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Abstract

®

CrossMark

In sharp contrast to conventional topological superfluids, higher order (order r > 1)
topological superfluids in n dimensions do not host n — 1 dimensional Majorana boundary
states, instead host n — r dimensional Majorana excitations. In this paper, we propose
Majorana corner modes can emerge in a second order superfluid with s-wave pairing,

instead of unconventional pairings such as d-wave and s+-wave pairings in most of previous
proposals. There are three key ingredients in this scheme consisting of a topological insulator,
an in-plane Zeeman field, and an s-wave pairing. Based on the low energy theory for edge
states, where the effective Dirac mass sign changes at the corner, we unveil the emergence of
Majorana corner modes. Our proposal provides a promising platform for implementing 2D
second order topological superfluids and Majorana corner modes.
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1. Introduction and motivation

Topological superfluids (TSFs) and topological superconduc-
tors (TSCs) are a class of topologically non-trivial quantum
states [1, 2]. Based on local symmetries, i.e. particle-hole
symmetry (P), time-reversal symmetry (7 ) and chiral sym-
metry (C), two dimensional TSFs and TSCs are classified into
three categories consisting of D-type, C-type and DIII-type
ones [3-5]. Owing to the bulk-boundary correspondence, the
topological invariant characterizing bulk topology can pre-
dict the number of edge states and chirality. For instance, the
integer topological number Z in class D counts the number
of chiral Majorana edge modes. The local symmetries
(P, T,C) successfully capture topological nature of general
physical systems. Whereas spatial symmetries, such as trans-
lation and point group symmetries, can also lead to nontrivial
bulk topology and boundary states for selected surfaces or
edges [6-9]. Moreover, the mirror-reflection-symmetry pro-
tected surface gapless states have been observed in experi-
ments [10, 11]. Motivated by these progresses, various TSC
and TSFs with spatial symmetries (translation, inversion,

4 Author to whom any correspondence should be addressed.

1361-648X/20/145601+7$33.00

reflection and other point symmetries) have been elucidated
[12—16]. Furthermore, the symmetry-protected Majorana zero
modes are predicted in the unconventional spinful TSFs and
TSCs [15, 16].

Recently, a new class of TSCs, called higher order TSCs,
have been proposed [17-25]. r (r > 2) order TSCs in d dimen-
sions host d — r dimensional Majorana boundary states rather
than d — 1 dimensional gapless Majorana excitations in con-
ventional TSCs. For instance, for the the second order TSC
in two dimensions, Majorana corner modes (MCMs) localize
at the intersection between adjacent boundaries. Recently, a
variety of schemes have been proposed to implement second
order TSCs, such as (py +ip,) X (px — ipy)-wave supercon-
ductors with a magnetic field [20], 2D topological insula-
tors with d-wave or s+ -wave pairing induced by proximity
effect proximity [21-23], and m-junction Rashba Layers with
layer-dependent superconductor (SC) pairing [26]. From con-
ventional topological point of view, a second order TSC or
TSF has a d dimensional (dD) topologically trivial bulk. Its
boundaries are stand-alone d — 1 dimensional gapped SCs
in essence. Therefore, the topologically protected Majorana
states at corners or hinges naturally arise at the domain wall at
the intersection of two adjacent edges or surfaces.

© 2020 IOP Publishing Ltd  Printed in the UK
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Rapid advances on synthetic gauge fields and magnetic
fields in ultracold atoms provide an ideal platform for real-
izing novel quantum states of matter [27-34]. In a ultracold
atom system, various degrees of freedom can be tuned, such
as the tunneling strength between lattice sites on optical lat-
tices, the Zeeman field, interaction strength, and etc. Ultracold
atoms have been a powerful platform studying or simulating
models originating from condensed matter systems for over
one decade, where quantum degenerate neutral atom gases
are used to simulate and explore physical regimes hard to be
accessed by conventional solid-state systems. One remarkable
advantage of this platform is free of disorders. In recent years
remarkably experimental progress has been made including
the realization of Hubbard model [35], BCS pairing [36] and
various topological quantum matter [37], as well as transport
measurements with cold atoms [38]. In particular, at this plat-
form, p, + ip, SFs or non-Abelian s-wave SFs are proposed
in spin—orbit coupled cold atoms [39], where Majorana zero
modes localize at SF vortex cores or ends of the edge dislo-
cations [40, 41]. Generally, by tuning the s -wave scattering
length through Feshbach resonance technique, the s-wave
attractive interaction between atoms can be fine tuned, so that
s-wave Cooper pairing can be reached readily. However, in
most of previous proposals [20-24, 26], the unconventional
SC pairings (p-wave, d-wave, and si-wave, and etc.) are
demanded for realizing the second order TSCs and TSFs.
Naturally, an interesting question arises: can we reach an s-
wave second order TSF and MCMs by making use of s-wave
interaction?

Essentially, the emergence of MCMs originates from the
Dirac-mass-sign changing at the corner in boundary theory
for 2D TSCs. For example, in [21-23], the proximity-effect
induced d -wave, and st-wave parings exhibit different
features at distinct edges, and further give rise to MCMs.
However, the conventional s-wave pairing is isotropic and
then plays same role for all edges. It is necessary to intro-
duce another parameter (the Zeeman field introduced below)
to induce the changes for Dirac-mass sign at the intersection
of adjacent edges.

The remaining of this paper is organized as follows. In sec-
tion 2 we first introduce a quantum spin Hall insulator (QSHI)
on a square lattice that may be realized in ultracold atoms. By
tuning the s-wave interaction and the in-plane Zeeman field,
the QSHI can be driven into a second order TSF. Numerical
results confirm that MCMSs exist in this topological phase. In
section 3, by using the low energy edge theory, we unveil the
emergence of MCMs. Finally, we conclude our discussions in
section 4.

2. s-wave superfluid in correlated quantum spin
Hall insulators

2.1. Quantum spin Hall insulators on a square lattice

We first consider a two-component Fermi gas loaded in a
2D optical lattice as sketched in figure 1. The single-particle
Hamiltonian reads

Hy = Hyn + Hxaw + Hsz, (D

which consists of the the nearest-neighbor (NN) hopping term
HNN, the next-nearest-neighbor (NNN) hopping term HNNN,
the staggered potential and the in-plane Zeeman term Hsy:

s == 3 (nalbrye — inalsrys) +He )

(
~blbs, o 5) + He, 3)
(

“

where f, and t, are amplitudes for NN hopping terms along x

and y, respectively. ¢’ is the NNN hoping strength. The oper-
ator ay = (aﬁ, ) (by = ( 710 by i)) annihilates a fermion

with spin o = (T, 1) at A (B)-sublattice site i = (iy, ). mo is
the staggered potential. 1 is the chemical potential. s, , . are
Pauli matrices acting on spin degrees of freedom. Hereafter,
without loss of generality, the lattice spacing is set to be
|X| = |¥] = 1 throughout.

After Fourier transformation for the Hamiltonian, the equa-

tion (1) in momentum space is writtenas H = 3, C,JEHO (k) C,
where the vector basis is C,I = (akT,blT,aH,b}: L) and the
Hamiltonian matrix is

Hy(k) = &0,50 — 21, cos kyoysg — 2ty cos kyo s,
— pooSo + hyoosy. (5)
Here & = —21'[cos (ke + ky) — cos (ky — k)] — For
simplicity, we choose #,=t,=¢t and p =0 in fol-

lowing discussions. &, is a Zeeman field along the x direc-
tion. oy, . are Pauli Matrices that act on sublattice degrees
of freedom. oy and sy are 2 x 2 unit matrices. The energy
spectra for Hy(k) is e; = \/ (v £ hx)2 + (2t cos ky)2 with

& + (21, cos ke)®. At Dirac points K = (7/2,7/2)
and K’ = (7w/2, —m/2), as illustrated in figure 1, the energy
gap are min(|—4¢ —mg+ hy|, |—4¢ —mo—hy|) and
min (|4t — mg + hy|, |47 — mo — h,|), respectively.

In the absence of the Zeeman term (h, = 0), Hy(k) pre-
serves time-reversal symmetry, i.e. THo (k) T~' = Ho (—k),
where T = iogs, K. This system also has s, conservation and
we have spin T and | sectors, which also has symmetry
U (1) x U(1),0ne U (1) being the charge U (1), and the other
bing the U (1) of s, conservation. In fact, for the case with
|mo| < 4|¢|, the Hamiltonian H, are two quantum anoma-
lous Hall insulators related to each other by the time-reversal
operation. At this time, the system is characterized by non-
trivial Z, topological invariant 1. Each edge has a pair of
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Figure 1. Left figure: The illustration of square optical lattices with laser induced gauge potentials. The particle with spin T (}) acquires
0 (0) phase when hopping along solid lines, acquires 7/2 (—m/2) phase when hopping along the red arrowed lines, and gets 7 (7) phase
when hoping along dashed lines. Right figure: The illustration of reduced Brillouin zone indicated by the shaded region. K = (7/2,7/2)

and K’ = (7/2, —m/2) denote two inequivalent Dirac points.

counterpropagating gapless edge modes, which cross at
T -invariant point k, = £ /2 or k, = £7/2, as shown in fig-
ures 2(a) and (b). As long as 7 symmetry is preserved, each
7 invariant point must have two degenerate states according
to Kramers theorem. There is no 7 -invariant local perturba-
tion that can couple the two branches of the single pair of
edge states. Hence, to open a gap for a single pair of counter-
propagating modes, the 7 symmetry for the system should
be broken. We next consider a in-plane Zeeman field that
breaks 7 symmetry. Due to {oys., 09s,} = 0, the edge states
along the y-direction are gapped, as confirmed in figure 2(d).
However, because of [o,50, 79s:] = 0, gapless edge states still
exist along the x-direction, as shown in figure 2(c). It indicates
that the Zeeman field exhibits distinct features for edge states
of the QSHI. Just because of this, in the following, we will see
the Zeeman field plays a key role for implementing the second
order TSFs.

2.2. SF phase transition for attractive Hubbard model

Consider the onsite interaction that can be tuned by Feshbach
resonance technique, i.e.

I:IU = —Uanm, ©6)

where U >0 is the attractive interaction strength. As the
interaction strength increases, the system enter a s-wave
SF phase, where the s-wave pairing order parameter is

Ay=U <ctTTcL>. Then the total Hamiltonian now becomes

H= >0 ‘I’}:H (k) ¥y +2UA2/N, — 2Ny,  where  the
basis \I/,I = (C,I, C,k) and
H(k) = &o 50T, — 2t cos kyoySoT, — 2ty €08 kyoys.To

+ Ago08yTy — 100S0T; + heO0SiT;. )

Tvy: are Pauli matrices acting on the Nambu space.
The energy spectra for H(k) are given by FE;i =

\/(Fk + h,)* + (21, cos ky)2 Iy =

with

(@) (b)

Figure 2. Energy level distributions on a stripe with open boundary
condition along the y (x)-direction and periodic boundary condition
along the x (y)-direction in (a)—(d). In (a) and (c), i, = .0; (b) and
(d) h, = .2; parameters: t = 1,¢ = .2, and my = pu = .0.

\/ A2 + & + (21, cos kx)z. The free energy per unit cell at
temperature 7' is

' Nu ko ’ U 6 ( )

with 8 =1/ (kgT), where kg is a Boltzmann constant, and
N, is the unit-cell number. For simplicity but without loss
of generality, hereafter we consider the case with = 0. By
minimizing the free energy of the system, we obtain a self-
consistent equation as

l 1+I//|Fk|t

4Ny v=-+keBZ

1= anh (BEy,/2), 9)

k,v
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Figure 3. Energy level distributions on a stripe with open boundary
condition along the y (x)-direction and periodic boundary condition
along the x (y)-direction in (a)—(c) ((d)—(f)). (a) and (d) &, = .0,
Ag=.2;()and (e) h, = .2, Ag = .2;(c) and (f) h, = 4, Ay = .2;
Parameters: r = 1,¢ = .2, and mp = pu = 0.

where k runs over the Brillouin zone (BZ). By numerically
solving the self-consistent equation (9), we find there exist
three distinct phases: the insulator (I), metal (M), SF. In the
following section, we will see SF consists of normal SF and
second order topological SF phases.

2.3. Topological phase transitions and MCMs

First, consider the case with &, = 0. As the onsite interaction
increase, the system enters s-wave SF phase. The s-wave SF
order gaps all helical edge modes of QSHI that propagate
along the boundary, as shown in figures 3(a) and (d). Next,
we turn on the in-plane Zeeman field. As the Zeeman field
increases, as shown in figures 3(a)—(c), the energy gap along the
x-direction remains; However, as shown in figures 3(d)—(f)
the energy gap along the y-direction gradually decreases,
closes at a critical value h,. = A, and finally reopens. It
indicates there is a topological transition (from trivial phase
to topological phase) for edge states along the y-direction
(This will be elucidated by using low-energy edge theory in
the next section). With the consideration of this, we plot the
global phase diagram in figure 4. There are two distinct SF

Figure 4. Global phase diagram: insulator (I), metal (M), normal
superfluid (NSF), and second order topological SF (SSF) phases.
Parameters t = 1,7 = .2, mg = 0 are used.

phase: Normal SFs (NSF) and second order SFs (SSF). This
SSF here is an extrinsic one that can be characterized by a Z
topological invariant from the topological transition for the
edge states [42].

In fact, based on conventional topological classifications,
the SSF is a bulk gapped trivial phase. So there are no gap-
less edge states propagating around the boundaries. However,
Majorana corner states will emerge in this phase. We calculate
the eigenenergy values for a square lattice with a size 60 x 60.
The inset figure in figure 5(a) shows the symmetrical eigen-
energies due to particle-hole symmetry. There are four zero
energy modes in the gap. The probability density distribu-
tions of modes with zero energies, as illustrated in figure 5,
show that each corner host one localized Majorana bound
state known as MCM. Figure 5(b) shows the eigenenergies of
a rectangle lattice with a size 60 x 40. Majorana corner states
also remain.

We discuss the robustness of the Majorana corner modes.
Firstly, the NN hopping amplitudes are slightly anisotropic,
suchas t,=1,t, =12, ' = 0.2. Figure 6(a) shows that the
Majorana corner modes exist as long as in SSF phase, which
indicates the MCMs are robust against the fluctuations of NN
hopping. Second, the on-site potential is changed randomly
according to V; = (;, where (; is a random variable distributed
in a range [—Vy/2, Vi /2], and Vy = 0.1 describes the strength
of a weak disorder. Figure 6(b) indicates the MCMs are also
robust against weak disorders.

3. Low-energy edge theory in the continuum limit

To be explicit, we will unveil the emergence of MCMs from
the SSF by using the low-energy edge theory in the con-
tinuum. With both SF pairing interaction and Zeeman field,
the Hamiltonian Hy(k) breaks time-reversal symmetry but
respects particle-hole symmetry, PHyqu(k)P~! = —Hqqu(—k)
with P = 7,/C. Without loss of generality, we supposed the
pairing order parameter is a constant A for each lattice site.
In the continuum limit, the low energy Hamiltonian up to the
second order around Dirac point K = (7 /2, 7/2) reads

Hyqu(k) = (e — 27 K —2f kg) 0,507, + 2t k.0 S0T:

+ 2tyky 05,70 + D008y Ty + M08, T, (10)
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Figure 5. (a) Majorana modes at the corner of a square lattice with
60 x 60 sites. The radii of the purple spots are proportional to the
square of the Majorana modes’ wave function. The inset shows the
eigenenergy values. (b) Majorana modes at the corner of a rectangle
lattice with 60 x 40 sites. In (a) and (b), t = 1,7 = .2, h, = 4,

Ay =.2,mp = = 0 are used.

where € = 41 —mg > 0 is satisfied such that the insulator
is in the Z, TI phase without the s-wave pairing and the
Zeeman field. The four edges of a square lattice is labeled as
I, II, IIT and IV as illustrated in figure 5(a). For the edge I, by
replacing the momentum operator k, — —id,, we decompose
quu(k) = HI,M —+ HI,P, where

Hiy (—i0k, ky) = (e + 2t’8§) 0,80T; — 2it,0:0S0T;,
Hyp (—i0y, ky) = —t'kgazs(ﬂ'Z + 2t,ky0,8.To

+ Asoo8yTy + he0o8y T,

(1D
of which Hjy is the main part, and Hj p is the the perturbation
part when the pairing interaction is relatively small compared
to the energy gap.

In the following, we first solve Hj, and then derive the
the effective Hamiltonian for the edge I. For Hiys, we have
{Hiym,0yps;7.} =0, ie. Hyyoys.7, =—0ys.;Hy. We
assume Hpy has zero energy solutions ¥, localized at the
edge I. o,s,7,¥, are also the eigenstates for Hjy. Hence, we
choose eigenvectors (g satisfying o,s,7, (3 = — (g, where

Figure 6. Majorana modes at the corner of a square lattice. The
radii of the purple spots are proportional to the square of the
Majorana modes’ wave function. The inset shows the eigenenergy
values. (a) t, = 1,1, = 1.2 and (b) t, = t, = 1. In both (a) and (b),
parameters ' = .2, h, = .4, Ay = .2, mp = p = 0 are used.

!
=
Bl
!
=

G =loy=—1)[s: = +1) )
@ =loy=+1)[s; = —1) |7 = +1),
G =loy=+1) ls; = +1) |7 = =1)

G=loy==1)[s:=—1)|n (12)

Il

I
—_
=

At this basis, there are four zero-energy bound states local-
ized at the edge I: W;_j234 =A (sing)e 27*¢; with

2 . .
S =4/— ( L i) and A the normalization constant. For

a7 o
the perturbation term Hjp, in the basis (;, the low-energy
effective edge Hamiltonian becomes

HEdgC,I = itySzT()ay + ASS};T}' + thxTz~ (13)

Following similar above procedure, we obtain low-energy
edge Hamiltonian as

HEdge,II = _ithzTOax + Assy'ry’
Heggeqit = —itys; 700y + Agsy Ty + hiSiTs,
HEdge,IV = ithZToax + AsSyTy.
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Figure 7. The eigenenergies of the second order
topological superfluid with phase fluctuations on a square
lattice with 60 x 60 sites. The inset denotes the strength
parameters of phase fluctuations. Parameters r = 1, 1o = 0.2,
hy =04,Ag =0.2,my = p = 0 are used.

In the edge coordinate, the low-energy edge Hamiltonian is
written as a concise form:

Hegge = i (1) 5,700 + Agsymy + h (1) 8,7, (14)

where h () = h,0 , hy, 0 at boundaries I , II, III and IV,
respectively. In the space

X1 = |s; =+1) 1 =+1),
X2 =ls:=—1)|m=—1),
X3 =|s: = +1) |7 = —1),
xe = s = =1) |re = +1), (1
the Hamiltonian Hggg is rewritten as
Hgage = —1A (1) 5,700y + Agsy7, + h (1) s,70. (16)

This Hamiltonian consists of two decoupled blocks. One
block has Dirac mass Ag + h,, and the other has A — h,. If
A.(Ag — hy) < 0, then the Majorana corner mode naturally
arises.

If a Zeeman field h, along the y-direction is applied, the
edge states for QSHI along the y-direction are also gapped
due to [oys;, 00s,] , = 0. Taking similar steps, we can obtain
an effective low-energy edge Hamiltonian as

Hggge = —1A (1) 5,700, + Agsym, + A (1) sy10,  (17)
where h(l) =0, hy, 0, h, at boundaries I, II, III and
IV, respectively. It shows if Ag.(As — hy) < 0, the Majorana
corner mode also emerges. In general, for a in-plane Zeeman

field /= (hy, hy, 0), the x-component and y-component
Zeeman field both can gaps the gapless edge states for QSHI.
Majorana corner states arise if ‘fi ‘ > A. For an out-of-plane
Zeeman field &, it can not gap edge states for QSHIs due to
[0450, 00s;] = 0 and [oys;, 0ps;] = 0. In this case, with s-wave
SF order, the Dirac-mass sign does not change at the corner
and no MCM emerges.

4. Discussion and conclusion

Previous studies showed zero-energy bound states local-
ized around vortices in second order topological states [43],
which originates from that the order parameter induces the
sign change of Dirac mass term at the vortex. However, in our
model the only superfluid order parameter could not change
the sign of Dirac mass term. Explicitly, in the presence of
superfluid vortex, the Dirac Mass term at the vortex core is
h, and far away form the core it becomes &, — Ay, where
Ay is the mean-field superfluid order-parameter profile of a
vortex. In the second order topological superfluid phase, we
have h, > Ay (without loss of generality, we have assumed £,,
Ap > 0 here). So there is no sign change of Dirac mass term
at the superfluid vortex. Therefore, the superfluid vortices in
the second order topological superfluid do not host Majorana
bound states.

To illustrate the robustness of Majorana corner modes
to the phase fluctuations, we introduce the superfluid order
parameters with phase fluctuations modeled as A; = Agel?,
where the random phase ¢; = 27ny;, 1 denotes the strength of
phase fluctuations, and ; € [0, 1] is a random number. When
n = 0, the superfluid order has a uniform phase with ¢; = 0.
When 1 = 1, the superfluid order suffers strongest phase fluc-
tuations. We then numerically calculate eigenenergies of the
second superfluid with random phases on a square lattice with
60 x 60 sites versus 7. The numeric results have been shown
in figure 7. It shows energies of bulk states may change as
phase fluctuations become stronger, but Majorana corner
modes are robust against phase fluctuations. In essence, the
sign change of Dirac mass term at the corner leads to the
emergence of Majorana corner mode. This relation also holds
in the second order topological phase with phase fluctua-
tions. So the Majorana corner modes are robust against phase
fluctuations.

The high controllability of cold atoms provides a powerful
platform to realize various novel quantum states of matter.
The QSHI described by equation (1) may be realized via fer-
mionic cold atoms (*°K ) trapped in a spin-dependent optical
lattice [35, 44]. By means of laser-induced gauge potentials,
the phases of NN and NNN hopping can be reached [27, 45].
The on-site attractive interaction can be fine tuned through
Feshbach resonance technique [46, 47]. The spatial-resolved
radio-frequency spectroscopy that provides local information
has been implemented in experiments for ultracold Fermi
gases [48]. Using spatially resolved radio-frequency spectr-
oscopy to measure the local density of states is a direct and
convenient way to detect Majorana corner modes [49, 50],
which is a cold-atom analog of scanning tunneling micros-
copy. In addition, the existence of the Majorana corner modes
may be indirectly identified from the total density profile
that can be measured via in situ or time-of-flight absorption
imaging [35, 51].

In summary, we propose an s-wave SSF in a cold atom
system. Three key ingredients consisting a QSHI, in-
plane Zeeman field, and s-wave pairing are in this scheme.
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The two dimensional QSHI hosts helical edge states protected
by time-reversal symmetry. The in-plane Zeeman field gaps
the helical edge sates along certain direction (y-direction in
our scheme). Whereas the induced s-wave pairing by attrac-
tive interaction can open a gap for edge states along all bound-
aries. The combination of Zeeman field and SF order makes
the Dirac mass signs for adjacent edges be opposite, and give
rise to four MCMs on a square lattice. This work provides a
new platform to reach Majorana zero modes and perform non-
Abelian braidings.
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