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Abstract
A quark—quark interaction due to nonperturbative one gluon exchange is con-
sidered for the derivation of leading weak magnetic field induced anisotropic
corrections to usual pion—constituent quarks form factors. Besides that, few
chiral and isospin symmetry breaking effective couplings which emerge only
due to the weak magnetic field are also found. Numerical estimations for these
magnetic field corrections are presented. All of these corrections are ultraviolet
finite and their relative values are found to be of order of (eBy/M*?)" being
n = 1 for the vector and axial pion couplings and n = 2 for the pseudoscalar
and scalar ones. The corresponding anisotropic corrections to the constituent
quark and pion strong averaged quadratic radii in the plane perpendicular to the
magnetic field are also calculated as functions of the quark effective mass.

Keywords: pion vector and scalar form factors, axial and pseudoscalar
constituent quark form factor, global color model, auxiliary field method,
averaged quadratic radius, constituent quark model

1. Introduction

In the last decade a high interest on the effect of magnetic fields on hadron properties and
dynamics [1-7] appeared due to estimates of intense magnetic fields expected to be found in
peripheral heavy ions collisions, supernovae and in magnetars [1, 2, 8]. Large magnetic fields,
of the order of (eBy) ~ 10'7 — 10'°G ~(0.1 — 15)m.2, would not be so large as compared to
an hadron mass scale such as the nucleon or constituent quark mass, although they would only
appear for a short time interval in the case of non central heavy ions collisions [8]. One cannot
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expect large magnetic fields in low/intermediary energies hadron collisions in which the usual
pion dynamics is expected to be dominant, however pion interactions with photons and their
behavior under weak magnetic field might eventually provide observable effects at inter-
mediary energies. Moreover, it has been envisaged nuclear structure changes due to external
magnetic fields [9, 10] and it becomes important to understand further the magnetic field effects
on each part of the nucleon and nuclear potentials. In [11, 12], Electromagnetic and Strong
form factors of light vector and axial mesons coupled to constituent quarks were derived and
anisotropic corrections to their quadratic radii due to a weak magnetic field were found.

Hadrons electromagnetic and strong form factors make possible comparisons of many
important observables calculated theoretically from different approaches [14-28] with
experiments [29-33]. In particular hadron charge distribution, spin structure and electroweak
interaction properties can be understood in terms of electromagnetic and axial form factors.
Due to the enormous difficulties in solving QCD in the low energy non perturbative regime,
effective models have been developed or articulated based on phenomenology and general
QCD symmetries and properties. Among these, the approximated chiral symmetry and its
dynamical symmetry breaking (DChSB) have wide consequences. The constituent quark
model describes many aspects of phenomenology and it is usually considered to incorporate
the pion cloud [34-36]. A further proposal along these lines is the Weinberg’s large N,
effective field theory (EFT) that copes constituent quark picture with the large N, expansion
[37]. This large Nc-EFT has been derived in [38, 39] without and with electromagnetic
interactions by starting from a quark—quark interaction due to a dressed one gluon exchange.
Background quarks, dressed by a sort of gluon cloud described by a non perturbative gluon
propagator, yield constituent quarks. Vector and axial pion couplings to constituent quarks are
part of the large Nc EFT and the leading contributions to these coupling constants have also
been calculated in these works. The corresponding leading pion and constituent quark Strong
form factors, with their averaged quadratic radii, were presented in [13]. In the present work,
an investigation of the leading weak magnetic field corrections to those pion and constituent
quark form factors and to their averaged quadratic radii will be presented.

The non perturbative one gluon exchange quark—quark interaction is one of the leading
terms of QCD quark- effective action. With the minimal coupling to a background electro-
magnetic field, it is given by the following generating functional [40—42]:

2
zZ= NfD[{p, w]expifx[z_p(iﬂ — ) — %J:j,{?(x)zéb’f’(x — VIO + D+ J*w],

(1)
where fx stands for f d*x, D[4, 1] is the functional measure of integration, J, J* are the quark
sources, g2 is the quark gluon coupling constant, indices a, b... = 1, .‘.(Nf — 1) stand color

in the adjoint representation, being N. = 3, and the quark sources are written in the last terms.
Along the work indices i, j, k = 0, (Nf2 — 1), being the number of flavors Ny, that will be
used for isospin indices, with Ny = 2. The color quark current is given by j! = PAgyFp,
and the sums in color, flavor and Dirac indices are implicit. D, = J, — ieQA, is the
covariant quark derivative with the minimal coupling to a background electromagnetic field,
with the diagonal matrix 0 = diag(2/3, —1/3) for up and down electromagnetic couplings.
The quark current masses m and effective masses M* will be considered to be the same
for u and d quarks. The non perturbative gluon propagator is an external input and it is written
as R!/(x —y). It must be a non perturbative one by incorporating to some extent
the gluonic non Abelian character and, in particular, it will be required that, with a
corrected quark-gluon coupling, it has enough strength to yield dynamical chiral symmetry
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breaking (DChSB), as it has been found in several approaches [16, 43-48]. In several
gauges this kernel can be written in terms of transversal and longitudinal components,
for partial derivatives as momentum operators in coordinate space as:R!, (x — y) = R!, =

6ab[(gf“’ — M)V)RT(x —y) + MRL(x — y)]. The approach adopted in the present manu-

P2 o
script keeps similarities with the Schwinger Dyson equations (SDE) framework at the
rainbown ladder approximation [43, 49].

This work is organized as follows. In the next section the method employed is described
shortly with the relevant steps that yield the sea quark determinant. The method, that involves
the background field and the auxiliary field methods, was described with details in
[7, 11, 12, 38, 39, 50] and therefore it will be very succinctly reminded. The determinant is
finally presented for structureless pion field in the presence of constituent quark currents and
of a background electromagnetic field. Section 3 is devoted to present the leading resulting
terms of the expansion for large quark effective mass and small electromagnetic field. The
momentum dependence of the leading electromagnetic effective couplings of pion and
constituent quarks are presented as momentum integrals of components of the quark and
gluon propagators. In section 4 the limit of magnetic field which is weak with respect to the
quark effective mass is considered. Corrections to pion-constituent quarks interactions
induced by magnetic fields are obtained. In section 4.1 two non perturbative effective gluon
propagators are considered to provide numerical results, the Tandy—Maris propagator [51]
and an effective confining one [45], being that both of them produce DChSB. The corresp-
onding anisotropic corrections to the axial and pseudoscalar constituent quark Strong aver-
aged quadratic radii (a.q.r.) and pion vector and scalar a.q.r. due to a relatively weak magnetic
field are presented in section 4.2 as functions of the quark effective mass. In the final section
there is a summary.

2. Constituent quarks and quark-antiquark light mesons

To make possible a more complete investigation of all the flavor channels, a Fierz trans-
formation for the quark—quark interaction (1) is performed and only the color singlet terms are
considered. The color non singlet ones are reduced at least due to a factor 1/N,. The quark
field must be responsible for the formation of mesons and baryons and these different pos-
sibilities are envisaged by considering the background field method (BFM). Background
quark component will be eventually associated to constituent quark (¢/) and the sea quark can
be integrated out (¢/,). For the one loop BFM it is enough to perform a shift of each of the
quark currents obtained from the Fierz transformation [39, 52]. Whereas the one loop BFM
would simply neglect the sea quark 1), self interaction, an improvement is considered by
integrating out fully these quarks with the introduction of light quark—antiquark states,
mesons and excitations, by means of bilocal auxiliary fields [53]. In this way, DChSB can be
incorporated by means of the scalar (quark—antiquark) state that might have a non trivial
vacuum expectation value if the quark-gluon coupling constant g> is strong enough. The
bilocal auxiliary fields for the different flavors can be expanded in an infinite orthogonal basis
with all the excitations in the corresponding channel. For the lower energies regime, the
lowest energy and lightest modes will be kept, i.e. for the pseudoscalar mesons =; that are the
pions. The (heavier) vector and axial mesons with their couplings to the constituent quarks
can be neglected in the lower energy regime indeed. With that, by integrating out the sea
quarks, the background photon couplings to light mesons and constituent quarks arise. The
auxiliary fields are undetermined and the corresponding saddle point equations can be used
for this. In the mean field they can be written from the conditions:
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where SSF is the effective action obtained with the integration of the sea quark with the
auxiliary fields and ¢, stands for each of the (constant) auxiliary fields. These gap equations
for the Nambu—Jona Lasinio (NJL) model and for the model (1) have been analyzed in many
works in the vacuum or under finite energy densities. In the vacuum, the scalar auxiliary field
is the only one whose gap equation has a non trivial solution corresponding to a scalar quark—
antiquark condensate as the order parameter of DChSB. At non zero constant magnetic fields
a contribution to the quark effective mass arises associated to the so called magnetic catalysis
that is well established from NJL-type and other similar models and also lattice QCD
[2, 54, 55]. The scalar quark—antiquark field does not necessarily correspond to a light meson
and a chiral rotation can be performed by freezing this degree of freedom. With this, the
Goldstone bosons field will be described by means of the collective variables: U = el%7
and UT = 7107,

The sea quark determinant yields the dynamics of the mesons fields with their couplings
to constituent quarks, and it can be written as [38, 39]:

0, @)

Saet = —iTrIn {—iS; j(x — )}, 3)

Seq @ = 3) = S (x — 3) + Eilx — y) + Y agTyj, (x, ), )
q

where Tr stands for traces of all discrete internal indices and integration of spacetime
coordinates and =; (x — y) stands for the coupling of sea quark to the fluctuations of the
pseudoscalar field. It can be written as:

S(x — y) = FIPR(U — 0) + PLU" — U6 — y), )

where Pz = (1 &= 75)/2 are the chiral right/left hand projectors and F the pion field

normalization constant that emerge from the local limit of the bilocal auxiliary field [38] and it must

be identified to F' = f; as the pion decay constant. The quark kernel, with an implicit regularization,

can be written in terms of the effective quark mass M*=m+ <S > (PRU + PU T) generated

by the scalar field gap equation. In this expression, the degeneracy of the vacuum is exhibited in

quark—antiquark scalar condensate that drives DChSB, being parameterized by constant U = e/™.
The quark propagator can be written as:

Sodx —y) = (B — M¥6(x — y). (6)

In expression (4) the following quantity with the color singlet chiral constituent quark
currents has been defined:

54T, (6, ) _ _
S SR W[P (Y @) + 5P (0)ivs ot ()]

ag
— R (x=y)7, 0[P (1), 00 (0) + 58057, 08 ()], )
In this expression o = 2/9 from the Fierz transformation, o; are the isospin Pauli matrices

and combinations of the longitudinal and transversal parts of the gluon propagator were
defined as:



J. Phys. G: Nucl. Part. Phys. 47 (2020) 045110 F L Braghin and W F d Sousa
R(x —y)=3Rr(x —y) + R.(x — y),

Riv(x = ) = g (Rp(x = y) + Ry.(x = ) + 2

8#61/
82

Rr(x —y) — RL(x — y)). ®)

With the background quark currents, different quark-couplings were found to emerge in the
large quark effective mass expansion of the above determinant.

Before exhibiting the leading resulting interaction terms from the determinant expansion
it is appropriate to describe the emerging picture of the procedure described so far. The BFM
made possible to introduce (baryons) constituent quark currents differently from the quarks
that were considered to form light mesons and the chiral condensate. Constituent quark
currents have a closed gluon line, gluon cloud, attached by means of the gluon kernels in
expression (7). These constituent quarks interact with light mesons, in particular to pions that
might form a pion cloud if the complete leading terms from large N, limit are considered
[13, 38, 39].

3. Leading electromagnetic form factors

The large effective quark mass expansion of the determinant within the zero order derivative
expansion [56] is performed in the following. The leading (U(1) gauge invariant) momentum
dependent couplings with the background electromagnetic field are the following:

LY = F (K, Q, Q1. 03)Fuw(Q)F"™ (03)m(q,)m(q,) Y (K)Y(K + Q + Q1 + 03)
+ i€ Fs (K, Q, Q1. 03)Fu (Q)F(Q3)m(Q) Y (K) 050 (K + Q + 01 + Q3)
+ iepiFy, (K, Q, Q) F"™ (Q)7i(q,) (0umc(g) (K)o (K + Q + Q1)
+ igFaq (K, Q, ODF (01 8,m(Q) Y (K)vsy, 0,0 (K + Q + Qy),
)

where (K, Q, Q;, Q3) are, respectively, the incoming constituent quark momentum K,
incoming or outgoing pion momentum Q and incoming or outgoing electromagnetic field
momenta Q;, O3, being that in the couplings with two pions Q = q, + g,. o; are the Pauli
matrices. The resulting form factors will be written below in such a way to not exhibit the
particular electromagnetic coupling to pions or constituent quarks but in terms of an averaged
electromagnetic coupling of charged pions and quarks in each of the resulting effective
coupling. This is clear by noting that the charge operator O extracts both the pion and the
quark electric charges in the traces taken in the expressions below. In particular:
QAO','O'jﬂ'ijj = ([Q, aloj + O'iQAO'j)ﬂ'ijj, where [Q, o;] yields pion charges and QAO'j the quark
charge.
The form factors in this expression are given by:

EL(K, Q, 01, 03) = %dd\’c(agz)ezFFi(K, Q. 01, Q), (10)
— 64 2y 2 t
F]’)S,’)’(K’ Q’ Ql’ Q3) - ?leC(ag )e FF4(K’ Q’ Ql’ Q3)’ (11)

64
FV,W(Kv Q’ Ql) = ?leCF(agZ)EFSI(Kv Q’ Ql)’ (12)
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Fu (K. 0. Q) = %lecF(ag%eF;(K, 0. 0. (13)

. _1\yn+1 . . .
In these expressions d,, = D™ are the coefficients from the expansion of the determinant,

F=9MeVand N, =3.

Besides the couplings above there are unusual couplings to the electromagnetic field that
also break chiral and isospin symmetries explicitly. These couplings, when associating the
constituent quark currents to a corresponding quark—antiquark meson with the same quantum
numbers, correspond to sort of mixing couplings induced by the photon. The leading ones can
be written as:

Ly = —ieFER(K, Q. 0DA,(0"(q,))7;(q,) ¥ (K)Y(Qr)
—2ieFR(K, Q, ONA, 0" 1(Q)Y (K)ivs0;¢(Qr)
+iJp FF (K, Q, Q0A,mi(q,)7(q,) ¥ (K)iv oy (Qr)
+2ie;nFRy(K, O, ONA, (@) ¢ (K)y"501¢(Qr), (14)

where Or =K + Q + Q, is the total momentum of the outgoing constituent quark,
Jijk = 0jj=36k3 + Ojp=36i3 — Og=30j3 + %Eijk. These four resulting coupling constants in Ly; are
not explicitly gauge invariant although they may become gauge invariant by considering
higher order momentum dependent terms such as to rewrite them in terms of a covariant
derivative D, = 9, + iegA, (Qy) instead of the photon field A,. In this expression g an
averaged electromagnetic coupling of charged quarks and pions. Below only the photon
couplings of these terms will be of interest. These last form factors were defined in terms of
functions Hg g and H; o

Fs(K, Q, Q1) = 4dieN.KoHy (K, Q, Qv), 15)
F(K, Q, Q1) = 4deN.KoHg (K, Q. Q). (16)
F(K, Q, Q) = 4dieN.KoH; (K, Q. Qv), a7)
Fy(K, Q, Q1) = 4dieN.KoHy (K, Q, Qv), (18)

where Ko = ag’.

The diagrams for expressions (9) and (14) are presented in figure 1. The incoming
constituent quark has momentum K and K + Qr is the outgoing constituent quark momen-
tum, where Q7 is the total momentum transferred by the pion(s) and photon(s) to the con-
stituent quark. Q denotes the total transferred momentum from the pion(s) and Q,, Q3 are
each of the photon momenta. To describe the pion form factors the appropriate incoming and
outgoing pion momenta for figures 1(a) and (c) must be considered such that g, + ¢, = Q.

The functions F/ (K, Q, Q1), H; (K, O, 0)) used above were defined as:

Fi(K. 0. Q) = %(Fgaa 0.0 + Rk 01, 0). (19)
FiK. Q. Q1. 03) = %(FAK, 0. 01, 09 + E(K. 03, 01, 0). 20)

F5(K, Q, Q) = %(Fs(K, 0. 0) + (K, 0, 0), 2y
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®. (3 ® (1b) y
R G R p :
K @ Qi K+Qr K ;‘Q;' K+Qr - :
: IQ\ H s IQ | H
™ ] ]
@ & ]
(1c) (1d)
K Qi ﬁ,‘ K+Qr ,r‘g K Q Qi K+Qr
\ 1y ' ;

Figure 1. Diagrams (la),(1b),(1c),(1d) correspond to the couplings of expressions
(9, 14). The wavy line with a full dot is a (dressed) non perturbative gluon propagator,
the solid lines stand for quarks, dashed lines for pions and the dotted line stands for the
photon strength tensor. A full square in a vertex represent momentum dependent pion
coupling. The momenta of each of the particles are indicated by K (quarks), Q (pion(s))
and Q; (photons).

HY(K. Q. Q) = S (Fo(K. 0. Q) + Fu(K. Q1. O) 22)
H{(K. 0. 0) = 2 (Fo(K, 0. @) — Fu(K. Q1. O) 23)
Hi(K. . Q) = (K. 0. 0) + Fi(K. Q1. Q), (24)
H)(K. Q. Q) = S (F(K. 0. @) — Fi(K. 01, Q). 25)

In these expressions the loop momentum integrals of each of the form factors can be written
in Euclidean momentum space as:

KK, 0, 0)= fk [k - (k + Q1) — M*?]S5(k)So(k + Q1)
x Solk + Q + QDR(—k — K), (26)

F(K, 01, 0, 03) = fk[*k (k4 Q1+ Q) + M*¥So(k)So(k + Q1 + Q)
x Sotk + QD Sok + Q)R(—k — K), 27

E(K, 0, O, 03) = fk [— (k2 + k- Q) + M*2]8,(k)Sok + Q)So(k + Q + Q)
x So(k + Q9R(—k — K), (28)

(K, Q, Q) = fk M*So(k)So(k + ODSo(k + Q + QDR(—k — K),  (29)

Fs(K, Q, O = [ [k (k+ O+ Q) — M*2]S(k)So(k + Q1)
x Sok + Q + Q)R(—k — K), (30)
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F(K, Q, Q) = fk [3k% + k - (40; + 20) + 0F — M*)Sp(k)So(k + Q1)
x Sotk + Q + QDR(—k — K), 31

d%
@)

where M* = m + < S >, the momenta Q4 = Q, —I—Q+Q3,Q§=Q%+Q~Q1,f/;=f

and R (k) = 2R (k). The following function was defined: Sy = m

The complete momentum structures of form factors such as F; and F, present a non
monotonic behavior that yield negative averaged quadratic radii in the vacuum in the case of
constant effective mass M™ [11, 13]. To mend this behavior the resulting momentum
dependence of the quark kernel for constant effective mass will be truncated so that the full

quark propagator is exchanged by a truncated one given by:
S (k) ~ M*Sy(k). (32)

This truncation might be seen as to mimic a momentum dependent effective mass M*(k) that
is typically obtained from Schwinger Dyson equations approach although it is not possible
however to guarantee its behavior is quantitatively equivalent to results from SDE
calculations. For the expressions above, the form factors F3 and F, or F, will be considered
in both exact and truncated forms. If one considers a momentum dependent effective mass
M*(k) for the complete quark propagator, the truncation is equivalent to the following
approximation for the corresponding part of functions F3 and F, in Euclidean momentum
space:

K> — Ok M

(> + M¥(ky? (K + M)
It yields truncated form factors with monotonic behavior with pion momenta and it makes
possible to obtain always positive quadratic mean radii with the correct order of magnitude.

Numerical results for both the complete and the truncated expressions will be shown in
sections (4.1) and (4.2).

(33)

4. Weak magnetic field

It is shown now that corrections induced by a weak background magnetic field to usual form
factors are obtained by considering two different effects. Firstly the leading correction to the
quark kernel and also by assuming the weak magnetic field (with respect to the constituent
quark mass) is strong enough to show up in the electromagnetic couplings of the previous
section. For that, the Landau gauge will be considered in which A* = — By (0, 0, x, 0).

The leading quark propagator dependence on the weak magnetic field, for equal up and
down quark effective masses M*, will not be derived in this work and it can be written as
[57, 58]

k+ M (pk® =k M)
G (k) = So(k) + Si(k)(eBy) = FEYE] + 17 (k2 — M2

T2 O(eBy).  (34)

By substituting the vacuum quark propagator by a G(k) different anisotropic weak magnetic
field-dependent corrections to pion constituent quark couplings appear. For some of the
leading pion-constituent quark couplings found in [13] however the first order correction to
the quark propagator S; (k) does not contribute in the leading terms, i.e. linear in (eBy). In the
second order in (eBo)*> more terms arise but these will not be considered below.
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The correction S (k) to the quark propagator yield the following anisotropic contributions
from the leading order determinant for the axial constituent quark current expansion:

Ls.p = G ((Q) €”38,m(Q)P(K) 57,00 (K, Q) + €3Gy (Q) Bom(Q) P (K) 13059 (K, Q)

+ G‘fl(Q)eu“f’(tSij(% + %G‘jk)au,(ﬁi(qa)ﬁj(qb))l_ﬁ(K)Vs’YpUkl/J(K, 0),
(35)

where €77/ is the Levi Civita tensor, Jq stands for 9/0¢, and the effective coupling constants
were defined with the trace of internal indices with (off shell) zero external momenta as:

G} G¥ G?
Al 2 Ova 1 Ovo zﬁlecFM*z(agz)FS’(O, 0, 0), (36)

()G o)
where F5(K, 0,0) is given above in expressions (21) and (29). There are terms depending on
momenta in the direction transversal to the magnetic field, a term along the magnetic field and
terms dependent rather on the pion energy Jom;.

Other leading contributions, however, arise from the zeroth order quark propagator of
expression (34), So(k), and a background photon. By considering the pion momentum Q, or
0 = q, + g, for the two-pion couplings, the resulting corrections to pion-constituent quark
form factors are obtained from expressions (9). They are given by:

Ly ™ =FK, Q) Fm(q,)m(g) P (K)Y(K + Q)
+ e3FE(K, Q) Fm(Q)¥(K)ojinsyy (K + Q)
+ ey (K, Q)mi(q,) (0xm(g,)) ¥ (K) 7,0 (K, Q)

T iepFEK, Q0w DKy 00K, 0), 37
where:
12 264
FUK, @) = ZFIK. O = (2] Sanm 0 Rk, 0.0 = 0 =0, ()
FJ(K, B \ 64
FUK, @) = T2 — (BB N M ) (K. 0. 01 = 0) (39)

In these expressions, note there are weak magnetic field induced corrections to the pion scalar
and vector form factors, FZ(K, Q) and FZ(K, Q). In spite of the direct apparent
proportionality to the pseudoscalar and axial form factors, Fplz (K, Q) and F2(K, Q),
respectively, they must be considered with the appropriated momentum dependence of each
of the external lines. In terms of the external momenta K, Q they are the same functions
however, and the scalar and vector ones will not be drawn in the figures in this work.

However the quark effective mass M* also receives corrections from the weak magnetic
field in the scalar gap equation and, although this will not addressed with details in the present
work, for the numerical estimates this was taken into account by means of two values of the
effective mass M*. These expressions provide numerical values one or two orders of mag-
nitude smaller than of the original pion—constituent quark couplings because they have
multiplicative extra factors By or B3 that can be factorized in dimensionless constants such as
as eBy /M*?2 or (eBy)?/M** within the current large quark effective mass regime. These make
explicit that the B, induced corrections are considerably smaller than the original coupling
constants and form factors.



J. Phys. G: Nucl. Part. Phys. 47 (2020) 045110 F L Braghin and W F d Sousa

The unusual isospin and chiral symmetry breaking electromagnetic pion-quark couplings
from expression (14) generate magnetic field induced mixing pion couplings breaking
explicitly chiral and isospin symmetries. For pion momentum Q, or Q = ¢q, + ¢, in the two
pion couplings, it yields:

Lyj = —ieFep(K, 0)(0*m(g,)m(q,) Y (K)Y(K + Q)
— 2ie Fp(K, Q)0 m(Q) Y (K)inso;¢(K + Q)
+ il Frp(K, Q)m(q,) i (q,) Y (K)iv’a (K + Q)
+ 2iejiz Fop(K, Q)mi(Q) P (K)iv*y50;9 (K + Q). (40
To write down these expressions, the magnetic field from the Landau gauge must be written
for £ = i0p, . = i0/0Qy" at zero transferred electromagnetic field momentum Q; = 0.

The following functions were used in expressions (40), written in terms of the
momentum derivative:

Fep(K, Q) = (%)4611FMM*ZKo(aguHé(K, Q. Q1)g,=o- (41)
Fgp(K, Q) = (%)4d1FNcM*2KO(aQLXH8t(K’ 0, O1)g,~0, (42)
FpK, Q) = (%)4611FM-M*2K0(8Q,AH7[(K, 0, O1)g,=0, (43)
Fop(K, Q) = (%)%FMM“KO@Q,,XH;(K, 0, 0100 (44)

By comparing expressions (36) and (39) the following exact ratios for off shell momenta
are obtained:
G 0,0 _,G,0.0 _ G7i(0.0) 1

= = = —. 45
F2(0, 0) F2(0,0)  Gy,0,00 8 4

These ratios are simple numerical factors. The momentum dependence of only one of these
form factors, F ff (0, Q), will be explicitly shown below.

4.1. Numerical results

In the following, numerical estimations for the above form factors will be shown. Two gluon
propagators will be considered, firstly a transversal one from Tandy—Maris Dy(k) [51] and the
other is an effective longitudinal confining one by Cornwall Dy(k) [45]. Both of them yield
DChSB in the gap equation for the scalar auxiliary field being that:

g’R"" (k) = h D! (k), (46)

where D/*(k) (a =1, II) are the chosen gluon propagators whose expressions are the
following:

2 8w2y E (k2
D) = S pe-rr o STWE®) @7)
w In[r + (I + k%/Adep)?]
Dy (k) = Kr/(k* + M2)?, (48)
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where for the first expression ~, = 12/(33 — 2N;), Ny =4, Agcp = 0.234 GeV,
r=e*—1, EKk? =[1— exp(—k2/[4m?>])/k®, m,=0.5GeV, w=05GeV, D=
0.55/w (GeV?); and for the second expression Kz = (27 M;/(3k,))* where k, = 0.15 and
M, = 220 MeV. In expression (46) h, is a constant factor already considered in previous
works [39, 12] to fix the quark gluon (running) coupling constant such as to reproduce a
particular value for one of the resulting effective coupling constant, for example the pion axial
coupling constant g4 h, = 1 or the coupling constant of the p-vector meson to constituent
quark g,h, ~ 12. In the present work they were fixed with the same convention of most part
of [13] for the pion constituent quark form factors, i.e. h; = 0.82 and h; = 0.3. As a
consequence of this choice, some of the resulting normalization values, for example for
< r* >, might be different from values exhibited elsewhere. The magnetic field was chosen
to be such that eBy /M*? = 0.1 or 0.2 in terms of a constituent quark mass M* = 0.31 GeV or
M* = 0.35GeV. This yields eBy ~ 108G ~m>. All the form factors will be plotted for an
incoming constituent quark with off shell zero momentum, K = 0. Averaged quadratic radii
and coupling constants are usually defined in such limit or close to it. A more complete
investigation on form factors would involve more extensive analysis of their momentum
distributions and this is outside the scope of this work.

Complete expressions for the axial and pseudoscalar form factors, including both their
values in the vacuum and the weak B, correction, might be written as:

* FB 0,

GL(Q) =G (Q) + ( ;ﬁfz) (el;‘o( /M(‘fg)~ (49)
" 2 F20, Q)

GE(©Q) = GM'(0) + ( :ﬁkoz) (e;O/M*Z)Z’ (50)

where G *(Q) is the form factor presented and investigated in [13], Gi* *(Q) = GY(0, Q).
and similarly Ggg *(Q) = Glfg (0, Q). In figure (2) the axial and non truncated pseudoscalar
form factors in the vacuum—from [13]—and with a weak magnetic field eBy/M*?> = 0.2
from expressions (49) and (50) are presented for the two gluon propagators with an unique
value of the quark effective mass M™ = 310 MeV. It is seen the non monotonic behavior of
the pseudoscalar form factor in the vacuum, from [13], that also appears for its magnetic field
correction by means of F4(K, 9,0,0), equation (38). This behavior will be shown in the next
section to be responsible for the negative pseudoscalar a.q.r. and, to mend that, the truncation

of the quark propagator for constant quark effective mass was proposed. Note however the B,
eBy
M*?

. 2 . .
correction to the pseudoscalar form factor has a factor( ) that is considerably smaller than

(;i“z) in the By induced correction to the axial form factor.

In figure (3) the magnetic field induced correction to the axial form factor
F f (K, Q)/(eBy/M*?) is shown as function of the pion momentum Q = |Q| for two different
quark effective masses M*. The contribution F2(K, Q) for the form factor in the figure is
divided by a factor (eBy /M*?) (=0.1) to make easier the interpretation and the comparison of
each of the contributions for any small value of (eBy,/M*?). The effective mass M" is,
however, kept constant. The following fits of the normalized axial form factor g,(Q)/g4(0)

[20] are plotted in dotted lines:
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Figure 2. Axial and (non truncated) pseudoscalar form factors for By = 0, from [13],
and for (eBy/M*?) =02 with different contributions: from the quark mass
dependence on the weak magnetic field and from the correction to the form factor
from expressions (49) and (50) for the two gluon propagators D, (k) and Dy(k) and with
M* =310MeV. h; = 0.82 and h;; = 0.3.

310-11
==+ 350-11
— 350-1
= 310-1

. pA-l
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r
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Figure 3. In this figure the leading magnetic field correction to the axial form factor
F2(0, Q)/(eBy/M*?) as a function of the pion momentum for the usual pion field is
presented for the two gluon propagators D; (k) (thin lines) and Dy(k) (thick lines).
Different values of the quark effective mass are considered M* = 350 MeV in dotted—
dashed lines, M* = 310 MeV in dashed lines. #; = 0.82 and h;; = 0.3. The (thick and
thin) dotted lines correspond to two different fits for the normalized axial form factor
g4(0) [20] as discussed in the text.
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Figure 4. In this figure the leading—truncated—magnetic field correction to the
pseudoscalar form factor FpBS (0, Q) /(eBy/M*?)? as a function of the pion momentum

for the usual pion field is presented for the two gluon propagators Dy(k) (thin lines) and
Dy(k) (thick lines). Different values of the quark effective mass are considered
M* = 350 MeV in dotted—dashed lines, M* = 310 MeV in dashed lines. #; = 0.82 and
h” = 03

1
2\2’

()

being M, = 1.36 GeV for thick dotted line and M, = 1.03 GeV for thin dotted line. The axial
pion coupling constant to constituent quark is usually considered to be g4 = 0.8 or 1 [19, 37].
Without further assumptions about the quark-gluon coupling constant, the weak magnetic
field correction to the axial form factor is smaller for the gluon propagator Dj(k) than for
D(k) and this is simply due to the overall strength of the corresponding propagator and quark-
gluon coupling constant.

In figure (4) the weak magnetic field anisotropic truncated correction to the pseudoscalar
form factor, divided by (eBy/M*?)2, is presented for the two gluon propagators as a function
of the pion momentum and for different values of M*. Although the value of the pseudoscalar
coupling constant is of the order of 10 times the value of the axial coupling constant the weak
magnetic field corrections calculated in these figures are basically of the same order of
magnitude.

The unusual weak magnetic field induced anisotropic form factors, Fe¢p(0, Q) and
F75(0, Q), are exhibited in figure (5) as function of the pion momentum , Q = |Q,|, for the
two gluon propagators with M* = 310 MeV. They disappear in the zero pion momentum
limit. The dependence of the form factor F;5(0, Q) on the gluon propagator is seemingly
larger than for the previous form factors analysed in the present work. Although the order of
magnitude might be larger than the corresponding electromagnetic form factors (14) these
values must be multiplied by (eBy) /M*2.

gA(Q) =

4.2. Averaged quadratic radii

From the above form factors, weak-B, induced anisotropic corrections to the axial and
pseudoscalar constituent quark a.q.r. can be obtained. The magnetic field along the Z direction

13
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Figure 5. The leading magnetic field induced form factors for the pion coupling to
quark currents Fgp_5(0, Q), Frp_p(0, Q), divided by (eBy) /M*?, as functions of the
pion momentum, Q = |Q,|, are presented for the two gluon propagators D(k) (thin
lines) and Dy (k) (thick lines) and M = 310 MeV. h; = 0.82 and h;; = 0.3.

can be chosen to be A, = —By(0, y, x, 0)/2 for which it can be obtained a symmetrized
result. Because the B corrections to the form factors are dimensionless as defined above, the
a.q.r. can be defined simply as:

A < r2>A — 76dFAB(Oa Q7r)
do? N
™ Q.,,*O
dr50, 0.
A<ty = —6% ) (51)
O 2.0

that correspond to corrections in the plane x — y perpendicular to the constant weak magnetic
field. The corresponding a.q.r. in the vacuum by considering the same method have been
presented in [13]. The resulting value for the axial and pseudoscalar square radii are obtained
by adding their values in the vacuum to the magnetic field correction. The quark effective
mass M however is kept constant in spite of its eventual magnetic field dependence. These
values are obtained by:

<2 = <r? >y 4+ A <Pyl (52)

<2 S = < sy 4+ A <Py, (53)

where it was emphasized the magnetic field corrections stand only in the plane perpendicular
to the weak constant magnetic field.

In figure (6) the axial quadratic radii extracted from [13] are compared with the aniso-
tropic B, induced contributions above, equation (51), as functions of the quark effective mass
for each of the gluon propagators. Note however that the numerical values presented in [13]
were obtained by considering different values for #; and hj. Therefore there is a simple
multiplicative constant to relate the (vacuum) values for < P> 4 of figure 6 to the values
exhibited in the corresponding figure for < r* > § from [13]. The values of the magnetic field
induced anisotropic contribution exhibited in these figures must be multiplied by eBy /M*? to

14
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Figure 6. The axial squared radius from [13] (thin and thick continuous lines) and
anisotropic weak magnetic field induced corrections (dashed lines) for the gluon
propagators D,(k) and Dy(k) as functions of the effective quark mass from the gap
equation. i;; = 0.3. The weak magnetic field corrections from expressions (51) are
shown divided by the factor eB/M*?.

be added to the values < r* > 4 in the vacuum as shown in expression (52). For the sake of
comparison it is interesting to quote previous estimations of the constituent quark quadratic
radii to be v <r?>~0.2 — 0.3fm [19, 59], being the relative weak B, correction is of the
relative order of magnitude of eBy/M*? with respect to the corresponding value in the
vacuum. The axial a.q.r. is, as expected, considerably smaller than the corresponding
nucleon’s a.q.r. /<rZ> = 0.639 — 0.68 fm [20].

The weak B, pseudoscalar square radius, < r* > ps from [13] for the truncated and non
truncated expressions, and the anisotropic B, induced correction, A < r* > ps» from
expression (51), are exhibited in figure (7) as functions of the quark gap effective mass M ™
b 1(k) and Dy(k). Note the sign minus in front of the non-truncated pseudoscalar curves in thin
continuous and dashed lines. This behavior is due to the non monotonic behavior of the form
factor at low momenta shown in figure 2. The truncated expressions correct this (low
momenta) behavior. The anisotropic weak magnetic field corrections Az < > > ps yield very
small values with respect to their values in the vacuum because of the factor (eBy/M*?).

Finally the scalar and vector pion-constituent quark couplings provide the corresponding
pion form factors and averaged quadratic radii, <72 and <r2>Y. There are anisotropic
corrections to the pion (strong) vector and scalar square radii that are similar and proportional
to these axial and pseudoscalar a.q.r. shown above as obtained from the expressions (38) and
(39). By taking into account the different pion external momenta, they are related by:

A< r>f oy =3A < 2>y,

A<, = %A S e (54)

These quantities have been investigated extensively in the last years [26, 27]. There still are
large uncertainties in the theoretical descriptions/values as listed from several different
estimations that are in the following ranges [26]:
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Figure 7. The pseudoscalar squared radius, untruncated and truncated expressions,
from [13] (continuous and dashed lines) and the anisotropic magnetic field induced
correction for the two gluon propagators, with + and X, as functions of the effective
quark mass from the gap equation. The case of untruncated <r?>;, have a sign minus

and the case of D;(k) is divided by a factor 10. #; = 0.82 and hj; = 0.3 The weak
magnetic field corrections are shown divided by the factor (eB/M*?)2.

<r’ ~0.481 — 0.637 fm?,
<r2>¥ ~0.310 — 0.494 fm?. (55)

The form factors momentum dependence are explicit in expressions (9) and (37). Numerical
values are read from figures (6) and (7). The absolute values and magnetic field induced
corrections for the vector and scalar a.q.r. read from the figures (6) and (7) are smaller than
lattice estimations (55). As noted above, the weak magnetic field induced correction to the
scalar a.q.r. receives a contribution one order of magnitude smaller than the correction to the
vector a.q.r. due to the corresponding factors (eBy/M**)> and (eBy/M*?). Some of the
unusual couplings presented in expressions (14) and (35) might also contribute although with
considerably weaker strength.

5. Summary

The leading weak magnetic field induced corrections to pion and constituent quark Strong
form factors were derived from the quark—quark interaction mediated by a nonperturbative
one gluon exchange. Weak magnetic field means weak with respect to a hadron mass scale,
eBy/M*2 < 1, that in fact may correspond to large absolute values, eBy ~ m>. Magnetic
field induced corrections to axial and pseudoscalar constituent quark averaged quadratic radii
and to scalar and vector pion a.q.r. were also calculated. The (relatively) weak magnetic field
expansion allows to extract analytical expressions for the corresponding form factors and
effective coupling constants. This makes explicit the involved physical effects behind
observables. Two types of weak magnetic field corrections were investigated. Firstly, the
usual linear term from the quark propagator for a magnetic field along the Z direction.
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Secondly, the photon coupling to pion and constituent quark vertices might give rise to a
magnetic field correction. It has been shown that this second effect provides larger con-
tributions. In both cases, magnetic field effects were found to appear in two ways. In one
hand, the induced corrections to the form factors and coupling constants were found to
factorize in multiplicative constant factors eBy /M*2. On the other hand the magnetic field
correction to the quark effective mass obtained from the gap equation also was taken into
account. This second contribution was taken into account in the numerical estimations by
considering two values of the quark effective mass, one for the absence of magnetic field and
the other for finite By, M* = 310 and 350 MeV. Besides the magnetic field induced correc-
tions to usual scalar, pseudoscalar, vector and axial pion interactions with constituent quarks,
two unusual photon couplings were also found, those proportional to the functions Fy (K, Q)
and F5 (K, Q). These couplings break chiral and isospin symmetry accordingly and they yield
magnetic field induced anisotropies in the pion momentum or in the constituent quark-
currents seen in expression (40).

Relations between the resulting form factors and their weak magnetic field corrections for
off shell zero momenta were also presented. Numerical results for the form factors were
shown with the complete quark kernel momentum structure and also with a truncated pro-
pagator. The main reason for truncating some of the expressions is to avoid the negative a.q.r.
obtained in some cases for the complete quark kernel with constant quark effective mass.
Besides the correct sign, the truncation of the quark propagator provides form factors (F§ and
F%) and a.q.r. of the expected order of magnitude when compared to the non truncated ones,
to nucleons form factors obtained from a Schwinger Dyson calculation at the rainbown ladder
level or experimental values. The corrections to vector and axial form factors due to the weak
By are not equal to each other as it could be expected because of the explicit isospin and chiral
symmetry breakings. Because there are neither current experimental measurements nor other
theoretical estimations of the magnetic field contribution to the hadrons form factors no
further comparisons were possible. Finally, weak magnetic field anisotropic corrections to
axial and pseudoscalar constituent quarks averaged quadratic radii were also calculated as
functions of the quark effective mass. An increase of the quark effective mass value might
occur due to usual magnetic field contribution. These quadratic radii decrease considerably
with the values of M from 280 MeV to 780 MeV. The magnetic field induced corrections for
the a.q.r. are however always smaller than the a.q.r. themselves by one or two orders of
magnitude, by factors eBy /M*? or (eBy/M*?). The same relative contributions, with factors
eBy/M*? and (eBy/M*?)?, were found for the vector and scalar pion a.q.r. being their values
for By = 0 very close to values quoted in the literature. The different gluon propagators were
also found to provide different normalizations and behaviors. The difficulties of establishing
unbambiguous or precise values and behavior for the quark gluon running coupling constant
and non perturbative gluon propagator manifest mainly in the ambiguity of fixing the nor-
malization values, for example the zero momentum values of the form factors by fixing the
parameter h,. The magnetic field effects on gluon propagator and on quark-gluon interaction
were not considered in the present work. Note that in all the expressions of the form factors
and momentum integrals, eg. expressions (26-31) or (38) and (39), there appears the quark
effective mass M* = m + < S > for which the current quark mass m is a small contribution.
Therefore the chiral limit, m = 0, will not produce meaningful differences in numerical
values. The more general calculation for strong magnetic fields is intended to be investigated
in a different work.



J. Phys. G: Nucl. Part. Phys. 47 (2020) 045110 F L Braghin and W F d Sousa

Acknowledgments

F L B thanks short discussions with G I Krein, C D Roberts, I Shovkhovy and G Eichmann. F
L B participates to the project INCT-FNA, Proc. 464898/2014-5, and acknowledges partial
support from CNPq/312072/2018-0 and CNPq/421480/2018-1.

ORCID iDs

F L Braghin ® https://orcid.org/0000-0002-2321-2167

References

(1]
(2]
(3]

(4]
(3]
(6]
[7]
(8]

[91
(10]
[11]
[12]
(13]
[14]
[15]
[16]
[17]
(18]
[19]

[20]

Andersen J O, Naylor W R and Tranberg A 2016 Phase diagram of QCD in a magnetic field: a
review Rev. Mod. Phys. 88 025001

Miransky V A and Shovkovy I A 2015 Quantum field theory in a magnetic field: from quantum
chromodynamics to graphene and Dirac semimetals Phys. Rep. 576 1

Ferrer E J, de la Incera V and Sanchez A 2011 Paraelectricity in magnetized massless QED Phys.
Rev. Lett. 107 041602

Ferrer E J, de 1a Incera V, Portillo I and Quiroz M 2014 New look at the QCD ground state in a
magnetic field Phys. Rev. D 89 085034

Li C-F, Yang L, Wen X J and Peng G X 2016 Magnetized quark matter with a magnetic-field
dependent coupling Phys. Rev. D 93 054005

Andreichikov M A, Orlovsky V D and Simonov Y A 2013 Asymptotic freedom in strong
magnetic fields Phys. Rev. Lett. 110 162002

Rabhi A and Providencia C 2011 Quark matter under strong magnetic fields in chiral models Phys
Rev. C 83 055801

Braghin F L 2016 SU(2) low energy quark effective couplings in weak external magnetic field
Phys. Rev D 94 074030

Bzdak A and Skokov V 2012 Event-by-event fluctuations of magnetic and electric fields in heavy
ion collisions Phys. Lett. B 710 171

Skokov V V, Illarionov A Y and Toneev V D 2009 Estimate of the magnetic field strength in
heavy-ion collision Int. J. Mod. Phys. A 24 5925

Kondratyev V N, Maruyama T and Chiba S 2001 Magnetic field effect on masses of atomic nuclei
Astrophys. J. 546 1137

Pena Arteaga D, Grasso M, Khan E and Ring P 2011 Nuclear structure in strong magnetic fields:
nuclei in the crust of a magnetar Phys. Rev. C 84 045806

Braghin F L 2018 Light vector and axial mesons effective couplings to constituent quarks Phys.
Rev. D 97 054025

Braghin F L 2018 Constituent quark-light vector mesons effective couplings in a weak background
magnetic field Phys. Rev. D 97 014022

Braghin F L 2019 Pion constituent quark coupling strong form factors: a dynamical approach
Phys. Rev. D 99 014001

Beise E J 2005 The axial form factor of the nucleon Eur.Phys. J. A 24 43

Drechsel D and Walcher T 2008 Hadron structure at low Q- Rev. Mod. Phys. 80 731

Maris P and Roberts C D 2003 Dyson—Schwinger equations: a tool for hadron physics Int. J. Mod.
Phys. E 12 297

Tandy P 1997 Hadron physics from the global color model of QCD Prog. Part. Nucl. Phys. 39 297

Yamazaki T et al 2009 Nucleon form factors with 2 + 1 flavor dynamical domain-wall fermions
Phys. Rev. D 79 114505

Alexandrou C er al 2017 Nucleon axial form factors using Nf = 2 twisted mass fermions with a
physical value of the pion mass Phys. Rev. D 96 054507

Vogl U and Weise W 1991 The Nambu and Jona-Lasinio model: its implications for hadrons and
nuclei Prog. Part. Nucl. Phys. 27 195

Gupta R, Jang Y-C, Lin H-W, Yoon B and Bhattacharya T 2017 Axial-vector form factors of the
nucleon from lattice QCD Phys. Rev. D 96 114503

18


https://orcid.org/0000-0002-2321-2167
https://orcid.org/0000-0002-2321-2167
https://orcid.org/0000-0002-2321-2167
https://doi.org/10.1103/RevModPhys.88.025001
https://doi.org/10.1016/j.physrep.2015.02.003
https://doi.org/10.1103/PhysRevLett.107.041602
https://doi.org/10.1103/PhysRevD.89.085034
https://doi.org/10.1103/PhysRevD.93.054005
https://doi.org/10.1103/PhysRevLett.110.162002
https://doi.org/10.1103/PhysRevC.83.055801
https://doi.org/10.1103/PhysRevD.94.074030
https://doi.org/10.1016/j.physletb.2012.02.065
https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1086/318276
https://doi.org/10.1103/PhysRevC.84.045806
https://doi.org/10.1103/PhysRevD.97.054025
https://doi.org/10.1103/PhysRevD.97.014022
https://doi.org/10.1103/PhysRevD.99.014001
https://doi.org/10.1140/epjad/s2005-04-009-y
https://doi.org/10.1103/RevModPhys.80.731
https://doi.org/10.1142/S0218301303001326
https://doi.org/10.1016/S0146-6410(97)00043-4
https://doi.org/10.1103/PhysRevD.79.114505
https://doi.org/10.1103/PhysRevD.96.054507
https://doi.org/10.1016/0146-6410(91)90005-9
https://doi.org/10.1103/PhysRevD.96.114503

J. Phys. G: Nucl. Part. Phys. 47 (2020) 045110 F L Braghin and W F d Sousa

(21]
(22]
(23]
(24]
(25]
(26]
(27]
(28]
[29]
[30]
(31]
(32]

(33]

[34]

(35]
(36]
[37]
(38]
(39]
[40]
[41]
(42]

[43]

[44]
[45]
[46]
[47]

(48]

Hoferichter M, Ditsche C, Kubis B and Meissner U-G 2012 Dispersive analysis of the scalar form
factor of the nucleon JHEP 06 063

Ramalho G and Tsushima K 2016 Holographic estimate of the meson cloud contribution to
nucleon axial form factor Phys. Rev. D 94 014001

Eichmann G and Fischer C S 2012 Nucleon axial and pseudoscalar form factors from the covariant
Faddeev equation Eur. Phys. J. A 48 9

Bernard V, Elouadrihiri L and Meissner U-G 2002 Axial structure of the nucleon J. Phys. G: Nucl.
Part. Phys. 28 R1

Bratt J D et al 2010 Nucleon structure from mixed action calculations using 2 + 1 flavors of asqtad
sea and domain wall valence fermions Phys. Rev. D 82 094502

Aoki S et al 2017 Review of Lattice results concerning low-energy particle physics Eur. Phys. J. C
77 112

Alexandrou C et al 2018 Pion vector form factor from lattice QCD at the physical point Phys. Rev.
D 97 014508

Miller G A 2019 Defining the proton radius: a unified treatment Phys. Rev. C 99 035202

Miller K L ez al 1982 Study of the reaction v,d — u~pp, Phys. Rev. D 26 537

Kitagaki T et al 1983 High-energy quasielastic v,n — p~p scattering in deuterium Phys. Rev. D
28 436

Gaillard J-M and Sauvage G 1984 Hyperon Beta Decays Ann. Rev. Nucl. Part. Sci 34 351

Choi S et al 1993 Axial and pseudoscalar nucleon form factors from low energy pion
electroproduction Phys. Rev. Lett. 71 3927

Bardin G er al 1981 Measurement of the ortho para transition rate in the pup molecule and
deduction of the pseudoscalar coupling constant g* Phys. Lett. B 104 320

Andreev V A et al (MuCap Collaboration) 2007 Measurement of the Muon capture rate in
hydrogen gas and determination of the proton pseudoscalar coupling gp Phys. Rev. Lett. 99
032002

Godfrey S and Isgur N 1985 Mesons in a relativized quark model with chromodynamics Phys.
Rev. D 32 189

Capstick S and Isgur N 1986 Baryons in a relativized quark model with chromodynamics Phys.
Rev. D 34 2809

Lavelle M and McMullan D 1997 Constituent quarks from QCD Phys. Rep. 279 1

de Rafael E 2011 The constituent chiral quark model revisited Phys. Lett. B 703 60

Thomas A W 2003 Nucl. Phys. Proc. Suppl. B 119 50

Young R D, Leinweber D B and Thomas A W 2003 Prog. Part. Nucl. Phys. 50 399 and references
therein

Weinberg S 2010 Pions in Large N quantum chromodynamics Phys. Rev. Lett. 105 261601

Braghin F L 2016 Quark and pion effective couplings from polarization effects Eur. Phys. J. A
52 134

Braghin F L 2018 Low energy constituent quark and pion effective couplings in a weak external
magnetic field Eur. Phys. J. A 54 45

Roberts C D, Cahill R T and Praschifka J 1988 The effective action for the Goldstone modes in a
global colour symmetry model of QCD Ann. Phys. 188 20

Ebert D, Reinhardt H and Volkov M K 1994 Effective hadron theory of QCD Prog. Part. Nucl.
Phys 33 1

Meissner U G 1988 Low energy hadron physics from effective chiral Lagrangians with vector
mesons Phys. Rep. 161 213

Binosi D, Chang L, Papavassiliou J and Roberts C D 2015 Bridging a gap between continuum-
QCD and ab initio predictions of hadron observables Phys. Lett. B 742 183 and references
therein

Kondo K-I 1998 Abelian-projected effective gauge theory of QCD with asymptotic freedom and
quark confinement Phys. Rev. D 57 7467

Cornwall J M 2011 Entropy, confinement, and chiral symmetry breaking Phys. Rev. D 83 076001

Higashijima K 1984 Dynamical chiral-symmetry breaking Phys. Rev. D 29 1228

Holdom B 1992 Approaching low-energy QCD with a gauged, nonlocal, constituent-quark model
Phys. Rev. D 45 2534

Wang Q, Kuang Y-P, Wang X-L and Xiao M 2000 Derivation of the effective chiral Lagrangian
for pseudoscalar mesons from QCD Phys. Rev. D 61 054011


https://doi.org/10.1007/JHEP06(2012)063
https://doi.org/10.1103/PhysRevD.94.014001
https://doi.org/10.1140/epja/i2012-12009-6
https://doi.org/10.1088/0954-3899/28/1/201
https://doi.org/10.1103/PhysRevD.82.094502
https://doi.org/10.1140/epjc/s10052-016-4509-7
https://doi.org/10.1103/PhysRevD.97.014508
https://doi.org/10.1103/PhysRevC.99.035202
https://doi.org/10.1103/PhysRevD.26.537
https://doi.org/10.1103/PhysRevD.28.436
https://doi.org/10.1146/annurev.ns.34.120184.002031
https://doi.org/10.1103/PhysRevLett.71.3927
https://doi.org/10.1016/0370-2693(81)90134-9
https://doi.org/10.1103/PhysRevLett.99.032002
https://doi.org/10.1103/PhysRevLett.99.032002
https://doi.org/10.1103/PhysRevD.32.189
https://doi.org/10.1103/PhysRevD.34.2809
https://doi.org/10.1016/S0370-1573(96)00019-1
https://doi.org/10.1016/j.physletb.2011.07.046
https://doi.org/10.1016/S0920-5632(03)01492-0
https://doi.org/10.1016/S0146-6410(03)00034-6
https://doi.org/10.1103/PhysRevLett.105.261601
https://doi.org/10.1140/epja/i2016-16134-x
https://doi.org/10.1140/epja/i2018-12485-6
https://doi.org/10.1016/0003-4916(88)90090-5
https://doi.org/10.1016/0146-6410(94)90043-4
https://doi.org/10.1016/0370-1573(88)90090-7
https://doi.org/10.1016/j.physletb.2015.01.031
https://doi.org/10.1103/PhysRevD.57.7467
https://doi.org/10.1103/PhysRevD.83.076001
https://doi.org/10.1103/PhysRevD.29.1228
https://doi.org/10.1103/PhysRevD.45.2534
https://doi.org/10.1103/PhysRevD.61.054011

J. Phys. G: Nucl. Part. Phys. 47 (2020) 045110 F L Braghin and W F d Sousa

[49]
[50]
[51]

[52]
[53]

[54]
[55]

[56]
[57]

[58]

[59]

Ren K, Fu H-F and Wang Q 2017 Derivation of the effective chiral Lagrangian for pseudoscalar,
scalar, vector, and axial-vector mesons from QCD Phys. Rev. D 95 074012

Roberts C D and Williams A G 1994 Dyson-Schwinger equations and their application to hadronic
physics Prog. Part. Nucl. Phys. 33 477

Paulo A Jr and Braghin F L 2014 Vacuum polarization corrections to low energy quark effective
couplings Phys. Rev. D 90 014049

Maris P and Tandy P C 1999 Bethe—Salpeter study of vector meson masses and decay constants
Phys. Rev. C 60 055214

Abbott L F 1982 Introduction to the background field method Acta Phys. Pol. B 13 33

Kleinert H 1978 Understanding the fundamental constituents of matter (Erice Summer Institute
1976 vol 289) ed A Zichichi (New York: Plenum Press)

Bali G S, Bruckmann F, Endrodi G, Fodor Z, Katz S D and Schafer A 2012 Phys. Rev. D 86
071502

Bali G S et al 2012 JHEP 2 44

Endrodi G 2013 JHEP 04 023

Mosel U 2004 Path integrals in field theory An Introduction (Berlin: Springer)

Chyi T-K et al 2000 Weak-field expansion for processes in a homogeneous background magnetic
field Phys. Rev. D 62 105014

Gorbar E V, Miransky V A, Shovkovy I A and Wang X 2013 Radiative corrections to chiral
separation effect in QED Phys. Rev. D 88 025025

Petronzio R, Simula S and Ricco G 2003 Possible evidence of extended objects inside the proton
Phys. Rev. D 67 094004

Petronzio R, Simula S and Ricco G 2003 Phys. Rev. D 68 099901 (erratum)

20


https://doi.org/10.1103/PhysRevD.95.074012
https://doi.org/10.1016/0146-6410(94)90049-3
https://doi.org/10.1103/PhysRevD.90.014049
https://doi.org/10.1103/PhysRevC.60.055214
https://doi.org/10.1103/PhysRevD.86.071502
https://doi.org/10.1103/PhysRevD.86.071502
https://doi.org/10.1007/JHEP02(2012)044
https://doi.org/10.1007/JHEP04(2013)023
https://doi.org/10.1103/PhysRevD.62.105014
https://doi.org/10.1103/PhysRevD.88.025025
https://doi.org/10.1103/PhysRevD.67.094004
https://doi.org/10.1103/PhysRevD.68.099901

	1. Introduction
	2. Constituent quarks and quark–antiquark light mesons
	3. Leading electromagnetic form factors
	4. Weak magnetic field
	4.1. Numerical results
	4.2. Averaged quadratic radii

	5. Summary
	Acknowledgments
	References



