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Abstract
Relativistic impulse approximation (RIA) has been widely used in atomic, condensed matter, nuclear,
and elementary particle physics. In former treatments of RIA formulation, differential cross sections
for Compton scattering processes were factorized into atomic Compton profiles by performing
further simplified approximations in the integration. In this study, we develop an ‘exact’ numerical
method without using any further simplified approximations or factorization treatments. The validity
of the approximations and factorizations used in former RIA treatments can be tested using our
approach. Calculations for C, Cu, Ge, and Xe atomic systems are carried out using Dirac–Fock (DF)
wavefunctions, and comparisons between the proposed approach and former treatments of RIA are
performed and discussed in detail. Numerical results indicate that these simplified approximations
work reasonably in the Compton peak region, and our results have little difference with the best of
the former RIA treatments in the entire energy region. Meanwhile, in regions far from the Compton
peak, the RIA results become inaccurate, even when our ‘exact’ numerical treatment is used.

Keywords: Compton scattering, relativistic impulse approximation, differential cross section,
Compton profile, Dirac–Fock theory
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1. Introduction

Atomic Compton scatterings, which have been widely investi-
gated over the past few decades, are expressed as follows:

w w+ + +- + A e A 1i f⟶ ( )

.Many aspects of physics, such as electron correlations [1, 2],
electron momentum distributions [3–5], Fermi surfaces [6],
x-ray, and gamma-ray radiations [7–9], have been revealed
through them. Moreover, Compton scatterings have been uti-
lized to develop the modern gamma-ray spectrometer and ima-
ging devices [10–12].

For convenience, Compton scattering is conventionally
approached using the Klein–Nishina formula from free elec-
tron approximation (FEA) [13, 14]. In FEA, electron inter-
actions with atomic ions are neglected, and electrons are also
assumed to be at rest prior to photon scatterings in the
laboratory frame. In the Klein–Nishina formula, the energy of
the scattered photon ωC is completely determined using its
scattering angle θ as follows:
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w

w q
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+ - mc1 1 cos
. 2C
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The Klein–Nishina formula works perfectly in high-energy
regions, where the electrons are asymptotically free. How-
ever, in low-energy regions, where the atomic binding effects
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are present, the FEA becomes inappropriate and the Klein–
Nishina formula fails to explain the experiments [7].

The atomic binding effects are systematically treated in
impulse approximation (IA) [15–20], in which the electrons
in an atom have a momentum distribution. The motion of
electrons causes a Doppler broadened Compton spectrum, as
shown in figure 1. In the former treatments of IA models, the
doubly-differential cross section (DDCS) of Compton scat-
terings can be factorized into two parts, given by

s
w W

=
d

d d
Y J. 3

f f IA

2⎛
⎝⎜

⎞
⎠⎟ · ( )

Here, Y is a factor dependent on kinematical and dynamical
properties of Compton scatterings, and irrelevant to the electronic
structure of target materials. The correction factor J, known as the
Compton profile, is related to the momentum distributions of
electrons in the atomic or molecular ground state.

Currently, former IA treatments, which incorporate the
factorization in equation (3), are widely applied in inter-
disciplinary studies, particularly in condensed matter, nuclear,
and elementary particle physics. Sophisticated electronic
structures [21, 22], electron correlations [1, 2], band struc-
tures, and Fermi surfaces [6, 23] in condensed matter physics
are studied using Compton profiles. The current Geant4 and
other Monte Carlo simulation packages in nuclear and particle
physics adopt the IA formulation and Compton profiles
[24–26]. The conclusions of these interdisciplinary studies
depend strictly on the validity of factorization in equation (3).
Previously, it was believed that this factorization result
adopted in former relativistic impulse approximation (RIA)
treatments does not essentially change the physical results
[17]. However, this assumption has not been quantitatively
analyzed in recent years. Thus, this study is focused on
clarifying whether essential differences in IA formulations
exist with and without these factorization treatments.

Therefore, for a comprehensive study of atomic Compton
scattering processes, in this study we develop an ‘exact’ num-
erical treatment of RIA without invoking the factorization in
equation (3). Then we apply the present approach to Compton

scattering with several atomic systems, and the results are
compared with those of former treatments of RIA. Furthermore,
a careful analysis of the adequacy of former RIA treatments and
the validity of factorization in equation (3) is provided in this
work. Moreover, effective Compton profiles (ECPs) are pro-
posed and analyzed to quantify the differences between our
results and those of former RIA treatments.

Recently, LaJohn compared various treatments of RIA
formulation in a similar manner, and achieved the non-
relativistic limit of RIA for low-momentum-transfer cases
[27]. However, his work is limited to hydrogen-like systems.
In our study, more complicated atomic systems are con-
sidered. We apply the present scheme to the atoms C, Cu, Ge,
and Xe, which are chosen to represent elements in the small-
Z, middle-Z, and large-Z regimes. To obtain the ground state
wavefunctions for atomic systems, we have employed the
fully relativistic Dirac–Fock (DF) theory [28–32]. In the DF
formalism, electrons in atomic systems are quantized and
many-body effects, including electron exchange and electron
correlation interactions, are effectively considered.

Recently, there has been great interest in experimentally
detecting dark matter particles [33–39] and neutrino-less
double beta decays [40–44]. These experiments, which utilize
high-purity germanium and xenon detectors, require a suffi-
ciently low radiation background. Compton scattering is one
of the most dominant radiation backgrounds for x-ray and
gamma rays which must be suppressed and subtracted.
Therefore, studying the atomic Compton scattering effects in
detectors could have a great impact on these elementary
particle experiments. Recent studies using former treatments
of RIA have indicated that low-momentum transfer Compton
scattering plays a remarkable role in dark matter direct
detections [45, 46]. Further, our method can be easily applied
to this area, and could impact and guide the analysis and
subtraction of Compton scattering backgrounds in particle
physics experiments.

This paper is organized as follows: section 2 introduces
the RIA formulation, and is divided into two subsections. In
section 2.1, we briefly review the former treatments of
Compton scattering in RIA formulation. In section 2.2, we
describe our present numerical treatment of RIA for appli-
cation to atomic Compton scatterings. The results and com-
parisons of our approach and former RIA treatments are
presented in section 3. Finally, the conclusions and future
perspectives are provided in section 4.

2. RIA

2.1. Former treatments

In this section, we give a theoretical description of the former
treatments of RIA formulations for Compton scatterings. The
nonrelativistic-IA approach can be derived similar to the
relativistic case.

In the RIA formulations, consider an incident photon
with energy ωi and momentum ki scattering with an electron
which has energy Ei and momentum pi. After scattering, the

Figure 1. Compton spectrum in the IA model at the scattering
angle θ.
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energy and momentum of the emitted photon are ωf and kf ,
and the energy and momentum of the final state electron are
Ef and pf . Then the DDCS of Compton scattering in the RIA
formulation is given by [17–19]
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where r0 is the electron classical charge radius, functions Ki,
Kf are defined as
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and the kernel function X(Ki, Kf) is defined as
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Here, r pi( ) denotes the momentum distribution of electrons,
which is calculated through

år f=p p . 8i
a

a i
2( ) ∣ ( )∣ ( )

Here, the sum is over all electrons, and f pa i( ) is the
momentum wavefunction for the a-th electron, which is
related to the electron’s position wavefunction y ra ( ) through
Fourier transformation
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In this work, we employ the fully relativistic DF theory to
calculate the total wavefunctions for atomic ground states and
the wavefunctions for individual electrons.

The integration in (4) is over all components of pi,
namely px, py, pz, respectively. However, when one of these
components, such as pz, is integrated out, the Dirac delta
function δ (Ei+ωi−Ef−ωf) in the integrand constrains the
pz component to be a fixed value, leaving px and py compo-
nents in the integral. Further, the fixed value for the pz
component can be completely determined by energy and
momentum conservations. For convenience, we can introduce
a coordinate system xyz such that the z axis represents the
momentum transfer direction. In this coordinate system, the pz
component can be expressed as:

w w q w w
= - =

- - -p q
p

q

E p

c q

1 cos
10z

i i f z i f
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· ( ) ( )( )
( )

where = +E p m c p cz z
2 4 2 2( ) and q is the modulus of the

momentum transfer vector º -q k ki f . Furthermore, a

previous study revealed that pz and E(pz) are exactly the
energy and momentum minimum of the initial state electrons
activated in Compton scattering [27], namely

= =p p E E p; . 11i z i z
min min∣ ∣ ( ) ( )

In many literatures [19, 20, 24, 25, 47], a convenient
approximation for the pz component is proposed as follows

w w q w w
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This approximation works well in small pz regions, however,
it can cause notable discrepancies in large pz regions. The
coordinate system xyz is illustrated in figure 2.

In previous studies, Ribberfors et al found that the kernel
function X(Ki, Kf) in equation (4) is a slow-varying function
and therefore can be pulled out of the integration [17, 19, 20].
Successively, this kernel is furthermore approximated by
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Figure 2. Coordinate systems XYZ and xyz. Coordinate system XYZ
is chosen such that the Z axis is along the direction of initial photon
ki, and the X axis can be chosen as an arbitrary direction
perpendicular to the Z axis. The direction of the scattered photon is
denoted as kf , and the vector q is defined as º -q k ki f . The z axis
represents the momentum transfer direction.
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Using the above assumptions, the DDCS of Compton
scatterings in the former RIA treatments is given by
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where J(pz) is an integral for px and py components. The same
results can be derived from equation (4) through integration
by part [17].

An alternative and simpler approximation of the kernel
function X(Ki, Kf) can be made by taking the p 0z limit of
X pz( ), which finally gives its Klein–Nishina value [19, 20]
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Therefore, the simplified results of the DDCS for Compton
scatterings in former RIA treatments can be expressed as
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From equations (16) and (18), it is obvious that the
DDCS of Compton scattering in former RIA treatments fac-
torizes into two parts similar to equation (3),

s
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The correction factor J(pz), which incorporates ground state
electron momentum distribution, is called the atomic Comp-
ton profile

ò rº pJ p dp dp . 20z x y( ) ( ) ( )

For most of the atomic systems, the momentum distribution is
spherically symmetric, then the atomic Compton profile
reduces to

òp r=
¥

J p p p dp2 . 21z
pz

( ) ( ) ( )
∣ ∣

In these cases, the Compton profile J(pz) is bell-shaped and
axisymmetric around the pz=0 axis. We restrict ourselves to
the spherically symmetric case in this study.

From the procedures described above, we can notice that
there are similarities among several former RIA treatments for
Compton scattering. The kernel function approximations
X(Ki, Kf)≈XKN and »X K K X p,i f z( ) ( ), together with the
factorization result equation (19), are the key features for
former RIA treatments. Currently, these former RIA treat-
ments are still directly used in theoretical and simulative
studies [24, 25, 47]. Moreover, large numbers of inter-
disciplinary works in condensed matter physics and material
science focusing on electron correlations [1, 2], electron
momentum distributions [3–5, 21], band structures, and Fermi
surfaces [6, 23], are based on these approximations. In the
next subsection, we introduce an ‘exact’ numerical approach
to calculate the DDCS of Compton scattering, which does not
utilize the above-mentioned kernel function approximations
and the factorization results. Therefore, in principle, our

approach is more precise than those of former RIA treatments.
Furthermore, the validity of the above kernel function
approximations and the factorization results, which have been
widely adopted in former RIA treatments as well as inter-
disciplinary studies, can be rigorously tested using our ‘exact’
numerical approach.

2.2. ‘Exact’ numerical treatments

In this section, we describe our ‘exact’ numerical treatment
for RIA formulation. Instead of treating the kernel function
X(Ki, Kf) to be a slow-varying function in the integration as
Ribberfors et al expected, we directly evaluate the integral in
equation (4) through a numerical scheme.

The geometry of the Compton scattering process efficient
to numerical evaluation is illustrated in figure 3. We chose a
coordinate system XYZ such that the incoming photon moves
towards the Z direction; the azimuthal angle and polar angle
for the outgoing photon, initial electron, and final electron are
denoted as (θ, f), (θ1, f1), (θ2, f2), respectively. By
employing such a coordinate system, the functions Ki and Kf

can be calculated as

q
w w q

= = -K K p
E

c

p

c
,

cos
22i i i

i i i i
1 2

1( ) ( )

q q
w w q

= = -
-

K K p K p
c

, ,
1 cos

. 23f f i i i
i f

1 1 2
( ) ( )

( )
( )

From the energy and momentum conservations in the
Compton scattering process, the energy of the scattered
electron is given by

Figure 3. Coordinate system XYZ used in the numerical evaluation.
The Z axis is chosen to be the direction of initial photon ki similar to
figure 2. The direction of the scattered photon is denoted as =kf

q fk , ,f( ), and the vectors q f=p p , ,i i 1 1( ) and q f=p p , ,f f 2 2( )
represent the momentum of the initial state and final state electrons.
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For simplicity, in this work, we only restrict ourselves to
spherically symmetric atomic systems, and more complicated
molecular or condense matter systems are not taken into
consideration. In our numerical calculations, the DF theory is
used to achieve the ground state wavefunctions and the
electron’s momentum distribution. Since spherically sym-
metric atomic systems are considered, the electron’s
momentum distribution reduces to r r=p pi i( ) ( ). In the DF
theory, the wavefunction of an individual electron is given by
the Dirac orbital unjl(r), which is composed of a large
component Gnjl and a small component Fnjl. Then the
corresponding large and small components of momentum
wavefunctions are given by the following Fourier transfor-
mation:
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and the total momentum distribution can be calculated
through

å år f f f= = +p p N p p

27
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where Nnjl is the number of electrons in each orbital (njl).
Detailed descriptions of the Dirac orbital unjl(r) as well as its
large and small components are given in appendix A.

Putting equations (22), (23) and (27) into the integration
in equation (4), and taking the atomic binding energies into
account, we obtain the DDCS for the Compton scattering
processes
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where Enjl
B is the binding energy of orbital (njl), and

w wQ - - Ei f njl
B( ) is the Heaviside step function. When the

energy transfer T=ωi−ωf is less than the atomic binding

energy Enjl
B , the Heaviside step function vanishes the cross

section from this orbital (njl). In other words, the electron in
this orbital is inactive in the atomic Compton scattering
process w w+ + +- + A e Ai f⟶ .

In order to get the results of the DDCS numerically, one
point should be mentioned. In equation (28), when integrating
one of the three variables pi, θ1 and f1, the Dirac delta
function δ(Ei+ωi−Ef−ωf) in the integrand restricts this
variable to a fixed value. The fixed values pĩ, q1

˜ or f1
˜ can be

solved by finding the zeros of function

q f w q f w= + - -f p E p E p, , , , 29i i i i f i f1 1 1 1( ) ( ) ( ) ( )

where = +E p p c m ci i i
2 2 2 4( ) and Ef(pi, θ1, f1) are calcu-

lated in equation (24)
To evaluate the integral in equation (28), we first inte-

grate over the azimuthal angle f1. After some redundant
calculations routinely, we get the DDCS for Compton scat-
terings:
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Moreover, it is worth noting that only those which satisfy
equation (31) and the inequality f f- - 1 cos 11( ˜ )
simultaneously can be regarded as physical allowed values
of f1

˜ .
In this work, we adopt the aforementioned order of

integration in the numerical evaluation of equation (28).
However, equivalent results can be achieved by exchanging
the order of integration. Results obtained from alternative
order of integration are given in appendix B.

3. Results and discussions

In this section, we provide the results of atomic Compton
scattering obtained using our ‘exact’ numerical method of
RIA, as described in section 2.2. For a comprehensive study,
we chose four neutral atoms C, Cu, Ge, and Xe to represent
the small-Z, middle-Z, and large-Z regimes. Section 3.1 is
focused on differential cross sections, where a detailed com-
parison of our results and those of former treatments of RIA is
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presented. The validity of the factorization in equation (3) and
the available ranges of former RIA treatments are discussed
using this comparison. In section 3.2, ECPs are extracted
from our results to quantitatively illustrate the differences
between our method and former RIA treatments. Further-
more, we provide an uncertainty estimate for the numerical
scheme in section 3.3.

3.1. Differential cross sections

In this subsection, we focus on the differential cross sections
in atomic Compton scatterings. The DDCS of Compton
scatterings for C, Cu, Ge, and Xe atoms at photon energies
ωi=662 KeV, 356 KeV and a scattering angle θ=120° are
shown in figures 4 and 5. Comparative results of our ‘exact’
numerical treatment of RIA and several former treatments of
RIA have been illustrated in this figure. The results of former
RIA treatments are obtained using equations (16) and (18),
where the DDCS of Compton scatterings is factorized into Y

times atomic Compton profiles J, similar to equation (3).
Moreover, when computing the atomic Compton profiles, the
momentum component pz can be calculated using its exact or
approximate values obtained from equations (10) and (12).
Our ‘exact’ RIA results are obtained by directly evaluating
the numerical integral in equation (4).

The numerical results in figures 4 and 5 show that the
DDCS of Compton scattering at photon energies 662 KeV
and 356 KeV are very similar, except that the locations of
Compton peaks are shifted. The results in these figures indi-
cate that our ‘exact’ RIA results confirm the results of former
RIA treatments near the Compton peak region ωf≈ωC. Thus,
we can draw the conclusion that the factorization treatments
adopted in former RIA studies do not change the physical
results significantly in the Compton peak region, as Ribber-
fors et al expected [17, 19, 20]. Furthermore, recent works
have indicated that the available range of former RIA treat-
ments is only near the Compton peak region, where the
momentum component pz in the scattering process is not very

Figure 4.DDCS of Compton scattering obtained for C, Cu, Ge and Xe atoms at photon energy ωi=662 KeV and scattering angle θ=120°.
The results of our method and those of several former treatments of RIA are shown. The curves in this figure represent: 1) solid lines—the
results of our ‘exact’ RIA treatment; 2) dashed lines—the results of former RIA treatment employing equation (16) with exact pz values
calculated in equation (10); 3) dashed-dotted lines—the results of former RIA treatment utilizing equation (16) with approximate pz values
computed in equation (12); 4) short-dashed lines—the results of former RIA treatment using equation (18) with exact pz values; 5) short-
dotted curves—the results of former RIA treatment using equation (18) with approximate pz values.
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large [7, 48–51]. This criterion can be demonstrated by
comparison with more advanced approaches, such as the
S-matrix approach. Therefore, in the region where the RIA
formulation is believed to be valid, the factorization treat-
ments, as well as kernel function approximations, used in
former RIA studies still hold, and produce only a few
deviations in the integration of the DDCS. Since most of
interdisciplinary studies in condensed matter physics and
material science using former RIA treatments consider only
the cases near the Compton peak region, they are reliable at a
sufficient accuracy [1–6, 21–23]. In appendix E, we have
provided comparative results on the DDCS of Compton
scattering between RIA and S-matrix approaches.

However, when the energy of a scattered photon is far
from the Compton peak region, discrepancies between our
‘exact’ RIA treatment and several former RIA treatments
become notable. Therefore, some factorization treatments and
kernel function approximations used in former RIA studies
are invalid in this region; in addition, they produce non-
negligible deviations in the integration of the DDCS. More-
over, when ωf<ωC, former RIA treatments overestimate the
DDCS of Compton scattering, whereas in the region ωf>ωC,

our results obtain larger cross sections than the former RIA
results. In several former RIA treatments, both the approx-
imations of the kernel function X(Ki, Kf) and the values of
momentum component pz significantly impact the DDCS of
Compton scattering. Among the former treatments of RIA,
only one approach utilized more accurate kernel function
approximation »X K K X p,i f z( ) ( ) with the exact momentum
component pz values, which correspond to dashed curves in
figures 4 and 5; this agrees well with our approach in the
entire energy spectrum. Further, in appendix E, through
comparisons with theoretical S-matrix calculations and
experimental results, we can observe that the available range
of our ‘exact’ RIA treatment is still only near the Compton
peak, which is similar to that in former RIA treatments. In
regions far from the Compton peak, our approach, despite
employing an exact scheme in the numerical integration, does
not exhibit a significant improvement over the former RIA
treatments.

To directly validate the former RIA treatments using the
kernel function, we numerically study the function X(Ki, Kf)
in equation (7), and the results are provided in appendix C. A
detailed analysis indicates that the kernel approximation

Figure 5.DDCS of Compton scattering obtained for C, Cu, Ge and Xe atoms at photon energy ωi=356 KeV and scattering angle θ=120°.
The results of our ‘exact’ RIA treatment and several former RIA treatments are plotted similar to those in figure 4.
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X(Ki, Kf)≈XKN in former RIA treatments works well only in
the Compton peak region ωf≈ωC. When the final photon
energy reaches far beyond the Compton peak region, the
kernel function approximation X(Ki, Kf)≈XKN becomes
inappropriate. The result is consistent with our conclusion
obtained from the DDCS of Compton scattering in figures 4
and 5, where the results of former RIA treatments based on
the approximation X(Ki, Kf)≈XKN through equation (18)
exhibit notable discrepancies when the final photon energy is
far from the Compton peak region, irrespective of the
employment of exact or approximate pz values. For compar-
ison, in appendix C we demonstrate that »X K K X p,i f z( ) ( )
is a more accurate kernel function approximation than X(Ki,
Kf)≈XKN when the outgoing photon energy is far from the
Compton peak region. Moreover, this conclusion can be
revealed from the DDCS of Compton scattering illustrated in
figures 4 and 5, where the results of RIA treatments that
depend on »X K K X p,i f z( ) ( ) through equation (16) show
less discrepancy with our ‘exact’ RIA results than those
employing X(Ki, Kf)≈XKN through equation (18).

3.2. ECPs

To further quantitatively compare the results of our method
and former RIA treatments, we define the ECPs as follows:
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where pz is the projection of the electron’s momentum on the
momentum transfer direction, which is calculated by
equation (10) or equation (12). The differential cross section
d2σ/dωfdΩf is numerically obtained using our ‘exact’ RIA
treatment. If former RIA treatments are adopted in calculating
the differential cross sections, the ECPs automatically reduce
to the conventional atomic Compton profile defined in
equation (20). Therefore, the differences between the ECPs
and the atomic Compton profiles quantify the deviations of
our method from the former RIA treatments. Furthermore, the
ECPs given in equations (32) and (33) contain more dyna-
mical information of the Compton scattering process, and
depend on three variables: the momentum component pz, the
initial photon energy ωi, and the scattering angle θ. The
atomic Compton profile, which is a single variable function of
pz, is totally determined by momentum distributions of atomic
systems, irrespective of the dynamical properties of Compton
scattering.

In this work, we use the differences between ECPs and
the atomic Compton profile to quantitatively describe the
differences between our ‘exact’ RIA results and the former
RIA treatments. However, it must be noted that the above-
mentioned ECPs not only act as theoretical subjects but also
can be directly measured from experiments. To experimen-
tally determine these ECPs, we must first measure the

differential cross section in real Compton scattering experi-
ments, and then substitute them in equations (32) and (33).

Before a detailed analysis of the ECPs, a briefing of the
variable pz is required. As discussed in section 2.1, the
momentum component pz can be calculated in its exact form
from equation (10) or in its approximate form from
equation (12). The momentum component pz, when combined
with two ECPs w qJ p , ,z ieff ( ) and Jeff(pz, ωi, θ) defined in
equations (32) and (33), produce four different ECPs. These
four ECPs, in comparison with the conventional atomic
Compton profile defined in equation (20), can quantitatively
describe the discrepancies between our ‘exact’ RIA calcula-
tions with the four former RIA treatments presented in
figures 4 and 5, respectively.

The numerical results of ECPs at photon energy
ωi=356 KeV and scattering angle θ=120° are very similar
to those of ECPs at ωi=662 KeV and θ=120°. Therefore,
we only present the results which correspond to ωi=
662 KeV and θ=120° in figure 6 for C, Cu, Ge, and Xe
atoms. In addition, the atomic Compton profiles computed
using equation (20) based on the nonrelativistic Hartree–Fock
(HF) theory and the relativistic DF theory are presented for
comparison. Earlier, Biggs et al calculated the atomic
Compton profile using the nonrelativistic HF theory and the
relativistic DF theory for light elements Z<36 and heavy
elements Z>36, respectively [52]. To compare the non-
relativistic and relativistic results, we recalculate the atomic
Compton profiles for C, Cu, and Ge atoms using the relati-
vistic DF theory. We find that, for small-Z element C with
weak relativistic effect, no significant difference exists
between the nonrelativistic and relativistic results. However,
for the middle-Z elements Cu and Ge, the relativistic effects
become stronger and obvious differences exist between
nonrelativistic and relativistic results for large values of pz∣ ∣.
Moreover, to quantitatively analyze the discrepancies between
the ECPs and the atomic Compton profiles, we define the
relative discrepancy as follows:

º
-

D
J J

J
34eff ( )

where J and Jeff represent the atomic Compton profile and the
ECP, respectively. To equally consider the relativistic effects,
we mark only the relative discrepancies between the ECPs in
RIA and the relativistic atomic Compton profiles calculated
using the DF theory. However, the relative discrepancies
between the ECPs and the nonrelativistic atomic Compton
profiles, which are given by Biggs et al [52], have the same
order of magnitude.

An important observation can be made from this figure,
which has significant importance in interdisciplinary studies—
when the momentum component pz∣ ∣ is less than 10 a.u., all the
ECPs converge to the atomic Compton profiles with relative
discrepancies |D|<20%. A non-negligible 20% change of the
variable D arises only outside the palm of the momentum
component pz∣ ∣ greater than 10 a.u. Therefore, previous studies
on condensed matter physics and material science, which stu-
died electron correlations, electron momentum distributions,
and Fermi surfaces using Compton profiles and Compton
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scattering experiments [1–6, 21–23], are still valid with a
sufficiently high accuracy, because they are mainly focused on
the region pz∣ ∣∼a.u.. However, in the large pz∣ ∣ regions, except
for the ECPs w qJ p , ,z ieff ( ) defined in equation (32) that
employ exact pz values, other ECPs have large discrepancies

with the atomic Compton profiles in the large momentum pz∣ ∣
region, especially in the negative axis of pz. The result is
consistent with the conclusions obtained from the DDCS in
section 3.1, where large pz∣ ∣ values corresponded to the cases
where the final photon energy ωf is far away from the Compton

Figure 6. ECPs for C, Cu, Ge, and Xe atoms at a photon energy ωi=662 KeV with a scattering angle θ=120°. The solid lines correspond
to the ECPs w qJ p , ,z ieff ( ) defined in equation (32) with exact pz values calculated in equation (10). The dashed lines correspond to the ECPs

w qJ p , ,z ieff ( ) defined in equation (32) with approximate pz values computed in equation (12). The dashed-dotted lines represent the ECPs
Jeff(pz, ωi, θ) defined in equation (33) with exact pz values calculated in equation (10). The short-dotted lines represent the ECPs Jeff(pz, ωi, θ)
defined in equation (33) with approximate pz values computed in equation (12). In addition, the atomic Compton profiles computed using
equation (20) based on the nonrelativistic HF theory and the relativistic DF theory are presented. The HF results are provided by Biggs et al
for Z<36 [52], and the DF results are computed using our program. Moreover, the relative discrepancies, which are defined as
D≡(Jeff−J)/J with J and Jeff as the atomic and ECPs, are superimposed in the figure for various ECPs.
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peak region. In these cases, our results of the DDCS are
notably different from those of the former RIA treatments.
Another interesting phenomenon revealed by figure 6 is that,
unlike the atomic Compton profiles, ECPs are generally not
axisymmetric around the pz=0 axis.

Furthermore, in the present work, we calculate all the
ECPs at different initial photon energies ωi and scattering
angles θ, and the results are presented in appendix D. It is
observable that the ECP Jeff(pz, ωi, θ) defined in equation (33)
is more sensitive to the scattering angle θ than the incoming
photon energy ωi. Moreover, the ECPs Jeff(pz, ωi, θ) obtained
for a smaller scattering angle θ have less discrepancy with the
usual atomic Compton profiles; see appendix D for more
information.

3.3. Numerical uncertainty estimate

To provide an uncertainty estimate for different numerical
schemes, we recalculate the atomic Compton profiles by
employing the same HF method as did Biggs et al in [52].
The comparative results obtained for Ge and Xe atoms are
provided in table 1 for selected pz momenta. The relative
difference between our results and those in [52] provide an
uncertainty estimate for different numerical schemes, and can
be parameterized by the deviation parameter

º
-

D
J J

J
350

0

0
∣ ∣ ( )

where J and J0 correspond to the nonrelativistic atomic
Compton profiles obtained from our calculations and Biggs

et al [52], respectively. This table clearly indicates that the
uncertainties for different numerical schemes are in the range
10−4

–10−2, which is significantly less than the relative dis-
crepancies D between the atomic Compton profiles and the
ECPs obtained in section 3.2. Therefore, the uncertainties for
different numerical schemes are neglected in this study.

4. Conclusions and perspectives

In this study, we develop an ‘exact’ numerical scheme to
directly evaluate the integral to calculate the DDCS of the
Compton scattering process in RIA formulation. Our method
does not invoke any further simplified approximation or
factorization treatment used in former RIA studies. The
Compton scatterings for atomic systems are carefully ana-
lyzed in this work, and our results are effectively compared
with those of former treatments of RIA. Further, the validity
of further simplified approximations and factorization results
used in former RIA treatments can be tested using our
approach. We select four typical elements C, Cu, Ge, and Xe
in this study to represent the small-Z, middle-Z, and large-Z
regimes.

For the DDCS of Compton scatterings, our results agree
well with those of former RIA treatments when ωf≈ωC.
Therefore, in the Compton peak region, where the RIA for-
mulation is believed to be valid and reliable, the factorization
treatments adopted in former RIA studies still hold, as Rib-
berfors et al expected earlier. However, when the scattered
photon energy ωf moves far away from the Compton peak
region, notable discrepancies are observed. Some factoriza-
tion treatments and kernel function approximations adopted in
former RIA studies can produce large deviations in this
region. In the entire energy spectrum, our results have little
difference with the best of the former RIA treatments, which
use the kernel function approximation »X K K X p,i f z( ) ( )
and employ the exact pz value. Furthermore, comparisons
with theoretical S-matrix calculations and experimental
results indicate that the available ranges of the RIA for-
mulations are near the Compton peak. In regions far from the
Compton peak, the RIA results become inaccurate, even
when our ‘exact’ numerical scheme is used.

To further quantitatively compare the differences
between our ‘exact’ RIA results and those of former RIA
treatments, various ECPs are defined and calculated in this
study. Detailed results indicate that, except for the ECP

w qJ p , ,z ieff ( ) defined in equation (32) by employing the exact
pz values obtained from equation (10), other ECPs exhibit
notable discrepancies from atomic Compton profiles for large
values of the momentum component pz∣ ∣, especially in the
negative axis of pz. Furthermore, the following conclusions
can be drawn from the analysis of ECPs for various incident
photon energies ωi and scattering angles θ:

(i). The ECPs do not show any notable difference from
the atomic Compton profiles for a small momentum value

<p 10z∣ ∣ a.u.. A non-negligible 20% change of relative dis-
crepancy D arises only in the large momentum cases with

>p 10z∣ ∣ a.u.. Therefore, the studies on condensed matter

Table 1. Comparative results of atomic Compton profiles for Ge and
Xe atoms. Our results and those of Biggs et al [52] are listed in the
table. The deviation parameter is defined as D0≡|(J0−J)/J0 | to
characterize the uncertainties for different numerical schemes.

Ge

pz (a.u.) Biggs et al Our Deviation D0

0 7.03 7.043 9 2.0×10−3

0.5 5.10 5.096 0 7.9×10−4

1 3.48 3.472 1 2.3×10−3

2 2.58 2.583 2 1.2×10−3

5 7.59×10−1 7.589 9×10−1 8.3×10−6

10 2.1×10−1 2.138 3×10−1 1.8×10−2

20 3.8×10−2 3.845 8×10−2 1.2×10−2

40 3.9×10−3 3.856 3×10−3 1.1×10−2

Xe

pz (a.u.) Biggs et al Our Deviation D0

0 9.74 9.737 2 2.9×10−4

0.5 8.21 8.212 1 2.5×10−4

1 5.45 5.451 0 1.9×10−4

2 3.68 3.678 2 4.9×10−4

5 1.30 1.297 1 2.3×10−3

10 5.1×10−1 5.150 5×10−1 9.9×10−3

20 1.2×10−1 1.172 3×10−1 2.3×10−2

40 1.8×10−2 1.753 8×10−2 2.6×10−2
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physics and material science that are focused on electron
correlation, electron momentum distribution, and Fermi sur-
faces using Compton profiles and Compton scattering
experiments, which correspond to pz∣ ∣∼a.u., are still valid
with sufficiently high accuracy.

(ii). Unlike the atomic Compton profiles, the ECPs are
generally not axisymmetric around the pz=0 axis.

(iii). The ECP Jeff(pz, ωi, θ) defined in equation (33) is
more sensitive to the scattering angle θ than the incoming
photon energy ωi. Moreover, the ECP Jeff(pz, ωi, θ) obtained
from a smaller scattering angle θ has less discrepancy with the
usual atomic Compton profiles.

To summarize, in the present work, we conduct a com-
prehensive study of atomic Compton scatterings using our
‘exact’ numerical treatment in the RIA formulation. Despite
successfully employing the ‘exact’ numerical evaluation for
the integral in equation (4) and not introducing any kernel
function approximation and factorization treatment, our
approach still relies on the physical picture of RIA, which is
imperfect and has limitations. For example, the DDCS of
Compton scattering in the RIA approach starts from
equation (4), which is, in addition, an approximation, and
neglects a few interference terms in the dynamical process of
Compton scattering. Some studies have indicated that the RIA
approach can be realized by making leading order approx-
imations for more advanced methods [15, 49, 50]. In the past
few years, several approaches beyond the IA formulation
have been investigated [7, 49–51, 53–59]. These works,
which mainly employed low-energy theorems and S-matrix
formulation, revealed many remarkable and nontrivial aspects
of Compton scatterings and have gained significant interest in
interdisciplinary studies. Accordingly, we intend to study
atomic Compton scatterings beyond the IA formulation in the
future.
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Appendix A. Dirac orbitals

In this appendix, we give a detailed description of the Dirac
orbitals we used in section 2. In this work, we only consider
spherically symmetric atomic systems. Therefore, the wave-
function of the electron state with a definite quantum number
(nκm), which is also called the Dirac orbital, has the

following form [30, 31, 60]
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respectively, Ωκm(θ, f) is the normalized spherical spinor
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is the Clebsch–Gordan coefficient, and χμ is a spinor with
s=1/2 and sz=μ.

In the above expressions, the quantum number κ is the
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with L denoting the orbital angular momentum vector and a
the conventional Dirac-α matrices. The information of orbital
angular momentum l and total momentum j can be incorpo-
rated into quantum number κ [14]
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In many cases, only the radial part needs to be focused,
and the angular part can be separated and neglected for
simplicity. Therefore, we can introduce the following two-
component radial Dirac orbitals:

º =ku r u r
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After introduction of the above Dirac orbitals, as well as
its large and small components Fnκ=Fnjl, Gnκ=Gnjl, the
DF equation for core and valence electrons can be expressed
and solved routinely. Therefore, we can get the ground state
wavefunctions for the whole atomic systems, as well as the
wavefunctions for individual electrons.

Appendix B. Equivalent results for numerical
integration

In section 2.2, we mentioned that equivalent results for the
DDCS can be achieved by exchanging the order of integration
in equation (28). In this appendix, we present results on
differential cross sections calculated using alternative orders
of integration.

When we first integrate over momentum pi or polar angle
θ1 in equation (28), the DDCS for Compton scattering
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The fixed momentum pĩ and polar angle q1
˜ are calculated

by solving the zeros of function f in equation (29) respec-
tively. After tedious calculations, pĩ can be expressed as:
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.Similar to the case of f1
˜ as discussed in section 2.2, only

those which satisfy equation (B.5) and the inequality p 0ĩ
simultaneously can be regarded as physical allowed values
of pĩ.

The fixed polar angle q1
˜ can be expressed through qsin 1
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or qcos 1

˜ . The expressions for qsin 1
˜ and qcos 1
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Appendix C. Validity of the approximation X(Ki, Kf)≈
XKN and X ðK i ;K f Þ ≈ X ðpz Þ

In this appendix, we numerically study the kernel function
X(Ki, Kf) in the integrand of equation (4). Particularly, we test
the validity of the approximations
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used in former treatments of RIA as discussed in section 2. In
order to quantitatively describe the differences between the
kernel function X(Ki, Kf) and its Klein–Nishina value XKN, or
the differences between X(Ki, Kf) and its ‘averaged’ value
X pz( ), we can define the relative factors α and β to be
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Here, the function X(Ki, Kf) is calculated in equation (7); in
general it depends on the initial and final photon energy ωi

and ωf, scattering angle θ , as well as the electron pre-collision
momentum q f=p p , ,i i 1 1( ). Meanwhile the ‘averaged’ value
X pz( ) depends on momentum component pz obtained in
equation (10) or equation (12), irrespective of the transverse
momentum in the xy plane. The Klein–Nishina value XKN

corresponds to the special case where the electrons are at rest
in the target, namely =p 0i .

Before a detailed analysis, we give the electron momen-
tum distributions ρ(pi)/Z for C, Cu, Ge and Xe atoms in
figure C1. In this figure, the momentum distribution of each
element is normalized to give the contribution from one elec-
tron. The momentum distributions of Cu and Ge atoms are
very similar to each other and can hardly be distinguished in
the logarithmic coordinate. For all the elements C, Cu, Ge and
Xe, momentum distributions decrease rapidly in the large
momentum region. Therefore, the large momentum region
gives negligible contributions on momentum distributions,
compared with the small momentum region. Since the inte-
grand in equation (4) is proportional to the momentum dis-
tribution ρ(pi), we can draw the conclusion that the small
momentum region plays a dominant role in calculating the
DDCS of Compton scatterings from equation (4), while the
large momentum region has tiny contributions in the integra-
tion. Contributions from the large momentum region become
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notable only when the small momentum region is forbidden in
the energy and momentum conservations.

We select the case ωi=662 KeV and θ=120° as a
representative example, and present the numerical results of α
and β where the final photon energy ωf goes in and away from
the Compton peak region, respectively. First, we consider the
case corresponding to the Compton peak region, where the
final photon energy is ωf=ωC=224.9 KeV. In this condi-
tion, the momentum component is pz=0, which leads to

=X p Xz KN( ) . Therefore, the relative factors α and β coincide
with each other, and only one of them needs to be analyzed
quantitatively. The numerical values of factor α in this con-
dition are shown in figure C2. The minimal value of momen-
tum that is kinematically allowed becomes = =p p 0i z

min ∣ ∣
a.u.. In this figure we only plot the contributions from small
momentum values pi=0–25 a.u., where the momentum den-
sity is sufficiently large and can give notable contributions in
the integration of equation (4). This figure clearly shows that
the relative factor α varies from 0.90–1.15, which indicates the
kernel function approximation X(Ki, Kf)≈XKN and

»X K K X p,i f z( ) ( ) are valid and reliable in the Compton peak
region. The result is consistent with conclusions obtained from
figures 4 and 5, which indicated that the results of our ‘exact’
RIA treatment have small discrepancies with those of former
RIA treatment in the Compton peak region ωf≈ωC.

On the other hand, we select the conditions ωf=500
KeV and θ=120° to illustrate the case where the final
photon energy is far away from the Compton peak region.
The results of relative factors α and β are given in figures C3
and C4. A crucial difference from the previous case is that
small momentum values pi<100 a.u. are not kinematically
allowed in energy and momentum conservations. Therefore,
we only plot the region where the electron momentum density
has sufficiently large values. The minimal value of momen-
tum that is kinematically allowed is = »p p 105i z

min ∣ ∣ a.u..
From these figures, we can observe that the relative factor α

Figure C2. Counterplot of relative factor α when outgoing photon
energy ωf goes in the Compton peak region. We select the following
conditions: incoming photon energy ωi=662 KeV, outgoing
photon energy ωf=ωC=224.9 KeV, and scattering angle
θ=120°. The horizontal axis labels the electron momentum pi in
units of a.u., and the vertical axis labels the polar angle of electron θ1
in units of radian. The regions which are not kinematically allowed
in the energy and momentum conservations are left with white.

Figure C1. Electron momentum distributions ρ(pi)/Z for C, Ge, Cu
and Xe atoms in the atomic units. It is worth noting that we have
normalized the momentum distribution into the contribution from
one electron.

Figure C3. Counterplot of relative factor α when the final photon
energy ωf is far from the Compton peak region. We select the
following conditions: initial photon energy ωi=662 KeV, final
photon energy ωf=500 KeV, and scattering angle θ=120°. The
horizontal and vertical axes label the electron momentum pi and
polar angle θ1 similar to that in figure C2. The regions which are not
kinematically allowed in the energy and momentum conservations
are left with white similar to that in figure C2.
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varies from 1.8–3.5, while β is between 0.8–1.4, indicating
that »X K K X p,i f z( ) ( ) is a better kernel function approx-
imation than X(Ki, Kf)≈XKN. This result is consistent with
our DDCS results obtained from figures 4 and 5 in
section 3.1. The large momentum component »p 105z∣ ∣ a.u.
corresponds to the cases where the final photon energy is far
away from the Compton peak region. In these conditions, the
results of former RIA treatments agree with our ‘exact’ RIA
calculations only when »X K K X p,i f z( ) ( ) is used to calcu-
late the DDCS of Compton scattering with exact pz values
utilized. However, when X(Ki, Kf)≈XKN is adopted to cal-
culate the DDCS, there are large discrepancies between our
results and those of former RIA treatments, irrespective of
whether exact or approximate pz values are employed.

Appendix D. More results of ECPs

In this appendix, we present more detailed numerical results
of the ECPs w qJ p , ,z ieff ( ) and Jeff(pz, ωi, θ) defined in
section 3.2. These results reveal some intrinsic properties of
ECPs. For simplicity, we list only the results of the Ge atom.
The results of C, Cu, and Xe atoms are similar to those
of Ge.

The ECPs of the Ge atom at a scattering angle θ=120°
with various incident photon energies are shown in figure D1.
In this work, we select several characteristic energies for
gamma-ray sources: 320 KeV, 356 KeV, 511 KeV, and

662 KeV. The ECPs w qJ p , ,z ieff ( ) defined in equation (32)
with approximate or exact pz values computed in
equations (12) and (10) are shown on the top. The ECPs
Jeff(pz, ωi, θ) defined in equation (33) with approximate or
exact pz values are shown at the bottom. In addition, the
atomic Compton profiles computed using equation (20) based
on the nonrelativistic HF theory and the relativistic DF theory
are presented for comparison. The relative discrepancies
defined as D≡(Jeff−J)/J in section 3.2 are superimposed
similar to that in figure 6. From this figure, we can observe
that, only the ECP w qJ p , ,z ieff ( ) defined in equation (32)
which employs exact pz values fits well with the atomic
Compton profiles for all values of pz. Other ECPs are not
axisymmetric around the pz=0 axis and have large dis-
crepancies at large pz∣ ∣ values, specifically in the negative axis
of pz. It is worth noting that, for various ECPs, the momentum
component pz has maximum and minimum values because of
energy and momentum conservations in Compton scatterings.
Moreover, for the same scattering angle θ, when the incident
photon energy ωi is low, the maximal kinematically allowed
value of pz becomes small. In all conditions, the minimum
values of pz are less than −100 a.u., which are not shown in
this figure. Similar to that in section 3.2, when <p 10z∣ ∣ a.u.,
all the ECPs are consistent with the atomic Compton profiles
within 20% uncertainty of the variable D. The deviations
become pronounced only when >p 10z∣ ∣ a.u., which corre-
sponds to the cases where the final photon energy ωf is far
from the Compton peak region in the DDCS spectrum.
Another interesting phenomenon is that all the ECPs at dif-
ferent energies ωi almost converge with each other at a fixed
scattering angle θ=120°.

The ECPs of the Ge atom at photon energy ωi=
662 KeV at various scattering angles θ are shown in
figure D2. We select the scattering angles θ=10°, 30°, 60°,
90°, 120° and 150° in this figure. The ECPs w qJ p , ,z ieff ( ) and
Jeff(pz, ωi, θ) defined in equations (32) and (33) with
approximate or exact pz values computed in equations (12)
and (10) are plotted similar to figure D1. Further, the non-
relativistic and the relativistic atomic Compton profiles are
included in the figure. In addition, the relative discrepancies
D≡(Jeff−J)/J are superimposed similar to that in figures 6
and D1. In these cases, the momentum pz has maximum and
minimum values constrained by energy and momentum
conservations, and the maximal kinematically allowed value
of pz increases with the increase in scattering angle θ. In these
cases, only the ECP w qJ p , ,z ieff ( ) defined in equation (32)
calculated using exact pz values fits well with the atomic
Compton profiles for all pz values. Other ECPs are not axi-
symmetric around the pz=0 axis and show large dis-
crepancies for large pz∣ ∣ values. Figure D2 clearly indicates
that the ECPs Jeff(pz, ωi, θ) defined in equation (33) for dif-
ferent scattering angles θ do not converge with each other at a
fixed incident photon energy ωi=662 KeV. However,
figure D1 illustrates that the ECPs Jeff(pz, ωi, θ) for different
photon energies ωi converge with each other at a fixed scat-
tering angle θ=120°. Therefore, we can draw the conclusion
that the ECP Jeff(pz, ωi, θ) is more sensitive to scattering angle

Figure C4. Counterplot of relative factor β when the final photon
energy ωf is far from the Compton peak region. We select the
following conditions: initial photon energy ωi=662 KeV, final
photon energy ωf=500 KeV, and scattering angle θ=120°. The
horizontal and vertical axes label the electron momentum pi and
polar angle θ1 similar to that in figure C2. The regions which are not
kinematically allowed in the energy and momentum conservations
are left with white similar to that in figure C2.
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θ than incident photon energy ωi. Moreover, the ECP Jeff(pz,
ωi, θ) obtained from a smaller scattering angle has less dis-
crepancy with the usual atomic Compton profiles. Further-
more, when pz∣ ∣ is less than 10 a.u., all the ECPs are consistent
with the atomic Compton profiles within 20% uncertainty of

the variable D, similar to that in figures 6 and D1. Therefore,
previous studies on condensed matter physics relating to
electron correlations, electron momentum distributions, and
Fermi surfaces with Compton profiles are still valid with
sufficiently high accuracy [1–6, 21–23].

Figure D1. ECP of the Ge atom at a scattering angle θ=120° with various incident photon energies ωi=662 KeV, 511 KeV, 356 KeV, and
320 KeV. Top left: ECP w qJ p , ,z ieff ( ) defined in equation (32) with approximate pz values computed in equation (12). Top right: ECP

w qJ p , ,z ieff ( ) defined in equation (32) with exact pz values calculated in equation (10). Bottom left: ECP Jeff(pz, ωi, θ) defined in
equation (33) employing approximate pz values. Bottom right: ECP Jeff(pz, ωi, θ) defined in equation (33) employing exact pz values. Atomic
Compton profiles J(pz) computed using equation (20) based on the nonrelativistic HF theory and the relativistic DF theory are plotted similar
to figure 6. Moreover, the relative discrepancies defined as D≡(Jeff−J)/J are superimposed similar to that in figure 6. It must be noted that
for various ECPs, the momentum component pz has a maximal cut-off because of energy and momentum conservations.
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Appendix E. Comparison with S-matrix calculations

In this appendix, we present the comparative results of the
DDCS of Compton scattering obtained from the RIA for-
mulation and the more advanced S-matrix approach. These
comparisons illustrate the available range for RIA formulation
to address the atomic Compton scattering.

Figure E1 presents the comparative results for a Pb atom
at an incident photon energy ωi=279 KeV and a scattering
angle θ=135°. The DDCS results for the Compton scatter-
ing process obtained using our ‘exact’ RIA approach and
several former RIA treatments are plotted similar to figures 4
and 5. In addition, the S-matrix and the experimental results
are included in this figure. The S-matrix calculations are

Figure D2. ECPs of the Ge atom at a photon energy ωi=662 KeV with various scattering angles θ=10°, 30°, 60°, 90°, 120° and 150°. The
ECPs w qJ p , ,z ieff ( ) and Jeff(pz, ωi, θ) defined in equations (32) and (33) with approximate or exact pz values computed in equations (12) and
(10) are plotted similar to that in figure D1. In addition, the atomic Compton profiles J(pz) computed using equation (20) based on
nonrelativistic and relativistic theories are plotted in the figure. The relative discrepancies defined as D≡(Jeff−J)/J are superimposed similar
to that in figures 6 and D1. It must be noted that for various ECPs, the momentum component pz has a maximal cut-off because of energy and
momentum conservations.
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performed by Bergstrom et al [54], and the experimental
results are measured by Rullhusen and Schumacher [61].
Furthermore, the differences between our ‘exact’ RIA calcu-
lations and the experimental results, as well as experimental
error bars, are presented in percentages at the bottom. The
differences between theoretical calculations and experimental
results are given by

º
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s

w

s
w

W W

W

R . E.1

d

d d

d

d d

d

d d
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f f f f
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This figure indicates that the calculated results of our
‘exact’ RIA treatment and former RIA treatments are in
agreement with those of the S-matrix as well as with the
experimental results in the Compton peak region. Considering
the experimental uncertainties, only small differences exist

between our ‘exact’ RIA calculations and the experimental
results. However, both our ‘exact’ RIA calculations and the
former RIA treatments are inconsistent with the S-matrix
results outside the Compton peak region, specifically in the
cases where the outgoing photon energy ωf is very low. This
could be because of the limitations of RIA formulations,
which neglect some interference terms in the dynamical
process of Compton scattering and are only a leading order
approximation of the more advanced S-matrix formalism
[7, 50]. The comparison presented here is consistent with
recent studies on Compton scattering, which have indicated
that the available ranges for former RIA treatments are near
the Compton peak [7, 48–51]. Because of the limited physical
picture in RIA formulations, the reliable zones for our ‘exact’
RIA treatments are still near the Compton peak. Our
approach, despite employing exact numerical integration,
does not exhibit a significant improvement over the former
RIA treatments outside the Compton peak region.

Figure E1. Comparative results of the DDCS of Compton scattering for a Pb atom obtained from RIA and S-matrix approaches. We select the
following conditions: incident photon energy ωi=279 KeV and scattering angle θ=135°. Further, the experimental results of Rullhusen
and Schumacher have been plotted in this figure. The differences between our ‘exact’ RIA calculations and the experimental results are
presented at the bottom, and the experimental error bars of Rullhusen and Schumacher are also illustrated in this figure. The differences and
the experimental error bars are expressed in percentages.
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