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Abstract
In this paper, a combination of Laplace transform and variational iteration method are applied to
get an approximate analytic solution for the multi-pantograph delay with higher order differential
equations. Lagrange multiplier technique is constructed a correction functional which obtained
by using Laplace transform with the variational theory. Numerical studies for the application of
the present method for the considered problems are given and graphically illustrated, our
proposed method is compared favorably with other methods. The simplicity and efficiency of the
method.
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1. Introduction

The pantograph equation is a special type of functional diff-
erential equations with proportional delay. It arises in rather
different fields of pure and applied mathematics, such as
electrodynamics, control systems, number theory, probability,
and quantum mechanics. Many researchers have studied the
pantograph-type delay differential equation using analytical
and numerical techniques.

1.1. Delay differential equations (DDEs)

Delay differential equations (DDEs) are a large and important
class of dynamical systems. They often arise in either natural
or technological control problems. In these systems, a con-
troller monitors the state of the system, and makes adjust-
ments to the system based on its observations. Since these
adjustments can never be made instantaneously, a delay arises
between the observation and the control action. On the other
hand, many complicated physical problems described in
terms of partial differential equations can be approximated by
much simpler problems described in terms of DDEs.

Mathematical modeling with DDEs is widely used for ana-
lysis and predictions in various areas of life sciences, for
example, population dynamics, epidemiology, immunology,
physiology, and neural networks. There is no doubt that some
of the recent developments in the theory of DDEs have
enhanced our understanding of the qualitative behavior of
their solutions and have many applications in mathematical
biology and other related fields. Both theory and applications
of DDEs require a bit more mathematical maturity than their
ODEs counterparts. The mathematical description of delay
dynamical systems will naturally involve the delay parameter
in some specified way. Nonlinearity and sensitivity analysis
of DDEs have been studied intensely in recent years in
diverse areas of science and technology, particularly in the
context of chaotic dynamics, where the first investigators of
modern times to study the DDEs:

( ) ( ( ) ( ))t¢ = -y t f t y t y t, ,

and its effect on simple feed-back control systems in which
the communication time cannot be neglected. DDE is defined
as an unknown function y(t) and some of its derivatives,
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evaluated at arguments that differ by any of fixed number of
values τ1, τ2, K, τk . The general form of the nth order DDE
is given by

( ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ))( ) ( ) ( )

t t
t t

t t

= - ¼ -

- ¼ - ¼
- ¼ - =

¢ ¢ ¢

F F t y t y t y t

y t y t y t

y t y t y t

, , , , ,

, , , ,

, , , 0,

k

k

n n n
k

1

1

1

where F is a given functional and t " = ¼i k, 1, 2, , ;i are
given fixed positive number called the ‘time delay’. The
emphasis will be, in general, on the linear equations with
constant coefficients of the first order and with one delay
(because as in ordinary differential equation (ODE) any
differential equation with higher order than one may be
transformed into a linear system of differential equations of
the first order)

( ) ( ) ( ) ( ) ( )t t¢ + ¢ - + + - =a y t a y t b y t b y t f t ,0 1 0 1

where f (t) is a given continuous function and τ is a positive
constant and a0, a1, b0, and b1 are constants (if ( ) =f t 0, then
this equation is said to be homogenous; otherwise it is non-
homogenous). The kind of initial conditions that should be
used in DDEʼs differ from ODEʼs so that one should specify
in DDEʼs an initial function on some interval of length τ, say
[ ]t-t t,0 0 and then try to find the solution of the previous
equation for all t�t0. Thus, we set y(t)=f0(t), for
t0−τ�t�t0 where f0(t) is some given continuous func-
tion. Therefore the solution of DDE consist of finding a
continuous extension of f0(t) into a function y(t) which
satisfies the equation for all t�t0. DDE given by the pre-
vious equation can be classified into three types which are
retarded, neutral and mixed. The first type means an equation
where the rate of change of state variable y is determined by
the present and past states of the equation where the coeffi-
cient of ( )t¢ -y t is zero, i.e. ( )¹ =a a0, 00 1 . If the rate of
change of state depends on its own past values as well on its
derivatives, the equation is of neutral type, the equation where
the coefficient of ( )t-y t is zero, i.e. ( ¹ ¹a a0, 00 1 and
b1=0), while the third type is a combination of the previous
two types, i.e. ( ¹ ¹ ¹a a b0, 0, 00 1 0 and )¹b 01 .

1.2. The pantograph equation

A pantograph is a device for collecting an electrical current to
power an electric locomotive or electric multiple unit. The
system is employed to make contact with an electrified
overhead wire (cable). Pantographs come in all shapes and
sizes depending on the speed of the locomotive or train set,
power requirements, power supply systems etc. The basic
parts of a pantograph is a lower arm(s) that pivot against the
roof, of a carriage/loco, and is attached to upper arm(s) that is
in-turn attached to a collector ‘head’ or ‘pan’. The head is the
only part of the pantograph to touch the wire pick-up. The
current is collected via metalized carbon strips on the head. In
the 1960s, the British Railways wanted to make the electric
locomotive faster. An important construct was the panto-
graph, which collects current from an overhead wire. Many
researchers are studied the motion of the pantograph head on

an electric locomotive. In the solution procedure of this
problem, they came across a special DDE of the form

( ) ( ) ( )q¢ = + >y t ay t by t t, 0.

where a, b are real constants and 0<θ<1, this kind of
DDE was called pantograph equation. In the following years,
the pantograph equation became a prime example for a DDE.
The continuous and discrete cases of the pantograph equation
have been well studied over the last several decades, where
the continuous and discrete cases denote different examples
of time scales T that are arbitrary nonempty closed subsets of
real numbers. In the continuous case, which means the time
scale of the real numbers = T , the pantograph equation is
presented as a differential equation. In the discrete case,
which means the time scale of the integers = T , here
especially the nonnegative integers = T 0, the
pantograph equation is presented as a difference equation.
The present study focuses on the pantograph equation in the
quantum case, which is the time scale = T q 0 for q>1.
The general theory of calculus on the time scale = T q 0 is
also called quantum calculus, in fact, the mathematical model
of this system includes modeling the motion of the wire
connected with the dynamics of the supports and modeling
the dynamics of the pantograph, the system where the
pantograph is collecting current from the overhead wire is
modeled to determine the motion of the pantograph head.
First, the overhead trolley wire is modeled. Second, the model
of the pantograph is considered. Lastly, a simplified for-
mulation of the whole problem is derived. The
pantograph equations is a kind of DDEs and arise in many
applications such as, cell growth, probability theory of alge-
braic structures, astrophysics, nonlinear dynamical systems,
etc. In recent years, the multi-pantograph equations were
studied by many authors numerically and analytically. For
examples Li and Liu [1] applied the Runge–Kutta methods to
multi-pantograph equation. Moitsheki and Makinde [2] used
an application of Lie point symmetry and Adomain decom-
position methods to thermal storage diffusion equations. A
numerical method based on the Adomian decomposition
method (ADM) which has been used from the 1970s to 1990s
by George Adomian [3, 4]. The decomposition procedure of
Adomian is based on the search for a solution in the form of a
series with easily computed components was proposed by [5].
Since non-perturbative techniques for thermal radiation effect
on natural convection past a vertical plate embedded in a
saturated porous medium was proposed and developed [6]
and the homotopy perturbation method was studied by [7, 8],
this method has been successfully applied to solve many
types of nonlinear problem [9–11]. Mirzaee and Hoseini [12]
used collocation technique and matrices of Fibonacci poly-
nomials to explain differential difference equation with
positive and negative shifts. Stochastic and deterministic
numerical solver has been implemented broadly in varied
fields, for example nanotechnology [13], doubly singular
nonlinear systems [14] and multi-point boundary value
problem [15]. A new spectral Jacobi rational-Gauss
collocation (JRC) method is proposed for solving the
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multipantograph DDEs on the half-line. The method is based
on Jacobi rational functions and Gauss quadrature integration
formula [16]. The Lagrange multiplier technique [17] was
widely used to solve a number of nonlinear problems and it
was developed into a powerful analytical method. The var-
iational iteration method (VIM) was developed by [18–20] for
solving a wide range of nonliear problems, it has been suc-
cessfully applied on initial and boundary value problem. The
application of VIM to differential equations usually follows
the following three steps: (a) Obtaining the correction func-
tional. (b) Identifying the Lagrange multiplier, which is
determined by a simplification not reasonably explained in the
literature, various authors such as, [21, 22] have identified this
Lagrange multiplier via different approaches to accelerate the
convergence rate of solutions. (c) Determining the initial
iteration.

In this work, we propose a method based on Laplace
variational iteration method (LVIM) to numerically solve the
generalized pantograph equations

( ) ( ) ( ) ( ) ( ( ))

( ) ( )

( ) ( )åa b f= +

+ <
=

-



y t t y t t y t

g t t T, 0 1

n

i

n

i
i

i
0

1

with initial conditions

( ) ( ) ( )( ) l l= Î = -y i n0 , , 0, 1, , 1 , 2i
i i

where α(t), βi(t) and g(t) are analytical functions,
( ) f Î = -i n0, 1 , 1, 2, , 1i . The basic motivation of

this work is to apply the LVIM for solving multi-
pantograph DDEs which are otherwise difficult to analyze
because of their complex nature and infinite dimensionality.
This study is presented as follows: In second section, we start
by presenting LVIM to solve multi-pantograph DDEs. In
third section, this method is shown and compared by ten
examples by taking various values of t for each value of yn (t),
n=0, 1, 2, 3L. Also , we have plotted the graphs for
numerical solutions of LVIM and exact solution. Finally, we
give some concluding remarks in fourth section.

2. Construction of iterative formula by LVIM

First, let us take the general nonlinear differential equation to
illustrate the main idea of VIM for DDEs [22],

[ ] [ ] ( ) ( )( ) + + =y R y N y g t , 3k

with the following initial conditions

( ) ( )( ) ( )( ) ( ) l l= = Î = -y y l k0 , , 0 1 1 , 4l l
l l0

in which ( ) =y R,k y

t

d

d

k

k is a linear operator, N is a nonlinear
operator, g(t) is a known continuous function, and y( k) is kth
order derivative. The basic idea of the method VIM is con-
struct the following correction functional for equation (3)

( )( [ ] [ ] ( ))

( )

( )ò m r r r= + + + -+y y t y R y N y g, d ,

5

n n

t
k

n n1
0

where μ(t, ρ) is called the general Lagrange multiplier which
can be identified optimally via variation theorem and yn,
n�0 is the nth order approximate solution of the exact
solution y(t) which will readily obtained upon using a good
initial approximation y0(t), which obtained from the initial
conditions (4). So when  ¥n approximate solution yn
converges to the exact solution y(t). Let us give the original
opinion of the Lagrange multiplier which play an important
role in this work, so, the entire procedure of Lagrange mul-
tipliers is expressed as a case of algebraic equation where its
solution ( ) =f x 0 could be found by

( ) ( )m= ++x x f x . 6n n n1

Optimality condition for the extreme =d
d

+ 0x

x
n

n

1 leads to

( )
( )m = -

¢f x

1
, 7

n

where δ is the classical variational operator. Implementing the
initial point x0 provided, the approximate solution +xn 1 could
be determined via next iterative scheme, with (6) and (7)

( )
( )

( ) ( )= -
¢

¢ ¹ =+x x
f x

f x
f x n, 0, 0, 1, 2, 8n n

n

n
n1

The algorithm (8) is well known as the famous Newton–
Raphson formula that possesses a quadratic convergence. In
this paper, we extend this the idea to finding the unknown
Lagrange multiplier. Key step is the application of Laplace
transform into (3) as follows

L

L L

( ) ( ) ( ) { [ ]}
{ [ ]} {[ ( )]} ( )

( )- - +
+ - =

- -s Y s y s y R y
N y g t

0 0
0, 9

k k k1 1

where L( ) { ( )} ( )ò= =
¥ -Y s y t y t te dst

0
, with the notation

used L to indicate Laplace transform. Hence, the algorithm
of LVIM is given below:

(1) Applying the Laplace transform to (3) gives the
correction functional as

L

( ) ( ) ( )( ( ) ( ) ( )

{ [ ] [ ] ( )})
( )

m= + - - -

+ + -

+
- -Y s Y s s s Y s y s y

R y N y g t

0 0

.

10

n n
k

n
k k

n n

1
1 1

(2) Considering the terms L{ [ ] [ ]}+R y N yn n as restricted
variations, we let (10) be stationary with respect to Yn

( ) ( ) ( )( ( )) ( )d d m d= ++Y s Y s s s Y s . 11n n
k

n1

From (11), we derive Lagrange multiplier as

( ) ( )m = -s
s

1
. 12

k

(3) Succeeding approximations can then be attained with
the application of inverse Laplace transform L-1 into

3

Phys. Scr. 95 (2020) 055219 M S M Bahgat



(10), which gives

L
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with initial approximation ( )y t0 can be determined by

L
⎛
⎝⎜

⎞
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k k

0
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1 1

Equation (14) shows that the first iteration in the
classical VIM is made up by the Taylor series.

3. Illustrative examples

Present section represents the numerical examples which
given to show the convergence and accuracy of LVIM, which
applied to ten pantograph type DDEs. For comparison pur-
poses, the solution intervals of problems are chosen generally
the same as those in the references. The examples are com-
puted using Maple 18. Results obtained by the presented
method are compared with the exact solution of each example
and found to be good agreement with each other.

3.1. Linear and nonlinear multi-pantograph delay with first
order order differential equations

Example 1. Consider the following linear multi-
pantograph delay equation of the first order [23]

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( )

( ) ( )

¢ = - + + + -

= < 

y t y t y
t

y
t

t

y t

5

6
4

2
9

3
1,

0 1, 0 1, 15

2

for which the exact solution is

( ) = + + +y t t t t1
67

6

1675

72

12157

1296
,2 3

Equation (15) can be written in the following form:
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The iteration formula thus is
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With equation (12), and applying inverse Laplace transform,
the above iteration formula can be explicitly given as

L
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Therefore,
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6
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3
1 ,

16

n

n n n

1
1

2

with the initial iteration ( ) =y t 10  and applying the iteration
formula (16), we attain

( ) ( )= + +y t t t1 1 6 2 671
2

( ) ( )
= +

+ +
y t

t t t
1

24 1675 804

722

2

the closed form of above solution is

( ) = + + +y t t t t1
67

6

1675

72

12157

1296
.3

2 3


which is exactly the same as the exact solution. It is clear
from figure 1 that the first three results not only give rapidly
convergent series but also an accurate calculation of the
solutions. For  ¥n , then yn(t) tends to the exact solution
y(t).

Example 2. Consider the following linear multi-
pantograph delay equation of the first order [23]

( ) ( ) ( ) ( )
( )
¢ = - + +

= < 
y t y t y t y t
y t

3 0.4 0.4 0.1 ,
0 2.127, 0 1.

By applying the procedures of the example 2, according to
equations (10)–(14) we obtain

L

L{ }
( )

( ( ( ) ( ) ( )) ( )

= +

´ - + +

+
-y t

s
y t y t y t

2.127

1
3 0.4 0.4 0.1 , 17

n

n n n

1
1

with the intial iteration y0(t)=y(0)=2.127 and applying the
iteration formula (17), we attain

( ) = -y t t2.127 3.403 200 000 ,1

( ) = - +y t t t2.127 3.403 200 000 4.662 384 000 ,2
2

( ) = -

+ -

y t t

t t

2.127 4.547 378 527

4.662 384 000 3.403 200 000 ,
3

3

2

4
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( ) = + -

+ -

y t t t

t t

2.127 3.380 293 827 4.547 378 526

4.662 384 000 3.403 200 000 ,
4

4 3

2

( ) = - +

- +
-

y t t t

t t
t

2.127 2.021 185 848 3.380 293 827

4.547 378 526 4.662 384 000
3.403 200 000

5
5 4

3 2



the obtained our results for example 2 is compared with the
results obtained by ADM and differetial transform method
(DTM) in [23] which take the form

( )


= - + -
+ - +

y t t t t

t t

2.127 3.403 2 4.662 384 4.547 378 528

3.380 293 829 2.021 185 85

2 3

4 5

In figure 2 our results are exactly the same with above series
solution in [23] at n=6

Example 3. Consider the following linear multi-
pantograph delay equation of the first order [24]

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠
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⎝

⎞
⎠( ) ( ) ( ) ( )
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2 4
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0 1, 0 1,

1 2

where ( ) ( ) ( )( ) ( )= - = -- -b t t b t t te sin , 2e sin cos .t t
1

1

2 2
1

4

1

2

1
2

3
4

Following the procedures of example 1, we obtain the
iteration formula

L L⎜

⎜ ⎟ ⎜ ⎟
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⎛
⎝

⎛
⎝

⎞
⎠

⎛
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⎞
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⎞
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b t y
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b t y
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1
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2 4
, 18

n n

n n

1
1

1 2

when applying the iteration formula (18), with the initial
iteration y0(t)=1, we obtain in figure 3 the iteration solutions

Figure 1. Comparison of exact solution and approximate solutions of example 1 for n=1, 2, 3.

Figure 2. Comparison of exact solution and approximate solutions of example 2 for =n 4, 5, 6.
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at n=2, 3 of the LVIM converged with the exact solution.
Numerical results at n=3 approximate as the exact solution.

Example 4 ([16]). Consider the following pantograph delay
equation

( ) ( ) ( ) ( ) ( ) ( ))
( )

g¢ = + +
=  

y t a t y t b t y t f t
y t

,
0 1, 0 1,

1

where ( ) ( ) ( )= - = = -g g ga t b t f t1, , e t
1 2 2

. The exact
solution is ( ) = -y t e t. Following the procedures of example
3, the resulting graph of example 4 for the presented method
for γ=0.2, 0.5, 0.8, 0.9 and the exact solution are shown in
figures 4 (a) and (b). Figure 4(c) gives the comparison of the
absolute error functions of different values γ obtained by
LVIM and the exact solution for example 4. LVIM compares
to Jacobi rational-Gauss collocation method [16] with two
choices of α and β in cases of γ=0.2, 0.5, 0.8, 0.9, we show
from the figures 4(a), (b), the LVIM solution is exactly the
same as the exact solution for some γ and n=5. Table 1
shows that a comparison of the absolute error obtained by the
JRC method [16] and the presented method LVIM. The
numerical results are consistent.

Example 5. Nonlinear time-delay model in biology [25]. Our
next test problem is

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ) ( )= -

-
= <¢ y t y t

y t
y t2 1

0.1

0.5
, 0 1, 0 1.

Following the procedures of example 3, we obtain the
iteration formula
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⎞
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⎫
⎬
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= + -
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+
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s
y t

y t
1

1
2 1

0.1

0.5
,

19

n n
n

1
1

with the intial iteration y0(t)=1 and applying the iteration
formula (19), we attain

( ) = -y t t1.0 2.01

( ) = -

+ -

y t t

t t

1.0 5.333 333 332

6.799 999 998 2.799 999 999
2

3

2

( ) = - +

- +

y t t t

t t

1.0 16.253 968 24 54.044 444 42

76.074 666 63 62.780 444 42
3

7 6

5 4

- + -t t t35.064 888 88 13.418 666 67 3.413 333 3323 2

( ) = - +

- +
-
+ -
+ -
+ -
+ -
+ -

y t t t

t t
t
t t
t t

t t
t t
t t

1.0 70.451 062 28 554.802 115 7

2 028.086 248 4 608.490 744
7 355.933 871
8 822.709 083 8 283.933 277
6 249.156 433 3 855.392 660
1 970.805 774 842.144 271 0
301.913 823 8 90.142 006 96
21.830 415 46 4.070 717 395

4
15 14

13 12

11

10 9

8 7

6 5

4 3

2


The exact solution of example 5 is not known. In [25],
Dehghan and Salehi used VIM and ADM to compute
approximate solutions of example 5 so, we compared our
result with the result polynomial least squares method
(PLSM) in [26], which takes the following polynomial,

( ) =- + -
+ - +
- +

y t t t t

t t t
t

2.578 41 15.818 6 39.594 6

52.059 38.666 5 16.375 2
3.898 39 1.

7 6 5

4 3 2

Figure 5 presents the comparison between our approximate
solutions and the numerical solution presented in [26]. LVIM
solution is exactly the same as in [26] at n>=5.

3.2. Linear and nonlinear multi-pantograph delay with second
order order differential equations

Example 6. Consider the following linear multi-
pantograph delay equation of the second order

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

( )
( ) ( )

 = + -
+ +

-
+ +

+
+

+ +
-

+ +

y t y t y t
t t t t

t

t t t t

3

4

1

2 1

4

2 4
2 2 1

1

2

1

3

4
2 2

2

2 3 2 2

with initial conditions ( ) ( )= ¢ = -y y0 1, 0 1. The exact
solution of the problem is ( ) =

+ +
y t

t t

1

12 .

Figure 3. Comparison of exact solution and approximate solutions of example 3 for n=2, 3.
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Taking L, we obtain the iteration formula

L ⎜ ⎟
⎪
⎪

⎧
⎨
⎩

⎛
⎝

⎞
⎠

⎫⎬⎭
⎞
⎠⎟

( ) ( ) ( )( ( ) ( ) ( )

( )

( )
( ) ( )

( )

m= + - - ¢

- + -
+ +

-
+ +

+
+

+ +
-

+ +

+Y s Y s s s Y s sy y

y t y t
t t

t t

t

t t t t

0 0

3

4

1

2 1

4

2 4

2 2 1

1

2

1
20

n n n

n n

1
2

3

4
2

2

2

2 3 2 2

with the Lagrange multiplier

m = -
s

1
2

Taking L-1, we obtain

L L ⎜ ⎟

⎪

⎪

⎧⎨⎩
⎛
⎝⎜

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎞
⎠⎟

⎫
⎬
⎭

( ) ( )

( )
( )

( )
( )

= - + +

-
+ +

-
+ +

+
+

+ +

-
+ +

+
-y t t

s
y t y t

t t t t

t

t t

t t

1
1 3

4

1

2

1

4

2 4

2 2 1

1

2

1
,
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n n n1
1

2

3

4
2 2

2

2 3

2 2

with the initial iteration ( ) ( ) ( )= + ¢ = -y t y y t t0 0 10
and applying the iteration formula (21) to obtain yn(t),
n=1,2, L. Figure 6 shows the graphic of the approxima-
tions yn(t) for n=0,1,2 and a comparison is made between
values of the approximate solutions and the exact solution. In
table 2, the maximum error is made between values of the
approximate solutions y2(t), y3(t) and the exact solution.
LVIM solution is exactly the same as the exact solution
at n=2.

Example 7. Consider the initial value problem of second-
order nonlinear differential equation with pantograph
delay [27]

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ) ( )

( ) ( )

 =- - + + +

= ¢ = < 

y t y
t

y t t t

y y t
2

sin sin 8,

0 2, 0 0, 0 1

2 4 2

which has the exact solution ( ) = -y t t5 cos 2

2
.

Following the procedures of example 6, we obtain the
iteration formula

L L ⎜ ⎟

⎪

⎪

⎧⎨⎩
⎛
⎝⎜

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟
⎞
⎠⎟
⎫
⎬
⎭

( )

( ) ( ) ( ) ( )

= +

- + + +

+
-y t

s
y

t

y t t t

2
1

2

sin sin 8 , 22

n n

n

1
1

2

2 4 2

with the intial iteration y0(t)=2 and applying the iteration
formula (19), we attain

( ) ( ( )) ( ( ))
= - + +y t t

t t
3 2 1 16 cos

9 cos

16

23

161
4

2 2

( ) ( ) ( )

( )

( )( ) ( )( )

( ( ) ( ))

/



= + + -

+ - -

+
+

-
+

+
- +

y t t
t t

t t t

t t t t

t t t

29431735

18874368
1 4 cos

cos 8

2097152

529

7680
130941

65536

cos 6

18432

5543

12288
cos 2 368 405

2048

cos 4 46 231

32768
5888 sin 2 23 sin 4

16384
.

2

6

2 4

2 2

From Figure 7, we also observe the convergence of the
approximations to the exact solution.

Example 8. Consider the initial value problem of of the
second order nonlinear variable coefficient differential
equation with pantograph delay [27]:

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

( ) ( )

 = -

= ¢ = < 

y t y t
t

y
t

y y t

8

2
,

0 1, 0 1, 0 3

2
2

which has the exact solution ( ) = -y t te .t

Table 1. Comparison of the absolute errors for example 4.

t JRC method [16] JRC method [16]

a b= = - 1
2 α=β=0 a b= = - 1

2 α=β=0
(γ=0.2) Proposed method (γ=0.5) Proposed method

0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 1.94×10−8 1.69×10−9 8.08×10−6 2.04×10−8 1.55×10−9 1.03×10−7

0.4 2.63×10−8 9.61×10−8 8.08×10−6 2.76×10−8 9.94×10−8 4.18×10−6

0.6 9.18×10−9 2.04×10−8 2.61×10−4 9.83×10−9 2.22×10−8 4.58×10−5

0.8 2.11×10−8 9.37×10−8 4.29×10−4 2.33×10−8 9.93×10−8 2.49×10−4

1.0 2.20×10−8 2.08×10−7 1.12×10−3 1.67×10−8 2.18×10−7 9.23×10−4

(γ=0.8) (γ=0.9)

0.1 1.33 ×10−8 6.97×10−8 8.01×10−9 2.81×10−9 6.38×10−8 8.00×10−9

0.3 1.11×10−9 1.22×10−9 6.3×10−9 8.38×10−9 2.65×10−9 9.30×10−9

0.5 1.08×10−8 1.24×10−7 3.07×10−7 5.14×10−8 1.08×10−7 9.70×10−9

0.7 5.51×10−8 1.39×10−7 2.99×10−7 1.10×10−7 1.16×10−7 6.20×10−9

0.9 9.36×10−8 8.85×10−8 2.22×10−6 1.43×10−7 6.37×10−8 1.98×10−8
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Following the procedures of example 6, we attain with
the intial iteration y0(t)=t

( ) ( )= + -y t t t t1 6 6 ,1
2

( ) ( )
= -

- + - +
y t t

t t t t t108 1200 4320 8640

8640
,2

2 4 3 2

( )



=- + -

+ - +

- + - + - +

y t
t t t

t t t

t t
t t t t

5045118566400 9732096000

293

17915904000
31

39813120

463

23224320

1573

2903040
599

86400

59

1440
1 6 1 2

.

3

12 11 10

9 8 7

6 5
4 3 2

(a)

(b)

(c)

Figure 4. (a) Comparison of exact solution and approximate solutions of example 4 for n=5, γ=0.2, 0.5. (b) Comparison of exact solution
and approximate solutions of example 4 for n=5, γ=0.0.8, 0.9. (c) The Abolute errors with different values of γ and n=5 for example 4.
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Figure 6. Comparison of exact solution and approximate solutions of example 6 for n=0, 1, 2.

Figure 5. Comparison of our approximate solutions and the computed results in [26] for example 5 at n=3, 4, 5.

Figure 7. Comparison of exact solution and approximate solutions of example 7 for n=1, 2, 3.
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Comparison of the approximate solutions yn(t), n=1, 2, 3, 4,
5 with the exact solution ( ) = -y t te t is illustrated in figure 8.
It clear from figure 8 the numerical results at n=5
approximate as the exact solution.
The absolute maximum errors for different values of n are
given in table 3, and it is revealed that the error decreases
continually as n increase

3.3. Linear and nonlinear multi-pantograph delay with third
order order differential equations

Example 9. Consider the linear pantograph equation of third
order

( ) ( ) ( ) ( )
( ) ( )
¢¢¢ - - - = =
¢ = -  = <

-


y t y t y t y

y y t

2 1 2e , 0 1,

0 1, 0 1 0 1

t1

which has the exact solution ( ) = -y t e t

Taking the L, we obtain

L

( ) ( ) ( ) ( )
( ( ) ( ) )
- - ¢ - ¢¢

+ + - - =-

s Y s s y sy y

y t y t

0 0 0

2 1 2e 0.t

3 2

1

The iteration formula thus is

L

( ) ( ) ( )[ ( ) ( ) ( ) ( )
( ( ) ( ) )]

m= + - - ¢ - ¢¢
- - - - +

+
-

Y s Y s s s Y s s y sy y

y t y t

0 0 0

2 1 2e .
n n

t

1
3 2

1

With equation (12), and applying inverse Laplace transform,
the above iteration formula can be explicitly given as

L

L }
{( ) ( ) ( ( ) ( ) ( )

( ) ( ( ) ( ) ))

= - - - ¢

- ¢¢ - - - - +

+
-

-

y t y t
s

s Y s s y sy

y y t y t

1
0 0

0 2 1 2e

n n

t

1
1

3
3 2

1

Figure 8. Comparison of exact solution and approximate solutions of example 8 for n=3, 4, 5.

Table 3. Comparison of the absolute maximum errors for example 8.

n 1 2 3 4 5 6 7

LVIM method 2.0×10−1 5.61×10−3 1.6×10−5 2.76×10−7 3.6×10−9 1.1×10−10 3.1×10−12

PIA(1,1) method [27] 2.01×10−1 5.61×10−3 1.59×10−5 2.76×10−7 3.68×10−9 6.76×10−11 4.94×10−13

Table 2. Comparison of the LVIM and exact solutions for example 6.

t y2(t) y3(t) yexact(t) Max. Error

0.0 1.00 1.000 000 01 1.00 1.3×10−9

0.2 0.806 451 594 0.806 451 63 0.806 451 612 9 2.1×10−8

0.4 0.641 024 53 0.641 025 735 0.641 025 641 0 1.1×10−5

0.6 0.510 187 06 0.510 203 989 0.510 204 081 6 1.7×10−4

0.8 0.409 720 46 0.409 835 207 2 0.409 836 065 6 1.2×10−3

1.0 0.332 832 27 0.333 327 511 0.333 333 333 3 5.0×10−3
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Therefore,

L

L{ }
( )

( ( ( ) ( ) ))
( )

= - + +

´ - - - +

+
-

-

y t t
t

s
y t y t

1
2

1
2 1 2e .

23

n

t

1

2
1

3
1

with the initial iteration ( ) = - -u t t1 t
0 2

2

and applying the
iteration formula (16), we attain

( ) = - + - +

- + - + - -

y t
t

t t t

t
t t

56

15

143

24
5 1 40 1 3

25

12
e 4 e 5 e 2 e ,t

1
2 5 4

3
2 2

( ) = - + - + + +

+ + + - -

+ + -

- - - - -- -

y t t t
t t t

t t t
t

t t
t

t
t t

1 1 2
240 4480

31

720
4 e

4 e 2 e 2 e 2 e
127

90
5 e

12

155

288
1 20 e

7

40
4 e 4 e 4 e 4 e ,t t

2
2

7 8 6

2 2 2 2 3
3

4 4
5

5
2 1 2

( )= - + - - +

+ - - + +

-

+ - + -

-

y t t t
t t t

t t t

t

t
t t

t

1 1 2
2520 1478400 44800

8 e 8 e
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10080
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40320

1267

10800
12 e

6 e
217 e
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215 e

144
2 5 e

t

3
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3 3
7 8 6

2

2 2
3 4

5

Figure 9. Comparison of exact solution and approximate solutions of example 9 for n=1, 2, 3.

Figure 10. Graph of absolute errors for three iteration solutions for the multi-pantograph delay using LVIM at n=1, 2, 3 for example 9.
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It is clear from figure 9 that the first three results not only give
rapidly convergent series but also an accurate calculation of
the solutions. For  ¥n , then yn(t) tends to the exact
solution y(t). In figure 10 shows the absolute error for n=3
is less than the absolute errors at n=1, 2.

Example 10. Consider the nonlinear pantograph equation of
third order [28]:

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

( ) ( )

¢¢¢ = - + =

¢ =  = < 

y t y
t

y

y y t

1 2
2

, 0 0,

0 1, 0 0 0 1

2

which has the exact solution ( ) ( )=y t tsin
Figure 11 display comparison of the absolute error

functions of the first three iteration solutions of LVIM with
the exact solution for example 10

4. Conclusion

It has been the aim of this paper to show that the Lagrange
multiplier is proposed from the Laplace transform and
incorporated with the method VIM to approximate the solu-
tion of multi-pantograph linear and nonlinear DDEs with
different order. We attain the high approximate solutions or
the exact solutions within a few iterations. It is concluded

from figures that the successive approximations method is an
accurate and converge very rapidly in physical problems.
Some numerical examples have been provided to illustrate
that the techniques is reliable and powerful method for the
delay type of equations. Comparative results showed that the
method is efficient in both linear and nonlinear problems,
while for the linear problems studied, LVIM method gave
almost the same results as JRC [16] and PIA [27] methods, it
gave better results for the nonlinear problems. On the other
hand, the results obtained in the first iteration y1 of the LVIM
is more convergent than those obtained in other Methods; this
validates the performance of the present method. Faster
convergence is achieved with LVIM when compared to
another.
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