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Abstract

The LAMOST survey has provided 9 million spectra in its Data Release 5 (DR5) at R∼1800. Extracting precise
stellar labels is crucial for such a large sample. In this paper, we report the implementation of the Stellar LAbel
Machine (SLAM), which is a data-driven method based on support vector regression (SVR), a robust nonlinear
regression technique. Thanks to the capability to model highly nonlinear problems with SVR, SLAM can generally
derive stellar labels over a wide range of spectral types. This gives it a unique capability compared to other popular
data-driven methods. To illustrate this capability, we test the performance of SLAM on stars ranging from
Teff∼4000 to ∼8000 K trained on LAMOST spectra and stellar labels. At g-band signal-to-noise ratio (S/Ng)
higher than 100, the random uncertainties of Teff, log g, and [Fe/H] are 50 K, 0.09 dex, and 0.07 dex, respectively.
We then set up another SLAM model trained by APOGEE and LAMOST common stars to demonstrate its
capability of dealing with high dimensional problems. The spectra are from LAMOST DR5 and the stellar labels of
the training set are from APOGEE DR15, including Teff, log g, [M/H], [α/M], [C/M], and [N/M]. The cross-
validated scatters at ~S N 100g are 49 K, 0.10 dex, 0.037 dex, 0.026 dex, 0.058 dex, and 0.106 dex for these
parameters, respectively. This performance is at the same level as other up-to-date data-driven models. As a
byproduct, we also provide the latest catalog of ∼1 million LAMOST DR5 K giant stars with SLAM-predicted
stellar labels in this work.

Unified Astronomy Thesaurus concepts: Astronomical methods (1043); Astronomy data analysis (1858); Bayesian
statistics (1900); Stellar abundances (1577); Chemical abundances (224); Fundamental parameters of stars (555);
Catalogs (205); Surveys (1671)

Supporting material: FITS file

1. Introduction

As large spectroscopic surveys, e.g., Sloan Digital Sky
Survey (SDSS)/SEGUE (Beers et al. 2006), RAVE (Steinmetz
et al. 2006), SDSS/APOGEE (Majewski 2012), LAMOST
(Deng et al. 2012), Gaia-ESO (Gilmore et al. 2012), and
GALAH (Freeman 2012) proceed, deriving the stellar labels (or
stellar parameters) is of extreme importance. In particular, such
large surveys often observe stars covering a large range of
spectral types. LAMOST, for instance, has observed stars from
O-type to M-type (Liu et al. 2019; Zhong et al. 2019). This
requires that the stellar label estimator must be able to deal with
stellar samples over a large range of spectral types.

Stellar labels are usually determined by comparing an
observed spectrum to a stellar spectral library (either a
precomputed synthetic or empirical stellar spectral library).
The idea of data-driven methods (The Cannon, Ness et al.
2015) is proposed for its capability to set up the mappings from
stellar labels to spectra with a training set and use them to
predict stellar labels for the observed spectra. It has not only
been proved competitive to ASPCAP in the APOGEE case
(Ness et al. 2015) but has also demonstrated the capability of
predicting stellar labels from the low-resolution spectra of
LAMOST K giant stars (Ho et al. 2017b, 2017a). Casey et al.
(2017) and Buder et al. (2018) extended the application of The
Cannon to main-sequence stars in the analysis of the RAVE
and GALAH data, respectively. Based on quadratic models,
improvements such as regularization have been made to make
The Cannon capable of predicting stellar labels more precisely
(Casey et al. 2016, 2017).

In the training stage, with a training set, a Cannon-like
method uses regression methods to build a generative model of
the spectral flux at a given wavelength as a function of stellar
labels, i.e.,

( ) ( [ ] ) ( )l = ¼lF f T g, log , X H , , 1eff

where F(λ) is the normalized spectral flux at wavelength λ, fλ is
the assumed form of spectral flux at λ, and Teff , glog , and [X/
H] are the stellar effective temperature, surface gravity, and
elemental abundances, respectively. In Ness et al. (2015), fλ is
adopted as a quadratic function whose coefficients are
optimized in the training process in order to fit the training
set. A more general case is discussed by Rix et al. (2016). In
the test step, the stellar labels are determined by operating the
generative model to search for a model spectrum that best fits
the observed one.
The idea of data-driven methods is important. However, a

better form of fλ is needed when modeling spectra that cover a
wide range of spectral types. For instance, at around some
strong atomic lines, fluxes can dramatically change in highly
nonlinear ways with Teff and glog . In the left/right panel of
Figure 1, we show the trends of normalized synthetic fluxes
from PHOENIX library (Husser et al. 2013) at around

bMg /Hα. It is clearly seen that a quadratic function is no
longer sufficient to associate the stellar labels with spectral
fluxes when Teff changes from 3000 to 15000 K. This is also
shown in Ting et al. (2019).
One possible solution, the Payne (Ting et al. 2017b, 2019), is

based on neural networks (NN). It is fascinating because in the
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training stage the cost function of the Payne is regularized by a
synthetic gradient. However, an NN-based method may suffer
from the “when-to-stop” problem because the learning curve
would not tell one when the NN is optimized (neither
overfitting nor underfitting). As a consequence, the optim-
ization of these kinds of methods depends on the expertise and
experience of the users.

The support vector regression (SVR; Smola & Schölk-
opf 2004; Chang & Lin 2011), which is well-known for its
robustness in modeling noisy data, is not a newcomer in the
field of spectral data analysis. It is often used to build the
mapping from stellar spectra to stellar labels in previous works
(Li et al. 2014; Liu et al. 2014; Bu & Pan 2015; Lu & Li 2015).
In this paper, following the idea of data-driven approaches, we
present an alternative implementation, the Stellar LAbel
Machine (SLAM), by using SVR to build a generative model
of spectra, which automatically adjusts the model complexity
according to data, and robustly extract as much information as
possible from stellar spectra. Section 2 gives a brief description
of SLAM and Section 3 assesses the performance of SLAM
using the LAMOST DR5. In Section 4, we predict stellar labels
for LAMOST DR5 K giant stars using SLAM with APOGEE
DR15 stellar labels as the training data. Then we present the
resulting catalog of more than a million red giant stars with
precise stellar labels. We discuss the advantages and dis-
advantages of SLAM in Section 5 and present the coefficients
of dependence (CODs) in Section 6. At last, we conclude this
paper in Section 7.

2. The Construction of SLAM

In principle, SLAM consists of three steps.

1. The first step is data preprocessing. This includes spectra
normalization and training data standardization, e.g.,
rescale both stellar labels and spectral fluxes so that their
mean is 0 and variance is 1.

2. The second step is to train the SVR model at each
wavelength pixel using the training set.

3. And the last is to predict stellar labels for observed
spectra.

The details are described below.

2.1. Preprocessing

This step is to map all the normalized spectral fluxes and the
stellar labels of the training set in standardized space (with zero
mean and unity variance). It is necessary for most machine-
learning methods, including SVR, to avoid issues due to the
different scales in different dimensions of the input data.
After correcting its radial velocity (RV), each stellar

spectrum in the training set is normalized by dividing its
pseudocontinuum. In SLAM, we first use a smoothing spline
(de Boor 1978) to smooth the whole spectrum and then exclude
those pixels deviates from the smoothed spectrum by a distance
larger than a threshold, e.g., 1.5 times the standard deviation of
the residuals in the wavelength bin. The pseudocontinuum is
then estimated by smoothing the reserved pixels in the
spectrum. The softness of the smoothing spline, the distance
threshold and the width of the wavelength bins can be adjusted
using experience and also according to the properties of the
spectral data in hand. Then all stellar spectra are resampled to
the same wavelength grid. Assuming that we have m stellar
spectra in the training set and each spectrum has n pixels, let
Fi,j be the jth pixel of the ith normalized stellar spectrum in the
training set, then we have
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Fi,j is then standardized via
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Stellar labels are also standardized in the same way. When the
stellar labels are estimated for the observed spectrum in the
prediction process, they will be rescaled back to physical units.

Figure 1. Examples of how spectral flux changes with two primary stellar labels, i.e., Teff and glog , at two fixed wavelengths. Blue dots in left and right panels are the
flux values of normalized PHOENIX spectra with [Fe/H]=0.0 at λ=5174 Å (Mg b) and 6564 Å (Hα), respectively. Since these two pixels are around the spectral
lines, which are extremely important in deriving stellar labels, a model’s fitting performance for such data is crucial for stellar label prediction.
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It is noted that bad pixels are quite common in spectroscopic
surveys due to sky subtraction, cosmic rays, and problems that
occur in data reduction. These bad pixels contain no
information about stars and their errors cannot be estimated
so that they should be excluded in our analysis. Usually, they
flagged in the released spectral data products by setting flux
error to a very large number or assigning a special flag. In
particular, in our analysis, the LAMOST spectra provide
OR_MASK for every pixel in a spectrum, which equals to zero
when no problems occur in any single exposure and otherwise
equals to a nonzero integer depending on the kind of problem it
suffers from (seehttp://dr5.lamost.org/doc/data-production-
description for more information). We exclude those bad pixels
with nonzero OR_MASK values by assigning zero weights in the
final spectral fitting.

2.2. Training

SVR is a robust nonlinear regression method and has been
used in many astronomical studies (Liu et al. 2012, 2015),
particularly in spectral data analysis (Li et al. 2014; Liu et al.
2014; Bu & Pan 2015; Lu & Li 2015). A more complete
description of SVR can be found in Smola & Schölkopf (2004).
Since SLAM is implemented with python, we adopt the
python wrapper of LIBSVM3 in the scikit-learn
(Pedregosa et al. 2012) package for convenience.

There are two free hyperparameters, C and ò, that represent
the penalty level and tube radius, respectively, in the SVR
algorithm. We adopt the radial basis function as the kernel
(RBF kernel, ( ) ( ∣∣ ∣∣)g¢ = - - ¢x x x xK , exp ) in SVR. As a
consequence, an additional hyperparameter γ, which indicates
the width of the RBF kernel, also needs to be determined.

The choice of the hyperparameters, C, ò, and γ, sets the
complexity of the SVR model. For example, a large C
penalizes outliers heavily so that the regression will probably
be very curved to pass through as many data points as possible,
while a small C tells SVR to ignore the outliers and follow a
smooth trend of the data. In SLAM, the best values of the
hyperparameters are not freely controlled but are automatically
determined by the training set itself. In other words, it is the
training set itself, not the user, that determines the adopted
model (SVR) complexity pixel-by-pixel.

2.2.1. Adaptive Model Complexity

As described above, the jth pixel in the training set has a
mean of 0 and a variance of 1. Let qi denote the stellar label
vector of the ith star in the training set (i.e., a vector consisting
of Teff , glog and elemental abundances) and ( )qfj i be the jth
pixel of the model output spectrum corresponding to the input
stellar label vector qi. Once the model is trained via a specific
set of hyperparameters, we are able to evaluate the mean
squared error (MSE) and median deviation (MD) separately
defined as

[ ( ) ] ( )å q= -
=m

f fMSE
1

5j
i

m

j i i j
1

,
2

and

[ ( ) ] ( )å q= -
=m

f fMD
1

. 6j
i

m

j i i j
1

,

MSE quantifies the scatter of the regression model and MD
quantifies the bias. For the worst regression model, i.e., a
constant model, MSE=1 because it turns out to be the
variance of fi,j according to Equation (5). Theoretically, the
smaller MSE is, the better the fitting is. However, if we train
SVR models directly on the whole training set and pursue the
model that minimizes both MSEj and MDj, we probably get an
overfitted model which gives us MDj=MSEj=0 by inter-
polating data. In practice, to avoid the overfitting problem, we
use the k-fold cross-validated MSE (CV MSE) and k-fold
cross-validated MD (CV MD) instead, i.e., evaluate the
Equations (5) and (6) via though the k-fold cross-validation
technique. In this process, the training set is randomly split out
into k subsets (usually 5 to 10), and the ( )qfj i is predicted by an
SVR model trained on the other k−1 subsets of the training set.
After looping over all subsets, we calculate the MSEj and MDj

based on these predicted fluxes in cross-validation and the true
fluxes in the training set. To distinguish them from normal
MSEj and MDj without cross-validation, we name them CV
MSEj and CV MDj, respectively.
Because overfitting is generally avoided through such a

cross-validation technique, we can use the CV MSEj and CV
MDj to reasonably assess how well the SVR with such model
complexity can reproduce the spectral flux of the jth pixel in
the training set. In particular, CV MDj is usually very small
once a proper model complexity is adopted. Therefore, the best
model complexity (the best set of hyperparameters) can be
determined by searching for the lowest CV MSEj after looping
over all sets of hyperparameters specified. Finally, we train
SVR with the chosen best set of hyperparameters on the whole
training set for this pixel. The MSEj and MDj of this final
model are calculated directly based on the whole training set to
quantify the scatter and bias of the SVR with the best model
complexity. The final MSEj is also adopted as the model error
in the later processes. By doing so pixel-by-pixel, we guarantee
the best model complexity for each pixel. As a comparison, the
final MSE and MD of SLAM are compared to The Cannon in
Section 3 to show the improvements introduced by this
adaptive model complexity. In the Appendix A we use mock
data to show how to choose the best hyperparameters from a
grid more comprehensively.

2.3. Prediction

With the Bayesian formula, the posterior probability density
function of stellar labels given an observed spectrum is shown
as the following,

( ∣ ) ( ) ( ∣ ) ( )q q qµ
=

fp p p f , 7
j

n

jobs
1

,obs

where q is the stellar label vector, fobs is the observed spectrum
vector, fj,obs is the jth pixel of the normalized observed spectral
flux, ( ∣ )qp fj,obs is the likelihood of the spectral flux fj,obs given
q, and ( )qp is the prior of q. The estimation of stellar labels can
be easily done by maximizing the posterior probability

( ∣ )q fp obs . Although it is important to set a proper prior of
3 A multiprogramming language package to solve the support vector machine
problems, including SVR regression provided by Chang & Lin (2011).
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stellar parameters from an external source (e.g., the Galactic
model, parallax, proper motions), we adopt a uniform prior in
this paper for simplicity in SLAM. A prior can be added
depending on the specific scientific scenario in future works.

Adopting a Gaussian likelihood, the logarithmic form of
Equation (7) becomes

⎪
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where fj,obs is the jth pixel of the observed spectrum, ( )qfj is
the output spectral flux given the stellar label vector q, σj,obs is
the uncertainty of the jth pixel of the observed spectrum, and

( )qsj is the uncertainty of the jth pixel of the output spectrum
corresponding to the stellar labels q. In practice, ( )qsj is
roughly replaced with CV MSEj, which is independent of q.

Using the Markov Chain Monte Carlo technique to sample
the posterior function Equation (8) for millions of spectra is not
practical due to the computational cost, especially when the
number of dimensions is large. Therefore, we adopt the
maximum likelihood estimation method with the Levenberg–
Marquardt (Moré 1978) least-squares optimizer in this work.
The initial guess of q is determined by comparing the fobs to the
training set and picking the one with maximum likelihood. The
outputs are the stellar labels that maximize the likelihood
function and the corresponding covariance matrix. The
convergence status is also part of the output, and stars will
be marked out if SLAM does not converge within the
maximum number of iterations.

2.3.1. Uncertainty

The output covariance matrix of SLAM is converted from
the Hessian matrix produced in the scipy.optimize.
least_squares method in the SciPy package (Virtanen
et al. 2019). We refer to Moré (1978) for how the Hessian
matrix is calculated. The diagonal elements of the covariance
matrix are considered as the formal errors for the corresponding
stellar labels, hereafter we call them SLAM errors.

When making predictions for a data set whose true stellar
labels are known, we are able to calculate the cross-validated
scatter (CV scatter) and cross-validated bias (CV bias), which
are considered as the standard deviation and mean deviation,
respectively. Namely,

( ) ( )å q q= -
=m

CV bias
1

9
i

m

i i
1

,SLAM
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( ) ( )å q q= -
=m

CV scatter
1

. 10
i

m
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Note that the CV scatter/bias are statistics of stellar labels,
while the CV MSE/MD described above are statistics of stellar
spectra. In principle, a good data-driven method has a very
small CV bias and CV scatter. To investigate the precision of a
data-driven method, the CV scatter should be used because the
CV scatter quantifies the precision, while SLAM error
represents the internal uncertainty of the optimization method.

3. Tests on LAMOST DR5

3.1. The Large Sky Area Multi-Object Fiber Spectroscopic
Telescope (LAMOST) Survey

The LAMOST telescope, also called the Guo Shou Jing
Telescope, is a 4 m reflecting Schmidt telescope with a 20
square degree field of view, on which 4000 fibers are installed.
The spectral resolution is R∼1800 covering all optical
wavelengths (Cui et al. 2012; Deng et al. 2012; Liu et al.
2014, 2015). The r-band apparent magnitude of the survey
covers from 9 to 17.8 mag. In this work, we use the LAMOST
Data Release 5 (DR5), which includes observations from
September in 2011 to June in 2017. The LAMOST DR5
provides ∼9 million spectra among which ∼5 million have
stellar parameters estimated by LASP (Wu et al. 2011, 2014).
We use this data set to investigate the performance of SLAM
on dealing with a wide range of Teff and compare it with The
Cannon.

3.2. Training

The stellar labels of LAMOST AFGK stars used here are
estimated with the LAMOST Stellar Parameter pipeline
(LASP; Wu et al. 2011, 2014) and can be downloaded from
http://dr5.lamost.org/. We first select the samples with
reliable stellar parameters using the following empirical
criteria:

1. < <T4000 K 8000eff ,
2. < <g0.5 log dex 5.5,
3. [ ]- < <2.5 Fe H dex 1.0,
4. ( )D <T K 200eff ,
5. ( )D <glog dex 0.1,
6. ([ ])D <Fe H dex 0.1.

Then, we randomly select 5000 training stars with a high g-
band signal-to-noise ratio ( < <120 S N 140g ) among them,
where S/Ng refers to the average S/N of the LAMOST
spectrum at g-band. To validate the model at different S/Ns,
we separate S/Ng into six intervals, i.e., (5, 20), (20, 40), (40,
60), (60, 80), (80, 100), and (100, 120) and randomly select
5000 stars in each of the S/Ng intervals as the test sets.
All spectra are shifted to the rest frame using the LAMOST

DR5 RV and resampled to 1.0Å step wavelength grid from
3900 to 5800Å. And those with more than 50 bad pixels are
excluded. The reason for this exclusion is that for these spectra
we are not certain about whether their pseudocontinuum
estimated is consistent with other spectra or not. In the training
process, we set the grid of hyperparameters to be ò=0.05,
C=[10, 100] and γ=[0.1, 0.01]. Each pixel is trained with
SVR and set with the hyperparameters based on 5-fold cross-
validation. ò, though one of the three hyperparameters, is
simply fixed because it represents the tube radius of the SVR
outside of which the SVR regard data as outliers and ignores
them. The role of ò is very like the tolerance of the regression
function. Taking this training set as an example, the typical
standard deviation of the normalized flux is about 0.02.
Therefore, the tube radius stands for 0.02×0.05=0.001 in
normalized flux (recall that the normalized flux is standardized
to have a variance of unity and SVR works in the standardized
space). So the typical “S/N” ratio of a spectrum predicted by
the SVR model is around 1/0.001=1000. In other words, the
SVR could reproduce spectra at an “S/N” ratio at 1000.
Decreasing ò to an even lower value to raise this S/N ratio is
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not necessary as in our test we typically work at S/N∼100,
while increasing ò could make our training more computation-
ally expensive and easily get overfitted. For the C and γ, it
could be inferred that setting them too large or too small is
unnecessary in the standardized space from Appendix A. As a
test, we try to make the grid of C and γ very sparse and see how
good the results could be.

We also train The Cannon with the same training set for
comparison and plot both the training MSE of SLAM and The
Cannon in Figure 2. The black lines show the 16, 50, and 84
percentiles of the training spectra. The median one represents
the “typical” spectrum of the training sample. In the upper three
panels, the red and gray lines show the CV MSE of SLAM and
The Cannon, respectively, while in the lower three panels the
red and gray lines denote the CV MD squared of SLAM and
The Cannon, respectively. The two black dashed lines represent
the median values of the red and gray lines. We found that

SLAM can make the CV MSE much lower than that of The
Cannon at almost all wavelengths. The reason is that the
quadratic model adopted by The Cannon is insufficiently
flexible to model spectra in such wide ranges of stellar labels
like < <T4000 K 8000eff . The CV MD2 of SLAM also
shows many improvements compared to that of The Cannon.

3.3. Prediction

In the first row of Figure 3, we show the Teff– glog
distribution of the training sample stars with 5<S/Ng<20
in the first panel and the SLAM-predicted Teff and glog in the
second panel. In the third, fourth, and fifth panels, we show the
diagonal plot of the Teff , glog , and [Fe/H], respectively, to
compare the estimates from SLAM with the originals of
LAMOST. From the second to the last row, we show similar
plots for stars with 20<S/Ng<40, 40<S/Ng<60,

Figure 2. This figure shows the comparison of MSE and MD2 of SLAM and The Cannon. The black lines always represent the 16, 50, and 84 percentile values of
each pixel of the spectra of the training set. The red lines in the upper (lower) three panels show the MSE (MD2) from SLAM, while the gray lines show similar
quantities derived from The Cannon. The black dashed lines are the mean level of the MSE/MD2.
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60<S/Ng<80, 80<S/Ng<100, and
100<S/Ng<120, respectively. As S/N increases, the
SLAM-predicted values become more and more consistent
with the true values.

In Figure 4, we show the SLAM errors, CV scatter, and CV
bias at various S/Ng. Note that the SLAM errors are very small
compared to CV scatter. For stars with S/Ng>100, the SLAM
errors for Teff , glog , and [Fe/H] are smaller than 10 K, 0.03
dex, and 0.02 dex, respectively. We also show the simulated
error values for a solar-like star and a K giant star at different
S/Ng using the ATLAS9 synthetic spectra (Castelli &
Kurucz 2003). Although the SLAM errors of the observed
spectra are very small, they are much larger than the simulated
values, which can be regarded as the lower limits of errors.

On the other hand, the CV scatters are larger than the SLAM
errors. At the high S/Ng end, the CV scatters of Teff , glog , and
[Fe/H] are ∼50 K, 0.10 dex, and 0.07 dex, respectively. These
values are very similar to the values reported in Ho et al.
(2017a). However, it is worth noting that our sample is
distributed in a wider range than that studied by Ho et al.
(2017a), who only considered red giants with low effective
temperatures. In general, the hot and warm stars may suffer
from larger uncertainties of stellar parameter estimates than the
cool stars (Liu et al. 2012).
The reason that the SLAM errors are substantially smaller

than the CV scatters is because we assumed that both the
spectral fluxes and the stellar labels in the training set are
infinitely accurate. When we model fluxes as functions of

Figure 3. This figure shows the distributions of the predicted stellar labels at different ranges of S/Ng. The six rows from top to bottom correspond to six different S/
Ng intervals. In each row, the first panel shows the diagram of LAMOST DR5 Teff - glog which are regarded as the true values. The second panel shows the similar Teff

and glog diagram with values derived from SLAM. The third, fourth, and the last panels show the SLAM-derived stellar labels against the corresponding LAMOST
values. In all panels, color indicates the sample counts on a logarithmic scale.
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stellar labels, the observed fluxes of the training stars are
composed of noise, i.e., ( )q= + f fobs , where ò denotes
noise. Meanwhile, the errors in stellar labels are also not taken
into account in the model. If we train our model with different
training samples, the predicted stellar labels would be different
due to the different errors implied in the training set. This
difference should be larger than the SLAM error which is
internal.

Another reason is that the errors of stellar labels in the
validation sample also exist. This can increase the CV scatter to
some extent. For instance, if the stellar labels of the validating
sample have errors of 30 K in Teff , it is impossible to decrease
CV scatter to under 30 K.

Therefore, to assess the performance of a data-drive method,
CV scatter is the fair quantity rather than the SLAM error (or
the internal error of the method), since the former has taken
into account the uncertainties contributed by the training set.

3.4. A Comparison to the LASP

SLAM is different from LASP (Wu et al. 2011, 2014) in
many different aspects. Since LASP, which uses Ulyss (Koleva
et al. 2009) to predict stellar labels, builds a polynomial model
of spectral flux on the ELODIE spectral library (Prugniel et al.
2007), SLAM offers several advantages over it. The first is that
SLAM offers more flexibility and adaptive model complexity
taking advantage of the RBF kernel. Second, we made SLAM
open source and users can choose whatever they want as the
training set rather than sticking to ELODIE. The third is that
SLAM can generally provide uncertainty estimates of stellar
labels by applying the relationship between the CV scatters and
S/N ratios. Last, but the most important difference, is that
SLAM is able to extend to more stellar labels, e.g., [α/Fe] and
other element abundances, which is impossible with LASP
currently.

4. Predict Stellar Labels for LAMOST Spectra Based on
APOGEE DR15

4.1. The APOGEE Survey

The APOGEE survey provides high-resolution
(R∼22,500) H-band (15200–16800Å) spectra (Majewski
et al. 2017). APOGEE DR15 comprises >270,000 high S/N
spectra. Its pipeline, ASPCAP (García Pérez et al. 2016),
produces estimates of the basic stellar labels, abundances, and
microturbulence. In this section, we use the APOGEE DR15
(Holtzman et al. 2018) stellar labels in the training set to set up
the SLAM model and predict stellar labels for the LAMOST
DR5 low-resolution spectra.

4.2. Training and Test Set

We first select our training set from the 86,552 common stars
between APOGEE DR15 and LAMOST DR5 by adopting the
following criteria:

1. the S/N of the APOGEE spectra >S N 100APOGEE ,
2. S/Ng>40 for LAMOST spectra,
3. the ASPCAP stellar label flag ASPCAPFLAG=0,
4. the ASPCAP effective temper-

ature < <T3000 K 5500eff,APOGEE ,
5. the ASPCAP surface grav-

ity - < <g1 log dex 5APOGEE ,
6. the ASPCAP overall metalli-

city [ ]- < <4.0 M H dex 2.0,
7. the ASPCAP α-elemental abun-

dance [ ]a- < <1.0 M dex 1.0,
8. the ASPCAP carbon abun-

dance [ ]- < <0.4 C Fe dex 1.0,
9. the ASPCAP nitrogen abundance

[ ]- < <0.5 N Fe dex 1.0, and
10. the difference of the corresponding LAMOST and

APOGEE effective temper-
ature ∣ ∣- <T T K 800eff,APOGEE eff,LAMOST .

The purpose of the last criterion is to give a loose condition on
the consistency between the stellar labels provided by
LAMOST and APOGEE, so that the selected stars have

Figure 4. This figure shows how the errors of stellar labels change with S/Ng. In all panels, the blue curves represent the SLAM errors (formal errors). The red and
purple curves represent the formal errors of tests for synthetic spectra of solar-like and K giant stars, respectively, selected from the Kurucz ATLAS9 model. The
orange and green curves represent the CV scatter and bias, respectively. The first orange points at S/Ng=12.5 (corresponding to the 5 < S/Ng < 20 bin) are located
beyond the figure, thus we mark the their values in brackets at the top of the panels. Clearly, all of them decrease as S/Ng increases. At S/Ng>100, the typical CV
scatters of Teff , glog , and [Fe/H] are about 50K, 0.10 dex, and 0.07 dex, respectively.
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reliable stellar label values. With these criteria, we obtain
17,703 common stars with reliable stellar labels.

Then we exclude the LAMOST spectra containing more than
50 bad pixels and obtain 17,623 stars. The grid of
hyperparameters C and γ is set to be uniform in logarithmic
scale, i.e., [ ]=C 10 0 ., 0.5,1 ., 1.5,2. and [ ]g = - - - - -10 3 ., 2.5, 2 ., 1.5, 1. ,
while ò is fixed at 0.05. We use a leave-1/10-out training
process to exclude the stars whose stellar labels deviate from
the training set values by more than four times the standard
deviation stellar label residuals in any dimension. Finally, our
training sample contains 17,175 stars and then we train SLAM
on this data set. We use eight-fold cross-validation to find the
best-fit hyperparameters and conduct the training process. Then
we apply the tuned SLAM model to all 8171,443 stars
(class=STAR in LAMOST catalog) in LAMOST DR5.
SLAM successfully converges for 5,378,550 stars.

In the LAMOST–APOGEE common samples (86,552),
SLAM converged for 57,703 of them and derived their stellar
labels. In the left panel of Figure 5, we show their distribution
in the Teff– glog plane. The SLAM-predicted stellar labels have
a red giant branch and a stripe, which looks like a distorted
main sequence on which most stars do not have APOGEE
stellar labels. The stellar labels of the objects located in the
stripe are unreliable because the stellar labels are too far away
from the stellar label range of our training set. We cannot apply
the simple parameter cut described in Liu et al. (2014) because

the stripe turns upward at Teff<4500 K. Therefore, we
empirically set up a polygon (shown in pink in the figure) for
the selection. The sample stars located in the pink solid
polygon are selected as the K giant stars with reliable stellar
labels. We show the corresponding LAMOST (APOGEE)
stellar labels of the samples located in the polygon in the
middle (right) panel.
To assess the completeness of our cut, we select stars with

criteria similar to those listed at the very beginning of this
subsection but ignore the constraints depending on LAMOST
stellar labels. Then we have ∼22,000 stars with good APOGEE
stellar labels left. We check whether these known K giant stars
are selected by the empirical polygon and find that the polygon
cut loses ∼500 K giants, which gives completeness of about
97% for the K giant stars.
We also calculated the “label-distance” D defined by Ho

et al. (2017b), i.e.,

( ) ( )
( ) ( )
([ ] [ ] ) ( ) ( )

= -

+ -

+ -

D T T

g g

100 K

log log 0.2 dex

M H Fe H 0.1 dex . 11

eff,SLAM eff,LAMOST
2 2

SLAM LAMOST
2 2

SLAM LAMOST
2 2

To be consistent with Ho et al. (2017b), we consider stars with
D<2.5 as K giant stars. In the left, middle, and right panels of
Figure 6, we show plots similar to Figure 5. The distribution of
the SLAM-predicted stellar labels is quite similar to the sample

Figure 5. Left panel shows the distribution of SLAM-predicted Teff and glog of all converged LAMOST DR5 stars. The pink solid polygon represents the selected
area for K giant stars. The middle/right panel shows LAMOST/APOGEE Teff - glog diagrams for the sample located in the pink polygon.

Figure 6. Left panel shows the distribution of SLAM-predicted Teff and glog of LAMOST DR5 stars with D<2.5. The pink solid polygon is the same as that in
Figure 5. The middle/right panel shows the LAMOST/APOGEE Teff and glog for the same samples.

8

The Astrophysical Journal Supplement Series, 246:9 (14pp), 2020 January Zhang, Liu, & Deng



selected using the polygon cut. To select K giant samples with
reliable stellar labels, we suggest using either the polygon cut,
the “label-distance” method, or a combination of them.

4.3. Performance

Figure 7 shows the CV scatter of the SLAM-predicted stellar
labels for the LAMOST–APOGEE common stars at different
S/N intervals. As S/Ng increases, the CV scatters decrease
rapidly (shown by the blue line) as expected. At the high S/Ng

end, the CV scatters of estimated stellar labels are 49 K,
0.10 dex, 0.037 dex, 0.026 dex, 0.058 dex, and 0.106 dex for
Teff , glog , [M/H], [α/M], [C/M], and [N/M], respectively.
These values are quite similar to those reported in Ting et al.
(2017a). Compared to CV scatters, the biases are only as large
as one-fourth of the scatters at most and thus do not contribute
a lot in the total uncertainties. SLAM errors are again much
smaller than the corresponding CV scatters.

We found that, although the CV scatters are smaller than that
in Ho et al. (2017a) at the high S/Ng end, they are much larger
at the low S/Ng end. One probable source of this difference is
that in our result, only the 3900 to 5800Å part of the LAMOST
spectra are used. And we did not utilize information from
photometry. Our CV scatters are more similar to the inverse
S/Ng trend, which is more realistic for a general test sample.
According to the correlations between the CV scatters and
S/Ng, we suggest that the carbon and nitrogen abundances
derived by SLAM can only be used for stars with S/Ng>40.
We also noticed that the bias is significant at the low S/Ng end.
We will try to overcome this problem in our future work.

In Figure 8, we show the diagonal plot of our stellar labels
against corresponding APOGEE stellar labels for the sub-
sample with S/Ng>100. It is seen that the SLAM-derived

Teff , glog , [M/H], [α/M] [C/M], and [N/M] agree well with
the APOGEE values.
In Figure 9, we show the comparison of color-coded median

[C/N] in the [M/H]–[α/M] plane. In the left column, the top
and bottom panels show logarithmic counts and median [C/N]
of SLAM results, respectively, in the [M/H]–[α/M] plane
using the LAMOST–APOGEE common stars. All the stellar
labels in the two panels are from SLAM. The middle column
shows similar plots but using APOGEE stellar labels. In the
right column, the two panels show the SLAM results for all
LAMOST K giant stars with S/Ng>100. It is seen that the
predicted [M/H], [α/M], and [C/N] are similar to the training
data. Meanwhile, [C/N] is in the reasonable range at the high-
density region.
In the final catalog, the output errors of stellar labels are

approximated from S/Ng using the empirical function,
( )- ´ +a b cexp S Ng . The best-fit coefficients in the empiri-

cal functions are listed in Table 1. The whole catalog of the 5
million converged stars is hosted at the China-VO Paper Data
website http://paperdata.china-vo.org/. An example of it is
shown in Table 2.

5. Discussion

Although the performance of SLAM has been well
illustrated in Sections 3 and 4, several challenges and issues,
most of which quite commonly appear in data-driven
approaches, are worth discussing here.

5.1. Preprocessing

In the preprocessing step, SLAM and other data-driven
methods operate with RV-corrected and normalized spectra.
Consequently, uncertainties in these processes propagate to the

Figure 7. This figure shows the comparison of the CV scatters of stellar labels between SLAM(blue) and The Cannon (gray). SLAM errors and bias are also shown
with green and orange lines, respectively. The inverse signal-to-noise ratio trends are also superposed with a black dashed line.
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final results. However, it is extremely difficult, if it is possible,
to automatically determine the proper and consistent pseudo-
continuum in the normalization process for various types of
stars. Hence, the normalization process induces a certain
amount of uncertainties in the normalized spectra, especially
for the late-type stars (Teff<4500 K).

In low-resolution spectra, the blending of spectral lines and
molecular bands, such as the g band, also increases the
uncertainties of the normalized spectra. Weak lines could be
overwhelmed by the inconsistency of the normalization. In
some cases, the inconsistent normalization may lead to the
failure of the stellar label estimation in the data-driven
methods.

Although for K giant stars, the normalization preprocessing
in both SLAM and The Cannon seem adequate and may not
affect the final performance, we should be cautious about this
issue, especially when the normalization may induce a
variation/deviation larger than the typical training precision.
We refer the readers to Jofré et al. (2019) for a review of the
various sources of uncertainties induced in transforming spectra
to stellar labels including normalization.

5.2. Training

In the training step, the most important issue is the limited
coverage of the parameter space of the training sample. This is
also described in Section 5.5 in Ness et al. (2015). Therefore,
the selection of a training set is crucial. Once some types of
input stars are not included in the training set, the program will
not derive meaningful stellar labels.

The second issue is the imbalance of the training sample.
Usually, very few stars are located near the edge of the
parameter space. For example, extremely hot/cool stars and

very metal-rich/metal-pool stars are rare. Their spectra are very
different from those of normal stars and thus play more
important roles in the training process. These stars are anchors
that define the edge of the parameter space. However, their
small numbers may not effectively leverage the objective
function compared to the majority of the normal stars.
The third issue arises in the flux model. The flux model of

SLAM does not make use of the uncertainties of the stellar
labels in the training set. This leads to the underestimation of
uncertainties of both the spectra and stellar labels in the model.
To take into account the stellar label errors in the training set,
one possible solution is to cross-validate the training samples
and get different models using different subsets of the training
set, and derive the deviations of predictions using these models.
However, so far it is difficult for us to conduct such a
complicated training process due to the high computational
expenses.

5.3. The Computational Cost of SLAM

Although SVR is a powerful tool, its computational cost and
storage requirements increase rapidly with the number of
training vectors (Pedregosa et al. 2012). The complexity of the
problem solved with LIBSVM scales between

( )´ n nfeatures samples
2 and ( )´ n nfeatures samples

3 (Chang &
Lin 2011), which means that adding more stars in the training
set is more difficult than adding more stellar labels. A fiducial
cost of SLAM is that in our experiment on transferring stellar
labels from APOGEE DR15 to LAMOST DR5 in Section 4,
the training takes about 1 day using an Intel Xeon CPU E5-
2690v4 (2.60 GHz). The training cost is also proportional to the
number of pixels and the size of the hyperparameter grid that is
tried. For prediction, it takes <1 minutes to predict the six

Figure 8. This figure shows the diagonal plots of the six stellar labels (effective temperature, surface gravity, metallicity, α-element abundance, carbon abundance, and
nitrogen abundance) for the LAMOST–APOGEE common stars with S/Ng>100.

10

The Astrophysical Journal Supplement Series, 246:9 (14pp), 2020 January Zhang, Liu, & Deng



stellar labels for a spectrum with modest S/N. For those with a
very low S/N ratio, it sometimes does not converge so that it
typically takes much longer. Therefore, users should be
cautious of the computational expense when using SLAM to
derive a large number of stellar labels.

6. Learning from Data: Coefficients of Dependences

In this section, we present the CODs, which enable us to
better understand why machine-learning methods generally
agree with our experience in traditional spectroscopy.

As described in Section 2, the worst regression model, i.e.,
the constant model, has MSE=1 in standardized space. Any
better model should reduce the MSE of this pixel to a value far
below 1. We denote this MSE as MSEfull. Then, 1−MSEfull

can be considered as a proper measure of the fraction of the
variation of the pixel being explained by the model. We define
1−MSEfull as the full coefficient of dependency (the full
COD) of stellar labels, i.e.,

( )= -COD 1 MSE . 12full full

The maximum and minimum values of CODfull are 1 and 0,
respectively. The larger CODfull is, the better the model is.

Let L denote the collection of stellar labels (Teff , glog , and
etc.), and let l denote one specific stellar label in L. To derive

the contribution of each stellar label in CODfull, we did a
Leave-One-Label-Out training. For example, to quantify the
contribution of l, we remove l from L and train SVR on the
other stellar labels. We write the obtained MSE in this case as
MSEl. In principle, MSEl is equal to or larger than MSEfull

because the model ignores the variation of the spectra driven by
the stellar label l. The difference, MSEl−MSEfull, measures
the loss due to excluding stellar label l in the model. We then
define CODl as

( )
( )

( )= ´
-

å -Î

lCOD COD
MSE MSE

MSE MSE
. 13

L

l

l l
full

full

full

By definition, ( )å =lCOD CODl full.
We derive the CODs of Teff , glog , and [Fe/H] for the

training samples used in Section 3 (covering Teff from 4000 to
8000 K) and show them in Figure 10. For most of the spectra,
the COD spectra are amazingly consistent with the empirical
knowledge about which spectral lines are sensitive to which
stellar labels. The blue, orange, and green filled regions
represent the COD (Teff), COD ( glog ), and COD ([Fe/H]),
respectively. The most significant features are around the
Balmer lines. At Hδ, Hγ, and Hβ, COD (Teff) is very large and
dominant, while COD ([Fe/H]) and COD ( glog ) are small,
meaning that these pixels depend mainly on Teff rather than

glog and [Fe/H]. Across the whole spectrum, the Balmer lines
are the most prominent features sensitive to effective temper-
ature. The line centers of Balmer lines appear to be slightly
different from the line wings, which reflect different mech-
anism information of line centers.
From Figure 10, it seems that the most information regarding
glog (for K giant stars) comes from the ∼4200Å region and

the Mg I triplet at around λ5175. We can find that most of the
dependence on glog comes from the doublets, triplets, and line
wings. The pixels located at the wings of the three lines of the
Mg I triplet show high dependence on glog . This behavior is

Figure 9. Top left panel shows the distribution of [α/M]–[M/H] plane for the SLAM-derived labels for the LAMOST–APOGEE common stars. The top middle panel
shows a similar plot but with APOGEE parameters. The top right panel shows a plot similar to that in the top left panel for all the LAMOST K giant stars with S/
Ng>80. The bottom panels show the distributions of median [C/N] in the [α/M]–[M/H] plane. Similar to the top panels, from left to right are the SLAM-derived
stellar labels for the LAMOST–APOGEE common stars, the APOGEE labels for the common stars, and the SLAM-predicted labels for all LAMOST K giant stars
with S/Ng>80. In the bottom right panel, white contours of counts are superposed.

Table 1
The Fitting Coefficients a, b, and c for Each Stellar Label

Stellar Label a b c

Teff/K 204.8 0.056 38.8
glog /dex 0.592 0.063 0.069

[M/H]/dex 0.431 0.073 0.029
[α/M]/dex 0.090 0.049 0.019
[C/M]/dex 0.152 0.043 0.040
[N/M]/dex 0.152 0.031 0.072

11

The Astrophysical Journal Supplement Series, 246:9 (14pp), 2020 January Zhang, Liu, & Deng



largely different compared to the COD (Teff) and the
COD ( glog ).

The COD([Fe/H]) is largely coincident with the positions of
metal lines such as the Fe λ5709 and Fe λ5782. In our
experience, the Ca II K and H lines are good proxies of
metallicity. However, because of the inverse variance of the
LAMOST spectra in the very blue part of the spectrum
(λ∼ 3936Å and 3970Å) are frequently marked as bad pixels,
many of the Ca II H and K lines are unavailable. Therefore, the
COD([Fe/H]) does not show strong dependence at the Ca II H
and K lines.

The picture gives us a good interpretation of how machine-
learning algorithms learn from the data and help humans
understand the data. Although the CODs are very similar to the

gradient ⎜ ⎟⎛
⎝

⎞
⎠

¶
¶

f

l
which is also shown in other works such as Ness

et al. (2015), they are different. The gradient is essentially the
first-order partial derivative, so it reflects the local dependence
of the fluxes on stellar labels only in the first-order. In contrast,
the CODs measure the global dependence and do not rely on
the specific analytic models to map the stellar labels to the
spectral fluxes.

7. Conclusions

Following the idea of the data-driven methods, we present
the SLAM, an SVR-base method, in this work. Taking
advantage of the nonparametric nature of SVR, SLAM is able
to fit a multidimensional and highly nonlinear relationship

between the fluxes and stellar labels, which is very different
from The Cannon.
We validate our method with LAMOST DR5 to investigate

the performance and precision of the predicted labels. The
cross-validated scatters of Teff , glog , and [Fe/H] at high S/Ng

(∼100) are 50 K, 0.09 dex, and 0.07 dex, respectively.
We also use our method to predict stellar labels of LAMOST

DR5 K giant stars with the training labels from APOGEE
DR15. The performance assessment indicates that SLAM is
moderately better than The Cannon. The cross-validated
scatters at high S/Ng end are 49 K, 0.10 dex, 0.037 dex,
0.026 dex, 0.058 dex, and 0.106 dex for Teff , glog , [M/H], [α/
M], [C/M], and [N/M], respectively. We provide a down-
loadable catalog composed of SLAM-derived Teff , glog , [M/
H], [α/M], [C/M], and [N/M] for more than a million
LAMOST K giant stars.

The authors thank the referee for kindly providing many
constructive comments.
This work is supported by National Key R&D Program of

China No. 2019YFA0405501. C.L. is thankful for the National
Natural Science Foundation of China (NSFC) grant No.
11835057.
Guoshoujing Telescope (the Large Sky Area Multi-Object

Fiber Spectroscopic Telescope LAMOST) is a National Major
Scientific Project built by the Chinese Academy of Sciences.
Funding for the project has been provided by the National
Development and Reform Commission. LAMOST is operated

Table 2
An Example of the Catalog of the 5 Million Converged LAMOST DR5 K Giant Stars with SLAM-derived Stellar Labels

LAMOST obsid S/Ng R.A. Decl. Teff glog [M/H] [α/M] [C/M] [N/M]

(deg) (deg) (K) (dex) (dex) (dex) (dex) (dex)

101008 332.36874 −1.95577 20 5262.5 3.30 0.0350 0.2063 −0.0615 0.2708
101009 332.20666 −1.86865 12 5672.1 4.05 −0.3786 0.1140 −0.1829 0.2263
101016 332.34873 −2.13610 31 4571.9 3.89 0.2541 0.0874 −0.1105 0.1043
101017 332.44442 −1.92405 23 5277.8 3.12 −0.6337 0.2501 −0.0415 0.4757
101020 332.22238 −1.98763 23 5210.4 3.03 −1.6938 0.3061 −0.0436 −0.3604
101021 332.35138 −1.80933 42 5469.3 2.75 −1.6935 0.3750 0.1408 −0.5156
101023 332.50637 −2.01690 17 5229.9 3.82 −0.4062 0.0468 −0.2554 −0.0016
101026 331.55123 −1.68436 38 5380.3 3.70 0.2258 −0.0303 −0.1946 0.2326
101027 331.76831 −1.91449 42 5577.1 3.54 −0.8770 0.2438 0.0322 −0.0597
101029 331.77234 −1.83052 47 5572.1 3.60 −0.7497 0.2368 0.0299 −0.0473

σ(Teff ) σ( glog ) σ([M/H]) σ([α/M]) σ([C/M]) σ([N/M]) rmse Kgiant(cut) D(Ho2017) in APOGEE

(K) (dex) (dex) (dex) (dex) (dex) bool bool

102.9 0.23 0.1245 0.0516 0.1029 0.1516 0.068 True 39.26 False
138.4 0.33 0.1971 0.0668 0.1281 0.1740 0.077 False 1.43 False
72.8 0.15 0.0714 0.0377 0.0788 0.1278 0.051 False 41.81 False
91.5 0.20 0.1034 0.0465 0.0942 0.1434 0.050 True 47.49 False
93.8 0.21 0.1076 0.0476 0.0960 0.1451 0.048 True 99.94 False
57.2 0.11 0.0481 0.0299 0.0643 0.1114 0.029 False 130.25 False
115.8 0.27 0.1500 0.0573 0.1124 0.1603 0.067 False 30.37 False
62.7 0.12 0.0559 0.0327 0.0697 0.1177 0.031 False 7.10 False
57.8 0.11 0.0491 0.0302 0.0650 0.1122 0.023 False 9.77 False
53.0 0.10 0.0427 0.0276 0.0600 0.1060 0.025 False 8.44 False

Note. Column 1 is the LAMOST IDs of the objects, column 2 is the g-band signal-to-noise ratio of the spectra, columns 3–4 are the sky coordinates of the objects,
columns 5–10 are the SLAM-predicted stellar labels and column 11–16 are the corresponding errors, column 17 is the rms deviation between the observed and fitted
spectra, column 18 is the index of our selection of K giant stars, column 19 is the label distances, and Column 20 is the APOGEE observation flag (observed by
APOGEE if true).
(This table is available in its entirety in FITS format.)
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Appendix A
How to Choose the Best Hyperparameters

Generally, there are two kinds of pixels, i.e., spectral line
pixels and continuum pixels. The former kind contains much
information on stellar labels while the latter contains almost no
information. In this section, we show how the best hyperpara-
meters are chosen in these two cases.
We simulate the first case in the upper row of Figure 11. We

use ( )m s , 2 to denote the normal distribution with a mean of
μ and variance of σ2. The x data follows ( ) 0, 1 and
= +y xsin 2 noise, where the noise here follows ( ) 0, 0.16 .

In the first three panels of the upper row, we show how the
fitting performance changes when varying one hyperparameter,
i.e., C, ò, and γ, respectively. We also superposed a quadratic
model in the gray dashed–dotted line. We can infer from these
three panels that C (the penalty level) and γ (the width of the
Gaussian kernel or the softness of the SVR model) are more
important relative to ò (the tube radius). In the fourth panel, we
show the color-coded tenfold CV MSE as a function of C and
γ. At logγ∼0 and 0<logC<4, the CV MSE reaches the
minimum. At logγ∼4 and logC∼4, where the SVR has a
high penalty for outliers and is extremely soft, the CV MSE is
even larger than 1, which means overfitting occurs. Clearly, we
are able to determine the best set of hyperparameters by
choosing the one with the lowest CV MSE in this diagram.
To simulate the latter case, we make both x and y follow
( ) 0, 1 . In the lower row of Figure 11, we show similar plots.

In this case, it is seen in the last panel that the CV MSE is
around 1 for most of the combinations of hyperparameters. And
again overfitting arises at large C and large γ. SLAM chooses
the set of hyperparameters with the lowest CV MSE, which
prevents the model from overfitting.

Appendix B
The Source Code of SLAM

The source code of SLAM is available on GitHub https://
github.com/hypergravity/astroslam under an MIT License and
the latest version is archived in Zenodo (Zhang 2019). It can

Figure 10. CODs from the training set with LAMOST spectra and stellar labels. The pink solid and dashed lines are the 50, 16, and 84 percentiles of normalized
spectral fluxes. The blue, orange, and green filled regions represent COD(Teff ), COD( glog ), and COD([Fe/H]), respectively.
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also be directly installed by running the following command in
a terminal, pip install astroslam.
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