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1.  Introduction

Rolling bearings, as the core components of rotating 
machinery, are the basic components to ensure the normal 
operation of the equipment, which are usually subjected to 
strong loads [1]. If the bearing fails, it will easily cause the 
equipment to stop running, resulting in casualties. Therefore, 
implementing bearing fault evaluation methods is important 
for monitoring bearing status and reliability. At present, the 
common fault diagnosis process includes: pre-processing 

bearing vibration signal, using a variety of methods [2–4] to 
extract fault features and realize fault mode diagnosis. Among 
them, extracting fault features is the key to realizing fault 
diagnosis. However, due to the influence of complex working 
conditions and mechanical transmission path, the collected 
vibration signals are disturbed by strong noise, which greatly 
increases the difficulty of feature extraction.

According to the processing method of background noise, 
the common fault feature extraction methods can be classified. 
Some methods [5–8] regard noise as totally harmful and try to 
filter out noise as much as possible to improve the signal-to-
noise ratio (SNR). For example, Yang et al proposed a bearing 
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fault diagnosis method based on EMD energy entropy [9]. Lou 
et al applied wavelet transform and neuro-fuzzy classification 
to bearing fault pattern recognition [10]. However, it is worth 
noting that the above methods will inevitably filter out some 
weak feature information, resulting in the false impression of 
improving the SNR. In contrast, some reports [11–15] have 
proved that stochastic resonance (SR) has the unique advan-
tage of using harmful background noise to enhance weak 
characteristic signals through a non-linear system. Therefore, 
many methods based on SR theory are widely used in bearing 
fault diagnosis [16–19]. Coherence resonance (CR) [20–25] 
also has the ability to transform noise energy to a certain fre-
quency. Different from SR, CR occurs in a noise-driven excit-
able system [26], which does not require the participation of 
characteristic excitation. For an appropriate noise intensity, 
the output of the non-linear system will show ordered perfor-
mance, and the frequency spectrum of CR is similar to that of 
SR. CR has been investigated theoretically in many fields, but 
there is little report on CR in engineering applications.

Based on SR method to enhance feature information and 
realize fault diagnosis, it is necessary to know the fault type 
of bearing in prior. However, for the bearing vibration signals 
collected on site, the fault is usually unknown. To solve this 
problem, a novel method of judging SR and CR will be pro-
vided to detect a weak characteristic signal. If we do not dis-
tinguish SR and CR, we may extract imaginary frequency by 
inducing CR, and the output of the system still appears to be 
a resonance phenomenon even if the bearing is in health. This 
brings interference to the bearing fault diagnosis. As a result, 
how to accurately identify SR and CR is the key problem of 
bearing fault evaluation.

Aimed at the above problems of bearing fault diag-
nosis, a new method based on CR is proposed in this paper, 
which evaluates the bearing fault and improves the acc
uracy of bearing fault detection. Firstly, due to the advan-
tages of the periodic potential system in computing speed 
and improving SNR [27, 28], the existence of CR is proved 
by combining the general scale transformation method 
[29] with the periodic potential system through the system 
output. Furthermore, the autocorrelation function [26] is 
introduced to study and analyze the coherence of the system 
output. At the same time, the difference between CR and SR 
is highlighted by comparing the output of the autocorrela-
tion function. In order to make the results more intuitive, 
the resonance factor index is constructed, which reflects the 
transformation from CR to SR from the numerical value and 
evaluates the bearing fault.

This paper is outlined as follows. Section 2 mainly intro-
duces CR and corresponding indicators proposed in this paper. 
Section 3 evaluates the effectiveness of the proposed method 
by using bearing fault simulation signals. Section 4 deals with 
the experimental signal. The quantization of CR is successfully 
realized by using the resonance factor index. The applicability 
of the novel method in bearing fault evaluation is verified. The 
advantage of the periodic potential system over the bistable 
system is verified by the experimental signal. Finally, the main 
conclusions of this paper are given in section 5.

2. Theoretical formulation

Both CR and SR are noise-induced ordered phenomenon in 
nonlinear systems. However, the former phenomenon does 
not need the cooperation of weak character signal. Under a 
certain noise intensity, the regularity of the system output 
achieves the greatest degree. In contrast, SR needs the partici-
pation of weak characteristic signal. Generally speaking, SR 
can be regarded as a special case of CR. The following is a 
description of the CR model.

2.1.  Adaptive CR

CR can be interpreted as the quasi-periodic transition of the 
Brownian particle driven by noise between potential wells. 
We investigate CR by using the following equation:

®
dx
dt = −U′ (x) + N (t)
〈N (t)〉 = 0, 〈N (t + τ)N (t)〉 = 2Dδ (τ)

�
(1)

where N(t) is the Gaussian white noise with intensity D, δ(t) 
is the delta function, U(x) is the potential function. For the 
periodic potential system, U(x) can be expressed as

U(x) = −a cos(bx).� (2)

Therefore, the CR model represented by equation (1) can be 
written as

®
dx
dt = −ab sin(bx) + N(t)
〈N (t)〉 = 0, 〈N (t) , N (0)〉 = 2Dδ (t)�

(3)

where a  >  0 and b  >  0 denote the barrier parameters of the 
periodic potential. Specifically, a and b influence the height 
of the barrier and the width between two adjacent stable equi-
libriums. Different from the famous SR model, the periodic 
signal s(t) is absent in the equation. To achieve CR or SR at a 
high frequency, we need to find the appropriate system param
eters [30]. Referring to the general scale transformation SR 
method, we adopt the variable transformations

x(t) = z(τ), τ = mt� (4)

where z(τ) denotes the system response after scaling, τ is 
the time variable after scaling, and m is the scale coefficient. 
Then, equation (4) is substituted into (3)

® dz
dτ = −a

m b sin(bz) + 1
m N

(
τ
m

)
N
(
τ
m

)
=

√
2Dmξ (τ)

�
(5)

where ξ(τ) denotes Gaussian white noise with a mean value 
of 0 and a variance of 1. After sorting out, equation (5) can be 
expressed as

®
dz
dτ = −a

m b sin(bz) +
√

2Dmξ (τ)

〈ξ (τ)〉 = 0, 〈ξ (τ) , ξ (0)〉 = δ (τ)
.�

(6)

Further, letting a
m = a1, b = b1, Dm = D1, then equation (6) 

can be expressed as
®

dz
dτ = −a1b1 sin(b1z) +

√
2D1ξ(τ)

〈ξ(τ)〉 = 0, 〈ξ(τ), ξ(0)〉 = δ(τ)
�

(7)
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where a1 and b1 are the system parameters of the periodic 
potential system after general scale transformation. When m 
is a large enough constant, equations (7) and (3) have the same 
dynamic properties. Equation (7) is a general scale transfor-
mation CR model, according to which a weak signal with high 
frequency can be detected.

It can be seen that CR can be realized by adjusting system 
parameters a, b or noise intensity D. However, it is worth 
noting that the existing noise reduction methods may weaken 
the useful characteristic information. Thus, we only consider 
CR with parameter adjustment. At the same time, for the col-
lected discrete signal, the fourth order Runge–Kutta algorithm 
[31] is used to solve the above equation  and calculate the 
system output, as shown in equation (8)




xi+1 = xi +
1
6 (k1 + 2k2 + 2k3 + k4) ;

k1 = h
[
−m2a1b1 sin (mb1xi) + mNi

]
;

k2 = h
{
−m2a1b1 sin

[
mb1

(
xi +

1
2 k1

)]
+ mNi

}
;

k3 = h
{
−m2a1b1 sin

[
mb1

(
xi +

1
2 k2

)]
+ mNi+1

}
;

k4 = h
{
−m2a1b1 sin [mb1 (xi + k3)] + mNi+1

}
;

� (8)

where Ni denotes the discrete series of the input noise, xi 
denotes the output series of the system, and h is the time step.

Meanwhile, considering the calculation speed and the 
optimal system output, quantum particle swarm optimization 
(QPSO) [32, 33] is used to find the optimal system param
eters adaptively, improve the operation efficiency and obtain 
the optimal system output. We use SNR [34] as the fitness 
function of the optimization algorithm. Figure  1 shows the 
flow chart of adaptive CR using the QPSO algorithm. Usually, 
CR occurs at the Hopf bifurcation in former works [35, 36]. 
However, by the optimal algorithm, CR can occur at more fre-
quencies but not only near the Hopf bifurcation.

2.2.  Evaluation index

The performance of CR is influenced by both the noise and 
the nonlinear system. By introducing noise, the system output 
presents coherent oscillation. When the coherence appears, 
there is an obvious resonance band in the spectrum, and a 
great number of frequency components in the resonance band 
have large spectrum value. For SR, due to the existence of 
periodic input, the output presents synchronization with the 
input and there is only one high spectrum line but there is no 
resonance band. In order to describe the cooperative behavior 
between the noise and system in CR phenomenon further, we 
use the autocorrelation function to observe the periodic prop-
erty of the output. The autocorrelation is defined by [26]

Cxx(τ) = 〈x̃(t)x̃(t + τ)〉/
¨

x̃(t)2
∂

� (9)

where x̃(t) = x(t)− 〈x(t)〉, 〈·〉 denotes the long-term average 
of the system, and x(t) is the output of the system.

The SNR is another index to evaluate the CR output. In 
the diagnosis of bearing faults, we assume that the existing 
fault characteristic frequencies are the theoretical fault char-
acteristic frequencies of the outer raceway, inner raceway and 

rolling element, respectively. Resonance optimization is per-
formed at these imaginary fault characteristic frequencies. If 
the output is SR, the imaginary fault frequency exists. If the 
output is CR, the imaginary fault frequency does not exist. Its 
definition is

SNR = 10 lg
S ( f )
N ( f )�

(10)

where S(f ) is the power of the output at the imaginary fre-
quency in the spectrum. N(f ) is the average noise power near 
the imaginary frequency. The spectrum is obtained by the dis-
crete output of the fast Fourier transform (FFT) calculation 
system. Specifically, S(f ) and N(f ) are calculated by





S ( f ) = |X (k)|2

N ( f ) = 1
2M

M∑
j=1

Ä
|X(k − j)|2 + |X(k + j)|2

ä

�

(11)

where k is the spectrum serial number corresponding to the 
input signal frequency, X(k) is the amplitude of the input fre-
quency, M is determined according to the sampling point and 
sampling frequency. It is noted that the SNR is performed at 
the assumed fault characteristic frequency because the influ-
ence of load is not considered when calculating the theoretical 
fault characteristic frequency. For the actual fault character-
istic frequency, there is little difference between the actual 
fault characteristic frequency and the theoretical fault charac-
teristic frequency. According to our previous research results 
[37], it is also feasible to calculate the SNR at the actual fault 
characteristic frequency by using the theoretical fault charac-
teristic frequency.

Considering that only by observing the autocorrelation 
function and spectrum of the output of the system, the result 
of the distinction is not convincing and cannot meet the acc
uracy requirement of bearing fault detection. We need a much 
more intuitive way of judging, not just by comparing the fre-
quency spectrum. Hu et al introduced the quality factor index 
to describe the CR phenomenon of the system [21]. Here 
we define the resonance factor in the response spectrum to 
quantify the CR degree,

β = A ( f ) /As.� (12)

A(f ) denotes the magnitude of the imaginary frequency in the 
response spectrum, and As denotes the sum of all amplitudes 
more than A(f )/2 in the response spectrum. CR is a coopera-
tive behavior of the noise and the non-linear system. When CR 
occurs, due to the existence of the spectral resonance band, 
there are a large number of interference frequencies near the 
imaginary frequency in the response spectrum. When SR 
occurs, there is little interference frequency, and the value of 
resonance factors will approach 1. However, when CR occurs, 
the index is much smaller. When the resonance factor changes 
from a small value to a much larger value, the CR will trans-
form to SR. By calculating the response spectrum resonance 
factor, we can judge whether CR or SR occurs to accurately 
evaluate the bearing state.

Meas. Sci. Technol. 31 (2020) 045001



C Yang et al

4

3.  Numerical simulation

In order to intuitively illustrate the existence of CR phenom
enon and explore the effectiveness of the above method in 
bearing fault detection, the simulation bearing vibration 
signal with an outer raceway fault at frequency f   =  100 

Hz is selected as the driving force. The bearing vibration 
signals with other faults are no longer described here, but 
we will analyze them in the experimental verification. The 
bearing vibration signal with an outer raceway fault contains 
a series of attenuation pulses [38], which are generated by 
the formula

Figure 1.  Flowchart of adaptive CR.

Figure 2.  Time-domain waveform and frequency spectrum of the simulation input signal. (a) Without noise; (b) with noise.
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{
s (t) = A sin (2πfnt)× exp

¶
−B[t − r (t) /fd]

2
©

r (t) = t × fd
�

(13)

where A is the amplitude of the pulse signal, B is the attenu-
ation coefficient, and f n and f d are natural frequency and fault 
frequency respectively. r(t) is the number of repetitions. In this 
simulation, the specific parameters are set as follows: sam-
pling frequency f s  =  12 000 Hz, sampling point n  =  12 000, 
signal amplitude A  =  1, natural frequency f n  =  2000 Hz, fault 
frequency f d  =  100 Hz, attenuation coefficient B  =  120 000, 
repetition number r(t)  =  10. Figures 2(a) and (b) shows the 
original signal and the noisy simulation signal, respectively.

As shown in figure  2, the modulation frequency of the 
original noisy signal is visible, but the fault frequency is 
completely submerged by the noise. Therefore, in order to 
eliminate interference and obtain more useful information, 
it is decided to pre-process the modulated simulation signal 
[39, 40]. Hilbert transform is used to de-modulate the signal, 
extract the fault features, and high-pass filter the demodulated 
signal to get the envelope signal. Next, in order to illustrate the 
universal existence of CR, the resonance output of the original 

simulated signal periodic potential system with noise and the 
CR output at different imaginary frequencies with signal 
amplitude A  =  0 are obtained respectively.

As we mentioned before, for CR, there is no periodic signal 
in the input. However, for SR, there is a specific periodic signal 
in the excitation. To verify some discerptions above, figures 3 
and 4 show the time-domain waveforms and frequency spec-
trum of the system output respectively. In order to illustrate 
the existence of CR in bearing fault diagnosis, and to analyze 
the difference with SR. We study the SR of bearing simulation 
signal with f   =  100 Hz, and we also study CR at the imagi-
nary frequencies f   =  30 Hz, 50 Hz, 80 Hz, 100 Hz, 130 Hz, 
150 Hz and 180 Hz respectively. As can be seen from figure 3, 
the waveforms in each time domain show a certain periodicity, 
but in figure 3(a) the periodic property is obviously strongest. 
Reflected in the frequency spectrum, the peak at the charac-
teristic frequency in figure 4(a) are obviously higher than that 
of other frequencies, indicating that SR occurs. However, sev-
eral noise components in the frequency spectrum, which are 
of the same magnitude as the characteristic frequency, cannot 
be ignored. It is worth noting that there are resonance bands in 

Figure 3.  System output time-domain waveform. (a) The SR output corresponding to f   =  100 Hz; (b)–(h) the CR output corresponding to 
f   =  100 Hz, f   =  30 Hz, f   =  50 Hz, f   =  80 Hz, f   =  130 Hz, f   =  150 Hz and f   =  180 Hz respectively.
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the frequency spectrum in figures 4(b)–(h), and the imaginary 
frequency is also obvious, which shows that CR is common. 
At the same time, there are a large number of strong interfer-
ence frequencies in the resonance band, which is consistent 
with the theoretical analysis results.

The output of the system shows that there are differences 
between CR and SR. Moreover, with the enhancement of the 
characteristic frequency, CR at the imaginary frequency shown 
in figure 4 will gradually convert to SR. However, as far as the 
above results are concerned, this conversion phenomenon is 
not obvious enough. In other words, judging by system output 
only is not convincing. We need to do further analysis and 
processing of resonance output. Therefore, we introduce the 
autocorrelation function to analyze the resonance output of 
the system. The results are given in figure 5.

From the definition of the autocorrelation function, the 
stronger the periodic oscillation of the autocorrelation func-
tion, the more obvious the periodic components in the time 
series will be. The autocorrelation function represented by 
figure 5 shows different degrees of periodic oscillation with 

increasing time, and the frequency of the oscillation is con-
sistent with the imaginary frequency. Among them, the auto-
correlation function of SR output in figure 5(a) has the most 
obvious oscillation and the strongest periodic component. The 
same result can be obtained from the frequency spectrum of 
the autocorrelation function in figure 6. Moreover, compared 
with the resonance output frequency spectrum in figure 4, the 
interference information in the frequency spectrum is greatly 
reduced, and the frequency component with the highest 
power in the spectrum just indicates the characteristic fre-
quency. Then, the detection effect is obviously improved. 
Figures  6(b)–(h) shows the CR autocorrelation spectrum at 
different imaginary frequencies. Compared with the system 
resonance output, the high frequency noise is also suppressed, 
and the spectrum resonance band is more obvious. A large 
number of interference frequencies amplified synchronously 
with characteristic frequencies in the resonance band are 
the powerful manifestation of CR. The results show that the 
imaginary characteristic frequency generated by CR cannot 
provide evidence of structural defects in bearings.

Figure 4.  System output response frequency spectrum. (a) The SR output corresponding to f   =  100 Hz; (b)–(h) the CR output 
corresponding to f   =  100 Hz, f   =  30 Hz, f   =  50 Hz, f   =  80 Hz, f   =  130 Hz, f   =  150 Hz and f   =  180 Hz respectively.

Meas. Sci. Technol. 31 (2020) 045001



C Yang et al

7

Therefore, by calculating the autocorrelation function of 
the resonance output of the system, we have basically realized 
the diagnosis of fault features. However, the above methods 
are still carried out under the condition of comparison. For 
bearing signals whose pre-condition is completely unknown, 
we lack the basis of intuitive judgment. Therefore, we propose 
a resonance factor index to quantify the results without com-
paring the spectrum structure. The transition from CR to SR 
can be separated from the numerical value, and the weak peri-
odic signal can be judged. By calculating the resonance factor 
of each spectrum in figure 6, the values are 1, 0.5585, 0.1253, 
0.2059, 0.1234, 0.0846, 0.2387 and 0.1747, respectively. It 
illustrates that the resonance factor index is effective in meas-
uring the CR phenomenon and evaluation of bearing faults.

4.  Experimental verification

The effectiveness of the proposed method is proved by the 
analysis of the above simulation signals. We also hope the new 
method is effective in processing the signal obtained from the 

experimental platform. In this section, we will use several sets 
of experimental signals to verify the validity of this method in 
bearing fault evaluation.

4.1.  Bearing data from experimental platform

Based on the results of numerical simulation, the robustness 
of the novel bearing fault detection method proposed in this 
paper is further verified. Therefore, we use the experimental 
data collected from the experimental platform to detect and 
analyze the bearing fault and illustrates the advantages of the 
periodic potential system through experiments. Bearing data 
is collected from our experimental platform. The layout of the 
experimental platform is shown in figure 7.

As shown in the figure, the frequency inverter under the 
platform is used to control the Y2VF 90L 4-B3 motor and 
output invariable rotating velocities. A radial loading device 
and magnetic powder brake provide radial force and brake 
torque respectively. The specific values of radial loading force 
and torque can be read from an FZ-A-100 dynamometer and 

Figure 5.  System output autocorrelation function. (a) The SR output corresponding to f   =  100 Hz; (b)–(h) the CR output corresponding to 
f   =  100 Hz, f   =  30 Hz, f   =  50 Hz, f   =  80 Hz, f   =  130 Hz, f   =  150 Hz and f   =  180 Hz respectively.

Meas. Sci. Technol. 31 (2020) 045001



C Yang et al

8

ZL2A-5S magnetic particle brake controller respectively. The 
vibration data collected by the acceleration sensor installed 
on the bearing seat is transmitted to the laptop through the 
acquisition card for data analysis and processing. The types 

of acceleration sensor and acquisition card are 1A206E 
and NI9234. The types of the tested cylindrical roller bear-
ings are NU306E and N306E. The pitting faults of the outer 
raceway, inner raceway and rolling element are processed 

Figure 6.  System output autocorrelation function frequency spectrum. (a) The SR output corresponding to f   =  100 Hz; (b)–(h) the CR 
output corresponding to f   =  100 Hz, f   =  30 Hz, f   =  50 Hz, f   =  80 Hz, f   =  130 Hz, f   =  150 Hz and f   =  180 Hz respectively.

Figure 7.  Experimental platform.
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respectively for different types of bearings. The size of the 
fault is 0.5 mm  ×  1.2 mm (depth  ×  width). In the experiment, 
the cylindrical roller bearings with different fault types and 
normal conditions were tested on the above experimental plat-
form. The actual rotational speeds of three kinds of fault bear-
ings and normal bearings are measured, and the theoretical 

fault frequencies of normal bearings and the fault frequencies 
of bearings with different fault types are calculated. Specific 
bearing type, actual speed and fault frequency are shown in 
table 1. Test bearing structure parameters are shown in table 2. 
Sampling frequency f s  =  12 800 Hz and sampling point 
n  =  51 200.

Table 1.  Experimental bearing data.

Fault type Bearing type Rotating speed
Outer raceway 
fault frequency

Inner raceway 
fault frequency

Rolling element 
fault frequency

1 Outer raceway fault N306E 1423 rpm 105.35 Hz
2 Inner raceway fault NU306E 1427 rpm 172.08 Hz
3 Rolling element fault N306E 1427 rpm 119.01 Hz
4 Normal bearing N306E 1431 rpm 105.94 Hz 156.40 Hz 119.41 Hz

Table 2.  The structural parameters of the cylindrical roller bearing.

Outer raceway  
diameter

Inner raceway  
diameter Pitch diameter

Rolling element  
diameter Thickness

Number of  
rolling elements

72 mm 30 mm 51 mm 10.5 mm 19 mm 12

Figure 8.  Time-domain waveform and frequency spectrum of the raw bearing fault experimental signal. (a) Outer raceway fault; (b) inner 
raceway fault; (c) rolling element fault.

Meas. Sci. Technol. 31 (2020) 045001
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4.2.  Analysis of fault bearing signal by proposed method

In order to verify the applicability of the proposed method 
for fault diagnosis of actual bearings, we have carried out the 
same treatment process for three different fault bearings and 
normal bearings. It is hoped that the bearing faults can be 
evaluated by the difference of resonance factor values.

Firstly, three sets of bearing signals with an outer raceway, 
inner raceway and rolling element faults are acquired. The 
time domain waveform and frequency spectrum of the orig-
inal signal are shown in figure 8. As can be seen, the impulse 
component of the fault is completely submerged by strong 
noise, and the original signal cannot provide any effective 
information for bearing fault detection. Therefore, we use the 
adaptive method to find the best system parameters and get 
the system resonance output of the envelope signal, which is 
obtained by demodulating and filtering the original signal.

Figure 9 presents the SR output of three sets of faults 
bearing signals. It can be seen from the time domain wave-
form that there are periodic fault pulses. Different fault types 
in the spectrum are identified and extracted. The amplitude 
of the characteristic frequency line is enhanced, but the noise 
energy in the high frequency region is not fully converted 

to the characteristic frequency. Although the fault can be 
detected, the accidentally amplified noise component around 
the characteristic frequency may cause problems in the detec-
tion results. In order to improve the accuracy of fault detection, 
the output of the system is analyzed by the autocorrelation 
function.

As shown in figure 10, the waveforms of the output auto-
correlation function show strong periodic oscillation, and 
the oscillation frequency is the same as the fault frequency, 
showing the fault characteristics to the greatest extent. At 
the same time, figures 10(a)–(c) shows the frequency spec-
trum of the autocorrelation function of the outer raceway, 
inner raceway and rolling element fault system respectively. 
Compared with figure 9, the line of fault characteristic fre-
quency is more prominent, and there are no other interference 
frequency components around it. Comparing figure 9(a) with 
10(a), it is not difficult to find that the amplitude of noise 
around the characteristic frequency 105 Hz in figure  9(a) 
is generally maintained at about 0.05, which is about one 
third of the amplitude at the characteristic frequency. In 
figure 10(a), amplitudes of these noises are generally main-
tained at about 0.02, which is about one tenth of the ampl
itudes at the characteristic frequency. The noise energy in 

Figure 9.  SR output time domain waveform and frequency spectrum. (a) Outer raceway fault; (b) inner raceway fault; (c) rolling element 
fault.
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the high frequency region is more fully transformed to the 
characteristic frequency, and the ability of utilizing noise is 
greatly enhanced. It is more advantageous to identify fault 
features. The resonance factor index of each frequency spec-
trum of figures 10(a)–(c) is calculated, and all values equal 

1. From the simulation signal analysis results, it is not dif-
ficult to conclude that CR is transformed into SR because of 
the weak characteristic information of the bearing vibration 
signal. Thus, distinguishing SR and CR can accurately iden-
tify the bearing state.

Figure 10.  SR output autocorrelation function time domain waveform and frequency spectrum. (a) Outer raceway fault; (b) inner raceway 
fault; (c) rolling element fault.

Figure 11.  The raw normal bearing experimental signal. (a) Time domain waveform; (b) frequency spectrum.

Meas. Sci. Technol. 31 (2020) 045001



C Yang et al

12

4.3.  Analysis of normal bearing signal by the proposed 
method

In this part, we illustrate the importance of CR by analyzing 
the normal bearing signal and the effectiveness of a novel 
method based on CR in evaluating bearing faults. Figure 11 is 
the time domain waveform and the corresponding frequency 
spectrum of the normal bearing signal. It can be seen that 
there is no obvious fault pulse in the time domain waveform, 
and the characteristic frequency cannot be observed in the 
spectrum. Therefore, we also preprocess the normal signal to 
get the envelope signal after demodulation and filtering. We 
let the theoretical fault frequencies of the outer raceway, inner 
raceway and rolling element as the target frequency respec-
tively, and the output results of the system are observed in 
figure 12.

Figure 12 shows the system output of normal bearing vibra-
tion signal after adaptive CR optimization. In figures 12(a)–(c) 
that when there is no fault, the fault characteristic line can also 
be obtained from the system output optimized by the optim
ization algorithm, and the high frequency noise energy is also 
converted to energy at the target frequency. This brings incon-
venience to fault detection, and further proves the universality 

of the phenomenon of CR and its importance in bearing fault 
evaluation. Next, we analyze the autocorrelation function 
of figure 12 to observe the periodicity of the system output 
and further improve the observable quality of the frequency 
spectrum.

The results of autocorrelation function analysis are shown 
in figure 13. In figures 13(a)–(c) respectively represents the 
autocorrelation function of the system output after optimizing 
the theoretical fault frequency of the outer raceway, inner 
raceway and rolling element of the normal bearing test signal. 
It is worth noting that, like fault bearings, the conversion of 
high frequency noise energy to fault characteristic frequency 
is more obvious than the output of the system directly optim
ized, which is more conducive to analysis. Further analysis 
shows that the occurrence of CR can also lead to the extraction 
of fault features from normal bearing experimental signals, 
but by comparing figure 10 with 13, the oscillation amplitude 
of the autocorrelation function in figure 13(a) is significantly 
smaller than that of figure 10(a), and the oscillation frequency 
cannot keep synchronization with the fault frequency. The 
spectrum information of figure  13(a) is more complex than 
that of figure 10(a), the former containing more interference 
frequencies and has obvious resonance bands. Most of the 

Figure 12.  The adaptive CR output time-domain waveform and spectrum at theoretical fault frequencies. (a) Outer raceway fault; (b) inner 
raceway fault; (c) rolling element fault.
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noise components are not well suppressed. The resonance 
factors of figure 13 are calculated to be 0.1169, 0.0249 and 
0.0852, respectively. All of them are close to 0, far less than 
the resonance factor index 1 of the output autocorrelation fre-
quency spectrum of the fault bearing. It is worth noting that the 
increase of resonance factor index (from 0 to 1) corresponds 
to the transition from CR to SR, and the rolling bearing state 
also changes from normal to fault. Therefore, this index has a 
good effect on evaluating bearing faults.

It can be seen that the method in this paper has a good per-
formance on both simulation and experiment signals and has 
sufficient robustness to detect bearing fault features, which is 
of great significance in bearing fault evaluation.

4.4.  System model comparison

We validate the effectiveness of the new method based on 
the periodic potential system. Next, we use a set of exper
imental signals to explain why we choose the periodic 

potential instead of the classical bistable potential with poten-
tial U(x) = − a

2 x2 + b
4 x4.

The former works show that periodic potential systems 
are easy to match different input signals [26]. For a periodic 
potential system, changing parameters a or b can only change 
the depth or width of potential wells. However, for a bistable 
system, changing a system parameter will lead to simultaneous 
changes in the width and depth of the potential well, which 
brings inconvenience to parameter optimization. Figures 14(a) 
and (b) show the process of parameter optimization of the 
periodic potential system and bistable system respectively. 
When the periodic potential system reaches the optimum, the 
number of iterations is 4, the calculation time is 55.69 s, the 
improved SNR is 2.445 dB, and the number of iterations is 25 
times when the bistable system reaches the optimum, the time 
of optimization is 139.65 s, and the improved SNR is 0.336 
dB. It can be seen that when CR occurs, the number of itera-
tions of the periodic potential system is much less than that of 
the bistable system, the time of optimization is shortened by 

Figure 13.  The adaptive CR output autocorrelation function time-domain waveform and spectrum at theoretical fault frequencies. (a) Outer 
raceway fault; (b) inner raceway fault; (c) rolling element fault.
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more than half, and the improved SNR is obviously improved. 
In summary, the periodic potential system has more advan-
tages than the bistable system in reducing the number of itera-
tions, saving the calculation time and improving the SNR in 
CR.

5.  Conclusion

In former works of bearing fault diagnosis by the SR method, 
the actual characteristic frequency should be known in prior. It 
limits the application of the method. In fact, if we give a wrong 
characteristic frequency, the resonance named CR, which is 
very similar to SR, will also occur. If we do not distinguish 
SR and CR, we will misjudge the health state of the bearing.

In this paper, a method of bearing fault detection based 
on CR is proposed, which overcomes the problem that it is 
impossible to determine the existing characteristic signal only 
by using SR for bearing fault diagnosis. The existence of CR 
and the importance of bearing fault detection are proved by 
the system output of normal simulation signal at different 
frequencies. The output of the system is further analyzed 
by introducing the autocorrelation function. By comparing 
the waveform and spectrum structure of the autocorrelation 
function, the measurement of CR is successfully realized, 
which shows that CR can convert to SR. The resonance factor 
index is constructed to quantify the analysis results without 
comparison, and the bearing fault detection is realized. The 
advantages of the periodic potential system over the bistable 
system in computing speed and improving SNR are analyzed. 
The effectiveness and applicability of the proposed method 
in bearing fault evaluation are verified by numerical simula-
tion and experiment. Due to the limitation of the length of 
the paper, we only give a primer exploration in CR in bearing 
fault evaluation. We stress whether the bearing state is in 
health or in failure. However, the severity degree is not dis-
cussed. In the following work, based on the measurement of 
CR, we will design a new experiment to solve the problem. 
Moreover, we think the method in this paper can also be used 

in the evaluation of the health of other components of rotating 
machinery.
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