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Abstract
Higher-order compact finite difference scheme with multigrid algorithm is applied in this paper
for solving one-dimensional and two-dimensional inhomogeneous Helmholtz equations. In two-
dimensional case, the suggested scheme has the stencil of twenty one points. An efficient solver
multigrid method yields eighth-order accurate approximation on both fine and coarse grids. For
the Neumann boundary condition, an eighth-order accurate representation is also developed. The
accuracy and efficiency of eighth-order compact difference scheme are exhibited through
graphical illustrations and computed results are drafted in tabular form to validate the numerical
experiments.

Keywords: Helmhlotz equation, compact iterative scheme, multigrid method, uniform grids

(Some figures may appear in colour only in the online journal)

1. Introduction

In recent years, there has been a growing interest in the devel-
opment of higher-order schemes for solving partial differential
equations (PDEs). To achieve high order numerical solutions for
partial differential equations, one has either to use high order
accurate methods that require an increase in the stencil of grid
points or increase in the number of nodes by taking smaller grid
sizes. But taking smaller grid sizes need much more CPU time
and storage space. Therefore, higher-order compact (HOC)
methods are desirable to solve PDEs numerically. There are two
approaches to compute higher-order compact schemes, that are
Padé approximation by Baker et al [1] and the Taylor’s series
method by Strikwerda [2].

Compact schemes are high order explicit/implicit methods
which boast high order accuracy by using smaller grid sizes.
Higher-order compact schemes are frequently using almost in
every area of computational problems such as the convection–
diffusion problems by Zhang et al [3–5], the Poisson equation
by Wang and Zhang et al [6–9] and the Helmholtz equation by
Hirtum [10], Handlovičová and Riečanová [11], and Ghaffar

et al [12–16]. Helmholtz equation is an elliptic partial differ-
ential equation having many applications in real life such as in
propagation of electromagnetic waves, radar scattering, elasti-
city, weather prediction, acoustic wave scattering, electro-
magnetic fields, medical imaging, seismology, acoustics and
electromagnetic radiation, noise reduction in silencers, water
wave propagation, electrostatics, theoretical physics, science of
optics, mechanical engineering and fluid mechanics.

In this article, we derive compact eighth-order scheme
for solving one-dimensional and two-dimensional Helm-
holtz equations. Let Ω be an open bounded square domain
that is

+ + = Î Wu u k u f x y x y, , , , 1xx yy
2 ( ) ( ) ( )

where u=u(x, y) is the solution and f (x, y) is the forcing
function, both are taken to be enough smooth and have the
required continuous derivatives. Equation (1) appears from
solution of the wave equation. In the above equation = wk

c

i

is the wave number in a dispersive medium, where ω is the
wave frequency and c is the velocity of light. Helmholtz
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equation can also be obtained from the solution of linearized

Poisson equation. In this case, = p b


k q c8 , in which q

represents the charge of an ion, β is the inverse thermal
energy, c is the ionic concentration, and ò is the dielectric
constant. To achieve the desired computational efficiency
and performance of HOC schemes; a complete character-
ization of the truncation error must be formulated and
minimized. HOC schemes for elliptic problems have been
studied by Spotz and Carey [17], Ge and Zhang [18], and
Sun et al [19].

As the second order solution can be computed by
standard central difference operators to uxx and uyy in
equation (1). Higher order discretization schemes require
more complex process and computation in order to compute
the coefficient matrix of small size [7, 12, 16, 20]. The
interest in developing higher-order compact methods has
been growing to solve PDEs [3, 4, 7, 17, 21, 22]. These
schemes use the stencil of minimum three points in dis-
cretization formulas, so we call them compact. The compact
finite difference (CFD) method is one of the methods, which
are used to increase accuracy and efficiency of the numerical
solutions of PDEs. The basic procedure for generating
higher-order difference schemes is to expand the stencil of
grid points. The efforts to calculate more accurate solution
by using limited grid sizes have drawn the attention of
researchers to develop higher-order compact (HOC)
schemes for Helmholtz equation. In context of fourth-order
and sixth-order discretization, many researchers have been
focused on equal and unequal grid sizes [23–27]. A
noticeable work for inhomogeneous Helmholtz equation has
been done by Singer and Turkel [28].

Previously, some implicit HOC schemes were used for
two-dimensional Stommel Ocean model and convection–
diffusion equation by Chu and Fan [29, 30]. Also explicit
HOC schemes with accelerating iterative methods like mul-
tigrid methods were used to solve the resulting sparse system
arisen from the discretization of HOC schemes by Zhang
[5, 7, 9]. As we know, it is assumed that there is no explicit
compact scheme higher than sixth-order accuracy. By using
the idea of Nabavi’s method [25], we aim to develop a new
eighth-order compact scheme for one-dimensional and two-
dimensional Helmholtz equations with Dirichlet and Neu-
mann boundary conditions. We develop a multigrid method
to solve the required sparse linear system to get higher-order
accurate solution on both the coarse and fine grids. The
organization of the paper is as follows; in section 2, we
present the main idea of the proposed eighth-order compact
difference discretization strategy for one-dimensional and
two-dimensional Helmholtz equations. Section 3 focuses on
the development of eighth-order compact difference schemes
in the case of Neumann boundary conditions. Multigrid
method is discussed in section 4. Section 5 contains the series
of numerical calculations that demonstrates the accuracy of
our proposed eighth-order scheme. Concluding remarks are
presented in section 6.

2. Materials and methods

In this section, we present the main idea of eighth-order
compact difference discretization strategy for one-dimen-
sional and two-dimensional Helmholtz equations.

2.1. Higher-order (eighth-order) compact scheme

The numerical study has been conducted to develop HOC
scheme based on eighth-order approximation computed from
the Helmholtz equation. This scheme is formulated for one-
and two-dimensions. In this study, a uniform grid of the
interval [a, b] is used with N uniform segments, so that the
grid spacing Δ x=Δ y=h, is along -x and -y directions.
The first-order central difference scheme with respect to x
with =u u xi j i j, ,( ) is defined as

d =
-

++ -
u

u u

h
h

2
, 2x i j

i j i j
,

1, 1, 2( ) ( )O

where (xi,j) is the grid point at i jth, th steps. Similarly the
second-order two-dimensional central difference scheme with
respect to x is denoted by d x

2 and defined as

d =
- +

++ -
u

u u u

h
h

2
. 3x i j

i j i j i j2
,

1, , 1,

2
2( ) ( )O

Likewise, difference operators δy and d y
2 are defined

accordingly.

2.2. One-dimensional case

The one-dimensional Helmholtz equation is

 + = Îu x k u x f x x a bfor , . 42( ) ( ) ( ) [ ] ( )

Using Taylor’s series expansion to obtain the required
description as

= + ¢ +  + + +

+ + + + +

+

5

u u h u
h

u
h

u
h

u
h

u

h
u

h
u

h
u

h
u h

2 3 4 5

6 7 8 9
,

i i i i i i i

i i i i
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4
4

5
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6
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7
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8
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9
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( )

! ! ! !

! ! ! !
( )

( ) ( ) ( )

( ) ( ) ( ) ( ) O

= - ¢ +  - + -

+ - + - +

-

6

u u h u
h

u
h

u
h

u
h

u

h
u

h
u

h
u

h
u h
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Using the definitions of dx and d x
2 , we have

d =
-

= ¢ + +

+ +

+ -u
u u

h
u

h
u

h
u

h
u h

2 6 120

5040
, 7

x i
i i

i i i

i

1 1
2

3
4

5

6
7 8( ) ( )

( ) ( )

( ) O

d =
- +

=  +

+ + +

+ -u
u u u

h
u

h
u

h
u

h
u h

2

12

360 20160
. 8

x i
i i i

i i

i i

2 1 1
2

2
4

4
6

6
8 8( ) ( )

( )

( ) ( ) O

In order to get the eighth-order compact difference scheme for
equation (4), applying d x

2 to ui
6( ) using equation (3), we have

2
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d= +u u h . 9i x i
8 2 6 2( ) ( )( ) ( ) O

Substituting equation (9) in equation (8), we have

d

d

=  + +

+ +

u u
h

u
h

u

h
u h

12 360

20160
. 10

x i i i i

x i

2
2

4
4

6

6
2 6 8( ) ( )

( ) ( )

( ) O

The descritized form of equation (4) is

 = -u f k u . 11i i i
2 ( )

From equation (11), we have =  - u f k ui i i
4 2( ) and

= -u f k ui i i
6 4 2 4( ) ( ) ( ). Substituting in equation (10), we get

d d

d

d

= - + - 

+ - - 

+ + +

u
k h k h k h

u

h k h k h
f

h h
f h

1
12 360 20160

12
1

30 1680

360
1

56
. 12

x i x i

x i

x i

2
2 2 4 4 4 6

2

2 2 2 2 4
2

4 2
2 4 8( ) ( )( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ O

After some simplification, we get

d

d

d

= - + - 

+ - + - 

+ + +

u
k h k h k h

u

h k h k h k h
f

h h
f h

1
12 360 20160

12
1

30 1680 1680

360
1

56
. 13

x i i

x i

x i

2
2 2 4 4 6 6

2 2 2 4 4 2 4
2

4 2
2 4 8( ) ( )( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ O

Let vi denotes the eighth-order approximation of ui, i.e.,
= +u v hi i

8( )O . Using equation (4) and equation (14),

together with d = +
- ++ -f hx i

f f f

h
2 4 2 2i i i1

4 4
1

4

2 ( )( )
( ) ( ) ( )

O , substituting

for ui in equation (11), thus for one-dimensional Helmholtz
equation, a three-point eighth-order compact scheme is

+ + = + +

+  +  +  + + +

+ - - +

- + - +

a v a v a v b f b f b f

c f c f c f d f d f d f ,

15

i i i i i i

i i i i i i

1 1 0 1 1 1 1 0 1 1

1 1 0 1 1 1 1
4

0
4

1 1
4

( )

( ) ( ) ( )

where = - + - +a k h2 k h k h
0

2 2
12

3

1120

4 4 6 6( ), = +a 1 h k
1 20160

6 6( ),
= - +b h 1 k h h k

0
2

12

3

1120

2 2 4 4( ), =b h k
1 20160

6 4

, = -c 1h h k
0 12

9

280

2 2 2( ),
= -c h k

1 20160

6 2( ), =d h
0

3

1120

6

, =d h
1 20160

6

. Also f and f are to be

known analytically at every grid point and the R.H.S of
equation (15) is known for all nodes. In case, where f is not

known explicitly, then only sixth-order accurate approximation
for f is required and fourth-order for f (4).

2.3. Two-dimensional case

The Helmholtz equation in two-dimensional form is

+ + = Î Wu u k u f x y x y, , , . 16xx yy
2 ( ) ( ) ( )

Using Taylor’s series expansion to get the required descrip-
tion as

+ = +
¶
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¶
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Adding equations (17) and (18) which gives

¶

¶
=

- +
-

¶

¶

-
¶
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+
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Using the definition of central difference scheme in
equation (19), we have

d =
¶
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+

¶
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+

¶
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Similarly, we can find expression like equation (20) for y-
direction. Hence, equation (16) can be written as:

d d d
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d d a+ + + = +u u k u f h , 21x i j y i j i j i j i j
2

,
2

,
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, , ,
8( ) ( )O
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The higher-order derivatives can be obtained by differentiat-
ing equation (16). The forcing function f (x, y) is also included
in this process of differentiation. Applying the higher deri-
vatives of equation (16), we can write

¶
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Making use of equation (23) in equation (22), we get
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To obtain the higher-order approximation of ¶
¶ ¶

u
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equation (24), applying Taylor’s series expansion such that
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Now making use of equation (25) in equation (24), which
becomes
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where the operator ∇2 is Laplacian. For eighth-order
compact approximation, again differentiating equation (16),
we have
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where ∇4 is bi-harmonic operator. Making use of
equation (27) in equation (28), we get

¶
¶

+
¶
¶

=  -  + -

-
¶

¶ ¶
+

¶
¶ ¶

u

x

u

y
f k f k f k u

f

x y
k

u

x y
3 .

29

i j
i j i j i j i j

i j i j

6

6

6

6
,

4
,

2 2
,

4
,

6
,

4

2 2
,

2
4

2 2
, ( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Using equations (28) and (29) in equation (26), we have
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Now
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Making use of equations (31) and (32) in equation (30), we
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Making use of equations (29) and (32), equation(33) yields
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Finally, the eighth-order compact approximation for two-
dimensional Helmholtz equation leads to
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where vi j, is the approximated value of ui,j satisfying the
formulation of equation (16), that is = +u v hi j i j, ,

8( )O .
Equation (35) can be expressed in more general form as
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Thus, equation (36) is the compact eighth-order approx-
imation for Helmholtz equation in two-dimensions. There-
fore, this equation leads to the form of Av=Bf, in which A
and B are symmetric and block pentadiagonal sparse matri-
ces. The final linear system can be formulated for every node.
Also, in this equation, derivative of the forcing function f can
be determined numerically.

3. Eighth-order accurate approximation of the
boundary

The formula derived in equation (36) can be used for all
points using Dirichlet boundary condition, while in the case
of Neumann boundary condition, eighth-order approximation
is developed for one-dimension as well as for two-dimen-
sions. We introduce a ghost point i=−1 and consider the
coordinate line i=0 in equation (36). We specify both the
Helmholtz equation and the Neumann boundary condition at
the boundary i=0.

3.1. Neumann boundary condition (one-dimensional case)

For such boundary condition, it is consider that

a¢ =u x , 39i ( ) ( )

where α is any constant. To get the eighth-order approx-
imation of equation (39), we have

d = ¢ + + + +u u
h

u
h

u
h

u h
6 120 5040

.

40

x i i i i i

2
3

4
5

6
7 8( )

( )

( ) ( ) ( ) O

Applying d x
2 to ui

5( ) using equation (3), we have =ui
7( )

d +u hx i
2 5 2( )( ) O , therefore

d

d

= ¢ + +

+ + +

u u
h

u
h

u

h
u h h

6 120

5040
.

41
x i i i i

x i

2
3

4
5

6
2 5 2 8[ ( )] ( )

( )

( ) ( )

( ) O O

Differentiating equation (11), we get = ¢ - ¢u f k ui i i
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After some simplification, we get
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Consider the formula for discrete form using equation (39),
we have
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Replacing ui by vi for i=0, we get
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We want to get rid of -v 1 , as we have no value at the point
x−1. Making use of equation (15) for i=0, we get
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Making use of equations (46), (47) to get rid of v−1 and
obtain the pursuit approximation at point x on the boundary,
we have
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It is assumed that all the parameters used in the R.H.S of
equation (48) are known and the forcing function is also
known explicitly.

3.2. Neumann boundary condition (two-dimensional case)

Assume that
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From equation (16), we have
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Putting equation (52) in equation (51) gives us
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From equation (16), we have
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Using equations (53) and (54) in equation (50), we have
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where β is any constant. Making use of equation (58) in
equation (57) and putting i=0, we have
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Putting i=0 in equation (36), we have
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Adding equation (60) with μ times of equation (59), we get
formula for the boundary nodes as
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4. Multigrid method

The results obtained from discretization through compact
higher-order schemes are in linear systems of sparse nature.
Multigrid methods are used to solve these systems efficiently.
Multigrid method utilizes some relaxation methods to remove
high frequency error. In order to smooth the errors, this
method makes the use of coarse grid correction. Multigrid
method has been extensively used for several elliptic pro-
blems such as Poisson and Helmholtz equations [8, 31]. We
are using V-cycle multigrid method to solve linear system
arisen from the discretization of higher-order compact dif-
ference scheme. To show the performance and to match the
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results of HOC scheme, we use the full weighting projection
operator on uniform grids. In multigrid method, we are using
a point Guass–Seidel as a smoother, because in general, mesh
coarsening strategy work very well with equal mesh sizes
discretized some elliptic equations [32].

In this strategy, instead of point relaxation, the line relaxa-
tion is used because in removing high frequency errors, the
line Guass–Seidel relaxation method is very efficient. For
our particular problem in this article, only one of the x- or
y-directions be the dominant direction. Let the dominant direction
be the x-direction, and on each successive grid only line
relaxation is applied along the x-direction. The coefficient
matrix obtained from the eighth-order compact scheme under
this ordering is in the form of block pentadiagonal matrix
such that each block is of order -N 1( ). It is observed that
the coefficient matrix U is of the order - ´ -N N1 1 ,( ) ( )
such that =U U U U U Upentadiag , , , ,2 1 0 1 2[ ] and =U0

a a apentadiag 0, , , , 03 4 3[ ], =U a a a a apentadiag , , , ,1 1 2 3 2 1[ ],
=U a a a apentadiag , , 0, ,2 0 1 1 0[ ] are of order (N−1) penta-

diagonal symmetric sub-matrices. Let on each jth line, the part of
the solution vector uj representing the grid points and fj be the
corresponding R.H.S part of the forcing function. Therefore U0

needs only one factorization on each grid level. In multigrid
method with any smoother such as Gauss-Seidel, Jacobi or LU-
decomposition relaxations, bilinear interpolation is used to
transfer corrected value from a coarse grid to a fine grid. In order
to update the residual on a coarse grid, full-weighting scheme is
also used.

4.1. Principles of multigrid method

The Multigrid method has mainly two components, namely,
error smoothing and correction on coarse grid level.

4.1.1. Error smoothing. The simplest iterative techniques
such as Jacobi and Guass–Seidel methods are very slow in
convergence for large system of equations but they are very
fast in error smoothing. Due to this reason, these methods are
very effective at smoothing the high frequency error while
leaving relatively unchanged the low frequency error. These
methods smooth the error but not necessary to reduce its size.
This property can be well estimated on a coarse grid.

4.1.2. Correction on coarse grid. The coarse grid correction
is a good instructional tool to understand how more
complicated multigrid methods work. It is a two-grid
iterative method. Let us consider a linear system in forward
form as

=u f , 62( )L

whereL is the operator (linear). The goal is to find the vector
u, in simplest form as

= -u f . 631 ( )L

Let v be the approximation to the solution u in above
equation. Then the error e is estimated as = -e u v . The

defect in equation (63) gives the residual equation, i.e.

= - =e f v r, 64( )L L

where r is the residual. This residual equation is used to relax
on the error e. One of these functions and operators has a
corresponding function on the coarse grid. The coarse grid
correction starts with an initial guess on the finer grid. The
above equation (64) is expansive as the original equation (62).
If we replaceL by

~
L (in Jacobi method, diagonal D of L

is used for approximation), an approximation of the error can
be found, and then use to correct v and repeat the process
until its convergence.

4.1.3. Multigrid algorithm.

Algorithm 1. These multigrid parameters are arranged on
each level as:

Let v1 represents pre-smoothing steps.
Let v2 represents post-smoothing steps.
Let r represents the number of multigrid cycles, here V-cycle is used
with r=1.

Multigrid Cycle (FAS)

f f f v v rFASCYC , , , , .h h h h
1 2⟵ ( )

1. If Ωh represents the coarsest grid, then using a time marching
scheme to solve equation (36) and then finish, else continue the pre-
smoothing steps:

f f -f vSMOOTHER , , , tol , Pre smoothing .h h h
1⟵ ( ) ( )

2. Restriction:

f f f f

f f

f f

= =
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I

f I f N N

f v v

, ,
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h
h

h h h h

h
h

h h h h h h

h h h h
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⟵ ( )

3. Interpolation:

f f f f+ -I .h h
h

h h h
2

2 2⟵ ( )

4.

f f -f vSMOOTHER , , , Post smoothingh v h h
22⟵ ( ) ( )

here Ih
h2 is the restriction operator and I h

h
2 is the interpolation.

Figure 1. One cycle of two-grid multigrid method.
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The iterations due to multigrid method are typically converge
independent of the problem size. Hence, in a few number of
iterations, it will provide the optimal solution with desired
accuracy, independent of the mesh size. Although best accuracy
can be expected in order to fine the mesh size, hence more and
more iterations are needed to be applied. This effect contributes
a logarithmic factor to estimate the complexity.

In this technique, a multigrid algorithm is applied on the
coarser (lower) level W h2 to provide a good initial guess, and
then interpolate its results to next finer (higher) level. This is
the so-called full multigrid method. This method starts
discretization on the coarsest level with an exact solver.

The obtained results are then interpolated to the next finer
level, where some cycles of the multigrid method (V or W)
are applied and the results are then refined using multigrid
correction. Again these results are interpolated to the finer
grid, where further a few cycles of multigrid be sufficient to
produce the desire accuracy for final answer. Typically this
algorithm requires one or two V-cycles on each level. This
method produces solutions at a toll that is proportional to the
number of unknowns which is the optimal complexity of full
multigrid method [32]. Every cycle of multigrid algorithm
consists of pre-smoothing, correction on coarse grid level, and
post-smoothing steps.

Table 1. Error norm, CPU (seconds) and order of convergence for different schemes for problem-1, = =e N k, 8, 16, 32, 64, 128, 10.2 

N M e4 2( )  CPU V M e6 2( )  CPU V M e8 2( )  Order CPU V

8 -e7.3343 4 0.013 2 -e8.4231 5 0.054 2 -e9.2388 6 — 0.058 2
16 -e2.5403 4 0.025 2 -e6.3223 6 0.060 2 4.9343 e−8 7.82 0.166 2
32 2.1323 e−5 0.046 2 1.3321 e−7 0.087 2 2.5985 e−10 7.96 1.130 2
64 1.8559 e−6 0.154 2 2.9027 e−9 0.313 2 5.3108 e−12 8.04 1.430 2
128 1.6322 e−7 1.840 2 6.3872 e−11 2.224 2 0.5245 e−14 8.10 2.262 2

Figure 2. Exact solution (a) = =M M M N k, , , 16, 14 6 8 (b) M4, M6, M8, N=128, k=60 for problem-1.
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4.1.4. Two-grid algorithm

Algorithm 2. Multigrid parameters are arranged on each
level as:

Let v1 represents the pre-smoothing steps.
Let v2 represents the post-smoothing steps.

=+u u f v nvTWOGRID , , , , .h
n h

h
n

h
h1

1 2( )L

1. Using the appropriate smoother to smooth the required solution on
the fine grid level, i.e.

=u u fSMOOTH , , .h
n v

h
n

h
h

21( )L

2. Compute the residual on fine grid = -r f uh
n

h h h
n¯ ¯L .

3. Restrict rh
n¯ to coarse grid =r I rh

n
h

h
h
n

2
2¯ ¯ .

4. Solve on the coarse grid =e rh h
n

h
n

2 2 2̄L .
5. Interpolate the correct value e h

n
2 to the fine grid =e I eh

n
h

h
h
n

2 2  .
6. Compute the next approximation = +u u eh

n
h
n

h
n¯  .

7. Apply v2 steps of smoother (post-smoothing), i.e.

=+u u fSMOOTHER , , .h
n v

h
n

h
h1

22( )L

Figure 1 shows the V-cycle of two-grid multigrid method.

5. Results and discussion

In this section, we give some computational output in order to
test efficiency and feasibility of the newly developed schemes

given in equations (15) and (36) with multigrid method. Some
numerical experiments with known exact solutions are con-
sidered to solve a one-dimensional and two-dimensional
Helmholtz equations on the unit square domain. The forcing
function and the Dirichlet and/or Neumann boundary con-
ditions are applied on all sides of a unit square domain.

Example 1.

+ = +
= =

 u k u e x x
u u
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0 1 0.

xx
x2 2
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( )
⎡⎣ ⎤⎦

The eigenvalues of this problem are given in [33]

as p+ = ¼n n, for 0, 1, 2, 3,1

2

2 2( ) .

Table 2. Error norm, CPU (seconds) and order of convergence for different schemes for problem-2, = =e N k, 8, 16, 32, 64, 128, 10.2 

N M e4 2( )  CPU V M e6 2( )  CPU V M e8 2( )  Order CPU V

8 5.3326 e−3 0.044 2 2.8252 e−7 0.057 2 9.6152 e−7
— 0.062 2

16 3.7689 e−4 0.050 2 3.6245 e−9 0.073 2 6.1581 e−9 7.82 0.181 2
32 1.7264 e−5 0.068 2 5.1201 e−11 0.092 2 3.3108 e−11 7.90 1.142 2
64 7.7715 e−6 0.098 2 8.8792 e−13 0.219 2 2.4610 e−13 8.04 1.980 2
128 4.6821 e−8 0.145 2 1.3291 e−14 1.916 2 6.6321 e−16 8.10 2.960 2

Table 3. Comparison of error norm of different schemes for problem-2, where e−8=10−8 e 2  , N=8, 16, 32, 64, 128
and =k 1, 10, 20, 30, 50, 100.

HOC k N=8 N=16 N=32 N=64 N=128

Sixth-order 1 5.2002 e−6 7.8890 e−8 7.2290 e−10 4.1098 e−11 7.9322 e−13

10 3.7586 e−6 5.6585 e−8 6.9975 e−10 3.233 e−11 6.9691 e−13

20 3.5541 e−6 5.6002 e−8 6.1040 e−10 3.1255 e−11 6.6251 e−13

30 3.1983 e−6 5.2100 e−8 6.1033 e−10 3.1043 e−11 6.4629 e−13

50 3.1287 e−6 5.1520 e−8 6.1530 e−10 3.6054 e−11 6.1690 e−13

100 3.4161 e−6 4.2104 e−8 2.2610 e−10 2.6041 e−11 6.0331 e−13

Eighth-order 1 4.2122 e−7 3.3211 e−9 7.4412 e−11 5.8234 e−13 8.9240 e−16

10 9.6152 e−7 6.1581 e−9 3.3108 e−11 3.4610 e−13 6.6321 e−16

20 9.7110 e−7 6.1218 e−9 3.6152 e−11 3.1961 e−13 6.5126 e−16

30 3.9328 e−7 4.1155 e−9 2.6001 e−11 3.3087 e−13 6.3370 e−16

50 3.7822 e−7 4.8676 e−9 1.5226 e−11 3.3350 e−13 6.2164 e−16

100 3.2844 e−7 2.8600 e−9 1.1710 e−11 3.3421 e−13 5.9756 e−16
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When k2 equal to one of these eigenvalues, then the
problem has no solution. The error norm of our numerical
scheme is shown in table 1 and figure 2(a) compare these
solutions to the exact solution. In order to see the behavior of
approximate solution when k gets close to π/2, the scheme
becomes sensitive and the accuracy is poor as shown in
figure 2(b).

At each level, one pre-smoothing and one post-smooth-
ing multigrid iteration is applied. The procedure of iteration is

started initially with zero data and the process is stopped
when the norm of the residual vector is reduced by 10−16.
The reported error is the maximum absolute error between the
exact solution and the computed solution on the finest grid
points. For comparison between the exact solution and the
numerical solution, e 2  -norm is used. The matrix e 2  -norm

Table 4. Error norm, CPU (seconds) and order of convergence for different schemes for problem-3, = =e N k, 8, 16, 32, 64, 128, 10.2 

N M e4 2( )  CPU V M e6 2( )  CPU V M e8 2( )  Order CPU V

8 8.6724 e−3 0.350 2 5.9244 e−6 0.576 2 9.9760 e−7
— 0.694 2

16 4.9726 e−4 0.472 2 7.8334 e−8 0.683 2 4.3078 e−9 7.86 1.180 2
32 1.3286 e−5 0.660 2 9.6190 e−10 0.861 2 1.7163 e−11 7.98 1.526 2
64 5.9240 e−6 0.762 2 1.8782 e−11 0.930 2 6.5516 e−14 8.08 1.986 2
128 2.3294 e−7 1.416 2 1.7575 e−13 2.552 2 2.3850 e−16 8.10 2.880 2

Figure 3. (a) Left: exact solution. Right: computed solution obtained
through HOC scheme. (b) Error norm. The error vector

= -e u vij ij ij for different values of N and k=10 for problem-2. Figure 4. (a) Left: exact solution. Right: computed solution obtained
through HOC scheme. (b) Error norm. The error vector

= -e u vij ij ij for different values of N and k=10 for problem-3.
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of the error vector is defined as

å=
=

e e , 65
i j

N

i j2
, 0

,
2 ( ) 

where N is the number of nodes, = -e u vij ij ij is the
error vector, and k is the wave number. The metric order is
given as

=
N

N
Order log

Error

Error
,2

1

2

( )
( )

⎛
⎝⎜

⎞
⎠⎟

where NError 1( ) and NError 2( ) are computed absolute errors
for two consecutive grids with +N 11 and +N 12 points.
Also the grid point N1 is half of N2. Furthermore, M4 is
multigrid based on the fourth-order compact scheme, M6

is multigrid based on the sixth-order compact scheme and M8

is multigrid based on the eighth-order compact scheme.

Example 2.

p p p+ = -
   

u u k x y

x y

2 sin sin ;

0 1, 0 1. 66
xx yy

2 2[ ] ( ) ( )
( )

For this problem, the exact solution is =u x y,( )
p py xsin sin( ) ( ).

Example 3.

p p p+ = -
   

u u k y x

x y

2 sin cos ,

0 1 and 0 1.
67xx yy

2 2[ ] ( ) ( ) ( )

With the pure Dirichlet boundary conditions on three
sides and Neumann boundary condition only on left side of

Figure 5. (a) Left: 1-D Helmholtz. Right: 2-D Helmholtz through HOC schemes. (b) e 2  for =N•, 8 ; = N, 16 ; =N, 32◦ and
k=4.44 for problem-2. (c) e 2  for =N•, 8 ; = N, 16 ; =N, 32◦ and =k 5.66 for problem-3.
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the domain as = = - =u y u y y u x0, 0, 1, sin , , 0x ( ) ( ) ( )
=u x0, , 1 0.( ) The exact solution for problem 3 is

p p=u x y x y, cos sin( ) ( ) ( ).
The eighth-order compact scheme is compared against the

fourth-order scheme and sixth-order compact scheme in terms
of accuracy, convergence order and CPU timing. The
e 2  -norm for different values of N are presented in tables 1–4.
We have also examined the behavior of eighth-order compact
scheme for different values of k in table 3. It is observed that
the scheme is sensitive for 4 � k�5 as shown in figures 3–5.
It is also observed that accuracy of the scheme is poor at
some particular values of k and this fact can be explained
through eigenvalues analysis. The estimated eigenvalues
of problems 2 and 3 are given as l p= - +k m nm n,

2 2 2 2( )
and l p= - + +k m n1 2m n,

2 2 2 2[( ) ] respectively, in
[25, 28]. From the results, it is observed that near k=4.44, the
eigenvalues tend to zero and problem 2 is unstable, and when
k=5.66, the eigenvalues tend to zero and problem 3 is
unstable. Hence the accuracy of the scheme is poor. The error
does not decrease further by increasing the value of k con-
tinuously. Tables 2 and 4 show the error-norm for different
nodes taking k=10 for problem 2 and problem 3, respec-
tively. Table 3 shows the error-norm for different values of
wave number k and nodes for problem 2. The scheme behaves
robustly with respect to the wave number k and N.

When the value of wave number k changes from 1 up to
100, the error norm is given in table 3.

In both examples 2 and 3, the error is reduced upto
10−16, therefore the norm of error in both examples is the
same which can be observed from figures 3(b) and 4(b).

6. Conclusion

This work concerns with the development of higher-order
compact finite difference discretization scheme. The impor-
tant findings of this article are listed below.

• An efficient and highly accurate computational frame-
work is built to solve Helmholtz equation using high
order discretization scheme and multigrid method.

• A higher-order compact finite difference scheme is
applied for discretizing one-dimensional and two-dimen-
sional Helmholtz equations and its accuracy is
investigated.

• Compact higher-order schemes have the advantage of
higher-order accuracy.

• In two-dimensional case, the matrix is being pentadiago-
nal that can be efficiently solved by multigrid method.

• An eighth-order scheme for the Neumann boundary
condition is also developed.

• Our numerical results show that multigrid method with
HOC scheme has the required accuracy for solution of
Helmholtz equation.
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