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1 Introduction

It is an intriguing idea that primordial black holes (PBHs) make up a significant fraction of
dark matter [1]. This possibility is seriously challenged by various cosmological and astrophys-
ical observations [2–5]. Nevertheless, further investigation is underway and it is worthwhile
having a clear understanding of PBH properties. Properties of particular interest are PBH
mass distribution, clustering, and spin distribution given an underlying formation scenario.

Several such scenarios have been proposed. A common theme is to invoke an enhance-
ment of the almost Gaussian primordial spectrum of fluctuations ζ, from ζrms ∼ 10−5 to
ζrms ∼ 0.1. To form PBHs of average mass M̄ the enhancement is over a range of scales around

k0 ∼ 109

√
M�
M̄

keq, (1.1)

where keq is the matter-radiation equality momentum scale. See for instance [6, 7] for im-
plementations in the inflationary context.

Black holes form when rare peaks with height ζ0 > ζc ∼ 1 in the initial random field enter
the horizon. In a conventional thermal history, this happens during radiation-dominance
when the scale factor grows as t1/2, explaining the above formula for k0 (the horizon mass at
matter-radiation equality is about 1018M�).

The need for an enhancement of ζrms is a consequence of the exponential suppression of
the number density of high peaks. For a Gaussian spectrum, the energy density in PBHs at
the formation time is ρPBH ∼ ρtot exp(−ζ2

c /2ζ
2
rms). By the time of matter-radiation equality

this ratio grows by the ratio of scale factors giving

ΩPBH

Ωm
∼ 109

√
M�
M̄

e−ζ
2
c /2ζ

2
rms (1.2)

explaining the estimate ζrms ∼ 0.1 for an order-one threshold ζc.
The precise value of the threshold for PBH formation and its shape-dependence have

been extensively studied in the literature starting from the pioneering works of Carr and
Hawking [8, 9]. It is often formulated in terms of a critical value for δρ/ρ (after fixing an
appropriate gauge, such as the comoving gauge). This naturally eliminates irrelevant long-
wavelength fluctuations of ζ. Nevertheless for a fixed shape of the peak with characteristic
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size 1/k0, it is useful to have a criterion in terms of ζ which is nearly Gaussian in single-
field models of inflation. Such a criterion can be found in [10] and it is implemented in the
derivation of PBH abundance in [11].

All peaks of height ζ0 > ζc collapse into black holes, however as a remarkable example
of Choptuik scaling [12], the mass of the resulting black holes follow a scaling relation

M(ζ0) = KM̄(ζ0 − ζc)γ , (1.3)

with K = O(1) and γ ' 0.39 as long as ζ0 is not too much larger than ζc [10, 13]. Hence even
though M̄ is of the order of the horizon mass corresponding to the horizon crossing time of
k0 (as already implied in (1.1)), the initial mass function for PBHs extends all the way to
M = 0 [14].

One may question the validity of the Gaussian approximation for ζ in this setup, given
that PBHs are sensitive to the tails of the distribution. Suppose non-Gaussianities are
parametrized (schematically) as ζ = g+ fNLg

2 +O(g3), where g is Gaussian and the nonlin-
ear relation can in principle be non-local. If fNLζc ∼ 1 one would expect non-Gaussianities
to be important. And this is compatible with the current CMB constraints. However, the
approximation is justified in a minimal slow-roll model since there fNL � 1 [15].

Furthermore, in the absence of local-type non-Gaussianity (as in the conventional single-
field models of inflation) the effect of long-wavelength fluctuations ζk on any local physical
process, including PBH formation, is suppressed by k2/k2

0 [16]. Therefore there is no signifi-
cant clustering of PBHs. At long wavelengths δρPBH/ρ̄PBH follows the primordial field ζ, as
does any thermal relic density [17].1

Our goal here is to pursue a similar level of analytic insight into the problem of spin
distribution of PBHs (which seems to be missing despite an earlier work [21]). The spin is
conventionally believed to be small. The reason behind it is the approximate spherical sym-
metry of rare peaks in a Gaussian random field. Quantitatively, the extra symmetry means
that the eigenvalues of the Hessian matrix at the peak, which we denote as (∂2

1ζ0, ∂
2
2ζ0, ∂

2
3ζ0),

are close in a relative sense [22]. For instance, for a spectrum dominated by a single scale k0,

∂2
1ζ0 − ∂2

2ζ0

∇2ζ0
∼ ζrms

ζ0
. (1.4)

This is what one would expect if typical fluctuations were superposed on a perfectly spherical
peak of height ζ0 (see figure 1). Given that ζrms ∼ 0.1 and ζ0 ∼ 1 in our problem, the key
question is at what order these fluctuations contribute to the spin Jrms.

2

An educated guess, and what we are going to argue for, is that for mass-M black holes

Jrms ∼Mrgζ
2
rms, (1.5)

where rg = 2GM is the gravitational radius. This guess is motivated by Peebles’ analysis
of the origin of the angular momentum of galaxies [24], where the total angular momentum
contained in a spherical proto-galaxy is shown to start at second order in perturbation theory.
However Peebles’ argument is Newtonian and does not apply directly to PBHs, which form
at cosmological scales. There is no general relativistic notion of angular momentum at

1To be clear, both the slow-roll approximation and the resulting insignificance of non-Gaussianities can be
broken in specific models that predict abundant PBH production. See for instance [6, 18–20]. Nevertheless
since there is no unique way to be non-Gaussian, in this paper we focus on Gaussian models as a benchmark.

2Deviation from sphericity can also affect the collapse threshold as discussed in [23].
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Figure 1. A mosaic of six peaks higher than 5.6 sigma in a two-dimensional Gaussian random field.
The levels are 2,3,4,5 sigma and the power spectrum is P (k) = k4 exp(−k2).

cosmological scales, even though it makes sense to talk about the spin once the cosmological
horizon grows much larger than their size.

In section 2 we will show that by symmetry the relativistic expression for J vanishes at
first order in deviations from sphericity. This supports the estimate (1.5) by showing that
there is no O(ζrms) contribution. We also show that the second order contribution (if present)
has to be suppressed by ∆k/k0 if the range of enhanced modes is narrow, ∆k � k0. However
such a narrow spectrum is neither required nor obviously viable.

As an evidence that the second order contribution is non-vanishing, in section 3 we will
calculate the torque on a black hole from ambient acoustic waves at the time t much later
than the BH formation time ∼ rg. This creates a hierarchy between the black hole size ∼ rg,
the characteristic wavelength of the acoustic waves in the background radiation fluid a(t)

k0
,

and the cosmological horizon 1/H = 2t:

rg �
a(t)

k0
� t. (1.6)

Hence one can calculate the instantaneous torque due to a perturbed Bondi accretion at
leading order in gradient expansion:

J̇ =
1

3
λ2Ṁr2

g ∇δ × v, (1.7)

where λ ' 0.867 and
Ṁ = 8

√
3πr2

g ρ̄ (1.8)

is the rate of mass accretion onto a black hole immersed in an asymptotically uniform radi-
ation fluid of density ρ̄. The density contrast δ = δρ/ρ̄ and the fluid velocity v are related
(in the cosmological setting) to the primordial field ζ.

We will calculate ∆Jrms(t), the rms value of total angular momentum gained after time
t. By definition ∆Jrms(t) monotonically increases toward earlier t, and significantly so due
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to the cosmic dilution. Assuming a Gaussian shell of enhanced modes around k = k0 and
with width ∆k < k0, we obtain

∆Jrms(t) 'Mrgζ
2
rms

∆k

k0

3λ2H2
0r

2
g

(k0/aH)2
. (1.9)

Here H0 is the Hubble rate at the time when k0 crosses the horizon. A characteristic-mass
PBH has H0rg ∼ 1. Extrapolating (1.9) to the horizon-crossing time k0/aH ∼ 1 (when our
approximation breaks down) and taking the width ∆k not so much less than k0 predicts
an order-one coefficient in (1.5), barring cancellation with other contributions to J from the
black hole formation process. We conclude in section 4.

2 Perturbation theory around spherical collapse

The key conceptual insight into the problem of PBH spin is the above-mentioned smallness
of deviations from sphericity. A high peak in the primordial fluctuations that collapses into a
black hole can be decomposed into a collapsing spherically symmetric component plus order
ζrms fluctuations. The mass, position, momentum and angular momentum of the resulting
black hole have a perturbative expansion in those fluctuations.

This decomposition has O(ζrms) arbitrariness that leads to O(ζrms) ambiguities in the
zeroth order mass M and the zeroth order position of the black hole (which will be taken
as the origin r = 0). The ambiguities are systematically cancelled as one proceeds in the
perturbative expansion. On the other hand, the momentum and angular momentum are
unambiguously zero in the spherically symmetrical approximation. In practice going beyond
zeroth order in this perturbative expansion around the t- and r-dependent collapsing back-
ground is a daunting task. Our strategy is to use the formulation of perturbative expansion
to show that the first order spin J(1) = 0 on symmetry grounds.

Another feature of the PBH problem that needs extra care is the breakdown of Newto-
nian approximation to Einstein gravity. As a result, mass, momentum and angular momen-
tum cannot be localized. Strictly speaking they are defined only asymptotically for certain
asymptotic geometries such as in asymptotically flat spacetimes. In practice it is of course
sensible to talk about PBH parameters at late enough times (certainly today). A necessary
condition is that the size of the black hole rg be much smaller than the cosmic time t. We
will see that it is also sufficient, as long as we care about spin up to O(ζ2

rms).

To talk about the black hole parameters one first needs to define (and even to be able
to define) an approximately inertial frame around the black hole. The “size of the frame”
R has to be large enough such that at distance R the deviation from Minkowski metric due
to the black hole curvature is small, namely rg/R � 1. Black hole parameters can then be
unambiguously defined in terms of the properties of Keplerian orbits at r ∼ R. However
there is another source of deviation from Minkowski caused by the cosmological curvature.
This is of order H2R2 = R2/4t2. So, for instance, to measure mass accurately we need this
to be much smaller than the black hole field rg/R:

R3 � rgt
2. (2.1)

To measure the spin, there is another more stringent upper bound on R. This is because the
radiation fluid that surrounds our black hole also carries angular momentum in the presence
of fluctuations. For a given precision ε in black hole spin one needs to be able to choose R
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to be small enough such that the total angular momentum of the radiation fluid inside the
region rg < r < R is less than ε. This criterion is sensible despite the ambiguity of the lower
limit because angular momentum is dominated by large r ∼ R � rg. Hence we can use the
flat space expression

J irad '
4

3
εijk

∫
r<R

d3r ρrjvk, (2.2)

where εijk is the fully anti-symmetric tensor and repeated indices are summed over.3 To
leading order in cosmological perturbations vi is a pure gradient vi = ∂iϕ̃. Hence to first
order the above integral reduces to a surface term

J irad(1)(r < R) ' 4

3
εijkρ̄R2

∫
r=R

d2r̂ ϕ̃ rj r̂k = 0, (2.3)

where we used the fact that the normal to the spherical surface r = R is r̂. The above
argument is essentially the same as Peebles’ for the vanishing of the first order angular
momentum of proto-galaxies.

At second order Jrad is non-vanishing. It can be estimated by taking into account
the spatial variations in density ρ. (As we will see the vorticity in radiation fluid is
∇× v = − 1

4ρ∇ρ× v giving the same estimate.) In the tightly coupled regime the ampli-
tude of the acoustic waves remains constant and of order ζrms. This is reviewed below in
section 3.3. Their typical wavelength a(t)/k0 has by now significantly stretched and can
be assumed to be longer than R. We therefore replace ρ → r · ∇ρ ∼ ρ̄r(k0/a(t))ζrms and
v → ζrms, and obtain

Jrad(r < R) ∼ ρ̄ k0

a(t)
R5ζ2

rms. (2.4)

The scale factor grows as a(t) ∝ t1/2, so we can write ρ̄ ∼ M/(rgt
2) and k0/a(t) ∼ 1/

√
trg,

giving finally

Jrad(r < R) ∼Mrgζ
2
rms

(
R2

rgt

)5/2

. (2.5)

Hence if the black hole has a nonzero spin at or below second order in ζrms, the angular
momentum inside the region r < R is guaranteed to be dominated by the hole itself if

rg � R�
√
rgt. (2.6)

For such a choice to be available it is enough to have t� rg, as anticipated.4

The general relativistic expression for the total angular momentum in the region r < R
is given for instance in [25] in terms of τµν , the pseudo-tensor of energy and momentum,

J i = εijk
∫
r<R

d3r rjτ0k. (2.7)

Note that this is a vector defined by observers in the near Minkowski asymptotic region. So
we can liberally raise and lower spatial indices and sum over repeated ones (our choice of
metric signature is mostly plus). The coordinate system is uniquely fixed at large radii r � rg

3The (perhaps unfamiliar) factor of 4/3 is because we are dealing with a relativistic fluid with pressure
p = ρ/3. Stress-energy and angular momentum conservation of radiation fluid will be discussed at length in
section 3.

4To discuss black hole spin at n > 2nd order one needs to wait parametrically longer, t� rgζ
−2(n−2)/5
rms .
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by the requirement that it is an inertial frame, and at rest with respect to the asymptotic
FRW cosmology. On the other hand the extension to the interior (possibly inside the black
hole event horizon) is completely arbitrary. Nevertheless J is well-defined because using the
Einstein equations the pseudo-tensor is related to the linearized Einstein tensor,

τµν =
1

8πG
Gµνlin; (2.8)

Gµνlin is a total derivative and the integral reduces to a surface term at R; the surface term is
invariant under linearized diffeomorphisms.5

We now use the perturbation theory to calculate J . At zeroth order, a perfectly spherical
over-density collapses into a Schwarzschild black hole at r = 0. Thus J has to vanish. Indeed
at zeroth order in ζrms, the only possible form of τ0k is

τ0k
(0) = f0(t, r)r̂k, (2.9)

for some function f0. Substitution in (2.7) gives zero. At first order in perturbations there
are two possible structures

τ0k
(1) = f1(t, r)r̂k + ∂kg1(t, r), (2.10)

where now f1 and g1 are two scalar fields, linearly related to the initial perturbations.6 Both
terms give vanishing contributions to the angular momentum (2.7): the f1 term for the same
reason as the zeroth order contribution, and the g1 term reduces to a boundary integral

εijk
∫
r=R

d2r̂ g1r
j r̂k = 0. (2.11)

Note that the scalar nature of primordial fluctuations was crucial, otherwise other tensorial
structures could appear in (2.10).

To complete the argument we note that even though there can be a first order displace-
ment r(1) = O(ζrms), there is no first order center of mass angular momentum (which should
have been subtracted from the total angular momentum to obtain the spin). This is because
black hole momentum vanishes at zeroth order:

P i(0) =

∫
r<R

d3r τ0i
(0) = 0. (2.12)

Hence J can at best be nonzero at O(ζ2
rms).

One last observation to make on purely symmetry grounds: any second order contribu-
tion to J has to rely on combining modes ζk in the initial spectrum with unequal k = |k|.
If the initial power spectrum is dominated by an infinitely narrow shell of momenta then
J(2) = 0. This is because the most general second order expression is

J (2) =

∫
k1,k2

ζk1ζk2F (k1, k2) k1 × k2 (2.13)

5The definition of angular momentum in general relativity is somewhat subtler than energy and momentum,
even in asymptotically flat spacetimes. Physically this is because a graviton with arbitrarily small energy can
carry away a finite amount of angular momentum, and correspondingly there are metric configurations with
this property [26, 27]. In the realistic situation, long after the initial formation period there always exists a
frame in which linearization in gµν−ηµν is valid at large radii r ∼ R and the expression (2.7) is unambiguous.

6Exterior products are excluded because the momentum density τ0k has to be parity odd.
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where
∫
k =

∫
d3k

(2π)3
and F (k1, k2) is an anti-symmetric kernel. By anti-symmetry F (k1, k2)

vanishes at zeroth order in k1 − k2.
To summarize, we have argued that the spin of PBHs is a second order quantity. The

essence of the argument is that at linear order one cannot construct a pseudo-vector (such as
angular momentum) out of a scalar field. The means to this end was writing the relativistic
expression for the total angular momentum inside a spherical region of radius R that satis-
fies (2.6). The choice of a spherical region is harmless because, as argued above, the angular
momentum in the region is dominated by the black hole and therefore one can deform the
boundary of the region to make it spherically symmetric. For a nearly Gaussian primordial
field, equation (1.4) then implies that Jrms ∝ ζ2

rms.
7

3 Acoustic spin up of primordial black holes

We are not able to calculate the spin at second order. In the absence of a symmetry reason
for it to vanish, we expect Jrms not to be much less than Mrgζ

2
rms unless ∆k � k0. To

support this expectation we calculate ∆Jrms(t), the rms change of angular momentum after
time t� rg. This is calculable because by this time there is a clear separation of scales. The
size of the black hole is much less than the characteristic wavelength of the acoustic waves,
and the latter much shorter than the horizon size. The surrounding neighborhood of the
black hole has been randomized by the propagation of the sound waves, and finally, black
hole peculiar velocity (an O(ζrms) memory of the formation time) has red-shifted away. In
such a circumstance, we expect a nearly spherical Bondi accretion, that is perturbed by the
long-wavelength acoustic waves, and that therefore exerts a torque on the black hole. All
these approximations break down as t → rg, but the extrapolation does give an order one
coefficient in the formula Jrms ∼Mrgζ

2
rms.

8

Another simplification is that the radiation fluid has a purely potential flow since there
is no vector perturbations in the super-horizon initial conditions. This implies that in the
dissipation-less regime the system is fully described by a scalar field ϕ, coupled to Einstein-
Hilbert gravity [31]:

S = SEH +

∫
d4x
√
−gp(X), X ≡ −gµν∂µϕ∂νϕ. (3.1)

The function p(X) is fixed by the requirement that the stress-energy tensor of the scalar field
action

Tµν = 2p′(X)uµuν + gµνp(X), uµ ≡
∂µϕ√
X
, (3.2)

matches that of a perfect fluid with sound speed c2
s = 1/3. This fixes ρ(X) = 3p(X) = X2.

Therefore the fluid equations reduce to

∂µ(
√
−ggµνX∂νϕ) = 0. (3.3)

7One often encounters the contrary claim in the literature on structure formation such as [28, 29], and
perhaps motivated by that also in the PBH context [30], that angular momentum is a first-order quantity. In-
deed our symmetry argument applies to any collapsed structure formed from rare (and hence nearly spherical)
peaks of a scalar primordial field. The conclusion that J starts at first order in perturbations, is a consequence
of the unjustified assumption that collapsing regions have arbitrary shapes (i.e. zeroth order in fluctuations)
that are acted upon by a first order external torque. However, the shapes of the collapsing regions are not
arbitrary. Conditioned on having a peak of a certain height, and sending the rms fluctuations to zero, one
obtains a perfectly spherical peak as implied by (1.4). So the anisotropy of the collapsing region is itself a
first order quantity. We are thankful to Marcello Musso and Ravi Sheth for a useful discussion on this point.

8This extrapolation scheme is partly inspired by Peebles’ work [24].
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In the neighborhood of a PBH and for large enough t such that we can take r � t, the fluid
self-gravity is negligible and the metric is well approximated by Schwarzschild

ds2 = −
(

1− rg
r

)
dt2 +

dr2(
1− rg

r

) + r2(dθ2 + sin2 θdφ2). (3.4)

On this background the radiation fluid accretes onto the black hole. If the fluid is perturbed,
the accreting fluid also carries momentum and angular momentum into the black hole. Below
we will first calculate the accretion rate and the resulting torque. Afterward we will calculate
∆Jrms(t) in the cosmological scenario described in the Introduction.

3.1 Unperturbed Bondi flow

Finding the steady-state mass accretion rate Ṁ , at zeroth order in perturbations, is similar
to the standard Bondi problem [32]. One seeks a spherically symmetric solution for ϕ that
matches the background solution at large r and is regular at the horizon. Far from the black
hole (but well inside the cosmological horizon) the fluid is approximately at rest and uniform

˙̄ϕ = −ρ̄1/4 = constant. (3.5)

(The slow variation of ρ̄ on cosmological time-scales will be trivially included when needed
in order to calculate ∆Jrms(t).)

A stationary flow is described by ϕ = ρ̄1/4(−t + t0 + ϕ0(r)), where t0 is an irrelevant
integration constant and ϕ0 satisfies(

r2
(

1− (1− rg/r)2ϕ′0
2
)
ϕ′0

)′
= 0, (3.6)

and prime denotes d/dr. Integrating once gives

u− u3 = c
(
r2
g/r

2 − r3
g/r

3
)
, (3.7)

u ≡ −(1− rg/r)ϕ′0, (3.8)

with some constant c. Here u is the infall physical velocity, that is, the velocity measured by
a locally inertial observer who is instantaneously at rest at radius r. We must have

u→ 0, r →∞; u→ 1, r → rg. (3.9)

Indeed, from (3.7) we have u → ±1 or 0 at r → rg, but u → 0 is actually singular at the
horizon, with infinite pressure, while u→ −1 describes an excreting rather than accreting BH.

Just like in the standard Bondi problem, the desired asymptotic behavior, (3.9), is
possible iff the l.h.s. and the r.h.s. of (3.7) have the same maximal value. The maximal
value of the l.h.s. is 2

3
√

3
at the sonic point u = 1√

3
. The maximal value of the r.h.s. is 4

27c at

the sonic radius rs = 3
2rg, giving a unique value for the integration constant c = 3

√
3

2 and a
unique accretion flow

u− u3 =
3
√

3

2

(
r2
g/r

2 − r3
g/r

3
)
, (3.10)

where the root of the cubic is selected so as to be continuous and with correct asymp-
totics (3.9), see figure 2.
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1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

r/rg

0.0

0.2

0.4

0.6

0.8

1.0

−
(1
−
r g
/r

)ϕ
′ 0

c=2

c=3
√

3/2

c=3

Figure 2. Infall fluid velocity u as a function of r. At low accretion rate, corresponding to c < 3
√

3/2,
the decaying solution at large r is singular at horizon, while the regular solution has wrong asymptotic
behavior. As Ṁ is increased, at c = 3

√
3/2 the two solutions cross at the sonic radius, and the solution

with correct asymptotics connects to the regular solution at the horizon. For larger Ṁ there is no
steady-state inflow for a range of radii.

Having fixed the solution for u and ϕ one calculates Ṁ as follows. Recall that in
curved spacetime whenever the metric has a symmetry, i.e. a Killing vector field ξ, there is
a conservation law:

∂µ(
√
−gTµν ξν) =

√
−g∇µ(Tµν ξ

ν) = 0. (3.11)

The second equality follows from the covariant conservation of stress-energy tensor, plus the
defining property of Killing vector fields ∇µξν = −∇νξµ. In our setup the Schwarzschild
metric is time-independent, so ξt = ∂t is a Killing vector field. The associated conservation
law is energy conservation:

∂µ(r2Tµt ) = 0. (3.12)

On the stationary solution the time-derivative vanishes, and this equation describes a con-
stant flux of energy. Thus we can calculate the flux at any radius (using Ṁ = −Ṗt in our
convention)

Ṁ =

∫
d2r̂r2T rt . (3.13)

At large radii we have T rt = −4
3 ρ̄ϕ

′
0. Using ϕ′0(r � rg) = −cr2

g/r
2 gives

Ṁ = 8
√

3πr2
g ρ̄. (3.14)
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3.2 Perturbed Bondi flow

The Bondi flow is time-independent and spherically symmetric, so perturbations can be
organized by frequencies and spherical harmonics.9 We write

ϕ = ρ̄1/4(−t+ t0 + ϕ0(r) + ϕ1(t, r)) (3.15)

where

ϕ1(t, r) =
∑
l,m

∫
dω

2π
ϕl,m(ω, r)Ylm(r̂)e−iωt. (3.16)

At r � rg the perturbations have to match the background acoustic waves which can be
expanded in plane-waves

ϕ̃(ω, r) =

∫
d2k̂ϕ̃(ω, k̂)eik·r, k =

ω

cs
k̂. (3.17)

The characteristic frequency in the PBH problem is ω ∼ (rgt)
−1/2 � 1/rg. Hence there is

a region rg � r � 1/ω where one can expand (3.17) in gradients (i.e. powers of ωr) and
match to (3.16). The l-th harmonic is seen to start at l-th order in gradients. Below we will
use this expansion to derive the leading contribution in ωrg to the torque. Since torque is a
pseudo-vector the leading contribution comes from combining two gradients, i.e. two l = 1
modes, in an anti-symmetric way.

Let’s focus on the flux of Jz into the black hole. The Schwarzschild metric is spherically
symmetric, and in particular, it has a Killing vector field ξφ = ∂φ. The associated conservation
law is Jz conservation:10

∂µ(r2Tµφ ) = 0. (3.18)

When ωrg � 1 we can approximate the flow as stationary for

r � rω ≡

(
r2
g

ω

)1/3

, (3.19)

namely over the region where the Bondi flow arrives at the horizon before a characteristic
oscillation time 1/ω. In this region the time-derivative in (3.18) is negligible and the equation
implies that we can calculate the rate of angular-momentum accretion onto black hole (i.e.
the torque) at any radius:

J̇z = −
∫
d2r̂r2T rφ . (3.20)

Substituting (3.15) in the expression for the stress-energy tensor (3.2), we find, with no
surprise, that the first nonzero contribution to the torque appears at second order in ϕ1

J̇z = −4

3
ρ̄

∫
d2r̂r2

[(
1− 3(1− rg/r)2ϕ′0

2
)
ϕ′1 − 2ϕ′0ϕ̇1

]
∂φϕ1. (3.21)

Note that the two ϕ1 perturbations have to have the same l and opposite and nonzero m
for the torque to be nonzero. This confirms our expectation that the leading contribution in
gradient expansion comes from two l = 1 modes.

9The explicitly time-dependent term ϕ̄ = ρ̄1/4(t0−t) does not lead to any time-dependence in the equations
of motion. It is only ∂µϕ and not ϕ itself that matters.

10Note in passing that in flat spacetime and when the fluid velocity is non-relativistic, the Jz-density
in (3.18) is r2T tφ = 4

3
r2X3/2∂φϕ+O(v3). In Cartesian coordinates this reproduces eq. (2.2).
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It is also easily verified that the integrand reduces to a total φ-derivative when both
ϕ1’s have the same frequency. In fact, there is a clever choice of radius r = rs which makes
this point manifest. At the sonic point

1− 3(1− rg/r)2ϕ′0
2

= 0, r = rs, (3.22)

leaving only one term ∝ ϕ̇1∂φϕ1 in (3.21). This will greatly simplify the calculation.
Consider a mode with frequency ω and l = 1. At linear order ϕ1,m(ω, r) solves the

following equation (we denote ϕ1,m(ω, r) by ϕ1, and use u = −(1− rg/r)ϕ′0 to avoid clutter)

[r2(1− 3u2)ϕ′1]′ − 2(1− rg/r)−1(1− u2)ϕ1 = Lωϕ1, (3.23)

where Lω is a differential operator that vanishes at ω = 0.11 In the absence of black hole,
which implies rg = 0 and u = 0, this equation reduces to (r2ϕ′1)′ − 2ϕ1 = −ω2r2ϕ1. For
ωr � 1 there is a growing solution r and a decaying solution 1/r2. The asymptotic solution
ϕ̃, given in (3.17), is a superposition of plane waves and only has the growing component
r · ∇ϕ̃(ω,0).

In the presence of the black hole ϕ1 matches this asymptotic solution:

1∑
m=−1

ϕ1,m(ω, r � rg) ' r · ∇ϕ̃(ω,0), (3.24)

with corrections suppressed by ωrg or rg/r. These corrections have two sources. (a) The cor-
rections to the growing solution. These can be fixed order-by-order at larger r by demanding
that (3.23) is satisfied. (b) A mixture of the decaying mode due to the sonic singularity
of (3.23) at r = rs where 1− 3u2 = 0. For a fixed amplitude of the growing mode, there is a
unique mixture of the decaying mode such that ϕ1 is regular at rs. In practice, we find this
mixture using numerical shooting.

Let’s denote by λ(ω) the ratio of this non-singular solution evaluated at rs to the
coefficient of the growing mode:

1∑
m=−1

ϕ1,m(ω, rs) = λ(ω)rg r̂ · ∇ϕ̃(ω,0). (3.25)

The advantage of evaluating (3.21) at r = rs is that, to leading order in ωrg, the torque
can be calculated by solving just for λ(0). That is, we can ignore Lω in (3.23) and find the
correct mixture of time-independent growing and decaying l = 1 modes.12 We find

λ ≡ λ(0) ' 0.867. (3.26)

Next we substitute (3.25) in (3.21) and perform the angular integrals. The result, written in
a more covariant way, is

J̇ = 2
√

3πλ2r4
g∇ρ× v. (3.27)

Here v and ∇ρ are respectively the ambient velocity and density gradient due to the acous-
tic waves. They are related to the gradients of ϕ̃ evaluated at r = 0 via v = ∇ϕ̃ and
∇ρ = −4ρ̄∇ ˙̃ϕ.

11Explicitly

Lω = 2iω
[
2r2(1− rg/r)−1u∂r +

(
(1− rg/r)−1ur2

)′]− ω2r2(1− rg/r)−2(3− u2).

12However, with a bit of more work one can calculate the O(ω) correction to the mixture and hence (3.21)
at any radius.
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3.3 First order cosmological perturbations

We will now relate the perturbations, δρ and v, to the cosmological initial fluctuations ζk.
The background parameters in the radiation era and in terms of the conformal time η (defined
through adη = dt) are given by

a = η, ρ̄ =
ρ0

η4
, ϕ̄ = −ρ1/4

0 η, (3.28)

where ρ0 =constant. The scalar metric perturbations can be parametrized in the conformal
Newtonian gauge as

ds2 = −η2(1 + 2Φ)dη2 + η2(1− 2Ψ)dx2, (3.29)

and the fluid perturbations as

ϕ = ρ
1/4
0 (−η + ϕ̂). (3.30)

So the first order velocity (in the comoving frame) and density perturbations are given by

ui = η∂iϕ̂, δ ≡ ρ− ρ̄
ρ̄

= −4∂ηϕ̂− 4Φ. (3.31)

Working at finite spatial momentum, the traceless part of the i − j component of Einstein
equations gives

Φ = Ψ. (3.32)

The 0− i component gives

ϕ̂ = −1

2
η(η∂ηΨ + Φ). (3.33)

The 0− 0 component gives

6η∂ηΨ− 2η2δij∂i∂jΨ + 3(δ + 2Φ) = 0. (3.34)

From the above three equations we derive an equation for Φ, which after going to the mo-
mentum space (with k the comoving momentum and k2 = δijkikj) looks like

∂2
ηΦ +

4

η
∂ηΦ +

1

3
k2Φ = 0. (3.35)

This has two solutions. The one that is regular at η = 0 is

Φk(η) = 3Φ
(0)
k

sinωη − ωη cosωη

ω3η3
, ω2 =

1

3
k2. (3.36)

The initial condition Φ
(0)
k is related to the primordial fluctuations ζk by transforming to the

comoving gauge [33] (where up to gradients and time-derivatives the scalar perturbations
show up only in the trace of the spatial metric as η2(1 + 2ζ)dx2)

Φ(0) = −2

3
ζ Radiation Dominance. (3.37)

We are in particular interested in the sub-horizon (kη � 1) behavior of ϕ̂k(η). The gravita-
tional potential is negligible in this limit and we have

ϕ̂k(η) = ζk
sin(cskη)

csk
. (3.38)
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Our torque formula is in terms of the fluid velocity in the physical coordinates (t, r = ax),
i.e. the coordinates of the inertial frame that surrounds PBH. To evaluate it note that
ρ̄1/4ϕ̃ = ρ

1/4
0 ϕ̂ or

ϕ̃ = ηϕ̂. (3.39)

Therefore the physical velocity is given by

vi =
∂ϕ̃

dri
=
∂ϕ̂

∂xi
, (3.40)

and our identification ∇ρ = −4ρ̄∇ ˙̃ϕ in (3.27) receives 1/H corrections which are negligible
in this regime. Therefore

∂ρ

∂ri
= −4ρ̄

η

∂2ϕ̂

∂η∂xi
. (3.41)

3.4 RMS angular momentum gain and extrapolation

The total angular momentum accreted after time t� rg is obtained by integrating the second
order torque formula (3.27). J is defined in an approximately Minkowski frame, so we can
safely integrate

∆J(t) =

∫ ∞
t

dt1J̇ . (3.42)

This can be expressed in terms of the cosmological initial conditions (and the conformal time)

∆J(η) = 6πλ2r4
gρ0

∫ ∞
η

dη1

η4
1

∫
k1,k2

ζk1ζk2Fk1,k2(η1) (k̂1 × k̂2) (3.43)

where we symmetrized the expression in k1 and k2, and introduced

Fk1,k2(η) = k− sin(csk+η)− k+ sin(csk−η), k± = k1 ± k2. (3.44)

As seen, unless there are different frequencies in the spectrum, the anti-symmetry of the
expression for the torque makes it vanish.

Squaring (3.43) and taking the expectation value gives ∆J2
rms(η) =

〈
∆J(η)2

〉
∆J2

rms(η) =
(
6πλ2r4

gρ0

)2∫ ∞
η

dη1dη2

η4
1η

4
2

∫
k1,k2

2Pζ(k1)Pζ(k2)Fk1,k2(η1)Fk1,k2(η2)
(

1−(k̂1 ·k̂2)2
)
.

(3.45)
This can be calculated given a PBH formation scenario, i.e. a specification of Pζ(k). Note
that because of cosmic expansion the integrals are dominated by the first few Hubble times
after η. Ultimately we let η approach the formation period to obtain an estimate of total Jrms.
For concreteness, suppose the formation scenario relies on an enhancement of ζ fluctuations
within a relatively narrow k-band. Hence the enhanced part of ζ power spectrum is modeled
by a Gaussian

Pζ(k) =
2π3/2ζ2

rms

k2
0∆k

e−(k−k0)2/∆k2 , (3.46)

where
ζ2

rms = 〈ζ(x)ζ(0)〉x→0 , (3.47)

and ∆k � k0. The latter choice serves two purposes. First to demonstrate the extra
suppression of Jrms by ∆k/k0 as expected from the symmetry argument of section 2. Secondly,
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it allows a further simplification since there is an early period when k−η ∼ ∆k η � 1 but
k+η ∼ 2k0η � 1. Hence, in the η → 1/k0 limit the dominant contribution to (3.45) comes
from the substitution

Fk1,k2(η1)→ −k+ sin(csk−η1) ' −csk+k−η1, (3.48)

and a similar substitution for Fk1,k2(η2). The result is

∆Jrms(η) ' 4πλ2r4
g ρ̄∆kk0η

2ζ2
rms. (3.49)

One suppression factor in this expression ∆kη < 1 ensures that for an infinitely narrow
spectrum there is no second order torque. The other factor of k0η > 1 originates from the
gradient in the expression for the torque (3.27). To express the result in a more useful way
denote by H0 the expansion rate at the horizon crossing time of k0. We have ȧ/a = H0/(k0η)2

and ρ̄ = 3(ȧ/a)2/8πG, giving

∆Jrms(η) 'Mrgζ
2
rms

∆k

k0

(√
3λH0rg
k0η

)2

. (3.50)

For an average-mass PBH H0rg ∼ 1. Hence taking the limit k0η → 1 and assuming ∆k ∼ k0,
gives the asserted order-1 contribution to the formula (1.5).

4 Conclusions

We explained in what sense the spin of PBHs is small, arguing that

Jrms ∼Mrgζ
2
rms. (4.1)

This was supported by calculating the torque due to the acoustic waves long after black
hole formation and by extrapolating the result to early times. We also showed that for a
narrow enhancement of the primordial power Pζ(k) the second order Jrms is suppressed by
the width ∆k/k0.

The early contribution to J during the formation period seems beyond analytic reach.
However, given that it has to vanish at zeroth and first order in ζrms, it is natural to expect
it to have a similar size as (4.1). Although a partial cancellation is in principle possible, a
full cancellation seems unlikely. Clearly, at late enough times the torque (though small) is
uncorrelated with the formation process because of the propagation of the sound waves.

For PBHs to form a sizable fraction of dark matter, the primordial fluctuations cannot
be much smaller than ζrms ∼ 0.1 as long as the Gaussian approximation is valid. The resulting
spin parameter a ∼ 0.01 is small, but it is not unimaginable that such a precision is reached
in the future.
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