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1.  Introduction

In the last three decades, non-invasive brain stimulation (NIBS) techniques have shown significant potential to 
treat some neural diseases (Polanía et al 2018). Transcranial direct current stimulation (tDCS) and transcranial 
magnetic stimulation (TMS) are the most commonly used and safest form of NIBS (Dayan et al 2013). tDCS and 
TMS are widely used not only to treat neurological disorders such as depression, epilepsy, Parkinson Alzheimer’s 
disease, and obsessive-compulsive disorder but also to improve memory performance, learning, and other 
cognitive functions (Nitsche et al 2008, Fox et al 2014).

Modulation of deep brain structures is rapidly growing as a treatment option for some neurological and psy-
chiatric disorders. Despite current efforts to develop specific coils for TMS such as H-Coil (Roth et al 2002), it has 
not been demonstrated that tDCS and TMS can directly modulate deep brain activity without affecting the over-
lying cortex (Dayan et al 2013). Direct modulation of deep brain structures necessitates invasive techniques such 
as deep brain stimulation (DBS) (Polanía et al 2018). The main purpose of DBS is modulation of neural activi-
ties with electric fields in a controlled manner (Kringelbach et al 2007). It was approved by the Food and Drug 
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Abstract
Neuromodulation modalities are used as effective treatments for some brain disorders. Non-invasive 
deep brain stimulation (NDBS) via temporally interfering electric fields has emerged recently as 
a non-invasive strategy for electrically stimulating deep regions in the brain. The objective of this 
study is to provide insight into the fundamental mechanisms of this strategy and assess the potential 
uses of this method through computational analysis. Analytical and numerical methods are used to 
compute the electric potential and field distributions generated during NDBS in homogeneous and 
inhomogeneous models of the brain. The computational results are used for specifying the activated 
area in the brain (macroscopic approach), and quantifying its relationships to the stimulation 
parameters. Two automatic algorithms, using artificial neural network (ANN), are developed for 
the homogeneous model with two and four electrode pairs to estimate stimulation parameters. 
Additionally, the extracellular potentials are coupled to the compartmental axon cable model to 
determine the responses of the neurons to the modulated electric field in two developed models 
and to evaluate the precise activated area location (microscopic approach). Our results show that 
although the shape of the activated area was different in macroscopic and microscopic approaches, 
it located only at depth. Our optimization algorithms showed significant accuracy in estimating 
stimulation parameters. Moreover, it demonstrated that the more the electrode pairs, the more 
controllable the activated area. Finally, compartmental axon cable modeling results verified that 
neurons can demodulate and follow the electric field modulation envelope amplitude (MEA) in our 
models. The results of this study help develop the NDBS method and eliminate some limitations 
associated with the nonautomated optimization algorithm.
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Administration (FDA) for essential tremor, Parkinson Alzheimer’s disease, dystonia, and obsessive-compulsive 
disorder in 1997, 2002, 2003 and 2009, respectively (Oluigbo et al 2012). It also has shown promise for treating 
additional disorders such as epilepsy, Alzheimer Alzheimer’s disease, Tourette Alzheimer’s syndrome, addiction, 
and depression (Oluigbo et al 2012).

The clinical success of DBS depends not only on the precise implantation of electrodes into deep brain target 
tissues, which is recently improved through neuroimaging methods and microelectrode recordings (Gmel et al 
2015), but also the accurate adjustment of stimulation parameters (Peña et al 2017). Consequently, improv-
ing DBS lead design (Cubo et al 2016) and systematic optimization of stimulation parameters are essential to 
increase therapeutic effects and decrease side effects (Anderson et al 2018). In the other words, DBS therapy is 
dependent on the spatial distribution of the stimulation fields (which are represented by electric potential (Mio-
cinovic et al 2009, Chaturvedi et al 2010), electric field (Cubo et al 2018) and the second difference of the electric 
potential (Butson and McIntyre 2008)) in the brain (Åström et al 2015). Therefore, the first step to precisely con-
trol and anticipate the clinical results of DBS is to compute electric potential and field distributions generated in 
the brain tissue accurately (Miocinovic et al 2009). In addition, developing automatic methods for adjusting the 
stimulation parameters and predicting the volume of tissue activated (VTA) to achieve the best clinical results 
can be obtained through computational analysis such as training an artificial neural network (ANN) (Chatur-
vedi et al 2013), convex optimization (Anderson et al 2018) and particle swarm optimization (Peña et al 2017).

There are several methods to model brain tissue, from homogeneous cylinders and spheres (Walckiers 2009, 
Grossman et al 2017) to precise models considering heterogeneity and anisotropy (Chaturvedi et al 2010, Åström 
et al 2012, Gunalan et al 2017). Spatial distribution of the electric field in simple models can be computed analyti-
cally. However, in more realistic and accurate models, numerical analysis such as finite element method (FEM) 
should be used. The analytical method is often more accurate and faster than the numerical one. It provides 
deep insight into electric potential and field distributions and the impact of stimulation parameters on them in 
the brain tissue to obtain the desired outcomes. In order to obtain the effects of electric field distribution on the 
neurons, macroscopic (Cubo et al 2018) or microscopic models (McIntyre et al 2002) can be used. While in the 
former models, electric potential or its first and second spatial derivatives thresholds are used to determine VTA, 
in the later ones, compartmental axon cable models are developed for that purpose. Although the microscopic 
models are more precise, they need more computational power and time. As a result, they are often used to iden-
tify activation threshold levels for macroscopic ones (Åström et al 2015).

Since different neurons have different excitability properties, the interaction between them and extracellular 
stimulation is complex. Consequently, the biological mechanisms of neuromodulation methods such as tDCS, 
TMS, and DBS are not fully known (Cubo et al 2018) and analyzing many factors is required to understand the 
effects of a given brain stimulation. Among different excitability properties, it is demonstrated that there is low-
pass filtering behavior in the neurons’ membrane due to its leak conductance and capacitance (Hutcheon and 
Yarom 2000). This behavior generally exists among neurons; however, it depends on several parameters includ-
ing the axon cable model properties and the input current or voltage characteristics (amplitude and frequency). 
Based on this low-pass filter behavior and the inception of interferential currents (IFC) therapy, a new non-inva-
sive strategy for electrically stimulating deep regions in the brain was introduced by Grossman et al (2017). IFC 
is a commonly used method in physiotherapy for controlling pain and incontinence, enhancing blood flow and 
reducing edema and neurological impairments (Goats 1990, Ward 2016). It uses two pairs of medium-frequency 
currents (carrier frequency) which are slightly different (e.g. 2000 and 2010 Hz). Interfering these two high fre-
quency signals with each other produces an amplitude modulated electric field oscillating at the difference fre-
quency and may be able to stimulate the neurons (Agharezaee and Mahnam 2015). Using in vivo experiments on 
transgenic mice in Grossman et al (2017), the authors showed that hippocampal neurons could be stimulated 
without activating the overlying cortical ones. There are several challenges associated with the noninvasive deep 
brain stimulation (NDBS) method which have not been solved yet. One of them is to determine the accurate 
activated area using microscopic models and identify the exact response of the neurons to the modulated electric 
field. Manual adjustments of stimulation parameters (electrode position, electrode dimensions, and boundary 
conditions) which were done to achieve the desired electric potential and field distributions limit the efficiency of 
this method. As a result, developing automatic methods would be necessary to maximize its impacts.

In the present study, we model brain tissue as infinite homogeneous cylinder (IHC) and infinite inhomoge-
neous cylinder (IIC). We propose analytical solutions in order to not only provide deep insight into the physics of 
this method but also compute electric potential and field distributions accurately. After determining the activated 
area in the models through macroscopic approaches, the exact relationship between stimulation parameters and 
the activated area are extracted. Two automatic methods based on ANN are proposed to adjust the stimulation 
parameters with two and four electrode pairs in the homogeneous model. Finally, the compartmental axon cable 
model is developed to analyze the responses of the neurons to the modulated electric field and determine the acti-
vated area in homogeneous and inhomogeneous models more accurately (microscopic approach).
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2.  Methods

2.1.  Forward problem
Analytical and numerical methods are used to compute the electric potential and field distributions in the brain 
tissue. The IHC and IIC models were developed for brain tissue modeling. Figures 1(a) and (b) show the developed 
IHC model with two and four electrode pairs, respectively. The configuration of electrodes are determined 
through the electrode arc length and the angle between its center and x axis. The same method is used to determine 
the configuration of electrodes in IIC model (figure 1(c)). The infinity of cylinder in the z direction results in 
the infinity of electrodes in this direction. It can be assumed that each infinite-length electrode is composed 
of an infinite number of finite-length electrodes (H = 0.25 mm in this research) as illustrated in figure 1(d) 
and Ii( fi) is applied to each finite-length electrode. So with uniform current distribution approximation, the 

current density (
−→
J ) at each electrode is Ii( fi)/S where S is the area of the finite height electrode. I1 and I2 currents 

are applied at f 1 and f2 = f1 +∆f , respectively; f 1 is above the frequency that neurons can follow due to their 
intrinsic low-pass filter behavior but ∆f  falls within the responsive neurons frequency range.

2.1.1.  Analytical solution
Spatial distribution of electric potential in the brain tissue is determined through solving the quasi-static Laplace 
equation (Cheng et al 1989):

∇ · (σ∇ϕ) = 0� (1)

where σ is the electrical conductivity of the brain tissue, ϕ is the electric potential and ∇ is the gradient operator. 

After finding the electric potential, the electric field (
−→
E ) and 

−→
J  are obtained as follows (Cheng et al 1989):

−→
E = −∇ϕ� (2)

−→
J = σ

−→
E .� (3)

The surrounding boundary is treated as an insulator, i.e. the normal component of current density equals to zero 
except where the electrodes are located. Under uniform current distribution assumption, the normal component 
of current density and electric field are obtained by means of (2) and (3).

In an IHC with radius ρ0 and conductivity σ0, the solution of (1) in cylindrical coordinate system is (Cheng 
et al 1989):

ϕ (ρ,φ) =
∞∑

n=1

ρn (En cos nφ+ Fn sin nφ)� (4)

where En and Fn are obtained through boundary conditions. According to the previous description, the boundary 

conditions are Neumann type, i.e. 
−→
J .−→n = 0 (−→n  is the outward unit vector normal to the line element) in all 

surrounding boundaries except at the electrodes’ positions. In these areas we have:

∂ϕ

∂ρ
= −

−→
J .−→n
σ0

.� (5)

The unknown coefficients in (4) then are found as (Cheng et al 1989):

En =

∫ 2π
0

∂ϕ
∂ρ | ρ=ρ0 cos nφdφ

nρn−1
0 π

� (6)

Fn =

∫ 2π
0

∂ϕ
∂ρ | ρ=ρ0 sin nφdφ

nρn−1
0 π

.� (7)

This solution is valid under the establishment of the compatibility condition which is one of the results of Green’s 
second identity (Balanis 1999). Based on the above constraint, it is essential that:

∫ 2π

0

∂ϕ

∂ρ
| ρ=ρ0 dφ = 0� (8)

which means that each electrode pair must have the same arc length.
The next model for the brain tissue is the infinite-centric cylinder of N layers with different conductivi-

ties (figure 1(c)). In this model, the Laplace equation in each layer should be solved. According to continuity of 
potential and normal component of current density at the interface between two layers and based on the most 
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inner layer coefficients, the recursive relationship is computed. In the most inner layer, the solution of Laplace 
equation is the same as (4) and in ith layer (i � 2) we have (Cheng et al 1989):

ϕ (ρ,φ) =
∞∑

n=1

(
Ai

nρ
n + Bi

nρ
−n

) (
Ci

ncosnφ+ Di
nsinnφ

)
� (9)

where

Ai
n = 1

Bi
n =

w − 1

w + 1
ρ2n

i−1

Ci
n

En
= Ti =

w + 1

2w

(
1 + Bi−1

n ρ−2n
i−1

)
Ti−1, T1 = 1

Di
n

Fn
= Ti

� (10)

and

w =
σi

σi−1

1 + Bi−1
n ρ−2n

i−1

1 − Bi−1
n ρ−2n

i−1

� (11)

where σi is the electrical conductivity in ith layer, ρi  is the external radius of ith layer, and the unknown coefficients 
(En and Fn) are obtained by means of boundary condition at ρ = ρN  (Cheng et al 1989):

En =

∫ 2π
0

∂ϕ
∂ρ | ρ=ρN cos nφdφ

n
(
ρn−1

N − BN
n ρ

−n−1
N

)
π

� (12)

Figure 1.  (a). IHC with two electrode pairs. (b). IHC with four electrode pairs. (c). IIC which configuration of electrodes are 
determined the same as IHC. (d). Infinite electrode model.
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Fn =

∫ 2π
0

∂ϕ
∂ρ | ρ=ρN sin nφdφ

n
(
ρn−1

N − BN
n ρ

−n−1
N

)
π

.� (13)

It is obvious from (6), (7), (12) and (13) that the potential distribution in the brain tissue is dependent on 
the configuration of electrodes and boundary conditions. Therefore, we can alter the electric potential and field 
distribution by changing these parameters in a controlled manner.

Since the boundary conditions are time-dependent, the electric field generated in the brain tissue changes 
spatially and temporally. In temporal interference (TI) stimulation, modulation envelope amplitude (MEA, i.e. 
the difference between the maximum and minimum value of the modulated electric field Alzheimer’s envelope) 
is an important parameter. MEA is a time-independent parameter (in a specific location in a model with fixed 
boundary conditions (see figure S1)) and can be obtained by using phasor electric fields. For any electrode pair 
with a given frequency, we compute the phasor electric potential and field distribution by using the mentioned 
analytical solution method. If there are only two electrode pairs, accurate electric field MEA generated by TI of 
electric fields will be calculated as follows (Grossman et al 2017):

|−→E AM (−→n ,−→r ) | = ||
(−→

E 1 (
−→r ) +

−→
E 2 (

−→r )
)
· −→n |

− |
(−→

E 1 (
−→r )−−→

E 2 (
−→r )

)
· −→n ||

� (14)

where 
−→
E 1(

−→r ) and 
−→
E 2(

−→r ) are the phasor electric fields generated by two electrode pairs, −→r (x, y, z) is the specific 

location and −→n  is the unit vector of the desired direction. Furthermore, |Emax
AM (−→r )| is the maximum electric field 

MEA across all directions and is obtained analytically as follows (Grossman et al 2017):

|Emax
AM (−→r ) | =

{
2|−→E 2 (

−→r ) | |−→E 2 (
−→r ) |<|−→E 1 (

−→r ) |cos (θ)
2|−→E 2 (

−→r ) |sin (γ) otherwise
� (15)

where θ is the angle between 
−→
E 1(

−→r ) and 
−→
E 2(

−→r ) and is smaller than π/2 and γ  is the angle between 
−→
E 2(

−→r ) and 
−→
E 1(

−→r )−−→
E 2(

−→r ) with |−→E 1(
−→r )|>|−→E 2(

−→r )| assumption. For m electrode pairs (m  >  2), MEA at the desired 

direction and its maximum across all direction are approximated by (Grossman et al 2017):

|−→E AM(−→n ,−→r )|

= 2 min{|−→E 1(
−→r ) · −→n |, |−→E 2(

−→r ) · −→n |, ..., |−→E m(
−→r ) · −→n |}

� (16)

|Emax
AM (−→r )|

= 2 min{|−→E 1(
−→r )|, |−→E 2(

−→r )|, ..., |−→E m(
−→r )|}.

� (17)

2.1.2.  Numerical solution using FEM
The finite element models of NDBS are created to evaluate the accuracy of our analytical solution results. IHC 
and IIC are constructed with approximately 25 000 elements, and stimulation parameters are set the same as 
analytical solutions. By using these models, (1) is solved for each geometry to compute electric potential and field 
distributions.

2.2.  Inverse problem
In section 2.1, spatial distributions of the potential and electric field in IHC and IIC were computed based on the 
specific boundary conditions to determine the activated area. In order to activate the desired region in the model, 
we have to solve the inverse problem (determining boundary conditions).

In this paper, we use ANN to solve the inverse problem in the IHC with 50 mm diameter cylinder. The maxi-
mum MEA of the electric field is used to determine the activated area through the macroscopic approach, since it 
is less sensitive to stimulation parameters compared to other quantities (Åström et al 2015).

First, two fixed and symmetrical electrode pairs were used with the following parameters: φ11 = −25◦, 
φ12 = 25◦, φ21 = 155◦, φ22 = −155◦, and 10◦ arc length for all electrodes (see figure 1(a)). The size and position 
of the activated area are controlled only by means of the current sum (I1 + I2) and the current ratio (I2/I1). The 
symmetry of the stimulation parameters in x axis causes the center of gravity (COG) of the activated area to be 
on x axis in all datasets. However, the location of the activated area can be moved to the desired location by the 
appropriate rotation of the coordinate system. In the other words, it is enough to create an ANN to determine 
the stimulation parameters for activating a desired region that it is located on the x axis. Through simple pre-
processing (appropriate rotation of the coordinate system) and post-processing (back to the original coordinate 
system), we can solve the inverse problem for any activated area in the model. To create a dataset for ANN, cur
rent sum and current ratio are systematically increased from 0.5 mA to 3 mA in steps of 0.1 mA and from 1 to 
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10 in steps of 0.1, respectively. As we will discuss in section 3.1, the location of the activated area moves toward 
the first electrode pair (positive x axis in our configuration) when we change the current ratio for values greater 
than one. It would be sufficient based on our previous description about the coordinate system rotation. For each 
trial in the dataset, the activated area is determined by using 193 V m−1 threshold. To determine the threshold for 
macroscopic approach, the neuron anatomy and the pulse characteristics should be included. To the best of our 
knowledge, the proposed thresholds were have not been calculated by using TI stimulation (McIntyre et al 2002, 
Åström et al 2015). The 193 V m−1 threshold is used as an example which makes the activated area a connected 
space when 1 mA current is applied to the electrodes. It should be noted that the trials in which the activated area 
is empty or not a connected space has been removed from the dataset. Then, the x and y  coordinate of the COG 
of the activated area (xc and y c), and the Euclidean distance between the COG and point 1 (Ry , see figure 2(a)) are 
determined for the whole dataset. As mentioned previously, y c is close to zero in all trials. In addition, the Euclid-
ean distances between the COG and other contour points are highly correlated to Ry . For instance, the correlation 
coefficient between Rx (the Euclidean distance between the COG and point 2, see figure 2(a)) and Ry  is 0.952. As a 
result, neither the Euclidean distances between the COG and other contour points nor y c are appropriate inputs 
for the ANN. Therefore, the first ANN receives xc and Ry  as inputs and computes the current ratio and the current 
sum as outputs (figure 2(d)).

Several approaches help us to control the shape of the activated area more desirably and overcome some 
existing limitations. Generating TI electric fields with more than two electrode pairs is one of these methods. As 
the number of electrode pairs increases, the shape of the activated area becomes more controllable. For instance, 
Rx and Ry  become independent by using four electrode pairs. Thus in the second step, four fixed and symmetrical 
electrode pairs with φ11 = −25◦, φ12 = 25◦, φ21 = 155◦, φ22 = −155◦, φ31 = 65◦, φ32 = 115◦, φ41 = −115◦, 
φ42 = −65◦, and 10◦ arc length for all electrodes (see figure 1(b)) are used; and the current sum and the current 
ratio for each electrode pair (I1 + I2 and I2/I1 for first and second electrode pairs, and I3 + I4 and I4/I3 for third 
and fourth electrode pairs) can be changed. To create a dataset, I1 + I2 and I3 + I4 are systematically increased 
from 0.5 mA to 3 mA in steps of 0.1 mA, and I2/I1 is increased from 1 to 10 in steps of 0.1 while keeping I4/I3 
fixed at 1. In this manner, the position of the activated area is changed only on the positive x axis, the same con-
figuration with two electrode pairs.

The second ANN receives xc, Rx, and Ry  as inputs and computes I2/I1, I1 + I2, and I3 + I4 as outputs (figures 
2(b) and (e)). In the same way, y c is close to zero in all trials, thus it is not an appropriate input for ANN. In this 
dataset, the correlation coefficient between Rx and Ry  is 0.2575 which demonstrates that they are independent, as 
we expected.

Two multi-layer perceptron (MLP) ANNs with two and three layers are used to estimate the outputs (see 
figure 2). The number of neurons is set equal in the hidden layers of each ANN and it is changed from 1 to 15. The 
best number of hidden neurons which leads to minimum mean square error (MSE) on the test data is 11 and 14 
for the first and second ANNs, respectively. The sigmoid function is used for the hidden neurons and the linear 
function for the output neurons.

The Levenberg–Marquardt algorithm (Marquardt 1963) is used to train the neural networks. Training stops 
when six sequential increases of error occur on a randomly selected validation dataset. The k-Fold(k = 10) cross 
validation method is used to evaluate the developed ANNs. To do this, all the samples in the dataset are split into k 
non-overlapping subsets. One subset is used as the test data, 80% of the remaining samples (k-1 subsets) are used 
to train the network (training data), and 20% of them are randomly selected as the validation set to avoid over-
fitting of the network. This process is repeated k times and the MSE of the estimations for the test data is calcu-
lated. To better evaluate the developed ANNs, the actual activated area and the predicted one are compared using 
specificity, sensitivity, and the Jaccard index (a statistical parameter for comparing the similarity of two shapes, 
with a range from 0 to 1). There are targets and outputs (ANNs estimation) for each individual sample in the 
test data. The actual activated area and the predicted one are computed using targets and outputs, respectively. 
After calculating false-positive (FP, type I error), false-negative (FN, type II error), true-positive (TP, power) and 
true-negative (TN), the specificity, sensitivity, and Jaccard index are obtained using (18) through (20). FP corre-
sponds to spatial regions where the predicted activated area goes beyond the actual activated area. Conversely, FN 
resulted from the condition where the predicted activated area is smaller than the actual one. Figure 3 shows the 
scientific workflow for development of the inverse problem solution in IHC with two electrode pairs. The similar 
workflow is done for configuration with four electrode pairs.

specificity =
TN

TN + FP
� (18)

sensitivity =
TP

TP + FN
� (19)
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Jaccard index =
TP

TP + FP + FN
.� (20)

2.3.  Axon modeling
The electrical behavior of the neuron is modeled to determine axonal activation in response to TI stimulation (a 
kind of extracellular stimulation). To investigate the ability of neurons to demodulate and follow the envelope 
modulated electric field which results in generating action potentials (APs) just in deep regions rather than in 
overlying ones, a computational axon cable model is developed. The basis of extracellular electrical stimulation 
of axons was described in Rattay (1986) and Richardson et al (2000).

The electrical response of the axon is given by (Rattay 1986):

dVn

dt
=(Ga(Vn−1 − 2Vn + Vn+1

+ Ve,n−1 − 2Ve,n + Ve,n+1)− Ii,n)/Cm

�
(21)

where

Vn = Vi,n − Ve,n + Vr� (22)

and Vi,n is the intracellular potential, Ve,n is extracellular potential (generated by electrodes) at the nth node of 
Ranvier and Vr  is the resting potential. Ii,n describes ionic currents at nth node of Ranvier. It is a function of Vn 

Figure 2.  (a) The activated area with two electrode pairs. (b) The activated area with four electrode pairs. (c) Coordinate system 
(d) ANN architecture for the current ratio and the current sum estimation for configuration with two electrode pairs. (e) ANN 
architecture for the current ratio and the current sums estimation for configuration with four electrode pairs.
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and time (t) and is modeled by Hodgkin–Huxley (HH) differential equations (Hodgkin and Huxley 1952). Cm is 
the nodal capacitance, and Ga is the axial conductance which is given by:

Ga =
1

rs∆l
� (23)

where ∆l is node to node interval and rs is:

rs =
4ρi

πd2
� (24)

where ρi  is the resistivity of axoplasm and d is axon diameter. The developed axon cable model has 11 nodes of 
Ranvier according to Raspopovic et al (2011). In our model (similar to the ‘model A’ which was developed by 
Richardson et al (2000)), the myelin is treated as a perfect insulator (Richardson et al 2000); so, the membrane 
dynamics of the nodes of Ranvier describe the behavior of the model. In other words, the equivalent circuit of 
the Ranvier nodes (or ion currents) are connected to one another by a resistance representing axoplasm. The 
dynamic of ion channels in the developed model is described by differential equations (Hodgkin and Huxley 
1952). These equations along with the geometrical and electrical parameters of the developed axon cable model 
are presented in section 1 of the supplementary material (stacks.iop.org/PMB/64/235010/mmedia).

The activating function (AF), the second spatial difference of Ve  in (21), is responsible for the activations 
in the axon (Rattay 1986). It should be noted that for the first and last nodes of Ranvier, the second spatial  
difference changes to the first spatial difference of Ve . We investigated the axonal activation in response to TI 

Figure 3.  Block diagram of the solution of the inverse problem in IHC with two electrode pairs. The block diagram for 
configuration with four electrode pairs is similar to this one.
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stimulation; The activated area through microscopic approach in IHC and IIC with 50 mm diameter was deter-
mine based on two electrode pairs with equal currents. The configuration of electrodes are fixed and symmetrical 
(φ11 = −25◦, φ12 = 25◦, φ21 = 155◦, φ22 = −155◦, and the arc length of all electrodes= 10◦ ); consequently, the 
generated electric potential is maximum in deep structures and minimum in surface ones. The developed axon 
cable model is oriented in four directions (φ = 0◦, 25◦, 45◦, and 90◦) for each point in the model (see figure 4). 
25◦ is the angle between the x axis and the line that connects the center of the electrodes located in the first and 
third quarter of the coordinate system. Due to the symmetry of the problem, considering the direction of the 
axon cable model in the first quarter of the coordinate system is enough. After computing the phasor electric 
potential for each electrode pair, phasor AF at a desired direction is calculated (AF1 and AF2 for the first and sec-
ond electrode pairs). Then, AF is computed by means of a relationship similar to (14) for scalar quantities (i. e. 
AF  =  ||AF1 + AF2| − |AF1 − AF2||). After computing AF in a desired direction, the axonal response to TI stimu-
lation is computed at that direction. For this purpose, the equal applied currents to the electrodes are increased 
until APs are generated in the axon located at the center of the model. The minimum current that produces APs in 
that axon is called the current threshold (CT) for that particular direction. Subsequently, AF is recalculated in all 
directions with the minimum of CT while 86 axons are distributed at 4 mm intervals in the model to determine 
the activated axons. To determine the activated area more accurately, the same procedure is applied to the axons 
with less interval (1 mm). Finally, the effects of frequencies, f 1 and ∆f , on the minimum of CT are investigated in 
the homogeneous model.

3.  Results

3.1.  Forward problem
The electric field distribution in two developed models under the Neumann boundary condition was analytically 
computed in phasor form for each current source. Subsequently, the electric field MEA for radial and tangential 
direction and maximum electric field MEA were computed using (14) through (17) based on the number of 

electrode pairs. For instance, figures 5(a), (c) and (e) show |−→E AMρ̂(x, y)|, |−→E AMφ̂(x, y)|, and |Emax
AM (x, y)|, respectively, 

for configuration with two electrode pairs and figure 5(e) shows |Emax
AM (x, y)| for configuration with four electrode 

pairs in the IHC of 50 mm diameter and σ = 0.33 S m−1. Additionally, figure 5(d) shows |Emax
AM (x, y)| in the 

infinite cylinder of 50 mm diameter with inhomogeneous conductivity consisting of four layers: scalp (ρ4 = 1, 
σ4 = 0.333 S m−1), skull (ρ3 = 0.95, σ3 = 0.0083 S m−1), cerebrospinal fluid (ρ2 = 0.865, σ2 = 1.79 S m−1), 
and brain (ρ1 = 0.842, σ1 = 0.333 S m−1) (Grossman et al 2017), where ρi  is the normalized layer thickness 
with respect to ρN , for configuration with two electrode pairs. These figures demonstrate that by choosing the 
configuration of electrodes appropriately, the maximum MEA will have greater values in the deep regions of the 
model.

For investigating the influence of inhomogeneity on the spatial distribution of the electric field during TI 
stimulation, we computed the ratio of |Emax

AM (x, y)| in the homogeneous model to the inhomogeneous one (see 
figure S3). The minimum and maximum of this ratio are 0.91 and 1.32, respectively. These results demonstrate 
that even considering symmetric inhomogeneity can affect the electric field distribution in the infinite cylinder 
model. According to the previous studies, controlling the electric field distribution in NDBS the same as DBS is a 
challenging problem.

Figure 4.  The modeled axons (purple lines) at all desired directions in the center of the infinite cylinder with two electrode pairs 
(red and blue). You can see the geometric structure of the axon cable model associated with each purple line in this image. The angle 
between the center of electrodes and the x axis are −25◦, 25◦, 155◦, and −155◦ and the arc length of all electrodes is 10◦.
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The maximum relative error between analytical and numerical methods for |Emax
AM (x, y)| in homogeneous 

and inhomogeneous models were 5.8% and 4%, respectively. The maximum errors occur at the edge of two 
developed models due to Gibbs phenomenon. It is the peculiar manner in which the Fourier series of a piecewise 
continuously periodic function (such as (4)) behave at discontinuities and create overshoots in these locations. 
The overshoots do not die out as the series is truncated (Pinsky 2008).

From (14), it can be found that MEA at a given direction will maximize where the amplitudes of the electric 
field generated by each electrode pairs are close together. Thus, the position and dimension of the activated area 
(the area where the maximum electric field MEA is greater than the given threshold) can change not only with the 
configuration of electrodes but also with the currents applied to them.

Determining the activated area in the IHC through the macroscopic approach (using 193 V m−1 threshold) 
showed that it is possible to activate the region in the depth of the model without activating overlying ones (see 
figures S2(a)–(c)). By alternating the current ratio (I2/I1) from 1 to 2, 4, 6 and keeping the current sum constant, 
the location of the activated area moves toward the first electrode pair with less injected current because the 
amplitudes of the electric field generated by each pair of electrodes will be equal at that position. Figure 6 demon-
strates this property for |Emax

AM (x, y)|. It shows, for instance, that xc moves 5.3 mm toward the first electrode pair by 
doubling the current ratio.

Figure 5.  (a) Radial electric field MEA (|−→E AMρ̂(x, y)|), (b) tangential electric field MEA (|−→E AMφ̂(x, y)|), (c) maximum electric 

field MEA (|Emax
AM (x, y)|) in an IHC with two electrode pairs (red and blue) that I1 = I2 = 1 mA. (d) Maximum electric field MEA 

(|Emax
AM (x, y)|) in the brain of IIC with two electrode pairs (red and blue) that I1 = I2 = 1 mA. (e) Maximum electric field MEA 

(|Emax
AM (x, y)|) in the brain of IHC with four electrode pairs (red, green, orange, and blue) that I1 = I2 = I3 = I4 = 1 mA. The angle 

between the center of electrodes and x axis are −25◦, 25◦, −155◦, and 155◦ for two electrode pairs and −25◦, 25◦, 65◦, 115◦, 155◦, 
−155◦, −115◦, and −65◦ for four electrode pairs. The arc length of all electrodes is 10◦.
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To investigate further, the exact relationship between stimulation parameters and the activated area was 
extracted when the configuration of electrodes were fixed the same as two electrode pairs model in figure 5. For 
this purpose, the activated area in IHC was determined through the macroscopic approach (using 193 V m−1 
of |Emax

AM (x, y)| threshold), and xc and Ry  (as the first step in the inverse problem) were computed when I2/I1 was 
increased from 1 to 10 in steps of 0.05 while the current sum was kept fixed at 2 mA. As in the k-Fold (k = 5) cross 
validation method, 80% of all samples were used to fit the nth-degree polynomial functions on the points ((I2/I1, 
xc) and (I2/I1, Ry ) samples). The remaining samples, test data, were used to evaluate the fitted polynomial func-
tions. This process was repeated 5 times and MSE of the test data was calculated; the results are given in table 1. 
The same procedure was done by systematically increasing I1 + I2 from 0.5 mA to 3 mA in steps of 0.01 mA 
and keeping the current ratio fixed at 1 (table 1). Since xc is zero in all trials, it is not given in the table. The low 
MSE values of the test data demonstrate that it is possible to control the size and location of the activated area by 
means of changing stimulation parameters. Consequently, some methods can be developed to solve the inverse 

problem.
Several other parameters can change the size and location of the activated area such as the arc length of the 

electrodes and the electrodes’ positions (for instance asymmetrical configuration of electrodes); however, we do 
not focus on them because these changes are not as easy as applied currents to the electrodes.

3.2.  Inverse problem
By changing the current sum and current ratio of the applied currents to the electrodes, two datasets were 
created. These datasets are associated with two and four electrode pairs with 474 and 15 755 samples, respectively. 
Nonlinear regression between inputs and outputs was performed to solve the inverse problem using two ANNs. 
Figure 2 shows the inputs and outputs of each ANNs. As we mentioned in section 2.2, the activated area in each 
trial was obtained with 193 V m−1 of |Emax

AM (x, y)| threshold through the macroscopic approach. The neuron 
anatomy and the applied current characteristics have not been included in the aforementioned threshold. If the 
actual threshold is kV m−1, the current sum and current ratio which are estimated by the proposed method for 
activating a desired location should be multiplied by k/193. It is because of the linear relationship between the 
boundary condition and the electric field distribution in our developed models.

The MSE values were obtained between targets and estimations in the test data. Also, for better evaluation of 
two developed ANNs, the specificity, sensitivity and Jaccard index were calculated between the actual activated 
area and predicted one, and the Mean and SD of these parameters and the MSE of the test data for each developed 
ANN are given in table 2. The values demonstrate that the stimulation parameters can be obtained accurately 
according to a desired activated area. Also, the Mean and SD of errors between targets and estimations in the test 
data are given in table 2. According to these results, both ANNs perform well in estimating the outputs since the 

Figure 6.  Contours of 193 V m−1 of |Emax
AM (x, y)|. The configuration of electrodes are the same as two electrode pairs model in 

figure 5 and the current sum is 2 mA. I1 and I2 are associated with the red and blue electrode pairs, respectively.

Table 1.  5-fold cross validation method results.

Variable Order of fitted polynomial MSE (mm2)

I1 + I2 is fixed xc 5 0.0008

Ry  4 0.0021

I2/I1 is fixed Ry  4 0.0030

Phys. Med. Biol. 64 (2019) 235010 (18pp)



12

F Karimi et al

Mean is near zero and the SD is small (figure S4 shows error histograms). Although the results demonstrate that 
the first ANN is better than the second one, it is possible to control the activated area more desirably in the second 

method.

3.3.  Axon modeling
A compartmental axon cable model was used to investigate if electric potential distribution generated by the 
electrodes can generate APs only in neurons located in the deep region and to determine the responses of the 
neurons to the modulated electric field.

AF was obtained in four directions in IHC and IIC (see figure 7). The AF values in the deep structures of 45◦ 
direction are more than twice the maximum values for 0◦ and 90◦ directions in the surface regions. The current 
threshold (the minimum current in which the axon located in the center of the model spikes in every cycle of the 
input signal) for four mentioned directions was computed while f1 = 2500 Hz and ∆f = 20 Hz. The results are 
given in table 3 for the homogeneous and inhomogeneous models.

AF values in four directions with the minimum CT (160 µA  for the homogeneous model and 192 µA  for 
the inhomogeneous one) were obtained again. AF values can only activate axons at depth of 90◦ direction (see 
figures 8(a) and (b)). Although the maximum values of the second spatial difference of electric potential in 
φ = 0◦, 90◦ (at surface regions) and in other directions (at deep regions) are greater than the values that gen-
erated APs in the mentioned axons (at 90◦), these maximum values cannot activate the axons in the model.  

Table 2.  The statistical parameters for evaluating two developed ANNs in the homogeneous model. The geometries are the same as 
figures 5(e) and (h) for the first and second ANNs, respectively.

Output MSE

Error Sensitivity Specificity Jaccard index

(Mean ± SD) (Mean ± SD) (Mean ± SD) (Mean ± SD)

1st ANN I2/I1 1.73 × 10−4 −1.26 × 10−4 ± 0.0125 0.9955 ± 9.24 × 10−4 0.9952 ± 0.0010 0.9654 ± 0.1125

I1 + I2 3.172 × 10−5 (mA2) 6.32 × 10−5 ± 0.0033

I2/I1 0.0924 −4.89 × 10−4 ± 0.3065

2nd ANN I1 + I2 0.0138 (mA2) −2.02 × 10−4 ± 0.1179 0.9926 ± 8.33 × 10−4 0.9925 ± 7.19 × 10−4 0.9440 ± 0.1125

I3 + I4 0.0033 (mA2) 2.08 × 10−5 ± 0.0570

Figure 7.  Second spatial difference of the electric potential in four directions for the homogeneous model with two electrode pairs 
that I1 = I2 = 0.5mA, all values are in volt. The angle between the center of electrodes and x axis are −25◦, 25◦, −155◦, and 155◦ and 
the arc length of all electrodes is 10◦. (a). φ = 0◦, 90◦. (b) φ = 45◦. (c) φ = 25◦.
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However, the first spatial difference of the electric potential at the first and last nodes of the stimulated axons is 
great enough to activate them. These results demonstrate that similar to the macroscopic approach, the activated 
area is a connected space and has been located at deep regions of the model.

Figures 8(c) and (d) show the activated area in the homogeneous and inhomogeneous models at φ = 90◦ 
to more accurately investigate the spatial resolution of stimulation. Despite our expectation, the activated areas 
computed using the macroscopic (figure 6 in section 3.1) and microscopic approaches are not similar. A possible 
reason is that AF is computed only in four directions. Figure 8 shows the differences between the homogeneous 
and inhomogeneous models. Although the geometric properties of the developed axon cable model affect the 
reported results (such as CT), similar results can be yielded using other geometrical properties. For instance, by 
using 1000µm and 1500µm node to node separation, minimum CT in four directions will be 82µA and 52µA,  
respectively. Therefore, CT decreases as the node to node separation increases, which is in agreement with the 
results of rectangular pulse DBS (Åström et al 2015).

The low-pass filtering behavior in the membrane of neurons depends on the axon cable model, the input 
current characteristics (amplitude and frequency), and the instant voltage of the membrane. We found that the 
developed axon cable model cannot follow the frequencies higher than 2500 Hz . Figure 9 illustrates the electrical 
response of the axon to the modulated electric field in the homogeneous model. Unlike axons stimulated with 
∆f = 50 Hz, no APs were observed in the axons stimulated with ∆f = 0. These results indicate that the axon 
does not follow high frequency components of the input signal; however, it seems that the axon follows the enve-
lope of the signal.

At the end of this section, the effects of ∆f  and f 1 on CT were evaluated in the homogeneous model. ∆f  was 
increased from 10 Hz to 100 Hz in steps of 10 Hz while keeping f 1 fixed at 2500 Hz  and f 1 was increased from 
2500 Hz  to 6000 Hz  in steps of 500 Hz while keeping ∆f  fixed at 50 Hz. In all cases, AF (in φ = 90◦) was com-
puted and applied to the axon located at the center point of the model. The results are represented in table 4. CT 
decreases as ∆f  increases from 10 Hz to 60 Hz, and then increases as ∆f  reaches 100 Hz (table 4. A). A possible 
reason is that there is a resonance in the electrical response of neurons (Hutcheon and Yarom 2000). On the other 
hand, while f 1 increases from 2500 Hz  to 6000 Hz , CT increases continuously (table 4. B). These computational 
results are in agreement with practical ones reported in the literature (Grossman et al 2017). It is obvious that the 
MEA of the input signal does not depend on ∆f  or f 1; however, since the axon cable model is time-dependent, 

such properties affect the model response and consequently CT.

4.  Discussion

The brain tissue was modeled as IHC and IIC and the electric field and potential distributions were computed 
analytically to better understand how this technique works. Since there is a linear relationship between electric 
field strength and the dimension of the model, our results are compatible with all other diameters. For instance, 
if the diameter of the model is a mm while keeping all other parameters constant, the strength of the electric 
field distribution which is computed by the 50 mm diameter should be multiplied by 50/a. Therefore, increasing 
model size decreases the electric field strength and it is a challenge associated with using NDBS in the human 
brain. The effects of stimulation parameters on electric field distribution and the activated area were quantified. 
We showed that the activated area can be moved either by changing the electrodes’ positions or the ratio of 
applied currents to them in a quantified manner. The heterogeneity and anisotropy of brain tissue, which have 
been investigated in several studies (Åström et al 2012, Howell and McIntyre 2016), affect electric potential and 
field distributions in DBS. In NDBS, we consider inhomogeneity with cylindrical symmetry in infinite cylinder 
because only in this way, can the problem be solved analytically. Our results demonstrate that even symmetric 
inhomogeneity can affect electric field distribution.

To achieve the best possible therapeutic outcome of the NDBS method, the optimization of stimulation set-
tings to activate a desired region of the brain is essential. To approach this goal in NDBS, we developed two ANNs 

Table 3.  Current threshold for four directions in IHC and IIC with two electrode pairs. The geometries are the same as two electrode pairs 
model in figure 5. The injected current is increased from 0 µA to 1500 µA with 1 µA step.

Direction

CT (µA)

Homogeneous Inhomogeneous

0◦ a a

90◦ 160 192

45◦ 222 269

25◦ 370 452

aNo APs generated.
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to determine the stimulation parameters based on a desired activated area in IHC with two and four electrode 
pairs. The results showed the high specificity and sensitivity of two developed ANNs in activating symmetric 
targets. Also, they demonstrated that there are high correlations between the Euclidean distances of the COG to 
the contour points in IHC with two electrode pairs and the limitations in controlling the shape of the activated 
area can be decreased through several methods such as increasing the number of electrode pairs. The results of 
the developed ANN with four electrode pairs demonstrated this claim. We should mention that the same optim
ization procedure can be used to develop automatic methods for determining stimulation parameters based on 
the desired and symmetric activated area location in IIC. In this case, we only need to create new datasets and 
train ANNs with these new datasets. It may be required to change the number of hidden layers and neurons 
in them to minimize MSE on the test data. For other ideal models such as homogeneous and inhomogeneous 
sphere, the procedure is the same. Additionally, it should be noted that we have investigated the possibility of 
whether ANN could be considered as a possible solution for the problem or not. For this purpose, we have imple-
mented our proposed method for symmetrical electrode placement, and so symmetrical targets. The results sug-
gest that it is a possible solution. If we want to consider non-symmetric targets or targets, not only should we use 
non-symmetric electrode placements in creating datasets, but also we need more inputs in our ANNs (specify 
more than one point on the activated area Alzheimer’s boundary and calculate their Euclidean distance between 
the COG and those points). Undoubtedly, for realistic head model incorporating heterogeneity and anisotropy, 
the optimization problem becomes more challenging. In this case, it is not possible to use fixed electrodes for 
solving the optimization problem due to asymmetrical features and because the electrodes’ positions should 
be considered as ANN outputs. One possible solution is considering an array of fixed electrodes and different 
combinations of active electrodes to create a very big dataset; however, results from our other studies using this 
concept suggest that by choosing the configuration of electrodes appropriately, the activated area is a connected 
space and thus, we can use the modified version of the proposed optimization algorithm in those models. Finally, 
it is unmistakably clear that because neither the spatial resolution nor the exact and actual grand truth based on 
experimental assessments are available for training the ANNs, the proposed ANN may confront multiple limita-
tions in practical uses.

According to Åström et al (2015), the excitation electric field thresholds were relatively independent of the 
stimulation amplitude for different axon size; therefore, we used electric field MEA to determine VTA through 
the macroscopic approach. The orientation for computing MEA is important and influences the clinical results 
of stimulation.To the best of our knowledge, determining the most important orientation(s) in the TI stimula-
tion by using in vitro and in vivo experiments or the exact models considering inhomogeneity and anisotropy 

Figure 8.  (a). The axon model distribution at 4 mm interval in homogeneous model. (b). The axon model distribution at 4 mm 
interval in inhomogeneous model. (c). The axon model distribution at 1 mm interval in homogeneous model. (d). The axon 
model distribution at 1 mm interval in inhomogeneous model. Black markers represent the unstimulated axons and green markers 
represent the stimulated ones. The model is 50 mm diameter infinite cylinder with two electrode pairs which the angle between the 
center of electrodes and x axis are −25◦, 25◦, −155◦, and 155◦ and the arc length of all electrodes is 10◦.
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was not investigated. Therefore in this paper, we used |Emax
AM (x, y)| for calculating the activated area to show that 

in TI stimulation, it is possible to activate deep regions without activating overlaying ones if the configuration of 
electrodes are chosen appropriately.

The fundamental concept of this new NIBS method is that neurons cannot follow the high frequency comp
onents of the input signals due to their low-pass filter behavior. Although this behavior is common among all 

Figure 9.  APs in a axon located at the center of the homogeneous model with I1 = I2 = 0.12 mA and f1 = 2500 Hz at φ = 90◦. The 
geometry is the same as figure 5(c). (a) Membrane potential at first node of axon with ∆f = 50 Hz, (b) Filtered membrane potential 
at first node of axon with low-pass 10th-order Butterworth filter with 1000 Hz  cut off frequency (∆f = 50 Hz), (c) Membrane 
potential at first node of axon with ∆f = 0, (d) Filtered membrane potential at first node of axon the model with low-pass 10th-
order Butterworth filter with 1000 Hz  cut off frequency (∆f = 0).
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neurons, the characteristics of this filter are dependent on the neurons’ properties. To investigate this fact and 
also determine the spatial resolution of stimulation, the electrical response of neurons was modeled. The axon 
Alzheimer’s myelin was functioned as a perfect insulator and so, only the membrane dynamics of the nodes of 
Ranvier reflect the behavior of the model. The AF with the minimum of CT was calculated in homogeneous and 
inhomogeneous models for four directions and was applied to the axon cable model. Only in φ = 90◦ in the mid-
dle of the model, APs were generated in the axons (see figure 8). The results of spatial resolution analysis showed 
that although the activated area was expected to have more length in the y  axis compare to the x axis, it did not 
(see figure 8). By considering more directions, the activated areas may become more similar in macroscopic and 
microscopic approaches. We should note that the compartmental axon cable model plays an important role in 
reported results such as CT. More complicated axon cable models were developed in Richardson et al (2000) and 
can be used in future work to investigate the physiological effects of this new NIBS method on the brain tissue 
more accurately.

The mechanism of high frequency alternating current (HFAC) blocks in neurons was investigated in Pyra-
gas et al (2013) and Bhadra et al (2007). Based on Bhadra et al (2007), there are relationships between the block 
threshold (defined as the voltage below which the complete block was not obtained), the stimulation frequency 
and the axon parameters. On the one hand, this phenomenon may be a challenging problem associated with 
NDBS because it is possible that in some points the amplitude of high frequency electric potential is above the 
block threshold and the neurons located in these points become blocked, which is undesirable. On the other 
hand, a specific model for investigating the effect of HFAC on neurons has not been developed yet (to the best 
of our knowledge) and choosing a model may influence the results. Additionally, the existing experimental data 
for block phenomenon in frogs (Kilgore and Bhadra 2004), cats (Bhadra et al 2006) and rats (Bhadra and Kilgore 
2005) are from research on their sciatic nerves, pudendal nerves and peripheral nerves, respectively, and they are 
not related to the brain Alzheimer’s neurons. Future studies are required to investigate how these high frequency 
electric fields affect the brain.

5.  Conclusion

In this study, the use of IFC as NDBS was investigated. Computational models were solved analytically, the electric 
field and potential distributions were calculated based on stimulation parameters and the activated area was 
determined in the homogeneous and inhomogeneous models. We quantified relationships between stimulation 
parameters and the location of the activated area. Based on these relationships, two optimization methods 
for programming NDBS based on ANNs for two and four electrode pairs in the homogeneous models were 
developed. They offer a possible solution to the challenge of manually adjusting stimulation parameters. The 
relationship between extracellular electric potential and neural activation to precisely determine the activated 
area was evaluated. In this study we confronted three main limitations. The first limitation is that we have been 
forced to use symmetric and simple geometries in which analytical solutions exist. The second limitation is lacking 
the ground truth data which should be obtained using experimental assessments to train ANNs. Moreover, the 
developed ANNs can determine the stimulation parameters for activating symmetric targets in the brain. The 
last limitation is the issue about using electric field MEA to determine VTA through the macroscopic approach 
that may not be the most important orientation(s) in the TI stimulation. Future work may involve applying this 
method to a more complex and accurate brain model, increasing the spatial resolution of this method by using 
arrays of electrode pairs in conjunction with a suitable optimization algorithm. Additionally, deriving activation 
threshold levels can be used to determine the activated area without requiring compartmental axon cable models. 

Table 4.  Effect of A. ∆f  and B. f 1 on CT in the homogeneous model where the geometry is the same as figure 5(c).

A B

∆f (Hz) CT (µA) f1 (Hz) CT (µA)

10 293 2500 94

20 160 3000 129

30 128 3500 168

40 105 4000 210

50 94 4500 256

60 89 5000 311

70 96 5500 387

80 104 6000 500

90 113

100 123
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Moreover, testing this method and proposed optimization algorithms in vitro (phantom measurement) and in 
vivo (rat measurement) can be used for further investigating and evaluating its effectiveness for clinical use.
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