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1.  Introduction

3D optical and laser measurement devices are now affordable 
[1], which contribute to a variety of advanced applications, 
such as virtual assembly [2], defect geometry detection [3], 
3D printing and manufacturing [4], and autonomous vehicle 
navigation [5]. However, current 3D scanners lead to the mesh 
representation of a 3D model with no semantic information to 
describe its geometric textures and structures separately [6]. 
This introduces distortions of geometric textures in reverse 

engineering when applying geometric modeling operations 
[7] and runs the risk of the destruction of object design [8, 9].

Geometric features comprise abundant details of surface 
meshes for physical objects [10]. Generally, small-scale 
features indicate the detailed appearance of surfaces while 
medium- and large-scale features characterize intrinsic geo-
metric properties of surfaces [11]. Surface decomposition can 
lead to better understanding of the underlying geometry for 
shape processing and analysis.

Unlike exsiting mesh filters [12–14] which process sur-
face normals as geometry signals defined on the Gauss 
sphere, we, inspired by shape analysis in [15], assume that a 
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Abstract
3D optical and laser measurement devices can obtain the digital representation of physical 
objects by boundary surface meshes. Such a representation, however, has no semantic 
information to describe the object’s basic shape and its geometric details individually. 
Meanwhile, existing mesh filters, which process surface normals as signals defined on the 
Gauss sphere, mainly deal with noise corrupted by measurement and computational errors. 
While useful in that they preserve geometric structures, they are not intended for filtering out 
geometric details whose scales are much larger than that of noise. We assume that a 3D surface 
contains three geometric properties, i.e. geometric detail, structural pattern, and smooth-
varying shape, and consider normals as surface signals defined over both the input mesh and 
the underlying surface of this mesh. We propose a joint weighted least squares (JWLS) to 
solve the challenging problem of how to filter out the detailed appearance (geometric details) 
and preserve intrinsic geometric properties (structural patterns) of any measurement surface 
simultaneously. Specifically, we first suppress high-contrast detail normals, and then detect 
salient feature normals to produce a feature-guided normal field, and finally jointly fit the 
original shape. We have shown that a variety of geometric processing tasks benefit from our 
JWLS, e.g. detail-preserving bas-relief modeling, detail-free mesh smoothing, and detail-
enhancing Laplacian coating.
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complex surface contains three geometric properties, i.e. geo-
metric detail, structural pattern, and smooth-varying shape. 
Geometric details (small-scale features) represent the detailed 
appearance of an object, and structural patterns and smooth-
varying shape contribute to control the boundary of geometric 
structures (medium- and large-scale features) and the overall 
shape of local surface regions, respectively. Therefore, we 
can naturally consider surface normals as geometry signals 
defined over both the original (input) mesh and the underlying 
surface of this mesh. This allows the design of a novel joint 
weighted least squares that depends on both shape constraints 
provided by the original mesh and smooth constraints pro-
vided by the underlying mesh.

While the weighted least squares (WLS) model is a funda-
mental optimization framework that has been widely used in 
image processing [15–18], there is very little work on lever-
aging this model for 3D measurement surfaces. This is despite 
the fact that 3D scanners and depth cameras greatly simplify 
the geometric modeling process [19], and 3D surfaces become 
widespread and have myriad applications.

Based on our new geometry assumption, we propose a 
novel 3D joint WLS algorithm or simply JWLS for decoupling 
a mesh normal field to a base layer and a detail layer. Multiple 
geometric processing tasks benefit from our decomposed two 
normal layers (see figure 1). For example, (1) we can produce 
a detail-free mesh smoothing result which matches the base 
normal field only; (2) we can produce a detail-enhanced result 
using Laplacian coating; and (3) we can shape a planar mesh 
satisfying the two decomposed normal fields for compen-
sating details that was lost during bas-relief modeling, leading 
to detail-preserving results.

The main contributions of this paper are three-fold:

	 •	�We propose a joint weighted least squares algorithm for 
normal filtering. Different from existing normal filters, 
the original normal field serves as a shape constraint, and 
the intermediate normal field by L0 gradient minimiza-
tion is considered as the guidance normal field, yielding 
a piecewise smooth base layer with the overall shape 
preserved.

	 •	�Decomposing a normal field to two layers provides a 
basis for geometric processing, e.g. detail-preserving 
bas-relief modeling.

	 •	�Existing structure-preserving mesh filters is less suitable 
than our proposed three-step filter to remove surface 
details clearly, which best fits the objects with abundant 
details.

2.  Related work

2.1.  Mesh filters

Mesh filters are originally developed for smoothing either 
high-frequency features of surfaces or the corrupted noise 
[20]. We notice that various filters evolve from the techniques 
of image denoising, e.g. bilateral filtering [10, 21–25] from 
[26], anisotropic diffusion filters [27–29] from [30], and L1/L0 
minimization methods [31, 32] from [33], to name a few. 
Since a great deal of researches on image denoising serve as a 
foundation of 3D filters, state-of-the-art methods usually pro-
duce quality smoothing/denoising results. However, the afore-
mentioned filters are somewhat less suitable for geometric 
detail removal, since isotropic filters (e.g. Laplacian filter) 
commonly result in shape distortion [34], while anisotropic 
filters (e.g. bilateral filter) cannot eliminate geometric details 
cleanly. In contrast, we design a three-step filter for effective 
decomposition of a surface’s detail layer and base layer.

2.2.  Bas-relief modeling

The work on bas-relief modeling from 3D objects originates 
from Cignoni et  al [35]. Later work on this field mainly 
focuses on preserving salient features, which can be divided 
into two types. The methods of the first type borrow the idea of 
high dynamic range (HDR) imaging for compression [36–41],  
and the methods of the second type are based on surface 
decomposition and enhancement [38, 42–44].

3.  Overview

Without loss of generality, we assume that a 3D surface con-
tains three geometric properties, geometric detail, structure 
pattern (step edge), and smooth-varying shape. Geometric 
details represent the detailed appearance of an object, and 
step edges and smooth-varying shape contribute to control 
the boundary of geometry features and the overall shape of a 
local region, respectively. We give a 1D signal decomposition 
example as an analogy in figure 2.

Under this geometric assumption, we separate a surface 
into a detail layer and a base layer, which correspond to geo-
metric details, and the smooth-varying shape plus step edges, 
respectively. In order to facilitate many geometric processing 
tasks, the decomposition takes place in the mesh normal field. 
The decomposition of a normal field is performed by steps of 

Figure 1.  We list three kinds of geometric processing that benefit from our decomposed normal layers of measurement surfaces. The first is 
mesh smoothing which produces a detail-free base surface (right) from the corresponding detail-rich model (left). The second is Laplacian 
coating which enhances the model’s geometry (right) by inputting an over-smoothing model (left). The third is bas-relief modeling which 
produces a detail-preserving bas-relief (right) from a planar mesh equipped with normals (left).
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normal filtering to obtain a base layer, followed by subtracting 
the base layer from the original surface normal field to acquire 
a detail layer. The principle behind geometric detail-base 
decomposition is that normals of salient features are more 
coherent in local regions while normals of fine details exhibit 
a wider variety in their directions.

At the top level, we perform the following steps, as shown 
in figure 3.

	 (i)	�By reducing deviations of normals using weighted least 
squares (WLS), our method suppresses high-contrast 
detail normals.

	(ii)	�By performing l0 gradient minimization, our method 
obtains normals of step edges.

	(iii)	�By performing WLS again but with the original normal 
field as a shape constraint and the normal field of step 
edges as a guidance, called joint normal filtering in this 
paper, our method further obtains a base normal field, 
followed by a subtraction operation to acquire a detail 
normal field.

	(iv)	�By combining with mesh reconstruction based on the 
decomposed normal fields, our method suits for many 
practical meaningful tasks, e.g. bas-relief modeling, 
geometry texture removal, and Laplacian coating.

Figure 2.  1D illustration of surface decomposition. Images are courtesy of Shao et al [15].

Figure 3.  The pipeline of our joint weighted least squares for normal decomposition of 3D measurement surface which is beneficial to 
many geometric processing tasks.
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4.  Base-detail decomposition in normal field

Triangular meshes remain a mainstream representation of 
3D measurement surfaces (see figure  4(left)) and are per-
fectly supported by modern graphics hardware. Therefore, we 
start our surface decomposition from surfaces approximated 
by triangular meshes. A triangular mesh can be denoted by 
M = (V , E, F, N). V , E, F, and N represent respectively the 
sets of vertices, edges, faces, and face normals. We use Nf (i) 
to describe the faces in the 1-ring face neighborhood of a face 
fi ∈ F, which means a set of faces sharing a common vertex 
or edge with f i, as shown in figure 4(right).

Given a 3D detail-rich surface mesh M = (V , E, F, N) as 
input, we aim at obtaining a new normal set N′, which is as 
close as possible to N as to maintain the overall shape of the 
original mesh, while being as smooth as possible everywhere 
except across salient features in N. For parametric represen-
tation N : F = F(u, v), (u, v) ∈ Ω, the compromise between 
the two different objectives can be achieved by seeking the 
minimum of energy

min
N′

∫

Ω

(N′ − N)dudv + λ

∫

Ω

Φ(N′)dudv,� (1)

where the first term considers resemblance with the original 
normal field, while the second term measures smoothness of 
the new normal field. λ > 0 is a weight used to balance the 
two terms. That means, the smaller the λ is, the more the new 
normal set N′ is similar to the original normal field N, while 
the geometric details are hardly removed; while the larger the 
λ is, the more smoother the new normal set N′ is, while the 
structural patterns would be blurred.

In order to obtain a base normal field N′ with details fil-
tered out clearly, we optimize the aforementioned energy in 
a global way step by step. In specific, (1) we first filter it to 
suppress fine detail normals to guarantee that their directional 
deviations are much smaller than those of salient features. This 
step is achieved by extending weighted least squares (WLS) 

[16]. (2) We then extract a surface’s structure information 
(step edges) without adverse influences from surface details 
by l0 gradient minimization [45]. (3) The obtained normal 
field in the second step forms a guidance containing struc-
ture information about the input model. This normal field then 
supplies a smoothness constraint, while the original normal 
field supplies a shape constraint. That is, we decompose the 
original normal field to a base layer and a detail layer within 
the joint WLS optimization framework [15]. Since the normal 
decomposition involves the aforementioned three steps, and 
each step will produce a new normal field N′ as an input to 
the next step, the sequent normal fields produced in each step 
may be loosely denoted by N′, N′′, and N′′′, where this is not 
ambiguous.

4.1.  Detail normal suppression

Equation (1) can be discretely represented as

min
N′

∑
ni∈N

[
(n′i − ni)

2 + λ1( f (n′i)
2)
]

,� (2)

where the goal of data term (n′i − ni)
2 is to minimize the L2 

distance between N′ and N, while the second (smoothness) 
term is designed to control the smoothness of N′. λ1 is used 
to balance the two terms; increasing the value of λ1 leads to a 
progressively smoother N′.

Inspired by Laplacian mesh optimization [46], we set f (n′i) 
to be the weighted Laplacian operator L(ni), which is equal 
to the normal difference between face f i and the weighted 
average of its neighbors as

f (n′i) = siL(ni) = si

∑
fj∈Nf (i)

wij(n′j − n′
i),� (3)

where wij is usually the cotan weight [46] of the co-edge eij 
between face f i and face f j  with 

∑
wij = 1. The parameter si is 

defined in terms of the principle that if face f i passes through a 
salient-feature region, a smaller si preserves the salient feature; 

Figure 4.  The mesh representation of measurement surface and its local neighborhood. Left: The obtained measurement surface is 
commonly represented by a watertight triangular mesh for subsequent applications. Right: The 1-ring face neighborhood of f i (Note that 
faces within the blue polygon belong to Nf (i)).
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otherwise, a larger si will be selected to smooth the surface. 
According to WLS [16], we set si = (||L(ni)||α + ε)−1, where 
α is a parameter with the values varying within [1.2, 2] which 
controls the sensitivity to ||L(ni)||, and ε is assigned a small 
positive value, e.g. 0.0001, to avoid division by zero.

Equation (2) can be re-written as

min
N′

[
(N′ − N)T(N′ − N) + λ1((N′)TLTSLN′)

]
,� (4)

where S is a diagonal matrix with si as the non-zero elements. 
L is an m × m (m is the number of mesh faces) Laplacian 
matrix with values as

Lij =





1, i = j,
−wij, eij ∈ E,
0, otherwise.

Equation (4) can be changed to a sparse linear system 
(I + λLTSL)N′ = N , which is solved more efficiently.

4.2.  Feature extraction

The L0 gradient minimization in image smoothing [33] can be 
extended to mesh vertices [32] and mesh normals [45] by con-
trolling the non-zero normal gradients in a global way. Given 
a mesh normal field, equation (1) can be discretely formulated 
as

min
N′′

∑
n′i ∈N′


(n′′i − n′i)

2 +
∑

fj∈Nf (i)

∣∣n′′i − n′′
j

∣∣
0


 ,

�

(5)

Figure 5.  Shape reconstruction after each step of normal filtering. From left to right: An input merlion model, shape reconstruction results 
by Wang et al’s improved Poisson reconstruction algorithm [11] with normals after the detail suppress stage, the L0 gradient smoothing 
stage, and the joint normal filtering stage.

Figure 6.  Detail-free smoothing results and their Laplacian coating. From the left column to the right: The input two models, the 
smoothing results, and the Laplacian coating results with increasing weights (−0.8, −0.2, and 0.4, respectively).
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Figure 7.  The bas-relief modeling method has three vital parameters. The first row shows that details can be increasingly enhanced by 
enlarging µ when the other two parameters are fixed, i.e. β = 0.3, and δ = 10. The second row means that enlarging β can obtain flatter 
bas-reliefs (µ = 0.15, δ = 12). The third row illustrates that enlarging δ produces bas-reliefs with higher heights (µ = 0.01,β = 1).

Figure 8.  Surface decomposition on Bell. From top-left to bottom right: The input model, and the smoothing results by APSS [47], GNF 
[48], L0 [32], RNGF [11], SDF [49], and ours, respectively, and the ground-truth model. Some approaches could decompose the surface 
details clearly while the others may lead to shape shrinkage. Our smoothing result is more similar to the ground-truth model.
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where the data term (n′′i − n′
i)

2 is still to minimize the L2 dis-
tance between N′′ and N′, while the smooth term is the L0 
norm of vector (n′′i − n′′

j ) which means the number of non-
zero values.

Due to the smooth term in the energy functional above 
being non-convex and non-differentiable, traditional optim
ization techniques, such as the gradient descent algorithm, 
are no longer competent. Xu et al [33] give an L0  −  L2 itera-
tion algorithm by introducing a set of auxiliary variables 
O = (o1, o2, · · · , on). Thus, equation (5) can be reformulated 
as

min
N′′,O

∑
n′i ∈N′


(n′′i − n′

i)
2 + β

∑
fj∈Nf (i)

(n′′i − n′′
j − oi)

2 + φ|oi|0


 ,

� (6)
where β is used to control the similarity between the auxiliary 
variable oi and (n′′i − n′′

j ). Equation (6) can be solved by two 
steps. First, O is optimized with N′ fixed

min
O

∑
n′i ∈N′


 ∑

fj∈Nf (i)

(n′′i − n′′
j − oi)

2 +
φ

β
|oi|0


 ,� (7)

which is spatially decomposed to a set of single variable func-
tion minimization. After this step, O has a high degree of spar-
sity. Thus, we can next attempt to force N′ to match O, i.e. N′ 
is optimized with O fixed

min
N′′

∑
n′i ∈N′


(n′′i − n′

i)
2 + β

∑
fj∈Nf (i)

λ2(n′′i − n′′
j )

2


 ,� (8)

which can be solved in a global way by the gradient descent 
method. After the second step, L0 minimization (equation (7)) 
and L2 minimization (equation (8)) are performed alternately 
until equation (6) is stable.

Actually, we adopt an improved version proposed in [45] 
to optimize equation (6), where the energy functional can be 
optimized in a fused coordinate descent framework, where 
only one variable is optimized at a time, and the neighboring 
variables are fused together once their values are equal. More 
details can be found in [45]. In this way, non-zero gradients 
will be finally aggregated near sharp features, while zero gra-
dients mainly stay at the region with small scale variations in 
normal field. Thus, it is feasible to distinguish structure con-
stituents now due to the amplitudes of details having dropped 
below these of features in section 4.1.

In summary, L0 smoothing is applied to the detail-sup-
pressed normal field obtained in the previous stage to give a 
guidance normal field for the next shape recovery stage.

4.3.  Joint weighted least squares

By performing WLS again on the surface but with the original 
normal field N as a shape constraint and the normal field N′′ 

Figure 9.  Bas-relief modeling from the model of a complicated vascular tree (µ = 0.01, β = 0.8, and δ = 1), where detecting depth 
discontinuity is avoided. The left is input, the right is the created bas-relief, and the middle is their magnified fragments.

Figure 10.  Bas-relief modeling of three sculptures. From the left column to the right: For each group, the left is the normal map, and the 
right is the bas-relief modeling result.

Meas. Sci. Technol. 31 (2020) 045401
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of L0 gradient minimization as a smoothness constraint, called 
joint WLS, we can finally obtain a base normal field N′′′, fol-
lowed by a subtraction operation to acquire a detail normal field.

In detail, the guidance normal field produced in section 4.2 
helps to reduce the gap between the output base layer and the 
original appearance. In this stage, we minimize the energy 
functional

min
N′′′

∑
ni∈N

[
(n′′′i − ni)

2 + λ1( f (n′′′i )2)
]

,� (9)

where the formulation of f (n′′′i ) is a little different with the 
original one in equation (3), that is,

f (n′′′i ) = si

∑
fj∈Nf (i)

wij(n′′′j − n′′′
i ),

� (10)

where si in equation  (10) depends on the guidance 
normal field rather than the initial normal field. In detail, 
si = (||L(n′′

i )||α + ε)−1.
To illustrate the power of the three-step normal filter, we 

employ the vertex updating scheme, i.e. the improved Poisson 
reconstruction algorithm in [11] to reconstruct a filtered sur-
face by using the new normal in each stage, i.e. N′ from the 
detail suppress stage, N′′ from the L0 gradient smoothing, 
and N′′′ from the joint normal filtering, as shown in figure 5. 
Furthermore, the geometry details are well removed with their 

Figure 11.  Bas-relief modeling from the models of Buddha, Angel, Armadillo, and Felion, respectively. From the left column to the right: 
The four inputs, and the results of Weyrich et al, Sun et al, Ji et al, and our improved scheme based on [44], respectively.
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overall shape is preserved, and Laplacian coating can be per-
formed on the smoothed results, as shown in figure 6.

5.  Results and analysis

We have implemented the JWLS algorithm and the related 
geometric processing applications by using C++ and 
OpenGL, where TAUCS is adopted as the linear solver. The 
experiments have been tested on a PC with a 4.00 GHz Intel 
core i7 and 32 GB of RAM.
Parameters. Surface normal decomposition, i.e. JWLS, 
has three parameters, i.e. λ1, λ2 and α, which are fixed as 
λ1 = 1.5, λ2 = 0.3 and α = 1.2 for 3D models, and λ1 = 2, 
λ2 = 0.45 and α = 1.5 for depth images.

Meanwhile, bas-relief modeling is one of our impor-
tant applications of surface normal decomposition. Existing 
normal-based bas-relief modeling techniques can benefit from 
our decomposed normals by JWLS. We adopt the framework 
of discrete geometry processing (DGP) proposed in [44] for 
detail-preserving bas-relief modeling. The DGP framework 
consists of two steps, i.e. local projection and global blending. 
In [44], after the step of local projection, bas-relief modeling 
is achieved by simultaneously optimizing detail preservation 
(µ), targeted height (δ) and stylization (β) in a global and 
sparse equation system, called global blending. We here simply 
explain how to adjust these parameters: A larger µ can prevent 
to lose a surface’s details during compression. A smaller β 
constructs the roundness style of a surface which keeps the 
3D shape heavily, whereas a larger β produces a flatness 
style. The bas-relief’s height is determined by δ. Extensive 
experiments have shown that µ ∈ [0.01, 1], β ∈ [0.01, 1] and 
δ ∈ [1, 20] are good enough to generate desirable bas-relief 
modeling results. We have demonstrated the modeling results 
by enlarging one of the parameters in figure 7.

5.1.  Surface decomposition

We consider that a 3D surface consists of three geometric prop-
erties, i.e. geometric detail, structural pattern, and smooth-
varying shape, and propose the joint weighted least squares to 
filter out the geometric details while preserving the structural 
pattern. We have found that our JWLS algorithm (we use the 
improved Poisson reconstruction algorithm in [11] for vertex 
update) can lead to a promising result which is most similar to 
the ground-truth model as shown in figure 8 (the parameters 
of each method are fine tuned to produce the visually best 
result). Furthermore, we have evaluated the smoothing results 
numerically in table 2. The numerical results are consistent 
to the visual results, which illustrates the effectiveness of our 
approach.

5.2.  Normal-based reconstruction

The bas-relief modeling method inherits the advantages of 
normal-based modeling techniques. For example, it is intrinsi-
cally free of depth discontinuity [38], because only the decom-
posed normal fields are employed. Thus, explicitly detecting 
these discontinuity regions and removing unused depth inter-
vals at these regions can avoid. Figure 9 illustrates that depth 
discontinuities of the intricate vascular branches are excluded 
naturally without explicit detection of the overlapped regions.

5.3.  Detail compensation

As known, the surface details are easily lost during a high 
compression. We can utilize two normal maps to compensate 
for the loss of details, thanks to the decomposed normal field 
by JWLS. The parameter µ can prevent to lose surface details. 
Figure  10 illustrates three sculptures with abundant details 
and the corresponding modeling results with high compres-
sion, where the loss of details are effectively prevented.

We have compared our improved bas-relief modeling 
approach with the state-of-the-art methods of Weyrich et al 
[36], Sun et al [37], Ji et al [38], and Schuller et al [39]. The 
visually best results are obtained for each method by fine 
adjusting their parameters under a same height compres-
sion. Figure 11 shows the bas-relief modeling results of four 
models with abundant details (parameter settings are shown in 
table 1), and figure 12 shows these results from another view 
point. Albeit a large height compression, details are still better 
preserved by our improved approach.

What is more, a slight edge for our approach is that it 
could still maintain the fine details when the compression is 
extremely large, see the highlighted parts in figure 13. From 
figure 14, our approach preserves each model’s details better 
than Ji et al [38] when enforced on the 3D model set.

We have also done experiments on depth images. Depth 
images are a kind of height fields, which also need to be com-
pressed to produce bas-reliefs. We compared with the well-
known commercial software ArtCAM. We transform the 
height fields into normal fields as the input for our method 

Table 1.  Parameter settings for each method used in figure 11.

Weyrich et al Felion Armadillo Budda Angel

α 6 8 7 5
vsil 0.5 0.35 0.65 0.3
Sun et al Felion Armadillo Budda Angel
B 10 000 10 000 10 000 10 000
m0 32 32 32 32
n 3 3 3 4
α 5 5 5 5
l 9 16 16 16
Ji et al Felion Armadillo Budda Angel
µ 0.04 0.03 0.05 0.03
θ 10 10 10 10
Ours Felion Armadillo Budda Angel
λ1 1.5 1.5 1.5 1.5

λ2 0.3 0.3 0.3 0.3
α 1.2 1.2 1.2 1.2
µ 0.12 0.15 0.08 0.1
β 0.03 0.05 0.06 0.03

δ 10 10 10 10

Meas. Sci. Technol. 31 (2020) 045401



H Xie et al

10

(refer to [38] for the transformation details). Figure 15 illus-
trates three bas-reliefs of the Chinese style. From the corre
sponding magnified fragments we know, our improved 
approach shows better at preserving fine details.

5.4.  CNC engraving and 3D printing

We have produced physical bas-relief sculptures by a CNC 
engraving machine and a 3D printing device. We can see that 

in figure 16, all details are well preserved which make these 
sculptures more vivid.

5.5.  Computational time

The time performance of our approach has been recorded in 
table 3 for three typical models. We notice that our method 
is time-consuming: (1) Three sparse and linear global equa-
tions  should be solved in normal decomposition. (2) Also, 

Figure 12.  Another view point of the generated bas-reliefs in figure 11.

Figure 13.  Bas-relief modeling on three models, i.e. Elephant, Armadillo, and Buddha. From the left column to the right: The inputs, the 
results of Ji et al (µ = 0.3, θ = 10), Schuller et al, and ours (µ = 0.3,β = 0.2, δ = 10), respectively.

Figure 14.  Bas-relief modeling on the model set. From the left column to the right: A scene of multiple overlapped models, results of Ji 
et al, and ours.
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Figure 15.  Bas-relief modeling on the scenes of Chinese style. From the left column to the right: the depth images, the results of ArtCAM 
and our results respectively, and the corresponding magnified fragments for the two methods respectively.

Figure 16.  Carving and 3D printing of our modeled bas-reliefs.

Table 2.  Numerical analysis of the smoothing results. We measure the vertex-to-vertex distance errors from the smoothing result to the 
ground-truth model. σ is the standard deviation of distance errors, Dmax  is the maximal distance error and Dmean is the mean distance error 
(note that the smallest errors are highlighted in bold).

Model Error APSS GNF �0 RNGF SDF Ours

σ 0.6350 0.6238 0.6100 0.6367 0.6880 0.6079
Bell Dmax 2.4240 2.6851 2.4214 2.6661 3.2592 2.6638

Dmean 0.7550 0.7880 0.7958 0.7309 0.7437 0.7263

Table 3.  Timing. For normal decomposition (St1), the numbers denote a model’s numbers of the vertices and the faces; for bas-relief 
modeling (St2), the image resolution is fixed to 1000 × 900 for all models as suggested by Wei et al [44].

Models St1 St2 Total

Armadillo 25 k, 50 k 1.2 s 66.7 s 67.9 s
Buddha 757 k, 1514 k 100 s 70.5 s 170.5 s
Elephant 171 k, 342 k 16.3 s 67 s 83.3 s

Meas. Sci. Technol. 31 (2020) 045401
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a sparse and linear global equation  is solved in bas-relief 
modeling.

Limitations. The current version of our method does not sup-
port the composite modeling, i.e. high relief and bas-relief 
modeling for different parts of an input model.

6.  Conclusion

Mesh geometry processing is a fundamental topic in computer 
graphics, since 3D optical and laser measurement devices are 
now widely used to capture the 3D surface. We assume that 
a 3D surface contains three geometric properties, i.e. geo-
metric detail, structural pattern, and smooth-varying shape, 
and consider normals as surface signals defined over both the 
input mesh and the underlying surface of this mesh. Based on 
such a geometry assumption, we have proposed a novel joint 
weighted least squares (JWLS) model for 3D surface decom-
position. We have introduced three important mesh geometry 
applications that benefit from our JWLS. For example, dig-
ital bas-relief modeling is a hot topic with the increasingly 
popular 3D scanning and printing techniques. The modeled 
bas-reliefs should be able to characterize the detailed appear-
ance and intrinsic properties of the input surface. However, 
most existing bas-relief modeling methods inevitably lose 
fine details more easily than salient features because of the 
large compression of 3D models. Fortunately, our JWLS can 
decompose the original normal field into the detail layer and 
the base layer, where the detail layer can be used to avoid the 
loss of detail when performing bas-relief modeling. In future, 
we will attempt to speed up our approach for real-time appli-
cations by modern GPUs.
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