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1.  Introduction

The new carbon-based nanostructures synthesized in 2004, 
such as graphene and graphene nanoribbons, proved to be 
materials having a unique set of physic-chemical properties 
that can be used in a wide range of applied problems [1–4]. 
The electronic characteristics of graphene vary depending 
on the nature and concentration of structural defects, atoms 
and atomic groups adsorbed on its surface [4]. Currently, 
graphene is one of the main candidates for the elements of 
nanoelectronics of the future, instead of silicon [4]. Scientists 
are interested in the unique properties of carbon nanoscale 
structures, such as high thermal and electrical conductivity, 
the dependence of electronic characteristics on the presence 
of attached radicals and impurities of various natures on the 
surface, extremely high carrier mobility, impurity bandwidth 
controlled by impurities, high elasticity and good electrome-
chanical characteristics. The main problem of the wide use of 
graphene in electronics is its small band gap, the opening of 
which is directed to the main efforts of researchers.

The effect of deformation on the electronic spectrum 
of crystallite using the example of deformed graphene is 

described in [5–7]. Under the action of external mechanical 
actions in the carbon crystallite, stress fields arise that com-
pensate for deformation effects. The induced stress fields can 
be characterized by the effective vector potential A, which 
acts as a gauge field that changes the electron momentum. The 
presence of a deformation gauge field A in graphene is inter-
preted in theoretical work [7] as an appearance of a pseudo
magnetic field whose induction exceeds 10 T.

The electronic characteristics of carbon nanostructures are 
quite sensitive to mechanical stress. A change in the energy 
gap and conductivity of deformed semiconductor carbon 
nanoparticles leads to the piezoresistance effect, which is 
quantitatively characterized by piezoresistive constants, such 
as the elastic-resistance tensor, the piezoresistance tensor, the 
elastic conductivity tensor and the calibration factor [8]. The 
piezoresistance effect formed the basis for the development 
of MEMS [9]—the technology of integration of mechanical 
elements and sensors on a silicon substrate.

In recent decades, a new scientific direction of condensed 
matter physics has been formed—straintronics, which uses 
physical effects in matter due to deformations arising in 
micro-, nano- and heterostructures under the influence of 
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external control fields, which lead to a change in the electronic 
structure, electrical, magnetic, optical and other properties 
of materials [10]. Similar effects allow implementing a new 
generation of information and sensor technology devices. For 
example, in [11] the development of a transistor based on gra-
phene using a deformational change in ballistic conductivity 
(the effect of piezoconductivity) is announced.

Therefore, despite the 15-year history of the experimental 
discovery of graphene, its mechanical properties continue to 
be studied intensively. Bi et  al have investigated the effect 
of heterodeformations on moiré bands in twisted two-layer 
graphene [12]. Transport properties of electrons in graphene 
under a joint modulation of the magnetic field and the stress 
barrier as well as a possibility of a pressure control of trans-
port properties of a graphene-based heterostructure are a 
subject of research in [13, 14] correspondently. The layer 
ferromagnetism in the framework of the Ising model using 
Monte Carlo simulations and an induction of a non-collinear 
magnetism in doped graphene are studed in [15, 16] respec-
tively. One should be noted especially effects associated with 
quantum phase transitions, namely, breaking of the spin sym-
metry of singlet state of graphene structures, being caused by 
deformations [17–19].

Battilomo et al [20] have studied Berry curvature dipole in 
strained graphene and shown that this topological effect arises 
in 2D Dirac materials even in the complete absence of spin–
orbit coupling. Authors of [21] have prognosticated an effect 
of strain-induced large Faraday rotation in graphene at sub-
tesla external magnetic fields. In [22], the hesteretic behavior 
of carbon atoms displacements in polycrystalline graphene 
is predicted based on computer simulation of the discon-
tinuous deformation of its structure. Guinea et al [23] have 
developed continuum models for twisted bilayer graphene 
and studied an effect of a lattice deformation and variety of 
hopping parameters. They have shown that the effect causes 
the band structure and magic angles changes. Authors of [24] 
have prognosticated the pressure-induced metal–insulator 
transition in twisted bilayer graphene. The effect of valley 
engineering by strain in Kekulé-distorted graphene is investi-
gated in [25]. Shear instability in twisted bilayer graphene are 
represented by authors of [26].

Chernozatonskii et al have propoused the method of con-
trolling band gaps in jagged and straight graphene nanoribbons 
tunable by an external electric field [27, 28], elastic properties 
of bilayer graphene nanostructures with closed holes [29].

Authors [30] have predicted an anomalous de Haas–van 
Alphen effect on graphene induced by a mechanical strain. 
And in [31] ab initio calculation results of strain induced 
armchair graphene nanoribbon demonstrate the possibilities 
of using deformation properties to manufacture devices for 
stratronics based on graphene nanoribbons.

This paper presents the results of a theoretical study of 
the piezoresistive properties of graphene nanoribbons, both 
ideal and isomorphic impurity. The electronic structure of 
deformed carbon nanostructures is modelled by introducing a 
deformation potential that takes into account variations in the 
interatomic bond lengths and valence angles.

Previously, the research methodology used in this paper is 
developed and successfully applied to study the deformation 
effects in carbon nanotubes (CNTs) [32–34].

2.  Model of the electronic structure of deformed 
nanoribbons

As a geometric model of graphene nanoribbons (GNR), a 2D 
hexagonal graphene layer is chosen. A fragment of such a gra-
phene crystalline structure is represented in figure 1, which 
shows the chiral vector Сh  =  na1  +  ma2, the angle α between 
the main translation vectors a1 and a2, and the vectors of inter-
atomic distances Δi. The coordinate system is chosen in such 
a way that the width of the ribbon is measured along the OX 
axis using the chiral vector Сh, and the OY axis is directed 
along the length of GNR. The angle θ  =∠(Сh, a1) is measured 
from the translation vector a1, lies in the range 0 ÷ 30° and is 
called the chiral angle [4].

A mathematical model of the electronic structure of non-
deformed GNRs is constructed based on its geometric struc-
ture and the band structure of the graphene layer [4]. The 
general form of the band structure of graphene nanoribbons 
in the framework of the tight-binding method in the approx
imations of Hückel and nearest neighbours can be represented 
in the form [4]:

ε(k) = ±γ0 {3 + 2 cos (ka1) + 2 cos (ka2) +2 cos (k (a1 − a2))}1/2
=

= ±γ0

¶
1 + 4 cos

Ä
k(a1+a2)

2

ä
cos
Ä

k(a1−a2)
2

ä
+4cos2

Ä
k(a1−a2)

2

ä©1/2
,

� (1)
where γ0 is the hopping integral, the matrix element of the 
electron transition between adjacent carbon atoms, k is the 
wave vector, one of the components of which is quantized 
along the width of GNR. The Fermi level in the dispersion 
law (1) is taken as 0 eV.

Figure 1.  A fragment of the GNR structure, with the selected 
coordinate system, Δ1, Δ2, Δ3 are the distance vectors between the 
nearest neighbours, a1, a2 are the translation vectors, α is the angle 
between the translation vectors, θ is the chiral angle, Ch is the chiral 
vector.
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The quantization condition for the wave vector k along the 
direction of the chiral vector Сh can be written as follows [4]:

k · Ch = 2πq, where q = 1, 2, . . .� (2)

It is advisable to choose kx and ky  components of the wave 
vector so that they are aligned with the chiral vector Ch and 
the GNR length, respectively, i.e. kx ↑↑ Ch and ky   ⊥  Сh. The 
module of the chiral vector of non-deformed GNR can be rep-
resented, based on its definition, in the following known form 
[4]:

|Ch0| =
»

n · a2
1 + m · a2

2 + 2nma1a2 = a
√

n2 + m2 + nm.
� (3)
Using (3) and conditions (2), we can obtain an explicit expres-
sion for quantization of the transverse component of the wave 
vector:

kxa =
2πq√

n2 + m2 + nm
, q = 1, 2, ...,

î√
n2 + m2 + nm

ó
.

� (4)
The scalar products of the wave vector by the half-sum and 
half-difference of the vectors of the main translations included 
in arguments of the trigonometric functions in the expression 
for the band structure (1), based on the geometric transforma-
tions corresponding to figure 1, can be written as follows:

k(a1+a2)
2 =

Å
1√

n2+m2+nm
·
Å

3πq(n+m)
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−
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4
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.

� (5)
As a result, expression (1) and relations (5) completely 

determine the energy spectrum of electrons of non-deformed 
GNR. According to the GNR electronic structure theory [4], a 
set of dispersion curves of the electronic spectrum, numbered 
by the integer q, is formed by crossing the 2D energy surface 
of graphene with parallel planes corresponding to the contin-
uous component of the wave vector. It position relative to the 
Brillouin’s zone is given by the discrete value kx-components 
of the wave vector according to the quantization condition (2).

The deformed state of a crystallite is generally character-
ized by a distortion tensor uαβ = ∂β(r′ − r)α, (α, β  =  x, y , 
z), where r и r′—radius vectors of the initial and final posi-
tion of a crystallite point [37]. The diagonal elements of the 
tensor characterize the relative elongation of the sample along 
the corresponding direction; the off-diagonal elements specify 
the angle of rotation of the linear element during deformation.

Based on the definition of the distortion tensor, the 
obtaining of the energy spectrum of deformed GNRs is based 
on a modification of the scalar products that appear in the 
arguments of trigonometric functions in the expression of 
the electronic spectrum (1). The change in the GNR unit cell 
under an action of a tensile deformation is shown in figure 2. 
The Figure demonstrates the model idea of that, due to defor-
mation, not only the interatomic bond lengths Δi  =  R0(1  +  δ), 
where δ  =  ΔR/R0, are changed by its elongation, but the angle 
between the translation vectors α  =  α0  +  Δα (α0  =  π/3 is the 
angle between the translation vectors in the non-deformed lat-
tice) also. Therefore, projections of the translation vectors 

a1 and a2 on the OX and OY axes of the selected coordinate 
system are changed item.

An expression for the band structure of deformed GNRs 
can be obtained from geometric transformations (figure 2). As 
a result, the electronic spectrum of such nanoribbons take the 
form:

ε(k) = ± γ(1 + 4 cos [πnA1 + B1] cos [πnA2 − B2]

+4cos2 [πnA2 − B2]
)1�2 ,

�
(6)

where the following notation is introduced for the general 
case:

A1 = F cosα+G sinα
A cosα+B sinα , A2 = −E cosα

A cosα+B sinα ,
B1 = kyR0(1 + δ) (−G cosα+ F sinα) ,
B2 = kyR0(1 + δ)E sinα,

� (7)

A = n sin θ cos(2α0) + m cos θ cos (α0/2) ,
B = sin θ [n sin(2α0) + m cos (α0/2)] ,
E = sin θ sin (α0/2) + cos θ cos (α0/2) ,
F = sin θ cos(2α0) + cos θ cos (α0/2) ,
G = sin θ [sin(2α0) + cos (α0/2)] .

� (8)

The change in the transverse sizes (width) of the GNR as a 
result of deformation is taken into account by modifying the 
modulus of the chiral vector Сh, which, based on the determi-
nation of the Poisson’s ratio and direct proportionality of the 
main geometric sizes of the nanoribbons to the lattice param
eters, can be calculated using the following formula:

Ch = (1ν · δ)Ch0,� (9)

where ν is the Poisson’s ratio, the value of which varies within 
the limits of ν  =  0.19 ÷ 0.27.

The relation (9) and the selected geometric model of 
deformed GNR allow us to determine the angle α between the 
translation vectors in the deformed hexagonal lattice, which is 
included in the expressions for the coefficients (7) and (8) of 
the spectrum of nanoribbons (6):

Figure 2.  Positions of interatomic vectors Δ1, Δ2, Δ3 after 
deformation of tension (compression) taking into account its 
rotation through the angle Δα.
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sinα =
BC + A

√
B2 − C2 + A2

A2 + B2 ,� (10)

where

C =
1 − νδ

1 + δ

[
sin θ

(
n cosα0 + mcos2

(α0

2

))
+

m
2
cos θ sinα0

]
,

and the coefficients A and B are expressed by formula (8).
The procedure for calculating the dependence of the hop-

ping integral γ(δ) on the strain using carbon nanotubes as an 
example is clearly described in [32–34].

For theoretical calculations, the following values of the 
strain (compression) δ  =  ±0.035, ±0.069, ±0.104, 0.25, 
corresponding to the interatomic bond lengths R  =  1.49, 1.54, 
1.59, 1.8 Å in the case of tension and R  =  1.39, 1.34, 1.29 Å 
in the case of compression, are used in the work.

Principal qualitative differences between the obtained band 
structures of semiconductor arm-chair type GNRs compared 
with the energy spectrum of non-deformed nanoribbons are 
not observed. A quantitative analysis shows a narrowing of the 
conduction band (CB), valence band (VB) and the band gap, 
which leads to an increase in the density of electronic states 
in the case of compression and, conversely, broadening of the 
CB, VB and band gap (decrease in the density of states) under 
tensile strain. A similar effect was also observed in the case of 
deformation of achiral (arm-chair and zig-zag types) carbon 
nanotubes studied in [32–36].

In the case of conducting arm-chair and zig-zag GNRs, 
longitudinal tension (compression) also changes its band 
structure in the manner described above and does not funda-
mentally distinguish them from arm-chair nanoribbons. With 
one exception, the energy gap in such GNR is absent and does 
not open at small deformations. The opening of the gap by 
deformation of the structure can be observed in mixed GNRs, 
as in the case of chiral CNTs [36], in which Mott transitions 
such as ‘conductor–semiconductor’ and ‘semiconductor– 
conductor’ become possible due to axial tensile (compres-
sion) strains.

3.  Model of the electronic structure of impurity  
graphene nanoribbons

The presence of isomorphic donor and acceptor impurities 
(point substitution defects) in the crystalline structure of 
GNRs can significantly affect its band structure and piezocon-
ductivity, as shown by the example of nanotubes in [34–36]. 
To describe the electronic structure of impurity nanoribbons, 
the Anderson’s periodic model is used [38]. This model, as 
a rule, is used to describe the electronic states of a crystal 
with low concentrations of defects, the interaction of which 
is small compared with the electron energy of an unperturbed 
crystal. It consists of a separate consideration of two groups of 
electrons: collectivized and localized, the interaction between 
which is carried out through the potential of hybridization. 
The electron-phonon interaction in the model is not taken into 
account. The π-electron approximation for GNR is used in 
the framework of the model, and collectivized electrons are 

considered in the periodic crystal approximation. The elec-
tronic GNR spectrum in the framework of the Anderson’s 
model has the following form [38]:

E(k) =
1
2

ï
εl + ε(k)±

»
(εl − ε(k))2

+ 36|VCD|2 · x
ò

,
� (11)
where ε(k) is the band structure of an ideal nanoribbon 
expressed by formula (6), εl is the electron energy at the 
defect, x  =  Nd/N is the concentration of impurities, N is the 
number of unit cells in the crystal, Nd is the number of point 
defects, VCD is the hybridization energy of the crystal elec-
trons and electron point defect.

Boron and nitrogen atoms, respectively, are chosen as 
acceptor and donor impurities. The electron energy at the 
defect (nitrogen atom) is calculated as the difference between 
the ionization potentials (electron work function) of the 
nitrogen and carbon atoms:

εl = IC − IN = 11.25 eV − 14.53 eV = −3.28 eV.

The VCD hybridization potential parameter is calculated 
using the resonance integral formula in the framework of the 
quantum chemical semi-empirical MNDO method [39]:

Vlj =

≠
ψl

∣∣∣∣−
�2

2m
∇2 + Vl + Vj

∣∣∣∣ψj

∑
≈ 1

2
(βC + βD)SCD,� (12)

SCD ≡ Spp =
´
Ψ2pz(RD − r)Ψ2pz(r)dr,

Ψpz(r) = 1
4
√

2π

Ä
Z
a0

ä 3
2
ρ exp(−ρ/2) cosφ,

� (13)

where Vl and Vj  are the interaction potentials of the electron 
with the lth and j th lattice sites, SCD is the overlap integral 
of 2p z atomic orbitals Ψj  and Ψl localized on the j th carbon 
atom and the lth defect atom, respectively, βC and βD are the 
resonance parameters of the MNDO metod for a carbon atom 
and a defect atom, respectively, ρ  =  Z*r/a0, r(r, φ, ϕ) is the 
dimensionless electron radius vector, a0 is the Bohr radius, Z 
is the atomic number. In accordance with the MNDO method, 
atomic wave functions are selected in the form of Slater orbits 
with an effective charge number Z*. The value of the resonance 
constants βD of the MNDO method is βB  =  −8.25 eV for the 
boron atom and βN  =  −20.4 eV for the nitrogen atom. After 
numerical integration by the Simpson method [40], the poten-
tials of VCD electrons at the impurity atom are VCB  =  −1.7 eV 
and VCN  =  −1.8 eV for boron and nitrogen, respectively.

The final expression for the band structure of deformed 
impurity GNRs is obtained by substituting expression (6) into 
formula (11). As in the case of CNTs, the introduction of a 
point acceptor substitution defect (boron atom) into the crys-
tallite structure promotes the appearance of an impurity band 
and an energy gap at the Fermi level in the spectrum of con-
ducting and semiconductor nanoribbons. With an increase in 
the relative compressive (tensile) deformation, the band gap 
in the impurity band sequential broadens (narrowing), and the 
density of states in the CB decreases (increases). This is due to 
a change of the hopping integral (electron energy) and hybrid-
ization potential, which leads to an increase (weakening) of 
the interaction of impurities with the crystallite, respectively. 
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A consequence of the latter is an increase (decrease) in the 
splitting of the impurity level.

4.  Elastoconductivity of graphene nanoribbons

The piezoresistive effect is characterized by tensors of elas-
toconductivity, elastoresistance or the so-called gauge factor 
[8]. The components of the elastoconductivity tensor can be 
calculated theoretically, and the elastoresistance tensor can be 
measured experimentally. According to the definition, the 4th 
rank tensor of elastroconductivity Mαβγδ can be represented by 
the following formula [8]:

∆σαβ

〈σ〉 = Mαβγδ · εγδ ,

〈σ〉 = 1
2 Sp

[
�
σ
]
=

σxx+σyy

2 ,

Mαβγδ = Mβαγδ = Mβαδγ = Mαβδγ ,

� (14)

where σαβ is the 2nd rank tensor of the conductivity; α, β, γ, 
δ  =  x, y.

The calculation of piezoresistive constants (the longitu-
dinal component of the elastoconductivity tensor) GNR is 
carried out according to the method described in detail in 
[32–34]. Based on the definition of the elastic conductivity 
tensor [8], its longitudinal component for 1D structures can be 
expressed by the following formula:

M =
∆σ

σ0

1
δ

,� (15)

where M  =  Mxxxx, Myyyy is the longitudinal component of the 
tensor of the 4th rank of elastic conductivity for armchair and 
zigzag GNR respectively, Δσ  =  σ  −  σ0 is the change in the 
longitudinal component of the conductivity tensor due to crys-
tallite deformation, σ and σ0 are the longitudinal components 
σxx or σyy of the tensor of the 2nd rank of the conductivity of 
the deformed and non-deformed armchair and zig-zag GNR, 
respectively.

The longitudinal component of the non-phonon conduc-
tivity tensor of the GNT is calculated in the framework of the 
Kubo–Greenwood theory using the Green’s function method 
and the model tight-binding Hamiltonian [41]. The final 
expression for the GNR longitudinal conductivity used in the 
calculations of the constant M has the following form [33]:

σ = 2
iπe2

kBTV

∑
k,α

∑
q,β

v(k)v(q) 〈nkα〉 [〈nqβ〉+ δkqδβα (1 − 〈nkα〉)],
� (16)
where V is the crystallite volume, kB is the Boltzmann constant, 
T is the absolute temperature, e is the elementary charge, k, q 
are two-component wave vectors within the Brillouin’s zone 
(BZ), α, β are the spin indices, v is the longitudinal comp
onent of the electron velocity vector in the BZ, which deter-
mined in a standard way using the electronic spectrum E(k):

v(k) =
1
�
∂E (k)
∂k

.
� (17)
〈nkα〉 is the average number of particles in a quantum state 
with wave vector k and spin α, expressed by the Fermi–Dirac 
distribution function.

Since numerous studies of the transport properties of gra-
phene nanoribbons indicate the ballistic (non-phonon) nature 
of electronic conductivity, the use of a tight-binding model 
that does not take into account the electron-phonon interaction 
is justified and appropriate.

Dependences of the component M of the elastic conduc-
tivity tensor on the relative deformation δ (=  −0.104, −0.069, 
−0.035, 0.035, 0.069, 0.104, 0.25) for arm-chair (nArm, 
where n  =  9, 10, 50, 100 unit cells along a width) and zig-zag 
(mZg, where m  =  5, 10) GNRs of different widths, and the 
type of conductivity are shown in figures 3 and 4. Numerical 
results are obtained at a temperature of T  =  300 K. For a clear 
image of the tendency for the constant M to change, the calcu-
lated points are connected by solid lines. It should be under-
stood that the point δ  =  0 is not defined.

As follows from the figures, the longitudinal component M 
of the conductive arm-chair (9Arm) and zig-zag (5Zg, 10Zg) 
GNRs is positive and its behaviour completely correlates with 
the changes in the band structure described above. The general 
pattern for the considered conducting nanoribbons is a mono-
tonic increase (decrease) of the value of M with an increase 
of the strain δ. A similar behaviour is observed in conducting 
achiral CNTs [32, 33]. Despite the increase in the width of 

Figure 3.  The longitudinal component M of the elastic conductivity 
tensor of zig-zag GNRs with a width of 5 (a) and 10 (b) UCs as 
a function of the strain δ with various concentration of acceptor 
defects (boron atoms) Nd  =  0, 1, 10, 100. On all curves, the point 
δ  =  0 is not defined.
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the conduction band and a decrease in the density of states at 
the Fermi level with increasing δ, the conductivity increases, 

that leads to a monotonic growth of the component M. This 
effect is associated with the fact that an increasing number 
of charge carriers with ever higher energies give contribution 
to the conductivity of the crystallite. Thermal fluctuations 
lead to the filling of the GNR conduction band by electrons 
according to the Fermi–Dirac distribution function. A modi-
fication of the electronic spectrum leads to a change of the 
conductivity, taking into account all possible filled electronic 
states, and, consequently, to an increase in the component M 
with a growth of δ.

In the case of semiconductor arm-chair (10Arm, 50Arm, 
100Arm) GNR, the longitudinal component M is negative, 
but, as in the case of conducting nanoribbons, it monotoni-
cally increases with a growth of δ. The negative value is due to 
a decrease of the conductivity with increasing the strain. This 
effect is also a consequence of the behaviour of the band struc-
ture of deformed semiconductor GNRs, in which the energy 
gap broadens and, therefore, the number of occupied states 
in the CB decreases. A similar behaviour of the constant M is 
also observed in semiconductor achiral CNTs [32, 33].

The longitudinal component M of semiconductor arm-chair 
(10Arm, 50Arm, 100Arm) GNR, as opposed to conductance 
these, increases with growing a width of the nanoribbon. And 
the smaller the deformation, then the M value changes more. 
This behaviour is determined by a decrease in the band gap 
with a decrease in the strain δ and an increase in the nanor-
ibbon width.

5. The effect of isomorphic impurities on the  
piezoelectric conductivity of graphene nanoribbons

The piezoresistance constants M of the impurity arm-chair and 
zig-zag GNRs are calculated based on formula (15) with the 
term (16), which includes the expression for its band structure 
(11). The presence of donor and acceptor substitution defects 
in the crystal lattice modifies the GNR energy spectrum in 
accordance with the dispersion relation (11). Calculation 
data for the longitudinal component of the elastic conduc-
tivity tensor of arm-chair and zig-zag GNRs with acceptor 
and donor impurities (boron and nitrogen atoms respectively) 
added to the crystal lattice as functions of the tensile (com-
pression) strain δ are shown in figures 3–6.

As follows from the analysis of the calculation results, 
small additions of acceptor impurities (boron atoms) Nd  =  1, 
10, 100 per N  =  100 000 unit cells (UC) in crystallite of con-
ducting arm-chair (9Arm) and zig-zag (5Zg, 10Zg) GNRs 
affect by the component M, which increases at each strain 
value δ with an increase in the concentration of acceptor 
impurities in comparison with ideal structures (figures 3 and 
4). Boron atoms embedded in the atomic lattice of the nanor-
ibbon create a band of impurity states near the Fermi level 
and a small energy gap at the level itself, which increases with 
growing of impurity concentrations. But at the same time, the 
density of states increases near the Fermi level. A consequence 
of the described change in the band structure is an increase 
of the conductivity of metallic GNRs and the piezoresistance 
constant M.

Figure 4.  The longitudinal component M of the elastic conductance 
tensor of arm-chair GNRs with a width of 9 (a), 10 (b), 50 (c) and 
100 (d) UCs as a function of the strain δ with various concentration 
of acceptor defects (boron atoms) Nd  =  0, 1, 10, 100. On all curves, 
the point δ  =  0 is not defined.
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It should be noted that the M value of conducting nanorib-
bons, both ideal and with impurity, is practically independent 
of their width. That is, the band structure of such nanoribbons 
near the Fermi level is identical.

The behaviour of the longitudinal component M of impu-
rity semiconductor arm-chair (10Arm, 50Arm) GNRs is sim-
ilar to the behaviour of the ideal nanoribbon constant. In most 
cases (Nd  =  1, 10), a monotonic growth with increasing strain 
δ is observed.

For 100Arm GNR, a monotonic decrease in case Nd  =  1 
and a monotonic decrease to the extreme point δ  =  0.069, 
after which a monotonic growth begins, with Nd  =  10  are 
observed. For these nanoribbons, competing effects begin to 
appear. The first effect is the inversely proportional depend
ence of the band gap Eg on the nanoribbon width H (Eg ~ 1/H) 
[42–44]. The second effect is associated with an increase in 
the energy band with growing the strain. In addition, the third 
effect appears when the Brillouin’s zone is deformed. At the 
same time, the transverse sizes of the ribbon and, therefore, 
the quantization step of the transverse component of the wave 
vector are reduced. As a result, parallel planes cutting a 2D 
energy surface of graphene are closer to the Dirac points. This, 
in turn, leads to a decrease in the band gap and an increase in 
the specific conductivity of the 1D crystallite.

The question about that, at what GNR width the trend in 
the functional dependence of M(δ) is changing, remains open 
at the moment.

The case of the defect concentration Nd  =  100 requires 
a separate consideration. For 10Arm GNR, the M(δ) func-
tion has a minimum at the point δ  =  0.035. One should be 
noted that this point is minimal in the considered discrete 
strain range. Further growth of the constant M(δ) is caused by 
the following. The tensile strain increases the band gap, but 
simultaneously narrows the conduction and impurity bands. 
Because of the latter, the density of states near the Fermi level 
increases, which ultimately leads to an increase in conduc-
tivity at a finite temperature.

For wide nanoribbons (50Arm, 100Arm), the component 
M is decreasing over the entire range of strain δ. In the nega-
tive region (δ  <  0), it takes a positive value, as well as for 
conducting GNR. Most likely, the effects of a decrease of Eg 
because of the structure deformation and an increase in the 
density of states due to the narrowing of the impurity band are 
predominated here. In the positive region (δ  >  0), the effects 
of broadening of the band gap Eg and the energy gap of the 
impurity band become dominant. This leads to a decrease in 
conductivity, causing a decrease in the function M(δ).

Weak oscillations, which is observed on the Nd  =  100 
curves, are most likely associated with the unevenness of the 
used scale δ (figures 4(c) and (d)).

In the case of donor impurities (nitrogen atoms), an insig-
nificant change in the piezoresistance constant of conducting 
zig-zag (5Zg, 10Zg) (figure 5) and arm-chair (9Arm) (figure 
6(a)) GNRs is observed for each given strain δ for small con-
centrations Nd  =  1, 10, 100. Therefore, the function M(δ) for 
such GNRs is similar to the function for nanoribbons both 
ideal and with acceptor impurities (figures 3 and 4). Only 
high concentrations of defects (Nd  =  1000, 10 000) lead to a 

significant change in the constant M for large deformations 
(figure 5).

As mentioned above, the donor defect levels create a band 
of impurity states in the valence band, practically without 
changing the density of states at the Fermi level. Therefore, 
the behavior of the function M(δ) is characteristic of both con-
ductive nanoribbons (figures 3 and 4(a)).

The longitudinal component of the elastic conductivity 
tensor M of semiconductor arm-chair (10Arm, 50Arm, 
100Arm) GNR takes a positive value and generally monotoni-
cally decreases with increasing strain value until δ  =  0.069, 
than it grows tothe limited point δ  =  0.25 (figures 6(b)–(d)). 
This is due to the fact that the deformation of the nanor-
ibbon structure increases the band gap, as mentioned above. 
However, donor nitrogen atoms form a zone of impurity states 
near the defect level, which is localized in the valence band and 
leads to broadening of the VB and an increase in the density of 
states in the vicinity of the Fermi level. At a finite temperature 

Figure 5.  The longitudinal component M of the elastic conductivity 
tensor of zig-zag GNRs with a width of 5 (a) and 10 (b) UCs as a 
function of the strain δ with various concentration of donor defects 
(nitrogen atoms) Nd  =  1, 10, 100, 1000, 10 000 and the relative 
strain δ. On all curves, the point δ  =  0 is not defined.
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donor impurities increase the number of charge carriers in the 
CB due to thermal fluctuations taken into account using the 
Fermi–Dirac distribution. The competition of the described 
effects ultimately leads to an increase in GNL conductivity. 
Therefore, despite the semiconductor nature of the band struc-
ture, the constant M of 10Arm, 50Arm and 100Arm GNR with 
donor impurities is positive and decreasing.

In addition, in the case of large deformations (δ  >  0.069), 
another effect begins to play a significant role; this is associ-
ated with the narrowing of the Brillouin’s zone. At the same 
time, the transverse dimensions of the ribbon and, therefore, 
the quantization step of the transverse component of the wave 
vector are reduced. As a result, parallel planes cutting a 2D 
energy surface of graphene are closer to the Dirac points. This, 
in turn, leads to a decrease in the band gap and an increase in 
the specific conductivity of the 1D crystallite. This effect is 
reflected in the behavior of the curve M(δ) at large δ; the M(δ) 
begins to increase monotonically.

It should be noted that it cannot be stated with accuracy 
that the strain δ  =  0.069 is an extreme of the function M(δ). To 
determine the true minimum of this function, further numer
ical studies are needed.

As follows from the results presented in figure 6, only a high 
concentration of donor defects (untill Nd  =  10 000, x  =  0.1) 
can significantly increase the piezoresistance constant M of 
semiconductor GNR. In addition, these curves do not show an 
evidently extreme in the considered range of δ and decreases 
monotonically. In this regard, the behaviour of the curves is 
similar to the corresponding functions M(δ) for the case of 
acceptor defects, only the component M remains positive. 
Apparently, the dominant contribution in these dependences 
is the effect of the Eg increase with a strain growth, which 
decreases the specific conductivity of the crystallite. This is 
reflected in the decline in function M(δ).

The question also remains open at what value of the concen-
tration of donor defects the curve M(δ) changes its tendency.

6.  Conclusion

A theoretical study of the piezoresistive properties of impurity 
graphene nanoribbons in the framework of the tight-binding 
method revealed a number of features of the behaviour of the 
longitudinal component of the elastic conductivity tensor dis-
cussed above. A quantitative study of the dependences of the 
constant M on the strain value and the type and concentration 
of isomorphic impurities allows us to obtain a more complete 
picture of the change in the conductivity of graphene nanorib-
bons due to the strain of axial tension (compression).

The results can also be adapted for electromechanical 
nanosensor developments, which are based on the effect of 
piezoelectric resistance, and graphene nanoribbons are the 
main structural element. The operating characteristics of the 
sensors can be purposefully changed by varying the concen-
tration of donor and acceptor substitution defects.

Figure 6.  The longitudinal component M of the elastic conductivity 
tensor of arm-chair GNRs with a width of 5 (a), 10 (b), 50 (c) and 
100 (d) UCs as a function of the strain δ with various concentration 
of donor defects (nitrogen atoms) Nd  =  1, 10, 100, 1000, 10 000. On 
all curves, the point δ  =  0 is not defined.
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It is assumed that the studied piezoresistive properties of 
graphene nanoribbons are common to the whole family of 
Dirac structures, including silicene, germanene, stanene and 
so on nanoribbons.
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