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Abstract
The parametric excitation of surface waves at the plasma boundary under the action of a p-
polarized electromagnetic pump wave is analyzed. The instability, at which the pump wave
decays into two surface electromagnetic TM modes, is considered. The dependence of the
instability growth rate on the plasma electron density, the angle of incidence of the pump wave,
and the direction of propagation of the excited surface waves is investigated. It is shown that the
instability growth rate has a maximum value in the case when short-wave quasistatic surface
waves are excited.

Keywords: surface waves, electromagnetic pump wave, decay instability, growth rate of
instability
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1. Introduction

Surface electromagnetic waves (SEWs), propagating along
the interface between two media, have some unusual physical
properties and can be used for a number of practical appli-
cations [1–3]. SEWs are used to diagnose the surface, study
the properties of thin films and interfaces of various media,
study the spectra of surface excited states, and transmit sig-
nals over long distances. Linear dispersion properties of
surface waves and methods for their excitation are described
in sufficient detail in [1–3]. The excitation of SEWs at the
boundary of solid-state targets on exposure to short pulses of
intense laser radiation, when nonlinear effects become sig-
nificant, was observed in a number of experiments [4–8]. As
for the theory of nonlinear methods for excitation of SEWs,
the generation of low-frequency SEWs by ponderomotive
forces and drag currents in plasma and conducting media
when exposed to laser radiation is discussed in publications
[9–12]. Another nonlinear mechanism for excitation of the
surface waves is associated with the development of para-
metric instabilities under the action of laser radiation on the
plasma and conducting media. The theory of parametric
excitation of surface waves at the plasma boundary under the

action of an electromagnetic pump wave was first formulated
in [13], where a hydrodynamic approach was used. The
kinetic theory of the excitation of surface waves under the
action of a high-frequency electromagnetic field was devel-
oped somewhat later in the publication [14], where not only
the growth rate, but also the instability threshold was calcu-
lated. The parametric decay of the pump wave into two SEWs
of the same frequency in a transparent plasma was considered
in [15]. In [16, 17], the role of a plasmon localized in a
narrow surface layer in the decay of a p-polarized pump wave
into two SEWs was investigated. The excitation of two sur-
face waves during the development of decay instability in a
semi-infinite plasma when exposed to a p-polarized electro-
magnetic wave is considered in [18], where the growth rates
and instability thresholds are calculated. At the same time, the
authors of [18] erroneously neglected the nonlinear surface
current, which makes the same contribution to the instability
growth rate as the ponderomotive nonlinearity taken into
account by them. The excitation of surface waves due to
the surface current and ponderomotive effects when an
s-polarized pump wave falls on a semi-infinite plasma was
first considered in [19]. We note that in [18, 19], in contrast to
[15], the parametric excitation of SEWs was studied in not
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transparent plasma, when the skin effect for the pump wave
occurs.

It should be noted that the development of instability and
the excitation of surface waves, considered in publications
[13, 14], is associated with the motion of ions, which can be
realized for laser radiation of picosecond duration. During the
action of femtosecond laser pulses, the instability considered in
[13, 14] do not have time to develop. The parametric instability
with respect to the excitation of SEWs, associated exclusively
with the motion of electrons, was previously considered in
[15, 18] for p-polarization and in [19] for s-polarization of the
pump wave. In contrast to [15, 18], in this paper, for the first
time, the dependence of the decay instability growth rate on
plasma density, the angle of incidence of a p-polarized pump
wave, and the angle between the wave vectors of the excited
surface waves is studied in detail. It is established that the
instability growth rate has a maximum value in near-critical
plasma, when excitation of short-wave quasistatic surface
waves occurs, propagating almost across to the wave vector of
the pump wave. It is shown that the instability growth rate
for p-polarization is significantly larger than in the case of a
s-polarized pump wave [19], which is explained by the
appearance of an additional current flowing along the plasma
boundary due to the appearance of a surface charge in the
ground state. Note that below, as in [19], a sufficiently high
concentration of electrons is considered, when the pump wave
penetrates into the plasma only to the depth of the skin layer.

The article has the following structure: in the second
section, the ground state is described in the framework of the
hydrodynamic approach and the equations and boundary
conditions for the perturbations of the electromagnetic
field are presented. It is shown that the presence of the
p-component of the pump wave leads to the appearance in
the ground state of the surface charge density oscillating at the
frequency of the incident radiation. In the third section,
the dispersion equation is obtained and the instability growth
rate associated with the decay of the pump wave into two
surface TM modes is found. The dependence of the rate of the
decay instability growth on the electron density is analyzed
and it is shown that the instability growth rate is maximum in
a plasma with an electron density close to the critical value.
The growth rate of parametric decay instability is investigated
as a function of the angle of incidence of the laser radiation
and the angle between the wave vectors of the excited surface
waves. It is shown that the instability growth rate has a
maximum value in the short-wave limit, when the excited
surface waves propagate almost across the wave vector of the
pump wave. The instability threshold is calculated and it is
shown that it has a minimum value at excitation of short-wave
surface waves. In conclusion, the obtained results are dis-
cussed and estimates are given for the characteristic para-
meters of modern laser-plasma experiments.

The parametric instability considered in this work,
associated with the decay of an electromagnetic wave into
two surface plasmons, is of interest for laser-fusion studies,
the generation of infrared and THz radiation, and laser
acceleration of electrons at the interaction of high-power laser
radiation with a dense bounded plasma.

2. Ground state and equations for perturbations

Let a p-polarized electromagnetic wave with frequency ω0,
wave vector q0 = (ω0/c)(ex sin α + ez cos α) and amplitude
E0 fall at an angle α from a vacuum onto a non transparent
plasma boundary (ω0 cos α�ωp) occupying a half-space
z>0, where ωp is the Langmuir frequency of electrons (see
figure 1). Then the electric and magnetic field of the pump
wave in vacuum (z<0) can be written in the following form

a a

w
w

a a

w
w

a a

= -

´ - +

= - +

t

E t x z

t E t x z

E r e e

B r e

, cos sin

cos
c

sin cos ,

, cos
c

sin cos ,

2.1

L x z

L y

inc

0 0
0

inc
0 0

0

( ) ( )

( )

( ) ( )
( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

where ex, ey, ez are the basis vectors of the Cartesian coor-
dinate system.

Let us consider the plasma stability with respect to the
excitation of SEWs under the action of the radiation field
(2.1). To do this, we use the Maxwell equations for the
electric E and magnetic B fields, as well as the equations of
collisionless hydrodynamics for the velocity ve and density ne
of electrons
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where e, me is the charge and mass of the electron, c is the
speed of light, Ne = N0eθ(z) is the coordinate-dependent
electron density in the equilibrium state, which is equal N0e in

Figure 1. The incidence of a p-polarized electromagnetic wave with
frequency ω0, wave vector q0 = (ω0/c)(ex sin α + ez cos α) and
vector amplitude of the electric field E0 = E0(ex cos α−ez sin α) at
an angle α from vacuum to the boundary of a dense plasma
occupying half-space z > 0.
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the plasma and vanishes in vacuum, θ(z) is the unit Heaviside
step function. The last equation in set (2.2) was obtained using
the well-known relationship of vector analysis (ve∇)ve=
(1/2)∇ve

2−[ve×rotve] and the conservation law of the gen-
eralized vortex Ω = rotve + (e/mec)B = 0 [20]. The set of
equation (2.2) is applicable under the condition ω0?νei when
the frequency of the incident wave ω0 significantly exceeds the
frequency of electron–ion collisions νei.

Let’s present all physical quantities in the form of small
deviations δN, δV, δE, δB from the ground state Ne + NL, VL,
EL, BL
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Taking into account the representation (2.3) from (2.2),
we have the following set of equations in the ground state
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For small deviations from the ground state, the equations
are valid
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Since the instability growth rate is proportional to the first
power of the incident wave amplitude E0, in the ground state
we restrict ourselves to a linear approximation. Let us
represent all physical quantities in the following form
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where E1, B1, V1, N1—are the complex amplitudes of the
electric and magnetic fields, as well as the speed and density
of electrons. Then from the set of equation (2.4) follows
the equation for the component of the magnetic field and the
expression for the components of the electric field in the
plasma
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2

0
2( ) / is the plasma dielectric constant at

the frequency of the pump wave. For the fields in a vacuum, it
should be assumed that in formulas (2.7) the dielectric

constant is equal to unity. Solving equation (2.7) in plasma
and in vacuum and using the continuity conditions for the
tangential components of the electromagnetic field at the
plasma boundary, we get the next solution of the boundary
problem in the ground state for magnetic and electric fields in
vacuum z<0
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where the reflection coefficient R is determined by the
ratio
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In plasma (z>0) the distribution of electromagnetic
fields is as follows
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where the coefficient k w a e w= -c sinL 0
2

0( ) ( ) char-
acterizes the depth of penetration of the field into a dense plasma
δL = 1/κL = (c/ω0)[sin

2 α− ε(ω0)]
−1/2. With an increase in the

angle of incidence α, the depth of the skin layer δL mono-

tonously decreases from the value d w w= -cL p
2

0
2 at nor-

mal incidence, when α = 0, to the minimum value δL = c/ωp at
grazing incidence α→π/2. In the field of an electromagnetic
wave (2.10) the speed and density of electrons in a plasma in
accordance with equation (2.4) at linear approximation are
determined by the expressions
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where VE = eE0/(meω0), rE = VE/ω0 = eE0/(meω0
2), δ(z) is the

Dirac’s delta function. Note that, in accordance with formulas
(2.6), (2.11), the surface charge density NL oscillating at the
frequency of the pump wave ω0 occurs in the ground state. We
note that such oscillations of the surface charge were not taken
into account by the authors of [18].

We now consider small deviations from the ground state
(2.10), (2.11), which are described by equation (2.5). We
will use the following expansion in the Fourier series for
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perturbations of the electromagnetic field and electric current
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where ρ = xex + yey. Restricting ourselves to a linear
approximation in the amplitude of the pump wave, after
simple calculations we find the following set of equations for
electromagnetic field perturbations at a frequency ωn = ω +
nω0 with a wave vector kn = k + nk0 lying in the plane XOY
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dielectric constant at frequency ωn, and the expression for
perturbations of nonlinear electric current can be represented
as the sum of three terms (see also [15])
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Potential nonlinear current δJ1∝∇(VLδV1) due to pon-
deromotive effects follows from the first term in the formula
for the current eN0eδV and the second term on the right side
of the equation for speed −∇(VLδV) in the set of
equation (2.5) and exists only in the plasma volume. Currents
δJ2, δJ3 are the surface ones, as they flow along the plasma
boundary. In this case, the surface current δJ2 = eδNVL is
proportional to the product of the electric field of the pumping
wave and the surface charge perturbation, and the current δJ3
= eNLδV flowing along the boundary is determined by the
product of the surface charge density in the ground state and
the electric field perturbation. The expression for nonlinear
current (2.14), (2.15) differs from the case of an s-polarized
pump wave [19] precisely by the presence of the last term
associated with the appearance in the ground state of a rapidly
oscillating (at frequency ω0) surface charge density [15].

Considering the excitation of surface TM modes, we
represent the electromagnetic field and nonlinear current δJ(n)

in the following form
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It should be noted that the contribution of TE modes to
the instability growth rate can be neglected, since it turns out
to be proportional to the square of the amplitude of the pump
wave. Then the equations for the components of the pertur-
bations of the electromagnetic field follow from (2.13), (2.16)
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where the nonlinear current components δJ(n) (2.14), (2.15)
are defined by the following expressions
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here V1, N1 are the amplitudes of the oscillation velocity and
the electron density in the ground state (2.11). From the set of
equation (2.17) we find the equation for magnetic field per-
turbations
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The boundary conditions are obtained by integrating
equation (2.17) over a thin transition boundary layer and have
the form
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2/ωn
2 for n = ±1,

±2..., and k w e= -k c ,2 2 2( ) ε=1−ωp
2/ω2 for n = 0.

Note that the jump in the magnetic field strength of the SEWs
at the plasma boundary in formula (2.21) is associated with
the appearance of a nonlinear surface current. Taking into
account the expression (2.19), the boundary conditions (2.21)
can be written explicitly
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According to formula (2.22), in addition to the term pro-
portional to the product of surface charge perturbations and the
amplitude of the electric field of the pumping wave, as was
the case for s-polarization [19], the surface current also includes
the product of electrical field perturbations and surface charge
density in the ground state. Besides, an additional contribution in
comparison with s-polarized pumping arises in the second
boundary condition (2.23) (terms containing factors ezV1 and
ezV1

*), which is due to the presence of the z-component in the

electric field of the incident p-polarized wave. It should also be
noted that the right-hand side of the second boundary condition is
determined by the contribution of the nonlinear term ∇(VLδV) in
the equation for the electron velocity perturbations in set (2.5).
Only this term was kept by the authors of [18], who erroneously
neglected nonlinear surface currents, which contribute to the
boundary condition (2.22) and lead to a jump in the magnetic
field strength of the SEWs at the plasma boundary.

3. Dispersion relation and instability growth rate

We represent the components of the electromagnetic field in
the entire space as follows:
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where wk = -k cn V n n,
2 2 2 for n = ±1, ±2... and k =V

w-k c2 2 2 for n = 0, and the indefinite coefficients An, Bn,
Bn,V, Cn, Cn,V can be found from boundary conditions (2.22),
(2.23). In formulas (3.1), it is taken into account that the tan-
gential component of the electric field is continuous at the plasma
boundary, while the normal component of the electric field and
tangential component of the magnetic field have a jump.

We note that in the case of a semi-bounded plasma
considered here, only surface waves are electromagnetic
eigenmodes. Therefore, below we will consider the decay
instability with the excitation of two surface waves with the
numbers n = 0 and n = −1, by analogy with the theory of
decay instability of unlimited plasma (see for example [21]).
Then from equations (2.22), (2.23), taking into account
expressions (3.1), we find the following dispersion relation
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where the functions D(ω, k) and D−1(ω−1, k−1) have the form
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and determine the dispersion properties of surface waves with
the corresponding frequencies and wave numbers. Note that
two of the four terms in each curly bracket of the right-hand
side of expression (3.2) are the contribution of the nonlinear

5

Phys. Scr. 95 (2020) 055607 Y M Aliev et al



surface current, which was neglected by the authors of [18],
and the other two are related to the ponderomotive effect of
the pump wave. Taking into account formula (2.11)
equation (3.2) takes the form

w w
w

w

w

w

a

e w a a e w

a e w
q

w k
q

wk

a
q

w wkk

a e w
q

w k
q

wk

a
q

w w k k

=

´
+ -

´ - +
-

+
-

-

´ - +
-

+
-

+

- - -
-

-

- - -

-

-

-

-

- - -

-

-

- -

D D

k V

k

k

k k

k

k k

kk

k

k

k

k k

k

k k

kk

k

k k, ,

cos

cos i sin

sin
cos cos

sin
cos

sin
cos cos

sin
cos

,

3.4

p p

E

1 1 1

2

2

2

1
2

2 2 2

0
2

0
2

2
0

1

1 1

0

1

0

0 1

1

1

2
0

1

1 1

0

1

0

0 1

1

1 1

( ) ( )

∣ ( ) ( ) ∣

( )

( )

( )

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
⎧⎨⎩

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

where θ is the angle between the vectors k and k0.
We look for the solution of the dispersion equation (3.4)

in the form ω + iγ, where ω and γ are the real quantities.
Assuming that the instability growth rate γ is small compared
to the frequency ω of the excited waves (ω?|γ|) and
keeping only linear terms on γ, we will use the expansion
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We believe that the conditions D(ω, k) = 0, D−1(ω−1,
k−1) = 0 are satisfied which corresponds to the excitation of
two SEWs. Using (3.5) we find the expression for the
instability growth rate γ
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For analysis of the growth rate (3.6), we find the solu-
tions of dispersion equations D(ω, k) = 0 and D−1(ω−1, k−1)
= 0, and calculate derivatives ∂D(ω, k)/∂ω and ∂D−1(ω−1,
k−1)/∂ω−1. The solution of equations D(ω, k) = 0 and
D−1(ω−1, k−1) = 0 has a well-known form [1–3]
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Using formulas (3.7), we reduce the expressions for the
coefficients κ, κV, κ−1, κ−1,V to
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Taking into account formulas (3.8), derivatives of dis-
persion functions are expressed in terms of dielectric con-
stants as follows
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Since the instability occurs when ω−1<0, we make
replacing ω−1→-ω−1, k−1→-k−1 . Substituting relations (3.9)
into formula (3.6) while taking into account the decay con-
ditions ω0 = ω + ω−1 and k0 = k + k−1, we find the
expression for the square of the instability growth rate
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In this case, the conditions (3.7) should be satisfied for
the excitation of two SEWs, which can be represented in the
following form
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Substituting the expression for the wave number k from
the first relation in formula (3.11) into the second, we obtain
the relationship between frequency ω and angles α, θ.
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In the expression for the growth rate (3.10), each curly
bracket contains two square brackets, in which there are several
terms. One part of them is determined by the contribution of the
surface current and follows from the boundary condition (2.22),
and the other part is related to the ponderomotive effect of the
incident radiation and is determined by the boundary condition
(2.23). Neglecting the surface current, the authors of the pub-
lication [18] do not actually take into account a number of terms
that give the same contribution to the growth rate of decay
instability.

As follows from the boundary condition (2.22) in the
expression for the instability growth rate (3.10), several terms
are connected exclusively with the contribution of the non-
linear surface current. In the first curly brackets, this is the
second term in the first square bracket and the first term in
the second square bracket. In the second curly brackets, the
contribution of the nonlinear surface current is related to
the first terms in both square brackets. Further analysis shows
that the nonlinear current must be taken into account, since it
makes the same contribution to the instability growth rate as
the ponderomotive nonlinearity. At the same time, electro-
magnetic fields increase from the initial value δB0 according
to the exponential law d d g=B̂ B texp .0 ( )

Consider first excitation SEWs in a dense plasma, when
the inequality N = ωp

2/ω0
2 = N0e/Ncr?1 is satisfied, where

Ncr = meω0
2/(4πe2)—the critical density for a given frequency

ω0. In this case, the expression for the square of the instability
growth rate (3.10) takes the form
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where the notation x= ω/ω0 is introduced. From
equation (3.12) on condition N?1 we find the dependence
of the dimensionless frequency x on the angles α, θ
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Substituting the expression for the dimensionless fre-
quency (3.14) into formula (3.13), we obtain the dependence
of the square of the instability growth rate in a dense plasma
on the angles α,θ and concentration of electrons
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From formula (3.15) it follows that the maximum
instability growth rate in an overdense plasma is determined
by the expression
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and takes place for condition cos θ =sin α = 1, when
α→π/2, θ→0. In this case, the dispersion laws of surface
waves have the form ω≈ck, ω−1≈ck−1, and the fre-
quencies of the excited SEWs coincide and are equal to half
the frequency of the pump wave ω = ω−1 = ω0/2. Thus, in an
overdense plasma, under the condition N?1, the excitation
of surface waves occurs in the electromagnetic spectral region
and is most effective at grazing angles of the pump wave
incidence. In this case, the excited SEWs have wave vectors
of the same size k = k−1 = k0/2 and propagate in the
direction of the wave vector k0 of the pump wave. From the
expression (3.16), it follows that for the plasma densities
significantly above the critical value the instability growth
rate is sufficiently small because of the dependence on the
density in the form g µ -N .emax 0

3 2 It can be concluded that
the maximum value of the instability growth rate will occur in
the near-critical plasma. Comparison the result (3.16) with the
instability growth rate for the s-polarization of the pump wave
[19]
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shows that for the p-polarized incident electromagnetic wave
the growth rate of decay instability is almost by one order of
magnitude greater.

Consider the excitation of SEWs in plasma with an
electron density that coincides with the critical value N =
ωp
2/ω0

2 = N0e/Ncr = 1. In this case, the expression for the
instability growth rate takes the form
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2 2

2 2 2

2 2

( ) ( )

[ ]
( ) ( )

[ ]
( )

The condition of joint excitation of two surface waves (ω,
k) and (ω−1, k−1) (3.12) in dimensionless variables for N =
ωp
2/ω0

2 = N0e/Ncr = 1 takes the form

a

a q

-
- -
- -

=
-
-

+

-
-
-

x
x

x
x

x

x

x
x

x

1
1 1

1 2 1

1

1 2
sin

2
1

1 2
sin cos . 3.21

2
2

2
2

2

2
2

2

2

( ) ( )
( )

( )

To find the maximum of the function (3.19) upon con-
dition (3.21), we used the direct search method for the
absolute penalty function [22]. Numerical analysis of for-
mulas (3.19)–(3.21) shows that the function G1

2 has an
absolute maximum when a pump wave decays into two
SEWs with identical frequencies (x= 1/2), for angles sin
α = 0.783226..., cos θ = 0.6395013..., which is equal

=G 0.0376448.... 3.221, max
2 ( )

From here we find the maximum value of the instability
growth rate

g w»
V

c
0.2 . 3.23E

max 0
∣ ∣ ( )

This value (3.23) is realized when the pump wave falls at an
angle α≈52° when the excited surface waves have equal fre-
quencies ω = ω−1 = ω0/2 and propagate with wave vectors
equal in magnitude w w= = »-k k c c3 2 2 0.6121 0 0( )
to an angle θ≈50° relative to the direction of the wave vector
of the pump wave (see figure 2). In this case, the SEWs is
excited with the dispersion law lying in the transition region
between the fast electromagnetic (ω≈ck, ω−1≈ck−1) and
short-wave quasistatic w w w= »- 2p1( ) modes. Compar-
ison of expression (3.23) with instability growth rate for
s-polarized pump wave [19]

g w»
V

c
0.037 , 3.24s E

max 0
∣ ∣ ( )

shows that when a p-polarized wave is incident on a semi-
infinite plasma, the decay instability growth rate is almost five
times higher.

Let us now consider the excitation of SEWs when the
frequency of the pump wave exceeds the Langmuir frequency
and lies in the range ωp<ω0�ωp/cos α and the real part of
the dielectric constant of the plasma is positive. Of special
interest is the fall of an external electromagnetic wave on a
plasma with the smallest of the above stated range density,
when the condition is fulfilled

a e w= ¢sin , 3.252
0( ) ( )

where ε′(ω0)— a real part of dielectric constant ε(ω0) = ε′(ω0)
+ iε″(ω0). Below , we will also take into account its ima-
ginary part ε″(ω0) = νeiωp

2/ω0
3, which is determined by the

frequency of electron–ion collisions νei. Angle α (3.25) is the
angle of total internal reflection. The real part of the dielectric
constant ε′(ω0) is always less than unity 0 < ε′(ω0) < 1. In
this sense, vacuum with ε(ω0) = 1 is optically a more dense
medium than plasma with a refractive index smaller than
unity. Therefore, when an electromagnetic wave is incident at
angles that satisfy the condition a e w> ¢sin ,0( ) its full
reflection occurs, and the field penetrates the plasma only to
the depth of the skin layer δL.

When condition (3.25) is fulfilled, the electric field
amplitude of the pump wave in a plasma is determined by the
following formula

a e w a

a a e w
w

e w

=
+  -

+ + 

´ - 

E

c
z

E
e e2 cos i 1 2 sin

sin cos i 1 2

exp i 1 2 , 3.26

x z
1

0 0

2
0

0
0

[ ( ) ( ) ]
( ) ( )

( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥

and the expression for the instability growth rate has the form
similar to (3.18)

g w a q=
V

c
G x, , , 3.27E

0 2
∣ ∣ ( ) ( )

Figure 2. The direction of the wave vectors k and k−1 of the excited
surface waves at the plasma boundary under the condition ωp

2 = ω0
2.

The angle θ between the wave vectors k and k0 and between k−1 and
k0, equals approximately 50°.
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where the function G2
2(x, α, θ) is determined by the

formula

here

a q

a a e w

a a e w a q

=

- - - + -  - ´

´ - - - - 

3.29

g x

x x x x

x x x x x

, ,

cos cos 2 1 i 1 1

cos cos 2 i sin cos .

2

2 2 2 2 2
0

2 2 2 2 2
0

( )

( )

∣ ( ) ( ) ( [ ])

[ ( ) ]∣

The condition of joint excitation of two surface waves (ω,
k) and (ω−1, k−1) (3.12) in dimensionless variables when
condition (3.25) or ωp

2/ω0
2=cos2 α is satisfied takes the form

a e w

a e w

a
a e w

a q

-
- -

- - + - 

=
-

- - 

+ -
-

- - 

x
x

x x

x
x

x x

x
x

x x

1
1 1

cos 2 1 i 1

1

cos 2 i

sin 2
1

cos 2 i
sin cos .

3.30

2
2

2 2 2
1

2
2

2 2 2

2
2

2 2 2

( ) ( )
( ) ( ) ( )

( )

( )
( )

Note that in formulas (3.28)–(3.30), the imaginary part of
the dielectric constant takes into account only in those factors
and terms that can go to zero.

The analysis shows that the maximum value of the
function (3.28) is equal to

a q
e w

w
n

=


=G x, ,
1

32 2 128
3.31

ei
2
2

0

0( )
( )

( )

and is realized when short-wave (k?ω0/c, ωp/c) quasistatic
surface waves are excited with coinciding frequencies
w w w= »- 2 .p1 In this case, the decay condition ω0 = ω

+ ω−1 implies the relation w w= 2 p0 or ε′(ω0) = 1/2, from

which, taking into account (3.25), we find the optimal angle
of incidence of the pump wave on the plasma boundary
α = π/4. From the formula (3.30) it follows that the excited

surface waves in this case propagate in almost opposite
directions at a right angle relative to the wave vector k0

(figure 3). The maximum possible growth rate value in
accordance with (3.27), (3.31) is

g
w w

w
w

=
n

»
n

a
V

c

V

c8 2
0.1 , 3.32

ei

E

ei

E
,max

0 0
0

0∣ ∣ ∣ ∣ ( )

and because of the inequality ω0?νei significantly exceeds
the value (3.23), which takes place under the condition ωp

2 =
ω0
2. Note that in [18], the authors assumed that surface waves

propagate along the direction of the wave vector of the pump
wave. However, our results show that the maximum growth
rate occurs when the excited SEWs propagate almost in the
transverse direction relative to the k0—wave vector of the
incident radiation.

To illustrate the results obtained, we consider the
dependence of the instability growth rate (3.10) on the angle
of incidence and electron density at the coincident fre-
quencies of the excited surface waves. After simple trans-
formations, the expression for the instability growth rate
takes the form

g w a=
V

c
H N, , 3.33E

0
∣ ∣ ( ) ( )

where the dependence on the angle of incidence and plasma
density is described by the function H(α, N)

where ν = νei/ω0. If the plasma electron density far exceeds
the critical value N?1, then the expansion in powers of a
small parameter 1/N can be used. Then from formula (3.34)

a q
a a

a a e w e w

a a
a e w a e w

a q a e w
a

a q a e w
a

=
+  + 

´
- - - -

- -  - - + -  -

´
- - - - 

+ -
´

- - - - 
- + - -

G x

x x x x

x x x x x x

g x x x x x x

x x

g x x x x x

x x

, ,
sin cos

sin cos 2 2

1 cos cos 1

cos 2 i cos 2 1 i 1 1

, , 1 cos 2 i

cos

, , 1 cos 2 i

1 cos 1
,

3.28

2
2

2 2

2
0

2
0

3 2 2 2 2

2 2 2
0

3 2 2 2 2
0

1 2

2
2 2 2

0

4 2 2 2
2

2 2 2 2
0

4 2 2 2

( )
( ( ) ) ( )

( )( )[ ( ) ]
[ ( )] [ ( ) ( ) ( [ ])]

( ) ( ) ( )
( )

( ) ( ) ( )
( ) [ ( ) ]

( )

a
a a

n

n a a n n a

n a n a

=
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´

´
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- + - - + - -
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N

N N

N N N

N N N

,
1

8

1 4 sin cos

1 2 2

1 2i 1 2 cos 1 4 cos 2 1 2i 1 2 1 2i cos

1 4 1 4 1 1 i cos i 1 i cos
, 3.34

2 2 1 4
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we obtain the dependence of the instability growth rate on the
angle of incidence of the pump wave

g
w

a=
N

V

c
F , 3.35E0

3 2

∣ ∣ ( ) ( )

where the function F(α) has the form

a a a= +F
1

8
sin 1 2 sin , 3.362( ) ( ) ( )

presented in figure 4. The maximum value of the instability
growth rate takes place at the grazing incidence of the pump
wave α→π/2, when F(α) = 3/8, and coincides with the
previously obtained expression (3.16). If the plasma density is
two orders of magnitude higher than the critical value, then

the accuracy of the approximate formula (3.35) due to
expansion in a small parameter 1/N=1 is about one
percent.

For the electron density that coincides with the critical
value N = 1, from formula (3.34) we find the dependence of
the instability growth rate on the angle of incidence of the

pump wave

g w a=
V

c
G , 3.37E

0
∣ ∣ ( ) ( )

where the function G(α) has the form

and is shown in figure 5. From figure 5 it follows that the
maximum value of the instability growth rate coincides with
the value (3.23) and is realized for the angle of incidence
α≈52°, which corresponds to the above results of numerical
analysis. When condition (3.25) is fulfilled, from formula
(3.34) we find that the maximum value of the instability

Figure 4. Dependence of the function (3.36) on the angle of
incidence of the pump wave for a dense plasma N?1.

Figure 5. The dependence of the function (3.38) on the angle of
incidence of the pump wave for near critical plasma at N = 1 for νei/
ω0 = 0.03.

Figure 3. The direction of the wave vectors k and k−1 of the excited
surface waves at the plasma boundary under the condition ωp

2 = ω0
2

cos2α. The angle θ between the wave vectors k and k0 and between
k−1 and k0, equals approximately 90°.

a a a
a n a n a n

n a a n
= ´

- - - + - -

+ -
G

3 2

80
sin cos

3 4 cos 8i 1 2 cos 4 2 1 4i sin 2i

cos sin i
, 3.38

2 2 2

2
( )

∣ ( ) ( )( ) ∣

∣ ∣
( )
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growth rate coincides with the previously obtained expression
(3.32) when the pump wave is incident at an angle α = π/4
on the plasma with electron density N = 1/2, which
corresponds to half the critical value.

We find the instability threshold under conditions when
the growth rate has a maximum value (3.32). To do this, we
take into account collisions in the expressions for the di-
electric constant

e
w

w
n
w

e
w

w
n
w

= - - = - --
- -

1 1 i , 1 1 i .

3.39

p ei p ei
2

2 1

2

1
2

1

( )

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

Then, for the instability growth rate, instead of expres-
sion (3.27), we have the following equation

g
n e

e
g

n e
e

w+
-
+

+
-
+

=-

-

V

c
G

2

1

1 2

1

1
. 3.40ei ei E

2
1

1
2 0

2
2

2 2
2 ( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

The threshold value of the electric field of the pump wave
is determined from the condition γ = 0 and has the form

n
w

=
V

c G2

1
, 3.41E ei

0 2

∣ ∣ ( )

since at the electrostatic limit ε = ε−1 = −1. The minimum
value of the threshold field is

n
w

=
V

c
4 2 , 3.42E ei

th 0

3 2∣ ∣ ( )⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

and takes place at the maximum value of the function G2

(3.31). From the obtained expression (3.42) it follows that the
threshold value of the electric field of the pump wave is small,
since the condition νei =ω0 is usually satisfied. That is, the
decay of the pump wave into two short-wave quasistatic
plasmons can occur at sufficiently low intensities of the
incident electromagnetic radiation. For example, when νei =
10−2ω0 for a wavelength λ0 = 1 μm, the threshold value of
the intensity of laser radiation in accordance with formula
(3.42) is equal to (IL)th≈4×1013W cm−2. Similarly, you
can calculate the threshold for the case when the electron
density is equal to the critical value. For this purpose, in
equation (3.40) it is necessary to make a replacement
G2→G1 and take into account that when ωp

2 = ω0
2 and

x = 1/2 dielectric constants at frequencies of surface waves
equal ε = ε−1 = −3. Then for the threshold field we get the
following value

n
w

n
w

= »
V

c G

0.2
, 3.43E ei ei

th 1, max 0 0

∣ ∣ ( )⎜ ⎟⎛
⎝

⎞
⎠

which at condition 32(νei/ω0)<1 exceeds the value (3.42).
For the above mentioned parameters νei = 10−2ω0 and λ0
= 1 μm from the formula (3.43) for the threshold intensity of
laser radiation we get (IL)th≈1.4×1014W cm−2. In dense
plasma, when the electron concentration significantly exceeds
the critical value, the instability threshold in accordance with
formulas (3.40), (3.15) has the form

w
w

n
w

=
V

c

1

3
, 3.44E p ei

th 0 0

∣ ∣ ( )⎜ ⎟⎛
⎝

⎞
⎠

and exceeds the corresponding values (3.42), (3.43) for near-
critical plasma.

4. Conclusion

In the present work, the parametric excitation of TM surface
waves at the boundary of a dense plasma under the action of
a p-polarized electromagnetic wave is investigated. The
ground state is considered and it is shown that the presence
of the p-component in the pump wave leads to the appear-
ance of a surface charge density oscillating at the pump
wave frequency. Equations and boundary conditions for
perturbation of the electromagnetic field are obtained. The
dispersion equation is derived and the growth rate of the
decay instability, at which two SEWs are excited, is calcu-
lated. The dependence of the instability growth rate on the
electron density, the angle of incidence of the pump wave,
and the angle between the wave vectors of the excited sur-
face waves is investigated. It is shown that the growth rate
has a maximum value in a plasma with an electron con-
centration close to the critical value when the excitation of
short-wave quasistatic surface waves occurs. It is found that
for p-polarization of the incident electromagnetic wave
growth rate of decay instability significantly exceeds the
growth rate of instability in case of s-polarized pump wave.
The instability threshold is calculated and it is shown that it
has a minimum value when exciting short-wave surface
plasmons.

We discuss the conditions when the collisions of elec-
trons in the equation for the speed of electrons in the system
of equation (2.2) can be neglected . In accordance with the
formula for the frequency of electron–ion collisions [23], we
write its relation to the frequency of the incident wave in the
form

n
w

w
w

h= LZ
8

3
ln , 4.1ei p

0 0

3 2 ( )

where Z is the charge number of ions, L =ln
h p -ln 83 2 1([ ] ) is the Coulomb logarithm, and the para-

meter η is equal to the ratio of the electron interaction energy
to their temperature Te

h =
e N

T
. 4.2e

e

2
0
1 3

( )

Since the frequencies of the excited surface waves are
equal to half the frequency of the pump wave and the di-
electric constant at these frequencies do not vanish, colli-
sions of electrons in calculating the instability growth rate
can be neglected if the condition νei =ω0 is satisfied.
An exception is the case of a pump wave incident at an
angle of total internal reflection (3.25), when the instability
growth rate is completely determined by the frequency of
electron collisions, for which the imaginary part is taken into
account in the expression for dielectric constant at the pump
frequency.
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If the temperature of the electrons is equal to
Te≈200 eV, then we find from formula (4.1) νei≈0.2ω0 for
the density N0e≈1023 cm−3 at Z = 1. When the electron
density is close to the critical value » -N 10 m ,e0

21 3с the
frequency of electron collisions at the same temperature is
much lower νei≈3×10−3ω0. These estimates show that
when calculating the instability growth rate, the frequency of
electron collisions can be neglected even in the case of a
dense plasma.

In conclusion, we estimate the instability growth rate for
the characteristic parameters of the laser-plasma experiments.
Let a laser pulse with the wavelength λ0 = 1 μm (frequency
ω0≈1.88 × 1015 s–1), duration τ = 500 fs, and intensity IL
= 1016W cm−2 be incident on the boundary of a plasma
formed by the ionization of a solid target, the electron density
in which, N0e≈1023 cm−3, is two orders of magnitude
higher than the critical density. In this case, according to
formula (3.16), the growth rate is γ≈3 × 10−5ω0 and the
instability has no time to develop during the laser pulse,
because the gain factor Γ = γτ≈3 × 10−2 is too low. An
appreciable effect can be achieved by using an aerogel target,
which, being ionized, has an electron density close to the
critical density. For an electron density of N0e≈1021 cm−3

and collision frequency νei≈10−2ω0 we find from formula
(3.32) that γ≈10−1ω0. Then the magnetic field of the sur-
face waves increases in time from the initial value δB0

according to the following law d d g=B̂ B texp ,0 ( ) where the
instability growth rate in this case is equal to γ≈0.1ω0. In
this case, the threshold intensity value (3.43) is exceeded by
almost two orders of magnitude, and the gain factor has a
value Γ = γτ≈100. Therefore, the initial seed amplitudes of
surface waves may well grow to noticeable values.
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