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Abstract

Stress-driven nonlocal theory of elasticity, in its differential form, is applied to investigate the
nonlinear vibrational characteristics of a hetero-nanotube in magneto-thermal environment with
the help of finite element method. In order to more precisely deal with the dynamic behavior of
size-dependent nanotubes, a two-node beam element with six degrees-of freedom including the
nodal values of the deflection, slope and curvature is introduced. In comparison with the
conventional beam element, the vector of nodal displacement for the proposed element has one
additional component indicating the nodal curvature to comply with the stress-driven nonlocal
beam model. The nonlinear term associated with the von Kdrmdn strain is included in the
governing equation of motion and it is assumed that the nanotube structure is exposed to
temperature changes and surrounded by a magnetic field. The obtained results endorsing the
amplitude-dependence of the nonlinear frequencies are justified compared to those reported in
the literature and a detailed study is conducted to explore the effect of different parameters on the
vibrational behavior of the considered nano-hetero-structure.

Keywords: stress-driven nonlocal elasticity, hetero-nanotube, nonlinear finite element method,
magnetic field, thermal environment

(Some figures may appear in colour only in the online journal)

1. Introduction

From structural point of view, boron-nitride nanotubes
(BNNTSs) are similar to their counterpart carbon nanotubes
(CNTs), where boron and nitrogen atoms are replaced by
carbon atoms. Nanotubes are pivotal building blocks in the
modern photonic/electronic structures and systems thanks to
good compatibility with different adaptive synthetic processes
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and also their excellent optoelectronic features. Several
inspiring investigations have been reported by applying these
nanostructures in the fabrication of different kinds of nanoe-
lectromechanical systems such as sensors and actuators, gas/
pressure indicators, biomedical devices and etc [1-9].

Since their practical discovery in 1995, extensive
researches have been focused on exploring mechanical, che-
mical and physical properties of boron-nitride nanotubes. In
the meantime, scientists have just begun investigating the
applications/advantages of such small-scale structures in

© 2020 IOP Publishing Ltd  Printed in the UK
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high-tech electronic devices, nanomedicine and pharmacol-
ogy, and recent findings have made them as one of the most
amazing types of non-carbon nanotubes. To date, carbon
nanotubes have been extensively exploited for medical pur-
poses, but their inherent toxicity has limited their usage.
Owing to the specific characteristics of boron-nitride nano-
tubes, such as chemical stability, superior mechanical and
electronic properties, thermal conductivity and most impor-
tantly superb biocompatibility, more recently, scientific
communities have been paying more attention to this kind of
nanotubes. It is noted that a layered BNNT is more stable than
a graphite carbon material when exposed to temperature
gradients or chemical interactions [5, 10—15]. On the other
hand, CNTs with their cylindrical geometry are allotropes of
carbon. It is empirically demonstrated that they possess high
thermal conductivity with extraordinary physio-mechanical
properties. It should be emphasized that carbon and boron-
nitride nanotubes have outstanding features due to their high
surface area to volume ratio. Moreover, CNTs have chirality-
dependent properties which makes them to behave as a
semiconducting or metallic material depending on the rolling
direction.

Although BNNTSs are very similar to CNTs in the
arrangement of atomic structure, only CNTs can behave as a
metallic nano-structural tube with high conductivity [16, 17].
It can be certainty mentioned that hybridizing both nanotubes
to have a new nano-hetero-structure may have more advan-
tages than using them alone. Therefore, having a composite
nanotube made from both aforementioned materials would be
an inspiring idea which leads to a new class of nanostructures,
namely C/BN hetero-nanotubes. C/BNNTs, as a new
nanoscale materials, can be synthesized as a non-conventional
supercapacitors which hybridize CNTs, as a conductive
electrode, to BNNTSs as a dielectric layer. Dielectric structures
are those which can be polarized by an external electric
voltage and capacitors are those that can be used as a high
energy storage devices. The galvanized advantage of these
supercapacitors in contrast to the traditional capacitors like
batteries and fuel cells is indeed their less energy den-
sities [18].

Motivated by these applications, Carbon/Boron-Nitride
(C/BN) hetero-nanotubes can be synthesized to produce the
next generation of smart/intelligent nano-devices such as
nano sensors and actuators. Rodriguez Judrez er al [19]
reported the mechanical, magnetic and electronic properties
of different combinations of C-BNNTSs and proposed them for
utilizing in drug delivery systems as well as nano-vehicles.
The transport features and conductance of a hetero-structure
made up of carbon and boron-nitride nanotubes was investi-
gated by Xiao et al [20]. In another work, on the basis of
molecular dynamics simulations and continuum elasticity
theory, the occurrence of beat phenomenon in analyzing the
natural frequencies of a BN-CNT was reported by Zhang and
Wang [21]. They emphasized that the essential difficulties in
producing mass detectors for atomic-scale measuring may be
resolved by interaction between two vibration modes of the
hetero-nanotubes. Based on the non-equilibrium Green’s
function assumptions, a theoretical investigation on the

C-BN-C nanotubes was performed by Vedaei and Nadimi
[22] where the tendency of NO, and O, molecules toward a
chemical attachment with the surface of the hetero-nanotube
was demonstrated. Within the framework of molecular
mechanics theory, Chen et al [23] theoretically identified the
prominent thermal rectification impacts of a rectifier-based
C/BN nanotube and investigated the thermal transport across
its interface. Moreover, it was demonstrated that when the
system is subjected to a high temperature bias, the armchair
hetero-nanotubes have less thermal rectification (TR) ratio
than that of zigzag C/BN ones. With the aid of molecular
dynamics (MD) simulations, Badjian and Setoodeh [24] uti-
lized a boron nitride nanotube to coat a defected carbon
nanotube and enhanced the tensile and buckling behavior of
the homogenous nanotube. They demonstrated that while
atom vacancies considerably affect the buckling behavior of
CNTs, the presence of BNNT coating result in improving the
mechanical strength of such nanotubes. On the basis of Morse
and cosine potential functions, Genoese et al [25] analyzed
the nanoscale behavior of single-walled silicon carbide (SiC),
boron-nitride (BN) and carbon (C) nanotubes using molecular
dynamics. Both armchair and zigzag patterns were considered
and the elastic properties of the studied nanotubes were
evaluated by means of Donnell thin shell theory. With the aid
of MD simulations, the modal participation of a doubly-
clamped single-walled CNTs in the presence of vacancies was
studied by Eltaher et al [26]. Kiani ef al [27] investigated the
free vibration behavior of single-layered of double-walled
carbon nanotubes (DWCNTs) by means of constitutive non-
local theories. They employed the nonlocal Timoshenko and
Rayleigh beam models to extract the governing equations of
motion and evaluated the nonlocal natural frequencies of the
considered structure. The nonlocal natural frequencies of a
hinged-hinged hybrid nanotube were studied by Cheng et al
[19]. They found the numerical solution of the harvested
equations by means of dynamic stiffness technique and
exhibited that the considered nanotube becomes more
unstable at larger values of nonlocal and length ratio para-
meters. A great deal of research works has been recently
conducted in the case of hybrid/homogeneous nanostructures
which are not reported here, for the sake of brevity [28—40].

The vibration characteristics of nanostructures are of
great importance, not only in linear modes but also in non-
linear states, in light of the nonlinear effects which physically
stem from the flexibility of such structures. As far as the
electronic/magnetic nano-devices are fabricated from CNTs
and BNNTs segments, a detailed knowledge about their
nonlinear behavior is necessary that was an incentive idea for
the authors to perform this theoretical research. Therefore, the
present study deals with the nonlinear vibrational behavior of
a carbon/boron-nitride hetero-nanotube employing nonlinear
finite element method. A two-node beam-like element with
six degrees of freedom is introduced to more accurately
capture the size-dependent behavior of nanotubes. To for-
mulate the nanoscale aspects of such structures, nonlocal
elasticity theories in the context of strain- and stress-driven
frameworks, can be utilized [41-45]. In this research, how-
ever, the stress-driven approach is considered in the
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Figure 1. The schematic configuration of the hybrid nanotube made
of CNT and BNNT.

constitutive equations. It is assumed that the magneto-thermal
environment surrounds the hetero-nanotube and the effects of
nonlocality, initial amplitude and length ratio parameter are
investigated here through a nonlinear finite element analysis.
The obtained results, for some special cases, are justified in
comparison with those reported in the literature.

2. Mathematical formulation

In this section, the nonlocal differential equation governs the
nonlinear vibrational behavior of a hetero-nanotube is
extracted. The mentioned hetero-nanotube is synthesized
using boron-nitride and carbon nanotube segments in which
two parts are assumed to have similar cylindrical geometries
and different thermal /mechanical properties. As shown in
figure 1, the entire nanotube length is denoted by L in which
the first fragment is composed of carbon material with the
length of L; = &L (0 < £ < 1). The nano-hetero-structure
with doubly-clamped end conditions is surrounded by an
axial magnetic field H, and considered to be exposed to
temperature changes.

2.1. Stress-driven nonlocal theory of elasticity

In order to describe the nanoscale behavior of the hetero-
nanotube, the stress-driven nonlocal model is adopted here.
Compared to the conventional strain-driven approaches, in
the stress-driven model of nonlocal elasticity, the strain vector
in each point of the elastic medium is assumed to be a
function of the overall stress vector given by the following
integral from [46-50]:

e(x) = j; o\(x, §) C(@): 0(X) dit (1)

in which ¢, (x, X) represents the kernel attenuation function
and C denotes the elastic compliance matrix. It is noted that
with this kind of definition, one can readily find the analytical
response of the problem in a convenient way. To this end, the
only valid components of strain and stress for a beam-like
nanotube in the longitudinal direction can be described by the
following nonlocal stress-strain relationship as:

e(x) = é]: o\ (x — ) o (F) di )

On the other hand, by considering the bending problem
and manipulating the above-mentioned equation, the rela-
tionship between the curvature and moment of the nanotube is
given as follows:

1 L _ N g
X() = Efo o\ (x — %) M (%) di 3)

In order to facilitate the application of the proposed
approach, it is convenient to introduce the differential form of
equation (3) by describing the kernel function ¢, (x, X) using
a bi-exponential function as follows:

_ 1 [x — %|
X, X) = —exp| ———— 4
@\ (x, X) oL p( L ) “
where L. is the characteristic length of nanotube and the
nonlocal parameter is defined by A = L./L. Therefore, one
can obtain the differential form of the stress-driven nonlocal
elasticity as:

" 1 1
X"(x) — L_ZX(X) = *EILZM(X) &)

c

together with the following boundary conditions:

1
X'(0) = 72X )

BC . (6)
X'(L) = ?X(L)

The above-mentioned stress-driven formulation is
exploited to derive the governing equation for vibrating
hybrid-nanotube in the magnetic-thermal environment.

2.2. Lorentz force

In order to obtain the Lorentz force formulation in the pre-
sence of axial magnetic field, we consider the differential
form of Maxwell’s equations. In the case of conducting elastic
material, the Maxwell’s relations are written as follows [36]:

J=V xh 7
oh
VX E=-—po- (8)
V.h=0 (&)
E= —M(a—U x H) (10)
ot

h=V x (U x H an

in which J, h, E and U represent the current density, the
disturbing vectors of magnetic field, the strength vectors of
electric field and the displacement vector, respectively.
Moreover, in the above equations, V = %éx + a%é)‘ + ﬁéz
is the Hamilton differential operator and p denotes the
magnetic field permeability. Applying the longitudinal
magnetic field H = (H,, 0, 0) and considering the displace-
ment vector as U = (0, v, w), the current density and the

disturbing vectors of magnetic field are written by:
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h=V x (UxH)=-

Oy 0z X
ow _
+ H - Lz
ox e
(12)
2 2
J=Vxh=—m[2Y W g
Ox0z  OxOy
0% 0w 0w ).
X +— t =
(8y82 ox* 072 )ey
o0%v 0% 0w
+H| Y T g, 13
(a 2 T By ayaz)e ()

Thereby, the Lorentz force denoted by F; (a body force)
induced by the longitudinal magnetic field can be achieved as:

8v+8_2v+ 0w <
ox2 oy oyoz)

n 0w n *w N 0% .
oxr  9y*  dydz)
Since the current problem is assumed to be axisymmetric
and the lateral displacement of C-BN nanotube is considered

to be w = w(x, t), the Lorentz force per unit length of the
hybrid nanotube and in the z direction can be obtained as:

F, = x H) = qu[(

(14)

23w
Ha2

where A represents the nanotube cross section area.

F, = F e, = uA (15)

2.3. Elastic-beam model with temperature changes and von-
ka&rman nonlinearity

In the current work, the Euler—Bernoulli beam model, which
is efficiently used to study the nonlinear vibrational behavior
of nanotubes, is adopted to develop the governing equations
of motion for C-BN nanotube. To extract the governing
equation of motion, we consider a straight hetero-nanotube
under bending with length L and cross-section A. The long-
itudinal axis of nanotube coincides with the x axis. The dis-
placement field of the classical beam theory is written by:

ow(x, 1)

mx, z, 1) =u(x, 1) — 2 o

(16a)

usz(x, z, t) = w(x, r) (16b)

where the meaningful displacements of each point are
represented by ui = 1, 3) in x and z directions, respectively.
In this work, in-plane components of displacement vector in
the axial and transverse directions are denoted by u and w,
respectively in which the axis z shows the coordinate through
the thickness of the nanotube. To consider the geometric
nonlinearity of the structure and also the thermo-elastic
axial strain, the following from of Lagrangian strains are
adopted as:

— a, AT (17)

RO
T ox Ox? Ox

in which o, depicts the thermal expansion coefficient along x
axis and AT displays the temperature changes. The Hamil-
ton’s principle is utilized here to develop the governing
equations. Therefore, one can write:

123
f My — Iy + Tg)di = 0

h

(18)

where I1;; and ITy, denote the strain energy and work done by
the external forces and Ilgx represents the Kinetic energy.
Considering equation (17), the variational form of the strain
energy can be written as:

ST, = f (0660 )dV (19)
v
By performing some calculations, the non-classical
boundary conditions as well as the equilibrium equation can
be expressed as:

2
6HUE¢/u:Ilbrmmv.quulwn = _f ( XX6 + a MXJC 6W)dx (20)
L
5HUBnuudancandmam = (N ou — My @ + a]wxx(s ) 21)
) Ox Ox 0
in which
h/2
N = f O dz (22)
—h/2
h/2
M, = f 0 2d2 (23)
—h/2

The work done by the non-conservative axial force N, is

given by:
1 ow

Ty = — f N dx 24
v 2 Jo ( Ox ) 24

and in the variational form can be written as:

0w Ow

oLy = N, x 25
v j(; ( Ox Ox ) 23)

It should be pointed out that the in-plane axial force N, is
assumed to include both contributions of magneto-thermal
environment. On the other hand, the kinetic energy is
expressed by:

e el + (2o

The variational form of kinetic energy can be concluded as:

O*'w *w

(26)

27)

in which m is the nanotube mass per unit length and I, is the
second mass moment of inertia described by the following
relations:

h/2

4 = [ p@)1, Pz (28)

~h/2
where p represents the mass density of nanotube. In this paper,
the effect of second mass moment of inertia 7, is neglected.
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Thereafter, by applying equation (18) and considering the
adjacent equilibrium method, one can obtain the governing
equations of the present problem as:
9*M, 0w
— + A’x =m
ox? ox?

0w
or?

(29)

To examine the effect of in-plane stretching, the following
equation should be considered:

N, —EA[a—u+ (8w)]=C1:cte (30)

Ox Ox

in which the parameter C; is calculated by integrating
equation (30). One can find:

EA[u(L) — u(0)] + —f ( ) dx = GL (31)

Thereby, considering the end conditions u(0) = u(L) = 0
and rearranging the above-mentioned equation leads to:

L 2
G =N, _1EA (8_W)dx

32
2 L ox (32)

Furthermore, based upon the thermal elasticity theory, the
axial load N, denoting the effect of thermal gradients is
expressed as:

(33)

where v symbolizes the Poisson’s ratio of nanotube. Taking
into account the effect of magneto-thermal environment, the
equation of motion governing the dynamic behavior of nano-
tube is re-formulated as:

O _ (184 [+ (00, )%
Ox2 or? 2 LJo \ox Ox?

62
+N— + Fy (34)
Ox?
with the following boundary conditions:
w0, 1) = wt,n =200 _WLO _
Ox Ox

2.4. Governing equations of motion for C/BN hetero-nanotube

According to the Bernoulli-Euler beam theory, by ignoring
the nonlinear terms, the curvature-deflection relation for a
given point of nanotube is expressed by:

0*w

Xx) = W (36)

In order to develop the dynamic equation of motion, the
second derivative of equation (5) with respect to x are
represented as:

M 1 Pxw 1
ox* L? 0Ox? EIL?

0’M (x)

o2 D

Thereby, by considering equations (34) and (36), the
governing equation for the stress-driven vibrating nanotube in
the presence of magneto-thermal environment can be
extracted as follows:

4 2 L 2
E]LZ8 w_ E[a_w = ma_w — l&f (8_w) dx
Ox® Ox* or? 2 L Ox
0w | EA AT 0w 00w
Ox? 1 —2v Ox? * ox?

(38)

Equation (25) governs the motion of two parts of hetero-
nanotube. Representing the subscripts ‘C’ and ‘BN’ for car-
bon and boron-nitride fragments results in:

ECILngg = Ecl oy +mes = (——

wY 0w  EcAa,c AT 8w
M a ow
><j(; (ax) x) * 1 —2v Ox?

—pAH>=—  for 0

82 <x < &L

(39)

O%w 0*w 0w
2
p = EgnI— + mBNW

. lEBNAfL (a_w) dx 82_\4) + EBNAOZXBNAT
2 L Jo \ox Ox? 1 —2v
0*w

>< [ —
Ox?

EgyIL

2 82W
,U/AHX W for gL <x<L (40)
X

The following dimensionless parameters are defined
to describe the governing equations in non-dimensional
form:

_ X Wi Ecl L.
X:—,vvl‘:_,’r* s €p = —,
L mcL L
ar = @ mpn OéchTL_z
1 EC: 2 mc, xC 1—2’[1}"2
_ oy AT L2 pAH] L?
. o @1
BN o0 2T T Eal

in which r is the radius of gyration of the nanotube. By using
the above-mentioned parameters, the non-dimensional form
of the nonlinear equations of motion for two segments of
hetero-nanotube are given by:

6 4 2 L 2 2
—ezan—i-an-&-an—(lf (8—W)dx]—aw1
0

" 9x6 ox* ar? 2 ox ox?
Pw . W
Ox? * o2

for 0<x<¢

+ Qe —— =0,

(42)
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6 4 2 L 2
%—FOQ@BN@ZVVZ— %ZO
ox2 T ox? *ox2 ’

for £¢<x<1

(43)
subject to the following boundary /continuity conditions:
_ oW, 1) _ owm(d, 1) _

Wi(0, 7) = Wi(l, 0,
10, 7) »(1, 7) e o
essential boundary conditions
(44)
W/l(x’ T)lX:E = VVZ(X’ T)lef
OWi(x, ) _ OWL(x, 7)
8f fzf 8)2 fzf

LOWE T | PWME D) |
oot | x|,
2 Wi, 7) _PwiE, 1) _
SN2 A M o |,

continuity conditions at the junction of ¥ = &

Equations (42) and (43) together with the boundary
conditions (44) and (45) are then solved with the help of a
nonlinear finite element method.

3. Solution methodology

The dynamic equation of motion for C/BN hybrid nanotube
in the presence of magneto-thermal environment is given by
equations (42) and (43) subject to the boundary/continuity
conditions in equations (44) and (45). A nonlinear finite
element method is exploited to decompose the governing
equations. In view of the stress-driven nonlocal nanotube and
in order to more accurately predict the size-dependent beha-
vior, a two-node beam-like element with six degrees of
freedom is presented. Therefore, for a nonlocal beam element,
it is necessary to prescribe three degrees of freedom, i.e. the
deflection, slope and curvature at each node. Hence, the nodal
displacement components for this kind of beam element can
be defined as:

2
dle:W(XeZO)’dfza_W‘ ’dfza_W s
0% |z —o % |¢_,
ow 0w
dif =WE&, =1,), dé = =—/— ,dg = —-
! ( » s 0% 5=, © o 5=l

(46)

in which /, is the length of beam element. It should be pointed
out that for the conventional beam element, the nodal

dr =w (0) de =w (L) Tr’" = d*wrdx? (L)

¢j ds = dw/dx (le)
|
|

Node 2

ds = d*w/dx? (U)T

dz = dw/ilx (0) C (jl)

5 |
z [ 3
y Nodel

Figure 2. Beam element with six degrees of freedom.

displacement components includes the nodal values of the
deflection and slope. The schematic configuration of the
nonlocal beam element is illustrated in figure 2. The follow-
ing polynomial displacement function of degree 5 is adopted

W) | PWE D |
" oxt e o _
2 85%(x’ T) a 83W2(f, T)
n " -

ox - 0x o= |

45)
for the nanotube elements:
W.(X) = a1 + axx + (13)22 + (14)53 + Clsf4 + a6f5 47)

and the element nodal displacements at two nodes are defined
by:
{de}! = [df dj d5 dj d5 d¢) (48)

The displacement field as a function of shape functions
N; can be written as:

W, (X) = [Ni N2 N3 Ny N5 Ng] {d.} (49)
where
—6%° + 155,41, — 105,31> + I
N = ,
I
—3x) + 8x,%, — 6%,%1 + %I}
N, =
I
—%) + 3%, — 3%,%2 + 321}
N3 = 3 >
21;
N — 6x> — 15%,%, + 10x,%12
5
N — —3%2 + 7@:16 — 4x,31? ’
l
=5 =4 =372
X, — 2%, + x.°l;
Ns = R (50)
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Table 1. Comparison between the nonlinear natural frequency results
of the clamped-clamped homogeneous beam for different theories.

(wnL /wr )2
Generalized Reduced Assumed

Finite Element GFEM Space Present
Winax/T Method [51] [51] Mode [52] work
0.1 1.0006 1.0006 1.0006 1.0006
0.2 1.0024 1.0024 1.0024 1.0024
0.4 1.0096 1.0096 1.0096 1.0096
0.6 1.0216 1.0216 1.0216 1.0216
0.8 1.0383 1.0384 1.0384 1.0383
1 1.0598 1.0599 1.0600 1.0598
1.5 1.1343 1.1349 1.1349 1.1343
2 1.2381 1.2398 1.2398 1.2382
3 1.5319 1.5395 1.5396 1.5320
4 1.9376 1.9591 1.9592 1.9377
5 2.4520 2.4986 2.4988 2.4522

The Galerkin weighted residuals method (GWRM) with
the interpolation function N, (as the weight function) can then
be applied on equations (42) and (43). By assuming the
solution of the problem in the following form:

Wi(x, 7) = Wi(®)exp(\7), i = 1,2 (51)
and using the GWRM weak form of the nonlinear equations
of motion, one can obtain that:

[MIE WA + [KIE W —

Nc[Kn 1S Wi =0 (52)

IMIEN Wy + [KIEY W — Npn [Kn 12V Wa = 0 (53)

where [Ky; IS and [Ky; 12V are the nonlinear stiffness matrices
of the governing equations for carbon and boron-nitride
nanotubes and we have:

le
M = f NN di
0
I, I,
[K]f _ _ean (N///)TN/// di + f (N//)TN// dv
0 0

L, I,
— Qi f (NY'N' dx + h, f (N)TN' dx
0 0

L,
[Kn ]S = j; (NN di (54)
I,
MIEY = s fo NTN di

[ﬂ l(‘
KIEY = —ane? [T VN a5 + o [ (NIYTN" d
0 0
L I,
— andy [ VTN A%+ by [ V)TN d
0 0

BN I,
[Kng 12V = fo (N'Y'N' d
(55)

Table 2. Properties of CNT and BNNT sections of hybrid nanotube.

Properties [53] CNT BNNT
Young’s modulus (E) (TPa) 1 1.8
Density (p) (g cm ) 2.3 2.18
Outer Radius (nm) 3.5 3.5
Aspect ratio (L/2Ry) 100 100
Thickness (h) (nm) 0.34 0.34
Coefficient of Thermal Expansion —1.6 x 107 —0.3 x 107°
(Room Temperature) (K_')
Coefficient of Thermal Expansion 1.1 x 1076 02 x 1076

(High Temperature) (Kil)

In which the matrices [K] represent stiffness and [M]
displays mass matrices, respectively. After applying the
boundary /continuity conditions, using the assumed solution
and performing the usual assemblage process, the character-
istic equation for the hybrid C/BN nanotube is extracted as:

(K] + N[Knv DA} =0 (56)

where w are the eigenvalues and A, are the eigenvectors of
the hybrid nanotube and the nondimensional axial force N can
be computed as:

(W [M] +

"BN
N= NC+NBN——Zf Wlxd+ f W2, di

= E{Ae}T[KNL]C{Ae} + %{Ae}T [KNL]BN{Ae}
(57)

To solve the nonlinear eigenvalue problem described in
equation (56), one can try to compute the exact nonlinear
mode shape and the value of nonlinear frequency wyy,
corresponding to this mode is then calculated. Initial
amplitude of vibration is selected, here we assume that the
initial amplitude of the hybrid nanotube is the first mode
shape of the linear system, and then the linear mode shape
should be normalized to attain the maximum desired ampl-
itude Wi,.x. Thereby, the nonlinear stiffness matrix for the
whole nanotube [Ky;] is calculated. The linearized eigen-
value problem leads to a modified nonlinear mode shape A,
as well as the corresponding nonlinear frequency wy;. The
obtained mode shape should be normalized to get the desired
maximum amplitude of the hybrid nanotube and this strategy
is repeated until the selected convergence criterion is
satisfied.

4. Results and discussion

4.1. Validation of the present analysis

To the best knowledge of the authors of this article, no
research work in the literature has been yet conducted on the
nonlinear vibrational characteristics of a clamped-clamped
C/BN hetero-nanotube in the presence magnetic field and
thermal gradients. Therefore, in order to justify the current
analysis, table 1 presents the nonlinear frequencies of a
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Figure 5. The effect of small-scale parameter ¢, on the dimensionless
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= 3.5¢-9, ht = 0.34¢-9) (a) first mode (b) second mode (c) third mode.

straight beam composed of a homogeneous material com-
pared to the results reported in the previous works. In addi-
tion, the properties of carbon and boron-nitride nanotubes

used in the simulations are tabulated in table 2. The numerical
results in table 1 agrees well with those calculated by [51, 52].

4.2. Numerical analysis

The main objective of this study is to nonlinearly investigate
the natural frequencies of the hetero-nanotube made of
carbon and boron nitride nanotubes, we first examine the
ratio of nonlinear to linear frequency for the first three
vibrational modes versus the initial deflection of the system.
For this purpose, figures 3-5 present the influence of key
parameters on the nonlinear vibrational behavior of nonlocal
hetero-nanotube. In all diagrams, the initial amplitude of the
structure is considered to lie in the interval 0 < W, < 5.
In the first plot to clearly explore the influence of W, on
the deviation of the nonlinear frequency with respect to
linear one, the effects of magneto-thermal environment and
size-dependency are neglected in the simulations. It is
obviously revealed that the effect of initial deformation is to
increase the nonlinear to linear frequency ratio and inter-
estingly as the length ratio parameter £ decreases, which
means that the contribution of carbon part in hetero-nano-
tube reduces, the ratio of nonlinear to linear frequencies
increases for all three vibration modes. On the other hand,
by taking a deeper look into the illustrated results, it is
inferred that the value of this ratio will decrease by for the
higher modes of the system.

For a more in-depth investigation, figures 4(a)—(c) pre-
sent the effect of temperature changes on the nonlinear natural
frequency of the system neglecting the effects of magnetic
field and nonlocality of nanotube when the length ratio
parameter £ is set to be 0.5. To this end, two different
situations are considered. It is assumed that the system works
in low and high temperature conditions in which according to
the experimental results, the coefficients of thermal expansion
for both carbon and boron-nitride fragments takes the nega-
tive and positive values, respectively. So, it is very important
to accurately discover the behavior of the system in such
different conditions. The plotted results in figures 4(a) to (c)
reveal that when the hetero-nanotube works in low temper-
ature environment, the effect of thermal gradients is to
decrease the nonlinear frequency of nanotube and on the other
hand, for the case of high temperature conditions, however,
the nonlinear to linear frequency ratio shift upward by
increasing the temperature changes. Moreover, by comparing
the behavior of the first three vibration modes, one can con-
clude that the lower modes are more sensitive to temperature
change effects.

Figure 5 exhibits the effect of nonlocal parameter of
stress-driven approach on the variation of nonlinear fre-
quency. As can be seen, for the considered three vibration
modes, at higher values of nonlocal parameter e, the hetero-
nanotube becomes stiffer and the nonlinear to linear fre-
quency ratio shifts upward as the nonlocal parameter takes the
larger values. Moreover, one can clearly observe that the
effect of large deformation is more dominant at lower natural
frequencies. This means that the deviation of the nonlinear
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frequency from the linear one is meaningful at lower vibra-
tional modes.

This discussion can be supplemented by further exam-
ination through considering the variation of nonlinear mode
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shapes of vibrating hetero-nanotube as the initial amplitude is
remarkable compared to the geometry of the structure. To this
end, figures 6 and 7 illustrate the influence of initial amplitude
and the length ratio on the configuration of the nonlinear
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mode shapes of the nanotube in comparison with the linear
modes. According to the presented results in figure 6, it is
seen that the configuration of the first three modes may be
different from those of linear modes when the initial rise of
the nanotube is large enough. So, the linear mode shapes are
not further valid and should not be taken into consideration in
modal as well as eigen-value analyses of such structures.
Figures 7(a)—(c) exhibit the influence of the variation of the
length ratio on the nonlinear dynamics of the system. As
previously defined, this parameter takes the values between
zero and unity in which setting £ = 0 indicates that the hybrid
nanotube is entirely composed of boron-nitride nanotube. By
taking a glance into the presented results, one can infer that as
the value of the length ratio parameter increases, the location
of the maximum amplitude of the first mode moves to the left
end of nanotude and its impact to change the configuration of
the mode shapes seems to be more considerable compared to
the variation of initial rise W,,,,. On the other hand, in the
case of second and third mode shapes, by increasing the
contribution of the carbon material, the location of nodes
varies and shift to the left clamped edge at higher values of
the length ratio parameter.

5. Concluding remarks

The impacts of the initial amplitude, length ratio, thermal
gradient and size-dependency on the nonlinear vibration of a
composite carbon/boron nitride hetero-nanotube were pre-
sented and discussed in the current study. A stress-driven
formulation of nonlocal theory of elasticity was taken into
consideration to show the size-dependent dynamics the sys-
tem. The nonlinear governing equations of motion were
developed by considering the von-Karman strains and dis-
cretized by means of finite element method. An eigenvalue
problem was derived and the nonlinear natural frequency of
the nano-hetero-structure was obtained as a function of the
initial deflection. The main findings of this study can be
summarized as follows:

* The deviation of the nonlinear frequency compared to the
linear one is quite noticeable as the initial deflections
increase.

The variation of the maximum amplitude as well as the
length ratio result in changing the location of node and
the maximum deflections in the configuration of mode
shapes. This variation is more sensitive to the values of
the length ratio in contrast to the initial rise value.
Temperature rise in room temperature conditions leads to
decrees the natural frequencies and on the other hand, for
the case of high temperature, its effect is to increase the
values of the nonlinear frequencies.

The effect of nonlocal parameter for the stress-driven
approach is to increase the nonlinear frequency of the
system and its effect is more considerable in lower
vibration modes.
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