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Abstract
We propose accurate semianalytical wavefunctions for two-electron atomic systems in two-
dimensions. These wavefunctions take into account the cusp conditions arising due to the
Coulombic nature of external potential and electron–electron interaction, and the screening
effects. The first wavefunction is motivated by the Le Sech wavefunction for two-electron atoms
and ions in three-dimensions while the second one is constructed to give more variational
freedom to the Le Sech wavefunction and is obtained by solving a Schrödinger like equation
self-consistently. The results for energies, densities and other quantities are highly accurate and
therefore may play an essential role in developing and testing density functional methods for
two-dimensional systems.

Keywords: accurate wavefunctions in two-dimensions, two-electron atoms, exchange-correlation
potentials in two-dimensions

Kohn–Sham density functional theory [1] is de-facto choice
[2] for the study of electronic properties of materials. This is
because to get the ground state density of a system it uses
only an effective local potential in the Schrödinger-like
equation for non-interacting electrons. The potential is the
sum of the external potential, Hartree potential and the

exchange-correlation (xc) potential [ ]= d r
dr

v E
xc

xc . The quantity

Exc[ρ] which incorporates many-body effects in it, is known
as the exchange-correlation energy functional and needs to be
approximated. Over the years many approximate forms of
Exc[ρ] have been developed and applied to three-dimensional
(3D) systems. However, relatively less attention has been paid
to functionals that are tailor-made for two-dimensional (2D)
systems. Experimentally these systems can be realized at
semiconductor-insulator interfaces [3]. It is naturally expected

and observed that the exchange-correlation functionals
developed for 3D systems fail [4–6] to provide accurate
physical properties of systems in the pure 2D limit. Thus
developing the xc-functionals for 2D system becomes
important. Efforts in this direction have been made in the
spirit of local density approximation (LDA) [7–9], general-
ized gradient approximation (GGA) [10–12] and meta-GGA
[13–15] approach as used in 3D. To study accuracy of these
approximations, it is useful to solve the Schrödinger equation
for many-electron 2D systems accurately and then compare
results obtained by employing approximate functionals
against these.

To test the accuracy of density functionals, wavefunction
based studies of atomic systems play an important role. These
system are relatively simple to handle computationally and
yet capture essential physics of correlation between electrons.
They therefore provide fast and reliable resource to test new
density functionals for their accuracy. Among these, two-
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electron systems in particular are important because they are
the smallest and easiest to deal with computationally. This
makes study of two-electron systems in two-dimensions
important.

Since the presence of Coulomb interaction between the
electrons makes it extremely difficult to solve the corresp-
onding Schrödinger equation, the focus has been on devel-
oping approximate but proper forms for the ground state
wavefunction. These are then employed to calculate the
ground state properties of two-electron systems accurately
using the variational method. Ground state wavefunctions
developed can be classified into three categories: (i) the ones
where the wavefunction has a large number of variational
parameters [16–28]; (ii) those where the wavefunction has
only a few variational parameters but captures the required
physical conditions on it [29–33]; (iii) and finally those where
we use basis sets for expanding the wavefunction [34–37].

The present work focuses on developing correlated
wavefunctions in two-dimensions for two-electron systems by
pursuing approach (ii) mentioned above. Although it is pos-
sible to obtain highly accurate numerical solutions [20–28]
for two-electron systems, it is nonetheless desirable that
simple semianalytical wavefunction also be generated. This is
because availability of such wavefunctions greatly facilitates
employing them in various applications with ease. For
example, if we scale the Coulomb interaction in the Hamil-
tonian, these wavefunctions may require a simple scaling in
their parameters to transform them into the corresponding
new wavefunctions [38]. We have employed this scaling in
the past to study adiabatic connection in 3D atomic systems
[39]. Thus we construct a variational wavefunction for two-
electron atomic systems that has only two parameters and
satisfies certain properties of the exact wavefunctions. This is
motivated from our previous works [38, 40] where we utilized
Le Sech wavefunction [30] to develop a semi-analytical
wavefunction for three-dimensional systems which gives very
accurate energies and densities. As a result, it leads to accu-
rate quantities related to density based theories such as the
exchange-correlation potentials [40]. The reason behind such
accuracy of the Le Sech wavefunction is commented on after
we introduce this wavefunction in the section below.

The two-electron systems we consider in this paper are
with two different external potentials. The atomic systems
where the external potential has the form-Z r with Z as the
atomic number, and the systems having harmonic-oscillator
potential w r1

2
2 2 with ω being the frequency as the external

potential. The latter are important as the Schrödinger equation
for some of these can be solved analytically both in 2D
[41, 42] and in 3D [43, 44]. On the other hand while for
Coulombic external potential a variety of studies [16–24, 29]
have been done for the development of the very accurate form
of wavefunctions in three-dimensions, two-electron Cou-
lombic systems in two-dimensions have not received much
attention. Some of the works [45, 46] that we are aware of are
those where product wavefunction has been used in varia-
tional calculations to obtain an analytical expression for the
energies of two-electron systems. With these observations it is

evident that further development of more accurate two-elec-
tron wavefunctions for two-dimensional system is imperative.

In constructing the wavefunction in the present work one
of the main emphasis [30, 40] has been the removal of the
effect of poles [47] which arise in the Coulombic external
potential and electron–electron interaction potential. Since the
physical conditions at the poles in two-dimensions are dif-
ferent from those in three-dimensions, we make the necessary
changes in the form of the wavefunction proposed earlier by
Le Sech for 3D. We show that the two-dimensional form of
this wavefunction is also equally accurate. In particular for
harmonic oscillator external potential, where for some values
of ω the exact exchange-potential are known, we demonstrate
that these wavefunctions give essentially the same results.
With the wavefunction proposed, we also calculate exchange-
correlation potentials for two-dimensional systems with
Coulombic external potential. Accuracy of exchange-corre-
lation potentials for the harmonic oscillator in 2D and 3D and
for Coulombic systems in 3D suggests that potentials
obtained by us for 2D Coulombic systems will also be highly
accurate. Our results indeed demonstrate this and thus provide
a benchmark against which potentials calculated from
approximate exchange-correlation density functionals for 2D
systems can be tested.

We organize the paper into two sections. In the first
section, we introduce the Le Sech wavefunction in two-
dimensions, and in the subsequent section, we present the
modified form of the Le Sech wavefunction. Results for each
kind of the wavefunction in the context of density-functional
are presented in the corresponding sections. Finally, we
conclude the work in the last section.

1. Le Sech wavefunction in two-dimensions

Since the wavefunction we construct is based on 3D Le Sech
wavefunction, we have given a comparison of the Hamilto-
nian, the wavefunction and its properties for 2D and 3D in
table 1. We now give the details in following.

The Hamiltonian for two-electron atomic systems in two-
dimensions can be written in terms of r1, r2 and

∣ ∣ 
= -r r r12 1 2 as (atomic units are used)

· ·

( ) ( ) ( )

   
=-  -  - 

-
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¶ ¶

+ + +
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r r

r r r r
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r r r r
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2
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2
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where Laplacian  = +¶
¶

¶
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⎧
⎨⎪
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( ) ( )=
-

v r
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for

for
. 2ext Z

r

1

2
2

Here w=k m 2 is the spring constant with frequency ω and Z
is the atomic number.
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Table 1. In this table, we display the Hamiltonian, wavefunctions proposed, and the various physical conditions to be satisfied by the wavefunctions in two-dimensions and compare them with the
corresponding quantities in three-dimensions. Here Z is the atomic number, and a b, are the variational parameters. In 2D Laplacian  = +¶

¶
¶
¶r r r r

2 12

2 , and in case of 3D, this is  = +¶
¶

¶
¶r r r r

2 22

2 .

Atomic units are used throughout.

2D 3D
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The wavefunction we propose for two-electron atomic
systems in two-dimensions for harmonic potential is

( ) ( ) ( )
( ) ( ) ( )

w wY = - -
´

r r r C r r
f a r r f b r

, , exp 0.5 exp 0.5
, , , , 3

L N
2D

1 2 12 1
2

2
2

1 1 2 2 12

while for the Coulomb potential it has the form

( ) ( ) ( )
( ) ( ) ( )

Y = - -
´

r r r C Zr Zr
f a r r f b r

, , exp 2 exp 2
, , , , 4

L N
2D

1 2 12 1 2

1 1 2 2 12

where CN is the normalization constant

( ) ( )= +f a r r ar ar, , cosh cosh , 51 1 2 1 2

( ) ( ) ( )= + -f b r r br, 1 exp , 62 12 12 12

and a, b are the variational parameters to be optimized. The
reason behind taking this form of the wavefunction is: by
introducing two kinds of factors and multiplying a product
wavefunction (a) takes care of screening of external potential
due to electron–electron interaction and (b) satisfies the
electron–electron cusp condition arising due to the Coulombic
nature of electron–electron interaction. Observe that the
logarithmic derivatives of the wavefunction with respect to r
and r12 in two-dimensions are two times to the corresponding
ratio in three-dimensions. Therefore, we replace ( )-Zrexp in
three-dimensions by ( )- Zrexp 2 and r0.5 12 by r12 in f2 to

construct the wavefunction in two-dimensions. We fix the
variational parameters a and b by optimizing the function

( ) ∣ ∣ ( ) 
ò ò= áY Y ñ = Y YE a b H H r r, d d 7L L L L2

2D 2D 2D 2D
1 2

with respect to these parameters.

1.1. Results for the Le Sech wavefunction

We present in tables 2 and 3 the results for the Harmonic
oscillator potential for different frequencies and for He-iso-
electronic series. To check the accuracy of the wavefunction
we also compare the total energies for harmonic oscillator
potential with frequencies for which either the analytical or
highly accurate numerical results for the energies are
available.

Table 2 has the results for the external harmonic potential
for various frequencies. As noted above, frequencies
ω=0.166 67, 0.25, 0.50 and 1.0, where the exact results are
known our numbers for total energy essentially equal to them.
For the parameter a and b, we observe following. Going to the
higher frequencies, the behavior of parameter a cannot be
predicted. This may be because the structure of the wave-
functions is different for different frequencies. The value of b
however increases with frequency and can be understood as a

Table 2. We show here the optimizing parameters a, b, total energies E2, kinetic energies T, external energy Eext, and the electron–electron
interaction Vee calculated for harmonic oscillator potential w r0.5 2 2 using Le Sech form of the wavefunction. We also show the electron–
electron interaction Vee

3D to compare it with the corresponding values in 2D. All the values are in atomic units.

ω a b E2 References E2 T Eext Vee Vee
3D

0.027 78 0.18 0.00 0.1673 — 0.0183 0.0622 0.0868 0.0939
0.062 50 0.21 0.00 0.3096 — 0.0452 0.1201 0.1443 0.1390
0.166 67 0.24 0.00 0.6716 0.6667 [41] 0.1323 0.2730 0.2662 0.2399
0.250 00 0.24 0.00 0.9337 0.9324 [48] 0.2057 0.3844 0.3436 0.3028
0.500 00 0.21 0.00 1.6609 1.6598 [49] 0.4308 0.6996 0.5305 0.4474
1.000 00 0.00 0.00 2.9998 3.0000 [41] 0.8886 1.2954 0.8158 0.6705
1.500 00 0.10 0.05 4.2676 — 1.3396 1.8676 1.0605 0.8447
2.000 00 0.05 0.08 5.4962 — 1.7979 2.4286 1.2697 0.9874
2.500 00 0.12 0.12 6.6990 — 2.2558 2.9826 1.4606 1.1227
3.000 00 0.12 0.15 7.8833 — 2.7189 3.5302 1.6341 1.2363

Note. References E2 for ω={0.166 67, 1.0} is calculated analytically, and for ω=0.25 and ω=0.50
[49] are obtained using configuration interaction and exact diagonalization technique [50], respectively.

Table 3. Shown here are the optimizing parameters a, b, total energies E2, kinetic energies T, external energy Eext, and the electron–electron
interaction Vee calculated for 2D-He isoelectronic series using Le Sech form of the wavefunction. We also show the electron–electron
interaction Vee

3D to compare it with the corresponding values in 2D. All the values are in atomic units.

Z a b E2 E2 [45] E2 [46] T Eext Vee Vee
3D

1 1.24 0.27 −2.2338 −1.9960 −1.9915 2.1872 −5.6020 1.1810 0.3146
2 1.65 0.71 −11.8881 −11.6472 −11.6363 11.8904 −27.2769 3.4985 0.9487
3 2.00 1.17 −29.5351 −29.2984 −29.2811 29.5841 −64.9324 5.8132 1.5722
4 2.29 1.62 −55.1786 −54.9496 −54.9259 55.2909 −118.6063 8.1368 2.1935
5 2.55 2.08 −88.8202 −88.6008 −88.5707 89.0003 −188.2852 10.4647 2.8181
6 2.79 2.55 −130.4604 −130.2520 −130.2155 130.7049 −273.9597 12.7944 3.4422
7 3.01 3.01 −180.0994 −179.9032 −179.8603 180.3976 −375.6208 15.1238 4.0658
8 3.21 3.47 −237.7373 −237.5544 −237.5051 238.1209 −493.3139 17.4557 4.6904
9 3.40 3.93 −303.3742 −303.2056 −303.1499 303.8331 −626.9946 19.7873 5.3150
10 3.58 4.39 −377.0102 −376.8568 −376.7947 377.5452 −776.6745 22.1192 5.9390
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result of the insignificance of correlation for higher fre-
quencies. Kinetic energy also increases as the systems
become more confined for the higher frequencies. As
expected, Eext and Vee increase as we go to the higher fre-
quencies. This happens as the strong external potential makes
the electron density more compact resulting in the increase in
Eext and Vee. Finally, we show the electron–electron interac-
tion Vee

3D calculated using the optimized Le Sech form of the
wavefunction in three-dimensions. We observe that >V Vee ee

3D

for all the frequencies except for ω=0.027 78.
Table 3 shows the calculated total energies E2, kinetic

energies T, electron-nucleus interaction Eext, and the electron–
electron interaction Vee along with the optimizing parameters
a and b for He-isoelectronic series in two-dimensions. As we
go to the larger Z, we observe that the optimizing parameter a
increases; this is because for large Z electron density localizes
near r=0 resulting in more screening of the nucleus. Para-
meter b also increases with Z as correlation between electrons
becomes relatively less important for larger Z. Comparison of
the total energies with those given in [45], that reports a
variational calculation with a product wavefunctions, shows
that the present results are more negative pointing to the
correctness of the wavefunctions. Furthermore, deviations
between the two become very small for larger value of Z. It is
gratifying to note that the proximity of the total energy to the
kinetic energy (satisfaction of the virial relation) i.e.

@ -E T2 . Next, we tabulate the external energy Eext and the
inter-electron interaction energy Vee. As we expect, the
electron–electron interaction increases for larger values of Z;
this is because the electron density becomes more localized
for strong attractive external potential. Finally, we show the
electron–electron interaction energy calculated in three-
dimensions for the He-isoelectronic series. These energies are
calculated using the optimized Le Sech form of the wave-
function in three-dimensions. We observe that Vee in two-
dimensions is almost four times that for three-dimensions for
a given Z. The main reason for this is that the electrons have
to remain in a plane in case of 2D resulting in their being
closer to each other in comparison to 3D. We end this section
by commenting that the results discussed above show that the
proposed variational form for wavefunction captures its cor-
relation nature to a high degree of accuracy. This make it
suitable for various studies some of which are reported later in
this paper.

2. Modified Le Sech wavefunction in two-dimensions

The second form of the wavefunction we propose is

( ) ( ) ( ) ( ) ( ) ( )  f fY =r r r r f a r r f b r, , , , , 8ML
2D

1 2 1 2 1 1 2 2 12

where the functions f1 and f2 are those given in equations (5)
and (6), respectively and f(r) is a function to be determined.
We optimize the energy functional

[ ] ∣ ∣ ( ) 
ò òf = áY Y ñ = Y YE a b H H r r, ; d d 9ML ML ML ML2

2D 2D 2D 2D
1 2

with respect to a, b, and f(r) for this purpose. To do this, we

minimize the energy E2 with respect to f(r) for given values
of a and b which gives a Schrödinger like equation for f(r).
The derivation of this equation is similar to that in three-
dimensions [38] except that all integrations arising are per-
formed in two-dimensions and the 3D Laplacian is replaced
by 2D Laplacian. The steps we follow to calculate ground
state energies and the wavefunctions are the following:

1. For given values of a and b, solve the Schrödinger
equation (see equation (10) below) self-consistently to
get total energies E2 and f(r).

2. Change the values of a and b and again get E2 and f(r)
following step 1.

3. Repeat step 2 until we get the minimum energy E2 and
the optimizing function f(r).

Next, we provide the details needed for performing the
calculation using the modified form of the Le Sech wave-
function in two-dimensions.

2.1. Numerical techniques

The equation we solve for f(r) has the following form

⎡
⎣⎢

⎤
⎦⎥ ( ) ( ) ( )

( ) ( ) ( ) ( )

f f

f f

- + +

+ =
r r r

r v r r

v r r E r

1

2

d

d

1 d

d

, 10

ext

eff

2

2

2

where the expression for the veff(r) is that given in [38]. Note
that the veff(r) depends on variational parameters a and b.
Because of the presence of the first derivative in this equation,
we can not use Numerovʼs method directly in solving this
equation. But we do not face this problem on using the
logarithmic mesh (r(x)=e x). With this mesh the first deri-
vative is eliminated and the equation becomes

( ( )) ( ) ( ( )) ( ( ))

( ) ( ( )) ( ( )) ( ) ( ( )) ( )

f
f

f f

- +

+ =

r x

x
r x v r x r x

r x v r x r x r x E r x

1

2

d

d
. 11

ext

eff

2

2
2

2 2
2

To solve this equation we employ the subroutine written by
Paulo [51] for solving the Schrödinger equation. For inte-
gration and differentiation arising in the effective potential
veff(r) we employ the subroutines available in the DFTATOM
code [52]. The points of the radial grid on logarithmic mesh
[53] are given by

⎛
⎝⎜

⎞
⎠⎟ ( )=

-

r r
r

r
, 12i min

max

min

i
N

1

where ( )=r x Zexpmin min and ( ) w=r xexpmin min for Cou-
lomb and Harmonic external potentials, respectively with

= -x 12min . We chose ( )=r Z100max
1 3 for the Coulomb

potential and ( )w=r 100 36max
1 3 for the Harmonic poten-

tial. Factor 36 is chosen in the latter case to keep =r 100max

for the first frequency ω=1/36. For the accurate calculation
the total number of points in the radial grid is taken to be 600.
For calculating angular integral 30 points are chosen in the
Chebyshev–Gauss method.
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As the effective potential veff(r) in equation (10) includes
f(r), we need to solve the above equation self-consistently.
The threshold on the energy is taken to be 10−8 to exit the
self-consistency cycle and the variational parameters a and b
are varied in the interval of 0.01.

2.2. Results for the modified Le Sech wavefunction

In tables 4 and 5, we show the results obtained using the
modified Le Sech wavefunction for harmonic potential with
different frequencies and for the He-isoelectronic series,
respectively. The trends in the values of various quantities for
frequency ω and Z is the same as for the Le Sech wave-
function. However, it is to be noticed that the optimizing
parameters a and b are different from those obtained for the
Le Sech wavefunction. The energies for atomic external
potential are consistently lower than Le Sech and for har-
monic potential they are either lower than or equal to those
obtained from Le Sech wavefunction.

Figures 1 and 2 show orbitals f(r), densities ρ(r), and
radial densities rρ(r) for the harmonic and Coulomb potential
calculated using the modified form of the wavefunction.
Densities and f(r) for higher values of ω or Z, are higher at
r=0 and decay faster in comparison to the densities and f(r)
for the lower values of ω or Z.

In the next section we construct the exchange-correlation
potentials for the systems being studied and compare with
those obtained using approximate exchange-correlation
functionals.

3. Exchange-correlation potential for two-electron
systems using the LPS equation

To construct the exchange-correlation potential for the
wavefunctions obtained, we compare the Levy–Perdew–
Sahni (LPS) equation [54]

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( ) ( )   r mr-  + + =v r v r r r
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, 13ext eff

2 LPS 1 2 1 2

with the Kohn–Sham equation for two-electron systems
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LPS
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2
is the Hartree potential. LPS

expressed the ( )v reff
LPS in terms of ground state wavefunction.

For two-electron atomic systems, this is

( ) ˜ ( )
∣ ∣

∣ ( ) ∣

∣ ˜ ( )∣ ( )


 

 


   

ò

ò

r

f f

r

=
-

+ -  + -

+ 

v r
r r

r r
r

v r E

r r r

;
d

1

2
1

2
; d , 16

eff
LPS

2
1 1 2

1 2
1

1 1
2

ext 1 1 1

2 1 1 2
2

1
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2

2 1 2

2 2 1 2
2

1

and

˜ ( ) ∣ ( )∣   r f=r r r r; ; .1 1 2 1 1 2
2

The integrals arising here are performed in 2D space. We
employ the LPS approach because it has been observed that
LPS effective potential leads to accurate exchange-correlation
potentials.

To calculate ( )v rxc , we first obtain ( )v reff
LPS for the Le

Sech form of the wavefunction and then the exchange-cor-
relation potential using equation (15). To establish accuracy
of ( )v rxc , in figure 3(a) we compare ( )v rxc for ω=1 calcu-
lated from the Le Sech wavefunction with the exact
exchange-correlation potential for this system obtained by
inverting the analytical expression for the exact density
[41, 42]. It is evident from the figure that ( )v rxc obtained by
us is nearly the same as the exact exchange-correlation
potential.

Having shown that for ω=1 the potential obtained by us
is almost exact , we next calculate it for other frequencies and
for the He-isoelectronic series. These are shown in figure 4.
Our experience of calculating xc-potential this way and other
work [56] in the literature for the three-dimensional systems
shows that the xc-potential calculated using LPS equation
comes out to be highly accurate. Therefore, we expect that our
results in figure 4 represent the corresponding exchange-
correlation potential very accurately. As such these will be
useful for comparison purpose in density functional studies in
two-dimensions. We do it next for two functionals available
in 2D.

In figure 3, we compare the exchange-correlation
potential for the harmonic potential (ω=1) and atom (Z=6)
with exchange-correlation potential for the LDA (exchange-

Table 4. Optimizing parameters a, b, total energies E2, kinetic
energies T, external energy Eext, and the electron–electron interaction
Vee calculated for harmonic oscillator potential w r0.5 2 2 using
modified Le Sech form of the wavefunction. All the values are in
atomic units.

ω a b E2 T Eext Vee

0.027 78 0.14 0.00 0.1665 0.0192 0.0626 0.0847
0.062 50 0.24 0.00 0.3087 0.0473 0.1198 0.1417
0.166 67 0.29 0.00 0.6710 0.1356 0.2709 0.2644
0.250 00 0.32 0.00 0.9333 0.2087 0.3829 0.3417
0.500 00 0.34 0.00 1.6608 0.4321 0.6995 0.5291
1.000 00 0.28 0.00 2.9999 0.8877 1.2954 0.8167
1.500 00 0.23 0.05 4.2678 1.3377 1.8676 1.0623
2.000 00 0.18 0.08 5.4964 1.7951 2.4286 1.2724
2.500 00 0.13 0.12 6.6993 2.2529 2.9819 1.4643
3.000 00 0.08 0.15 7.8836 2.7149 3.5300 1.6384
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functional [11] ( )( ) 
ò r-

p
r rd8

3 2
3 2

3 2 combined with

AMGB [9] or PRM [55] correlation-functionals). We use the
LIBXC library [57] for calculating these potentials. We
observe that the LDA exchange-correlation potentials calcu-
lated for the Le Sech density for ω=1 deviates from the
exact exchange-correlation potential and underestimates its
magnitude. Furthermore, it decays faster than the exact
potential asymptotically. In figure 3(b), we show the LDA

( )v rxc and the accurate ( )v rxc obtained for the He-like atom
(Z=6). Here also the LDA exchange-correlation potential
shows the same behavior as for the harmonic potential

systems. The difference between AMGB and PRM functional
at the first grid point is 0.07 a.u. while the deviation of these
at the same point from the present xc-potential is around
2 a.u.

Finally, to test the accuracy of xc-functionals we com-
pare the chemical potential calculated using equation (13)
with that obtained using the expression m = -E E2 1 in
tables 6 and 7 for harmonic oscillator and Coulomb potential,
respectively. For harmonic potential E1=ω and for Coulomb
potential this is equal to- Z2 2. Ideally two values of chemical
potentials should be equal [58] to each other, and equal to the
eigenvalue of highest occupied orbital in DFT calculation.

Table 5. Optimizing parameters a, b, total energies E2, kinetic energies T, external energy Eext, and the electron–electron interaction Vee

calculated for 2D-He isoelectronic series using modified Le Sech form of the wavefunction. All the values are in atomic units.

Z a b E2 T Eext Vee

1 1.41 0.28 −2.2359 2.2412 −5.6555 1.1792
2 2.22 0.76 −11.8924 11.9270 −27.3018 3.4839
3 2.90 1.25 −29.5399 29.6021 −64.9365 5.7972
4 3.51 1.75 −55.1836 55.2734 −118.5730 8.1205
5 4.07 2.25 −88.8253 88.9432 −188.2094 10.4477
6 4.59 2.75 −130.4655 130.6123 −273.8452 12.7770
7 5.06 3.24 −180.1044 180.2808 −375.4798 15.1072
8 5.51 3.74 −237.7423 237.9492 −493.1139 17.4386
9 5.92 4.23 −303.3792 303.6176 −626.7467 19.7703
10 6.31 4.72 −377.0151 377.2860 −776.3785 22.1023

Figure 1.We display here the calculated function ( )fw r , densities ( )rw r , and the corresponding radial densities ( )rwr r for various frequencies
ω using the modified form of Le Sech wavefunction. The logarithmic x axis is being used for the plotting.

Figure 2. Displayed here are the calculated function ( )f rZ , densities ( )r rZ , and the corresponding radial densities ( )rr rZ for various values
of Z using the modified form of Le Sech wavefunction. The logarithmic x axis is being used for the plotting.
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The results shown in the tables satisfy this condition very
well. In addition, we also show the eigenvalues of highest
occupied orbital in density functional calculations using PRM
and AMGB correlation functional with the above mentioned
LDA exchange functional. The eigenvalues obtained from
PRM and AMGB functionals deviate from the present results.
This is because the LDA is expected to work better for the
homogeneous systems. It can be seen when ω gets smaller the
eigenvalues obtained from PRM and AMGB come closer to
the μ or -E E2 1. In case of Coulomb potential it does behave
in the similar way due to the form of the potential which does
not get flat even for the small value of Z as happens in case of
harmonic potential for small ω.

4. Concluding remarks

Two-electron systems are the simplest correlated systems and
can provide insights into understanding the physics behind
the correlation effects arising due to the Coulomb interaction
between electrons. In addition to this, it is also interesting to
study these systems in the reduced dimensional space as such
systems are also getting both experimental and theoretical
attention.

The above mentioned reasons make this work significant
as we propose two accurate forms of the wavefunctions for
two-electron systems in two-dimensions. This was motivated
by our study in three-dimensions that showed that these forms
of the wavefunction provides accurate densities as well as
energies for these systems. Therefore, we expect that the
present wavefunction to play an important role in under-
standing the systems in two-dimensions and in studying other
aspects in electronic structure calculations.

Figure 3. In the left plot (a) we compare the exchange-correlation potentials ( )v rxc
1 for harmonic oscillator potential with ω=1 with the exact

exchange-correlation potential obtained from its exact density [41, 42]. We also plot the potential within the LDA (exchange-functional [11]

( )( ) 
ò r-

p
r rd8

3 2
3 2

3 2 combined with AMGB [9] or PRM [55] correlation-functionals). In the right plot (b) we show the exchange-

correlation potential for the Coulomb external potential for Z=6 and compare it with the corresponding exchange-correlation potentials
obtained for the functionals mentioned above.

Figure 4. Exchange-correlation potentials ( )wv rxc for harmonic oscillator potential with different frequencies and ( )v rZ
xc for He-isoelectronic

series
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We have calculated total, kinetic, electron-nucleus
interaction and the inter-electron interaction energies for these
systems using both forms of the wavefunction. We have also
compared the exchange-correlation potential obtained by us
with the corresponding LDA exchange-correlation potential
and shown the difference between them.
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