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1.  Introduction and motivation

Topological superfluids (TSFs) and topological superconduc-
tors (TSCs) are a class of topologically non-trivial quantum 
states [1, 2]. Based on local symmetries, i.e. particle-hole 
symmetry (P ), time-reversal symmetry (T ) and chiral sym-
metry (C), two dimensional TSFs and TSCs are classified into 
three categories consisting of D-type, C-type and DIII-type 
ones [3–5]. Owing to the bulk-boundary correspondence, the 
topological invariant characterizing bulk topology can pre-
dict the number of edge states and chirality. For instance, the 
integer topological number Z in class D counts the number 
of chiral Majorana edge modes. The local symmetries 
(P , T , C) successfully capture topological nature of general 
physical systems. Whereas spatial symmetries, such as trans-
lation and point group symmetries, can also lead to nontrivial 
bulk topology and boundary states for selected surfaces or 
edges [6–9]. Moreover, the mirror-reflection-symmetry pro-
tected surface gapless states have been observed in experi-
ments [10, 11]. Motivated by these progresses, various TSC 
and TSFs with spatial symmetries (translation, inversion, 

reflection and other point symmetries) have been elucidated 
[12–16]. Furthermore, the symmetry-protected Majorana zero 
modes are predicted in the unconventional spinful TSFs and 
TSCs [15, 16].

Recently, a new class of TSCs, called higher order TSCs, 
have been proposed [17–25]. r (r � 2) order TSCs in d dimen-
sions host d  −  r dimensional Majorana boundary states rather 
than d  −  1 dimensional gapless Majorana excitations in con-
ventional TSCs. For instance, for the the second order TSC 
in two dimensions, Majorana corner modes (MCMs) localize 
at the intersection between adjacent boundaries. Recently, a 
variety of schemes have been proposed to implement second 
order TSCs, such as ( px + ipy)× ( px − ipy)-wave supercon-
ductors with a magnetic field [20], 2D topological insula-
tors with d-wave or s± -wave pairing induced by proximity 
effect proximity [21–23], and π-junction Rashba Layers with 
layer-dependent superconductor (SC) pairing [26]. From con-
ventional topological point of view, a second order TSC or 
TSF has a d dimensional (dD) topologically trivial bulk. Its 
boundaries are stand-alone d  −  1 dimensional gapped SCs 
in essence. Therefore, the topologically protected Majorana 
states at corners or hinges naturally arise at the domain wall at 
the intersection of two adjacent edges or surfaces.
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Rapid advances on synthetic gauge fields and magnetic 
fields in ultracold atoms provide an ideal platform for real-
izing novel quantum states of matter [27–34]. In a ultracold 
atom system, various degrees of freedom can be tuned, such 
as the tunneling strength between lattice sites on optical lat-
tices, the Zeeman field, interaction strength, and etc. Ultracold 
atoms have been a powerful platform studying or simulating 
models originating from condensed matter systems for over 
one decade, where quantum degenerate neutral atom gases 
are used to simulate and explore physical regimes hard to be 
accessed by conventional solid-state systems. One remarkable 
advantage of this platform is free of disorders. In recent years 
remarkably experimental progress has been made including 
the realization of Hubbard model [35], BCS pairing [36] and 
various topological quantum matter [37], as well as transport 
measurements with cold atoms [38]. In particular, at this plat-
form, px + ipy SFs or non-Abelian s-wave SFs are proposed 
in spin–orbit coupled cold atoms [39], where Majorana zero 
modes localize at SF vortex cores or ends of the edge dislo-
cations [40, 41]. Generally, by tuning the s -wave scattering 
length through Feshbach resonance technique, the s-wave 
attractive interaction between atoms can be fine tuned, so that 
s-wave Cooper pairing can be reached readily. However, in 
most of previous proposals [20–24, 26], the unconventional 
SC pairings (p -wave, d-wave, and s±-wave, and etc.) are 
demanded for realizing the second order TSCs and TSFs. 
Naturally, an interesting question arises: can we reach an s-
wave second order TSF and MCMs by making use of s-wave 
interaction? 

Essentially, the emergence of MCMs originates from the 
Dirac-mass-sign changing at the corner in boundary theory 
for 2D TSCs. For example, in [21–23], the proximity-effect 
induced d -wave, and s±-wave parings exhibit different 
features at distinct edges, and further give rise to MCMs. 
However, the conventional s-wave pairing is isotropic and 
then plays same role for all edges. It is necessary to intro-
duce another parameter (the Zeeman field introduced below) 
to induce the changes for Dirac-mass sign at the intersection 
of adjacent edges.

The remaining of this paper is organized as follows. In sec-
tion 2 we first introduce a quantum spin Hall insulator (QSHI) 
on a square lattice that may be realized in ultracold atoms. By 
tuning the s-wave interaction and the in-plane Zeeman field, 
the QSHI can be driven into a second order TSF. Numerical 
results confirm that MCMs exist in this topological phase. In 
section 3, by using the low energy edge theory, we unveil the 
emergence of MCMs. Finally, we conclude our discussions in 
section 4.

2.  s-wave superfluid in correlated quantum spin 
Hall insulators

2.1.  Quantum spin Hall insulators on a square lattice

We first consider a two-component Fermi gas loaded in a 
2D optical lattice as sketched in figure 1. The single-particle 
Hamiltonian reads

Ĥ0 = ĤNN + HNNN + HSZ,� (1)

which consists of the the nearest-neighbor (NN) hopping term 
ĤNN, the next-nearest-neighbor (NNN) hopping term ĤNNN, 
the staggered potential and the in-plane Zeeman term ĤSZ:

ĤNN = −
∑
�i

(
txa†�i b�i±�x − itya†�i szb�i±�y

)
+ H.c.,� (2)

ĤNNN = −t′
∑
�i

(
a†�i a�i+�x+�y − a†

�i
a�i+�x−�y + b†

�i
b�i+�x+�y

−b†�i b�i+�x−�y
)
+ H.c.,

�

(3)

ĤSZ = m0

∑
�i

(
a†
�i

a�i − b†
�i

b�i
)
+ hx

∑
�i

(
a†�i sxa�i

+b†�i sxb�i
)
− µ

∑
�i

(
a†�i a�i + b†

�i
b�i
)

,
�

(4)

where tx and ty  are amplitudes for NN hopping terms along x 

and y , respectively. t′ is the NNN hoping strength. The oper-

ator a�i =
(

a�i,↑, a�i,↓
)
 (b�i =

(
b�i,↑, b�i,↓

)
) annihilates a fermion 

with spin α = (↑, ↓) at A (B)-sublattice site �i = (ix, iy). m0 is 
the staggered potential. µ is the chemical potential. sx,y ,z are 
Pauli matrices acting on spin degrees of freedom. Hereafter, 
without loss of generality, the lattice spacing is set to be 
|�x| = |�y| = 1 throughout.

After Fourier transformation for the Hamiltonian, the equa-

tion (1) in momentum space is written as Ĥ =
∑

k C†
k H0 (k)Ck, 

where the vector basis is C†
k =

(
a†k,↑, b†k,↑, a†k,↓, b†k,↓

)
, and the 

Hamiltonian matrix is

H0(k) = ξkσzs0 − 2tx cos kxσxs0 − 2ty cos kyσysz

− µσ0s0 + hxσ0sx.
�

(5)

Here ξk = −2t′[cos (kx + ky)− cos (kx − ky)]− m0. For  
simplicity, we choose tx = ty = t  and µ = 0 in fol-
lowing discussions. hx is a Zeeman field along the x direc-
tion. σx,y,z  are Pauli Matrices that act on sublattice degrees 
of freedom. σ0  and s0 are 2 × 2 unit matrices. The energy 

spectra for H0(k) is ek =
√
(γk ± hx)

2
+ (2ty cos ky)

2  with 

γk =
√
ξ2

k + (2tx cos kx)
2. At Dirac points K = (π/2,π/2) 

and K′ = (π/2,−π/2), as illustrated in figure 1, the energy 
gap are min(|−4t′ − m0 + hx|, |−4t′ − m0 − hx|) and 
min(|4t′ − m0 + hx|, |4t′ − m0 − hx|), respectively.

In the absence of the Zeeman term (hx  =  0), H0(k) pre-
serves time-reversal symmetry, i.e. T H0 (k) T −1 = H0 (−k), 
where T = iσ0syK. This system also has sz conservation and 
we have spin ↑ and ↓ sectors, which also has symmetry 
U (1)× U (1), one U (1) being the charge U (1), and the other 
bing the U (1) of sz conservation. In fact, for the case with 
|m0| < 4 |t′|, the Hamiltonian H0 are two quantum anoma-
lous Hall insulators related to each other by the time-reversal 
operation. At this time, the system is characterized by non-
trivial Z2 topological invariant 1. Each edge has a pair of 
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counterpropagating gapless edge modes, which cross at 
T -invariant point kx = ±π/2 or ky = ±π/2, as shown in fig-
ures 2(a) and (b). As long as T  symmetry is preserved, each 
T  invariant point must have two degenerate states according 
to Kramers theorem. There is no T -invariant local perturba-
tion that can couple the two branches of the single pair of 
edge states. Hence, to open a gap for a single pair of counter-
propagating modes, the T  symmetry for the system should 
be broken. We next consider a in-plane Zeeman field that 
breaks T  symmetry. Due to {σysz,σ0sx} = 0, the edge states 
along the y -direction are gapped, as confirmed in figure 2(d). 
However, because of [σxs0,σ0sx] = 0, gapless edge states still 
exist along the x-direction, as shown in figure 2(c). It indicates 
that the Zeeman field exhibits distinct features for edge states 
of the QSHI. Just because of this, in the following, we will see 
the Zeeman field plays a key role for implementing the second 
order TSFs.

2.2.  SF phase transition for attractive Hubbard model

Consider the onsite interaction that can be tuned by Feshbach 
resonance technique, i.e.

ĤU = −U
∑

i

ni↑ni↓,� (6)

where U  >  0 is the attractive interaction strength. As the 
interaction strength increases, the system enter a s-wave 
SF phase, where the s-wave pairing order parameter is 

∆s = U
〈

c†i↑c†i↓
〉

. Then the total Hamiltonian now becomes 

Ĥ =
∑

k>0 Ψ
†
kH (k)Ψk + 2U∆2

s/Nu − 2Nuµ, where the 

basis Ψ†
k =

(
C†

k , C−k

)
 and

H(k) = ξkσzs0τz − 2tx cos kxσxs0τz − 2ty cos kyσyszτ0

+∆sσ0syτy − µσ0s0τz + hxσ0sxτz.
�

(7)

τx,y,z are Pauli matrices acting on the Nambu space.  
The energy spectra for H(k) are given by Ek,± = √
(Γk ± hx)

2
+ (2tx cos ky)

2  with Γk = 

√
∆2

s + ξ2
k + (2tx cos kx)

2 . The free energy per unit cell at 

temperature T is

Fu = − 1
Nu

∑
k,v

(
Ek,v −

∆2
s

U
+ µ+

2
β
ln
(
1 + e−βEk,v

))
� (8)

with β = 1/ (kBT), where kB is a Boltzmann constant, and 
Nu is the unit-cell number. For simplicity but without loss 
of generality, hereafter we consider the case with µ = 0. By 
minimizing the free energy of the system, we obtain a self-
consistent equation as

1 =
U

4Nu

∑
ν=±,k∈BZ

1 + ν/ |Γk|
Ek,ν

tanh (βEk,ν/2) ,� (9)

x
y

A

B

kx

ky

K

K'

O

Figure 1.  Left figure: The illustration of square optical lattices with laser induced gauge potentials. The particle with spin ↑ (↓) acquires 
0 (0) phase when hopping along solid lines, acquires π/2 (−π/2) phase when hopping along the red arrowed lines, and gets π (π) phase 
when hoping along dashed lines. Right figure: The illustration of reduced Brillouin zone indicated by the shaded region. K = (π/2,π/2) 
and K′ = (π/2,−π/2) denote two inequivalent Dirac points.

Figure 2.  Energy level distributions on a stripe with open boundary 
condition along the y  (x)-direction and periodic boundary condition 
along the x (y )-direction in (a)–(d). In (a) and (c), hx  =  .0; (b) and 
(d) hx  =  .2; parameters: t  =  1, t′ = .2, and m0 = µ = .0.
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where k runs over the Brillouin zone (BZ). By numerically 
solving the self-consistent equation  (9), we find there exist 
three distinct phases: the insulator (I), metal (M), SF. In the 
following section, we will see SF consists of normal SF and 
second order topological SF phases.

2.3. Topological phase transitions and MCMs

First, consider the case with hx  =  0. As the onsite interaction 
increase, the system enters s-wave SF phase. The s-wave SF 
order gaps all helical edge modes of QSHI that propagate 
along the boundary, as shown in figures 3(a) and (d). Next, 
we turn on the in-plane Zeeman field. As the Zeeman field 
increases, as shown in figures 3(a)–(c), the energy gap along the  
x-direction remains; However, as shown in figures  3(d)–(f)  
the energy gap along the y -direction gradually decreases, 
closes at a critical value hx,c = ∆s, and finally reopens. It 
indicates there is a topological transition (from trivial phase 
to topological phase) for edge states along the y -direction 
(This will be elucidated by using low-energy edge theory in 
the next section). With the consideration of this, we plot the 
global phase diagram in figure 4. There are two distinct SF 

phase: Normal SFs (NSF) and second order SFs (SSF). This 
SSF here is an extrinsic one that can be characterized by a Z 
topological invariant from the topological transition for the 
edge states [42].

In fact, based on conventional topological classifications, 
the SSF is a bulk gapped trivial phase. So there are no gap-
less edge states propagating around the boundaries. However, 
Majorana corner states will emerge in this phase. We calculate 
the eigenenergy values for a square lattice with a size 60 × 60. 
The inset figure in figure 5(a) shows the symmetrical eigen-
energies due to particle-hole symmetry. There are four zero 
energy modes in the gap. The probability density distribu-
tions of modes with zero energies, as illustrated in figure 5, 
show that each corner host one localized Majorana bound 
state known as MCM. Figure 5(b) shows the eigenenergies of 
a rectangle lattice with a size 60 × 40. Majorana corner states 
also remain.

We discuss the robustness of the Majorana corner modes. 
Firstly, the NN hopping amplitudes are slightly anisotropic, 
such as tx  =  1, ty   =  1.2, t′ = 0.2. Figure 6(a) shows that the 
Majorana corner modes exist as long as in SSF phase, which 
indicates the MCMs are robust against the fluctuations of NN 
hopping. Second, the on-site potential is changed randomly 
according to Vi = ζi , where ζi is a random variable distributed 
in a range [−V0/2, V0/2], and V0 = 0.1 describes the strength 
of a weak disorder. Figure 6(b) indicates the MCMs are also 
robust against weak disorders.

3.  Low-energy edge theory in the continuum limit

To be explicit, we will unveil the emergence of MCMs from 
the SSF by using the low-energy edge theory in the con-
tinuum. With both SF pairing interaction and Zeeman field, 
the Hamiltonian H0(k) breaks time-reversal symmetry but 
respects particle-hole symmetry, PHsqu(k)P−1 = −Hsqu(−k) 
with P = τxK. Without loss of generality, we supposed the 
pairing order parameter is a constant ∆s for each lattice site. 
In the continuum limit, the low energy Hamiltonian up to the 
second order around Dirac point K = (π/2,π/2) reads

Hsqu(k) =
(
ε− 2t′k2

x − 2t′k2
y

)
σzs0τz + 2txkxσxs0τz

+ 2tykyσyszτ0 +∆sσ0syτy + hxσ0sxτz,
�

(10)

Figure 3.  Energy level distributions on a stripe with open boundary 
condition along the y  (x)-direction and periodic boundary condition 
along the x (y )-direction in (a)–(c) ((d)–(f)). (a) and (d) hx  =  .0, 
∆s = .2; (b) and (e) hx  =  .2, ∆s = .2; (c) and (f) hx  =  .4, ∆s = .2; 
Parameters: t  =  1, t′ = .2, and m0 = µ = 0.

Figure 4.  Global phase diagram: insulator (I), metal (M), normal 
superfluid (NSF), and second order topological SF (SSF) phases. 
Parameters t = 1, t′ = .2, m0 = 0 are used.

J. Phys.: Condens. Matter 32 (2020) 145601
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where ε = 4t′ − m0 > 0 is satisfied such that the insulator 
is in the Z2 TI phase without the s-wave pairing and the 
Zeeman field. The four edges of a square lattice is labeled as 
I, II, III and IV as illustrated in figure 5(a). For the edge I, by 
replacing the momentum operator kx → −i∂x, we decompose 
Hsqu(k) = HI,M + HI,P, where

HI,M (−i∂x, ky) =
(
ε+ 2t′∂2

x

)
σzs0τz − 2itx∂xσxs0τz,

HI,P (−i∂x, ky) = −t′k2
yσzs0τz + 2tykyσyszτ0

+∆sσ0syτy + hxσ0sxτz,

�

(11)

of which HI,M  is the main part, and HI,P is the the perturbation 
part when the pairing interaction is relatively small compared 
to the energy gap.

In the following, we first solve H0, and then derive the 
the effective Hamiltonian for the edge I. For HI,M , we have 
{HI,M ,σyszτz} = 0, i.e. HI,Mσyszτz = −σyszτzHI,M . We 
assume HI,M  has zero energy solutions Ψa localized at the 
edge I. σyszτzΨa  are also the eigenstates for HI,M . Hence, we 
choose eigenvectors ζβ satisfying σyszτz ζβ = − ζβ, where

ζ1 = |σy = −1〉 |sz = +1〉 |τx = +1〉 ,
ζ2 = |σy = +1〉 |sz = −1〉 |τx = +1〉 ,
ζ3 = |σy = +1〉 |sz = +1〉 |τx = −1〉 ,
ζ4 = |σy = −1〉 |sz = −1〉 |τx = −1〉 .

�

(12)

At this basis, there are four zero-energy bound states local-

ized at the edge I: Ψi=1,2,3,4 = A (sin ς) e−
tx

2t′ xζi with 

ς =

√
−
(

t2
x

4t′2 − ε
2t′

)
 and A the normalization constant. For 

the perturbation term HI,P, in the basis ζi, the low-energy 
effective edge Hamiltonian becomes

HEdge,I = ityszτ0∂y +∆ssyτy + hxsxτz.� (13)

Following similar above procedure, we obtain low-energy 
edge Hamiltonian as

HEdge,II = −itxszτ0∂x +∆ssyτy,
HEdge,III = −ityszτ0∂y +∆ssyτy + hxsxτz,
HEdge,IV = itxszτ0∂x +∆ssyτy.

Figure 5.  (a) Majorana modes at the corner of a square lattice with 
60 × 60 sites. The radii of the purple spots are proportional to the 
square of the Majorana modes’ wave function. The inset shows the 
eigenenergy values. (b) Majorana modes at the corner of a rectangle 
lattice with 60 × 40 sites. In (a) and (b), t = 1, t′ = .2, hx  =  .4, 
∆s = .2, m0 = µ = 0 are used.

Figure 6.  Majorana modes at the corner of a square lattice. The 
radii of the purple spots are proportional to the square of the 
Majorana modes’ wave function. The inset shows the eigenenergy 
values. (a) tx  =  1, ty   =  1.2 and (b) tx = ty = 1. In both (a) and (b), 
parameters t′ = .2, hx  =  .4, ∆s = .2, m0 = µ = 0 are used.

J. Phys.: Condens. Matter 32 (2020) 145601
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In the edge coordinate, the low-energy edge Hamiltonian is 
written as a concise form:

HEdge = iλ (l) szτ0∂l +∆ssyτy + h (l) sxτz,� (14)

where h (l) = hx,0 , hx, 0 at boundaries I , II, III and IV, 
respectively. In the space

χ1 = |sz = +1〉 |τx = +1〉 ,
χ2 = |sz = −1〉 |τx = −1〉 ,
χ3 = |sz = +1〉 |τx = −1〉 ,
χ4 = |sz = −1〉 |τx = +1〉 ,

�

(15)

the Hamiltonian HEdge is rewritten as

HEdge = −iλ (l) szτ0∂x +∆ssxτz + h (l) sxτ0.� (16)

This Hamiltonian consists of two decoupled blocks. One 
block has Dirac mass ∆s + hx, and the other has ∆s − hx. If 
∆s.(∆s − hx) < 0, then the Majorana corner mode naturally 
arises.

If a Zeeman field hy  along the y -direction is applied, the 
edge states for QSHI along the y -direction are also gapped 
due to [σysz,σ0sy]+ = 0. Taking similar steps, we can obtain 
an effective low-energy edge Hamiltonian as

HEdge = −iλ (l) szτ0∂x +∆ssyτz + h (l) syτ0,� (17)

where h (l) = 0, hy , 0, hy  at boundaries I, II, III and 
IV, respectively. It shows if ∆s.(∆s − hy) < 0, the Majorana 
corner mode also emerges. In general, for a in-plane Zeeman 
field �h = (hx, hy, 0), the x-component and y -component 
Zeeman field both can gaps the gapless edge states for QSHI. 

Majorana corner states arise if 
∣∣∣�h
∣∣∣ > ∆s. For an out-of-plane 

Zeeman field hz, it can not gap edge states for QSHIs due to 
[σxs0,σ0sz] = 0 and [σysz,σ0sz] = 0. In this case, with s-wave 
SF order, the Dirac-mass sign does not change at the corner 
and no MCM emerges.

4.  Discussion and conclusion

Previous studies showed zero-energy bound states local-
ized around vortices in second order topological states [43], 
which originates from that the order parameter induces the 
sign change of Dirac mass term at the vortex. However, in our 
model the only superfluid order parameter could not change 
the sign of Dirac mass term. Explicitly, in the presence of 
superfluid vortex, the Dirac Mass term at the vortex core is 
hx and far away form the core it becomes hx −∆0, where 
∆0 is the mean-field superfluid order-parameter profile of a 
vortex. In the second order topological superfluid phase, we 
have hx > ∆0 (without loss of generality, we have assumed hx, 
∆0 > 0 here). So there is no sign change of Dirac mass term 
at the superfluid vortex. Therefore, the superfluid vortices in 
the second order topological superfluid do not host Majorana 
bound states.

To illustrate the robustness of Majorana corner modes 
to the phase fluctuations, we introduce the superfluid order 
parameters with phase fluctuations modeled as ∆i = ∆0eiφi, 
where the random phase φi = 2πηγi , η denotes the strength of 
phase fluctuations, and γi ∈ [0, 1] is a random number. When 
η = 0, the superfluid order has a uniform phase with φi = 0. 
When η = 1, the superfluid order suffers strongest phase fluc-
tuations. We then numerically calculate eigenenergies of the 
second superfluid with random phases on a square lattice with 
60 × 60 sites versus η. The numeric results have been shown 
in figure  7. It shows energies of bulk states may change as 
phase fluctuations become stronger, but Majorana corner 
modes are robust against phase fluctuations. In essence, the 
sign change of Dirac mass term at the corner leads to the 
emergence of Majorana corner mode. This relation also holds 
in the second order topological phase with phase fluctua-
tions. So the Majorana corner modes are robust against phase 
fluctuations.

The high controllability of cold atoms provides a powerful 
platform to realize various novel quantum states of matter. 
The QSHI described by equation (1) may be realized via fer-
mionic cold atoms (40K ) trapped in a spin-dependent optical 
lattice [35, 44]. By means of laser-induced gauge potentials, 
the phases of NN and NNN hopping can be reached [27, 45]. 
The on-site attractive interaction can be fine tuned through 
Feshbach resonance technique [46, 47]. The spatial-resolved 
radio-frequency spectroscopy that provides local information 
has been implemented in experiments for ultracold Fermi 
gases [48]. Using spatially resolved radio-frequency spectr
oscopy to measure the local density of states is a direct and 
convenient way to detect Majorana corner modes [49, 50], 
which is a cold-atom analog of scanning tunneling micros-
copy. In addition, the existence of the Majorana corner modes 
may be indirectly identified from the total density profile 
that can be measured via in situ or time-of-flight absorption 
imaging [35, 51].

In summary, we propose an s-wave SSF in a cold atom 
system. Three key ingredients consisting a QSHI, in-
plane Zeeman field, and s-wave pairing are in this scheme.  

Figure 7.  The eigenenergies of the second order 
topological superfluid with phase fluctuations on a square 
lattice with 60 × 60 sites. The inset denotes the strength 
parameters of phase fluctuations. Parameters t  =  1, t0  =  0.2, 
hx = 0.4,∆0 = 0.2, m0 = µ = 0 are used.
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The two dimensional QSHI hosts helical edge states protected 
by time-reversal symmetry. The in-plane Zeeman field gaps 
the helical edge sates along certain direction (y -direction in 
our scheme). Whereas the induced s-wave pairing by attrac-
tive interaction can open a gap for edge states along all bound-
aries. The combination of Zeeman field and SF order makes 
the Dirac mass signs for adjacent edges be opposite, and give 
rise to four MCMs on a square lattice. This work provides a 
new platform to reach Majorana zero modes and perform non-
Abelian braidings.
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