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Abstract
Inspired by the seminal, ground-breaking work of Abrikosov in 1957, we developed a new
approximation to the interaction between two widely separated superconducting vortices. In contrast
with Abrikosov’s, we take into account the finite size of the vortices and their internal magnetic
profile. We consider the vortices to be embedded within a superconducting, infinitely long hollow
cylinder, in order to simplify the symmetry and boundary conditions for the mathematical analysis.
We study this system in the context of a magnetic Ginzburg-Landau functional theory, by solving for
the magnetic field profile inside each vortex, as well as in the superconducting region, subject to
physical boundary conditions inspired by the classical analogue of two mutually inducting coils.
Under isothermal conditions, the effective force between these vortices is given by the gradient of the
Helmhotlz free energy constructed from the Ginzburg-Landau functional. From our results, we
explicitly show that, in agreement with well established theoretical arguments and experiments, the
interaction between widely separated vortices is repulsive in this context, and their equilibrium
positions are constrained by the fluxoid’s conservation. Moreover, we find that the equilibrium
positions of the vortices’ centers are stable due to the convexity of the Helmholtz free energy profile.
Remarkably, the effect of the boundaries of the region over the effective interaction between the
vortices is important in the chosen geometric configuration in agreement with experiments by
Grigorieva et al (2006) on Nb disks and simulations reported in the literature.

Keywords: type II superconductivity, vortices, London penetration depth, coherence length,
order parameter, magnetic field, fluxoid

(Some figures may appear in colour only in the online journal)

1. Introduction

In conventional superconductivity,the phenomenological magn-
etic Ginzburg-Landau model reproduces the macroscopic beha-
vior of superconducting samples near their critical temperature Tc
[1]. In particular, this model allows us to understand the physical
behavior of vortices in these samples.

Superconducting vortices are related to the flux quanti-
zation (or fluxoid quantization in non-bulk samples) phe-
nomena predicted by London and London in 1950 [2] and

corroborated by Onsager [3], Bardeen [4] and Byers and
Yang [5] in 1961. In the same year, experimental evidences
about these objects were found by Deaver and Fairbank [6]
and Doll and Näbauer [7]. In the context of super-
conductivity, vortices can be described as regions where the
fluxoid is quantitatively important, due to the low mean
density of superconducting electrons inside the sample. These
kind of quantum vortices are the main phenomena in Type II
superconductivity, where the Helmholtz free energy is mini-
mized by increasing the number of them.

Abrikosov shows in his seminal work of 1957 [8], in the
context of cylindrical symmetry, that in the extreme Type II
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case k lx= - 11 , where ( ∣ ∣)x a= - m2 1 2* is the coher-
ence length and ( ( ) ( ) )l p y= ¥

- -q m c4 2 2 2 1 1 2* * is the London
penetration depth [9], that the interaction between vortices
can be explained within an approximation where they are
considered as perturbations of the sample, neglecting their
internal structure and boundaries. In Abrikosov’s approach
[9], a small vortex centered at


=x 0 is described as a fila-

ment with negligible radius x  0 that, nevertheless, con-
centrates a finite fluxoid ( )F = -hc q0

1* at its center.
Therefore, the magnetic field


BA inside the sample is assumed

to satisfy the London equation [2]:

( ) ˆ ( )
  

l
d
pl

 - = -
F

B
B x

k
2

, 1A
A2
2

0 2
2

where ( )d x2 is a two dimensional delta-function describing
the concentration of the fluxoid at the center of the vortex.
The explicit solution for equation (1) is:

⎜ ⎟⎛
⎝

⎞
⎠ ˆ ( )


pl l

=
F

B K
r

k
2

, 2A
0

2 0

with K0(x) the modified Bessel function of the second kind
and zero order. For k 1, if


x1 and


x2 are the locations of the

small vortices, the magnetic field at the position

x in the

system is given by the superposition of the magnetic fields
generated by each of them:

( ) ( (∣ ∣) (∣ ∣)) ˆ ( )
       

= - + -B x B x x B x x k. 3A A1 2

In this approximation, the vortex energy per unit length is
[9]:

(∣ ∣ ∣ ∣ ) ( )
 

òp
l= +  ´ B B dS

1

8
, 42 2 2

and combining equations (2) and (3), the interaction energy
per unit length between both vortices is

⎜ ⎟⎛
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⎞
⎠

∣ ∣ ( )
 

p l l
=

F -
 K

x x

8
. 512

0
2
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The interaction between widely separated vortices must
be repulsive in Type II superconductivity, since their
contribution to the magnetic energy is bigger than the effects
of the quantum currents [10]. Theoretically, this behavior is
also suggested by the Abelian Higgs model [11, 12] and the
Boson method applied to the study of vortex lines [13]. This
fact is also observed experimentally [14, 15] and numeri-
cally [16, 17].

We suggest a new approximation to the interaction
between two single superconducting vortices, inside a
superconducting domain with the shape of an infinitely long
hollow cylinder. We choose this geometry for two reasons:
first, it represents the cross section of a long and thin super-
conducting coaxial cable, which is suitable for experimental
applications. Second, but not less important, the cylindrical
symmetry of the domain simplifies the calculations related to
the boundary conditions, which uniquely define the magnetic
field at each vortex and in the superconducting region and, as
we show later, are essential in determining the effective force.
We remark that the effect of the boundaries over the equili-
brium configuration of type II superconducting vortices has

been observed experimentally in Nb superconducting disks
by Grigorieva et al [18], and this was later confirmed in
molecular dynamics simulations by Misko et al [19]. Inter-
estingly, both groups agree on the conclusion that when the
radius of the disk is not too large ( x~ -R 5 20 ), the vortices
tend to organize themselves in concentric shells. In this sense,
our chosen geometric configuration with an inner core mimics
the presence of the cluster of internal shells, allowing us to
focus on the fundamental effective interaction between a pair
of vortices in the outermost shell.

We propose an ansatz for the order parameter, and we
solve the magnetic field inside each vortex as well as inside
the superconducting region, subjected to physical boundary
conditions. The main feature of this approach is to recognize the
contribution of the magnetic structure of each vortex and
the superconducting region. In this sense, our model employs
the electrodynamic analogue for the problem of two mutually
inducting coils, where the magnetic flux inside the first coil is in
part produced by the second coil, and viceversa. The magnetic
field inside each vortex is determined by the boundary condi-
tions related to the regularity of the magnetic vector potential,
the continuity of the magnetic field inside and outside each
vortex, and a self consistent solution for the magnetic field and
the magnetic flux inside each vortex. We neglect the small
physical effects of the vortices over the coaxial cylindrical
boundaries, in order to preserve mathematical simplicity.
Besides, each vortex is assumed to be submitted to the magnetic
field imposed by the superconducting region and that of the
other vortex.

Under isothermal conditions, the effective force between
the small vortices is determined as the gradient of the
Helmholtz free energy. Due to the complexity of the analy-
tical expressions, a numerical evaluation of these results is
shown in figures 2–8, considering vortices with quantum
currents circulating in the same direction, as well as in
opposite directions.

Our article is organized as follows: in section 2, we
present the context of the problem and we describe our
strategy for its solution. In section 3, we calculate self-con-
sistently the magnetic vector potential and the magnetic field
inside each vortex and within the superconducting region. In
section 4, we show the general form of the Helmholtz free
energy profile and the effective force acting on each vortex. In
section 5, due to the complexity of the expressions for the
energy profile and the force, we develop a numerical eva-
luation of our analytical results, with plots that illustrate the
physical behavior of the vortices.

2. The interaction problem

Let us consider a superconducting region with the shape of an
infinitely long hollow cylinder, with internal and external
radii R0<R, respectively. We further assume that this sam-
ple contains two identical single vortices, with radius ξ in the
k 1 limit. An external magnetic field


H0 is applied to the

sample, with  H H Hp u0 . Here, Hp and Hu are the first and

2
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the upper critical magnetic fields, respectively, for type II
superconductivity. These critical fields are straightforward to
obtain in the k 1 limit [9, 20–22].

The local coordinate system for each vortex (k=1, 2), as
illustrated in figure 1, is determined by the following vector
relations:

( ˆ ˆ) ( )   q q= + = +r s a r i j acos sin , 6k k k k k k

with

( ˆ ˆ)
( ˆ ˆ) ( )




f f

a a

= +

= +

s s i j

a a i j b

cos sin ,

cos sin , 6

k k k k

k k k k

and where we have defined the unitary vectors

ˆ ˆ ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ ( )

q q q

f f f

a a a

=- +

=- +

=- +

i j

i j

i j c

sin cos ,

sin cos ,

sin cos . 6

k k k

k k k

k k k

Considering the following definitions:

≔ { ∣ ∣ ∣ } ( ) 
W Î < <r R r R , 72

0

≔ { ∣∣ ∣ } ( )  xW Î < =s s k, 1, 2, 8k k k
2

the effective force acting on the vortex Ωk, under isothermal
and reversible conditions, is given by

( )


= - =f F k 1, 2. 9k ak

In equation (9), F is the Helmholtz free energy in the
magnetic Ginzburg-Landau model, expressed in gaussian
units [9]:
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k
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2
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and the gradient in the coordinates defined by equation (6b),

ˆ ˆ ( )
f

f =
¶
¶

+
¶
¶

=
s

s
s

k
1

1, 2. 12k
k

k
k k

k

For each vortex Wk, for k=1, 2, the order parameter ψk and
the magnetic vector potential


Ak depend on the cylindrical

coordinates (sk, fk), while inside the hollow cylindrical region
⧹( )ÈW W W1 2 , we denote these quantities with the k=0

index. Looking for a saddle-point of the energy functional,

( )d
dy

= =
F

k0, 0, 1, 2 13
k*

we obtain the Ginzburg-Landau equations for the order
parameters ψk on each region [9]

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
( )

∣ ∣ ( )



a b y y
-  -

+ + =
i A

m2
0. 14

k
q

c k

k k

2

2

*

*

Similarly, a saddle point of the functional with respect to the
vector potential components

( )
d
d

= =
F

A
k0, 0, 1, 2 15

k

leads to a generalization of Ampere’s law [9]

( )

( ) ∣ ∣ ( )



p
y y y y

y

 ´ =
 - 

- =

c
B

q

m i

q A

m c
k

4 2

0, 1, 2. 16

k k
k k k k k k

k k
2 2

* * *

*

*

*

Solutions for equations (14) and (16) are unique with
physically appropriate boundary conditions. These conditions
contain the information for the interaction between vortices,
and involve the magnetic field and the corresponding magn-
etic flux in ⧹( )ÈW W W1 2 in a self-consistent way, as we shall
later explain in detail. The magnetic field in the super-
conducting domain is obtained by neglecting the effects of the
vortices at the boundary of the sample, within a mean field
approximation to the problem.

Figure 1. Two vortices inside a superconducting, hollow cylindrical
domain. The unit vectors ˆ ˆ ˆi j k, , , describe the usual basis in cartesian
coordinates.
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3. Order parameters and magnetic fields for the
sample

3.1. Order parameter and magnetic field for the
superconducting region

The region ⧹( )ÈW W W1 2 is superconducting. Therefore, we
assume that this domain is in the Meissner state, and hence an
ansatz for the order parameter ψ0, considering one fluxoid
quantum is [9]:

( ) ( )y y q y
a
b

= = -¥ ¥iexp , . 170

Using equation (17), the fundamental relation


=  ´B0
A0 and Coulomb’s gauge ·


 =A 00 , equation (16) can be

solved for ⧹( )


ÈÎ W W WA0 1 2 within the geometry described
in figure 1. As shown in detail in appendix A, the general
expressions for the magnetic vector potential


A0 and the

magnetic field

B0, inside the superconducting domain, are

given in terms of modified Bessel functions:

⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟ ˆ ( )



l l p
q= + +

F
A c I

r
c K

r

r2
, 180 1 1 2 1
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⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
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⎞
⎠

⎞
⎠⎟ ˆ ( )


l l l

= -B c I
r

c K
r

k
1

. 190 1 0 2 0

Here, c1 and c2 are constants that depend on the boundary
conditions (see appendix A). On the other hand, the magnetic
field must be continuous at r=R0 and r=R. If we take into
account that the external magnetic field is constant outside Ω
(i.e. for the normal regions r>R and 0�r<R0), given that
the radius of each vortex is very small for κ ? 1
( x l < -R R0), we can approximately neglect the effect
of the vortices at the edges [18, 19]. Then, the boundary
conditions for the magnetic field are

( ) ( ) ( )= =B R B R H . 200 0 0

Then, in terms of the auxiliary functions

⎜ ⎟ ⎜ ⎟
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0
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the constants c1 and c2 are given by
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R R
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. 221
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3.2. Order parameter and magnetic field for each vortex

In terms of the cylindrical coordinates related to each vortex
( )fs ,k k , for k=1, 2, we develop a self consistent solution for
the magnetic field at each vortex, that determines their
internal and external profile. In this sense, we assume that

each vortex is subjected to a superposition of the magnetic
field produced by the superconducting, hollow cylindrical
region, and the external profile of the magnetic field generated
by the other vortex. The mathematical expression for this
statement will be presented in detail when we describe the
continuity and boundary conditions for the magnetic field in
section 3.3.

3.2.1. External profile of the magnetic field for each vortex.
The magnetic field generated by each vortex in the region

x>sk , as a solution of equation (16), has the general form:

⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟
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l l p
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F
A d I
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s2
, 23k E k E

k
k E

k k

k
k, , 1 , 1
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⎜ ⎟ ⎜ ⎟
⎛
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⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
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ˆ
( )


l l l

= -B d I
s

e K
s k

. 24k E k E
k

k E
k

, , 0 , 0

Here, for k=1, 2, nk is the number of fluxoids piercing
each vortex. Besides, dk E, and ek E, are constants that depend
on the boundary conditions (for explicit expressions, see
appendix D), as will be discussed in the next section.

3.2.2. Internal profile of the magnetic field at each vortex. For
x<sk and k=1, 2, the order parameter that describes its

internal structure can be approximated, in the k 1 limit, for
a winding number nk [9, 21–23] by

⎛
⎝⎜

⎞
⎠⎟ ( ) ( )

∣ ∣

y y
x

f= =¥
s

in kexp 1, 2. 25k I
k

n

k k,

k

This ansatz shows that the density of superconducting
electrons is zero at the center of each vortex, sk=0, and
increases to y¥ at sk=ξ. With equation (25) into
equation (16) and ò=κ−1, we show that the magnetic
vector potential inside each vortex


Ak I, satisfies the equation

( )

∣ ∣

∣ ∣ ∣ ∣

∣ ∣

∣ ∣

p l

l x

-F
=  + ¢ -

- =

+

+

+
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n s
s A s A A

A s
k

2

1, 2 26

k k
n

n n k k I k k I k I

k I k
n

n

0
2 1

2 2 2
2

, , ,

,
2 2

2 2

k

k k

k

k

or, in terms of l= -w sk k
1, for k=1, 2 one obtains:

( )

∣ ∣

∣ ∣

∣ ∣

∣ ∣
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-
F

=  + ¢

- -

+

+



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w A w A

A
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2
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n

n k k I k k I

k I
k I k

n

n

0
2 1

2
2

, ,

,
,

2 2

2

k

k

k

k

Equation (27) can be solved using perturbative techni-
ques [23, 24] (For more details about this solution, see
appendix B). Then, a perturbative solution for the magnetic
vector potential and the magnetic field in Ωk, for k=1, 2, is
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given by
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where dk I, and ek I, are constants that depend on the boundary
conditions (for explicit expressions, see appendix D), as will
be discussed in the next section.

3.3. Boundary conditions

3.3.1. Regularity of the magnetic vector potential for each
vortex. We must discard divergent contributions at sk=0 in
equation (28). Therefore, we have

( )= =e k0 1, 2. 30k I,

3.3.2. Continuity of the magnetic field. The magnetic field at
the boundary of each vortex ∂ Ωk, for k=1, 2 must be
continuous. Furthermore, by self-consistency, its value is
given by the superposition of the magnetic field generated by
the superconducting domain and the magnetic field produced
by the other vortex,

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ( )

= = +

= = +

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¶W ¶W ¶W


¶W


¶W ¶W ¶W

- +

- +

 

 

B B B B

B B B B
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1
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1 2 0
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2

0
2 1 0

1 1 1 1

2 2 2 2

Here, we defined ( ) Ç¶W = ¶W W-  ,k k k and ¶W =+
k

( ) Ç¶W W ,k k
c, respectively, with ( )¶W = ,k

{ ( ) }
 

È x x Î ¶W , ,k k k the set of all possible balls of
infinitesimal radius ò, centered at any point at the
boundary


x Î ¶Wk k.

From the system of coordinates displayed in figure 1, the
magnetic field due to the superconducting region at the
boundary of each vortex can be expressed by

⎜ ⎟
⎛
⎝
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⎞
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where ∣
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x = x=sk k sk

, following the definition in equation (6b).
Here, we have considered that in the κ? 1 limit, ξλ−1 = 1, and
hence ∣ ∣ ( ) ∣ ∣  

x l x f x l l+ = + + ~- - -a a a a2 cosk k k k k k
1 2 2 1 2 1 1.

The same considerations imply that (for ¢ =k k, 1, 2)
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Therefore, the continuity conditions stated in
equation (31) reduce to the system of equations
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3.3.3. Self consistent magnetic flux. The self-consistent
continuity conditions for the magnetic field stated in
equation (31), whose approximate expression for κ ? 1 is
given by equation (34), imply similar considerations for the
vector potential at the boundary of each vortex. It is
convenient to express those conditions in terms of the
circulation of the vector potential along the boundary of each
vortex
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By Stokes’ theorem, these equations state that the magnetic
flux piercing the surface of each vortex is given by the
superposition of the flux due to the field of the
superconducting region, and the flux produced by the other
vortex, in clear analogy with the classical model of two
conducting, mutually inducting coils.

For k 1 and ∣ ∣ 
x ak , by similar considerations as

those leading to equation (34), the boundary conditions in
equation (35) can be written as the system of equations (For
more details, see appendix C):

( ) ( )

( ∣ ∣)
∣ ∣

( ) ( )

( ∣ ∣)
∣ ∣

( )


 

 


 

 

x
x

x
x

= =

+
= -
-

= =

+
= -
-

A s A r a

a

A s a a

a a
A s A r a

a

A s a a

a a

2

,

2

. 36

I

E

I

E

1, 1 0 1

1
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2
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The boundary conditions established in equations (34) and
(36) allow us to determine all the constants leading to the
complete solutions for the magnetic vector potential and
the magnetic field. Due to the algebraic complexity of the
equations, an application with the implementation of
the boundary conditions for this model is shown in section 5.
Explicit analytical expressions for the constants are presented
in appendix D.

4. General form of the Helmholtz free energy and the
effective force on each vortex

With the order parameters, magnetic vector potentials and
magnetic fields determined before, the Helmholtz free energy
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for the model can be expressed using equations (10) and (11)
as follows:
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where the first term FB does not depend on the sign of the
winding numbers nk, while the second term FV does depend
on it. (See the computations of the relevant terms in
appendix E). Using equation (9), with ( )g a a= -cos 1 2 , the
effective force on the vortex k, for k=1, 2 is given by
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where we defined


= -f FBk a Bk
and


= -f FVk a Vk

,
respectively.

If we analyze the radial component of the effective force
on each vortex, defined as

ˆ ·
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we notice that =f fV
R

V
R

1 2, for n1=n2, while = -f fV
R

V
R

1 2 for
= -n n1 2, thus yielding an effective attractive interaction for

opposite winding numbers, and an effective repulsive inter-
action for identical winding numbers, respectively. However,
since the total effective force is not only determined by this
contribution, but also from the fBk

R interaction defined in
equation (38), that reflects the effects of the boundaries on
each vortex, we can have a more complex scenario as dis-
cussed in the next section.

5. Numerical evaluation of the results

5.1. Previous considerations

5.1.1. Surface energy. We remark that, in the limit κ ? 1,
the surface energy can be estimated at H=HC, where HC is
the thermodynamic critical field. Following the analysis
shown in [25], we can deduce that the surface energy of the
system σns is approximately:
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As we can see from equation (40), σns=0. Therefore, it
is energetically favourable for the system to maximize its

interfacial surface, and hence to avoid for the vortices to
attract each other and eventually coalesce. Hence, the
thermodynamic analysis of the problem is consistent with
an effective repulsive force between the vortices, as will be
shown and discussed in the examples in section 5.5.

Besides, the previous integral and the explicit forms of
the magnetic fields and the order parameters show that the
magnetic terms are the most important contribution to the
surface energy (For more details, see appendix F).

5.1.2. Experimental considerations. In Type II
superconductivity, suitable values for the critical magnetic
fields are given by =H 10 Gp

2 and =H 10 Gu
5 [26],

therefore =H 10 GC
3 . Besides, the fluxoid is given by

F = ´ -2.0679 10 G cm0
7 2 [9, 27]. Finally, using the

estimations for the critical magnetic fields mentioned
before, we obtain that l = -10 cm4 and x = -10 cm6 ,
respectively. Therefore, for these parameters we estimate
κ;100.

Concerning the typical sizes of the coaxial region, we
notice that in order to reproduce the effect of the London
penetration depth, the internal and the external radii of the
sample must satisfy l- >R R 20 . In addition, since we are
exploring the strong influence of the magnetic profile in the
superconducting region on the effective interaction between
the vortices, we cannot impose a big difference between the
radii of the coaxial cylinders. For all the previous reasons, we
illustrate the model in the case R0=4λ and R=8λ. We
represent the plots in terms of the dimensionless parameters:
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where A=π ξ2 is the area of each vortex.

5.2. Superconducting current

In order to understand the effective force over each vortex, it
is instructive to first analyze the radial pattern of the current in
the superconducting region Ω. Here, we can identify two
contributions to the total current:

( ) ˆ ( )


f= +J J J , 42s d0

where Js is the superconducting current and Jd is the dia-
magnetic current. Firstly, for Js and using the order parameter
y y= q
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For the diamagnetic current Jd, we have:
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In terms of the dimensionless variables defined in
equation (41), the total current is reduced to the expression
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In figure 2, we represent the total (dimensionless) current
¢J0, as a function of the dimensionless radial distance ¢r , for a

coaxial cylindrical sample of radii R0=4λ and R=8λ,
respectively. As clearly seen in figure 2, the total current
reverses its direction near ¢ ~r 6.0. This effect can be
understood from a semiclassical picture after Ampère’s Law
(and the corresponding right-hand rule), since the magnetic
fields at the inner core and at the outer region have the same
direction and magnitude, thus imposing a competition effect
over the direction of the total current ¢J0. This change of
direction, as we shall discuss later, imposes a corresponding
sign inversion on the dominant component of the radial
effective force acting over the vortices.

5.3. Helmholtz free energy profile

In figure 3, the Helmholtz free energy is represented as a
function of the (dimensionless) distance from the center of the
coaxial cylinders to the center of each vortex, ¢ak for k=1, 2.
The relative angle is a a p- =1 2 , which implies g =

( )a a- = -cos 11 2 . Clearly, the functional is convex in
terms of these variables, with a global minimum inside the
cylindrical coaxial sample, that therefore represents the
equilibrium position of the center of each vortex. In this
example, the winding numbers of the two vortices are iden-
tical n1=n2=1.

In figure 4, the Helmholtz free energy is represented as a
function of the relative angle ( )g a a= -cos 1 2 , and the

distance to the center of the coaxial cylinders ¢a1 , where the
symmetrical condition ¢ = ¢a a1 2 was chosen. In this example,
the winding numbers for each vortex are set identical

= =n n 11 2 . The free energy profile shows a minimum at
γ=−1, i.e. at α1−α2=π where the centers of the vortices
are maximally separated, suggesting a repulsive interaction.
We shall discuss this point in more detail in section 5.5, after
expressing the effective force. A similar behavior is observed
when the winding numbers of the vortices are opposite, i.e.

= - =n n 11 2 .

5.4. Radial component of the force on each vortex

From the information in figure 5, the interaction between
vortices with the same winding numbers and the boundary of
the sample is repulsive. Besides, the fixed position of the
second vortex displaces the effective radial force on the first
vortex. This behavior is the same in the case of two vortices
with opposite winding numbers, as it can be seen in figure 6.

In order to understand this effect, it is better to analyze
separately the two components of the radial force defined in
equation (39) fVk

R and fBk
R , respectively. As already discussed

in section 4, the component fVk
R depends on the sign of the

winding number nk, and thus reverts its relative sign for the
case = - =n n 11 2 (see figure 7) as compared to the case
n1=n2=1 (see figure 8). This sole contribution on itself
would determine, as later discussed in section 5.5 an attractive
(repulsive) effective force between vortices with opposite
(identical) winding numbers, respectively. However, the other

Figure 2. The superconducting current in the hollow cylindrical
region Ω, as a function of the dimensionless radial distance l¢ =r r
from the center of the coaxial cylindrical boundaries.

Figure 3. Helmholtz free energy profile, in terms of the distance of
the center of each vortex to the center of the coaxial cylinders. Here,
n1=n2=1, H0=HC and γ=−1.

Figure 4.Helmholtz free energy profile, in terms of the relative angle
( )g a a= -cos 1 2 , and the distance to the center of the coaxial

cylinders ¢a1 , where the symmetrical condition ¢ = ¢a a1 2 was chosen.
Here, n1=n2=1 and H0=HC.
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contribution to the radial effective force fBk
R does not depend

on the sign of the winding numbers, since its value mainly
represents the effect of the external field H0=Hc imposed by
the outer, normal regions, upon the superconducting region
and the vortices themselves. The magnitude of the contrib-
ution fBk

R of the net force over each vortex is displayed in
figures 9 and 10, respectively. As clearly seen in these figures,
for the parameter regime chosen where the boundaries of the
sample are not too far, we have ∣ ∣ ∣ ∣f fBk

R
Vk
R , and hence the

overall effective force over the vortices has the same direction
for identical as well as opposite winding numbers, as seen in
figures 5 and 6. Interestingly, an inversion of the direction
(sign) of the dominant fBk

R component occurs near ¢ ~a 6.5k .
This effect is correlative with the behavior of the current J0,
that reverses its direction close to this same distance.

5.5. Interaction between vortices

From equation (38), we calculate the interaction between
vortices with the relative tangential component of the force,
for a=a1=a2:
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The behavior of the force between vortices is illustrated
in the vector field plot displayed in figure 11, for R/λ=8.0
and R0/λ=4.0.

For < ¢ <a4.0 6.5, corresponding approximately to the
condition ( )< + -a R R R 20 0 , the influence of the outer

Figure 5. Radial component of the force on the first vortex, as a
function of its distance to the center of the annulus, for different
fixed positions of the second vortex. Here, = = =n n H H1, C1 2 0

and γ=−1. An analogue situation is obtained if the roles of the plot
are exchanged.

Figure 6. Radial component of the force on the first vortex and the
second vortex as a function of their distance to the center of the
annulus, for different fixed positions of the remaining vortex. Here,

= = - =n n H H1, 1, C1 2 0 and γ=−1.

Figure 7. Radial component fVk
R of the force (as defined in

equations (39) and (41)), in terms of the distance of the center of
each vortex to the center of the coaxial region. Here, n1=n2=1,
H0=HC and γ=−1.
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boundary is weak as compared with the interaction between
vortices, and hence figure 11 shows that c =- 0
(a a p- =1 2 ) is an attractor for this situation, where the
relative angle between vortices is maximum. Therefore, our
model predicts a repulsive interaction between vortices in this
limit. The interaction is a consequence of two elements,
which were mentioned before: the magnetic profile of each
vortex, determined by sharp boundary conditions, and the
magnetic energy terms in the system that dominate over the
condensation terms depending on the winding numbers. In
agreement with the inversion of the direction of the current J0
displayed in figure 2, for ¢ >a 6.5 the relative effective force
reverts its direction.

Here, a critical case can be appreciated when c - 1,
corresponding to coalescence of the vortices. This limit can-
not be reached in our model due to the assumption that the
vortices are widely separated.

5.6. Equilibrium position of the vortices

From equation (48) and figure 11, the equilibrium angular
position of the vortices is c =- 0, corresponding to g = -1* .
Here, vortices have the largest separation between them in
order to minimize the Helmholtz free energy of the system.

For g = -1* , the radial equilibrium positions of the
vortices, a1* and a2*, change with the size of the coaxial
cylindrical boundaries. In order to illustrate the dependence
between these variables, we keep fixed R0=4λ and we

Figure 9. Radial component of the force (as defined in equations (39)
and (41)) acting on the first vortex. The plot shows the separate
contribution of fV

R
1 and fB

R
1, respectively, as a function of the distance

of the center of the vortex to the center of the coaxial region. Here,
= = - =n n H H1, 1, C1 2 0 and γ=−1.

Figure 10. Radial component of the force (as defined in
equations (39) and (41)) acting on the second vortex. The plot shows
the separate contribution of fV

R
2 and fB

R
2, respectively, as a function

of the distance of the center of the vortex to the center of the coaxial
region. Here, = = - =n n H H1, 1, C1 2 0 and γ=−1.

Figure 11. Vector plot profile of the interaction between vortices, for
H0=HC and n1=n2=1 in terms of a and c-. Here, we fix that

( )c =+
-2 1 2. The situation for vortices with opposite winding

numbers are equivalent. Consider that the vortex’s proximity to the
outer boundary increases the influence of the sample, which explains
the change in the sign of the force as the vortices go near R.

Figure 8. Radial component fVk
R of the force (as defined in

equations (39) and (41)), in terms of the distance of the center of
each vortex to the center of the coaxial region. Here, n1=1,
n2=−1, H0=HC and γ=−1.
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change R, for the cases n1=n2=1 and n1=1, n2=−1,
respectively.

Figure 12 shows that the radial equilibrium positions of
the vortices tend to move towards the external boundary as
the size of the coaxial cylindrical region grows. This is a
consequence of the mutual repulsion between vortices and the
outer boundary of the sample. In other words, the exterior of
the sample works as a giant pinning vortex, without super-
conducting electrons inside of it.

In figures 12 and 13, the radial equilibrium positions of
the vortices present the same behavior, although in figure 13
the second vortex is closer to the center than the first one, due
to the conservation of the fluxoid. This property can be
checked using the classical analogue with the mutually
inducting coils mentioned before.

6. Conclusions

In conclusion, our model predicts the repulsive interaction
between single vortices in extreme Type II superconductivity,
in agreement with the experiments and the theoretical
developments until today. These results are obtained by

solving for the magnetic profile everywhere, including the
interior of each vortex. Our model preserves the convex shape
of the general Ginzburg-Landau free energy, thus allowing for
the search of an equilibrium configuration of the system as an
absolute minima of the functional. We find that the angular
equilibrium positions of the vortices are symmetrically related
to cylindrical geometry of the sample, and the radial equili-
brium positions are constrained by the fluxoid’s conservation.
In general, vortices maximize their distance when they come
to the equilibrium, in correspondence with an effective
repulsive force. This last conclusion is also supported by a
direct calculation of the thermodynamic surface free energy
within our model. Remarkably, our theoretical analysis shows
that the effective interaction between the superconducting
vortices is strongly influenced by the boundary of the sample,
in agreement with experimental observations by Grigorieva
et al [18] on Nb disks, and molecular dynamics simulations
by Misko et al [19]. Both groups concluded that, for relatively
small disks ( x~ -R 5 20 ), the superconducting vortices tend
to allocate themselves in concentric shells, where an effective
repulsive interaction is observed between vortices at each
shell. In this sense, our cylindrical configuration with an inner
core can also be interpreted as a simplified model for the
effective interaction between superconducting vortices in the
outermost shell of such systems. On the other hand, our
coaxial cylindrical geometry could in principle be tested
experimentally, by preparing a sample consistent of a het-
erostructure where the central region is a type II super-
conductor, for instance Nb, and where the core and outer
regions correspond to the same insulating material, such as
Bi Se2 3 [28], for instance. Starting from an initial temperature
above Tc (9.1 K for Nb), a magnetic field H0∼HC is imposed
upon the heterostructure, which is then submitted to field
cooling to a final temperature below the transition, such that
vortices emerge in the Nb central region, while the insulating
regions remain essentially at the initial field H0, closely
satisfying the boundary condition in equation (20). To
achieve in practice such a concentric cylindrical-shaped het-
erostructure with these materials is certainly challenging, but
we hope that our theoretical model may stimulate further
experimental investigations on mesoscopic boundary effects
over the effective interaction between type II superconducting
vortices.
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Appendix A. Magnetic vector potential and magnetic
field in the superconducting domain

With the ansatz (14), Ampere’s Law for the superconducting
domain can be written using equation (13) and the rotational

Figure 12. Equilibrium positions of the first and the second vortex,
as a function of the external radius of the annulus, for n1=n2=1
and H0=HC.

Figure 13. Equilibrium positions of the first and the second vortex,
as a function of the external radius of the annulus, for

= = -n n1, 11 2 and H0=HC.
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symmetry as

( ) ( )p y p y
 - = - +¥ ¥

A
A

r

q

m cr

q A

m c

4 4
. A.12

0
0
2

2 2 2
0

2

*

*

*

*

In terms of the fluxoid, the coherence length and the pene-
tration depth, equation (A.1) can be written as:
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The particular solution for (A.2) is given by

( )
p

=
F

A
r2

, A.3p
0

0

and with the change of variables l= -t r 1, the homogeneous
solution for (A.2) satisfies the Modified Bessel equation [29]:
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Therefore, the magnetic vector potential inside the
superconducting domain is given by
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and with the raising and lowering relations for Modified
Bessel Functions [30], the magnetic field inside the super-
conducting domain is given by
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Appendix B. Magnetic vector potential and magnetic
field inside the vortex domain

Inside each vortex domain Î Wsk k, we develop a scaling of
the form = t-q wk k

k, for k=1, 2 and l=w sk k . Here, τ is
a scaling parameter that needs to be found. Then,
equation (26) takes the form
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1, after dropping negligible

terms, (B.1) can be reduced to
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Besides, the homogeneous solution for (B.2) is
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Therefore, using the fundamental relation
  
=  ´B A,

the magnetic vector potential and the magnetic field inside
vortex k, for k=1, 2, is given by
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Appendix C. Self consistent magnetic flux

A vortex of radius x l, located in
 
=r a , is affected by the

magnetic flux generated by an external magnetic potential of
the form ( ) ˆ

q=A A r . Then, the magnetic flux through the
vortex, with internal coordinates ( )fs, and internal magnetic
vector potential ( ) ˆ

f=A A sv v , satisfies the condition:
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In the limit x a, the last equation can be written as
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Therefore, we conclude that
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a

2
. C.3v
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Appendix D. Expressions for the unknown constants
of the problem

Defining the following function for the distance between the
vortex’s centers:
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the constants related to the boundary conditions can be
written as:
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Appendix E. Computation of the Helmholtz free
energy profile

In fact, the Helmholtz free energy functional only contains
terms that depend on


a1 and


a2, and are related to the magnetic

vector potentials and the magnetic fields of each vortex.
Therefore, for k=1, 2, the first relevant term is:
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Substituting the internal magnetic field profile of the vortex,
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Thus,
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Substituting for the order parameter solution inside the vortex,
we obtain

∣ ∣( ∣ ∣)

( ∣ ∣)

∣ ∣( ∣ ∣)( ∣ ∣)
( )

∣ ∣ ∣ ∣

∣ ∣

∣ ∣

∣ ∣

∣ ∣

ò

ò

x d

p y l

pl x
x

l
x

pl

- =

-
F

+

=
+

-
F

+ +

x

t

x

t

¥

+

+

+

+

 



m c f

q n

d s ds

n s ds

n n

d

n

n

n n n

2

8 1

2 1

16 1 1 2
. E.10

n
k

k

k I
n

k

k k
n

k

k k
n

k I
n

k

k
n

k k k

2
3,

2 0

,
2 1

0

0
4 2

2 2

,
2 2

0
2 2

2

k k

k

k

k

k

k

k

*

*

Thus,

∣ ∣( ∣ ∣)( ∣ ∣)

( ∣ ∣)
( )

d
p l

pl

=
F
+ +

-
F

+ t







f
n

n n n

n d

n

64 1 1 2

8 1
. E.11

k
k

k k k

k k I

k

3,
0
2 2 2

2 2

0
2

,

k

Appendix F. Surface energy

In the same spirit of [25], we compute and approximation to
the Gibbs free energy of the interfaces at H0=HC:
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Considering the geometrical structure of the domain Ω, we
have
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In the limit k 1, if we define the following integrals
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In terms of the expressions above, we define the parameters
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In terms of the definitions above, the surface energy is:
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Equation (F.8) can be approximated to a value that does not
depend of each vortex’s position, as presented for instance in [9]:
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