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Abstract
The uncertainty principle is one of the most remarkable features of quantum mechanics, originally
expressed in terms of the standard deviation of two incompatible observables. Alternatively, it can
be modified and written in the form of entropy to eliminate the defect in the form of standard
deviation, and can also be generalized by including a memory particle that is entangled with the
particle to be measured. Herein we consider a realistic scenario where the particle A to be measured
is in an open environment and B as quantum memory is under an environment typically
characterized by non-Markovian regimes. Specifically, it shows that the quantum memory and the
non-Markovian effect can essentially inhibit the increase of uncertainty, however, the quantum
memory-assisted uncertainty will finally inflate inevitably, due to that the quantum correlation of the
system will be damaged gradually by the noise from the surrounding environments. To be explicit,
we study the dynamic evolution of the entropic uncertainty and correlation in open system where
both particles experience the noise channels. Meanwhile, we put forward some effective operation
strategies to reduce the magnitude of the measurement uncertainty under the open systems.
Furthermore, we explore the applications of the uncertainty relation investigated on entanglement
witness and quantum channel capacity. Thus, our investigations might offer an insight into quantum
measurement estimation in open systems.
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1. Introduction

The uncertainty principle is the pillar in the regime of
quantum theory which embodies one of its characteristics:
inevitable uncertainty limiting our ability to predict the
measurement results of two incompatible observable simul-
taneously. The Heisenberg’s uncertainty principle is one of
the most prominent features of quantum theory [1], and it
provides a bound on predicting the measurement outcomes of
two incompatible observables. After that, Kennard [2, 3]
formalized Heisenberg original ideas in an uncertainty rela-
tions by a pair of observables: position x and momentum px,
with the famous inequality [4, 5]

D D
x p
2

, 1x ( )

where D Dx px( ) represents the standard deviation of the
observable x(px). Later, this relation was generalized by
Robertson [6] for two arbitrary observables R and S, viz.
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It should be noted that this inequality exhibits a conceptual
shortcoming that the right-side (uncertainty bound) of this
inequality is state-dependent [7]. As a result, it may become
trivial when the commutator [R, S] has zero expectation value
in a system with one of the eigenstates related to R or S.

In this regard, Deutsch [8] presented another uncertainty
relation via Shannon entropy instead of the standard devia-
tion, which is independent of the system state [9]. Canoni-
cally, this new inequality is termed as entropic uncertainty
relations (EUR). If we use define the p(x) as the probability of
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the outcome x in a given system, the Shannon entropy can be
expressed as = -åH x p x p xlogx 2( ) ( ) ( ). The EUR for any
two general observables was first given by Deutsch and Kraus
[8, 10], then proved by Maassen and Uffink [11]. Mathema-
tically, the promising relations for two incompatible Q and R
can be described as

+ H R H Q
c

log
1

, 32( ) ( ) ( )

where y f= á ñc maxi j i j,
2∣ ∣ ∣ and denote the complementarity

between Q and y ñR, i∣ and f ñj∣ are the eigenvectors of Q and
R. To date, there have been several promising investigations
with respect to the entropic uncertainty under the influence of
various types of dissipative environments [12–18].

Recently, Berta et al [19] have derived a new type of
uncertainty relations, which was called as quantum memory-
assisted entropic uncertainty relations (QMA-EUR) [20–23],
and the equivalent form was originally conjectured by Renes
and Boileau [24]. Explicitly, one can illustrate the uncertainty
relations by virtue of the following uncertainty game between
two participators Alice and Bob. In this game, Alice and Bob
beforehand agree on implementing measurement either Q or
R. And Bob prepares a qubit A which is entangled with his
quantum memory B, and sends it to Alice through quantum
channels. Alice then carries out one of the two measurements
and tells her choice to Bob. Bob’s task is to minimize his
uncertainty about Alice’s measurement outcome. Under such
a setting, Berta et al reported that a more general uncertainty
relations holds [19]

+ +S Q B S R B
c

S A Blog
1

, 42( ∣ ) ( ∣ ) ( ∣ ) ( )

where r r= -S A B S SAB B( ∣ ) ( ) ( ) [4] is the conditional von
Neumann entropy and c is the complementarity between Q
and R. While r r r= -S tr log2( ) [ ] denotes the von Neumann
entropy [4, 25]. S X B( ∣ ) with X ä (Q, R) represents the
conditional entropies of the post-measurement states r =XB

y y r y yå ñá Ä ñá Äi i i AB i i (∣ ∣ ) (∣ ∣ ) after the subsystem A is
measured in X-basis, y ñi∣ are the eigenstates of the observable
X, and  is the identity matrix. In addition, the QMA-EUR is
very useful and has been widely applied to various appealing
aspects in the region of quantum information science [26–29],
including quantum randomness [30], quantum key distribu-
tion [31, 32], cryptography [33, 34], entanglement witnessing
[19, 22, 35], quantum metrology [36, 37].

As we know, the quantum objects are inevitably inter-
acting with their surrounding environments [38], which will
induce quantum decoherence and dissipation effects. As a
result, it is required and of basic importance to make it clear
how quantum decoherence and dissipation effects act on the
dynamics of QMA-EUR in open systems.

In this article, we investigate the dynamic evolution of
the entropic uncertainty in open systems. Specifically, we
observe the dynamical evolution of the entropic uncertainty
when particle A suffers from generalized amplitude damping
(GAD) or depolarization (DP) channel, and quantum memory
B from a colored dephasing noise. Generally, a GAD channel

can be modeled by Kraus operators [4]
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where p is the probability of the corresponding decay and the
decay strength = - e-r e1 t, and ε denotes the energy
relaxation rate. Additionally, a DP noise can also be described
by the following four Kraus operators [4]
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where p denotes the probability of polarization with
= - g-p e1 t, and γ denotes the energy relaxation rate.

Herein, we aim to reveal the evolutionary characteristics of
measurement’s uncertainty in such scenarios. What’s more,
we have put forward two effective operation strategies to
govern the magnitude of the measurement uncertainty by
means of quantum weak measurement and filtering operation,
respectively. Finally, we focus on the applications of the
examined uncertainty relation on entanglement witness and
quantum channel capacity.

2. The dynamical characteristics of the
measurement’s uncertainty under decoherence

2.1. Model

It is well known that any quantum system is non-isolated
from its surrounding environment, and thus inevitably cou-
pled with its surrounding noises, which will lead to the
decoherence or dissipation effects. In this regard, we here
focus on concerning a model that particle A to be measured is
in an open environment suffering from GAD or DP
decoherence.

On the other hand, particle B as quantum memory is
subject to a canonical colored dephasing (CD) noise, which
was introduced by Daffer et al [39]. As to a colored dephasing
noise, the dynamics can be described by a master equation of
the form

r r=  t , 7( ) ( )

where K acts on the memory particle B as

òf f= - ¢ ¢ ¢ t k t t t dt , 8
t

0
( ) ( ) ( ) ( )

with - ¢k t t( ) being a kernel function determining the type of
memory in the environment, ρ is the density operator of the
particle B, and  is a Lindblad superoperator. In order to
investigate a master equation of this form, one can take into
account a time-dependent Hamiltonian s= ¡ t t z( ) ( ) , with
the Pauli operator σz and ϒ(t) denoting an independent ran-
dom variable with the statistics of a random telegraph signal.
In particular, the random variable ϒ(t) can be expressed as

2

J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 035501 Y-B Yao et al



a¡ =t n t( ) ( ), herein α is a coin-flip random variable with
one value of ±α and n(t) exhibits a Poisson distribution with
a mean equaling to t/2τ. Under α=1, the dynamics of the
memory particle is able to be depicted by the following Kraus
operators [39, 40]

n
n

n
n

s

=
+ L

=
- L

K

K

1

2
,

1

2
, 9z

1

2

ˆ ( ) ( )

ˆ ( ) ( ) ( )

within the above, n mnL = +n mn
m

-e cos sin( ) [ ( ) ]( ) with ν=t/

2τ being the scaled time, and m t= -4 12( ) . The para-
meter τ controls the degree of non-Markovianity producing
the memory effects. As a result, this noise is characterized by
being non-Markovian.

Therefore, after the state passing through the noises, the
evolution density matrix can be written in sum-operator
representation as

år r= Ä Ä
= =

= =

t E K E K0 , 10AB
i j

i j

i j AB i j
1, 1

4, 2

( ) ( ˆ ˆ ) ( )( ˆ ˆ ) ( )†

where, ρAB(0) represents an intial state of the composite
system, and ρAB(t) denotes the systemic final state.

In what follows, we will elaborate the dynamics of
entropic uncertainty in the situation where the particle A
suffers from the GAD or DP noise and the particle B is
subject to the non-Markovian noise (CD).

2.2. GAD+CD noises

To probe the dynamic of the QMA-EUR, we can resort to
Pauli operators σx and σz as the incompatible observables. As
a consequence, the entropy-based uncertainty and the lower
bound in equation (4) can be expressed by

s s= +U S B S B , 11x z( ∣ ) ( ∣ ) ( )

= +U
c

S A Blog
1

12b 2 ( ∣ ) ( )

respectively. Since σx and σz are mutual unbiased basis,
c

1

remains the value 2 in a qubit system, which implies that
=log 1

c2
1 . On the other hand, with respect to a bipartite

system, its quantum correlation can be quantified by the
so-called quantum discord (QD), which has intrinstic hier-
archical relation with the other resources including con-
currence [41], Bell non-locality [42, 43] and quantum steering
[44–46], and remarkably it is regarded a a more general
resource than those mentioned. Basically, QD can be written
as [47–49]

r r r= - =Q I C Q Qmin , , 13AB AB AB 1 2( ) ( ) ( ) { } ( )

where r r r= - P PC S SminAB A A Bi
B

i
B( ) ( ) ( )∣ denotes the clas-

sical correlation and Pi
B denotes a sets of possible positive-

operator-valued measurement on particle B, r =PS A Bi
B ( )∣

rå q Si i i
A( ) is the conditional entropy of particle A, r =i

A

rP PTr qB i
B

AB i
B

i( ) denotes the density matrix with the
corresponding probability r r= P =q Tr I,i AB AB i

B
AB( ) ( )

r r r+ -S S SA B AB( ) ( ) ( ) represents the mutual information
between A and B. In addition, we have

år r l l= + + +
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with
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with d r r r r= + - + + +1 1 2 4 244 33
2

14 23{ [ ( )] (∣ ∣ ∣ ∣) } ,
and = - - - -H x x x x xlog 1 log 1bin 2 2( ) ( ) ( ) represent a
binary entropy.

In the current scenario, we consider the initial of the
bipartite system AB with the form of Bell-diagonal state
(BDS)

år s s= Ä + Ä
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4
, 16AB
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j
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where σj with Îj 1, 2, 3{ } are the standard Pauli matrices,
and the coefficients r s s= ÄC trj AB AB j

A
j
B( ) satisfy  C0 j∣ ∣

1. As to BDS, they contain the abundant ensembles of both
pure and mixed states, which is popular in the current
experiments [50–53].

After experiencing the noisy channels, the density matrix
of the systemic state ρAB(t) for AB is with the elements
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according to equations (10) and (16), where
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Since the post-measurement state can be given by
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and the von Neumann entropies to quantify the uncertainty
of the measurement outcomes for the observables can be
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given by
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On the other hand, the reduced density matrix of the Bell-
diagonal state is the maximally mixed state 2 , and CD will
not change the state of subsystem B. With these in mind, we
have two eigenvalues of ρB both are 1/2 and S(ρB)=1.
Analytically, the measurement uncertainty is equal to
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and the complementarity c of the observables sx and sz is
always 1/2. Thus, the lower bound Ub of the uncertainty is
given by
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with G = - + + - Wr pr p r C C4 4 162 2 2 2
1 2

2 2( ) .
Up to now, we have derived the analytical outcomes of

the uncertainty and its bound under the current architecture.
Apparently, the result is general in the case of that both A and
B experience the noisy channels. In order to better understand
the impact of the noise channels for the uncertainty, we would
like to wonder how the uncertainty of the system evolve over
time when these two channels act on the measured system,
separately. In this regard, we will take into account two
alternative cases that either A or B solely suffers from the
noise.

In order to analyse the dynamics of the EUR in the cases
mentioned above, we plot the diagram of the uncertainty U,
the bound Ub and the systemic quantum correlation QD as a
function of evolving time t in figure 1. Following the figure,
the subgraphs (a) and (b) demonstrate the case where B

suffers from the CD noise while A is free from any noise; the
subgraphs (c) and (d) depict the case where A suffers from the
GAD noise while B is free from any noise; the subgraphs (e)
and (f) illustrate the case where A and B are subject to the
noises. Explicitly, we randomly set C1=−0.3, C2=0.2,
C3=0.8.

In the open system, due to the existence of the environ-
mental noises, the information of the system will outflow,
which results in the decoherence and dissipation effect and
the increase of entropic uncertainty, but the non-Markovian
channel will not only cause the outflow of information, but
also cause the backflow of information. Moreover, the two
processes of outflow and backflow are alternated for the CD
noise, and the GAD and DP are both typical Markovian
noises that only lead to the outflow of information. In prin-
ciple, the outflow of information will induce the degradation
of the systemic QD and meanwhile the increase of the
uncertainty, vice versus. Therefore, one can obtain the distinct
oscillations for the uncertainty and QD, as shown in figure 1.

In graphs (a) and (b), the uncertainty oscillates with time,
which reflects that the non-Markovian effect is able to inhibit
the increase of the uncertainty and its bound. To be explicit,
the period can be given by pt

t -

2

4 12( )
, and its quantity will

saturate into a fixed value p 2 for the large τ. And the
amplitude of the oscillation becomes smaller and smaller, and
eventually the amount of the uncertainty tends to a stable
value in the long-time limit. Interestingly, the QD also
oscillates with time, and tends to 0. By comparing the
uncertainty and QD, it shows that the uncertainty is nearly
oppositely-correlated with QD. In subgraphs (c) and (d), the
uncertainty increases monotonically with time and tends to a
fixed value, while the QD decreases monotonically and
vanishes finally. In subgraphs (e) and (f), the uncertainty
oscillates and increases monotonically with time, and also
saturates to a fixed value, the QD oscillates with time and
rapidly tends to 0. By comparison with the first case, the
collective effect of GAD and CD noises leads to the stronger
monotonicity of the uncertainty in the course of the dynamical
process.

2.3. DP+CD noises

To further explore the evolution of measurement uncertainty
in open systems, we consider that particle A experiences DP
noise, while quantum memory B is the colored dephasing
noise characterized by Kraus operators nK1

ˆ ( ) and nK2
ˆ ( ).

Therefore, after passing through the noise channels, the
matrix elements of the systemic state ρAB(t) will be taken as
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After performing measurement σx or σz on particle A, the
post-measurement state can be given by
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Figure 1. Evolution of entropic uncertainty U (red lines), lower bound Ub (black lines) and QD (blue lines) respected to t when the particle A
is under GAD channel. In graphs (a) and (b), we have τ=10. In graphs (c) and (d), we have p=0.5, ε=0.1. In graphs (e) and (f), we have
p=0.5, ε=0.1 and τ=10. C1=−0.3, C2=0.2, C3=0.8 are set.
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their eigenvalues can be obtained easily and lead to the von
Neumann entropy
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and the reduced density matrix ρB is still 2 , so the uncertainty

can be given by = +- D + -U H Hbin
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its lower bound is l l= -å =U logb i i
AB

i
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1
4

2
˜ ˜ .

Next, let’s proceed by revealing the dynamics of entropic
uncertainty when the particle A is under DP channel. We plot
the uncertainty and lower bound as a function of t in figure 2.

We set C1=−0.3, C2=0.2, C3=0.8. In the figure, the
graphs corresponding three cases being similar with the sce-
nario mentioned above, In different cases, the dynamic
evolution of entropic uncertainty and QD is also different, and
has the similar variation tendency with the case in the GAD
+CD channels, because GAD and DP both belong to Mar-
kovian noises which cause the monotonic increase of uncer-
tainty. Notably, it has been found that the effect of DP to
affect the uncertainty seems to be stronger than GAD. In all
cases, the lower bound have the same tendency with the
uncertainty, and the uncertainty and lower bound are getting
closer and closer with the time growth. It needs to note the
QMA-EUR holds in all the cases, and the uncertainty is
nearly anti-correlated with the QD in the scenario, which is in
agreement with the statement made beforehand.

Figure 2. Evolution of entropic uncertainty U (red lines), lower bound Ub (black lines) and QD (blue lines) respected to the t when the
particle A is under DP channel. In graphs (a) and (b), we have τ=10. In graphs (c) and (d), we have γ=0.1. In graphs (e) and (f), we have
τ=10 and γ=0.1. C1=−0.3, C2=0.2, C3=0.8 are set.
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3. Steering

In this section, we would like to develop several effective
strategies to steer the uncertainty of the qubit system
experiencing the noisy channels through local quantum
operations. Actually, a quantum system inevitably interacts
with its surrounding noises, which can result in the effect of
quantum decoherence. Therefore, how to inhibit the deco-
herence effect is highly significant in the region of realistic
quantum information processing and communication. In
recent years, some authors have put forward some promis-
ing methods against decoherence, such as quantum weak
measurement (QWM) and filtering operation (FO). We are
curious about that whether such operations are valid to steer
the quantity of the uncertainty. After our investigation, we
find the answer is positive. In the followings, we illustrate
how these two methods achieve the reduction of the mag-
nitude of the entropic uncertainty.

The quantum weak measurement is a non-trace-preser-
ving map (NTPM) operation, which can be expressed by
[54–56]

=
-

M
s

1 0
0 1

, 29
⎛
⎝⎜

⎞
⎠⎟ˆ ( )

where s denotes the strength of the weak measurement
operation and satisfies 0�s�1. When this operation is
performed on qubit A, the final state of the system can
read as

r
r

r
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Ä Ä
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Next, we consider this case where A experiencing DP
channels. After the operation acts on A to be observed, the
post-operation density matrix of becomes
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After A going through the noisy channel, we can obtain the
post-measurement state as
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By calculating their eigenvalues, we can attain the corresp-
onding von Neumann entropies as
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In addition, we have

år l l= -
=

H log , 35B
M

k
Bk
M

Bk
M

1

2

2( ) ( )

where l l= =- + + -
-

- + + -
-

,B
M C p s

s B
M C C p s

s1
2 1 1

2 2 2
2 1

2 2
3 3 3( ( ))

( )
( )

( )
. As a

result, we can get the entropy-based uncertainty is
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Moreover, the eigenvalues of the state r tAB
M ( ) in equation (31)

can be given by
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In addition, we can utilize the filtering operation to
reduce the amount of the measuring uncertainty. The filtering
operation is characterized by a non-trace-preserving map
(NTPM), which is viewed to be capable of revealing hidden
non-locality for some classes of states, and it can recover and
increase entanglement to some degree [57, 58]. Practically,
this map can be said to be null-result weak measurement [59].
With regard to this operation, it can be written in a compu-
tational basis ñ ñ0 , 1{∣ ∣ } as [60, 61]
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where k is the strength of the filtering operation with
0�k�0.5, after this operation acts on A to be observed, the
final state of the system can be written as
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After A going through the DP noisy channel, the post-
operation state becomes
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and the post-measurement state can be calculated as
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By tracing over A, one can obtain the reduced matrix
rB

F , and its eigenvalues can be given by lB
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Explicitly, the uncertainty can be analytically given by
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2 .
To illustrate how the quantum weak measurement and

filtering operation steer the dynamic evolution of the uncer-
tainty, we plot the evolution of the measuring uncertainty
with the time t in the case of different operational strength s
and k in figure 3. From the figure, one can obviously find that
the weak measurement and the filtering operation can both
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effectively reduce the magnitude of uncertainty during the
incompatible measurement by adjusting the values of s and k.
However, there are also differences between these two
operations, when A undergoes the weak measurement, the
uncertainty monotonically decreases with the growth of the
parameter s, that is, the effect of reducing the uncertainty is
more obvious if s is larger. The operator become identity
matrix with s=0. When A undergoes the filtering operation,
unlike the case of weak measurement, when the value of k is
closer to 0 or 1, the reduction is more effective, in fact, this
operation is symmetric with k=0.5. That is the result is
equivalent to the case of no any operation with k=0.5.

4. Applications

4.1. Entanglement witness

Quantum entanglement is deemed as one of the important
manifestations of quantum correlation, and gives rise to many
attractive applications in quantum information and computation,
including quantum dense coding [62], quantum telecloning
[63], quantum teleportation [64], quantum computing [65],
quantum electrodynamics (QED) [66–71], and so forth.
Thereby, how to conclude whether a quantum state is entangled
is a basic and nontrivial task within quantum communication
and computation. Herein, we briefly introduce an effective
criterion based on the uncertainty relations in the current sce-
nario. Generally speaking, <S A B 0( ∣ ) is usually been con-
sidered as an indicator of entanglement witness, which shows
the bound can be reduced in comparison to the equation (3) in
equation (4). On the basic of equation (4), if the inequality

= + < =U S Q B S R B log 1
c2
1( ∣ ) ( ∣ ) is true, the inequality

<S A B 0( ∣ ) must hold, which means the existence of entan-
glement between A and B.

Here we discuss the case where particle A suffers the DP
channel. By setting C1=C2=C3=1, then the initial state

has maximal purity, then calculate the entropic uncertainty, and
consider Λ(ν) in the noise channel of B, we then can get the
relationship with p and Λ(ν). As plotted in figure 4, one can see
that the uncertainty monotonically increases with the growth of
p. When p=0, U<1 maintains all the time and the bipartite
AB is entangled, in the case of nL ¹ 0( ) . For p>0, U>1
will appear as nL∣ ( )∣ is close to 0, otherwise U<1 will satisfy
while nL∣ ( )∣ is far away from zero-valued. And the uncertainty
will inflate with the growth of p, in this case it becomes difficult
to ensure whether the system is entangled by means of the
negative conditional entropy criterion. Additionally, we can also
find that the value of U is symmetric with Λ(ν)=0 and its
value is restricted by −1�Λ(ν)�1. By calculating U=1,
we can derive its solution nL = Xm( ) . As a result, one can
get that the relationship between Xm and p satisfies

- +
-

- + - + -
- - - - - =

-p p
p

X p X p
X p X p

2 tanh 1 2 ln
2

2
1 1 ln 1 1
1 1 ln 1 1 0, 46

m m

m m

1· ( )

( ( )) ( ( ))
( ( )) ( ( )) ( )

this equation is a transcendental equation, so we cannot get the
exact expression of Xm, but we can calculate the numerical
solution. Following the figure 4, it is easy to find Xm is
the monotonically increasing function of p. In this way,
we can get the range of the Λ(ν) when U<1, is

È- -X X1, , 1m m[ ) ( ]. That is to say, if Λ(ν) is in this range,
we can ensure that the system is entangled in this open
environment by the negative conditional entropy criterion when
the maximal purity of the initial system emerges. For example,
we can calculate the Xm by equation (46) and its value is
Xm=0.678531 with p=0.1. Thereby, the entanglement con-
dition reduces to

ÈnL Î - -1, 0.678531 0.678531, 1 . 47( ) [ ) ( ] ( )

Figure 3. Uncertainty as a function of time t under DP channel for various strength, the coefficients of BDS are = - =C C0.5, 0.4,1 2

=C 0.83 , and we have γ=0.1 and τ=10. Graph (a): particle A is subjected to quantum weak measurement, in this graph, the red is plotted
with no operation (s=0), the blue line with s=0.5, the pink line with s=0.8, and the black line with s=0.9. Graph (b): particle A is
affected by the filtering operation, in this graph, the red is plotted with the operation strength k=0.9, the blue line with k=0.8, the black
line with k=0.7, and the pink line with no operation (k=0.5).
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As p becomes bigger and bigger, the range of U<1 will
be smaller and smaller, implying it will be more difficult to
probe the systemic entanglement. In figure 4, we find that if p is
greater than a threshold pt, U�1 will hold, which means that
the method of entanglement witness will fail. To be exact, we
compute the threshold pt is 0.220056 by equation (46). More
precisely, the entanglement condition ought to be

ÈnL Î - - <X X p1, , 1 0.220056 . 48m m( ) [ ) ( ] ( ) ( )

With this in mind, we must keep p small if one would like to
keep a composite system entangled for a long time. That is, γ
should be manipulated to be small relatively, which will inhibit
the affect of the DP noise on the system.

4.2. Quantum channel capacity

Typically, a quantum channel describes the situation in which
any physical process acts on a quantum system [72],
including transmitting secret classical information and rea-
lizing non-eavesdropping secure communication. And
quantum channel capacity means the maximal amount of
information transfer via quantum channel, which is described
as [73]

r r=C Imax , 49p AB AB( ) { ( )} ( )

where rI AB( ) is the mutual information of ρAB as mentioned
before.

Here, we are able to build the connection between the
channel capacity and the bound of the uncertainty, which can
be derived as

= + = +U
c

S A B S A Blog
1

1 , 50b ( ∣ ) ( ∣ ) ( )

by substituting equation (50) and the expression r =I AB( )
r r r+ -S S SA B AB( ) ( ) ( ) into the equation (49), we can

obtain the channel capacity Cp(ρAB) can be written as

r = - +C S A Umax 1 , 51p AB b( ) { ( ) } ( )

which shows the connection between the uncertainty relation
and the quantum channel capacity.

As an illustration, we here consider this situation as before
where qubit A suffers from the DP channel, with setting =C1

= =C C 12 3 to make the maximal purity initial state. Thus, the
reduced density matrix ρA is also the identity matrix r =S2, A ( )
1, so we can give the exact expression of mutual information
as that r l l= - = å +=I U2 log 2AB b i i

AB
i
AB

1
4

2( ) , which
directly shows that I(ρAB) is linearly inversely correlated with Ub.
Moreover, we offer the evolution diagram of I(ρAB) as a function
the parameter γ and time t in figure 5 through calculating the Ub,
and then obtain the Cp(ρAB). From the figure, we can get that
I(ρAB) is the monotonically decreasing function of γ, that implies
that the channel capacity r g t r g t= =C I, 0,p AB AB( ∣ ) ( ∣ )
when the maximal purity of the initial system emerges. In this
case, the eigenvalues li

AB of ρAB are expressed as
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In equation (52), it is easy to see that one obtains the channel
capacity via eigenvalues of ρAB with a fixed τ. One can derive
that the capacity is completely anti-correlated with the uncer-
tainty, this is to say, the uncertainty can straightforward reflect
the evolution of the channel capacity.

In order to show how the capacity changes in the current
scenario, we plot the channel capacity as a function of the
time t in terms of the equality r g t r g t= =C I, 0,p AB AB( ∣ ) ( ∣ )
in figure 6. Following the figure, one can clearly find that the
evolutionary trend of the capacity is oscillating periodically
and reducing gradually, its amplitude remains almost a con-
stant in a long-time limit. Here we set the stronger non-
Markovian feature with τ=5000, this will lead to that the the
quantum channel capacity exhibits the strong oscillation. The

Figure 4. Evolution of entropic uncertainty U when the particle A is under DP channel. Graph (a): U as a function of the parameters Λ(ν) and
p. Graph (b): Evolution of U with respect to Λ(ν) when p takes different values, the black line is plotted with p=0, the blue line is plotted
with p=0.1, the pink line is plotted with p=0.3 and the red line with p=0.5. Here we set C1=C2=C3=1.
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channel capacity could be kept in a very long time with the
stronger oscillation in non-Markovian environment. Con-
sidering the above statements, due to the intrinsic relation
between quantum channel capacities and the uncertainty’s
bound, the channel capacity can be derived analytically in the
current framework.

5. Discussions and conclusions

To summarize, we have investigated the dynamics of the
quantum memory-assisted entropic uncertainty in the open
system where the bipartite to be probed are coupled with the
environmental noises. We took into account the case that
particle B suffers a colored dephasing noise and A suffers the
GAD or DP channels. And we choose mutual-unbiased bases
measurement of Pauli operators σx and σz as the incompat-
ibility. It shows that the evolutionary characteristics of
entropic uncertainty are obtained under the noises. We infer
that the quantum memory and non-Markovian effect can
essentially inhibit the increase of uncertainty and its lower
bound, although the quantum correlation will be damaged

gradually by the noises. Further, we have put forward two
effective operations to reduce the magnitude of the mea-
surement’s uncertainty under the open system by means of
quantum weak measurement and filtering operation respec-
tively, and compare the differences with respect to the effect
of the two operations on reduction of the uncertainty. At last,
we supply the applications of the QMA-EUR on entangle-
ment witness and quantum channel capacity. Thus, we claim
our investigations might be beneficial to help us understand
the dynamical behavior of the entropic uncertainty in open
systems and its controlling.
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