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Abstract
In three dimensions, we consider the Einstein–Maxwell Lagrangian dressed
by a nonminimally coupled scalar field in new massive gravity. For this the-
ory, we provide two families of electrically charged Lifshitz black holes where
their metric functions depend only on an integration constant. We calculate
their masses using the quasilocal approach, as well as their entropy and electric
charge. These charged configurations are interpreted as extremal in the sense
that the mass vanishes identically while the entropy and electric charge are non-
zero thermodynamic quantities. Using these examples, we corroborate that the
semiclassical entropy can be recovered through a charged Cardy-like formula,
involving the corresponding magnetically charged solitons obtained by a dou-
ble Wick rotation. Finally, the first law of thermodynamics, as well as the Smarr
formula are also verified.

Keywords: charged black holes, Lifshitz space-time, Cardy-like formula

1. Introduction

In recent years, the prospect of extending the idea of the AdS/CFT correspondence [1] to
non-relativistic physics has been gaining momentum with the purpose of better understanding
other systems such as condensed matter physics. One particularly interesting scenario is that
of systems that have a dynamical scaling near fixed points. These systems are characterized by
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having a different scaling between the time t and the space �x. In this instance, under the grav-
ity side, Kachru et al proposed the Lifshitz spacetime [2] which in three dimensions takes the
form

ds2 = − r2z

l2z
dt2 +

l2

r2
dr2 +

r2

l2
dϕ2, (1)

where z is the dynamical exponent responsible of the anisotropy of the scaling

t �→ λ̃zt, r �→ λ̃−1r, ϕ �→ λ̃ϕ,

with 0 < t < +∞, r � 0 and 0 < ϕ < 2πl. Note that z = 1 in equation (1) corresponds to the
AdS spacetime. Another aspect that is vital to the idea of a gauge/gravity correspondence is the
finite temperature effects, through the introduction of black holes whose asymptotic behavior
reproduce the spacetime (1), denominated as Lifshitz black holes. Unfortunately,we have come
to learn that general relativity with a cosmological constant is not enough to support the Lifshitz
spacetime with z �= 1 [2] (and consequently, cannot support Lifshitz black holes either), this is
why many approaches to find these configurations consider one of the following mechanisms:
adding matter fields [3–14], enriching the gravitational Lagrangian with corrections in the
curvature [15–21] or both simultaneously [22–26].

In particular, in 2 + 1 dimensions, there exists a ghost-free, parity even gravity theory called
new massive gravity (NMG) [27], yielding a Lifshitz black hole solution characterized by a
dynamical exponent z = 3 [16]. Remarkably, it has been shown that the spectrum of values for
the dynamical exponent z becomes enriched by the introduction of a scalar field nonminimally
coupled as a matter field to NMG [22, 23]. Nevertheless, the charged case for this theory still
remains an open problem.

Independently, in the context of the relevance of thermodynamical properties of Lifshitz
black holes, one can point out that studying such configurations in three dimensions can serve
as a good laboratory in order to study relevant aspects of the gauge/gravity duality. In partic-
ular, the semiclassical entropy of these configurations can be recovered through a Cardy-like
expression [28] characterized by the mass of the black hole and the corresponding solitonic
configuration by operating a double Wick rotation. Following the same spirit, in [29] a charged
Cardy-like formula was proposed. In the present work, we test the viability of this expression
considering the NMG and a matter contribution given by a nonminimally coupled scalar field
and a linear Maxwell field in three dimensions. We hope this study will contribute to enrich the
list of charged Lifshitz black holes and that it will highlight the importance of the role played
by the now charged soliton.

The rest of the paper will be organized as follows. In the next section, we present the action
in three dimensions constituted by NMG-Maxwell theory together with a nonminimally cou-
pled scalar field. We also present the corresponding equations of motion as well as a specific
ansatz for charged Lifshitz black hole solutions. By using these ansatze, in section 3 we build
two new charged asymptotically Lifshitz black holes. In section 4, we find a general expres-
sion for the Wald entropy and the mass of the electrically charged Lifshitz black holes together
with the mass of their magnetically charged solitonic counterparts. Lastly, for our newly found
solutions, we present these thermodynamical quantities checking the validity of a charged
Cardy-like formula which reproduces the Wald entropy. In all these cases we verify the ful-
fillment of the charged version of the first law of black hole thermodynamics as well as the
anisotropic version of the Smarr formula. Finally, in section 5 we present our discussion and
conclusions.
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2. Action and field equations

With all the above, and motivated with this rich list of exact Lifshitz black holes, in this work
we look forward to finding more examples of asymptotically Lifshitz black holes, but now
electrically charged. As a result, we will consider the 2 + 1 NMG theory [27] together with a
nonminimally coupled scalar field Φ and the addition of a linear Maxwell field, namely

S[gμν,Φ, Aμ] =
∫

d3x
√
−gL =

∫
d3x

√
−g (LNMG + LM) , (2)

with

LNMG =
1

2κ

[
R − 2λ− 1

m2

(
RμνRμν − 3

8
R2

)]
,

LM = −1
2
∇μΦ∇μΦ− ξ

2
RΦ2 − U(Φ) − 1

4
FμνFμν ,

where Φ is the scalar field, U(Φ) is the self interaction potential, ξ represents the non-minimal
coupling parameter and Fμν ≡ 2∂[μ A ν] is the strength of the Maxwell field Aμ.

The field equations obtained by varying the action with respect to the metric gμν , the scalar
field Φ and Aμ read

Eμν ≡ Gμν + λgμν −
1

2m2
Kμν − κTμν = 0, (3)

�Φ− ξRΦ =
dU(Φ)

dΦ
, (4)

∇μFμν = 0, (5)

where we have defined

Kμν = 2�Rμν −
1
2

(
gμν� +∇μ∇ν − 9Rμν

)
R

− 8RμαRα
ν + gμν

(
3RαβRαβ −

13
8

R2

)
, (6)

and the energy–momentum tensor is given by

Tμν =∇μΦ∇νΦ− gμν

(
1
2
∇σΦ∇σΦ+ U(Φ)

)

+ ξ
(
gμν� −∇μ∇ν + Gμν

)
Φ2

+ FμσFσ
ν − 1

4
gμνFαβFαβ. (7)

As was shown in [16], in absence of matter sources, the equations of motion (3) support the
Lifshitz spacetime (1) for a generic value of the dynamical exponent z when

m2 = − z2 − 3z + 1
2l2

, (8)

λ = − z2 + z + 1
2l2

, (9)
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where values of z giving a vanishing value for m2 and λ are forbidden. Moreover, since we are
interested in looking for charged black hole solutions that asymptote the Lifshitz spacetime
(1), we not only impose (8) and (9), but we also opt for the following ansatz

ds2 = − r2z

l2z
f (r)dt2 +

l2

r2

dr2

f (r)
+

r2

l2
dϕ, (10)

Φ = Φ(r), (11)

with limr→+∞ f (r) = 1 and we supplement our suppositions by considering an electrical
ansatz for the electromagnetic field Aμ = At(r)δt

μ. Under these assumptions, the Maxwell’s
equation (5) together with the line element (10) give

[(r
l

)2−z
A′

t

]′
= 0,

where (′) denotes the derivative with respect the radial coordinate r. This expression is
integrated straightforwardly giving

At(r) =
qrhrz−1

(z − 1)lz−2
. (12)

The integration constant in our case is null while the electric field strength reads

Frt = A′
t = qrh

( r
l

)z−2
, (13)

where q is a real constant and rh is an integration constant related to the location of
the event horizon. While the power of r is a direct consequence of fulfilling Maxwell’s
equations, this particular form of (12) [or (13)] is convenient for simplifying the computations.
Equations (10)–(13) will constitute the starting point of our task of looking for asymptotically
Lifshitz black holes for the action (2).

3. Two classes of charged Lifshitz black holes

Let us begin by considering how the equations of motion (3) are affected by the electric source.
The fact that the mixed temporal and radial components of the Maxwell energy–momentum
tensor coincide implies that the analysis of the combination Et

t − Er
r = 0 is a good starting

point for our study. Indeed, this combination yields to a fourth order Cauchy–Euler differential
equation in f (r), plus a non-linear contribution of Φ(r). More explicitly, this combination is
proportional to

r4 f (4) + 2(z + 4)r3 f ′′′ − (z2 − 17z − 8)r2 f ′′

− 2(z + 2)r(z2 − 5z + 2) f ′ − 2(z − 1)(z2 − 3z + 1) f

− 8ΦΦ′′κl2r2ξm2 − 4κl2m2r2(2ξ − 1)
(
Φ′)2

+ 8κl2m2rξ(z − 1)ΦΦ′

+ 4κl2m2ξ(z − 1)Φ2 − 4m2l2(z − 1) = 0,
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where, as before, (′) denotes the derivative with respect the radial coordinate r. As a result, we
choose the following ansatze for the metric function and the scalar field

f (r) = 1 −
( rh

r

)χ

, Φ(r) =
√
Φ0

( rh

r

)γ

, (14)

where χ and γ are nonnegative constants and, as before, rh denotes the location of the hori-
zon while Φ0 is a positive constant. As a result, the combination Et

t − Er
r = 0, with m2 given

previously in (8), yields

2κΦ0(z2 − 3z + 1)P2(γ, ξ, z)
(rh

r

)2γ
− P4(χ, z)

(rh

r

)χ

= 0, (15)

with

P2(γ, ξ, z) = (4ξ − 1)γ2 + 2γξz + ξ(1 − z),

P4(χ, z) = χ4 − (2z + 2)χ3 − (z2 − 11z + 5)χ2

+ (z + 1)(2z2 − 9z + 6)χ− 2(z − 1)(z2 − 3z + 1).

When looking for Lifshitz solutions (z �= 1), the simultaneous vanishing of both P2(γ, ξ, z)
and P4(χ, z) will yield to inconsistencies when substituted into the other equations of motion
(3)–(5) except for the known cases without charge cited in [23] and the vacuum solution of
z = 3 [16] (proved to be partially unique in [30]). As a result, we must consider the possibility
of having γ = χ/2, which fixes the value of Φ0 to

Φ0 =
P4(χ, z)

2κ(z2 − 3z + 1)P2(χ/2, ξ, z)
. (16)

As such let us now capitalize on the fact that we have a new more restricted ansatz

f (r) = 1 −
( rh

r

)χ

, Φ(r) =
√
Φ0

( rh

r

)χ/2
. (17)

In addition to the equations Et
t − Er

r = 0, where the metric function and the scalar field are
given in (17) and the constant Φ0 is given in (16), the combination of Et

t − Eϕ
ϕ = 0 yields

Υ1

z2 − 3z + 1

( rh

r

)χ

− Υ2

z2 − 3z + 1

( rh

r

)2χ

+ 4l2q2κ
(rh

r

)2
= 0, (18)

where

Υ1 = 2(χ− z − 1)
[
2χ3 − (5z − 1)χ2 + (z + 6)(z − 1)χ

− 2(z − 1)(z2 − 3z + 1)(κΦ0ξ − 1)
]

,

Υ2 = (2χ− z − 1)(χ− 2z + 2)
[
3χ2 − (z + 6)χ

+ 2(z2 − 3z + 1)(κΦ0ξ − 1)
]
.

Furthermore, with an election of the potential U(Φ) = σ1Φ
4 + σ2Φ

2 (with σi being coupling
constants) the remaining independent Einstein equation Eϕ

ϕ = 0 reads
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Θ1

(z2 − 3z + 1)l2

(rh

r

)χ

+
Θ2

(z2 − 3z + 1)l2

(rh

r

)2χ

− l2q2κ

2

( rh

r

)2
+ λ+

z2 + z + 1
2l2

= 0, (19)

where

Θ1 =
7
8
χ4 − 11

4
zχ3 +

[
1
8
Φ0κ

(
z2 − 3z + 1

)
(20ξ − 1) + 4z

+
15
8

z2 − 4

]
χ2 − 1

2
z
[
5κξΦ0

(
z2 − 3z + 1

)
− z2 + 12z − 12

]
χ

+ κl2σ1
(
z2 − 3z + 1

)
Φ2

0 + κξz2
(
z2 − 3z + 1

)
Φ0

− 1
2

(
z2 − 3z + 1

) (
z2 − z − 1

)
,

Θ2 = −1
2
χ4 + 2zχ3 +

(
−5

2
z2 +

3
2
− 1

2
z

)
χ2 +

1
2

z (z + 3) (2z − 3)χ

− 1
8
Φ0κ

(
z2 − 3z + 1

) [
8ξ

(
z2 − zχ+ χ2

)
− χ2 − 8σ2l2

]
− (z + 1)

(
z2 − 3z + 1

)
,

with the cosmological constant λ fixed as (9). It is clear, from equations (18) and (19) that the
only way to obtain charged solutions is to consider either χ = 1 or χ = 2 which, as we will
see, is consistent with the general expression of the mass of the black hole (45).

3.1. Solution with arbitrary dynamical exponent z

The first case that we consider is for χ = 1. In this particular scenario, the non-minimal
coupling is fixed to the value

ξ =
2z3 − 7z2 + 8z − 5

16(z − 2)(z2 − z + 1)
, (20)

and we find a solution given by

ds2 = − r2z

l2z

(
1 − rh

r

)
dt2 +

l2

r2

(
1 − rh

r

)−1
dr2

+
r2

l2
dϕ2, (21)

Φ(r) =

√
8(z2 − z + 1)(z − 2)

(z − 1)(z2 − 3z + 1)κ

√
rh

r
, (22)

Frt =

√
− z(2z − 3)

2κ(z2 − 3z + 1)l4
rh

(r
l

)z−2
, (23)

6
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Table 1. Range of possibilities for the dynamical exponent z allowing black holes.

κ Range of z

κ > 0 z ∈
(

0, 3−
√

5
2 ≈ 0.382

)
∪

(
3
2 , 2

)

κ < 0 z ∈
(

3−
√

5
2 ≈ 0.382, 1

)

and this solution is supported by the self-interaction potential

U(Φ) = −κ
(
z2 − 3z + 1

)
(z − 1)2P̃4(z)

512l2
(
z2 − z + 1

)2
(z − 2)2

Φ4

+
(z − 1)

(
z2 − 3z + 1

) (
2z2 − z + 1

)
16

(
z2 − z + 1

)
(z − 2) l2

Φ2, (24)

with

P̃4(z) = 4z4 − 20z3 + 33z2 − 28z + 13, (25)

while the remaining constants are given by equations (8) and (9). In order to ensure the realness
of the solution, we must consider the range of z in accordance to table 1.

Moreover, figure 1 is provided as a visual aid on this matter. A quick inspection of said

figure shows that the intervals z ∈
(

0, 3−
√

5
2

)
and z ∈ (3/2, 2) are the only ones for which

Φ0 =
8(z2 − z + 1)(z − 2)

(z − 1)(z2 − 3z + 1)κ
and q2 = − z(2z − 3)

2κ(z2 − 3z + 1)l4
,

are simultaneously positive for κ > 0. Notice that taking κ < 0 (equivalent to a reflection with

respect to the horizontal axis) will provide us with the interval z ∈
(

3−
√

5
2 , 1

)
in which Φ0 and

q2 are simultaneously positive.

3.2. Solution with a fixed value of the dynamical exponent z = 2

The next case corresponds to setting the valueχ = 2 in equation (18). In this scenario, the com-
bination Et

t − Eϕ
ϕ = 0 with the appropriate value ofΦ0 [shown in equation (16)], is proportional

to

0 =
2(z − 2)(z − 3)(z − 1)2(8ξ − 1)

1 − (z + 5)ξ

( rh

r

)4

−
{

2(z − 3)(z − 1)2[(8z + 4)ξ − z − 1]
1 − (z + 5)ξ

+ 2κl4(z2 − 3z + 1)q2

} (rh

r

)2
. (26)

From this expression, it is clear to see that the case z = 3 recovers the uncharged solution
found in [16]. One could also naively consider that there exists a solution for the case ξ = 1/8,

7
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Figure 1. Representation of q2 and Φ0 as functions of z for the χ = 1 configuration,
assuming κ > 0.

with q2 = − 4(z−1)2

κl4(z2−3z+1)
and Φ0 = 8(z−1)2

κ(z2−3z+1)
. However, we notice that there are no values of

z for which q2 and Φ0 are simultaneously positive (see figure 2 for clarity). Therefore, this
configuration does not represent a physical solution.

Nevertheless, setting the critical dynamical exponent z = 2 in equation (18) gives us a
solution with an arbitrary non-minimal coupling ξ. The solution reads as follows

ds2 = − r4

l4

(
1 − r2

h

r2

)
dt2 +

l2

r2

(
1 − r2

h

r2

)−1

dr2

+
r2

l2
dϕ2, (27)

Φ(r) =

√
1

κ(7ξ − 1)
rh

r
, (28)

Frt =

√
(20ξ − 3)
κ(7ξ − 1)l4

rh, (29)

supported by the self-interacting potential

U(Φ) = −κξ(7ξ − 1)
2l2

Φ4 +
7ξ − 1

l2
Φ2, (30)

8
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Figure 2. Representation of q2 and Φ0 as functions of z, assuming κ > 0.

Table 2. Range of possibilities for non minimal coupling parameter ξ allowing black
holes.

κ Range of ξ

κ > 0 ξ ∈ (3/20,+∞)
κ < 0 ∅

with the following constants

m2 =
1

2l2
, λ = − 7

2l2
. (31)

As before, to ensure that we have real values of

Φ0 =
1

κ(7ξ − 1)
and q2 =

(20ξ − 3)
κ(7ξ − 1)l4

,

we must consider the range of ξ given by the table 2
Just for completeness, figure 3 is provided as a visual aid on this matter. In fact, a quick

inspection of the figure shows that for κ > 0 the interval ξ > 3/20 = 0.15 is the only one
for which Φ0 and q2 are simultaneously positive. Notice that taking κ < 0 (equivalent to a
reflection with respect to the horizontal axis) will not yield to any interval in which Φ0 and q2

are simultaneously positive.

9
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Figure 3. Representation of q2 and Φ0 as functions of ξ for the χ = 2 configuration,
assuming κ > 0.

To summarize, we have found two families of charged black holes: one solution with an
arbitrary dynamical exponent z given by (21)–(24) whose coupling parameter ξ is fixed as
(20) and a solution with a fixed value of the dynamical exponent z = 2 given by (27)–(30) that
admits an arbitrary coupling parameter ξ in the range (3/20,+∞).

3.3. Corresponding solitons

Considering that the other aim of this work is to check the consistency of a charged Cardy-
like expression, characterized by a magnetically charged soliton, we devote this subsection to
achieve the task of building the form of the solitonic counterpart of the general solution

ds2 = −
(r

l

)2z [
1 −

( rh

r

)χ]
dt2 +

l2

r2

[
1 −

( rh

r

)χ]−1
dr2 +

r2

l2
dϕ2.

In order to achieve this we start by performing a double Wick rotation

dt �→ idϕ, dϕ �→ idt. (32)

For the type of solutions that we are working with, we find that the solitons would be generally
described by the following line element

ds2 = −
(r

l

)2
dt2 +

l2

r2

dr2

f (r)
+

( r
l

)2z
f (r)dϕ2, (33)

10
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with

f (r) = 1 −
[(

2
χ

)1/z l
r

]χ

,

Φ(r) =
√
Φ0

[(
2
χ

)1/z l
r

]χ/2

,

Frϕ = ql

(
2
χ

)1/z(r
l

)z−2
, (34)

together with an adjustment of the horizon

rh = l

(
2
χ

)1/z

,

ensuring the correct identification with its Euclidean version. Here we note that, although its
regular character is not manifest in this system of coordinates, it is a magnetically charged
soliton. In the following section, as we analyze the thermodynamics of the black holes (21)
and (27), we present the solitons corresponding to each case calculated using (33).

4. Thermodynamics of the solutions

From the previous section we note that the general expression for the charged black hole is
determined by χ, Φ0, q and the dynamical exponent z. It is for this reason that in the fol-
lowing lines we derive the generic versions of the thermodynamical quantities of the black
hole of the form described in equation (17), these are the Wald entropy, the mass and electric
charge.

4.1. General thermodynamic quantities

As a first computation, we calculate the Wald entropy SW [31, 32]

SW ≡ −2π
∮
Σ

dx
√

|γ|Pabcdεabεcd , (35)

where Pabcd = δL/δRabcd and the integral is to be taken at the spatial section Σ of the event
horizon, |γ| denotes the determinant of the induced metric on Σ, εab is the binormal vector
follows from the timelike Killing vector ∂ t = kμ∂μ, which becomes null at the event horizon
rh and reads

εab = −εba :=
1
κ
∇akb,

where the surface gravity κ is given by

κ =

√
−1

2
(∇akb)

(
∇akb

)
.

With all these ingredients, the Wald entropy (35) for ansatz (17) and the Lagrangian L defined
in equation (2) is given by

11
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SW = −2πΩ1

( rh

ł

) [
Pabcdεabεcd

]
r=rh

,

= 2πΩ1

( rh

l

)[
1
κ
− Φ0ξ −

χ(χ+ 2 − 3z)
4κm2l2

]
, (36)

where Ω1 = 2πl, while the Hawking temperature for these configurations reads

T ≡ κ

4π
=

rz+1
h

4πlz+1
f ′(rh) =

χ

4πl

(rh

l

)z
. (37)

The electric charge can be calculated by using

Qe ≡
∫
Σ

dx
√
|γ|nμuνFμν =

∫
dΩ1

( r
l

)2−z
Frt = qrhΩ1, (38)

where |γ| is the induced metric on Σ, nμ and uν are unit spacelike and timelike normals to Σ

uν =
lz

rz
√

f
dt, nμ =

r
√

f
l

dr,

and the electric potential is defined as

Φe ≡ −At(rh) = − ql2

z − 1

(rh

l

)z
. (39)

On the other hand, the double Wick rotation (32) and the correct identification of its Euclidean
version yield the corresponding magnetic charge and potential for the soliton given by

Qm = iql

(
2
χ

)1/z

Ω1, (40)

Φm = − iql2

z − 1

(
2
χ

)
, (41)

where the values of the magnetic charge and potential are both purely imaginary. However, the
product of the charge times the potential is always real. Next, we derive a general expression
for the mass, using the approach described in [33, 34]. This method consists of a quasilocal
generalization of the Abbott–Deser–Tekin (ADT) formalism, which ensures its reliability even
when considering a Lifshitz asymptote. In order to proceed, we must first calculate two objects.
The first is the Noether potential

Kμν =
√
−g(2Pμνρσ∇ρkσ − 4kσ∇ρPμνρσ + FμνkσAσ), (42)

where, as before, L is the Lagrangian defined in equation (2). The second object is the surface
term given by

Θμ = 2
√
−g

(
Pμαβγ∇γδgαβ − δgαβ∇γPμαβγ +

1
2

∂L
∂(∂μΦ)

δφ

− 1
2

FμνδAν

)
. (43)
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With these ingredients, a parameter 0 � s � 1 is introduced, which will allow the interpolation
between the black hole solution with s = 1 and the asymptotic one at s = 0. As a result, the
quasilocal conserved charge is given by

M(k) =
∫

B
dxμν

(
ΔKμν(k) − 2k[μ

∫ 1

0
dsΘν](k|s)

)
, (44)

where ΔKμν(k) ≡ Kμν
s=1(k) − Kμν

s=0(k) is the difference of the Noether potential between the
interpolated solutions. In short, applying this technique to our particular case, the general
equation to calculate the mass for black holes of the form equation (17) is given by

M(k) = Ω1

{
− q2rz−1

2(z − 1)lz−4

( rh

l

)2

+

[
Ξ1

2κ
− Φ0l2

4

(
(1 − 2χ− 2z) ξ +

χ

2

)] ( rh

l

)2χ r1+z−2χ

l4+z−2χ
,

+

[
Ξ2

2κ
− Φ0l2

(
ξz + ξχ− χ

4

)]( rh

l

)χ r1+z−χ

l4+z−χ

}
(45)

where

Ξ1 =
1

8m2

[
2χ3 − (1 + 4z)χ2 − (10 + 2z2 − 15z)χ

+ 2(2z − 1)(z2 − 3z + 1)
]

,

Ξ2 =
1

2m2

[
−χ3 + 2zχ2 + (4 + z2 − 6z)χ

− (2z − 1)(z2 − 3z + 1) + 2l2m2
]
.

Similarly to the case of the black holes, the general expression for the mass of the
corresponding soliton is given by

Msol(k) = Ω1

{
q2rz−1

2(z − 1)lz−4

(
2
χ

)2/z

+

[
Ψ1

2κ
− Φ0l2

(
χ− 2ξ (4χ− 2z + 3)

8

)] (
2
χ

)2χ/z r1+z−2χ

l4+z−2χ

+

[
Ψ2

2κ
− Φ0l2

(
ξ(1 + χ) − χ

4

)] (
2
χ

)χ/z r1+z−χ

l4+z−χ

}
, (46)

where

Ψ1 =
1

8m2

[
−4χ3 + (10z − 1)χ2 − (2z2 + 17z − 18)χ

− 2(2z − 3)(z2 − 3z + 1)
]

,

Ψ2 =
1

2m2

[
χ3 + (1 − 3z)χ2 +

(
(z + 3)(z − 1) − 2m2l2

)
χ

+ 2(2z − 1)l2m2 + (2z − 3)(z2 − 3z + 1)
]
.

13
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Notice that the general expressions (45) and (46) from this quasilocal formulation [33, 34]
are obtained along a one-parameter family of configurations and for actual solutions must not
depend on the radial coordinates r. Interestingly, this gives an indication of constraints on the
constants z, q,χ,Φ0,Ξi andΨi, being consistent with the two families of charged Lifshitz black
holes found previously in section 3.

In the next subsections, we analyze, in depth, the thermodynamics of the two new families
of charged Lifshitz black holes solutions where, additionally, we will check that their Wald
entropy (36) is correctly reproduced by means of a charged Cardy-like formula proposed in
[29] and given by

SC = 2πl(z + 1)
(
| −Msolz

−1 + αΦmQm|z|M− αΦeQe|
) 1

z+1 , (47)

where the constant α depends on the electromagnetic Lagrangian considered and it is related
with the three dimensional Smarr formula [35]

M =

(
1

z + 1

)
TS + αQeΦe, (48)

which in our case takes the value

α =
1

z + 1
. (49)

Note that a priori we used the notation SC in order to differentiate with respect to the Wald
entropy SW . Nevertheless, as we will see in the examples of the following subsections, both
thermodynamic quantities are the same, this is SC = SW . Moreover, with all the calculations
provided, we will verify that the first law of thermodynamics

dM = TdS +QedΦe, (50)

holds.
With all the above, we are now ready to analyze, explicitly, the thermodynamics of the

solutions that we obtained in section 3 in the following subsections.

4.2. Thermodynamics of the solution with arbitrary dynamical exponent z

For the first family of charged Lifshitz black holes (21)–(24) characterized by the cou-
pling constants (8) and (9) together with the nonminimal coupling parameter ξ (20) and
using equation (36) we find that this configuration has a non-vanishing Wald entropy given
by

SW = − 2πz (2z − 3)Ω1

κ (z − 1)
(
z2 − 3z + 1

) (rh

l

)
, (51)

which is positive when z ∈ (3/2, 2) and κ > 0, while its temperature is

T =
1

4πl

( rh

l

)z
, (52)

and the electrical quantities read
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Φe = − 1
2(z − 1)

√
− 2z (2z − 3)(

z2 − 3z + 1
)
κ

( rh

l

)z
, (53)

Qe =
Ω1

2l

√
− 2z (2z − 3)(

z2 − 3z + 1
)
κ

( rh

l

)
. (54)

Using equation (45), we find that the mass M vanishes. With all the above, we check that
the first law of black hole thermodynamics (50) as well as the Smarr formula (48) hold, and
this solution can be interpreted as an extremal charged Lifshitz black hole in the sense that
it has zero mass while having a non-vanishing entropy and electric charge. We note that this
feature is not new, in fact, charged configurations with this characteristic have been found
previously in [3] with an Einstein–Maxwell–Proca system and in higher dimensions with an
Einstein–Maxwell toy model together with the most general quadratic corrections of the grav-
ity [24]. Additionally, one could also calculate the corresponding soliton as described before
and compute its conserved charges. Indeed, we find that the corresponding soliton is given
by

ds2 = −
(r

l

)2
dt2 +

l2

r2

(
1 − 21/z l

r

)−1

dr2

+
( r

l

)2z
(

1 − 21/z l
r

)
dϕ2, (55)

with

Φ(r) =

√
8(z2 − z + 1)(z − 2)

(z − 1)(z2 − 3z + 1)κ
2

1
2z

√
l
r

,

Frϕ =

√
− z(2z − 3)

2κ(z2 − 3z + 1)l2
21/z rz−2

lz−2
.

Using equation (46), we find that the mass of the soliton vanishes, as expected, and the rest
of the corresponding quantities of interest for this magnetically charged soliton are given
by

Φm = −
(

i
z − 1

) √
− 2z (2z − 3)(

z2 − 3z + 1
)
κ

,

Qm =
2

1−z
z iΩ1

l

√
− 2z (2z − 3)(

z2 − 3z + 1
)
κ

, (56)

where it is easy to see that the formula (47) with the constant α (49) correctly fits the Wald
entropy SW given previously in (51).

4.3. Solution with a fixed value of the dynamical exponent z = 2

Regarding the second family of solutions (27)–(30) with the constants fixed as (31), using
equation (36) we find that the Wald entropy of this black hole is given by
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SW =
2π(20ξ − 3)Ω1

κ(7ξ − 1)

(rh

l

)
, (57)

which in this case is always a positive quantity, while its temperature is

T =
1

2πl

( rh

l

)2
. (58)

At the same time, its electrical quantities are given by

Φe = −

√
20ξ − 3
κ(7ξ − 1)

( rh

l

)2
,

Qe =
Ω1

l

√
20ξ − 3
κ(7ξ − 1)

( rh

l

)
, (59)

and, using equation (45) we find that M = 0 and this solution also corresponds to an extremal
black hole in the same sense than in the previous case. It is simple to verify that the first law
(50) and the Smarr formula (48) are satisfied.

Furthermore, in this case, we can repeat the double Wick rotation process described earlier
in this section to find the corresponding soliton which, for this solution, is given by

ds2 = −
(r

l

)2
dt2 +

l2

r2

[
1 − l2

r2

]−1

dr2

+
( r

l

)4
[

1 − l2

r2

]
dϕ2, (60)

with

Φ(r) =

√
1

κ(7ξ − 1)

(
l
r

)
, (61)

Frϕ =

√
(20ξ − 3)
κ(7ξ − 1)l2

. (62)

In this case, using equation (46), we find that the mass of the soliton is null, as expected, and
the magnetically charged soliton’s quantities read

Φm = −i

√
20ξ − 3
κ(7ξ − 1)

,

Qm =
iΩ1

l

√
20ξ − 3
κ(7ξ − 1)

. (63)

With this information, it is straightforward to check that the formula (47) with z = 2 and
α = 1/3 coincides with the Wald entropy (57), that is, SW = SC.
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5. Discussion and conclusions

The aim of this work was, first, to find charged asymptotically Lifshitz black holes using a
linear Maxwell field in new massive gravity with a non-minimally coupled scalar field and
to analyze their thermodynamic quantities. Indeed, for this theory we were able to find two
solutions, where their metric functions depend only on an integration constant and one of
them does not require the dynamical exponent z to be fixed, while the other one exists only
for z = 2. Our second motivation was to provide new examples for the use of the quasilo-
cal formalism proposed in [33, 34] when considering two types of matter contributions (the
linear Maxwell field and the scalar field). Regarding this, we were able to find new exam-
ples of extremal charged configurations in the sense that, while they both have vanishing
mass, they possess non-zero entropy and non-zero electric charge. Moreover, with all the
computations, we verify that the first law (50) is held and that our solutions comply with
the Smarr formula (48), which is in correspondence with a more general expression in D
dimensions

M =
D − 2

z + D − 2
(TS +QeΦe) ,

proposed in [36].
It is interesting to note that, given these extremal thermodynamic behavior, where the

mass of the charged Lifshitz black hole as well as its solitonic configuration vanishes, the
entropy of these solutions can be computed by means of a charged Cardy-like expression (47)
proposed in [29] with α given by (49), where the ground state is given by a magnetically
charged soliton obtained by a double Wick rotation, checking that this formula fits perfectly
with the Wald entropy SW previously computed in both cases. Also notice that although the
magnetic charge and potential of the soliton are both purely imaginary, the product ΦmQm

that appears in the Cardy-like formula above is real, which allows an appropriate physical
interpretation.

Some natural extensions of this work would be to extend this approach to higher dimensions
[37] or, complementarily, to consider a more general asymptotic metric in which the scaling
transformation does not act as an isometry but rather like a conformal transformation. This
type of metrics are commonly referred to as hyperscaling violation metrics and are, in general,
described by [38]

ds2
H =

(
l
r

) 2θ
D−2

(
− r2z

l2z
dt2 +

l2

r2
dr2 +

r2

l2
d�x2

)
,

where θ is known as the hyperscaling violation exponent. Another interesting open problem
would be to find non-extremal charged solutions that can be supported by a Maxwell field,
perhaps considering more diverse matter contributions associated to scalar fields such as the
Horndeski action which is the most general tensor scalar action that yields to second order
field equations in four dimensions [39] or, conversely, exploring gravitational actions com-
plemented with non-minimally coupled scalar fields plus a more general component for the
electrodynamics contribution.
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