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Abstract
High-energy scattering processes, such as deep inelastic scattering (DIS) and
quasielastic (QE) scattering provide a wealth of information about the structure
of atomic nuclei. The remarkable discovery of the empirical linear relationship
between the slope of the European Muon Collaboration (EMC) effect in DIS
and the short-range-correlation (SRC) scaling factors a2 in QE kinematics is
naturally explained in terms of scale separation in effective field theory. This
explanation has powerful consequences, allowing us to calculate and predict
SRC scaling factors from ab initio low-energy nuclear theory. We present
ab initio calculations of SRC scaling factors for a nucleus A relative to the
deuteron a2(A/d) and relative to He3 a A He2

3( ) in light and medium-mass
nuclei. Our framework further predicts that the EMC effect and SRC scaling
factors have minimal or negligible isovector corrections.

Keywords: short-range correlations, short-range-correlation scaling factors,
EMC effect, quantum Monte Carlo
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1. Introduction

The accurate description and prediction of the structure and behavior of atomic nuclei remains
an important problem in physics. In spite of decades of experimental, theoretical, and com-
putational research and the fact that quantum chromodynamics (QCD) is widely understood
to provide the underlying field theoretic description, the strong interaction between protons
and neutrons still surprises us with its subtlety. Because of the nature of the nonabelian
gauge interactions, QCD resists perturbative treatments at low energies [1, 2]. Explicit
solutions at these energies are possible via the computational framework of lattice QCD,
wherein observables are calculated directly in QCD but on a finite Euclidean space-time
lattice [3–5].

While lattice QCD promises a fundamental explanation of nuclear physics phenomena,
the computational difficulties it faces grow rapidly with the system size, so that current
simulations are limited to few-nucleon systems [3–9]. This means that for many interesting
nuclear systems, other methods are needed at present. Low-energy ab initio nuclear theory,
working with protons and neutrons as degrees of freedom and fixing the parameters of the
theory with results from either experimental data or lattice QCD, naturally fills this role, and
the field has made significant progress in recent years in terms of working with systematically
improvable Hamiltonians derived from chiral effective field theory (EFT) and in terms of the
size of the nuclear systems that can be accurately handled [10–17].

In particular, in recent years advances made in accurate quantum Monte Carlo (QMC)
methods and their combination with interactions derived from chiral EFT has provided many
new insights in low-energy nuclear theory (see [18] for a review). One such insight to arise
from the use of QMC methods with EFT techniques is that, while commonly calculated two-
body central densities
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with rij the internucleon separation for a nucleus with A nucleons, are scheme and scale
dependent, their ratios are largely scheme and scale independent [19]. Moreover, these ratios
at small internucleon separation correspond to short-range-correlation (SRC) observables in
quasielastic (QE) lepton-nucleus scattering: in short, µ
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, where a2 is

the so-called SRC scaling factor, and d stands for the deuteron [19].
In this paper, we exploit this unique convergence of advances in QMC methods and EFT

to confirm this relationship in light nuclei up to C12 by comparing with existing experimental
data. We then make predictions for several light systems ( He6 , Li6 , and O16 ) and for the
medium-mass nucleus Ca40 , which could be tested in existing and near-term future exper-
imental facilities.

The structure of this article is as follows. In what remains ofsection 1 we present some
background (section 1.1), the main EFT arguments (section 1.2), and details on the EFT
power counting (section 1.3). Insection 2 we briefly discuss the nuclear Hamiltonian and our
QMC methods. Insection 3 we present our main results, discussing how best to extract the
SRC scaling factors from our QMC results. Finally, insection 4 we summarize our results
and provide an outlook for this novel framework.
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1.1. Background

Deep-inelastic scattering (DIS) of leptons on nuclear targets has been one of the most
valuable experimental tools for learning about the structure of nucleons and nuclei. In DIS, a
highly energetic (Q2∼5 GeV2) leptonic probe with four momentum p is scattered from a
hadronic target with four momentum P, transferring four momentum q to the struck quark,
seefigure 1. The cross section can be written in terms of the dimensionless Bjorken ºx Q

P q2

2

·
,

with = -Q q2 2, because q is spacelike, the dimensionless variable ºy P q

P p

·
·
, and the structure

function F2(x, Q
2):
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In 1983, the European Muon Collaboration (EMC) announced their unexpected results
for the measurement of the structure functions F x Q,A

2
2( ) in leptonic DIS for iron ( Fe56 ) and

deuterium [20]. The surprise came because, given that the typical binding energy per nucleon
is so small (i.e. 1%) compared to the nucleon mass and the energy transfer in the DIS
process, the expectation was that the cross section would have only trivial dependence on the
nuclear target. Instead, in the region  x0.2 0.7, the ratio F AF2 d

2
Fe

2 was observed to fall
off linearly to a significant reduction of ∼10% at x∼0.7. This reduction in the ratio
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,
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has come to be known as the EMC effect. Since then, significant experimental and theoretical
effort has been invested to understand this effect (see [21–24] for reviews).

As part of this effort to further understand the implications of the EMC effect, more
experiments were carried out for smaller values of x, at different Q2 [25], and for various
nuclei [26], and more recently in QE scattering at higher  x x, 1 2 [27]. The picture that
emerges is that the ratio of nuclear structure functions R A x,EMC( ) has very little Q2

dependence, and for isoscalar nuclei, the A and x dependence of -R 1EMC factorizes. That is,
the shape of the deviation from unity of the ratio REMC(A, x) is independent of A, while the
maximum magnitude only depends on A. Figure 2 shows an example of the universal x
dependence of the data. The different regions are labeled with the favored explanation for the
behavior of the ratio in that region (see [22] for a more detailed explanation of the history of
attempts at explaining the EMC effect).

Figure 1. Lowest-order DIS diagram. A highly energetic lepton of four momentum p
scatters from a struck quark inside a hadronic target of four momentum P, transferring
four momentum q.
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In this work, we are interested in the EMC region (0.35<x<0.7) and the SRC region
(1<x<2). The strength of the effect in the former region is usually characterized by the
slope R xd dEMC∣ ∣ (see again figure 2), which ranges from ∼0.07 in He3 up to ∼0.5 in Ag108 ,
showing a trend towards saturation as the mass number A increases. In the latter region, based
on an impulse-approximation argument, Frankfurtet al [30] cast the inclusive cross section as

ås s=
=
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2
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where the aj(A) are proportional to the probabilities to find a nucleon in a j-nucleon SRC, and
s =x Q, 0j

2( ) for x>j. This framework correctly predicted the scaling behavior (x and Q2

independence) in the ratio of cross sections:
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where a2 is the SRC scaling factor introduced earlier. (Note that Fermi motion pushes the
onset of the plateau from x∼1 to x∼1.5). In some of the more recent experiments at
Thomas Jefferson National Accelerator Facility (Jefferson Lab) [27], these plateaus have been
observed for nuclear targets from He3 to Au197 (see also figure 2).

Recently, a fascinating empirical discovery was made: the slope of the EMC effect in the
EMC region is linearly correlated with the SRC scaling factor [31, 32], seefigure 3. This
remarkable result has motivated a series of experiments attempting to further understand this
phenomenon, as well as many theoretical proposals. As discussed in [19], the physics behind
this correlation is naturally explained in the EFT approach used here.

1.2. Effective field theory

EFT is a model-independent approach that relies on the symmetries and the separation of
scales in a given system. EFT has been successfully applied to many aspects of meson [33],

Figure 2. An example of data for the ratio REMC(A, x) collected in DIS (left panel with
0�x�0.8) and QE experiments (right panel with 0.8�x�2.0) on C12 showing
the universal shape of the x dependence of the EMC effect (note the different scales for
the y axes). The data are often separated into regions labeled for the favored
explanation for the behavior in that region. Also shown are an illustrative linear fit to
the EMC region of the Gomezet al data (left panel) and an illustrative fit to the
plateau/SRC region (right panel). The data are from Amaudruzet al[25],
Gomezet al[26], and Seelyet al[28] (left panel), and Fominet al[27, 29] (right
panel).
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single- [34], and multi-nucleon systems [35–40]. In particular, chiral EFT has been applied to
parton distribution functions (PDFs) in the meson, single-nucleon [41–49], and multi-nucleon
sectors [50, 51], as well as to other light-cone dominated observables [52–57].

In 2005, using EFT, Chen and Detmold [50] found that, up to higher order corrections,
the F2 structure function of an isoscalar nucleus has the form

+ L LF x Q A F x Q g A f x Q, , , , , , 6A N
2

2
2

2
2 2

2( ) ( ) ( ) ( ) ( )

where F2
N is the isoscalar combination of the nucleon structure function, which receives the

nuclear modification from the second term in which the x and A dependence factorizes. The A
dependence comes from momenta smaller than the ultraviolet momentum cutoff of the EFT
Λ∼0.5 GeV, while the x dependence comes from scales larger than Λ.

An immediate consequence of equation (6) is that

- -R A x C x a A, 1 1 , 7EMC 2( ) ( )[ ( ) ] ( )

Figure 3. The linear relationship between the strength (slope) of the EMC effect
- R xd dEMC and the SRC scaling factor a2. The fit is constrained to pass through the
deuteron point with - =R xd d 0EMC , and =a 12 : hence the form of the fit
- = -R x m ad d 1EMC 2( ). Data (in black) are taken from [32]. In red are our
predictions from this work for He6 , Li6 , and O16 using local chiral EFT interactions at
N2LO with the tE parametrization of the N3 interaction, and for Ca40 using the
simplified ¢ +AV4 UIXc potential (see table 1 and section 3). The QMC statistical
uncertainties are shown as the red error bars (the horizontal statistical uncertainties are
smaller than the points). The systematic errors coming from the truncation of the chiral
expansion (where available) and from the fit of a2 are shown as the red shaded areas.
For O16 (the empty red circle), we do not show the associated systematic uncertainties
as they are large enough (see table 1) as to obscure the figure.
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with the x and A dependence factorized, and
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The deviation of REMC from unity in equation (7) means that the nuclear modification to the
structure functions has a universal shape (x dependence), while its maximum magnitude
depends only on A [50]. This feature describes experimental data with x<1 for many nuclei,
ranging from He to Pb very well [58, 59].

Because F xA
2 ( ) has support for 0<x<A, if DIS experiments were carried out at

1<x<2, where =F x 0N
2 ( ) but ¹F x 0d

2 ( ) , then equations (7) and (8) yields

< <R A x a A, 1 2 , 10EMC 2( ) ( ) ( )
which is an x-independent plateau. Experimentally, the measurements at x>1 are performed
not in the DIS region, but in the QE region at lower Q2 because of the larger associated rate.
Generalizing the analysis to the QE region by including all the higher twist effects does not
change the plateau value ofequation (10) [19]. The plateau is observed experimentally at
1.5<x<2, possibly because Fermi motion, which is a higher-order effect in the EFT,
extends the contribution of the single-nucleon PDF to x slightly above 1, so that the onset of
the plateau is also pushed to larger x.

From equations (7) and (10), the observed linear relation between - R xd dEMC and the
SRC scaling factor a2(A) is easily obtained. Equation (10) demands that the scaling factor,
which comes from the ratio of two cross sections, be independent of the cutoff Λ. Therefore,
the Λ dependence on the right-hand side ofequation (9) should cancel. This provides a
nontrivial test of EFT, because it implies that, although g2(A, Λ) depends on the renormali-
zation scheme and scale (Λ) of the EFT, a2 is scheme and scale independent. This occurs if
the Λ and A dependence factorize in g2, which is defined as

L º Lg A
A

A N N A,
1

2
: : , 112

2( ) ⟨ ∣ ( ) ∣ ⟩ ( )†

where N is the nucleon field and : : indicates normal ordering of the enclosed operators
with respect to the vacuum state.

The above analysis is for isoscalar operators. Including isovector corrections, one has

+ + L L +F x Q ZF x Q NF x Q Ag A f x Q, , , , , , , 12A p n
2

2
2

2
2

2
2 2

2( ) ( ) ( ) ( ) ( ) ( ) 

with N (Z) the number of neutrons (protons) in the nucleus. The isovector counterpart of the
g2 term is neglected because it is - N Z ANc(( ) ) smaller than g2, with the number of colors
Nc=3. This implies that, even with isovector corrections, the SRC plateaus still exist, and
the plateau values of a2 remain unchanged. Also, for the EMC effect, recent experimental
results including nonisoscalar nuclei are well described byequation (12) [60].

1.3. EFT power counting

In DIS, the structure functions F x Q,A
2

2( ) can be expressed in terms of nuclear PDFs q x Q,i
A( )

as = åF x Q Q xq x Q, ,A
i i i

A
2

2 2( ) ( ), where the sum runs over quarks and antiquarks of flavor i
with charge ±Qi in a nucleus A. In what follows, we first focus on the power counting for
isoscalar PDFs, = = +q q q qA A A u A d,0 , , , then we discuss the isovector correction from
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= -q q qA A u A d,3 , , . The dominant (leading-twist) PDFs are determined by target matrix ele-
ments of bilocal light-cone operators. Applying the operator product expansion, the Mellin
moments of the PDFs

ò=
-

x Q x x q x Qd , , 13n
A

A

A
n

A⟨ ⟩ ( ) ( ) ( )

are determined by matrix elements of local operators

=m m m mA p A p x Q p p; ; 2 , 14n
An n0 0⟨ ∣ ∣ ⟩ ⟨ ⟩ ( ) ( )( )

with

g=m m m m m q D D qi i , 15n n0 0 1 ( )( )

where ( ) indicates that the enclosed indices have been symmetrized and made traceless,

º -m m m¬
D D D 2( )


is the covariant derivative, and a sum over flavors q=u, d is implied.

The negative x distribution is the antiquark distribution: - = -q x q xA A( ) ¯ ( ).
In nuclear matrix elements of these operators, there are other relevant momentum scales

below the hard scattering scale Q: Λ∼0.5 GeV is the range of validity of the EFT, and
P∼mπ is a typical momentum inside the nucleus (mπ is the pion mass). These scales satisfy

LQ P  , and the ratio Λ/Q is the small expansion parameter in the twist expansion,
while the ratio ~ L ~ P 0.2 0.3– is the small expansion parameter for the chiral expansion.

In EFT, each of the QCD operators is matched to a sum of all possible hadronic operators
of the same symmetries at the scale Λ [50]

a
p p

 +
+ ¶ ¶ +

m m m m

p
a m m a

+ x M v v N N N N

x

:2 1

i i :, 16

n
N N

n
n

n

1
n n

n

0 0

0

⟨ ⟩ [ ]
⟨ ⟩ ( )

( ) † †

( )

 



where π (N) is the pion (nucleon) field, v is the nucleon four-velocity, and pxn
N⟨ ⟩ ( ) is the nth

moment of the isoscalar quark PDF in a free nucleon (pion). There are an infinite number of
terms on the right-hand side ofequation (16), whose importance will be estimated by power
counting. The pxn

N⟨ ⟩ ( ) terms are one-body operators acting on a single hadron, whose
prefactors can be determined by taking the nucleon (pion) matrix element ofequation (16).
The αn terms are two-body operators. Here we have only kept the SU(4) (spin and isospin)
singlet two-body operator µ N N 2( )† and neglected the SU(4) nonsinglet operator

s tµ -N N N N2 2( ) ( )† † , which changes sign when interchanging the spin (s) and isospin
(t ) matrices [61]. The latter operator has an additional ~ N1 0.1c

2( ) suppression in its
prefactor [62]. We also replace the nucleon velocity by the nucleus velocity and include the
correction ¶ Mi N0 at higher orders.

In Weinberg’s power counting scheme, the typical nucleon momenta q∣ ∣ are counted as
( ), while their energies q0 are  2( ). Two-nucleon contact operators N N 2( )† are counted as
 0( ), while the three-body contact operator N N 3( )† is counted as  3( ), both according to

their mass dimension. We will focus on the twist-2 operators with all m = 0i inequation (16).
Because v0=1, the m mv v N Nn0 ( )( ) † operator is - 3( ) and m mv v N N 2n0 ( )( ) † is  0( ).
The one-derivative operator ¶ m m mN v v Nn0 1† ( ) is - 1( ), but its net effect is to shift the
value of p0 on the right-hand side ofequation (14) from AMN to MA. This can be seen from
the special case of n=0. The vector current operator m 0 is matched to the operator

+ ¶m mM N v M N2 iN A0 0( )† . The nuclear matrix element of the first term yields AM2 N . The
relative coefficient between the two terms are fixed by reparametrization invariance [63], and
the nuclear matrix element of the sum yields M2 A.

The two-derivative operator given by ¶ ¶m m m mN v v Nn0 1 2† ( ) , (again with μi=0 for all
i) is ( ), and it can cause qN(x) or F xN

2 ( ) to ‘spill’ into >x 1. This is related to Fermi
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motion. Although it is higher order than the two-body operator, if f2(x) ofequation (6) is very
small when x is just above one, then the Fermi-motion effect could be dominant and explain
why the a2 plateau only sets in at x 1.5. It is important to note that, in the EFT approach,
off-shell effects that enter through Fermi motion can be absorbed into many-body operators
through a field redefinition [64, 65]. Therefore the separation between ‘Fermi motion’ and
‘two-body effects’ is meaningful only after the theory is clearly specified.

The pion one-body operator p p¶ ¶m mi ia an0( ) inserted in the one-pion-exchange dia-
gram contributes at - n 1( ). Because =px 0n⟨ ⟩ for even n due to charge conjugation
symmetry, the n=1 pion operator enters at  0( ), but for higher n the contributions either
vanish or are higher order compared with the other operators inequation (16). This means
that, at  0( ), the pion contribution toequation (6) is proportional to δ(x)/x and breaks the
factorization of the x and A dependence of F2

A ofequation (6), but only at x=0.
All the other operators in the matching are found to be higher order than ò0 in this power

counting. Using nucleon number conservation, =A N N A A: :⟨ ∣ ∣ ⟩† , the isoscalar nuclear
matrix element ofequation (16) is

a d= + L +L =x Q x Q A Q A N N A, : : term, 17n
A

n
N n n

2
1⟨ ⟩ ( ) ⟨ ⟩ ( )[ ( )⟨ ∣ ( ) ∣ ⟩ ] ( )†

where αn is A independent but Λ dependent, and is completely determined by the two-
nucleon system. After an inverse Mellin transform, except at x=0 as explained above, the
isoscalar PDFs satisfy

+ L Lq x Q A q x Q g A q x Q, , , , , , 18A N 2 2( ) ( ) ( ) ˜ ( ) ( )

where Lq x Q, ,2̃ ( ) is an unknown function independent of A whose Mellin moments are
determined by the low-energy constants αn. This result also holds at the level of the structure
function, which leads toequation (6).

The isovector operator

t g=m m m m m q D D qi i , 193 3
n n0 0 1 ( )( )

is matched to hadronic operators as

t g

d p t t
p p

 +

+
+ ¶ ¶ +

m m m m

m m m a a

p
ab a m m b

+

+



 x M v v N N N N

M N S v v N

x

:2 1

2 ,

i i i :. 20

n
N N

n
n

n N
n

n

3 ,3
1

3

1
3

,3
3

n n

n

n

0 0

0 1

0

⟨ ⟩ [ ]
[ ]

⟨ ⟩ ( )

( ) † †

† ( )

( )



 



The xn
N,3⟨ ⟩ term is - 3( ). The γn term is  0( ), like the αn operator ofequation (16), but it

has an additional 1/Nc suppression in its prefactor [62] and an (N−Z)/A suppression in its
nuclear matrix element compared with the αn term and, hence can be neglected. Sμ is the
nucleon spin vector. Using p t t p t p tµ -a a +

+
-

-, 3[ ] ( ), the δn term involves a charged pion
exchange, which can only happen between np states in two-nucleon systems. However, τ3 for
np states (which have isospin zero) vanishes, therefore, there is no net two-nucleon contribution
from this term. The pxn

,3⟨ ⟩ term contributes at - n 1( ). However, pxn
,3⟨ ⟩ vanishes for odd n by

charge conjugation. The px0
,3⟨ ⟩ term is the isospin charge, which is protected from nuclear

modifications. The other terms p
xn 2

,3⟨ ⟩ are ( ) and higher and can be neglected. The leading
three-body operator tm mv v N N N N2

3n0 ( )( ) † † is  3( ), which can also be neglected.
We remark that in the large Nc limit, the nucleon and delta resonances are degenerate,

hence one should explicitly include the deltas in the 1/Nc expansion. In the real world with
Nc=3, the mass difference between delta and nucleon Δm is much larger than the typical
Fermi energy EF in a nucleus. Therefore, one can choose to integrate out the delta degrees of
freedom, as done in this work. The effect is that the nucleon operators studied here will
receive D E mF( ) corrections, but their Nc scalings remain the same.
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In summary, up to  0( ), only the one-body operator xn
N,3⟨ ⟩ contributes to isovector

corrections. Therefore, the nuclear effects are dominated by the isoscalar PDF contributions,
while the isovector PDFs are relatively unaltered by the nuclear environment, leading
toequation (12).

2. Hamiltonian and QMC methods

In ab initio methods, nuclei are treated as a collection of point-like particles of mass MN

interacting via two- and three-body potentials according to the nonrelativistic Hamiltonian

å å å= -  + +
< < <


H

M
v V

2
, 21

N i

A

i
i j

A

ij
i j k

A

ijk

2
2 ( )

where the two-body interaction vij also includes the Coulomb force.
In this work, we adopt the local chiral nucleon–nucleon (NN) interactions at next-to-next-

to-leading order (N2LO) in Weinberg counting of [66, 67], with coordinate-space cutoffs
R0=1.0 fm and R0=1.2 fm. Such interactions include long-range pion-exchange con-
tributions, determined by pion-nucleon couplings, and shorter-range contributions, defined by
low-energy couplings (LECs) that are fit to reproduce NN scattering data. The local chiral NN
potentials are written in coordinate space as a sum of spin/isospin operators

å=
=

v v r , 22ij
p

p ij ij
p

1

7

( ) ( )

with

t t s s s s t t t t== ¼ S S L S, , , , , , , 23ij
p

i j i j i j i j ij ij i j
1, ,7 { · · · · · · } ( )

where = -r r rij i j∣ ∣ is the NN relative distance, s s s s= -S r r3ij i ij j ij i j· ˆ · ˆ · is the tensor
operator, and  = - ´ -L r r 2ii j i j( ) ( ) and s s= +S 2i j( ) are the relative angular
momentum and the total spin of the pair ij, respectively.

At N2LO , in addition to the NN interactions specified above, three-nucleon (3N)
interactions enter [16, 17, 68, 69], see also [70, 71] for earlier formulations, often used as non-
local interactions in momentum space. The employed 3N forces include two-pion-exchange
(TPE) contributions in P and S waves, plus shorter-range components parametrized by two
contact terms, usually referred to as VD and VE:

= + + +p pV V V V V . 24ijk
P S

D E2 2 ( )

The TPE components are characterized by the LECs c1, c3, and c4 from the pion-nucleon
sector. The LECs of the contact terms, cD and cE, have been fit to the α particle binding
energy and to the spin–orbit splitting in the neutron-α P-wave phase shifts [17, 69]. We
employ the form

t t s s
p

p
d

d d

=
L

å å -

´ +

p

c p p
< <V

g c m

F
X

m
r

r r

r
96

4

, 25

D
A D

i j k i k ik ik i k R ik

R ij R kj

2

2

4 cyc 2 N

N N

3

3 3

⎡
⎣⎢

⎤
⎦⎥· ( ) · ( )

[ ( ) ( )] ( )

for VD, and we consider two choices for VE, namely Eτ and E:

å å t t d d=
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t
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å å d d=
Lc p < <

V
c

F
r r b, 26E

E

i j k
R kj R ij4

cyc
N N3 3 ( ) ( ) ( )

where gA is the axial vector coupling constant, mπ is the pion mass, L =c pF700 MeV, is the
pion decay constant, s s= +X S T r Y rr rij ij ij ij ij i j ij( ) [ ( ) ( ) · ] ( ) is the coordinate-space pion
propagator, with the tensor and Yukawa functions defined as = + +pT r m r1 3( ) ( )

pm r3 2( ) and = - pY r re m r( ) , respectively, and d =
pG

-
rR R

e

3 4N

r R N

N
3

3
4

3
3( )

( )

( )
is a smeared-out delta

function with 3N coordinate-space cutoff R3N. We take this 3N cutoff equal to the NN cutoff
=R RN3 0. The notation åcyc indicates a cyclic summation over the indices {ijk}. See

[16, 17, 69] for more details including values for cD and cE.
The operator structure of the employed local chiral interactions is suited for QMC

calculations. QMC methods are a family of ab initio many-body techniques that allow one to
solve the many-body Schrödinger equation in a nonperturbative fashion with high accuracy.
In particular, imaginary-time projection algorithms, also known as diffusion Monte Carlo
(DMC) algorithms, have proven to be remarkably successful in the description of nuclei and
their global properties, e.g. binding energies, radii, transitions, and reactions, and in the
prediction of properties of neutron star matter (for a review of QMC methods see [14]).

In this work, we employ two different DMC techniques, namely the Green’s function
Monte Carlo (GFMC) method [72] and the auxiliary field diffusion Monte Carlo (AFDMC)
method [73]. Both approaches rely on the application of an imaginary-time propagator to an
initial trial wave function in order to project out the true many-body ground state of the
system:

tY º Yt- ae , 27H
T∣ ( )⟩ ∣ ⟩ ( )

tY  Y
t¥

blim . 270∣ ( )⟩ ∣ ⟩ ( )

The trial wave function is given in terms of a variational state of the form

Y = + + F pF F F , 28T C J T2 3∣ ⟩ [ ]∣ ⟩ ( )

where FC accounts for all of the spin/isospin-independent correlations, and F2 and F3 are
spin/isospin-dependent two- and three-body correlations, respectively. The term F∣ ⟩ is taken
to be a shell-model-like state with total angular momentum J, parity π, and total isospin T. Its
wave function is constructed using single-particle orbitals that depend on the nucleon spatial
coordinates, spin, and isospin. An initial optimization procedure is applied to the trial state
ofequation (28) in order to find the optimal parameters providing the best, i.e. lowest,
variational energy. The optimized wave function is then repetitively evolved in small
imaginary-time steps until the ground state of the system is reached (more details can be
found in [14, 17]).

The local chiral interactions considered in this work can be efficiently implemented in
both the GFMC and AFDMC methods. The GFMC method, which includes a sum over all
possible spin/isospin states at each step in the diffusion, scales exponentially with the number
of nucleons A. This limits current calculations to around A=12. The AFDMC method, on
the other hand, samples the sum over all spin/isospin states, and therefore exhibits a much
gentler, polynomial scaling with A. The two algorithms are thus complementary, and they
allow one to vastly extend the region of applicability of QMC calculations. Results employing
local chiral forces are now available for several quantities (binding energies, charge radii,
charge form factors, single- and two-nucleon radial distributions, and single- and two-nucleon
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momentum distributions) in light and medium-mass nuclei [16, 17, 69, 74, 75], and for
properties of pure neutron systems [76–78], including pure neutron matter [66–69].

In QMC methods, the expectation value of an observable  is calculated as

å=
Y

Y=




 R S

R S

1
, 29

i

i i T

i i T1

⟨ ⟩ ⟨ ∣ ∣ ⟩
⟨ ∣ ⟩

( )

where {Ri, Si} are spatial and spin/isospin configurations typically sampled using the
Metropolis algorithm [79], and  is the (large) number of configurations in the simulation. In
the AFDMC method, both spatial and spin/isospin degrees of freedom are sampled during the
imaginary-time propagation, the latter through the so-called Hubbard–Stratonovich
transformation. In the GFMC approach, all possible spin/isospin configuration are included
in the trial many-body wave function, and only configurations in coordinate space are
sampled. The above expression is valid only for observables that commute with the
Hamiltonian. For other observables, such as radii and densities, expectation values are
extracted from so-called mixed estimates

t
t

»
Y Y
Y Y

-
Y Y
Y Y


 

2 . 30T
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T T

T T
⟨ ⟩ ⟨ ∣ ∣ ( )⟩

⟨ ∣ ( )⟩
⟨ ∣ ∣ ⟩

⟨ ∣ ⟩
( )

In the above expression, the first term is the mixed estimate (propagated wave function on one
side, trial wave function on the other side), and the second term is the variational estimate.
This relationship can be derived under the assumption that the variational trial wave function
is a good starting point, i.e. that t dY  ¥ = Y + YT T∣ ( )⟩ ∣ ⟩ ∣ ⟩, with dYT∣ ⟩ small. Then, if we
calculate the expectation value of an operator between two propagated wave functions and
discard terms of dY T

2( ), we arrive atequation (30). Additional details, including the
sampling procedure and the calculation of statistical errors, can be found, e.g. in [80].

The SRC scaling factors can be expressed in terms of the central two-nucleon distribution
(two-body point-nucleon density) [19]:
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where the central two-nucleon distribution is defined as

år
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The normalization is such that r A r,2, ( ) integrates to the number of nucleon pairs.
Equation (32) involves a mixed estimate and is evaluated according toequation (30). In this
work, we ensure that the difference between the mixed and variational estimates of the
distributions is 10%.

In addition to Monte Carlo statistical errors, the use of chiral interactions allows one to
estimate the theoretical uncertainties coming from the truncation of the chiral expansion. In
this work, we consider results for r A r,2, ( ) at leading-order (LO), next-to-leading-order

(NLO), and N2LO, and we estimate the truncation errors on the ratio =
r

r
X

A r

A r

2 ,

2,
2,

2,





( )
( )

entering

the definition of the SRC scaling factor of equations (31a) and (31b) following [82]:
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D = - -X Q X Q X X Q X Xmax , , , 33N LO 4 LO 2 NLO LO N LO NLO2 2( ∣ ∣ ∣ ∣ ∣ ∣) ( )

where we take Q=mπ/Λb with »pm 140 MeV and Λb=600MeV, as in [17, 74].
Auxiliary field DMC calculations for nuclei employing local chiral interactions have

been carried out up to A=16 [17, 74, 75]. Preliminary results for heavier systems suggest
that improved wave functions are necessary to obtain ground-state properties with the same
accuracy as for lighter systems. However, such a prescription will increase the computational
cost by a factor proportional to A2 (see [17] for details), making calculations for A20 no
longer feasible. One way to move beyond oxygen is to use a simplified interaction, capable of
capturing most of the ground-state physics of nuclei, for which the employed wave function
still gives an accurate description of larger nuclei, thus maintaining the good computational
scaling of the current implementation of the AFDMC algorithm. We consider the phenom-
enological two-body Argonne ¢v4 potential ( ¢AV4 ) [83], a simplified version of the more
sophisticated Argonne v18 (AV18) potential [84], obtained by reprojecting the full potential
onto the first four operator channels in order to preserve the phase shifts of lower partial
waves and the deuteron binding energy. We note that this potential is very simple and
excludes, for example, tensor forces. The Coulomb interaction is, however, still included.
Such a potential typically overbinds light nuclei [83]. The inclusion of a repulsive three-body
force can be used to compensate for the excessive attraction. As done in other works [85–87],
we consider the central component of the Urbana IX (UIX) interaction [88] as a source of
repulsion. In the following, this simplified potential will be referred to as ¢ +AV4 UIXc.

3. Results

3.1. Fitting a2

In [19], the SRC scaling factors were obtained by taking the limit r 0 of the ratio of two-
body distributions as in equations (31a) and (31b). However, this is precisely the region
where the Monte Carlo statistical uncertainties become large, see, e.g. figure 5. Nuclear
potentials are generally repulsive at short distances, and therefore the likelihood of finding
two nucleons at small separations is small, giving rise to large statistical uncertainties as
r 0. In this work, we exploit the fact that, as pointed out in [19], in EFT, ‘locality’ means a

shorter distance than the resolution scale. Thus, we expect that we can replace r 0 in
equations (31a) and (31b) by simply smearing in some region <r R, where R is set by
the cutoff scale R0 (but R is not necessarily equal to R0), and still obtain the same a2
value. Therefore, we fit a horizontal line to the ratio of two-body distributions
r rA r A d r2 , ,2, 2, ( ) ( ) and r rA r A r3 , He,2, 2,

3
 ( ) ( ) in the region with  r R0 , and we

take =R 0.7 fm. This region is chosen as the empirical region where the expected plateau
sets in. (Note that for the systems H3 , He3 , and He4 , the results from this linear fit agree with
our previous results from [19] using the limit r 0.)We have further checked that varying R
from 0.4 to 1.0 fm makes a 1%–3% difference in our extracted values of a2 for the local chiral
interactions. For results with the simplified ¢ +AV4 UIXc and the +AV18 UIX potentials,
varying R in this range makes a ∼10% difference (up to 13% for Ca40 ). For the phenom-
enological potentials, we use this variation as an estimate for the systematic uncertainty
coming from the fit of a2.

If each of the discrete values r A r, i2,{ ( )} obtained from Monte Carlo calculations were
equally likely, this procedure would be entirely equivalent to taking the average in the region
0�r�R. However, as discussed above, the statistical uncertainties in r A r,2, ( ) grow
rapidly as r 0. In short, our fitting problem is heteroskedastic, and therefore, we use a
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weighted linear least squares fitting procedure

= -a A X WX X Wy, 34T T
2

1( ) ( ) ( )

where we take the weight matrix diagonal and equal to the inverse of the Monte Carlo
variances for each point:
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In our case Xij reduces to a vector of 1ʼs, and the {yi} are the set of values a ri2{ ( )} from the
Monte Carlo simulations. Then our procedure amounts to
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where is taken such that Îr 0.0, 0.7 fmi [ ] .

3.2. Results for selected nuclei up to 40Ca

We first present results for the two-body distributionsequation (32) for selected nuclei up to
Ca40 infigure 4. The left panel shows results for the deuteron, He6 , and O16 using local chiral

interactions at N2LO with the E parameterization of the N3 interaction and both cutoffs
R0=1.0,1.2 fm, whereas the right panel shows results for the deuteron, He4 , O16 , and Ca40

for the simplified nuclear potential ¢ +AV4 UIXc. The figure shows the definite scheme and
scale dependence of these distributions. This is especially clear in the left panel where the
distributions are calculated in an EFT framework at two cutoff scales. The softer cutoff
R0=1.2 fm resembles more a mean-field calculation at short distances where what are
typically referred to as SRCs are reduced, leading to a higher probability to find two nucleons
separated by very short distances r1.0 fm. The right panel, which utilizes phenomen-
ological potentials where the effective cutoff is much harder (though a particular value is not
identified) shows a significantly lower probability to find a pair of nucleons separated by
r1.0 fm.

Figure 4. Scaled two-nucleon distributions at N2LO for H2 , He6 , and O16 for the N3
parameterization E (left panel). The darker (lighter) colors correspond to

=R 1.0 1.2 fm0 ( ) . The right panel shows the scaled two-nucleon distributions for
the ¢ +AV4 UIXc potential for H2 , He4 , O16 , and Ca40 .
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In contrast to the two-body distributions shown infigure 4, their ratios to the deuteron
and He3 two-body distributions, i.e. equations (31a) and (31b) are largely scheme and scale
independent. Infigure 5, we show the ratio a2(A/d) at short internucleon distances
0�r�1.0 fm for He6 and C12 using chiral EFT interactions at N2LO with the Eτ para-
meterization of the 3N interaction (left and middle panels) and for Ca40 using the simplified

¢ +AV4 UIXc potential (right panel). For He6 and C12 , we show the Monte Carlo results with
statistical uncertainties using R0=1.0 fm as the blue squares with error bars, while we use
green squares for Ca40 using the simplified ¢ +AV4 UIXc potentials. The blue (red) band
represents the combined statistical and systematic uncertainties coming from the truncation of
the chiral expansion for the R0=1.0 fm (1.2 fm) cutoff. The light blue band in the right panel
shows the uncertainty in the fit for Ca40 . The light blue horizontal lines indicate the weighted
linear fits to the Monte Carlo results as described above. Of the three cases shown here, there
is currently only an experimental result with which to compare for C12 . This is shown in the
middle panel as the black dashed line with the gray band representing the experimental
uncertainty.

Whilefigure 5 illustrates the method by which we extract the SRC scaling factors, in
figure 6 we show our main predictions. The left panel shows results for a2(A/d) for selected
nuclei from H3 up to Ca40 . The blue squares (red circles) show the results for chiral inter-
actions up to N2LO with the Eτ parameterization of the 3N interaction and the cutoff
R0=1.0 fm (R0=1.2 fm). The green upward-pointing (downward-pointing) triangles show
the results using the +AV18 UIX ( ¢ +AV4 UIXc) potentials. The black stars show the
experimental results from [32], where available. The light colored bands show the systematic
uncertainties stemming from the truncation of the chiral expansion at N2LO for the R0=
1.0 fm (R0=1.2 fm) cutoff (where available), and coming from the fit of a2 in the case
of the phenomenological potentials. The gray region appearing at large A represents

Figure 5. Three examples of the extraction of the SRC scaling factor a2(A/d) from
Monte Carlo results. The left two panels show results for the local chiral interactions at
N2LO with the Eτ parameterization of the 3N force for He6 and C12 . The right panel
shows results for the ¢ +AV4 UIXc potential for Ca40 . For the chiral interactions, we
indicate the combined statistical and chiral truncation uncertainty estimates as the blue
and red bands. For the phenomenological potentials (right panel) we indicate the
uncertainty in the fit by the light blue band. In each case, as described in more detail in
the text, we fit a horizontal line to the AFDMC results weighted by the Monte Carlo
statistical uncertainties in the region 0�r�0.7 fm. The values extracted for a2 using
this procedure are shown in each panel including uncertainties. For C12 the
experimental value[32] with uncertainties is shown as the black dashed line with
the gray band.
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an expected saturation region taken as the difference, including uncertainties,
between =a dAu 5.16 222

197( ) ( ) and =a dCu 5.21 202
63( ) ( ) [32], i.e. we estimate

~¥a A dlim 4.94 5.41A 2 ( ) – . Similarly, the right panel offigure 6 shows results for
a A He2

3( ) for selected nuclei from He4 up to Ca40 using the same color and symbol scheme
as in the left panel. Note that the gray saturation region is provided by a single experimental
value at large A: namely, =a Fe He 2.83 3 182

56 3( ) ( )( ) [81]. (Table 1 collect these and more
results using both parametrizations Eτ and E of the 3N interaction and both cutoffs
R0=1.0,1.2 fm, as well as results for phenomenological potentials and experimental
results.)

The results infigure 6 compare very well with experimental values, where available. In
particular, we find 0.0%, 4.4%, and 1.7% relative agreement between our results for a2(A/d)
using chiral interactions at N2LO with the cutoff R0=1.0 fm and experiment for He3 , He4 ,
and C12 , respectively. Results using the softer cutoff R0=1.2 fm are typically higher than for
the lower cutoff by ~5%–10% (an exception occurs for O16 , where the softer interaction with
the Eτ parametrization has already been found to exhibit significant overbinding [17]), but are
always within the estimated systematic uncertainties. It is also interesting to note that the
predicted values for a2 for the A=6 systems fall below the values for He4 , placing them
between He3 and He4 along the fitted line infigure 3. As suggested in [28], what appears to
dictate the strength of the EMC effect (and therefore the height of the SRC scaling plateaus
through the EMC-SRC linear relation) is the local nuclear density. Given that He4 is such a
compact nucleus, and that both Li6 and He6 can be thought of as α particles with additional
nucleons ‘orbiting,’ one might expect that the strong attraction of the α core to the orbiting

Figure 6. Short-range-correlation scaling factors a2 for selected nuclei from A=3 up
to A=40 calculated with respect to the deuteron (left panel) and He3 (right panel).
Results for the chiral interactions at N2LO(with the Eτ parameterization of the 3N
force) for cutoff R0=1.0 (1.2) fm are shown as the blue squares (red circles). We also
show results for the +AV18 UIX potentials (green upward-pointing triangles) as well
as the simplified ¢ +AV4 UIXc potentials (green downward-pointing triangles). The
black stars in the left (right) panel are the experimental values from [32] ([81]). The
gray bands represent the expected range of values at which a2 saturates, based on
measurements for Cu63 and Au197 [32] (also reported in table 1) in the left panel and
based on measurements for Fe56 [81] (also reported in table 1) in the right panel. The
dark error bars (typically smaller than the symbols) represent the Monte Carlo statistical
uncertainties. The lighter bands show the overall systematic uncertainties, both
associated with the truncation of the chiral expansion at N2LO as computed
usingequation (33) for local chiral interactions, and coming from the fit of a2 for
the phenomenological potentials (see the text for more details).
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Table 1. Results for the SRC scaling factor a A d2 ( ) (upper table) and a A He2
3( ) (lower table) obtained via a linear fit to the Monte Carlo results for

different nuclear interactions (see text for details). Both statistical (first) and systematic (second) uncertainties are reported in the parentheses. The
latter include both the uncertainty coming from the fit of a2 and the uncertainty associated with the truncation of the chiral expansion (for local chiral
interactions). +AV18 UIX results are from GFMC calculations[19], while the other results are obtained using the AFDMC method. The last
column shows the available experimental data from [32, 81].

System tEN LO2 EN LO2 
+AV18 UIX ¢ +AV4 UIXc Exp

=R 1.0 fm0 =R 1.2 fm0 =R 1.0 fm0 =R 1.2 fm0

H3 2.18(2)(27) 2.27(2)(8) 2.15(2)(28) 2.46(2)(8) 2.12(1)(22) — —

He3 2.13(2)(27) 2.23(1)(8) 2.10(2)(28) 2.38(2)(8) 2.07(1)(21) 2.09(2)(21) 2.13(4)
He4 3.76(2)(46) 4.16(1)(27) 3.77(2)(46) 5.31(2)(27) 4.00(1)(40) 3.83(2)(39) 3.60(10)
He6 3.23(2)(30) 3.51(1)(41) 3.14(1)(30) 4.04(2)(41) — — —

Li6 3.46(1)(29) 3.78(1)(39) 3.33(1)(29) 4.18(2)(39) — — —

C12 4.67(2)(82) — — — — — 4.75(16)
O16 4.30(1)(1.75) 8.55(1)(4.40) 4.02(1)(1.75) 5.47(1)(4.40) — 4.62(2)(47) —

Ca40 — — — — — 5.15(2)(67) —

Cu63 — — — — — — 5.21(20)
Au197 — — — — — — 5.16(22)

He4 1.76(2)(4) 1.87(1)(4) 1.80(2)(4) 2.23(2)(9) 1.83(2)(19) 1.94(1)(20) 1.93(2)(14)
He6 1.52(2)(5) 1.58(1)(6) 1.50(2)(4) 1.70(2)(7) — — —

Li6 1.62(2)(7) 1.70(1)(6) 1.59(2)(6) 1.76(2)(6) — — —

C12 2.19(2)(18) — — — — — 2.41(2)(17)
O16 2.02(2)(33) 3.91(2)(1.01) 1.91(2)(33) 2.27(2)(1.01) — 2.27(2)(23) —

Ca40 — — — — — 2.55(2)(33) —

Fe56 — — — — — — 2.83(3)(18)
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nucleons would tend to lower the local central two-nucleon density. These predictions for Li6

could be tested already using existing experimental setups for ¢e e,( ) inclusive scattering in
QE kinematics at Jefferson Lab. For He6 , these predictions could be tested at future rare
isotope facilities such as the Facility for Antiproton and Ion Research with experiments in
inverse kinematics using a He6 beam on a proton target inducing p p, 2( ) reactions.

We also make predictions for O16 and Ca40 infigure 6 and table 2. While the latter is
only calculated using the simplified phenomenological potential ¢ +AV4 UIXc, our expec-
tation based on calculations for light systems with  A3 16 is that this rather simplified
Hamiltonian is capturing most of the important SRC physics: this can be seen by comparing
the results using the realistic chiral EFT interactions at N2LO with R0=1.0 fm (blue squares
in figure 6) with the results using ¢ +AV4 UIXc (green downward-pointing triangles). The
relative agreement between the results is 1.9%, 1.9%, and 7.4% for He3 , He4 , and O16 ,
respectively. We also refer the reader totable 2: both the binding energies and radii for He4 ,

O16 , and Ca40 are reasonably well reproduced using ¢ +AV4 UIXc. Nevertheless, given the
relative agreement between our chiral interactions at N2LO with the cutoff R0=1.0 fm
and the simplified potential ¢ +AV4 UIXc, and the slight systematic underbinding of
the latter, we assign a conservative uncertainty to our ¢ +AV4 UIXc calculations, e.g.

=a dCa 5.15 672
40( ) ( ) and =a Ca He 2.55 332

40 3( ) ( ). This 13% can be justified from our
study of the sensitivity of the extracted a2 to the chosen region  r R0 .

4. Summary

In this work, we have used DMC algorithms, namely the GFMC and AFDMC methods, to
calculate the SRC scaling factors a A d2 ( ) and a A He2

3( ) for nuclei from A=3 to A=40.
We have reviewed in detail the derivation of a2 from EFT, arguing that isovector corrections
are very small. We have then shown that fitting a constant to the ratio of two-body central
densities in some empirical region  r R0 reproduces the values from our previous work
[19] and provides a reliable method to extract SRC scaling factors. Where experimental
values exist, our calculations agree very well using both chiral EFT interactions at N2LO and
phenomenological potentials, including the simplified ¢ +AV4 UIXc potential, providing
further evidence of the value of the novel framework first proposed in [19]. We also show the
first ab initio predictions for SRC scaling factors for Li6 , He6 , O16 , and Ca40 . These pre-
dictions could be tested in future experiments, offering intriguing insights into the evolution
of SRC scaling factors with the nuclear mass A. Our framework may also shed light on the
proposed, but so far elusive, 3N SRC scaling. This topic is currently being investigated and
we leave it for future work.

Table 2. Binding energies (in MeV) and charge radii (in fm) for =A 4, 16, 40 with the
¢ +AV4 UIXc potential. Energy results are from the AFDMC unconstrained evol-

ution[17]. Experimental results are shown for comparison.

ZA EAFDMC EExp rch
AFDMC rch

Exp

He4 −26.00(2) −28.296 1.74(1) 1.680(4) [89]
O16 −113(2) −127.619 2.61(6) 2.699(5) [90]
Ca40 −321(3) −342.052 3.25(8) 3.478(2) [90]
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