij = −2αKij,� (A.32a)

∂⊥Kij = −DiDjα+ α
[
Rij − 2KikKk

j + KKij
]

− ακg

ï
γikJeffk

j −
1

N − 1
γij

(
Jeffi

i − ρeff
)ò

,
�

(A.32b)

∂̃⊥ϕij = −2α̃K̃ij,� (A.32c)

∂̃⊥K̃ij = −D̃iD̃jα̃+ α̃
[
R̃ij − 2K̃ikK̃k

j + K̃K̃ij
]

− α̃κf

ï
ϕikJ̃effk

j −
1

N − 1
ϕij

(
J̃effi

i − ρ̃eff)
ò

,
�

(A.32d)
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with ∂⊥ := ∂t − Lβ, ∂̃⊥ := ∂t − Lβ̃, β and β̃ being the shift vectors of the two metrics. The 

bimetric standard N + 1 constraint equations (BCE) are,

2C := R + K2 − KijKij − 2κgρ
eff = 0,� (A.33a)

Ci := DkKk
i − DiK − κgjeff

i = 0,� (A.33b)

2C̃ := R̃ + K̃2 − K̃ijK̃ij − 2κf ρ̃
eff = 0,� (A.33c)

C̃i := D̃kK̃k
i − D̃iK̃ − κf j̃eff

i = 0.� (A.33d)

The effective sources are the sum of the bimetric sources given by (A.5), and the external 
matter sources,

ρeff = ρb + ρm, jeff
i = jbi + jmi, Jeff

ij = Jb
ij + Jm

ij,� (A.34a)

ρ̃eff = ρ̃b + ρ̃m, j̃eff
i = j̃bi + j̃mi, J̃eff

ij = J̃b
ij + J̃m

ij.� (A.34b)

Note that the relation between the two bimetric currents in (A.5), implies that the two momen-
tum constraints are related to each other15,

√
γ
{
κg

−1 (DkKk
i − DiK

)
− jmi

}
+

√
ϕ
{
κf

−1 (D̃kK̃k
i − D̃iK̃

)
− j̃mi

}
= 0.

� (A.35)
The bimetric conservation law (BCL), in its asymmetric and symmetric form, reads

Cb := Ui
j
(
Din

j − K j
i
)
+ Ũi

j
(
D̃iñ

j + K̃ j
i
)
− Di

(
Ui

jn
j)� (A.36a)

=
1
2

Di
(
Ui

jn
j)+ 1

2
D̃i

Ä
Ũi

jñ
j
ä

− Ui
j

Ç
Din

j − 1
2
∂i
√
∆√
∆

n j − K j
i

å
− Ũi

j

(
D̃iñ

j − 1
2
∂i

√
∆̃√
∆̃

ñ j + K̃ j
i

)
= 0.

�

(A.36b)

A.3. The bimetric BSSN equations

We now write down the bimetric BSSN equations, applying the procedure in [27, section 11.5] 
to (A.32), (A.33) and (A.36), using (A.31) for the bimetric sources.

The bimetric BSSN 3 + 1 evolution equations for the g-sector are,

∂⊥φ = −αK
6

,� (A.37a)

∂⊥K = −γijDiDjα+ α

ï
A

ij
Aij +

K2

3
+

κg

2

(
Jeffi

i + ρeff
)ò

,� (A.37b)

∂⊥γij = −2αAij,� (A.37c)

15 Note, however, that solving one momentum constraint does not imply that the other is automatically satisfied. 
Both of them need to be solved independently.
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∂⊥Aij = e−4φ
ß
−DiDjα+

1
3
γijDkDkα+ α

ï
Rij −

1
3
γijR − κg

Å
Jeff

ij −
1
3
γijJeffi

i

ãò™
,� (A.37d)

∂⊥Γ
i
= −2A

ij
∂jα+ 2α

ï
Γ

i
jkA

kj − 2
3
γij∂jK + 6A

ij
∂jφ− κgγ

ijjeff
j

ò
,� (A.37e)

where

Lβφ = βi∂iφ+
1
6
∂kβ

k, LβK = βi∂iK,� (A.38a)

Lβγij = βk∂kγij + γik∂jβ
k + γjk∂iβ

k − 2
3
γij∂kβ

k,� (A.38b)

LβAij = βk∂kAij + Aik∂jβ
k + Ajk∂iβ

k − 2
3

Aij∂kβ
k,� (A.38c)

LβΓ
i
= β j∂jΓ

i − Γ
j
∂jβ

i +
2
3
Γ

i
∂jβ

j +
1
3
γki∂k∂jβ

j + γkj∂k∂jβ
i,� (A.38d)

and for the f -sector

∂̃⊥ψ = − α̃K̃
6

,� (A.39a)

∂̃⊥K̃ = −ϕijD̃iD̃jα̃+ α̃

ñ
ÂijÂij +

K̃2

3
+

κf

2
(
J̃effi

i + ρ̃eff)
ô

,� (A.39b)

∂̃⊥ϕ̂ij = −2α̃Âij,� (A.39c)

∂̃⊥Âij = e−4ψ
ß
−D̃iD̃jα̃+

1
3
ϕijD̃kD̃kα̃+ α̃

ï
R̃ij −

1
3
ϕijR̃ − κf

Å
J̃eff

ij −
1
3
ϕijJ̃effi

i

ãò™
,� (A.39d)

∂̃⊥Γ̂
i = −2Âij∂jα̃+ 2α̃

ï
Γ̂i

jkÂkj − 2
3
ϕ̂ij∂jK̃ + 6Âij∂jψ − κf ϕ̂

ij̃jeff
j

ò
,� (A.39e)

where

Lβ̃ψ = β̃i∂iψ +
1
6
∂kβ̃

k, Lβ̃K̃ = β̃i∂iK̃,� (A.40a)

Lβ̃ϕ̂ij = β̃k∂kϕ̂ij + ϕ̂ik∂jβ̃
k + ϕ̂jk∂iβ̃

k − 2
3
ϕ̂ij∂kβ̃

k,� (A.40b)

Lβ̃Âij = β̃k∂kÂij + Âik∂jβ̃
k + Âjk∂iβ̃

k − 2
3

Âij∂kβ̃
k,� (A.40c)

Lβ̃Γ̂
i = β̃ j∂jΓ̂

i − Γ̂ j∂jβ̃
i +

2
3
Γ̂i∂jβ̃

j +
1
3
ϕ̂ki∂k∂jβ̃

j + ϕ̂kj∂k∂jβ̃
i.� (A.40d)

The bimetric BSSN constraint equations are

C := γijDiDjeφ − eφ

8
R +

e5φ

8
A

ij
Aij −

e5φ

12
K2 +

κg

4
e5φρeff = 0,� (A.41a)
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Ci := Dj

Ä
e6φA

ijä− 2
3
γijDjK − κge6φjeffi

= 0,� (A.41b)

G := Γ
i
+ ∂jγ

ij = 0,� (A.41c)

Ĉ := ϕ̂ijD̂iD̂jeψ − eψ

8
R̃ +

e5ψ

8
ÂijÂij −

e5ψ

12
K̃2 +

κf

4
e5ψρ̃eff = 0,� (A.41d)

Ĉi := D̂j

Ä
e6ψÂij

ä
− 2

3
ϕ̂ijD̂jK̃ − κf e6ψ j̃effi = 0,� (A.41e)

Ĝ := Γ̂i + ∂jϕ̂
ij = 0.� (A.41f )

Now we compute the BSSN decomposition of the bimetric conservation law (A.36). We 
note that, due to (3.1), the relation between the two conformally related covariant derivatives 
of a vector field Xi is,

DiX j = DiX j + 2
(
X j∂iφ+ δi

jXk∂kφ− γi�X
�γ jk∂kφ

)
,� (A.42)

which implies

DiXi = DiXi + 6Xi∂iφ,� (A.43)

with analogous formulas for the f -sector. Using the definition of the conformal extrinsic cur-
vatures (3.13) in the cBSSN formalism, the bimetric conservation law becomes

Cb := Ui
j

ï
Din

j + 2
(
n j∂iφ+ δi

jnk∂kφ− γi�n
�γ jk∂kφ

)
− e4φ

Å
A

j
i +

1
3
δ j

iK
ãò

+ Ũi
j

ï
D̂iñ

j + 2
Ä
ñ j∂iψ + δi

jñk∂kψ − ϕ̂i�ñ
�ϕ̂ jk∂kψ

ä
+ e4ψ

Å
Â j

i +
1
3
δ j

iK̂
ãò

− Di
(
Ui

jn
j)− 6Ui

jn
j∂iφ

�

(A.44a)

=
1
2
[
Di

(
Ui

jn
j)− 6Ui

jn
j∂iφ

]
+

1
2
∂i
√
∆√
∆

Ui
jn

j

+
1
2

î
D̂i

Ä
Ũi

jñ
j
ä
− 6Ũi

jñ
j∂iψ
ó
− 1

2
∂i

√
∆̃√
∆̃

Ũi
jñ

j

− Ui
j

ï
Din

j + 2
(
n j∂iφ+ δi

jnk∂kφ− γi�n
�γ jk∂kφ

)
− e4φ

Å
A

j
i +

1
3
δ j

iK
ãò

− Ũi
j

ï
D̂iñ

j + 2
Ä
ñ j∂iψ + δi

jñk∂kψ − ϕ̂i�ñ
�ϕ̂ jk∂kψ

ä
+ e4ψ

Å
Â j

i +
1
3
δ j

iK̂
ãò

= 0.

�

(A.44b)

Finally, we insert the expressions computed in appendix A.1 for the quantities appearing in 
(A.44), which are written in terms of the BSSN variables.

A.4. The bimetric covariant BSSN equations

At this point, we apply the method described in [28] to the bimetric BSSN equations in appen-
dix A.3. The bimetric interactions and sources are not changed.

F Torsello et alClass. Quantum Grav. 37 (2020) 025013



24

These are the cBSSN 3 + 1 bimetric evolution equations for the g-sector, assuming that the 
background connections do not depend on time,

∂⊥φ = −
∂⊥ log

(
∆
)

12
− α

6
(
A + K

)
,� (A.45a)

∂⊥K = −∂⊥A +
α

3

Ä
K

2
+ 2KA

ä
+ αAijA

ij

− e4φ
Ä

DiD
i
α+ 2D

i
αDiφ

ä
+

κg

2
α
(

Jeffi
i + ρeff

)
,

�

(A.45b)

∂⊥γij =
1
3
γij∂⊥ log

(
∆
)
− 2α

Å
Aij −

1
3
γijA
ã

,� (A.45c)

∂⊥Aij =
1
3

Aij∂⊥ log
(
∆
)
+

1
3

Aij∂⊥A

+ α

ß
−2AikA

k
j + KAij +

1
3

A
[
5Aij −

(
K + A

)
γij

]™

+ e−4φ {−DiDjα+ 4D(iαDj)φ+ α
[
Rij − DiDjφ+ 4DiφDjφ− κgJeff

ij
]}TF

,

�

(A.45d)

∂⊥Λ
i
= γ jkDBjDBkβ

i − γ jkRB
i
jk�β

�

− 1
3
Λ

i
∂⊥ log (∆)− 1

6
γij∂j∂⊥ log (∆)− 4

3
αγij∂jK

− 2
Å

A
jk − 1

3
γ jkA
ãÄ

δi
j∂kα− 6αδi

j∂kφ− α�Γ
i
jk

ä
− 2κgαe4φjeffi

,
�

(A.45e)

where DB and RB are the covariant derivative and the Riemann tensor of the background 
geometry, and

Lβφ = βi∂iφ, LβK = βi∂iK,� (A.46a)

Lβγij = βk∂kγij + γik∂jβ
k + γjk∂iβ

k,� (A.46b)

LβAij = βk∂kAij + Aik∂jβ
k + Ajk∂iβ

k,� (A.46c)

LβΓ
i
= β j∂jΓ

i − Γ
j
∂jβ

i,� (A.46d)

Rij := −1
2
γk�DBkDB�γij + γk(iDBj)Λ

k − γk�γm(iRBj)k�
m

+ γ�m�Γ
k
�m�Γ(ij)k + γk�

Ä
2�Γ

m
k(i�Γj)m� +�Γ

m
ik�Γmj�

ä
.

�

(A.46e)

Note that all Lie derivatives in (A.46) are Lie derivatives of tensors, not tensor densities as in 
(A.38). Equation (A.46e) is an identity for the Ricci tensor of γij in terms of the background 
geometry [28, 68] (see appendix A of [68] for the proof). The superscript TF means ‘trace-
free’. Note that all the traces are with respect to γ  except the trace of Jeff , which is with 
respect to γ . For the f -sector we have,

∂̃⊥ψ = −
∂̃⊥ ln

Ä
∆̂
ä

12
− α̃

6

Ä
Â + K̂

ä
,� (A.47a)
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∂̃⊥K̂ = −∂̃⊥Â +
α̃

3

Ä
K̂2 + 2K̂Â

ä
+ α̃ÂijÂij

− e4ψ
Ä
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ä
+
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(A.47b)

∂̃⊥ϕ̂ij =
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3
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,� (A.47c)

∂̃⊥Âij =
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+
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j + K̂Âij +
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Â
î
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ä
ϕ̂ij

ó™

+ e−4ψ
¶
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ij

ó©TF
,
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(A.47d)

∂̃⊥Λ̂
i = ϕ̂ jkD̂BjD̂Bkβ̃

i − ϕ̂ jkR̂B
i
jk�β̃

�

− 1
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− 1
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Â jk − 1
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ϕ̂ jkÂ
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j∂kα̃− 6α̃δi

j∂kψ − α̃�Γ̂
i
jk

)
− 2α̃e4ψκf j̃effi,

�

(A.47e)

where the same conventions and notations as for the g-sector are implied. It holds,

Lβ̃ψ = β̃i∂iψ, Lβ̃K̃ = β̃i∂iK̃,� (A.48a)

Lβ̃ϕ̂ij = β̃k∂kϕ̂ij + ϕ̂ik∂jβ̃
k + ϕ̂jk∂iβ̃

k,� (A.48b)

Lβ̃Âij = β̃k∂kÂij + Âik∂jβ̃
k + Âjk∂iβ̃

k,� (A.48c)

Lβ̃Λ̂
i = β̃ j∂jΓ̂

i − Γ̂ j∂jβ̃
i +

2
3
Γ̂i∂jβ̃

j,� (A.48d)

R̂ij := −1
2
ϕ̂k�D̂BkD̂B�ϕ̂ij + ϕ̂k(iD̂Bj)Λ̂

k − ϕ̂k�ϕ̂m(iR̂Bj)k�
m

+ ϕ̂�m�Γ̂
k
�m�Γ̂(ij)k + ϕ̂k�

Ä
2�Γ̂

m
k(i�Γ̂j)m� +�Γ̂
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ik�Γ̂mj�

ä
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(A.48e)

The bimetric cBSSN constraint equations are

C :=
2
3
(
K + A

)2
+

1
3

A
2 − AijA

ij

+ e−4φ
Ä

R − 8DiφD
i
φ− 8D

i
Diφ
ä
− 2κgρ

eff = 0,
�

(A.49a)

C
i

:= e−4φ
ß

1√
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Ä√
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ijä
+ 6
Å

A
ij − 1

3
γijA
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Å
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ã
+ A

jk�Γ
i
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™
− κgjeffi
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�

(A.49b)

G := Λ
i − γ jk

Ä
Γ

i
jk − ΓB

i
jk

ä
= 0,� (A.49c)
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Ĉ :=
2
3

Ä
K̂ + Â

ä2
+

1
3

Â2 − ÂijÂij

+ e−4ψ
Ä

R̂ − 8D̂iψD̂iψ − 8D̂iD̂iψ
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(A.49d)

Ĉi := e−4ψ

®
1√
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(√
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Âij − 1
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(A.49e)

Ĝ := Λ̂i − ϕ̂ jk
Ä
Γ̂i

jk − Γ̂B
i
jk

ä
= 0.� (A.49f )

The cBSSN BCL is the same as in one in (A.44), since the bimetric interactions (A.26) and 
(A.28) are not changed, and the bimetric sources are the same as in (A.31).

A.5. The bimetric covariant BSSN equations in spherical symmetry

The equations in this appendix were computed with the Mathematica package bimEX [69], 
which can compute the bimetric cBSSN equations for any desired ansatz.

We write down the cBSSN equations in spherical symmetry, assuming the following ansatz,

ea
i = diag

[
a(t, r), b(t, r), b(t, r) sin(θ)

]
, m̂a

oi = diag
î
â(t, r), b̂(t, r), b̂(t, r) sin(θ)

ó
,

A
i
j = diag

[
A1(t, r), A2(t, r), A2(t, r)

]
, Âi

j = diag
î
Â1(t, r), Â2(t, r), Â2(t, r)

ó
,

Λ
i
=

Ñ
Λ

r
(t, r)
0
0

é
, Λ̂i =

Ñ
Λ̂r(t, r)

0
0

é
, qi =

Ñ
qr(t, r)
qθ(t, r)
qφ(t, r)

é
, pa =

Ñ
p1(t, r)
p2(t, r)
p3(t, r)

é
.

�

(A.50)

The background geometries for both γ  and ϕ are chosen to be the spatial part of the flat metric 
in spherical coordinates16,

δ = diag
[
1, r2, r2 sin(θ)2] .� (A.51)

From now on, we will assume the time and radial dependence of all the fields. We define the 
function,

ÛR :=
e2ψ b̂
e2φb

,� (A.52)

and the ‘shifted elementary symmetric polynomials’ [18],

¨ÛR
∂n

k
:=

n∑
i=0

Å
n
i

ã
β(i+k)ÛRi,

Å
n
i

ã
=

n!
i!(n − i)!

,� (A.53)

where the β(n) are five real dimensionless constants appearing in the bimetric interaction 
potential [1].

16 Note that this is not the Minkowski metric in the Lorentz frame, whose spatial part remains δ = diag [1, 1, 1].
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Consistency conditions between the various equations imply that qθ = p2 = 0, and qφ,p3 
do not appear explicitly into the equations, so we can set them to zero without losing general-
ity. Also, R is the identity and m̂ = m̂o, which simplifies the computations considerably.

The constraint equations (A.49a) read,

C =
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a2e4φ
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2 +
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− ∂rb
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ä Ä
K̂ + 3Â2
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Ĉr =
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where the bimetric energy density and currents are given by

ρb = −
¨ÛR
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0
− âe2ψ

ae2φ
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ρ̃b = − 1
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We can solve p1 from both (A.54b) and (A.54e), obtaining respectively
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p1 = −e−2φÛR2
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The asymmetric—and simpler—version of the BCL (A.44a) is,
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(A.57)

The evolution equations  (A.45) and (A.47), modified to get the evolution of the comp

onents A
i
j, Âi

j rather than Aij, Âij, reduce to
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R22 = −1 − (∂rb)2

a2 − b∂rrb
a2 + ∂ra

(
b∂rb
a3 − b

2

a3r

)
+

2b∂rb
a2r

+
b

2
Λ

r

r
,� (A.59b)

R̂11 =
3(∂râ)2

â2 − ∂rrâ
â
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The evolution equation for p1 is obtained from the cBSSN version of (A.8) in [31],
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A direct comparison between (A.61) and (2.10) in [36], reveals their equivalence.
Equations (A.54), (A.55), (A.56), (A.57), (A.58), (A.59), (A.60) and (A.61) reduce to the 

standard 3 + 1 equations in spherical symmetry presented in [31] after imposing,
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φ = 0, ψ = 0, ∂⊥ log(∆) = −2α (K1 + 2K2) , ∂̃⊥ log(∆̃) = −2α̃
(
K̃1 + 2K̃2

)
,

�

(A.62)

and appropriately using the Hamiltonian constraints in the evolution equations for the traces 
K  and K̂ , and the momentum constraints in the evolution equations for the conformal factors 
φ,ψ.
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