
1 © 2020 IOP Publishing Ltd  Printed in the UK

1.  Introduction

Double perovskite halides A2M(I)M(III)X6 have been pro-
posed as one kind of alternative to CH3NH3PbI3 due to their 
supreme air-stability and non-toxic characters [1–6]. So far, 
the reported double perovskite halides have large band gaps 
and most of them are indirect [7, 8], which are not suitable for 
the application in single-junction solar cells [9] but could be 

employed in multi-junction solar cells. Interestingly, double 
perovskite halides have been introduced into spintronic field 
recently besides photovoltaic application.[10] Cai et al found 
double perovskite halides Cs2GeMnX6 (X  =  Cl, Br and I) are 
promising ferromagnetic (FM) spintronic materials with the 
excellent properties, i.e. structural stability, large spin split-
ting and high TC, which extends the perovskite-based opto-
electronics to perovskite-based spintronics [10].

Recently, layered double perovskite halides emerged as 
optoelectronic and photoelectrochemical materials [11–16]. A 
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new type of 〈1 1 1〉-oriented layered double perovskite halide 
Cs4CuSb2Cl12 has been successfully synthesized, showing 
great potential as a photovoltaic material [13]. In addi-
tion, the photovoltaic applications of Cs3+nM(II)nSb2X9+3n 
(M = Sn, Ge) have been studied [12]. Meanwhile, the opto-
electronic properties of Cs4CuSb2Cl12-like Cs4M2+B3+

2 XVII
12  

as p-type transparent conductors have been investigated [14]. 
We could see layered double perovskite halides have been 
mainly explored as optoelectronic and photoelectrochemical 
materials at present. However, it is noteworthy that layered 
materials such as Cr-based materials as well as the corre-
sponding low-dimensional compounds can be spintronic 
materials [17–21]. Double perovskite halides Cs2GeMnX6 
(X  =  Cl, Br and I) are promising spintronic materials with 
supreme properties. How about layered double perovskite 
halides? Can layered double perovskite halides containing 
transition metals be spintronics materials? It’s still an open 
question considering that there are limited investigations of 
magnetic layered double perovskite.

In this work, via high-throughput first-principles calcul
ations, we investigated a series of 〈1 1 1〉-oriented layered 
double perovskites Cs4MSb2X12 (M:  +2 transition metals, X: 
Cl, Br and I), and identified three thermodynamically stable 
layered double perovskites Cs4MnSb2Cl12, Cs4CuSb2Cl12 
and Cs4ScSb2Br12 as potential spintronic materials. The 
ground state structure of Cs4MnSb2Cl12 has the R-3m sym-
metry and exhibits AFM ordering, while the Cs4CuSb2Cl12 
and Cs4ScSb2Br12 favor the C2/m symmetry and show 
AFM ordering. We did not find thermodynamically stable 
Cs4MSb2X12 showing FM ordering. Even so, our high-
throughput calculation is valid for searching the thermody-
namically stable 〈1 1 1〉 layered magnetic double perovskites 
considering that our calculated results are in line with the 
experimental observations, i.e. the ground state structures of 
Cs4MnSb2Cl12 and Cs4CuSb2Cl12 have R-3m and C2/m sym-
metry, respectively, and they both exhibit AFM behavior. 
In addition, a new layered double perovskite Cs4ScSb2Br12 
showing metallicity is predicted for the first time, and it may 
be synthesized experimentally in the future.

2.  Methods

The first-principles calculations were carried out using spin-
polarized density functional theory with exchange functional 
of Perdew–Burke–Ernzerhof (PBE) [22] within the general-
ized gradient approximation as implemented in the Vienna 
ab initio simulation package (VASP) [23, 24]. To describe 
the ion-electron interaction, the projected augmented wave 
potential was used [25]. A plane-wave cutoff of 520 eV was 
used for all calculations. Based on the experimental structures 
of Cs4CuSb2Cl12 in C2/m phase [13] and Cs4MnSb2Cl12 in 
R-3m phase [15], halogen and all possible transition mental 
elements showing divalent charged states were substituted 
into those structures to obtain Cs4MSb2X12 (M:  +2 transition 
metals; X: Cl, Br and I), as shown in figure 1. Considering 
possible effect of strongly correlated electrons, we performed 
GGA  +  U calculations [26] and used reported effective U 

values for transition metals [27–30]. All lattice vectors and 
atomic positions are fully relaxed until the force on each atom 
is smaller than 0.02 eV Å−1.

For the Brillouin zone integration, 3  ×  3  ×  2 and 4  ×  4  ×  1 
Γ-centered k-meshes were used for FM configurations in C2/m 
phase and R-3m phase, respectively. Taking Cs4CuSb2Cl12 as 
an example, the lattice constants of its FM configurations in 
C2/m phase are a  =  b  =  7.734 Å, and c  =  13.445 Å and the 
lattice constants in R-3m phase are a  =  b  =  7.548 Å, and 
c  =  36.682 Å. Using 3  ×  3  ×  2 and 4  ×  4  ×  1 Γ-centered 
k-meshes for FM configurations in C2/m and R-3m phases 
makes the grid spacing of k-meshes reaching 2π  ×  0.04 
Å−1 or less. Meanwhile, adaptive k-points were used for 
supercells in different AFM configurations that are shown 
in figure 2. We take Cs4CuSb2Cl12 as an example. For AFM 
configurations of C2/m phase, 4  ×  4  ×  1 Γ-centered k-mesh 
is used for AFM-1 (a  =  b  =  7.734 Å, c  =  26.889 Å) and 
2  ×  2  ×  2 Γ-centered k-mesh is used for AFM-2 (a  =  13.510 
Å, b  =  14.891 Å, c  =  13.475 Å) and AFM-3 (a  =  13.510 Å, 
b  =  14.891 Å, c  =  13.475 Å). For AFM configurations of 
R-3m phase, 2  ×  4  ×  1 Γ-centered k-mesh is employed for 
AFM-1 (a  =  15.395 Å, b  =  7.713 Å, c  =  37.285 Å). The grid 
spacing of k-mesh for AFM configurations is 2π  ×  0.05 Å−1 
or less. We performed test calculations of convergence using 
denser k-point meshes for FM configurations and supercells in 
AFM configurations, and found the change of calculated total 
energies are less than 1 meV/atom. It means currently used k-
mesh is enough to give reseaonable description of properties.

Ab initio molecular dynamics simulations (AIMD) were 
performed in the VASP code to verify the themal stability 
of Cs4ScSb2Br12. The calculation were carried out using a 
2  ×  2  ×  2 supercell (152 atoms) of the primitive cell in C2/m 
symmetry and using 2  ×  2  ×  1 Γ-centered k-mesh in the first 
Brillouin zone. A Nosé–Hoover thermostat was applied to 
simulate a canonical ensemble at the temperature of 300 K 
[31]. A total simulation time of 3 ps and time step of 1 fs was 
used.

3.  Crystal structure

〈1 1 1〉 layered double perovskite Cs4MSb2X12 in C2/m or 
R-3m phase can be regarded as one MX6 octahedral layers 
being inserted into the [Sb2X9] bilayers of parent Cs3Sb2X9 
[12]. Thus, 〈1 1 1〉 layered double perovskite has higher 
electronic dimensionality than parent Cs3Sb2X9. Meanwhile 
〈1 1 1〉 layered double perovskite can also be treated as M or 
Sb-deficient derivatives compared to the three-dimensional 
double perovskite [32]. The emergence of layered double 
perovskite Cs4MSb2X12 provides a huge space for searching 
candidates as photovoltaic and spintronic materials.

4.  Results and discussion

4.1. Thermodynamic stability

We combined high-throughput calculations with Materials 
Project (a material database) [33] to accelerate the evaluation 
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of thermodynamic stability of Cs4MSb2X12. The energy above 
hull, i.e. the energy difference between targeted compound 
and phase-separated combinations of compounds with the 
lowest energy at the associated composition, were calculated 
by retrieving the total energies of all available compounds 
in the Cs–M–Sb–X system including binaries and ternaries 
from Materials Project. If the energy above hull value is nega-
tive, the compound Cs4MSb2X12 is thermodynamically stable, 
meaning it could be experimentally synthesized. Based on 
it, six thermodynamically stable candidates are screened out 
among 78 Cs4MSb2X12 (M:  +2 transition metals; X: Cl, Br 
and I). They are Cs4MnSb2Cl12, Cs4CuSb2Cl12, Cs4ScSb2Br12, 
Cs4CdSb2Cl12, Cs4AgSb2Br12 and Cs4AgSb2Cl12. Their ener-
gies above hull values and the magnetic moments are sum-
marized in table 1.

Among these six candidates in FM ordering, Cs4MnSb2Cl12, 
Cs4CuSb2Cl12 and Cs4ScSb2Br12 shows magnetism while 
Cs4CdSb2Cl12, Cs4AgSb2Br12 and Cs4AgSb2Cl12 do not 
show magnetism, which means the former have the potential 
to be spintronic materials while the latter do not. Thus, we 
do not discuss properties of Cs4CdSb2Cl12, Cs4AgSb2Br12 
and Cs4AgSb2Cl12 in this paper considering our intention. 
Our calculation shows Cs4MnSb2Cl12 and Cs4CuSb2Cl12 are 
thermodynamically stable, which is in accordance with the 

reported result that Cs4MnSb2Cl12 and Cs4CuSb2Cl12 were 
successfully synthesized. It means our high-throughput cal-
culation is valid for screening the thermodynamically stable 
〈1 1 1〉 layered magnetic double perovskites. Meanwhile, 
Cs4ScSb2Br12 is predicted for the first time. The thermal sta-
bility of Cs4ScSb2Cl12 is futher verified by AIMD simula-
tion. Compared the initial structure at 0 K with snapshot of 
Cs4ScSb2Br12 after ~3 ps simulations collected at targeted 
temperature 300 K, the Cs4ScSb2Cl12 only went through 
slight distortion as shown in figure  S1 (stacks.iop.org/
JPhysCM/32/225705/mmedia), verifying its thermal stability 
at room temperature.

4.2.  Magnetic ground states

To identify the magnetic ground state configuration of 
three thermodynamically stable magnetic compounds 
(Cs4MnSb2Cl12, Cs4CuSb2Cl12, Cs4ScSb2Br12), we con-
structed three supercells with AFM ordering of the on-site 
spin using C2/m phase and one supercell with AFM ordering 
of the on-site spin using R-3m phase, which are shown in 
figure 2. Then, the energy differences between configurations 
with FM and AFM ordering are tabulated in table 2 to com-
pare the relative stability.

We found that all three compounds favor the AFM configu-
ration as the magnetic ground state. For Cs4MnSb2Cl12 in C2/m 
phase, the AFM-3 has the lowest total energy, which is 2.0 meV 
lower than that of FM configuration. While for Cs4MnSb2Cl12 
in R-3m phase, AFM-1 configuration is more stable, which is 
736.3 meV lower than that of FM configuration. Comparing 
the total energy of Cs4MnSb2Cl12 in C2/m phase with AFM-3 
configuration and that in R-3m phase with AFM-1 configura-
tion, the latter has lower total energy. Thus, R-3m symmetry 
with AFM configuration should be the ground state structure of 
Cs4MnSb2Cl12, which is consistent with experimental observa-
tions [15]. Slightly different from the case of Cs4MnSb2Cl12, 
Cs4CuSb2Cl12 and Cs4ScSb2Br12 favor C2/m phase as ground 
state structure. For Cs4CuSb2Cl12 in C2/m phase, AFM-3 

Table 1.  Energy above hull (meV/atom) and magnetic moments 
(µB) of six thermodynamically stable compounds in C2/m and R-3m 
phases with FM ordering.

Compound

Energy above hull 
(meV/atom)

Magnetic 
moment (µB)

C2/m R-3m C2/m R-3m

Cs4MnSb2Cl12 −0.30 −0.32 5.00 5.00
Cs4CuSb2Cl12 −3.40 4.64 1.00 0.00
Cs4ScSb2Br12 −14.20 88.03 1.00 0.86
Cs4CdSb2Cl12 −1.00 −0.51 0 0
Cs4AgSb2Br12 −6.60 −5.11 0 0
Cs4AgSb2Cl12 −8.40 −5.98 0 0

Figure 1.  Crystal structures of Cs4MSb2X12 (M:  +2 transition metals; X: Cl, Br and I) in C2/m and R-3m phase. C2/m and R-3m phases are 
experimental structures of Cs4CuSb2Cl12 and Cs4MnSb2Cl12, respectively. Left panel and right panel are crystal structures of C2/m phase 
and R-3m phase. Balls in green and cyan represent halogens and Cs atoms, respectively. Brown octahedron and purple octahedron denote 
SbX6 and MX6, respectively. The middle panel shows substitutional elements we considered. The elements in blue squares are transition 
metals have  +2 charged state while those in green squares are halogens.
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configuration has the lowest total energy, being the magnetic 
ground states, which is in line with previous experimental and 
theoretical results [13, 34]. For Cs4ScSb2Br12 in C2/m phase, 
the total energy of AFM-2 configuration is the lowest, denoting 
it is the magnetic ground states.

4.3.  Electronic and magnetic properties

To discuss the electronic properties of Cs4MnSb2Cl12, 
Cs4CuSb2Cl12 and Cs4ScSb2Br12, we calculated the orbital-
projected density of states (DOS) of supercell in the mag-
netic ground states, as depicted in figure  3. The magnetic 
ground states of Cs4MnSb2Cl12 (R-3m symmetry with AFM-1 
ordering) and Cs4CuSb2Cl12 (C2/m symmetry with AFM-3 
ordering) are semiconductors. The GGA  +  U band gap of 
Cs4MnSb2Cl12 is 1.75 eV, which is lower than experimental 
reported band gap 2.98 eV [15]. The VBM of Cs4MnSb2Cl12 
is composed of Mn-3d, Sb-5s and Cl-3p orbitals, and CBM 
is composed of Mn-3d, Sb-5p and Cl-3p orbitals. Both VBM 
and CBM of Cs4MnSb2Cl12 have strong p-d hybridization. 
The GGA  +  U band gap of Cs4CuSb2Cl12 is 0.93 eV, which 

is slightly lower than the experimental reported value 1.03 eV 
[13]. The VBM of Cs4CuSb2Cl12 is composed of Sb-5s and 
Cl-3p orbitals, and its CBM is composed of Cu-3d and Cl-3p 
orbitals.

Different from the cases of Cs4MnSb2Cl12 and 
Cs4CuSb2Cl12, the magnetic ground state of Cs4ScSb2Br12 in 
C2/m phase with AFM-2 ordering shows metallicity. We use 
GGA  +  U (Ueff  =  2.5 eV) [35] and hybrid functional (HSE06) 
[36] to verify whether the metallicity of Cs4ScSb2Br12 in 
magnetic ground state is due to the general underestimation of 
the band gap caused by PBE functional or not. The metallicity 
of Cs4ScSb2Br12 in C2/m phase is still preserved even using 
GGA  +  U and HSE06 functional.

From DOS, we can see there is a strong coupling between 
M-d and X-p orbitals in Cs4MnSb2Cl12 and Cs4ScSb2Br12. 
Since the distance between two first nearest-neighboring 
(NN) M ions is quite large (>7 Å), the direct exchange cou-
pling between two NN M ions is exceptionally weak [37–39]. 
But the NN M-d ions could interact with each other through 
the bridging BX6 octahedron via the supersuperexchange 
mechanism [40, 41], which could be facilitated by the strong 

Figure 2.  Schematic diagrams of supercells with AFM orderings: (a) three AFM configurations in C2/m phase and (b) one AFM 
configuration in R-3m. Red arrow denotes spin-up magnetic metals meanwhile blue arrow denotes spin-down magnetic metals.

Table 2.  Relative total energy meV/formula (19 atoms in one formula, i.e. one magnetic atom in one formula) of Cs4MnSb2Cl12, 
Cs4CuSb2Cl12, and Cs4ScSb2Br12 in different magnetic ordering. GGA  +  U is used for the total energy calculation of Cs4MnSb2Cl12 
(Ueff  =  2.0) [27, 28] and Cs4CuSb2Cl12 (Ueff  =  8.5) [29, 30] while GGA (PBE) is used for Cs4ScSb2Br12. The configuration with lowest 
total energy is taken as reference.

Compound

Cs4MnSb2Cl12 Cs4CuSb2Cl12 Cs4ScSb2Br12

C2/m R-3m C2/m R-3m C2/m R-3m

FM 737.5 736.3 8.1 456.1 19.3 6.6
AFM-1 736.8 0 7.5 50.5 1.1 5.0
AFM-2 967.2 / 76.9 / 0.0 /
AFM-3 735.5 / 0 / 0.7 /

J. Phys.: Condens. Matter 32 (2020) 225705
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coupling between M-d and X-p orbitals. In addition, local 
magnetic moments in Cs4MnSb2Cl12 (µB  =  5), Cs4CuSb2Cl12 
(µB  =  1) and Cs4ScSb2Br12 (µB  =  1) are contributed by M-d 
orbitals. Mn2+ ions in Cs4MnSb2Cl12 favor high spin configu-
ration (d5↑d0↓). And based on crystal field theory, five d orbitals 
of Mn2+ will split into singlet A1g (dz2), doublet Eg (dxz  +  dyz) 
and doublet Eg′ (dxy  +  dx2  −  dy 2) under a D3d symmetry [42], 
as shown in figure 4. The d orbitals of Cu2+ (d5↑d4↓) and Sc2+ 
(d1↑d0↓) in Cs4CuSb2Cl12 and Cs4ScSb2Br12 will show five 
crystal field states under the symmetry of C2h symmetry [42], 
as depicted in figure 4.

For spintronic application, the magnetic ordering temper
ature is important. The Néel temperature of Cs4MnSb2Cl12 
(AFM ground-state) is calculated to be ~1 K [40], showing 
the potential of layered double perovskite as spintronics. But 
for Cs4CuSb2Cl12 and Cs4ScSb2Br12, Néel temperature is not 
discussed in this work. It would be calculated in future study.

5.  Conclusion

We investigated a series of 〈1 1 1〉-oriented layered double 
perovskites Cs4MSb2X12 (M:  +2 transition metals, X: Cl, 
Br and I), and identified three thermodynamically stable lay-
ered double perovskites Cs4MnSb2Cl12, Cs4CuSb2Cl12 and 
Cs4ScSb2Br12 by high-throughput first-principles calculations. 
The ground state structure of Cs4MnSb2Cl12 has the R-3m 
symmetry and exhibits AFM ordering, while the Cs4CuSb2Cl12 
and Cs4ScSb2Br12 favor the C2/m symmetry and show AFM 

ordering. In spite of that we did not find thermodynamically 
stable Cs4MSb2X12 showing FM ordering, our high-throughput 
calculation is valid for searching the thermodynamically stable 
〈1 1 1〉 layered magnetic double perovskites considering that 
the calculated results are consistent with the experimental 
observations. Additionally, a new layered double perovskite 
Cs4ScSb2Br12 is predicted for the first time and it may be 
synthesized experimentally in the future. Our first-principles 
calculations show that Cs4MnSb2Cl12, Cs4CuSb2Cl12 and 
Cs4ScSb2Br12 with AFM ordering can be spintronic materials, 
which validates the extension of layered double materials from 
photovoltaics to spintronics.
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