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Abstract

With the increase of known RR Lyrae stars, it is reliable to create classifiers of RR Lyrae stars based on their
photometric data or combined photometric and spectroscopic data. Nevertheless the total number of known RR
Lyrae stars is still too small compared with the large survey databases. So classification of RR Lyrae stars and other
sources belongs to imbalanced learning. Based on Sloan Digital Sky Survey (SDSS) photometric and spectroscopic
data, we apply cost-sensitive Random Forests fit for imbalanced learning to preselect RR Lyrae star candidates.
Only with photometric data, - - - -u g g r r i i z, , , is the best input pattern. While also considering physical
parameters (Teff, [Fe/H], log(g)), the optimal input pattern is Teff, [Fe/H], log(g), - - - -u g g r r i i z, , , , at
this moment for cost-sensitive Random Forests, the performance metrics of completeness, contamination, and
Matthews correlation coefficient are 0.975, 0.019, and 0.975, respectively. It indicates that adding stellar physical
parameters is helpful for identifying RR Lyrae stars from other stars. We apply the best classifiers on the SDSS
photometric data and combined photometric data with physical parameters to select RR Lyrae star candidates.
Finally 11,041 photometric candidates with spectral type A and F are obtained, and then 304 candidates with
physical parameters are selected out. Among the 304 candidates, a small part are HB stars, BS stars, RGB stars,
and peculiar stars, and the rest are unknown in the Simbad database. These candidates may be used as the input
catalog for time-series follow-up observations.

Unified Astronomy Thesaurus concepts: RR Lyrae variable stars (1410); Stellar types (1634); Astronomy databases
(83); Metallicity (1031); Random Forests (1935); Astrostatistics (1882); Astronomy data analysis (1858)

Supporting material: machine-readable table

1. Introduction

RR Lyrae stars have been studied for over a century now,
and were first discovered in nearby globular clusters. These
stars have periods of 0.2–1.1 days and present brightness
variations of the order of a magnitude. They pulsate in radius
and luminosity over short periods with the brightness rising
quickly to its peak followed by a slow and gradual drop (Kayal
& Benacquista 2013). RR Lyrae stars all have an average
absolute magnitude of ∼0.5, and serve as standard candles to
determine distances by comparing the apparent and absolute
magnitudes. Further, they are the RR Lyrae stars that fix
the cosmological distance scale and witness the evolution of the
universe as mainly Population II stars. RR Lyrae stars may be
taken as good tracers to study the structure, formation, and
evolution of the Galactic halo, which helps us understand the
history of our Milky Way as well as that of other galaxies.
Therefore it is an important issue to collect as many RR Lyrae
stars as possible and separate them from other sources.

Many previous works focused on the Sloan Digital Sky
Survey (SDSS) colors to separate RR Lyrae stars from the large
databases. Krisciunas et al. (1998) concentrated on the
identification of the RR Lyrae stars based on the SDSS colors.
Ivezić et al. (2000) selected 148 RR Lyrae star candidates by
SDSS color criteria for about 100 deg2 of sky. Ivezić et al.
(2005) also picked out RR Lyrae star candidates, which were
efficiently recognized even with single-epoch data.

Not only the colors, but also the physical parameters are used
to study the properties of RR Lyrae stars. Metallicity is
concerned with the chemical composition of a star. Since RR
Lyrae stars are repeatedly converting between singly and

doubly ionized helium, the abundance of helium is of
importance in determining properties of an RR Lyrae star.
Furthermore, an RR Lyrae star is a relatively low-mass star
with low metallicity. Therefore, RR Lyrae stars are considered
to directly reflect the original abundance of heavy elements in
the gas cloud. Many studies demonstrate that many properties
are related to the metallicity of RR Lyrae stars. For instance,
when metallicity decreases, periods of RRab and RRc stars
increase slightly. Such relations of the properties of RR Lyrae
stars in globular clusters and in the galactic field still exist.
Nemec et al. (2013) studied the spectroscopic iron-to-hydrogen
ratios, radial velocities, atmospheric parameters, and new
photometric analyses of 44 RR Lyrae stars. They concluded
that there were the empirical Fourier-based P–[Fe/H] relations
for non_Blazhko and most Blazhko RRab stars. Haschke et al.
(2012) presented for the first time a detailed spectroscopic
study of chemical element abundances of metal-poor RR Lyrae
stars in the Large and Small Magellanic Cloud. They also
determined abundance ratios for 10 chemical elements and
found that spectral synthesis of the α-elements in metal-poor
field RR Lyrae stars revealed a mean α-enhancement of
0.36±0.25 dex in very good agreement with these other
sources.
SDSS survey provides photometric data and spectroscopic

data. The basic atmospheric parameters (effective temperature
Teff, surface gravity log(g), and metallicity [Fe/H]) for stars are
also presented. Based on SDSS databases, we may study
properties of RR Lyrae stars and other stars. Given stellar
parameters, we further explore the difference between RR
Lyrae stars and other stars.
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In this work, our primary goal is to study classification
characteristics of RR Lyrae stars and get the RR Lyrae star
candidates. This paper is organized as follows. Section2
provides a brief description of the SDSS survey. How to get the
samples is also presented in detail. In Section3, we describe
the cost-sensitive Random Forest algorithm and apply it to the
samples. Section4 discusses the performance of the approach
in our case and analyzes the results. Finally, we draw the
conclusions and present future work.

2. The Data

SDSS (York et al. 2000) is a major multifilter imaging and
spectroscopic survey supported by a 2.5 m optical telescope,
which provides a wide field of view, and has five filters located
in the u, g, r, i, and z bands, which range from 0.36 to 0.90 μm.
The processed data include all photometric and spectroscopic
observations. Compared to the prior SDSS Data Release, SDSS
Data Release 15 (DR15) provides more robust and precise
photometric and spectroscopic data.

All SDSS data are available from the Catalog Archive Server
(CAS) database. First, all standard stars are collected from the
Stripe82 table with photometry. The number of SDSS standard
stars is 1,006,843. We refer to this particular sample throughout
this paper as Sample1. A cross-match between them and the
sppParams database is performed within a radius of 3 0. Then
we can get the counterparts for sources with stellar parameters,
which contains 27,735 standard stars with stellar parameters,
hereinafter considered as Sample2.

The Gaia survey provides 140,784 RR Lyrae stars. In
order to obtain as many RR Lyrae stars as possible, we
primarily use the Optical Gravitational Lensing Experiment
(OGLE; Soszyński et al. 2016) catalogs of RR Lyrae stars,
and also collect RR Lyrae stars by the CTRS (Drake et al.
2013a, 2013b, 2014, 2017; Torrealba et al. 2015), ASAS
(Pojmański 1997; Richards et al. 2012), ASAS-SN (Jayasinghe
et al. 2018), ATLAS (Tonry et al. 2018), IOMC (Alfonso-
Garzón et al. 2012), LINEAR (Palaversa et al. 2013), and
NSVS (Kinemuchi et al. 2006), as well as from the works
based on the Simbad database (Wenger et al. 2000). The whole
number of known RR Lyrae stars and Gaia RR Lyrae stars
amounts to 213,476. To understand the statistical properties of
RR Lyrae stars with SDSS photometries, the whole RR Lyrae
star sample is cross-matched with the SDSS database in 3 0.
The number of SDSS RR Lyrae stars is 4239. Hereinafter it is
taken as Sample3. Then we further perform cross-matching of
the sppParams database with the whole RR Lyrae star sample
to get physical parameters from SDSS. Finally we obtain 3932
SDSS RR Lyrae stars with stellar parameters, short for
Sample4. Also we obtain 239,302 sources from sppParams
table to select RR Lyrae star candidates using the algorithm of
this work. For these sources, we only keep spectral type A and
F stars avoiding other types of star pollution since most RR
Lyrae stars belong to spectral type A and F stars. We name this
particular sample throughout this paper Sample5.

3. The Method

3.1. Random Forest

Random Forest is an improvement over bagged decision trees
(Breiman 2001). There is a problem in decision trees that they are
greedy. Decision trees select the feature using a greedy algorithm
that we make the locally optimal choice at each stage with the

intent of finding a global optimum. So the decision trees may
have many structural similarities and high correlation in their
predictions. Random forest improves the algorithm for the way
that the subtrees are learned so that the resulting predictions have
less correlation. There are many advantages of Random Forest
(Gao et al. 2009). Among many machine-learning algorithms, the
accuracy of Random Forest is higher. Given a large database, it
can handle efficiently. In the forest building progress, it produces
an inherent unbiased estimate of the generalization error. In
addition, it has an efficient way of estimating missing data and
maintains accuracy when a large fraction of the data are missing.
Also, it is helpful for imbalanced data.

3.2. Cost-sensitive Random Forest

Although Random Forest is a powerful machine-learning
algorithm owing to its practical advantages, the standard
Random Forest is not suited to some cases, like imbalanced
data. In such cases, classification methods tend to be biased
toward the majority class. These algorithms are inefficient in
this case mainly because they seek to maximize a measure of
performance such as accuracy which is no longer proper
for skewed data. Accuracy treats equally the correctly and
incorrectly classified examples of different classes. When
dealing with the balanced data, the class weight of the positive
and the negative class is usually the same. Similar to the
previous work (Zhang et al. 2018), we are more interested in
minority. If not setting different costs for different class, the
prediction is inclined to the majority. A learning algorithm
ensembling cost-sensitivity is used to deal with imbalanced
data. In other words, a learning algorithm factors in the costs
when building a classifier. For adjusting the imbalance of cost,
we set Random Forest with the parameter C of class i to
class_weight *i C[ ] , called cost-sensitive learning. So far a lot
of research has been done in this area. For example, Yin &
Yuping (2014) proposed a cost-sensitive algorithm based on
Random Forest and their results showed that the cost-sensitive
Random Forest achieved higher performance. Here the
program of cost-sensitive Random Forest is adopted from the
SCIKIT-LEARN library (Pedregosa et al. 2011).

3.3. Evaluation Metric

Completeness, contamination, and Matthews correlation
coefficient (MCC) are used to evaluate the performance of
algorithms. As provided by Sesar et al. (2007), the complete-
ness is defined as the fraction of recovered RR Lyrae stars in
the whole RR Lyrae sample and the contamination is defined as
the fraction of false RR Lyrae stars in the predicted RR Lyrae
sample. The MCC metric was first introduced by Matthews
(1975) to assess the performance of protein secondary structure
prediction. MCC is used in the machine-learning algorithm as a
measure of the quality of binary classifications. It takes into
consideration true and false positives and negatives and is
generally regarded as a balanced measure that can be used even
if the classes are of very different sizes. It returns a value
between −1 and +1. A coefficient of +1 represents a perfect
prediction, 0 an average random prediction, and −1 the worst
possible prediction. In the study of Sabri et al. (2017), they
compared the four metrics: MCC, Area Under ROC Curve
(AUC), Accuracy, and F1. Accuracy and F1 metrics gave
various performance evaluation for different classifiers and
these two metrics were sensitive to the data imbalance. While
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metrics MCC and AUC had shown constant performance for
different classifiers. Therefore MCC and AUC were robust to
data imbalance. There was a limitation of using AUC, which
was no explicit formula to compute AUC. However, MCC had
a close form and it was very well suited to evaluate the optimal
classifier for imbalanced data. As a result, here we use the
completeness, contamination and MCC to evaluate the
performance of a classifier.

4. Results and Discussion

Our aim is to select RR Lyrae star candidates from the whole
star sample. Sample imbalance, the performance of a classifier
may influence the performance of selecting RR Lyrae stars.
Our work belongs to the imbalance problem. Here we plan to
apply cost-sensitive Random Forest to choose RR Lyrae stars.

The samples are randomly split into training and test sets,
whose number ratio is 7:3. For cost-sensitive Random Forest,
the model parameters and imbalance weighting parameter need
be adjusted in order to achieve the best performance. The n
estimators range from 10 to 100. The imbalance weighting
parameter for the negative class is c, whose value goes from 0.1
to 1 and its step is 0.1. We use the tenfold cross-validation
during the validation stage.

First the distribution of the SDSS standard stars and all
RR Lyrae stars in the color spaces is indicated in Figure 1.
From Figure 1, it is still difficult to discriminate RR Lyrae

stars from other stars in the 2D color spaces although the
number of known RR Lyrae stars increase compared to the
work (Zhang et al. 2018). So we use Sample1 and Sample3 to
build cost-sensitive Random Forest classifiers. The different
color combinations ( - -u g g r, ), ( - - -u g g r r i, , ), and
( - - - -u g g r r i i z, , , ) are adopted as input patterns. For
different input patterns, cost-sensitive Random Forest shows
different performances. Table 1 shows that the performances of
cost-sensitive Random Forest are given by means of metrics.
According to this table, it is found that more colors are easy to
separate RR Lyrae stars from other stars efficiently. When
- - - -u g g r r i i z, , , as input pattern, the optimal

completeness, contamination, and MCC are 0.853, 0.135, and
0.858, respectively. So ( - - - -u g g r r i i z, , , ) is the best
input pattern for classifying the RR Lyrae stars and other stars.
It is also concluded that the performance of a classifier is
seriously influenced by the training sample, especially known
RR Lyrae stars available, with the work of Zhang et al. (2018)
for contrast. That is to say, it is of great value to construct a
complete and representative training sample. There is always a
big gap between ideal and reality. In reality, we try to obtain a
training sample as complete and representative as possible.
Moreover the performance of a classifier is directly limited by
the training sample. For different training samples, the same
classifier has variant performance. No single algorithm always
remains invincible. For Fast Boxes, we hypothesize that the

Figure 1. Contour and scatter plot of different parameters. The scatter points represent RR Lyrae stars, and the contour plot represents the other stars.
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positives cluster relative to the negatives. This means that the
first step is to cluster the positives and then discriminate the
positives from negatives. In detail, we draw a high dimensional

axis-parallel box around each cluster and then adjust each
boundary locally. If the cluster assumption about the class
distributions is not correct, then Fast Boxes could meet

Table 1
Performance of Cost-sensitive Random Forests with Different Colors

Input Patterns Completeness Contamination MCC

- -u g g r, 0.837±0.011 0.173±0.006 0.831±0.006
- - -u g g r r i, , 0.853±0.015 0.157±0.011 0.847±0.005
- - - -u g g r r i i z, , , 0.853±0.008 0.135±0.007 0.858±0.006

Figure 2. Contour and scatter plot of different parameters. The scatter points represents RR Lyrae stars, and the contour plot represents the other stars.

Table 2
Performance of Cost-sensitive Random Forests with Colors and Stellar Parameters

Input patterns Completeness Contamination MCC

- - - -T u g g r r i i z, , , ,eff 0.966±0.006 0.048±0.003 0.953±0.004
- - - -u g g r r i i zFe H , , , ,[ ] 0.961±0.006 0.053±0.006 0.948±0.004
- - - -g u g g r r i i zlog , , , ,( ) 0.960±0.004 0.033±0.005 0.958±0.005

- - - -T u g g r r i i z, Fe H , , , ,eff [ ] 0.971±0.004 0.024±0.004 0.970±0.002
- - - -T g u g g r r i i z, log , , , ,eff ( ) 0.971±0.004 0.021±0.004 0.971±0.003

- - - -T g u g g r r i i z, Fe H , log , , , ,eff [ ] ( ) 0.975±0.003 0.019±0.004 0.975±0.003
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Table 3
Known Sources in Simbad Database

Sources Type R.A. Decl. Teff [Fe/H] log(g) u g r i z

SDSS J232343.55+531738.3 BS 350.93151 53.293978 8457.781 −0.1002491 4.337116 17.13265 15.59565 15.33409 15.25784 15.22331
SDSS J022351.40+000253.1 HB 35.964172 0.048081 5731.531 −1.451072 1.377947 19.30484 18.07692 17.65233 17.46306 17.39419
SDSS J160553.38+045820.4 HB 241.47241 4.972317 8521.262 −1.595541 3.26835 15.43514 14.16756 16.0089 14.44309 14.50237
SDSS J092253.11+144424.9 RGB 140.7213 14.740269 5183.594 −2.136045 2.330663 17.12849 15.84953 15.26474 14.99032 14.88106
SDSS J111028.59-165026.6 HB 167.61913 −16.840746 5886.702 −1.273482 3.223569 19.21599 18.18251 17.7289 17.56809 17.53925
SDSS J222146.49-000723.4 BS 335.44374 −0.12318257 7960.037 −1.250327 4.279664 18.45947 17.28048 17.24497 17.35355 17.38006
SDSS J112525.62-020804.4 HB 171.35675 −2.1345804 8901.773 −2.020908 3.747 18.4117 17.31343 17.51562 17.70451 17.79642
SDSS J124413.20+350251.5 HB 191.05504 35.047659 7783.068 −2.137797 3.885145 19.38168 18.12946 18.20817 18.26938 18.38394
SDSS J160722.91+104656.8 HB 241.84547 10.782462 8504.273 −1.792795 3.275842 16.86022 15.69523 15.82101 15.95104 16.05928
SDSS J101515.20+070456.9 BS 153.81337 7.082504 8186.453 −0.7701482 4.21986 19.64441 18.49322 18.61356 18.74877 18.90405
SDSS J173118.30+071820.3 RGB 262.82626 7.305667 4935.06 −1.046277 2.498016 18.1761 16.42437 15.68004 15.34589 15.19146
SDSS J201958.72-132540.5 HB 304.99468 −13.427916 7811.433 −1.847607 3.526709 19.00633 17.66319 17.65935 17.71493 17.7593
SDSS J120259.05+140206.5 RGB 180.74608 14.035147 5043.187 −1.361025 1.921489 18.32556 16.71644 16.02215 15.64718 15.58309
SDSS J234632.34-084824.8 Pe 356.63473 −8.806893 5106.36 −2.419248 2.300944 20.0033 18.46357 17.79573 17.55091 17.44113
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Table 4
The Catalog of RR Lyrae Star Candidates

Source R.A. Decl. Teff [Fe/H] log(g) u g r i z

SDSS J221247.62+690759.6 333.19851 69.133248 6124.168 −0.1681285 3.48211 17.56385 15.96563 15.22771 14.87916 14.67276
SDSS J165204.91+231252.6 253.02049 23.21464 6941.499 −0.9811056 3.891449 19.95932 18.71199 18.49281 18.38769 18.3522
SDSS J231236.94+210138.9 348.15395 21.027479 6881.329 −1.191111 3.888561 18.20325 17.05122 16.66425 16.52124 16.42668
SDSS J004201.85+004256.4 10.507744 0.71568 6242.705 −1.343125 3.548861 19.80403 18.79634 18.55596 18.42665 18.4069
SDSS J181155.57+234230.6 272.98156 23.708542 5648.04 −0.3218291 3.878797 19.7755 18.19112 17.55933 17.38127 17.25303
SDSS J125141.79+602529.5 192.92416 60.424852 5662.54 −0.5734528 4.367483 20.54886 19.38606 18.95858 18.77245 18.7179
SDSS J111640.57+405450.8 169.16906 40.914116 5674.414 −1.397757 3.334078 20.28753 19.2898 18.9151 18.72502 18.65285
SDSS J235935.22+265351.8 359.89679 26.897733 5745.736 0.08807483 3.747856 16.09045 14.64571 14.10701 13.97607 13.89992
SDSS J081505.54-081541.8 123.77311 −8.261641 8230.285 −1.131375 4.121557 16.30152 14.912 14.75429 14.80451 14.76955
SDSS J211912.47+002538.5 319.80197 0.427362 6135.098 −1.377403 4.433465 19.28309 18.30943 17.92994 17.78351 17.71742

(This table is available in its entirety in machine-readable form.)

6

T
h
e
A
stro

ph
y
sica

l
Jo
u
rn

a
l
S
u
pplem

en
t
S
eries,

246:8
(8pp),

2020
January

Z
hang,

Z
hang,

&
Z
hao



problems. So we adopt cost-sensitive Random Forest instead of
Fast Boxes in this work.

With the arrival of huge spectroscopic data, the stellar
physical parameters are measured. We want to check whether
stellar physical parameters affect the classification of RR Lyrae
stars and other stars. Figure 2 shows that the colors with stellar
parameters or stellar parameter combination can separate the
RR Lyrae stars from other stars better. Then Sample2 and
Sample4 are applied to generate different cost-sensitive
Random Forest classifiers. Table 2 displays the performance
of cost-sensitive Random Forest with best color input pattern
( - - - -u g g r r i i z, , , ) and stellar parameters (Teff, [Fe/
H], log(g)). The results show that (Teff, [Fe/H], log(g),
- - - -u g g r r i i z, , , ) can build the best classifier, whose

completeness, contamination, and MCC achieve 0.975, 0.019,
and 0.975, respectively. It indicates that adding stellar
parameters is helpful for identifying RR Lyrae stars by
comparison of Tables 1 and 2.

Based on the above results, we use the best input patterns to
select RR Lyrae star candidates from the SDSS database. In
order to get more accurate candidates, two procedures are
processed. First, based on the SDSS standard stars and all RR
Lyrae stars for training with - - - -u g g r r i i z, , , as
input pattern, we build a cost-sensitive Random Forest
classifier to select RR Lyrae candidates from SDSS databases,
and get about 11,041 RR Lyrae star candidates from Sample5.
Then with (Teff, [Fe/H], log(g), - - - -u g g r r i i z, , , )
as an input pattern, another cost-sensitive Random Forest
classifier is constructed to select RR Lyrae stars from these
11,041 RR Lyrae star candidates. Finally we obtain 304 RR
Lyrae star candidates. Further to check the 304 sources, we
cross-match the sources with the Simbad survey database.
Among them, there are seven HB stars, three BS stars, three
RGB stars, and one peculiar star. The rest of the sources are
unknown in Simbad. Table 3 shows the 14 known sources.
Table 4 shows the details of all the candidates. It is concluded
that RR Lyrae stars are easy to be confused with HB stars, BS
stars, and RGB stars since RR Lyrae stars have evolved from
the red giant branch (RGB) to their present position on the
horizontal branch (HB) when the helium flash initiates the
triple-alpha reaction in the degenerate core.

5. Conclusion

Serving as distance indicators, RR Lyrae stars are still a
hot and challenging issue in astronomy, and worthy of
research, for instance, a tracer used to study the structure and
evolution of the Galactic halo, and fixing the cosmological
distance scale. By means of the statistical distribution of
different stellar physical parameters and photometries, we
study the classification characteristics of RR Lyrae stars. In
terms of highly skewed data, we adopt cost-sensitive Random
Forests with different input patterns to separate the RR Lyrae
stars from the other types of stars. Finally, we combine the
stellar parameters with photometry to obtain the RR Lyrae
star candidates. These candidates may be performed time-
series follow-up observation. In the future work, we plan to
use the time-domain data. Given time-domain, asynchronous
data and the deeper magnitudes of celestial objects, we will
select many more RR Lyrae star candidates by automated
methods.
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