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1.  Introduction

Topological insulators were first introduced by Haldane in 
his seminal paper [1] where he showed that the Hall conduc-
tance may be quantized in the absence of an external magnetic 
field, which is known as the Quantum Anomalous Hall (QAH) 
effect [2–4]. The latter arises as an intrinsic property of the 
electronic band structure. Haldane proposed a two-band spin-
less fermion model on a honeycomb lattice with local magn
etic fluxes, breaking the time reversal symmetry (TRS), and 
arranged in a geometry resulting in a zero net flux per unit 
cell. The key parameters of the model are the Semenoff [5] 
mass M and the complex second nearest neighbor hopping 
integrals t2e±iΦ. The sublattice potential ±M, describing the 
masses of the two atoms, forming the lattice, is responsible 
of the inversion symmetry breaking while the complex hop-
ping terms break the TRS due to the phase Φ acquired in the 
presence of the local magnetic fluxes. By tuning the values 
of M and Φ, the ground state of the system undergoes trans
itions between phases with different topology characterized 
by a topological invariant, known as the first Chern number 

C [6]. A trivial, or band, insulating state corresponds to C  =  0 
while a topological, or a Chern, insulator is described by a 
nonvanishing Chern number, which is C = ±1 in the case of 
the Haldane model (HM). Large Chern numbers are expected 
by taking into account distant neighbor hopping terms [7].

Besides the non-vanishing Chern number, the topological 
signature of a phase is marked by the presence of chiral edge 
states crossing the bulk gap of the band structure of a finite 
size system, as those found in the quantum Hall effect [8]. 
These edge states are at the origin of the substantial interest 
devoted to the QAH effect considered as a suitable candidate 
to pave the way for dissipationless electronic applications in 
the absence of a magnetic field [4].

Regarding the difficulty to fulfill the local magnetic flux 
requirements, the HM is, as stated by Haldane, unlikely to be 
realized in condensed matter [1]. The first realization of the 
HM was achieved with cold atoms in a shaken optical lat-
tice [9]. The Fe-based honeycomb ferromagnetic insulators 
[10] and transition-metal pnictides [11] are also expected 
to be described by the HM. The experimental realization of 
the QAH effect predicted by Haldane, became possible only 
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after the prediction of the quantum spin Hall (QSH) effect, 
resulting from the generalization of the HM to the spinfull 
system with TRS invariance [12]. This effect led to the dis-
covery of the topological insulators considered as one of the 
hottest topics of interest in condensed matter physics [13–17]. 
Several observations of QAH effect have been reported in 
magnetic topological insulators [18–20].

To understand the fundamental aspects of the QAH effect it 
is necessary to uncover its dependence on the different external 
and intrinsic factors such as doping [18, 21], disorder [22–24], 
temperature [25], interaction [26, 27], magnetic-electric fields 
[28], material thickness [29], mechanical strain [26, 30–33]. 
In particular, the latter is found to be a useful tool to tune 
the electronic band structure of graphene [34] and topological 
insulators [26, 27, 35–41]. Recently, the effect of a nonuni-
form strain on ribbons described by the HM was investigated 
within the tight-binding (TB) approach [33]. The authors 
showed that nonuniform strain does not affect the topological 
phases and the dispersion of the corresponding edge states.

However, strain is found to be a substantial parameter to 
tune the properties of topological insulators [26, 27, 35–40] 
and to induce helical edge states in armchair graphene nanor-
ibbon [42]. Contrary to the chiral edge modes, occurring in 
systems with broken TRS, the helical edge states appear in 
systems where TRS is preserved, as in QSH effect [13]. As 
the chiral modes of the spinless QAH effect, the helical edge 
states propagate in opposite direction for a given spin.

Recently, antichiral edge modes were proposed to occur 
in 2D semi-metal [43], where co-propagating modes appear 
at the parallel edges of the system, and are counter-balanced 
by gapless bulk states. These edge states can be obtained in 
zigzag graphene nanoribbon described by the so-called modi-
fied Haldane model (mHM) where the Dirac points are offset 
in energy by a term ±3

√
3t2 sinΦ [43, 44].

In the present work, we raise the issue regarding the robust-
ness of the topological phases of the HM and the mHM against 
a uniform uniaxial strain. We particularly, ask the following 
questions: is it possible to tune, by the strain, the topology of 
these models? Could the direction of the propagation of chiral 
and antichiral edge modes be controlled by strain? 

We first study the behavior of the Haldane phase diagram 
under a uniaxial strain using the continuum limit approx
imation and, then we derive, within a TB approach, the 
strain dependence of the edge states of a zigzag nanoribbon 
described by the HM. In a second part, we consider the effect 
of the strain on the antichiral edge modes of the mHM.

The main results of this paper can be summarized as fol-
lows: (i) contrary to a nonuniform deformation, uniaxial strain 
could destroy a topological phase and tune it to a trivial insu-
lating state. (ii) By adjusting the strain amplitude, the system 
can be driven from a topological phase to another with oppo-
site Chern number, which means that the strain may act on the 
edge current. (iii) At a tensile strain of 50%, transition between 
topological phases with opposite Chern numbers occurs on a 
line boundary and not only at the point (M = 0,Φ = 0) as 
found in the undeformed HM. This feature could not be real-
ized in real crystals regarding the huge required strain value. 
However it could be observed in optical lattices of cold atoms 

[45]. (iv) The antichiral edge modes, of the mHM, are strain 
dependent with a switchable energy dispersion. Such effect, 
which may lead to a strain-tunable edge currents, could be 
realized in two-dimensional (2D) transition metal dichalco-
genides, as WSe2 showing edge states reminiscent of those of 
mHM [43].

The paper is organized as follows. In section 2, we describe 
the HM under uniaxial strain for an infinite honeycomb lattice, 
and then derive the strain dependence of the corresponding 
Chern number in the continuum limit. We then discuss the 
behavior of the phase diagram under the strain. In section 3, 
we consider, within the TB model, the effect of the strain on 
a zigzag nanoribbon described by the HM in the presence 
of a uniaxial strain applied along the armchair direction. We 
will focus on the behavior of the edge states as a function of 
the deformation. In section 4, we discuss a zigzag graphene 
nanoribbon described by mHM under a uniaxial strain. We 
numerically determine, within the tight binding approach, the 
strain dependence of the corresponding antichiral edge mode. 
Section 5 is devoted to the concluding remarks.

2.  Haldane model under uniaxial strain

2.1.  Electronic Hamiltonian

We consider a honeycomb lattice, with two types of atoms 
(A and B), under a uniaxial strain applied along the arm-
chair direction corresponding to the y  axis (figure 1). In 
the resulting quinoid lattice, the distance between nearest 
neighbor atoms, along the strain axis, changes from a to 

a′ = a + δa = a(1 + ε) where ε = δa
a  is the strain ampl

itude. For a compressive (tensile) deformation ε is negative 
(positive). It is worth to stress that we only consider the strain 
component εyy = ε and neglect, for simplicity, the εxx term 
of the strain tensor. This assumption is justified in graphene 
since the corresponding Poisson ration, relating the strain 
components εxx = −νεyy, is small (ν = 0.165) and decreases 
with increasing strain amplitude [46]. Within this assumption, 

Figure 1.  Deformed honeycomb lattice along the armchair y  
axis. (�a1,�a2) is the lattice basis. The hopping parameters to the 
first (second) neighbors t and t′ (t2 and t′2) are different due to the 
deformation. Vectors connecting first (second) neighboring atoms 
are denoted �τl (�al). The phase pattern for the second-neighbor 
hopping parameters of the HM is also shown. The arrow indicate 
the directions along which the hopping integrals t2 and t′2 acquire 
positive phase eiΦ and eiΦ′

 respectively. The area of the unit cell is 
decomposed in regions denoted a′, a′′, b, b′ and c.
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the deformed graphene sheet can be described by the quinoid 
lattice for which simple analytical expression of the Chern 
number could be derived, as we shall show in the following.

It should be noted that the quinoid lattice is a good approx
imation, as far as the strain amplitude is small enough to 
neglect the strain effect on the bond angles and on the first 
neighboring distances, along �τ1 and �τ2 (figure 1).

The lattice is described by the basis (�a1,�a2) given by:

�a1 =
√

3a�ex,�a2 = −
√

3
2

a�ex + a
(

3
2
+ ε

)
�ey.� (1)

The vectors joining the first neighbor atoms are given by:

�τ1 =
a
2

(√
3�ex +�ey

)
, �τ2 =

a
2

(
−
√

3�ex +�ey

)
,

�τ3 = −a(1 + ε)�ey.
� (2)

The second neighboring atoms are connected by the vec-
tors ±�a1,±�a2 and ±�a3 = ±(�a1 +�a2). The hopping integral 
between first neighboring atoms along �τ3 direction is modified 

by the strain from t to t′ = t + ∂t
∂aδa. The hopping terms to the 

second neighboring atoms t2 change also compared to their 
values in undeformed lattice as:

t′2 = t2 +
∂t2
∂a

δa.� (3)

Assuming the Harrison law, t′ and t′2 could be written as [47, 
48]

t′ = t (1 − 2ε) ,

t′2 = t2

(
1 − 2ε+

bε
2d

)
,

� (4)

where b =
√

3a and for graphene d = a
3.5.

It is worth to note that, the Harrison law is not accurate 
beyond the linear elastic regime. For more accurate values of 
the hopping amplitudes, Density Functional Theory calcul
ations were proposed [49].

As in the HM, the hopping integrals t and t′ between first 
neighboring atoms are real since the paths corresponding to 
these hopping processes delimit a unit cell with a total zero 
magnetic flux [1]. However, the hopping matrix elements t2 
and t′2 acquire a Peierls phases denoted respectively Φ and 
Φ′. Figure  1 shows the directions along which the hopping 
integrals are either t2eiΦ or t′2eiΦ′

.
In general, the complex hopping phases can depend on the 

strain in different ways, depending on the physical origin of 
these phases. In the present work, we consider two examples. 
In the first case, we assume that the phases are proportional 
to the areas, delimited by triangular contours, through which 
passes a magnetic flux Φ or Φ′.

The Φ phase is the same as that of the underformed lat-
tice since the area S = |�τ1 × �τ2| constructed on the vectors 
�τ1 and �τ2 in unchanged under the uniaxial strain. However, 
the phase Φ′ may be strain dependent if it is connected to 
the path delimiting the deformed surface S′, constructed on 

the areas a′, a′′ and b′, which is deformed under the strain: 
Φ′ = 2π

Φ0
(Φa′ +Φb′ +Φa′′), where Φa′, Φb′, and Φa′′ are the 

fluxes through the a′, a′′ and b′ regions and Φ0 is the flux 
quantum.

The flux area S′ could be expressed as a function of the 
undeformed area S as S′ = 1

2 |�τ1 × �τ3| = (1 + ε) S, which 
means that:

Φ′ = (1 + ε) Φ.� (5)

There is also the case where Φ′ = Φ for which the posi-
tions of the magnetic fluxes are independent of the deformed 
lattice as we will discuss in the following. The condition 
Φ′ �= Φ is not crucial to tune the topology by the strain as 
we will show in the following sections. This point raises the 
question how to tune the phase Φ in realistic systems? Is it 
strain dependent? One should expect to realize the strained 
HM in ultracold atom optical lattices [9] which were also 
used to realize the merging of Dirac cones [45] predicted 
to occur in graphene under compressive strain [50]. The 
optical lattice potential parameters could be tuned to mimic 
the strain effect on the hopping integrals [45]. The staggered 
fluxes may be controlled, in principle, by the time modula-
tion of the optical lattice. However, the observation of the 
strain effect on the HM will depend on the parameter range 
accessible to optical lattice [51].

The recent proposal of realization of HM in Fe-based hon-
eycomb ferromagnetic insulators [10] could be generalized to 
observe strained HM. Complex hopping integrals, t2e2iθ, arise 
in this systems from the d orbitals of Fe ion in the AFe2(PO)2 
compounds (A  =  Ba, K, Cs, La). Applying a strain will 
change the amplitudes t2 of the d orbital overlappings but not 
the phases θ as far as the threefold symmetry is conserved. 
However, if the bond directions are differently modified by 
the strain, one should expect a change in the phase factors, 
which will corresponds to take Φ′ �= Φ, as in our model, but 
not necessarily following the strain dependence given by 
equation (5).

Chang et al [18] reported the observation of QAH effect in 
thin films of ferromagnetic chromonium doped (Bi,Sb)2Te3. 
By applying a strain on the film, the hopping integrals are 
expected to change but not the magnetic fluxes distribu-
tion through the unit cell since the magnetic moments will 
be driven with the atoms by the deformation. This will be 
ascribed to the case of strain independent phase ( Φ′ = Φ).

The complex phase Φ could, also, be related to the spin–
orbit coupling (SOC) parameter of topological insulators [38]. 
We shall discuss this issue in section 2.3.

The electronic Hamiltonian of the strained lattice can be 

written, in the basis 
{
|ΨA

�k
〉, |ΨB

�k
〉
}

, associated to the two atoms 

A and B of the unit cell, as

H(�k) =

(
hAA(�k) h∗

AB(
�k)

hAB(�k) hBB(�k),

)
� (6)
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where

hAA(�k) = M + 2t2

(
cosΦ cos�k ·�a1 +

t′2
t2
cosΦ′(cos�k ·�a2 + cos�k ·�a3)

)
− 2t2

(
sinΦ sin�k ·�a1 +

t′2
t2
sinΦ′(sin�k ·�a2 − sin�k ·�a3)

)

hBB(�k) = −M + 2t2

(
cosΦ cos�k ·�a1 +

t′2
t2
cosΦ′(cos�k ·�a2 + cos�k ·�a3)

)
+ 2t2

(
sinΦ sin�k ·�a1 +

t′2
t2
sinΦ′(sin�k ·�a2 − sin�k ·�a3)

)

hAB(�k) = t′ei�k·�τ3 + t(ei�k·�τ1 + ei�k·�τ2)
� (7)

H(�k) can be expressed, using the 2 × 2 Pauli matrices 
�σ = σ1�ex + σ1�ey + σ3�ez and the identity matrix σ0 = 11, as:

H(�k) = h0(�k)σ0 +

3∑
i=1

hi(�k)σi,� (8)

with

h0(�k) = 2t2

(
cosΦ cos�k ·�a1 +

t′2
t2
cosΦ′(cos�k ·�a2 + cos�k ·�a3)

)

hx(�k) = t′ cos(�k · �τ3) + t(cos�k · �τ1 + cos�k · �τ2)

hy(�k) = t′ sin(�k · �τ3) + t(sin�k · �τ1 + sin�k · �τ2)

hz(�k) = M − 2t2

(
sinΦ sin�k ·�a1 +

t′2
t2
sinΦ′(sin�k ·�a2 − sin�k ·�a3)

)
.

� (9)
The Hamiltonian given by equation (8) is invariant under time 
reversal transformation if

H∗(−�k) = H(�k) + 2
[

2t2

(
sinΦ sin�k ·�a1 +

t′2
t2
sinΦ′(sin�k ·�a2 − sin�k ·�a3

)]
σ3 = H(�k),

� (10)

which yields to the condition: sinΦ = 0 and sinΦ′ = 0. We 
then expect, that under strain, the trivial insulating state for 
Φ = π  of the undeformed lattice, could be tuned to a topolog-
ical phase if Φ′ �= Φ (equation (5)). The topology of the HM 
under strain is, then, not only dependent on the local magnetic 
flux, but also on the strain amplitude. The question is whether 
the strain competes with the topology. The answer will be 
given in the next sections.

The eigenvalues of the Hamiltonian given by equation (8) 
are:

ελ(�k) = h0(�k) + λ|h(�k)|,� (11)

where λ = ± is the band index. For M  =  0 and Φ = 0, one 
recovers the band structure of graphene under a uniaxial strain 
showing two bands touching at the Dirac points D and D′ 

given by �kD,D′ =
(

kξDx, 0
)

, where the component kξDx at the 

valley ξ = ± is given by [47]

kξDx = ξ
2√
3a

arccos

(
− t′

2t

)
.� (12)

Under the strain, the Dirac cones leave the high sym-
metry points K and K′ and move towards each other, under 

a compressive strain (ε < 0) and can, eventually, merge for 
ε = −0.5 [47].

To study the topological character of the HM under strain, 
one needs to determine the corresponding Chern number 
whose analytical expression could be derived taking the low 
energy form of the Hamiltonian of equation (8), the so-called 
continuum limit.

2.2.  Chern number: continuum limit

The Hamiltonian given by equation  (8) could be expanded 
around the Dirac points as:

Hξ(�q) =
(

mξ + ξ�w0xqx ξ�(wxqx − iξwyqy)

ξ�(wxqx + iξwyqy) −(mξ − ξ�w0xqx)

)
,� (13)

where wx and wy  are the anisotropic Fermi velocities and w0x 
is the tilt parameter, given by:

wx =
3
2

at
�

(
1 +

2
3
ε

)
, wy =

3
2

at
�

(
1 − 4

3
ε

)

w0x = −2
√

3a
�

(t2 cosΦ sin 2θ + t′2 cosΦ
′ sin θ) ,

� (14)
where θ is defined as:

θ = arccos

(
− t′

2t

)
.� (15)

The mass term mξ is:

mξ = M + ξ2t2

(
2t′2
t2

sinΦ′ sin θ − sinΦ sin 2θ
)

.� (16)

The tilt term is obtained by expandingh0(�k), to the first order, 

around �kξD = (kξDx, kξDy = 0), where kξDx is given by equa-

tion  (12). The mass term corresponds to the zeroth order 
expansion of hz(�k). We have neglected the first order term, 
which is valley independent, and then renormalizes equally 
the Fermi velocity along the qx axis in both valleys.

The dispersion relation reduces to:

J. Phys.: Condens. Matter 32 (2020) 225501
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εξλ(�q) = ξ�w0xqx + λ�
√

w2
xq2

x + w2
yq2

y + m2
ξ,� (17)

which describes massive Dirac fermions moving with aniso-
tropic velocities along the x and y  directions.

The topological character of a phase is determined by the 
first Chern number given by C = Cξ + C−ξ, where Cξ is the 
Chern number calculated at the valley ξ.

To derive an analytical expression of the Chern number, we 
neglect the tilt term w0x since it does not change the topological 
character of the system as it contributes, in the Hamiltonian 
(equation (13)), with the identity matrix in each valley. The 
Hamiltonian around the Dirac points (equation (13)), could 
then be written as:

Hξ(�q) = �hξ(�q) · �σ,� (18)

with �hξ(�q) = (ξwxqx, wyqy, mξ) ≡ |�hξ(�q)|�nξ(�q).
The corresponding Chern number reads as:

Cξ =
1

2π

∫
Ωξ(�q)d2�q,� (19)

where Ωξ is the component of the Berry curvature along the 
unitary vector �nξ(�q): Ωξ = 1

2

[
∂qx�nξ(�q)× ∂qy�nξ(�q)

]
·�nξ(�q) 

[52].
Straightforward calculations give:

C =
1
2
[sign(m+)− sign(m−)] .� (20)

This expression is reminiscent of that obtained in the HM in 
the undeformed lattice. However the mass terms are, now, 
strain dependent (equation (16)). In the following, we discuss 
the corresponding phase diagram.

2.3.  Haldane model under strain: phase diagram

We first discuss the case where Φ′ is strain dependent (equa-
tion (5)). In figure 2, we represent the phase diagram of the 

HM under uniaxial strain as a function of M
2t2

 and Φ for dif-
ferent strain values. The calculations are done for t2  =  0.1t. 
The phase boundaries between the trivial (C = 0) and the 
topological (C = ±1) phases corresponds to the case where 
one Dirac points is gaped (mξ �= 0) and the other is not 
(m−ξ = 0), which yields to the condition:

M
2t2

= ±| sinΦ sin 2θ − 2t′2
t2

sinΦ′ sin θ|,� (21)

where θ and Φ′ are strain dependent (equations (5) and (15)).
Figure 2 shows that, under strain, the 2π periodicity of the 

Haldane phase diagram is not conserved in the case where 
Φ′ = (1 + ε) (equation (5)), which results in a nonvan-
ishing Chern number for Φ = π  and M  =  0 (figure 2). This 
is due to the strain dependence periodicity of sinΦ′ which 
is 2π/(1 + ε) ∼ 2π(1ε). As shown in figure  2, the pseudo-
periodicity of the transition line (increases) for a tensile (com-
pressive) deformation compared to the undeformed case. The 
strain dependent pseudoperiodicity of the HM phase diagram 
could be probed in optical lattices [9].

Figure 2.  Phase diagram of the HM for different strain amplitudes. 
The case of compressive (tensile) strain is shown in the upper 
(lower) panel. Calculations are done for t2  =  0.1t and for 
Φ′ = (1 + ε)Φ (equation (5)).

Figure 3.  Evolution of the topological phases of the HM under 
strain. The point (M = 0,Φ = 0), at which the transition between 
two topological phases take place in the undeformed lattice, is 
found to be shifted by the strain to (M = 0,Φ �= 0). Calculations 
are done for t2  =  0.1t and for Φ′ = (1 + ε)Φ (equation (5)).

J. Phys.: Condens. Matter 32 (2020) 225501
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At the critical value of ε = −0.5, the system turns to a 
trivial insulator since the Dirac cones merge for this strain 
amplitude and the electrons loose their Dirac character [47].

According to figure 2, the strain could drive a topological 
phase, of the undeformed lattice, into a trivial one. In par
ticular, at a tensile strain of ε = 0.15, the topological phase 
with C = −1 (for M  =  t2 and Φ = 31

36π) switches to a trivial 
phase (C = 0). On the other hand, a topological state with 
C = −1 (M  =  0 and Φ = 14

15π) could turn to an other topo-
logical phase with an opposite Chern number by applying a 
tensile deformation of the order of ε = 0.15. These results are 
summarized in figure 3 where we depicted the phase bounda-
ries as a function of Φ and the strain amplitude ε. The color 
map indicates the value of the sublattice potential M at which 
a phase transition takes place. This figure shows that the phase 
boundaries are strain dependent and that a compressive strain 
compete with the non-trivial topological character of the 
system. However, a tensile deformation furthers the formation 
of topological states and the transitions between phases with 
opposite Chern numbers. These features may lead to a strain 
tuned topology with switchable edge currents, which could be 
of a great interest for quantum computing [53–55]. Recently, 
a single-photon emitter, a key component for computing 

devices, was realized based on strain engineering of a topo-
logical 2D materials (WSe2) [56].

Actually, according to equation (21), the strain dependence 
of the phase boundaries in figure 2 is not only due to the pres-
ence of different phase Φ and Φ′ (equation (5)). The Haldane 
phase diagram will be affected by the uniform uniaxial strain 
even if Φ = Φ′, since the line boundaries will depend on the 
strain amplitude through the ratio t′2/t2 (equation (21)). This 
feature is shown in figure 4 where we depicted the Haldane 
phase diagram under a uniaxial strain in the cases where 
Φ = Φ′ and Φ �= Φ′. This figure  shows that, taking Φ = Φ′ 
restores the 2π periodicity of the Haldane phase diagram. 
However, the topology is still affected by the strain as in the 
case where Φ �= Φ′ (equation (5)).

The transition boundary line for Φ = 14
15π of figure  2 is 

represented in figure  5 as function of the strain amplitude. 
The figure  shows, that at a given non vanishing mass value 
M, the system could undergo transitions between phases with 
different Chern numbers by tuning the strain. Moreover, the 

Figure 4.  Phase diagram of the HM for a compressive strain 
of ε = −0.15 and t2  =  0.1t. The dashed line corresponds to the 
undeformed lattice. The black (red) line is the phase boundary in 
the case where Φ′ = Φ (Φ′ = (1 + ε)Φ, equation (5)).

Figure 5.  Phase diagram of the HM as a function of the strain 
amplitude for Φ = 14

15π and t2  =  0.1t. Calculations are done for (a) 
Φ′ = (1 + ε)Φ (equation (5)) and (b) Φ = Φ′.

Figure 6.  Strain dependence of the topological gaps of the Haldane 
model (equation (16)) for t2  =  0.1t, M  =  t2 and φ = 14

15π at the 
Dirac points D and D′. Calculations are done for Φ′ �= Φ (equation 
(5)).

Figure 7.  HM phase diagram as a function of the strain amplitude 
up to the large strain regimes. The system becomes trivial at 
the critical value ε = −0.5 at which the Dirac cones merge. A 
boundary line between two topological phases with opposite Chern 
numbers is found at ε = 0.5 for which the hopping term, to the first 
neighboring atoms, along the strain direction vanishes. Calculations 
are done for Φ = π

2 , t2  =  0.1t, and for (a) Φ′ = (1 + ε)Φ (equation 
(5)) and (b) Φ = Φ′.

J. Phys.: Condens. Matter 32 (2020) 225501



M Mannaï and S Haddad﻿

7

strain may change the sign of the Chern number of a given 
topological phase. As a consequence, the corresponding edge 
currents direction of propagation is expected to be switch-
able by the strain, which may pave the way to the strain engi-
neering of the edge currents.

In figure 2, the line boundaries correspond to the regime 
where the topological gap opens in one valley and closes in 
the other. This feature can be brought out in the band struc-
ture calculated within the tight binding approach for a zigzag 
nanoribbon as we shall discuss in section 3 (figure 8).

The strain dependence of this gap is depicted in figure 6 
which shows that a uniform uniaxial strain could tune the top-
ological gap. This behavior is different from that found in the 
case of HM under a nonuniform strain where the gap is found 
to be weakly modified by the strain [32, 33]

It is interesting to address the behavior of the topological 
phases when the Dirac cones merge at the critical strain value 
of ε = −0.5 (equation (12)). We plot, in figure  7, the evo
lution, as a function of strain, of the phase boundary of the 
topological state obtained at Φ = π

2 . This figure  shows that 
at the merging point, the system turns to a trivial state as it is 
expected [50].

On the other hand, at the tensile strain amplitude ε = 0.5, 
transitions between topological phases with opposite Chern 
numbers take place at finite M, which results in a line boundary 
separating the phases C  =  1 and C  =  −1. In the undeformed 
HM, such transition occurs only at the point M  =  0 and Φ = 0. 
This feature is reminiscent of the result found in the case of 
the Chern insulator on a square lattice [57] and in disordered 
semi-Dirac material [24]. The presence of this transition could 
be understood from the expression of the Hamiltonian given 
by equation (8) at the critical value ε = 0.5 for which the hop-
ping parameter t′ vanishes (equation (4)). Disregarding the 
diagonal term h0(�k), which does not affect the topology of 
the HM, the Hamiltonian reduces to hz(�k). The Dirac points, 
defined by hz(�kD) = 0, satisfy:

�kD =

(
kDx = ξ

π√
3a

, kDy =
1

2a
arccos

(
−ξ

M
4t′2 sinΦ′

))
,

� (22)
which gives rise to the condition:

|M| � |4t′2 sinΦ
′|.� (23)

For these M values, the gap closes at one of the Dirac points 
and the system undergoes a transition between tow topological 
phases (C  =  −1 and C  =  1), which results in a line boundary 
separating the two phases as shown in figure  7. The result 
holds for Φ′ = Φ and Φ′ �= Φ. Such phase boundary could be 
observed in cold atoms trapped in optical lattices if the lattice 
parameters could be tuned to reach the extreme strain ampl
itude regime [9, 45]. It should be stressed that the strain value 
|ε| = 0.5 is large and the Harrison law is no more accurate at 
this regime, as mentioned in section 2.1.

The generalization of the present work to spinfull systems, 
may provide insights into the behavior of the edge states of 
topological insulators subjected to a uniaxial strain [35]. 
Actually, the strain dependence of the phase Φ′, is reminiscent 
of the strain dressed intrinsic SOC of a graphene nanoribbon 

[38], where the low SOC regime corresponds to the QAH state. 
Guassi et al [38] showed that the strain-induced pseudomagn
etic field couples to the spin degrees of freedom in deformed 
graphene, which results in a strain dressed SOC parameter. 
The dependence of the SOC term of the Hamiltonian (equa-
tion (1)) of [38] on the cross product of �τi vectors is reminis-
cent of the expressions of the phases Φ and φ′, we assumed in 
the present work, and which are related to the triangular areas 
constructed on the �τi vectors.

It is worth to note that the phase diagram of figure  2 is 
derived within the continuum approximation, which is not 

Figure 8.  (a) Geometry of a zigzag nanoribbon of a width W 
along the armchair edge. The unit cell is shown by the dashed line. 
(b)–(e) Electronic band structure of HM within the tight binding 
approach for a zigzag nanoribbon with a width of W  =  60 atoms 
along the y  direction. For figures (b)–(d), calculations are done 
for Φ′ = (1 + ε)Φ (equation (5)), t2  =  0.1t, M  =  0 and Φ = 14

15π. 
Figures (b)–(d) correspond, respectively, to the undeformed lattice 
(ε = 0), ε = 0.1 at which the topological gap closes, and 
ε = 0.15. Figure (e) represents the case where M  =  0.1t, Φ = 31

36π 
and ε = 0.17 ascribed to a trivial band insulator. For the lower 
panels, we take M  =  0.1t, Φ′Φ = 14

15π, ε = 0.2 (f) and ε = −0.2 (g).
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accurate beyond the low energy limit [33]. We then present, 
in the following, a tight-binding (TB) approach to discuss the 
role of a uniaxial strain on the edge states of a nanoribbon 
described by the HM.

3.  Haldane model under strain: a tight-binding 
approach

We consider the HM in a strained zigzag nanoribbon deformed 
along the armchair direction. The ribbon geometry is shown in 
figure 8(a). We calculate the full band structure within the TB 
model for a ribbon of a width W  =  60 atoms along the y  axis 
parallel to the strain direction.

Figure 8(b) represents the case of the HM on the undeformed 
lattice for a topological phase, with M  =  0 and Φ = 14

15π, for 
which the gap is purely topological and the Chern number is 
C = −1. The gapless states crossing the gap are ascribed to 
the chiral edge states. The corresponding eigenfunctions show 
that these edge modes are localized on the bottom (solid red 
line) and on the top (blue dashed line) of the ribbon bounda-
ries. By increasing the strain amplitude to ε0 = 0.1, the topo-
logical gap closes and the edge states become degenerate as in 
graphene zigzag nanoribbons, which corresponds to the phase 
boundary line in figure 2. For ε ∼ 0.15, the topological gap 
reopens and the chiral edge states reappear showing oppo-
site slopes compared to the case ε < ε0, which means that the 
corresponding edge currents will change signs (figure 8(d)). 
This result is consistent with the phase diagram of figure 2 
showing that, for M  =  0 and Φ = 14

15π, the Chern number 
changes from C = −1, in the absence of strain, to C = 1 under 
a strain of ε ∼ 0.15.

Figure 8(e) shows the behavior of the edge states under 
strain in the case where M  =  0.1t and Φ = 31

36π. The topo-
logical phase (C = −1) is tuned, at ε ∼ 0.17, to a trivial one 
(C = 0) for which the edge states disappear.

Figures 8(f) and (g) correspond to the case where Φ′Φ. 
According to these figures, the strain can also tune the system 
from a topological phase (figure 8(f)) to a trivial one (figure 
8(g)).

Following [38], we discuss the relationship between the 
dispersion of the edge states of a topological phase and the 
corresponding Chern number.

Figure 9 represents the energy spectrum of the under-
formed system for M  =  0 and Φ = 14

15π, which corresponds, 
according to the Haldane phase diagram to a topological phase 
with C = −1. The probability distributions of the edge states, 
denoted A and B, are represented in figure 9(b), which shows 
that the A (B) edge state with the positive (negative) velocity 

vx =
1
�
∂E(�k)
∂kx

 is localized on the bottom (top) boundary of the 

ribbon. For a Fermi level above the zero energy, the edge 
states will give rise to edge currents I = −evx, e  >  0 being 
the elementary charge. These currents, depicted in figures 9(b) 
and (d), are responsible of the sign of the Chern number since 

the anomalous Hall conductivity reads as: σxy =
e2

h C. In fig-
ures  9(b) and ((d)), the current is negative (positive) which 
yields to C = −1 (C = +1), in agreement with the phase dia-
gram obtained in the continuum limit (figure 2).

4.  Modified Haldane model under uniaxial strain

4.1.  Electronic Hamiltonian

The mHM was first studied by Varney et al [44] who showed 
that this model could exhibit non zero circulating edge cur
rents when the chiral symmetry is broken. In this case, the 
symmetry properties of the system are reminiscent of the non-
quantized anomalous Hall effect.

Coloms and Franz [43] have reported that a strip described 
by mHM can hold antichiral edge modes propagating in the 
same direction and compensated by bulk modes.

Recently, the optical absorption properties of the mHM 
have been discussed in [58] where the authors predicted the 
possibility to realize simultaneously circular dichroism and 
valley polarization, which may pave the way to applications 
combining light polarization and valleytronics effects.

Antichiral edge states were also predicted to occur in 
exciton-polariton honeycomb lattice on ribbon with zigzag 

Figure 9.  Probability distributions of the edge states of a zigzag 
nanoribbon of a width W  =  60 atoms described by the HM 
under a strain amplitude of ε = 0 (upper panels) and ε = 0.15 
(lower panels) and for M  =  0 and φ = 14

15π. The figures ((a)–(d)) 
correspond to a topological phase with a Chern number C  =  −1 
(C  =  1). The insets in figures (b) and (d) give the direction of the 
edge currents. Calculations are done for Φ′ = (1 + ε)Φ (equation 
(5)).

Figure 10.  The pattern for the second-neighbor hopping parameters 
of the mHM under uniaxial strain applied along the armchair 
direction. The arrow indicate the directions along which the 
hopping integrals t2 and t′2 acquire positive phase eiΦ and eiΦ′

 
respectively.
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edges [59]. These photonic antichiral edge states are expected 
to be of a great interest in information processing regarding 
their robustness against disorder.

Using the same approach discussed in section 2, one can 
derive the continuum limit of the electronic dispersion rela-
tion for the mHM where the hopping integrals to the second 
neighboring atoms are given by the pattern shown in figure 10.

The diagonal term hAA of the Hamiltonian given by equa-
tion  (6) is the same as in the HM. However, the hBB (equa-
tion (7)) is changed since now, one should replace Φ and Φ′ 
by, respectively, −Φ and −Φ′. The diagonal terms of the 
Hamiltonian given by equation (8) become:

h0(�k) = 2t2

(
cosΦ cos�k ·�a1 +

t′2
t2
cosΦ′(cos�k ·�a2 + cos�k ·�a3)

)

− 2t2

(
sinΦ sin�k ·�a1 +

t′2
t2
sinΦ′(sin�k ·�a2 − sin�k ·�a3)

)

hz(�k) = M.
� (24)
The corresponding low energy dispersion relation takes the 
form:

εξλ(�q) = ξ (m0 + �w0xqx) + λ�
√

w2
xq2

x + w2
yq2

y + M2,� (25)

where the mass term m0 is :

m0 = 2t2

(
2t′2
t2

sinΦ′ sin θ − sinΦ sin 2θ
)

.� (26)

In figure 11 we depicted the low energy dispersion relation for 
different strain values in the cases where Φ = Φ′ and Φ �= Φ′ 
(Φ′ given by equation (5)).

4.2.  Modified Haldane model: tight binding approach

We consider a graphene nanoribbon with zigzag edges under 
a uniform uniaxial strain applied along the armchair direction 
(denoted y  axis). The ribbon has a finite width W along the 
armchair edge. This system could exhibit co-propagating-
edge states as shown in [43].

Using the tight binding approach, we depict in figure 12 the 
electronic band structure of a ribbon of width W  =  60 atoms, 
at different strain amplitudes, for M  =  0 and Φ = 14

15π as in the 
HM. Figure 12 (a) shows that, in the undeformed lattice, the 
antichiral edge states have the same velocity which is counter-
balanced by the bulk mode crossed by the Fermi energy.

By increasing the strain amplitude, the dispersion of the 
antichiral edge modes is modified, and beyond a critical strain 
value ε0 ∼ 0.1, the antichiral edge states acquire opposite 
velocity compared to the case where ε < ε0.

Figure 11.  Electronic band structure at low energy of the mHM for 
t2  =  0.1t, ky   =  0, and for the Semenoff mass M  =  0.2t. The upper 
panels correspond to Φ = 14

15π and Φ′ given by equation (5) while 
the lower ones are for Φ = Φ′. The strain amplitude is ε = 0 (a) and 
(d), ε = −0.1(b) and (e) and ε = 0.15 (c) and (f).

Figure 12.  Band structure of a graphene zigzag nanoribbon under 
uniaxial strain described by the mHM at different strain amplitudes. 
The calculations are done for a ribbon of a width of W  =  60 atoms 
and t2  =  0.1t. The panels (a)–(d) are for M  =  0, Φ = 14

15π and 
Φ′ = (1 + ε)Φ and correspond, respectively, to the undeformed 
lattice (ε = 0), ε = −0.08, ε = ε0 = 0.1 and ε = 0.15. At the critical 
value of ε0 = 0.1, the dispersion of the edge modes is flatten and 
above this value their velocity changes sign compared to the case 
ε < ε0. The dashed line indicates the position of the Fermi level 
for the lower panels (e)–(g), calculations are done for M  =  0.4t, 
Φ′ = Φ = 0.68π and ε = −0.25 (e), ε = −0.1 (f), at which the mass 
term m0 (equation (26)) vanishes and ε = 0.2 (g).

J. Phys.: Condens. Matter 32 (2020) 225501



M Mannaï and S Haddad﻿

10

The critical value ε0 corresponds to m0  =  0 (equation 
(26)) where the Dirac points are at the same energy leading 
to a dispersionless edge states. In the case where Φ′ obeys to 
equation (5), and for small strain amplitudes (|ε| � 1), we find 
ε0 = −3 tanΦ

2Φ , which is consistent with the numerical results 
depicted in figure 12(c). For Φ′ = Φ, the energy offset of the 
Dirac points vanishes at the critical value ε0 = 0.5 (figure 
12(f)). This feature may open the way to realize strain-tuned 
antichiral edge currents, which can be tested in the 2D metal 
transition dichalcogenide material WSe2.

It is worth to note that the single layer structure of this 
material has a topological phase (1T ′ phase) and a trivial 
semiconducting one with an hexagonal structure (1H phase) 
[60]. As mentioned by Coloms and Franz [43], by an appro-
priate doping, the 1H phase of WSe2 could support antichiral 
edge current of the valence band if the corresponding edge 
state energy is crossed by the Fermi level. We, then, expect 
to realize the strain modified antichiral edge states in the 
deformed 1H-WSe2. Mandal et  al [59] have, recently, pro-
posed to use photonic systems to obtain antichiral edge states. 
To mimic the role of the strain, one can modify the graphene 
like geometry of the polariton strip, considered in [59], to 
induce a change in the dispersion of the antichiral edge 
modes. We propose that the strained mHM could be realized 
in deformed 2D material WSe2, doped in a way that the Fermi 
level crosses the edge state of the valence band, as proposed in 
[43]. The edge current, for a given spin orientation, could be 
tuned by the strain. A strained WSe2 has been recently used to 
achieve a single-photon emitter, a building block for quantum 
computing devices [54, 56].

5.  Conclusions

We discussed the robustness of the topological phases of the 
Haldane and the modified Haldane models against a uniform 
uniaxial strain. We considered a zigzag hexagonal nanoribbon 
exhibiting dispersionless edge states in the trivial phase and 
in the absence of strain. Using the continuum limit approx
imation and the tight binding approach, we found that the 
topology of these models could be tuned by the strain. At a 
critical value of the strain amplitude, a topological phase can 
be turned into a trivial one. By varying the strain amplitude, 
transitions between phases, with different Chern numbers, 
could take place. Our results show that the line boundary of 
the Haldane phase diagram, where one valley becomes gap-
less, is strain dependent. Moreover, the 2π periodicity of this 
line is lost in the case where the magnetic fluxes become strain 
dependent and the phase diagram shows a pseudo-periodicity 
which increases (decreases) for a compressive (tensile) defor-
mation. Such behavior may be probed by optical lattices of 
cold atoms. We also showed that the dispersion of the topo-
logically protected edge modes in the HM could be modified 
by the strain. The directions of propagation of the latter and 
the corresponding Chern number signs may be reversed by the 
strain. This feature may be realized in Fe-based ferromagnetic 
insulators [10] or in graphene with SOC doped with magnetic 
atoms [38].

Regarding the antichiral edge modes of the mHM, we 
found that the uniaxial strain could switch their direction of 
propagation, which may give rise to strain-tuned edge cur
rents. A possible realization of this effect could be achieved 
in 2D metal transition dichalcogenides, where antichiral edge 
modes are expected to be observable [43].
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