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Abstract
For the focusing Ablowitz–Ladik equation, the double- and triple-pole solutions are derived
from its multi-soliton solutions via some limit technique. Also, the asymptotic analysis is
performed for such two multi-pole solutions (MPSs) by considering the balance between
exponential and algebraic terms. Like the continuous nonlinear Schrödinger equation, the
discrete MPSs describe the elastic interactions of multiple solitons with the same amplitudes. But
in contrast to the common multi-soliton solutions, most asymptotic solitons in the MPSs are
localized in the curves of the nt plane, and thus they have the time-dependent velocities. In
addition, the solitons’ relative distances grow logarithmically with t∣ ∣, while the separation
acceleration magnitudes decrease exponentially with their distance.

Keywords: Ablowitz–Ladik equation, multi-pole solutions, soliton interactions, asymptotic
analysis
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1. Introduction

The existence of multi-soliton solutions is one of the most
distinctive features for integrable nonlinear evolution
equations (NLEEs), like the nonlinear Schrödinger equation
(NLSE) [1]. In the terminology of inverse scattering trans-
form (IST), an N-soliton solution corresponds to that the
reflection coefficient admits N simple poles [1–3]. Usually,
such a solution describes the elastic N-soliton collisions,
where the relative distance between two interacting solitons is
linear in |t| [2, 4]. Recently, there is a growing interest in the
degenerate cases of N-soliton solutions and their described
soliton interactions (e.g. see [5–13] and references therein).
Taking the focusing NLSE as an example, its bright N-soliton
solutions admit two important degenerate cases. One is the
soliton bound state (i.e. soliton train) when the discrete
eigenvalues of the scattering problem have the same real
parts [9, 14]. The bounded solitons travel with the same

velocities and keep finite relative distance which varies per-
iodically in time. The other one is the multi-pole solution
(MPS) when the multiplicity of discrete eigenvalues is higher
than one [2, 3, 11, 13, 15]. In the latter degenerate case, two
or more solitons with equal amplitudes form a weak bound
state, in which there is a strong interaction at t≈0 and
the solitons’ relative distance grows logarithmically with t∣ ∣
[2, 3, 11, 13, 15].

In the celebrated work of Zakharov and Shabat [2], they
first reported the double-pole solution of the focusing NLSE
as the limit of the two-soliton solution when two distinct
poles coalesce into one. Subsequently, Olmedilla [3] derived
the formula for an arbitrary Lth-order MPS by solving the
Gel′fand–Levitan–Marchenko equations, and studied the
asymptotic behavior of the double- and triple-pole solutions,
which shows that the interacting solitons diverge from each
other logarithmically as  +¥t∣ ∣ . Recently, Schiebold [13]
gave a rigorous and complete asymptotic description of the
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MPSs with arbitrary order based on some operator-theoretic
approach to integrable systems. It should be mentioned that
the MPSs also exist in the focusing NLSE with nonzero
background [11, 12], but there are no such kinds of solutions
for the defocusing case [16]. In the context of optical fibers,
the MPSs can describe the interactions of multiple chirped
pulses of equal amplitudes, where the interaction force
between two pulses decreases exponentially with their initial
distance [15, 17]. Besides, the MPSs, mostly in cases of
double-pole solution, have also been revealed in many other
integrable NLEEs [5, 6, 13, 18–29], and the nonintegrable
subcritical and supercritical NLSEs [30].

As the discrete analog of NLSE, the Ablowitz–Ladik
(AL) equation [31, 32]:

s= + ++ -q q q qi 1 , 1n t n n n,
2

1 1( ∣ ∣ )( ) ( )

where σ=1 and −1, respectively, represent the focusing and
defocusing nonlinearity, is relevant to modeling nonlinear
localized waves in certain electrical and optical lattice sys-
tems [33]. Both the focusing and defocusing versions of
equation (1) are integrable in the sense that their initial value
problems are exactly soluble via the IST scheme [32, 34–36].
Like the continuous NLSE, equation (1) possesses the bright
soliton solutions for σ=1 [37] and the dark soliton solutions
for σ=−1 [38]. Also, the focusing AL equation with the
nonzero background admits the breather and rogue-wave
solutions which are related to the modulation instability
[39–41]. Up to now, many integrable properties of
equation (1) have been detailed, like the Hamiltonian struc-
ture [42], Bäcklund transformation [43], and quasi-periodic
solutions [44].

We note that there is very little attention which has been
paid to the discrete MPSs of equation (1) in the existing
literature. In this paper, we derive the explicit formulas of the
double- and triple-pole solutions based on the two- and three-
soliton solutions for the focusing AL equation. Our calcul-
ation relies on some limit technique which has been fre-
quently used in constructing the rational localized-wave
solutions via the Darboux transformation (see, for example,
[6, 7, 10, 45, 46]). In principle, it is feasible to obtain he
discrete MPSs with arbitrary order in such a way. On
the other hand, we perform an asymptotic analysis of both the
double- and triple-pole solutions based on the balance
between the exponential and algebraic terms, which was
recently proposed in [6]. As a result, we reveal that the
double-pole solution describes the elastic interactions
between two solitons having the same amplitudes. The
asymptotic solitons are found to be localized in some curves
of the nt plane, so that their velocities are time-dependent.
Moreover, the relative distance between two solitons grows
logarithmically with t∣ ∣, while the separation acceleration
magnitude decreases exponentially with the distance. The
triple-pole solution also describes the elastic interactions
among three solitons with the same amplitudes, in which two
pairs of asymptotic solitons lie in curves and possess the same
properties as those in the double-pole case, but the third pair

has a constant velocity and experiences no phase shift upon
an interaction.

The structure of this paper is organized as follows: in
section 2, the bright soliton solutions of equation (1) with
σ=1 are constructed by the Hirota method. In section 3, the
double- and triple-pole solutions are, respectively, degener-
ated from the two- and three-soliton solutions by some limit
technique. Also, the asymptotic behavior of such two MPSs is
studied, and thus the soliton interaction properties are dis-
cussed. Finally, we address the conclusions and discussions
of this paper in section 4.

2. Soliton solutions via the Hirota method

In this section, we use the Hirota method [47] to construct the
bright soliton solutions of equation (1) with σ=1. Taking
the variable transformation in the form

=q t i
g t

f t
, 2n

n n

n

( )
( )
( )

( )

where fn(t) is a real-valued function and gn(t) is a complex-
valued function, we obtain the bilinear form for equation (1)
as follows:

l= -+ - - +D g f g f g f , 3t n n n n n n1 1 1 1· ( ) ( )

l+ = + -f g f f , 4n n n n
2 2

1 1∣ ∣ ( )

where Dt is defined by = -
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D g t f tt
j
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¢ = ¢g t f tn n t t( ) ( )∣ [47]. By introducing a formal parameter ε, we

expand the functions gn and fn in the following form
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where M is an arbitrary positive integer. Then, substituting gn
and fn in equations (5) and(6) into (3) and (4) and truncating
the resulting equations at different M, one can derive a chain
of soliton solutions for the focusing AL equation.

For the truncation at M=1, the bright one-soliton
solution is obtained as

e

e
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where the bar denotes complex conjugate, κ1 is a constant in
 and satisfies k k+ ¹ 01 1¯ to avoid the singularity.
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For the truncation at M=2, the bright two-soliton
solution is derived as

e e
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where κ1,2 are two constants in  and satisfy
k k+ ¹ =i j0 , 1, 2i j¯ ( ) in order to avoid the singularity.

For the truncation at M=3, the bright three-soliton
solution is presented as follows:
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where κ1,2,3 are three constants in  and satisfy k k+ ¹ 0i j¯
(  i j1 , 3) in order to avoid the singularity. Continually in
a similar manner, one can obtain more higher-order multi-
soliton solutions when the truncation is taken at M>3.

3. Multi-pole solutions

Based on the multi-soliton solutions in section 2, we will
construct the discrete MPSs of equation (1) with σ=1 by
letting κ2, K, κM→κ1. To calculate the limits by the Taylor
expansion [6, 7, 10, 45, 46], we take

k k m e= +  m M1 2 , 10m m1( ˜ ) ( ) ( )

where ẽ is a small parameter, and μm=1 or −1. Also, we
introduce ẽ into θm  m M1( ) in the form
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where siʼs are arbitrary parameters (which will appear in
the MPSs) in , xi

m( )ʼs  m M2( ) are real constants
to be determined. Then, we expand fn

m2( ) and -gn
m2 1( )

 m M1( ) in the Taylor series of ẽ as follows:
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Note that the coefficients of the first several terms in the
expansions of fn

m2( ) and -gn
m2 1( )  m M2( ) are zeroes.

Thus, with substitution of(12) into(2), the limits at e  0˜
just yield the one-soliton solution when ε is regarded as a
parameter independent of ẽ. To overcome this difficulty, one
must consider the contribution from all the terms fn

m2( ) and
-gn

m2 1( )  m M1( ) in deriving the MPSs. Observing that
the constant ‘1’ always appears in the denominators of multi-
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soliton solutions, we assume that

e e= Î- +r , 14r
MM˜ ( ) ( )

where rM is to be determined, so that the constant terms are
dominant in all the expansions of e fm

n
m2 2( ) and e - -gm

n
m2 1 2 1( )

 m M1( ). Meanwhile, one need to make all the negative
power terms of ẽ vanish by imposing some constraints on
mmʼs and xi

m( )ʼs. After those manipulations, the limits of
multi-soliton solutions at e  0˜ will give rise to the MPSs
correctly.

3.1. Double-pole solution

For the two-soliton solution(8), we let k k e= +12 1( ˜ ) (i.e.
μ2=1) and calculate the Taylor expansions of gn

1( ), gn
3( ), fn

2( )

and fn
4( ) in ẽ. It turns out that gn

3,0( ) = gn
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4,3( ) are identically satisfied, and that gn
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3,2( ), fn

2,0( ), fn
2,1( ) all become 0 if and only if α1+α2=0.

Thus, we take e e= 1 ˜ (i.e. r2=1) and α2=−α1, which
suffices to ensure that all the negative power terms of ẽ vanish
and the constant terms are dominant both in the numerator
and denominator. Still, it requires that ¹x 11

2( ) in order to
make sure the free parameter s1 appear in the solution.
Without loss of generality, we assume = -x 11

2( ) . Then, the
limit of solution(8) as e  0˜ yields the double-pole solution

of equation (1) with σ=1 as follows:
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1∣ ∣ ( ) , w k= 2 sinh1 1( ), k k=w 2 cosh1 1 1( ), the

subscripts R and I represent the real and imaginary parts of κ1,
respectively. In the following, we use the improved asymp-
totic analysis method in [6] to study the asymptotic behavior
of solution (15), and then reveal its described dynamics of
soliton interactions.

To begin with, we explain that the asymptotic solitons in
solution(15) cannot be located in any straight line

k - = n ct: constR1 . In fact, one can regard that solution
(15) is explicitly dependent only on ξ1R and t because of the
relation
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where x k k k= +n t2 sinh cosR R R I1 1 1 1( ) ( ) . Thus, one needs to
consider the asymptotic behavior of ξ1R along the line  as
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Associated with the two cases in equation (17), the dominant
behavior of solution(15) can be given by
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all 0 when  ¥t∣ ∣ . That is, solution(15) has no asymptotic
soliton lying in a straight line.
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with k= 2i R1 k k -cosh sin 2iR I1 1( ) ( ) k I1 k ksinh cosR I1 1( ) ( )
+ k w-wR1 1 1( ), where we have substituted equation (16) for
ξ1I before determining the dominant balance in solution(15).

As suggested by equations (20) and (21), the asymptotic
solitons of solution(15) are formed only when the balance

=xt Oe 1R1 ( ) or =x-t Oe 1R1 ( ) is met. In view that such a
balance might occur as  +¥t or  -¥t , we can obtain
four asymptotic solitons with their expressions given as fol-
lows:
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where we have labeled the above four asymptotic solitons
based on that the velocity of +qn i, at t>0 is the same as that of
-qn i, at t<0 (i=1, 2), as given in equation (27).

It can be found that the asymptotic solitons qn,1 and
qn,2

in equations (22)–(25) are all of the bright type and have the

Figure 1. The phase shifts between +qn i, and -qn i, (i=1, 2) versus t∣ ∣,
where the parameters are selected as a = + i1
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Figure 2. The two-soliton relative distance (solid) and separation
acceleration (dashed) versus t∣ ∣, where the parameters are the same as
those in figure 1.
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same amplitudes

k= = A A sinh . 26R1 2 1∣ ( )∣ ( )

Note that the center trajectories of qn,1 and
qn,2 are along four

curves in the nt plane. Accordingly, the soliton velocities are
time-dependent and they can be explicitly given by
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Also, the phase shifts between +qn i, and -qn i, ( =i 1, 2) vary
with t∣ ∣ in a logarithmical law (see figure 1):
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Since +vi has the same value at t as that of -vi at −t and δf1 is
always opposite to δf2 at the same t, thus the double-pole
solution(15) describes the elastic interactions between two
solitons having equal amplitudes.

Figure 3. (a) 3D plot of the double-pole solution(15). (b) Contour plot of the double-pole solution. The parameters are the same as those in
figure 1.

Figure 4. (a) Comparison of the asymptotic expressions -qn,1 (red dashed) and -qn,2 (blue dashed) with the exact solution (15) (black solid)
when t<0; (b) comparison of the asymptotic soliton +qn,1 (red dashed) and +qn,2 (blue dashed) with the exact solution (15) (black solid) when
t>0. The selection of parameters follows that in figure 1.
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Moreover, we obtain the relative distance between +qn,1

and +qn,2 (or between -qn,1 and
-qn,2) as follows:
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Meanwhile, we calculate the second derivative of d12 with
respect to t∣ ∣:
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which represents the acceleration that two solitons separate
from each other. Here, a12<0 says that the two-soliton
separation speed is decreasing as t∣ ∣ increases. Thus, we obtain
that the relative distance between two solitons grows loga-
rithmically with t∣ ∣, whereas their separation acceleration
magnitude decreases exponentially with the distance and
finally tends to 0 (see figure 2). This is in contrast with the
k k¹1 2 case in the two-soliton solution(8), where the rela-
tive distance between two solitons is linear in t∣ ∣.

In figures 3(a) and (b), we illustrate a two-soliton inter-
action described by solution(15) and mark all the asymptotic
solitons. To show the validity of our asymptotic analysis, we
compare the asymptotic solitons qn i, (i=1, 2) with the exact
solution (15) in figure 4. It can be seen that there is a good
agreement for the asymptotic expressions to approximate
solution (15) at large values of t∣ ∣.

3.2. Triple-pole solution

Based on the three-soliton solution(9), we let e e= 1 2˜ ,
k k e= +12 1( ˜ ) and k k e= -13 1( ˜ ) (i.e. r3=2, μ2=1 and
μ3=−1). Similarly, for making all the terms like e-i˜
(  i1 4) vanish, we must take a = - a

2 2
1 , α3= −α1−α2

and + =x x 21
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1
3( ) ( ) . Still, + ¹x x 22

2
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3( ) ( ) and ¹x 11
3( ) are

required so that the free parameters s1 and s2 both appear in
the solution. Without loss of generality, we choose =x 01

2( ) ,
=x 12

2( ) , =x 21
3( ) and = -x 12

3( ) . Thus, taking the limit of
solution(9) as e  0˜ , we have the triple-pole solution of
equation (1) with σ=1 as follows:
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Next, in order to understand the soliton interactions in the
triple-pole solution, we also make an asymptotic analysis of
solution(31) by the same procedure in section 3.1.

On one side, along the straight line k - =n ct constR1

with k k= -c 2 sinh cosR I1 1( ) ( ), we derive the following
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asymptotic expression:
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expressions are given by
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where we have also labeled the above four asymptotic soli-
tons in view that the velocity of +qn i, at >t 0 is the same as
that of -qn i, at t<0 (i=2, 3), as given in equation (37).

Like the double-pole case, qn i, in equations (32)–(36)

have the same amplitudes k=A sinhi R1∣ ( )∣ (  i1 3).
Also, the velocities of asymptotic solitons qn,2 and qn,3 are
time-dependent:
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and their phase shifts change with t∣ ∣ in the following loga-
rithmical manner (see figure 5):

df df
k k

k
= - =

 t
4 ln

2 sinh
. 38R

R
2 3

1 1

1

⎛
⎝⎜

⎞
⎠⎟

∣ ∣
∣ ( )∣∣ ∣

( )

However, qn,1 have the constant velocities

k k
k

= -v
2 sinh cos

, 39R I

R
1

1 1

1

( ) ( ) ( )

Figure 5. The phase shifts between +qn i, and -qn i,  i1 3( ) versus t∣ ∣,
where the parameters are selected as α1=2+2i, k = + i1

5
3

4
3

and

s1=s2=1.

Figure 6. The two-soliton relative distances d12 (red solid), d13 (red
solid), d23 (black solid) and separation accelerations a12 (red
dashed), a13 (red dashed), a23 (black dashed) versus t∣ ∣, where the
parameters are the same as those in figure 5.
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and experience no phase shift before and after interaction.
Therefore, the triple-pole solution(31) describes the elastic
interactions among three solitons with equal amplitudes.

Moreover, we derive the relative distances between two
solitons among +qn i, (or -qn i, )  i1 3( ) as

k
k

k k

k k
k

= = =

´ >





40

d d d
t

t

1

2

1
ln

2 sinh

2 sinh
,

R

R

R

R

R

12 13 23
1

2 2
1

2

1
2

1
2

1 1

1

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )
∣ ∣

∣ ∣ ( )
∣ ∣

∣ ∣ ∣ ∣
∣ ∣ ∣ ( )∣

and calculate the second derivatives of dij ( < i j1 3)
with respect to t∣ ∣:

k
k k
k

k k

= = -

=-

k-

- k





a a

a

4 sinh
e ,

8 sinh
e , 41

R

R

d

R

R

d

12 13

2 2
1

1
3

1
2

23

2 2
1

1
3

1
2

R

R

1 12

1
2 23

∣ ∣ ( )
∣ ∣

∣ ∣ ( )
∣ ∣

( )

∣ ∣

∣ ∣

which are the accelerations that two solitons diverge from
each other. Also, we obtain that the solitons’ relative dis-
tances grow logarithmically with t∣ ∣, while the separation

Figure 7. (a) 3D plot of the triple-pole solution (31); (b) Contour plot of the triple-pole solution. The parameters are the same as those in
figure 5.

Figure 8. (a) Comparison of the asymptotic expressions -qn,1 (purple dashed),
-qn,2 (blue dashed) and -qn,3 (red dashed) with the exact solution

(31) (black solid) when t<0; (b) comparison of the asymptotic soliton +qn,1 (purple dashed),
+qn,2 (blue dashed) and

+qn,3 (red dashed) with the

exact solution (31) (black solid) when t>0. The selection of parameters follows that in figure 5.
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acceleration magnitudes decrease exponentially with the dis-
tance and finally tend to 0 (see figure 6).

In figures 7(a) and (b), we show the three-soliton inter-
actions in solution(31) and the distribution of all asymptotic
solitons. In addition, figure 8 presents the comparison of the
asymptotic solitons qn i, (  i1 3) with the exact solu-
tion(31) at different values of t. One can see that the
asymptotic expressions give a good approximation to solu-
tion(31) when t 1∣ ∣  .

4. Conclusions and discussions

In this paper, for the focusing AL equation, we have derived
the double- and triple-pole solutions(15) and(31) as the
degenerate cases of the two- and three-soliton solutions,
respectively. Via the same limit technique in section 3, one
can continue to construct an arbitrary Mth (M>3) order
MPS. For doing so, we need to set e e= -1 M 1˜ and the Mth
order MPS can be obtained in the form

=
+ + +

+ + + +

- -

q i
g g g

f f f1
. 42n

n n n n
M M

n n n
M M

1,1 3,3 2 1,2 1

2,2 4,4 2 ,2
( )

( ) ( ) ( )

( ) ( ) ( )




We believe that this method can be used to construct the
MPSs for other soliton equations [5, 20–23, 25, 29, 48,
49, 50] if their multi-soliton solutions are available. However,
by the same procedure we have not obtained the MPSs from
the dark multi-soliton solutions of equation (1) with σ=−1.
It is worthwhile to make clear whether there is no dark MPSs
in the defocusing AL equation, similar to the defocusing case
of NLSE [16]. In the future, we will continue to work on this
problem by some other methods, e.g. the IST or Darboux
transformation.¼

On the other hand, we have performed a detailed
asymptotic analysis of the double- and triple-pole solutions. It
should be noted that an improved asymptotic analysis method
[6], which relies on the balance between exponential and
algebraic terms, has been used in obtaining the expressions of
all asymptotic solitons. On this basis, we have revealed that
the asymptotic solitons in solution(15) are localized in some
curves of the nt plane and their velocities are time-dependent;
and that two pairs of asymptotic solitons in solution(31) lie in
some curves, while the third pair (which has a constant
velocity and experiences no phase shift) is along a straight
line. Within our knowledge, we infer that whenM is odd there
are M−1 pairs of solitons moving in the logarithmic curves
and one pair of solitons lying in a straight line, while for even
M all the solitons are localized in the logarithmic curves.
Similarly to the continuous MPSs of the focusing NLSE
[3, 13, 15], we have also revealed the discrete MPSs describe
the elastic interactions of multiple solitons with the same
amplitudes, in which the solitons’ relative distances grow
logarithmically with t∣ ∣, while the separation acceleration
magnitudes decrease exponentially with their relative
distances.

Finally, we point out that it might be an interesting issue
to study the soliton interaction behavior at t≈0 in the MPSs.

As shown in figures 3(a) and 7(a), the interactions of multiple
solitons with equal amplitudes may cause the occurrence of
an instant large-amplitude wave. Qualitatively, the amplitude
of such an instant wave is related to si ( - i M1 1), but
those parameters are all absent in the expressions of asymp-
totic solitons. Hence, one has to study the MPSs themselves
so as to accurately understand the scenarios of soliton inter-
actions in the near-field region t 1∣ ∣  . However, this is a
challenging work since a large amount of calculations will be
involved.
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