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1.  Introduction

With the development of perception and optical technology, 
non-contact visual sensors such as the RGB-D camera, which 
can capture both a colour image and a depth image of the 
scene, have the advantages of low cost, small size, good sta-
bility and high precision and are widely used in many visual 
applications such as 3D reconstruction [1, 2], measurement 
[3, 4], recognition [5], augmented reality (AR) [6] and virtual 
reality (VR) [7]. In these applications, there are two alternative 
solutions for capturing the entire contour of the target object. 

One alternative is a single RGB-D camera scanning system 
that has a projection blind spot problem due to an occlusion, 
a limited field of view (FOV) or other reasons, resulting in 
the entire contour of the object not being captured by a single 
scan. However, the entire contour can be captured by rotating 
the camera several times and then matching the point cloud 
data after several scans. Although many point cloud registra-
tion methods have been proposed by researchers around the 
world and remarkable results have been achieved, there are 
still many limitations in a single-sensor system, such as the 
time-consuming, cumbersome operation and determination 
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of the camera position. Compared with the first scheme, the 
multi-RGB-D camera scanning system is very appealing. 
Nevertheless, to accurately collect all of the 3D data points of 
an object, this type of system must be calibrated. This calibra-
tion process is known as an extrinsic calibration, which is used 
to estimate the relative pose between the RGB-D cameras. 
The precision of the scanning system to some extent depends 
on the precision of the extrinsic calibration.

A large number of extrinsic calibration methods for mul-
tiple cameras have been proposed by researchers, and specific 
methods will be described in detail in the related work section.

The explicit requirements for the extrinsic calibration 
methods depend on the specific application. Generally, there 
are four main requirements for a calibration method [8–10]. 
The accuracy is the first and most important requirement. 
An extrinsic calibration method should always achieve the 
optimal relative pose estimation between the cameras. The 
second requirement is repeatability; since solving for the 
extrinsic parameters is an optimization problem, it must conv
erge to the global optimal solution rather than a local sub-
optimal solution. This means that the deviation between the 
results of multiple calibrations must be small. Third, simplicity 
of operation is required. As the camera is replaced or moved, 
the calibration method needs to be used frequently. Finally, 
the calibration method should be robust to noise and outliers. 
These disturbances may be caused by environmental influ-
ences, sensor noise of the camera, or other factors. Thus, the 
development of an extrinsic calibration method to meet these 
requirements is an ongoing problem that needs to be solved.

The main contribution of this paper is a compact 3D scan-
ning system consisting of multiple RGB-D cameras and an 
extrinsic calibration method that is assisted by a tower calibra-
tion pattern with circular markers in a limited FOV. The rest 
of the paper is organized as follows: following the introduc-
tion, the related works are reviewed in section 2. Section 3 
elaborates the system setup of the RGB-D camera array and 
an overview of the proposed calibration method. Detailed 
methods are described in section 4. Experimental studies on 
the extrinsic calibration and foot scanning results utilizing the 
proposed prototype are presented and analysed in section 5. 
The conclusions are presented in section 6.

2.  Related works

In general, the extrinsic calibration methods of multiple cam-
eras can be divided into methods that use calibration objects 
and methods that do not use calibration objects. In recent 
decades, extrinsic calibration methods that do not use special 
calibration objects have been proposed. In [11], Miyata et al 
proposed a novel extrinsic calibration algorithm for multiple 
cameras in a broad area. The correspondences based on scene 
features between the two cameras were determined by the posi-
tion of an omnidirectional camera, which acted as a reference 
point. Perez-Yus et al [12] and Ly et al [13] first extracted and 
matched the lines of the scene, and then geometric constraints 
were applied to estimate the relative pose between RGB-D 
cameras. Yang et  al [14] proposed an extrinsic calibration 

method based on scene constraints to estimate the relative 
pose between a depth camera and an RGB camera. In [15], 
some large planes in the scene, such as the ceiling or floor, 
were used to calibrate the extrinsic parameters of multiple 
cameras. In [16], the contours of the human body were used 
to calibrate the extrinsic parameters of multiple cameras. Li 
et al [17] proposed an extrinsic calibration method based on 
a human’s joint positions. However, the calibration precisions 
of these methods are low due to their strong dependence on 
the scene and inaccurate understanding of the unknown scene 
features, which will lead to many incorrect correspondences. 
Moreover, these methods are not suitable for multiple cameras 
with a limited FOV.

Meanwhile, methods that use special calibration objects 
have also been studied. For an extrinsic calibration of an 
RGB-D camera, the commonly used calibration objects 
are mainly 2D and 3D and include planar checkerboards, 
planar mirrors, circular patterns, spherical and other custom-
ized objects. For example, Liu et  al [18] proposed a novel 
feature-plane-based method for estimating the relative poses 
between multiple RGB-D cameras with minimal overlapping 
fields. The authors matched 2D feature points with the corre
sponding depth values to construct the matched 3D feature 
points, which were used to calibrate the extrinsic parameters 
of multiple RGB-D cameras. In [19], the authors used a 2D 
planar calibration object with holes to calibrate the extrinsic 
parameters of multiple three-dimensional time-of-flight (3D-
TOF) cameras. The four corners of a planar calibration object 
were used in [20], and the corners of a planar checkerboard in 
[21] were used to calibrate the extrinsic parameters of mul-
tiple RGB-D cameras. In [22, 23], the authors also used pla-
narity constraints to find the correspondences between depth 
images. In [24], Shim et al directly looked for 3D correspond-
ences instead of 2D feature correspondences to calibrate the 
extrinsic parameters of multiple RGB-D cameras. However, 
these extrinsic parameter calibration methods based on planar 
objects are usually time-consuming, especially when there 
are a large number of cameras. On the other hand, when the 
angle between the optical axes of the adjacent cameras is 
large, the planar image captured by the RGB-D camera may 
be distorted, thus resulting in many incorrect correspond-
ences. In [25], a moving stick with one fixed end was used 
to calibrate an RGB-D camera. Two fixed objects connected 
by metal bars were used by Xia et al [9] to calibrate multiple 
cameras. The relative pose between the two objects, which 
was determined by a large-FOV camera, was used to estimate 
the extrinsic parameters of multiple cameras. This method 
is only suitable for a stereo camera calibration. In [26], the 
authors used a planar mirror to calibrate the extrinsic param
eters of cameras. A virtual camera was built by the reflection 
of the planar mirror, and the relative pose between the virtual 
camera and the real camera could be estimated by markers 
positioned on the planar mirror. Kumar et al [27] also used a 
planar mirror to calibrate the extrinsic parameters of multiple 
cameras. Compared with the method in [26], the advantage 
of this method is that there is no need to position markers on 
the planar mirror. However, the reflection range of the planar 
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mirror is difficult to control, especially when the number of 
cameras is large and in a limited FOV.

In [28, 29], the authors used a 3D reconstruction method to 
estimate the extrinsic parameters of multiple cameras. First, 
the calibration plane with some coding markers was recon-
structed by a 3D scanner system. Then, different cameras 
captured different parts of the calibration plane, and mul-
tiple cameras were connected by coding markers. Finally, the 
extrinsic parameters of the multiple cameras were calculated. 
However, these methods need to reconstruct the calibration 
plane in advance. Therefore, the accuracy of the calibration 
has a strong dependence on the accuracy of the reconstruc-
tion; if the calibration plane is very large, it is difficult to guar-
antee the reconstruction accuracy.

Shen et al [30] and Su et al [31] used a coloured sphere as 
a calibration object, and the correspondences of the different 
views were identified by fitting the coloured sphere. In [29], a 
spherical object was also used as a calibration object by Ruan 
et al and the position of the sphere centre, which was used 
to calculate the extrinsic matrix of multiple RGB-D cameras, 
was estimated by fitting the spherical object. In [32, 33], it 
was shown that the calibration results with spherical objects 
are better than those with the planar checkerboards in [23]. 
Nonetheless, these methods are also usually time-consuming 
due to the need to fit the spherical object. Furthermore, the 
cameras of the system require strict time synchronization. 
There are other extrinsic parameter calibration methods that 
employ auxiliary equipment. For instance, Meng et  al [34] 
used an inertial measurement unit (IMU) as an auxiliary 
sensor to calibrate multiple RGB-D cameras, which were used 
for simultaneous localization and mapping (SLAM). In [35], 
images captured by mobile devices and the GPS positions of 
mobile devices were used to calibrate extrinsic parameters of 
a camera network.

The extrinsic calibration of multiple RGB-D cameras 
consists of two steps: determining the correspondences and 
calculating the extrinsic parameter transformation matrix. 
The calibration objects are only used to provide the cor-
respondences, and the precision of the extrinsic calibration 
depends on the method used to calculate the extrinsic param
eter transformation matrix. The problem of solving for the 
extrinsic parameters of multiple cameras is actually a non-
linear optimization problem. However, many of the above-
mentioned methods approximate this nonlinear problem as a 
linear problem that can be solved. Commonly used methods 
include the least squares method (LSM) and singular value 

decomposition (SVD) [36]. Employing linear methods to 
solve a nonlinear problem will inevitably reduce the accuracy. 
It is known that meta-heuristic optimization algorithms are 
very good at solving nonlinear optimization problems. For 
example, Safaei et  al [37] used metaheuristic optimization 
algorithms such as the genetic algorithm (GA), the colonial 
competitive algorithm (CCA), particle swarm optimization 
(PSO) and the shuffled frog leaping algorithm (SFLA) to 
estimate the extrinsic and intrinsic parameters and lens dist
ortions of RGB-D cameras. In this paper, a tower with circular 
markers is used as the calibration object, and the improved 
adaptive cuckoo search (IACS) [38] algorithm is used to 
optimize the extrinsic transformation matrix.

3.  Methods overview

A flow chart of the proposed extrinsic parameter calibration 
method for multiple RGB-D cameras is shown in figure  1. 
First, the tower calibration pattern with 5 circular marks 
is placed in the centre of the platform of the 3D scanning 
system, which is shown in figure 2, so that each face of the 
tower calibration pattern faces an RGB-D camera. The colour 
images, depth images, and 3D point clouds are captured by 
each RGB-D camera, and then the mapped image is generated 
by aligning the colour images with the depth images.

Meanwhile, the image coordinates of the circle centre on the 
tower calibration pattern are detected by applying the Hough 
transform algorithm to the colour images. The 3D camera 
coordinates of the circle centre are extracted according to the 

Figure 1.  Flow chart of the proposed calibration method.

Figure 2.  3D Scanning system prototype with four SR300 cameras.
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detected image coordinates of the circle centre and mapped 
image. Next, the world coordinates of the circle centre, which 
are known, are loaded from the file.

Afterwards, a unit quaternion and IACS algorithm are 
applied to optimize the extrinsic parameter matrix of each 
RGB-D camera by combining the 3D camera coordinates and 
the world coordinates of the circle centre on the tower. The 
last step is to estimate the relative pose between the two adja-
cent RGB-D cameras.

4.  Detailed methods

4.1. Tower calibration pattern

Because of the symmetry of the circular marker, the centre 
detection algorithm of the circle is easy and has strong resist
ance to noise. In this paper, a tower calibration pattern, which 
is shown in figure 3(a), is designed for the 3D scanning system 
of multiple RGB-D cameras, which is shown in figure 2. Five 
circular markers distributed on three different steps are set at 
the designated position on each face of the tower calibration 
pattern; to ensure that the markers are not planar, they are 
sorted in the order shown in figure 3(b). Since the size of the 
tower is known, after a world coordinate system is established 
by selecting a point on the tower, the world coordinate of the 
centre of each circle mark with respect to the world coordinate 
system on the tower will be calculated. Thus, the world coor-
dinates (xwi, ywi, zwi)(i = 1, 2, ...5) of the centres of the circle 
marks on each face of the tower calibration pattern will be 
obtained.

4.2.  Colour image and depth image alignment algorithm

An RGB-D camera generally contains two physical sensors, 
namely, an infrared sensor and a colour sensor, which are at 
different positions in the camera and have different coordinate 
systems. To establish the corresponding relationship between 
the 3D coordinate of a point in 3D space and the colour 

information, a pose transformation matrix of the coordinate 
systems of the two sensors must be obtained. In figure 4, P 
represents a point in 3D space, (u1, v1) and (x1, y1, z1) denote 
the 2D pixel coordinate and the 3D position coordinate relative 
to the coordinate system of the infrared sensor, respectively, 
and (u2, v2) and (x2, y2, z2) represent the 2D pixel coordinate 
and 3D position coordinate relative to the coordinate system 
of the colour sensor, respectively. The relationship between 
the 2D pixel coordinate and the 3D position coordinate can be 
formulated as equations (1) and (2).
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Here, f1, dx1, dy1, u01, v01, f2, dx2, dy2, u02, v02 represent 
the intrinsic parameters of the infrared sensor and colour 
sensor. Assume that the matrix T  that contains the extrinsic 
parameters denotes the pose between the infrared sensor and 
the colour sensor. Because the infrared sensor and the colour 
sensor are configured for binocular stereo vision mode, the 
intrinsic and extrinsic parameters of an RGB-D camera can 
be calibrated by using the checkerboard calibration method. 
In this paper, we assume that these parameters are known. 
Then, the relationship between (x1, y1, z1) and (x2, y2, z2) can 
be formulated as equation (3).
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Here, r and t denote the rotation matrix and the translation 
vector, respectively. From equations (1) to (3), the alignment 
between the colour image and depth image can be established.

Figure 3.  Schematic diagram of the tower calibration pattern. (a) Stereogram and (b) ichnography.
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4.3.  Identification of the centre of a circle

Due to their regularity, symmetry, rotation invariance and ease 
of detection, circular marks are placed on the tower calibration 
pattern. First, the image coordinates (ui, vi)(i = 1, 2, 3, 4, 5) 
of the centres of the circular marks are detected by using the 
circle Hough transformation, which is one of the popular 
circle detection algorithms in the computer vision field used 
for colour images. Afterwards, the image coordinates (ui, vi) 
are sorted according to the numbers shown in figure  3(b). 
Finally, the camera coordinates (xci, yci, zci)(i = 1, 2, 3, 4, 5) 
of the centres of the circular marks on each face of the tower 
calibration pattern are obtained according to the alignment 
relationship between the colour image and depth image that is 

described in section 4.2. Assume that Wj =
Ä

x j
wi, y j

wi, z j
wi

ä
 and 

Cj =
Ä

x j
ci, y j

ci, z j
ci

ä
 (i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4) (the subscript 

i denotes the ith circle centre, and the superscript j denotes the 
j th face of the tower) represent the world coordinates and the 
camera coordinates of the centres of the circular marks on the 
tower pattern, respectively. Then, the corresponding point set 
(Wj, Cj)( j = 1, 2, 3, 4) will be obtained.

4.4.  Extrinsic calibration between the depth camera  
and the tower calibration pattern

A rotation matrix and a translation vector can be used to 
describe the relative pose of the camera in 3D space. A 
coordinate system diagram of the 3D foot scanning system 
proposed in this paper is shown in figure 5. The coordinate 
system ow − zwywxw indicates the world coordinate system 
located on the tower calibration pattern, the coordinate system 
oi − ziyixi(i = 1, 2, 3, 4) represents the depth camera coor-
dinate system of the RGB-D camera, and RTj( j = 1, 2, 3, 4) 
denotes the pose of the depth camera with respect to the 
world coordinate system. For the corresponding point set 
(Wj, Cj)( j = 1, 2, 3, 4), the transformation matrix RTj is 
determined by a rotation matrix Rj  and a translation vector 
tj between the world coordinate system and the depth camera 
coordinate system:
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Here, wi
j = [xwi, ywi, zwi, 1]Tj  and ci

j = [xci, yci, zci, 1]Tj  belong 
to Wj and Cj, respectively. Rj  and tj are unknown parameters, 
and we need at least 3 corresponding points to solve for these 
parameters. In other words, our goal is to find Rj  and tj that 
minimize the following objective function:

min
Rj,tj

fj(Rj, tj) =
1
n

n∑
i=1

∥∥wi
j − Rjci

j − tj
∥∥2

� (5)

where Rj =




R11 R12 R13

R21 R22 R23

R31 R32 R33




j

 and tj = [tx, ty, tz]
T
j . Generally, 

a least-squares-based method can be used to solve the above 
objective function in equation  (5). However, the solution 
cannot satisfy the orthogonality of the rotation matrix Rj . 
Therefore, to guarantee the orthogonality, the unit quaternion 

Figure 4.  Alignment relationship diagram.

Figure 5.  Diagram of the coordinate system.

Figure 6.  The prototype of the tower calibration pattern.
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method is applied to represent the rotation matrix. Assume 
that a unit quaternion qj = [qj0, qj1, qj2, qj3]

T  denotes the rota-
tion matrix Rj ; then, the relationship between qj and Rj  is 
shown as follows:




R11 = q2
j0 + q2

j1 − q2
j2 − q2

j3

R12 = 2(qj1qj2 − qj0qj3)

R13 = 2(qj1qj3 + qj0qj2)

R21 = 2(qj1qj2 + qj0qj3)

R22 = q2
j0 − q2

j1 + q2
j2 − q2

j3,
R23 = 2(qj2qj3 − qj0qj1)

R31 = 2(q1q3 − q0q2)

R32 = 2(qj2qj3 + qj0qj1)

R33 = q2
j0 − q2

j1 − q2
j2 + q2

j3

q2
j0 + q2

j1 + q2
j2 + q2
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� (6)
The translation vector tj between Wj and Cj can be calcu-

lated by the following equation:

tj = ρcj − Rj · ρwj.� (7)

Here, ρwj =
1
n

∑n
i=1 wi

j and ρcj =
1
n

∑n
i=1 ci

j  represent the 
barycenter coordinates of Wj and Cj, respectively. Then, the 
problem of solving equation  (5) can be transformed into an 
optimization problem with a constraint, and its objective func-
tion will be rewritten as the following equation:

min
qj

f (qj) =
1
n

n∑
i=1

||cji − Rj · wji − tj||2 + ...

λ(q2
j0 + q2

j1 + q2
j2 + q2

j3 − 1),λ > 0.
�

(8)

Here, λ represents any positive value. Thus, some meta-
heuristic optimization algorithms can be used to solve the 
above optimization problem with a constraint.

4.5.  IACS algorithm

The cuckoo search (CS) algorithm was proposed by Yang 
and Deb [39] in 2009; the CS algorithm is a meta-heuristic 
evolutionary algorithm inspired by the brood parasitic behav-
iour of a type of cuckoo in combination with the Lévy flight 

(a)                                                                             (b)

(c) (d)

Figure 7.  The extrinsic calibration results of depth camera 1#. (a) The circular centre recognition results for the 2D colour image. (b) The 
convergence curve of the IACS. (c) The 3D reprojection points of the centres of the circles. (d) Reprojection mean error.
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behaviour of some animals. A Lévy flights random walk 
(LFRW) and biased/selective random walk (BSRW) are used 
to search for new solutions in the CS algorithm. After each 
random walk, a greedy strategy is used to select a better solu-
tion from the current solutions and newly generated solu-
tions by comparing their fitness values. The optimal solutions 
obtained by the CS are far better than the best solutions 
obtained by the efficient PSO and GA [40].

However, the CS is the same as other population-based 
intelligent optimization algorithms in that it has some disad-
vantages, such as a weak local search ability, easily falling into 
local optima, and a slow convergence speed. In terms of the 
standard implementation of the CS, the parameters pa, which 
is the probability of a cuckoo’s egg being found, and α0, which 
is the scaling factor of the CS, are beneficial for searching 
globally and locally improved solutions, respectively. These 
two parameters are very important for fine-tuning the solu-
tions and can potentially be used to improve the convergence 
rate and performance of the CS algorithm. Thus, to improve 
the convergence speed and avoid falling into a local optimum, 
we propose an IACS algorithm based on population fitness 
information and iteration information feedback. Two adaptive 
strategies are integrated into the standard CS algorithm.

The first adaptive strategy is to adjust the parameters pa 
and α0 according to the iteration information in each iteration, 
which can be formulated as equations (9)–(11).

c =
1

Gmax
ln

Å
αmin

αmax

ã
� (9)

α0(G) = αmax exp(c · G)� (10)

pa(G) = pa max −
G

Gmax
(pa max − pa min)� (11)

Here, G  and Gmax are the current iteration and the total 
iteration times, respectively. αmin and pa min represent the 
minimum values of α0 and pa, respectively, and αmax and 
pa max represent the maximum values. From equations  (9)–
(11), it can be seen that the parameters pa and α0 are large 
in the early iterations, and the diversity of the population is 
increased, which improves the global search ability of the CS; 
however, to obtain a better local adjustment solution, these 
parameters will be decreased in a later iteration.

The second strategy is to adjust the Lévy step size of each 
individual according to the category of the individual, where 

(a) (b)

Figure 8.  The extrinsic calibration results of all cameras. (a) Reprojection mean error. (b) 3D reprojection points of the centres of the 
circles.

Figure 9.  Average projection error for all cameras.

Table 1.  The results of the calibration after 100 experiments.

Method Mean (Err) (mm) Std. (Err)

SVD 2.6674 0.0036
IACS 0.8925 0.0029

Meas. Sci. Technol. 31 (2020) 045901
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the categories include the individual fitness, best fitness, and 
mean population fitness in the current iteration, which can be 
formulated as equations (12)–(14).

α1 = α0(gn) ·
∣∣∣∣
f (xi)− f ′

fm − f ′

∣∣∣∣ if, fmin � f (xi) � f ′� (12)

α2 = α0(gn) if, f ′ < f (xi) < f� (13)

α3 = 1.0 − 1
1 + exp(−∆)

if, f (xi) > f .� (14)

Here, f = 1
Np

∑Np
i=1 f (xi) and fmin = min f (xi) are the 

mean fitness and minimum fitness of the current generation, 
respectively. f ′ represents the average between f  and fmin. 

∆ = f ′ − fmin is a degree factor. For a detailed description 
about the IACS, please refer to my previous work [38]. In this 
paper, the IACS is applied to optimize equation (8) to solve 
for the optimal q∗

j .

5.  Experiments

The proposed calibration algorithm has no special requirement 
in terms of the type of depth sensing technology, which may 
be structured light, stereo vision or a time-of-flight RGB-D 
camera. For example, the Intel Realsense SR300 structured 
light RGB-D camera, which is inexpensive and small in 
size, is chosen to capture the depth and colour images in the 
experiments. The RGB-D camera setup of the 3D scanning 

(a) (b)

(c) (d)

Figure 10.  The convergence curves of camera 1# for the four optimization algorithms. (a) The convergence curves of camera 1#. (b) The 
convergence curves of camera 2#. (c) The convergence curves of camera 3#. (d) The convergence curves of camera 4#.
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system is shown in figure 2. The camera network consists of  
4 SR300 cameras sparsely placed on a platform of 0.64 m2, 
and all cameras point to the centre of the platform. The param
eters α0, pa, αmin, αmax, pa min and pa max associated with 
the IACS algorithm are set to 0.01, 0.25, 0.05, 1.5, 0.005 and 
0.95, respectively.

5.1.  Single depth camera extrinsic calibration

The tower calibration pattern is produced as shown in figure 6, 
according to section  4.1. Assume that the world coordinate 
system ow − zwywxw is set at the centre of the tower bottom; 
then, the world coordinate of each centre of the circle will be 
calculated according to the size of the tower. The coordinate 
system ow − zwywxw can be regarded as a unified coordinate 
system. The proposed extrinsic calibration method can realize 
a sequential calibration for 4 depth cameras in a 3D scanning 
system. The calibration results of camera 1# are shown in 
figure 7, and the calibration results of the other cameras are 
the same as those shown in figure 7. The circular centre recog-
nition results for the 2D colour image are shown in figure 7(a); 
the red asterisk indicates the correctly identified centres of 
the circles. The convergence curve of the IACS is shown in 
figure  7(b); it is easy to see that the proposed optimization 
method gradually converges after approximately 80 iterations. 
To evaluate the quality of the solution of the IACS algorithm, 
the solution obtained by SVD is used for a comparison. The 
3D reprojection points of the centres of the circles are shown 
in figure 7(c); in the figure, the black dot represents the orig-
inal point of the centre of the circle, the blue plus represents 
the reprojection results obtained by SVD, and the red asterisk 
represents the results obtained by the IACS. Notably, the red 
asterisk is closer to the original point than the blue plus, which 
shows that the calibration results obtained by the IACS are 
better than those obtained by SVD. The 3D reprojection error 
of the centres of the circles can be formulated as follows:

RMSEj =
1
n

n∑
i=1

∥∥wji − R∗
j cji − t∗j

∥∥2.� (15)

Here, wji represents the world coordinate of the centre of 
the i circular marker on the j th face of the calibration tower, 
n represents the number of circular markers, and R∗

j  and t∗j  
denote the optimal rotation and translation matrix, respec-
tively, which are obtained by the IACS or SVD. RMSEj  
denotes the root mean square error, which is obtained from 
projecting the 3D circle centre locations in each local camera 
coordinate system to the world coordinate system through the 
R∗

j  and t∗j . The RMSEj  values, which are obtained by the IACS 
and SVD, are shown in figure 7(d). The RMSEj  (0.6857 mm) 

Filtered

Filtered

Filtered

Filtered

1RT

2RT

3RT

4RT

Complete point cloud model

Figure 11.  The foot reconstruction process.

Figure 12.  Diagram for the extraction of the right foot length and 
width parameters.
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of the IACS is much smaller than the RMSEj  (2.4237 mm) of 
SVD. The extrinsic calibration results of all the cameras are 
shown in figure 8.

5.2.  Pose evaluation between two depth cameras

As described in section 5.1, the pose transformation matrix 
RTj, ( j = 1, 2, 3, 4) of each depth camera with respect to 
the world coordinate system on the tower can be calculated. 
However, when the tower calibration pattern is moved to 
another position, RTj, ( j = 1, 2, 3, 4) will change accordingly. 
Nevertheless, the pose transformation matrix RT j

i  between 
the ith camera and the j th camera will not change since these 
cameras are in a static state. Without loss of generality, the 
camera coordinate system of camera 1# is set to the uni-
fied coordinate system; then, the pose transformation matrix 
of the remaining cameras with respect to camera 1# can be 
expressed as the following equation:

RT j
1 = (RT1)

−1 ∗ RTj, ( j = 1, 2, 3, 4).� (16)

Therefore, according to the pose transformation matrix 
between camera 1# and the tower calibration pattern, the 
world coordinates Wj, ( j = 1, 2, 3, 4) of the centres of the 
circles on the tower can be converted to the camera coordi-
nates PC j

1 relative to camera 1#. The conversion formula is 
as follows:

PC j
1 = (RT1)

−1 ∗ Wj, ( j = 1, 2, 3, 4).� (17)

Meanwhile, according to RT j
i , Cj, (j = 2, 3, 4) can be con-

verted to the camera coordinates Pc j
1 relative to camera 1#. 

The conversion formula is as follows:

Pc j
1 = (RT1)

−1 ∗ RTj ∗ Cj, ( j = 2, 3, 4).� (18)

If there is no calibration error, the results of equation (17) are 
equal to those of equation  (18). However, there is bound to 
be error. In this section, the calibration error is represented as 
follows:

Err =
1
4

4∑
j=1

projection_errj.� (19)

Here,

projection_errj =
∥∥∥Pc j

1 − PC j
1

∥∥∥
2
, ( j = 1, 2, 3, 4).� (20)

To verify the effectiveness and stability of the proposed 
method and exclude contingency, the tower calibration pat-
tern was moved to 100 different positions in a limited space, 
and the results of all positions were recorded. The mean errors 
and variances of the two methods are shown in table 1 and 
figure 9. As shown in table 1, the error variances of multiple 
calibrations of the two methods are very small and similar, 
indicating that both methods have good effectiveness and sta-
bility. However, the mean error of the IACS is smaller than 
that of the SVD method, indicating that the proposed method 
can achieve a high calibration accuracy.

5.3.  Convergence evaluation of the IACS algorithm

The convergence of the IACS algorithm is verified in a com-
parative experiment. The ICAS is compared to the standard 
CS algorithm and two CS variants. The first CS variant is a 
memory-adaptive CS algorithm (MACS) proposed by Qin 
et  al [41]. The authors adjusted the scaling factor α0 adap-
tively according to population average fitness and individual 
fitness, and a memory strategy was added to the BSRW. The 
second CS variant is an improved CS algorithm (ICS) pro-
posed by Ehsan et al [42]. In this variant, the authors adjusted 

Table 2.  The results of the parameters of the right foot (mm).

Volunteer

Standard SVD IACS

L W L E ME W E ME L E ME W E ME

1 257 95 263 6 4.3 98 3 3.9 258 1 1.8 96 1 1.3

2 261 97 265 4 100 3 263 2 98 1
3 245 90 249 4 93 3 247 2 91 1
4 267 101 270 3 105 4 269 2 102 1
5 263 100 268 5 103 3 265 2 101 1
6 255 95 259 4 100 5 257 2 97 2
7 251 92 256 5 97 5 252 1 94 2
8 261 96 265 4 101 5 263 2 97 1
9 249 91 253 4 95 4 251 2 92 1
10 253 93 257 4 97 4 255 2 95 2

Note: L: length, W: width, E: error, ME: mean error.

Figure 13.  Manual measurement.

Meas. Sci. Technol. 31 (2020) 045901



J Chaochuan et al

11

the parameters pa and α0 according to the iteration number. 
These CS algorithms are applied to optimize equation  (8) 
for each camera. The parameters of the IACS are described 
above, and the parameters of the standard CS, MACS and ICS 
algorithms are described in the corresponding literature. The 
convergence curves of these CS algorithms for camera 1# are 
shown in figure 10(a). As shown in the figure, although these 
four optimization algorithms converge to the same optimal 
level, the IACS achieves the fastest convergence speed among 
these CS algorithms. The optimization results of the remaining 
cameras are the same as those shown in figures 10(b)–(d).

5.4.  Qualitative evaluation

In this section, we evaluate the results of the proposed calibra-
tion method when scanning a human foot by a 3D scanning 

system with multiple RGB-D cameras. We evaluate the 
quality of the human foot reconstruction for different optimal 
calibration methods. The process of the foot reconstruction is 
shown in figure 11. Ten volunteers were invited to participate 
in the experiment. According to the established complete foot 
point cloud model, the length and width of each volunteer's 
foot were extracted. The length and width of a foot were the 
length and width of the smallest external rectangle of the foot 
projection point cloud, respectively, as shown in figure  12. 
The foot of each volunteer was measured 10 times, and then 
the means of the parameters were obtained. The results of the 
parameters of the right foot are shown in table 2. In table 2, 
the standard values are obtained by using a manual measure-
ment, which is shown in figure 13. From table 2, in terms of 
the foot length, the maximum error from the standard value of 
SVD is 6 mm, that the maximum error of the IACS is 3 mm, 

a b

c d

e

( 1,2,3,4)i iRT

Figure 14.  The scan results of the sphere. (a). Raw point cloud of camera 1#. (b) Raw point cloud of camera 2#. (c) Raw point cloud of 
camera 3#. (d) Raw point cloud of camera 4#. (e) complete point cloud of the sphere.

Figure 15.  Diameter measurement methods. (a) Manually measurement. (b) Automatic measurement.
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and the mean errors from the standard values are 4.3 mm and 
1.8 mm. In terms of the foot width, the maximum error from 
the standard value of SVD is 5 mm, the maximum error of the 
IACS is 2 mm, and the mean errors from the standard values 
are 3.9 mm and 1.3 mm. The same conclusions can be drawn 
from the parameters of the left foot, so the parameters of the 
left foot do not appear in table 2. In addition, a yellow sphere 
is also used to verify the accuracy of the proposed method, 
the scan results of the sphere are shown in figure  14. The 
diameter measurement methods are shown in figure 15. The 
results of measuring the diameter of the sphere 10 times are 
shown in table 3. From table 3, in terms of the diameter of the 
sphere, the maximum error from the standard value of SVD is 
5 mm, that the maximum error of the IACS is 3 mm, and the 
mean errors from the standard values are 3.8 mm and 1.7 mm. 
In summary, compared with the SVD method, the proposed 
method in this paper achieves a higher accuracy in both the 
foot and cube box measurements.

6.  Conclusions

In this paper, a compact multi-RGB-D-camera 3D scanning 
system and an extrinsic calibration method assisted by a tower 
calibration pattern with circular markers in a limited FOV are 
proposed. First, the Hough transform is used to identify the 
image coordinates of the centres of circles in a colour image, 
and then the 3D coordinates are extracted by employing the 
alignment relationship between the colour image and the depth 
image; therefore, the correspondences between the camera 
coordinate system and the world coordinate system are con-
structed. Second, IACS algorithm and a unit quaternion are 
used to optimize the extrinsic parameters. The optimization 
results of the proposed method are compared with those of the 
SVD method, and it is shown that the IACS achieves a higher 
calibration accuracy than the SVD method. Then, the IACS is 
compared with the standard CS algorithm and two CS vari-
ants. The experimental results indicate that the IACS achieves 
a faster convergence speed than the other CS methods. Finally, 
the proposed extrinsic calibration method is applied to a pro-
posed 3D scanning system that is used to reconstruct a foot and 
a yellow sphere. The results indicate that the multi-perspective 

point cloud registration is very effective, which provides a 
good basis for subsequent processing. The accuracy and the 
effeciency of the proposed extrinsic calibration method are 
validated by these experiments, and it is explained that the 
proposed extrinsic calibration method has a high calibration 
accuracy and a higher speed and good potential application 
prospects compared with the existing methods.
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