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Abstract
We obtain relativistic solutions of anisotropic charged compact objects in
hydrodynamical equilibrium with Finch—Skea geometry in the usual four and
in higher dimensions. The relativistic solutions are employed to construct phys-
ically viable stellar models. The radial variations of density, pressure and other
different physical features inside the stars are studied in the relativistic stel-
lar models. It is noted that a compact star in four-dimensional Finch—Skea
geometry describes an isotropic uncharged star always which however predicts
existence of an anisotropic star in higher dimensional spacetime. The plausi-
bility of such stars are studied here for a given mass and radius. Considering
known compact objects we construct stellar models satisfying all the criteria of
a physically realistic star. The results obtained here may be important to under-
stand some of the physical properties of known stars including predictions of
equations of states at extreme conditions.

Keywords: higher dimension, charged compact object, gravity

1. Introduction

In the last couple of decades there has been a considerable research activities in higher dimen-
sions to generalize theoretical models and solutions of the standard four-dimensional Einstein
theory of gravity. The history of higher dimensions goes back to the independent work reported
by Kaluza [1] and Klein [2], to unify gravity with the electromagnetic interaction by introduc-
ing the concept of an extra dimension with the usual four dimensions. In astrophysics the
concept of the usual four-dimensional space-time embedded in a higher dimensional flat space
was put forwarded by Eddington [3]. It has been realized later that the Kaluza—Klein approach
does not work well. It was known later that high energy particle physics requires dimensions
more than four for their consistent formulations. In recent times it is noticed revival of the

! Author to whom any correspondence should be addressed.

1361-6382/20/075017+23$33.00 © 2020 IOP Publishing Ltd  Printed in the UK 1


https://doi.org/10.1088/1361-6382/ab75ae
https://orcid.org/0000-0001-5675-5857
mailto:bcpaul@associates.iucaa.in
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6382/ab75ae&domain=pdf&date_stamp=2020-3-5

Class. Quantum Grav. 37 (2020) 075017 S Dey and B C Paul

concept of the higher dimensions in different aspects of the theoretical research arena. The
successes of superstring theories led to a spurt in activities in higher dimensions. Randall
and Sundrum [4, 5] proposed a new higher dimensional mechanism for solving the hierar-
chy problem in addition to the other aspects in brane-world. Consequently, in astrophysics the
usual four dimensional results have been generalized, namely, spherically symmetric vacuum
solution given by Schwarzschild, Reissner—Nordstrom black hole [6, 7] metric, Kerr black
holes [8], Vaidya solution [9] in the framework of higher dimensions. The mass to radius ratio
in higher dimensions for a uniform density star generalized with some predictions by Paul
[10]. Emparan and Reall [11] obtained a solution for a black ring in 5 dimensions. Cassisi
et al [12] explained the effects of higher dimensions on stellar evolution, Yu and Ford [13]
reported the observable effects of higher dimensions in the case of light cone fluctuations. At
present, higher dimensional theories become an active area of research in understanding the
nature at a very high energy scale and in astrophysics. Duorah and Ray [14] found analytic
solutions for stellar models for dense stars which found lated that the solutions do not satisfy
Einstein’s field equations. Later Finch and Skea [15] modified the metric to consider different
stellar solutions in the Einstein gravitational action to accommodate some solutions obtained
in reference [14] which is known as Finch—Skea [15] metric. The Finch—Skea metric is well
behaved and satisfies all the criteria that are required for a physical acceptable stellar models
[16]. It describes a strange quark star which obtained considering MIT bag model [17] there-
after considering two-fluids models [18]. Banerjee e al [19] showed that a class of interior
solutions corresponding to the BTZ black hole [20] as the exterior solution which is admitted
in a Finch—Skea geometry in (3 4 1)-dimensions.

The gravitational dynamics of a relativistic charged static star may be understood by solv-
ing the coupled Einstein—Maxwell equations. The electromagnetic field in a compact object
has been an active area of research for many decades. Although Glendenning [21] showed that
astrophysical systems are expected to be globally charge neutral at certain evolutionary stages,
acharged astrophysical object might originate. Bonnor and Wickramasuriya [22] demonstrated
that the electric charge plays a crucial role to obtain equilibrium of a compact object which
halts further collapse due to gravitational interaction. The exterior geometry of a static charged
spherically symmetric object is uniquely described by the Reissner—Nordstrom metric. The
interior solution of such a system is, however, not unique and a class of physically motivated
realistic solutions are reported in the literature which is further reviewed by Ivanov [23]. Stet-
tner [24] showed that a homogeneous fluid sphere with a considerable amount of surface charge
density is more stable than that of an uncharged sphere. A class of relativistic charged star solu-
tions in higher dimensions using Vidya—Tikekar metric is reported in reference [25]. Recently,
realistic solutions of Einstein—Maxwell equations describing various aspects of astrophysical
objects, have been developed and analyzed.

The origin of anisotropy in a compact star in the presence of strong electric field has been
studied by Usov [26]. It is also pointed out that the matter inside a compact object may be
anisotropic at a nuclear density ~ 10'> g cm~3, where nuclear interactions can be treated rel-
ativistically, which was originally considered by Ruderman [27]. Charged anisotropic models
with a linear equation of state was considered by Thirukkanesh and Maharaj [28]. Further, Tak-
isa and Maharaj [29] generated regular solutions of anisotropic spherically symmetric object
with charge distributions considering a linear equation of state.

The anisotropy is an important issue which arises due to the fact that in the high-density
regime in compact stars the radial pressure (p;) and the transverse pressure (p;) are unequal
which has been proposed by Canuto [30]. The shear of the fluid may be considered as another
reason for origin of anisotropy in a self gravitating body [31]. Another view is that the slow
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rotation of fluids, a mixture of perfect and null fluids may be considered as the origin of an
effective anisotropic fluid in a compact star.

Hansraj and Maharaj [32] showed that the Finch—Skea geometry describes a realistic
charged compact object in four—dimensions. It was noted that the relativistic solution for
the Einstein—Maxwell equations corresponds to Bessel functions or modified Bessel functions
of different situations. Maharaj et al [33] also adopted a technique to obtain a class of solu-
tions of such relativistic equations which describes an anisotropic charged compact star with
Finch—Skea geometry. Consequently, a class of exact solutions can be obtained from the field
equations in terms of elementary functions to obtain different stellar models. Relativistic solu-
tions of the Einstein—Maxwell equations corresponding to a spherically symmetric charged
sphere using Finch—Skea metric in four-dimensions is studied and the electromagnetic field
effect on the M—R relationship of compact stars also analyzed in reference [34].

The isotropic fluid distribution in a Finch—Skea metric extended to higher dimensions has
been studied by Chilambwe and Hansraj [35]. Dadhich er al [36] obtained the pure Lovelock
analogue with Finch—Skea geometry and established similarity in solutions for the critical odd
andevend = 2N + 1,2N + 2 dimensions. Recently, Paul and Dey [37] obtained new relativis-
tic solutions with Finch—Skea geometry in the usual four and in higher dimensions. It is noted
that an uncharged compact star in four-dimensions with Finch—Skea geometry always accom-
modates an isotropic compact object which however admits an anisotropic star if the space-time
dimension is more than the usual four-dimensions. The motivation of the present paper is to
obtain relativistic models of compact stars in higher dimensional Finch—Skea geometry with
anisotropic fluid distribution and/or charge star. As the matter inside the compact object is
not yet known at the extreme conditions, the equation of state will be determined in addition
to the radial variations of different physical features making use of the technique considered
in the literature [38]. In the absence of any reliable information about the equation of state
(EoS) at extreme densities assumption of the metric potentials predicts the EoS. We consider
here Finch—Skea geometry to construct both charged and uncharged stellar models accom-
modating all the necessary criterion for a physically viable stellar model that are mentioned
by Delgaty and Lake [16]. The objective of the paper is to obtain relativistic solutions in a
higher dimensional Finch—Skea metric to construct relativistic stellar models in higher dimen-
sions. The relativistic solutions will be used to study compact objects with electric field or
anisotropy or presence of both anisotropy and electromagnetic field in the higher dimensional
Finch—Skea geometry. As the size of a compact star is not yet known accurately we study stel-
lar models with a definite mass to estimate radius of a compact object for different parameters
for accommodating neutron or quark stars.

The paper is organized as follows: in section 2, we present field equations governing the
spherically symmetric static charged compact objects corresponding to the Einstein—Maxwell
equations in D-dimensions. By assuming a particular form of the electric field the anisotropy of
the model can be calculated in the Finch—Skea background spacetime. The expressions of these
parameters are determined and different special cases permitted here are discussed. In section 3,
the exterior region of the charged fluid distribution is described by the Reisner—Nordstrom
metric and the junctions conditions joining the interior and the exterior regions are matched at
the boundary of the stars. In section 4, we study physical features of compact objects e.g. radial
variation of electric field, energy-density, pressures, anisotropy and surface charge density in
the usual four and in dimensions more than the usual four dimensions. We analyze the stability
conditions of an anisotropic charged star, different energy conditions and mass—radius relation
also. In section 5, we tabulate the range of different metric parameters for realistic solutions
of stellar models and their variations with dimensions and in section 6, equation of states are
predicted. Finally, in section 7 we discuss the results obtained.
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2. Einstein—Maxwell field equation in higher dimensions and solution

The Einstein’s field equation is given by,

1
Rap — EgahR =k Tap, (D
where, k2 = @, D is the total number of dimensions, Gp = GVp_4 is the gravitational con-
stant in D dimension and V_4 is the volume of the extra space, R, is Ricci tensor and T
is the energy-momentum tensor. We consider the metric of a higher dimensional spherically
symmetric, static spacetime which is given by,

ds* = —e*0dr + eP0dr? + 2day, )

where, v(r) and A\(r) are the two unknown metric functions, n = D — 2 and in = do? +
sin® 0;d63 + sin” 02(d63 + .. .. + sin® §,_,d6?) represents the metric on the n-sphere in polar
coordinates. The energy momentum tensor for a charged star in higher dimensions is given by,

T, =diag(—(p+ E*), pr — E*, p+ E*, ..., p+ E?), (3)

where, p is the energy density, p is pressure and E represents the electric field.
The components of Einstein field equation equation (1) using equations (2) and (3) are given
by

nin—1)(1—e) N n\e 2

>3 =K (p+E), )

e nn—1)(1—e)
r 272

=KX (p, — E), 5)

= (p+ E%), (6)

e 2 (l/” + V/Z N - (n—DW\N — V/)> - (n—1n—-2) (1 - 6_2)‘)

r 2r2

where overheads prime denotes the derivative w.r.t. the radial coordinate . Using equations (5)
and (6), the electric field can be written as

/ / _ o a2A
E? ! (1/” +r VN - p-DX v _@=-D{-e7) (L—e )> 7

2e2A r r r?

Now consider the interior spacetime given by Finch—Skea metric as,

e = /1 +Cr2, ®)

e = (B—A\/l +Cr) cos\/1+Cr2+ (A+B\/1+Cr2) sinv/1+Cr2
)

where A, B and C are unknown constants, prescribing the specific geometries for the three-
space of the interior spacetime of a compact object it is possible to investigate various physical
features of dense stars. For different values of the metric parameters we construct stellar models
for known mass of stars making use of the boundary conditions.
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The total electric charge in higher dimensions is given by
q(r) = 4n / or'e’dr = " E(r), (10)
0

where o denotes the proper charge density. The electric field E is determined using A(r) and
v(r) from equations (8) and (9) in equations (5) and (6) respectively, which is given by,

1 /C*(n—2)r?
E—=./=- u — A (11)
2\ (1+Cr?)?
where A = p, — p, represents the anisotropy in pressure.
We note the following special cases:

Case (i): in four-dimensions (i.e., n = 2), an isotropic uncharged star [23] is obtained.
Case (ii): in higher dimensions (i.e. n > 2), it corresponds to an anisotropic uncharged star
E? = 0 with an anisotropy given by

B C?(n —2)r?

A=p—p=-—""",
Pe— DPr 1+ Cry

(12)
which depends on the space-time dimensions and metric parameter inside the star.

Case (iii): in higher dimensions (i.e. n > 2), an isotropic charged star is permitted. In this
case the electric field is determined as follows

,  Cn—2)r

= 0T CRE (13)

It may be pointed out here that similar features is obtained in D = 4 dimensions with mod-
ified Finch—Skea metric [33, 34]. We also note a new result that an isotropic charged star

with electric field in higher dimensional original Finch—Skea metric can be obtained in higher
dimensions.

Case (iv): in higher dimensions (i.e. n > 2), a new class of stellar models can be obtained
here with both non zero electric field with anisotropic fluid distribution. In this case the
anisotropy and the electric field intensity are determined by considering a fractional distri-
bution between them as o = %. The sum total of electric field intensity and anisotropy is a
constant. Increase in anisotropy leads to a decrease in electric field and vice versa. Now, the
electric field intensity can be expressed as,

Cz(n — 2);’2
E* = : 14
2(1+a)(1+ Cr2)? (14
and then the anisotropic parameter becomes
C*(n —2)r?
A=dapr- CU-2ra (15)

A+ ad+Cr)?

both the electric field and the anisotropic parameter are zero at the center of the compact
object. Both the Electric field and anisotropic parameter are non-zero away from the center
and these are regular functions inside the compact objects. One gets only electric field given
by equation (13) when oo = 0.

Case (v): we note here an interesting case in lower dimensions where the role of radial pres-
sure and transverse pressure changes when o < —1. It leads to E? > 0 with A < 0, demanding
radial pressure being greater than the tangential pressurei.e., p; > p;. It may be pointed out that
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A is regular at the center (beginning as p, = p; at the center) and a wide range of anisotropy
can be obtained for D < 4 with o« > —1. This case permits stellar models only in the frame-
work (2 + 1)-dimensional Finch—Skea metric. However —1 < « < 0leads to charged star with
pr > p which implies A < 0.

Therefore, physical features of a star namely, the radial variations of the energy density (p),
the radial pressure (p;) of a relativistic charged star can be obtained from equations (4) and
(5) using the metric potentials A\(7) and v(r) given by Finch—Skea metric in higher dimensions
which are

_ CQRCr* + n*K”(1 + a) 4 nXo)

2K2K*(1 + ) : (16)

_Cl[ax' nl-n)  @=2)K*-1)
k| K?X, 2K"? 2(1 + a)K™

Pr a7)

where we denote K' =1+ Cr?, X; =(B—AK')cosK + (A+BK')sinK' and X' =
BceosK' +AsinK’, Xo = (1 + a — Cr2(2 4+ a)).

The tangential pressure is p, = p; + A. The surface charged density is obtained from
equation (10), which can be expressed as,

CVn=2)(14+n—Cr*+Cnr?
o= s
42m(1 + Cr2)32\/T+
Using equation (14), the central energy density of a charged star is determined and found that

it is independent of ri.e. the charge density is a constant at the center for a given dimension
(n = D — 2) which is given by,

(18)

~ CI(D—2)+ (D —2)"]
Po = K2 )

The central density is determined by the metric parameter C and space-time dimensions D.
For C > 0 the central density is always positive definite and increases with increase in number
of extra dimensions for D > 2. The electric field E? can be determined from equation (12), it
admits anisotropic charged star for D > 4 with 0 < a < 1. For n = 2 the energy density and
pressure corresponds to uncharged, isotropic star, which admits only in four dimensions. It is
observed from equations (14)—(16) that p, p, and o satisfies simple functional forms which are
well behaved, bounded, finite and regular at the center. The stellar models namely, an x-ray
pulsar Her X-1 characterised by mass M = 0.88M,, where M = the solar mass, size of the
star b = 7.7 km [25,39] and a massive neutron star PSR J0348 + 0432 [40] which my contain
hyperons [41] are considered to construct stellar models in section 5.

19)

3. Physical criterion of charged stellar model

To obtain viable stellar models we impose the following necessary conditions:

e At the boundary of a higher dimensional charged star (i.e. r = b), the interior solution
should be matched with the exterior Reissner—Nordstrom metric in higher dimensions,
given by

2

-1
K q2 K q
2 2 2 2102
ds"=— |1 — o + r2(n1):| dr- + [1 gl + 20 dr- + r<dQ2;,

(20)
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ie., at the boundary of the star (r=»5b), we match e>(=0) = 2A0=b

= {1 — 1% + bz(‘]n—:)} where ¢ denotes the total charge of the compact star as measured
by an observer at infinity and the corresponding mass in the absence of EM field. The
mass of a star is given by M = I’Z‘T”GI; and Gp = GVp_4 with V,, = %

e The radial pressure (p;) drops from its maximum value (at center) to zero at the boundary,
i.e,atr = b, p,—, = 0.

e Inside the charged sphere, the density and the pressures should be positive.

e To maintain the causality condition the speed of sound must satisfy the inequality
v? = £ < 1, which leads to stability [42].

e In general, for a charged fluid sphere in equilibrium with nonzero pressure, M> > ¢*
(CooperStock and De La Cruz [43])

e The gradient of the pressure and energy-density should be negative inside the stellar
configuration, i.e., % < 0 and ‘3—5 < 0.

e The metric potentials v(r), A(r) given by equation (2) and the electric field intensity E
should be positive and non singular inside the star.

e At the center of the star, A(0) = 0 which implies zero radial and tangential pressure,
p:(0) = p(0).

e The charged anisotropic fluid sphere must satisfy the following three energy conditions,
viz., (a) null energy condition (NEC), (b) weak energy condition (WEC) and (c) strong
energy condition (SEC).

e The adiabatic index I' = 222 £ > % required to satisfy for ensuring stability of the stellar
configuration (Heintzmann and Hilebrandt) [44].

4. Physical analysis of compact objects
In this section we examine the physical properties of compact objects:

4.1. Variation of electric field and charged density with dimensions

The radial variation of the electric field E? is plotted in figure 1. It is found that electric
field intensity increases away from the center but the variation decreases as it approaches the
boundary. For a given value of the parameter « the electric field intensity also increases with
the increase in dimensions of the spacetime (D). For D = 4 it reduces to an uncharged star.
Thus existence of extra dimension leads to charged stars. Thus, the Finch—Skea metric admits
charged star in higher dimensions which however remains uncharged in four-dimensions. This
is a new result. The radial variation of proper charge density (o) with various dimensions for
a given « is plotted in figure 2. It is found that the charge density is maximum at the center
which however decreases toward the boundary. The charge density also increases with increase
in dimensions for a given mass and radius of the star.

4.2. Energy-density and radial pressure in higher dimensions

In this section, the radial variation of p and p; are plotted for D =4, 5, 6, 7 in figures 3 and 4
respectively. The density of the charged star is maximum at the center which decreases radially
outward. The radial pressure decreases away from the center which vanishes at the boundary.

The plot of transverse pressure with radius in figure 5, follows the same behavior in different
framework of dimensions. It is evident from figures 4 and 5 that both p; and p; are same at the
center of the star, which, however, branches away toward the boundary of the star. It is evident
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Figure 1. Radial variation of E? at the stellar interior of the pulsar Her X-1 for D = 5
(black), D = 6 (blue) and D = 7 (green) considering o = 0.5.
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Figure 2. Radial variation of o at the stellar interior of the pulsar Her X-1 for D =5
(black), D = 6 (blue) and D = 7 (green) considering o = 0.5.

that both the energy-density (p) and the radial pressure (p;) are higher for a charged compact
object (for D > 4) compared to the uncharged star (for D = 4). The variation of the energy-
density and radial pressure gradients with dimensions are plotted in figures 6 and 7, it is clear
that they are negative inside the star.

4.3. Anisotropy in pressure

In figure 8 radial variation of A is plotted for D = 5,6,7. For a given « as the space-time
dimension increases it incorporates more anisotropy inside the star. In figure 9 the variation
of A and electric field intensity (E?) are plotted for an increase in a. It is evident that as «
increases anisotropy increases and electric field intensity decreases. Thus « plays an important
role in deciding the anisotropic pressure distribution inside a compact object for a given charge
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0.00 ;\ L L L 1 L L L 1 L L L 1 L L L \:
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Figure 3. Radial variation of energy-density (p) in Her X-1 for D =4 (red), D =5
(black), D = 6 (blue) and D = 7 (green) in the unit of Gp (considering o = 0.5).
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0.01of
& o.oosf
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0.002 |

0.000 -
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Figure 4. Radial variation of p; in Her X-1 for D = 4 (red), D = 5 (black), D = 6 (blue)
and D = 7 (green) in units of Gp (considering a = 0.5).

configuration. It represents the sharing between E> and A for a given star. In figure 9, we
plot both E? and A inside Her X-1 (with size b = 7.7 km) for o which varies from 0 to 1.
It is also evident that A > 0, for p; > p, which in turn implies that the anisotropic stress is
directed outwards, hence there exists a Coulomb repulsive force which dominates over the
gravitational attraction, consequently it may lead to formation of super-massive stars in more
than four-dimensions. Thus, we note that the anisotropic charged stars in higher dimensional
Finch—Skea geometry are possible which however are not permitted in four-dimensions.

4.4. Stability study

4.4.1. Herrera’s cracking concept. The stability of a stellar model is studied by plotting square
of the radial speed of sound (v?) and square of the transverse speed of sound (v? ) with 7 in

9
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Figure 5. Radial variation of p, in Her X-1 for D = 4 (red), D = 5 (black), D = 6 (blue)

and D = 7 (green) in units of Gp (considering o = 0.5).
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Figure 6. Radial variation of %§ in Her X-1 for D
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and D = 7 (green) (considering o = 0.5).

= 4 (red), D = 5 (black), D = 6 (blue)

figures 10 and 11 respectively. Itis evident that one obtains stellar models in higher dimensions,
where v? and v? always less than 1. Consequently, a stable configuration of an anisotropic
charged compact object can be accommodated [42].

4.4.2. Adiabatic index. In a compact star there is no heat transfer from or to the compact
system (or any isolated gravitating object), consequently it may be considered as an adiabatic
system which obeys the equation of state namely, pV' = constant, where I" = adiabatic index.

The adiabatic index for the radial pressure is

Iy
pe dr

_pEpdn ot

21
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Figure 7. Radial variation of ‘L—’:‘ in Her X-1 for D = 4 (red), D = 5 (black), D = 6 (blue)
and D = 7 (green) (considering o = 0.5).

0.0025 |

0.0020 |

_, 0.0015 -

A (km™) ,

0.0010

0.0005 |

0.0000 £

r(km)

Figure 8. Radial variation of A at the stellar interior of the pulsar Her X-1 for D =5
(black), D = 6 (blue) and D = 7 (green) (considering o = 0.5).

and the adiabatic index for the tangential pressure is

_ptpdp _ptp s

r v, (22)
' p dr P '

It is to be noted that the conventional condition for the stability with adiabatic contraction of
a Newtonian isotropic sphere is p ~ p', provided that I' > % [44]. Therefore for a relativistic
stable isotropic sphere it is also considered I' > % due to the presence of regenerative effect of
pressure and even it is also applicable in the case of a radial pulsating neutron star. However,
for an anisotropic relativistic sphere the situation becomes more complicated and the stability
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Figure 9. Variation of E*(black) and A(red) inside Her X-1 with « for D = 5 (solid
line), D = 6 (dashed) and D = 7 (dot dashed) (considering b = 7.7 km).
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Figure 10. Radial variation of v? at the stellar interior of the pulsar Her X-1 for
D = 4(red), D = 5 (black), D = 6 (blue) and D = 7 (green) (considering oo = 0.5).

condition for an anisotropic fluid is given by [45,46]:

4 4 —po | 2 X
Lol >~ + = Po — Do TpoPror

3.3 |Pholr P2l ’
where py, po and po are the initial radial, tangential, and energy density respectively. The
first and last terms inside the square bracket represent the anisotropic and relativistic correc-
tions respectively and both the quantities are positive which increases the range of I'. It is
evident from figures 12 and 13 that both the radial and tangential adiabatic index satisfies
the inequality I', > I'; throughout the star and hence the stellar model is stable. The tangen-
tial pressure in the higher dimensional compact object always dominates and increases with
a higher rate than that of the radial pressure. On the other hand the adiabatic index satisfies
an inverse relation with pressure, therefore, I, > I'\. At the surface of the compact object, I';

(23)
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Figure 11. Radial variation of ’U[2 at the stellar interior of the pulsar Her X-1 for
D = 4(red), D = 5 (black), D = 6 (blue) and D = 7 (green) (considering o = 0.5).

r(km)

Figure 12. Behavior of I, at the stellar interior of the pulsar Her X-1 for D = 4 (red),
D =5 (black), D = 6 (blue) and D = 7 (green) (considering o = 0.5).

increases more rapidly than I';. The above result is because of the fact that the radial pres-
sure decreases more rapidly near the surface than that of the tangential pressure. Thus stable
anisotropic compact charged star is possible to accommodate in Finch—Skea metric in higher
dimensions.

4.5. Energy conditions

The charged anisotropic fluid sphere satisfies the following three energy conditions, viz., (i) null
energy condition (NEC), (ii) weak energy condition (WEC) and (iii) strong energy condition
(SEC). We note the following inequalities:

13
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Figure 13. Behavior of I, at the stellar interior of the pulsar Her X-1 for D = 4 (red),
D =5 (black), D = 6 (blue) and D = 7 (green) (considering o = 0.5).
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Figure 14. Behavior of NEC inside Her X-1 for D =4 (red), D = 5 (black), D =6
(blue) and D = 7 (green) (considering o = 0.5).

E2
NEC: p+ — >0, (24)
8
E2
WECI: p+ p. > 0; WEC2: p+ p + T >0, (25)
7
E2

The plots in figures 14—17, in support of the energy conditions corresponding to
equations (24)—(26), for a specific stellar configuration.
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Figure 15. Behavior of WECI inside Her X-1 for D = 4(red), D = 5 (black), D =6
(blue) and D = 7 (green) (considering o = 0.5).
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Figure 16. Behavior of WEC2 inside Her X-1 for D = 4(red), D = 5 (black), D =6
(blue) and D = 7 (green) (considering o = 0.5).

4.6. Mass-radius relationship

The total mass of a charged star contained within radius 7 in D-dimension is given by,

r E2 /
m(r) = A, / P2 [p(r/) + (r)} dr, (27)
0 8T
nt1
where, A, = Fz”n—jl and p(r’) represents the energy density at r’ = r. We consider Her
2

X-1 with observed mass equal to 0.88M, [25,47]. Now plotting the observed mass in the
mass—radius curve in figure 18, it is found that one can predict the variation of the size of
a compact object. For uncharged case (i.e. D = 4) to charged cases (in higher dimensions,
D > 4) the radius may vary. In a higher dimensional case the size of a star may be lower
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Figure 17. Behavior of SEC inside Her X-1 for D = 4(red), D = 5 (black), D = 6 (blue)
and D = 7 (green) (considering o = 0.5).

r(Km)

Figure 18. Radial variation of mass inside Her X-1 for D = 4(red), D = 5 (black),
D = 6 (blue) and D = 7 (green) (considering o = 0.5).

than 7.7 km, which accommodates a charged anisotropic star. From figure 18 it is found that
for a given mass the radius decreases with increase in dimensions, thus mass to radius rela-
tion is also known as the compactness factor increases in higher dimensions. It is also noted
that for a given radius, the total mass increases with an increase in charge density because
the electric energy density adds on to the mass energy density and its variation is more effec-
tive near the boundary of the star. As it is not yet measured the radius of a star accurately,
many aspects of a compact object may be understood once the mass and radius are determined
accurately.
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Table 1. Different values of parameters A, B, C for Her X-1 considering o = 0.5.

D A B C

4 0.2721 0.4489 0.008 578
5 0.7572 0.3272 0.006 760
6 1.3028 0.1900 0.005707
7 1.8792 0.0464 0.005 007
8 2.4742 0.1004 0.004 502
9 2.5522 0.4757 0.010 895
10 3.6985 0.3993 0.003 812

Table 2. Different values of parameters A, B, C for PSR J0348 + 0432 considering

a =0.5.

D A B C

4 0.3153 0.2625 0.009 664
5 0.677 49 0.1748 0.006967
6 1.134 17 0.0524 0.005 608
7 1.6406 0.0835 0.004 771
8 2.1775 0.2262 0.004 198
9 1.6891 0.8054 0.013922
10 3.3067 0.5217 0.003 454

Table 3. Different values of parameters A, B,C in D = 4 and D = 5 for pulsar Her
X-1 considering o = 0.5.

D=4 D=5

r A B C r A B C

14 022195 0.56591 0.001161 14 0.78203 0.43346  0.000952
13 0.22706 0.55558 0.001476 13 0.77744 0.42473  0.001207
12 0.23293 0.54331 0.001917 12 0.77207 0.41439 0.001561
11023970 0.52865 0.002552 11076571 0.40198 0.002070
10 0.2477 0.51067  0.003 506 10 0.75802 0.38689  0.002 825
9 0.25712  0.48821  0.005 0045 9 074852 0.36808  0.004 002
0.26834  0.45928  0.007 5060 0.73647 0.34398  0.005938
0.28169 0.42058 0.01203 0.72057 0.31197  0.009 372
0.29720 036602 0.02118 0.6984 0.26733 0.016115
0.3130 0.28288 0.043 19 0.6646 0.20057  0.031494
0.3147 0.13969 0.11556 0.6037 0.08931 0.076 546

E LY, e NN e ]
Y e N e )

5. Variations of metric parameters with dimensions in charged star

The parameters A, B and C in Finch—Skea metric given by equations (8) and (9) are determined
in terms of space-time dimensions (D). The parameters are determined in four-dimensions for
a given mass and radius of a star. It is noted that the model can be extended for higher dimen-
sions upto D = 7 for the parameters with allowed values that are tabulated in tables 1 and
2 for Her X-1 and PSR J0348 + 0432 respectively. From table 1, it is evident that Her X-1

17
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Table 4. Different values of parameters A,B,C in D =4 and D = 5 for PSR J0348
+ 0432 considering o = 0.5.

D=4 D=5

r A B C r A B C

14 029572 0374292 0.003748 14 0.70176 0.27403 0.002 863
13 0.30228 0.344305 0.004962 13  0.68961 0.24970 0.003737
12 0.3093 0.307 86 0.006783 12 0.67482 0.22040 0.005015
11 031531 0.26255 0.009664 11  0.65626 0.18437  0.006 9684
10 0.31826 0.20471 0.014 56 10 0.63197 0.139 0.010 128
9 0.31315 0.12777 0.023 841 9 059823 0.08006 0.01565

0.0044
0.003
Ng 0.002-
0.0014

0.000 1

0015 0.020 0.025 0.030 0.035 0.040 0.045
2
p (km”©)

Figure 19. Curve fitting of p; with p* in Her X-1 for D = 4(black), D = 5 (red).

can be considered in D = 4 which can be embedded in D = 5 to D = 7. It is found that Her
X-1 does not permit space-time dimension more than 7 as unphysical results cropped up
(v? > 1 and M? < Q%) here. Similarly, from table 2 it is evident that PSR J0348 + 0432 per-
mitted in D = 4 can be embedded to D = 5 and D = 6 dimensions, as for D > 7 PSR JO348
+ 0432 it gives rise unphysical result (v> > 1).

The metric parameters A, B and C for both D = 4 and D = 5 dimensions for a range of
values of radius i.e. from R = 4km to R = 14km for Her X-1 using Finch—Skea metric are
presented in table 3. For PSR J0348 + 0432, the metric parameters A, B and C for D = 4 and
D = 5 dimensions are presented in table 4. In this case we consider a range size for PSR J0348
+ 0432 taken from R = 9km to R = 14 km. For PSR J0348 4 0432 it is noted that R < 9km is
not permitted in both D = 4 and D = 5 dimensions. Thus it is noted that stellar models namely,
HER X1 and PSR J0348 + 0432 can be accommodated with radius lying between 4 km to
14 km for different parameters, this is the reported observed range for radius for neutron star.
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Figure 20. Curve fitting of p; with p* in Her X-1 for D = 6(blue), D = 7 (green).

6. Equation of state (EoS)

The parametric plot of radial pressure and density is employed here to determine the equation
of state (EoS). It is highly non-linear, we analyze and fit the curves to express pressure as a
function of density. The effective energy density and pressure of the system are given by:

B 2
pr=p— o and p =p+ —, (28)

8 8
for obtaining EoS. We plot p; against p* making use of the equation (28) which is shown in
figures 19 and 20 for D = 4 and D = 5 dimensions respectively. Finally, we find the best fitted
relations for Her X-1. It is found that EoS for Her X-1 is linear for D =4 and D = 5, but
non-linearity develops in figure 20 as the number of dimension increases say for, D = 6 and
D=1.

7. Discussion

We obtain a class of relativistic solutions for static compact charged stars in a higher
dimensional Finch—Skea geometry. For realistic stellar models the interior solutions of
Einstein—Maxwell equations for a charged compact object is matched with that of the
Reissner—Nordstrom metric at the boundary. A higher dimensional geometry described by
Finch—Skea metric is considered to explore the effect of dimensions in the compact objects.
We consider two known stars, namely Her X-1 and PSR J0348 + 0432. Her X-1 is charac-
terized by its mass, M = 0.88M,, where M, represents the solar mass with a size of the star
b ="7.7km [25,47] (values within the experimental ranges of mass and radius of Her X-1). We
note the following:

(a) The radial variation of p, p, and p, for D =4 to D =7 dimensions are plotted in
figures 3—5 respectively. The energy density and the radial pressure are found well behaved
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inside the compact object. Both the energy-density (p) and the radial pressure (p;) begins
from higher values which then decreases away from the center. In the case of higher dimen-
sion (n > 2) as the number of space-time dimensions increases the density and pressure
also increases. The central density is found to increases with the increase in the number
of extra dimensions in the theory. The plot of variations of the energy-density and radial
pressure gradients with dimensions are shown in figures 6 and 7, which are negative inside.

Itis found that the relativistic solutions in higher dimensions admits charged stars in higher
dimensions. The plot of radial variation of E? in figure 1 show that it increases away from
the center to the periphery. As the number of extra dimensions is increased it leads to
a compact star with more electric field at the surface. In figure 2, the radial variation of
proper charged density (o) is plotted for a given dimension. It is evident that the charge
density is more at the center which also increases with the increase in number of extra
dimension and away from the center it decreases.

In four-dimensions one gets that A = 0 leads to an isotropic star. However, as the spacetime
dimensions (n) is increased the stellar model here allows an anisotropic compact star which
is shown in figure 8. It is noted that as one moves away from the center there is a branching
away of the radial and tangential pressures and once again it is found that it increases
with the increase in number of extra dimensions. Here the anisotropic parameter A is
always positive which means p; > p;, which implies that the anisotropic stress is directed
outwards, thus there exists a coulomb repulsive force dominating over the gravitational
attraction in a charged star. It allows the formation of super-massive stars in a higher
dimensions. In figure 9, the electric field intensity E2 and A inside Her X-1 are plotted
for different values of the fractional distribution .. In Her X-1 (considering b = 7.7 km),
varying o from 0 to 1 it is evident that while E? decreases A increases and vice-versa
which are plotted for D =5 to D = 7 dimensions. For a given lower values of « it is
electric field that dominates over the anisotropy. Thus there exist an interplay between E?
and A.

The solutions obtained here reduces to an isotropic star with charge when a = 0, in higher
dimensions which follow from equations (12) and (13). A number of new and interesting
cases are obtained here which are enumerated in section 2 as observed from case (i) to
case (v).

The variation of the radial and transverse speeds of sound are plotted in figures 10 and 11
respectively. The stellar models found here are stable as v, and vy < 1.

The adiabatic indices I'; and I'; are plotted in figures 12 and 13 respectively which are
greater than %. It is clear that both the radial and tangential adiabatic index follow the
inequality I'; > I'\ throughout the star and hence the stability of the models are ensured
once again.

In figures 14—17, the radial variation of the energy conditions, viz., (a) null energy con-
dition (NEC), (b) weak energy condition (WEC) and (c) strong energy condition (SEC)
are plotted for different space-time dimensions. It is found that the stellar models obtained
here are realistic for a set of model parameters.

The mass radius plot in figure 18 for different dimensions shows that the size of a compact
star for a given mass may be different. As the number of dimensions increases the star
may accommodate more mass and lesser radius than the usual four dimensions. It is also
evident that for a given radius, the total mass increases with an increase in charge density
because the electric energy density adds on to the mass energy density.
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Table 5. Predicted EoS for Her X-1 in different dimensions taking a = 0.5.

Dimensions(D) Equation of states (EoS)

4 pr = 0.234p — 0.003

5 pr = 0.237p — 0.005

6 pr = 1.4131p7 +0.241 93p — 0.0108
7 pr = 4.5303p? + 0.016 83p — 0.0130

The metric parameters A, B and C of Finch—Skea metric are determined for consistent
stellar models for D =4 to D = 10 dimensions. In table 1 for we presented the val-
ues, and it is seen that as D increases A also increases with various values of B and
C. In table 2 we present the values of A, B and C for PSR J0348 + 0432. It is evident
that Her X-1 can be accommodated in D = 4 upto D = 7 dimensions as D > 8§, leads
to unphysical result. Similarly, from table 2 it is evident that for PSR J0348 + 0432
can be accommodated for D > 7. Thus we note that spacetime dimensions here plays
an important role in describing a given known star for higher dimensional Finch—Skea
geometry.

The effective energy density (p*) and the effective radial pressure (p;) are determined for
a given set of values of the model parameters and a best fitted curve can be drawn as the
EoS does not correspond to any known functional form. In the case of Her X-1,in D = 4
and D = 5, the EoS of the star are found linear, which becomes non-linear in D = 6 and
D =7 as presented in table 5. A deviation from linearity is visible due to the incorporation
of charges in higher dimensions. The variation of p; with p* are shown in figures 19 and
20 in different dimensions.

The metric parameters A, B and C for both D = 4 and D = 5 dimensions for Her X-1 are
determined using Finch—Skea metric. We consider a range of size i.e., from R = 4km
to R = 14km shown in table 3. For PSR J0348 + 0432 we also determined the metric
parameters A, B and C for D =4 and D = 5 dimensions in table 4 and here we have
seen that the acceptable range for PSR J0348 + 0432 is from R = 9km to R = 14km
using Finch—Skea metric. It is found that PSR J0348 + 0432 can be accommodated with
lowest size R = 9km both D = 4 and D = 5 dimensions. The other compact stars will be
taken up elsewhere. We can estimate the size of the compact star knowing its mass which
can be accommodated over a wide range of values of the radius depending on the model
parameters. As the actual size of a star is not known accurately in future the model may
give an acceptable estimation with its physical features.

Thus in a higher dimensional Finch—Skea geometry we obtained relativistic solutions which
can be employed to construct stellar models of different kinds. The parameters of the model
plays an important role to estimate the radii of compact objects. We consider two such stars and
determine the radii of those stars satisfying the observed limits for neutron star by a variation
of the model parameters.
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