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Abstract
According to the new generation geometrical product specification, it is necessary to 
provide measurement uncertainty together with measurement results in order to determine 
the reliability of results. The traditional methods used for the uncertainty evaluation of 
straightness are laborious and time-consuming owing to a large quantity of repeated 
measurements or a complicated computational process. Based on the error ellipse theory and 
the Monte Carlo method, a novel method for uncertainty evaluation is proposed. Through the 
error ellipse theory, in the measuring space of coordinate measuring machines, the positional 
uncertainty of sampling points can be more accurately considered to be represented by an 
ellipse. By integrating the Monte Carlo method, only with limited sets of real measured data 
in small experimental trials, the uncertainty propagation from a single sampling point to the 
whole straight line can be demonstrated clearly in the simulation without requiring large 
amounts of time and labour. The detailed procedures of uncertainty evaluation are given. The 
straightness uncertainty can then be obtained by statistical analysis of the simulation results. 
Real straightness measurement experiments were carried out and compared with the results 
from the proposed method. The difference was no more than 5%, which verified the validity of 
the method.

Keywords:measurement uncertainty, straightness, error ellipse theory, Monte Carlo method, 
coordinate measuring machines
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1.  Introduction

Straightness is a crucial part of form and position errors and 
an essential indicator in geometrical feature measurement 
of precision shafts and guide rails. The poor performance of 
mechanical parts is often the result of excessive straightness. 
According to the new generation geometrical product specifi-
cation (GPS) [1], the uncertainty of the result must be given 
to present the reliability of results. Thus, evaluation of the 
straightness uncertainty is a significant issue.

For simple direct measurement like length, the repeated 
measurement experiment is one of the most widely used 
methods in the field, and the uncertainty can be evaluated by 
the standard deviation of observations according to the Guide 
to the Expression of Uncertainty in Measurement (GUM) 
[2]. However, it is quite time-consuming owing to the large 
number of repetitive laborious tasks. For indirect measure-
ment like volume, GUM gives the expression to determine 
the combined uncertainty based on the principle of uncer-
tainty propagation. However, it is hard to implement this in 
some cases due to some additional limitations for GUM. For 
example, it must be possible to express the output quantity by 
an analytic function of the input quantities; model lineariza-
tion could not always satisfy the requirement for high order 
terms [3], the process of determining the partial derivatives 
to solve the analytic expression is quite complex, such as the 
partial derivation of the least square fitted curve.

Hence, many researchers have been dedicated to the explora-
tion of more effective methods of uncertainty evaluation. As the 
uncertainty is influenced by various factors, including temper
ature, measurement method, data processing algorithm, sam-
pling strategy, etc, some researchers started with the factors. Cao 
et al [4] described the composition of the uncertainty caused by 
the measuring process and analysed the uncertainty caused by 
sample size insufficiency and measuring process. Cui et al [5] 
also pointed out that, with more sample points, the uncertainties 
from different methods are a little smaller, and it is necessary to 
focus on the measurement strategies. Okuyama [6] considered 
cross-axis translational motion and the sensor’s random error, 
and made the uncertainty of the estimated straightness profile 
least. Feng et al [7, 8] emphasized the impact on measurement 
accuracy of debris attached to the coordinate measuring machine 
(CMM) stylus tip and proposed methods to reduce such meas-
urement error. Others created novel methods to evaluate the 
uncertainty. Hüser et al [9] proposed a procedure to determine 
the uncertainty from a single profile using a statistical method. 
Farooqui et al [10] described a method for uncertainty analysis 
using bootstrap techniques. Calvo et al [11] presented a novel 
method based on vectorial calculus of point coordinates to 
evaluate straightness uncertainty using CMM. Wiora et al [12] 
devised a weighted combined method and made a comparison 
with CMM to prove the improvement in the additive measured 
quantity. Jakubiec et  al [13] derived an analytical method for 
evaluating the measurement uncertainty of CMM. Kruth et  al 
[14] investigated the influence of feature form deviations and 
proposed a method that determines uncertainties for feature 

measurements on CMMs. These achievements contributed a lot 
to the uncertainty issue. However, considering all the research, 
the actual distribution characteristics of the sampling points by 
CMMs has not been investigated thoroughly, and the uncertainty 
propagation from a single sampling point to the whole feature has 
not been demonstrated clearly.

However, in recent years there has been increasing interest 
in using the Monte Carlo method (MCM) to simulate the 
measurement of different features to obtain the uncertainty 
[15–18]. Through using MCM, the complicated calculation of 
sensitivity coefficients in the expression of combined uncer-
tainty can be skipped over. Yet, the traditional MCM math-
ematically assumes the measurement points in a plane lie 
within a rectangular area, which contradicts the actual point 
distribution of CMMs, resulting in an increase in obtained 
uncertainty.

Hence, a modified method is proposed on the basis of the 
error ellipse theory integrated with the Monte Carlo method 
(EE-MCM) to evaluate the straightness uncertainty in the 
measuring space of CMMs. Based on the error ellipse theory, 
the measurement process by CMMs is considered to obey the 
normal distribution. The straightness to be discussed in this 
paper belongs to planar straightness; a 2D error ellipse is used 
to represent the uncertainty of sampling points on the CMM. 
Then the error ellipse is used as the simulation condition in 
MCM. Finally, an experiment in straightness measurement 
was carried out to verify this method.

The organization of the paper is as follows. In section 2, 
the error ellipse theory of sampling points on CMMs is intro-
duced; a method based on EE-MCM is proposed to evaluate 
the uncertainty of straightness in section  3; an experiment 
on straightness measurement is conducted to demonstrate 
the validity of the proposed method in section 4; the uncer-
tainty results by means of the formula method given by GUM, 
MCM, EE-MCM, and the repeated experiment method, are 
compared and analysed in section  5; finally, concluding 
remarks and potential applications of the proposed method 
are discussed in section 6.

2.  Error ellipse theory

In modern industrial production, it is common to evaluate 
uncertainty using CMMs to measure the objects repeatedly 
and statistical analysis to acquire an uncertainty interval. 
The sampling point is the most fundamental component of 
the coordinate measuring space. When it comes to actually 
measuring a single point may times, generally, the repeated 
measurement results are different owing to the random errors. 
Those sampling points are visibly contained in a closed geo-
metrical zone. When the measurement process satisfies the 
normal distribution, theoretically, the closed geometrical zone 
is supposed to be an interval in 1D space, a rectangle in 2D 
space, or a rectangular solid in 3D space, as illustrated in 
figure 1. The measurand is supposed to be located in the centre 
of the zone.
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However, it was found in the actual measurement by CMMs 
that the closed geometrical zone in 2D space is not a rectangle 
but more like an ellipse, which was used by Sladek to deter-
mine the area of measurement uncertainty [19]. The difference 
could reasonably be attributed to the coupling mechanism of 
the x- and y -axes which are installed in a spatially perpend
icular configuration to have a mechanical coupling influence 
on each other. As a result, the geometrical zone is no longer 
a rectangle, which is often assumed in the traditional MCM 
[20, 21]. In this case, an ellipse is more suitable to describe 
the point’s error distribution, as shown in figure  2. In this 
paper, ‘error’ in the CMM measurement results refers to the 
difference between the measurement result and true value as 
defined in GUM [2].

In 2D space, the Cartesian coordinates can be used to 
denote the position of a point. Inevitably, there are differences 
between the sampled coordinate (xs, ys) and the real coordi-
nate (x, y) owing to random errors during the measurement 
process. The uncertainties of sampling points on CMMs can 
be represented by an error ellipse whose size is determined 
by the point uncertainty ux  in the x-direction and uy in the 
y -direction. In this case, x and y  can be replaced by the mean 

values µx  and µy  of the many samples. Hence, the equation of 
the ellipse can be obtained as

PTM−1P = s� (1)

Figure 1.  Shapes of the closed geometrical zone in different dimensions, in theory.

Figure 2.  Comparison of the closed geometrical zone in theory and the actual measurement. (a) In theory, (b) in the actual measurement.

Figure 3.  Error ellipse with 95%, 99% and 90% confidence level.
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where P = [xs − µx, ys − µy]
T , M =

ï
ux

2 uxy

uxy uy
2

ò
 is the cova-

riance matrix containing the uncertainty information and uxy  
denotes the covariance between two directions. s is the coef-
ficient which determines the size of the ellipse [22]. Further, s 
corresponds to the confidence level of a sampling point falling 
in the error ellipse. Figure 3 indicates the error ellipses with 
90%, 95% and 99% confidence level, respectively.

In the case of CMM, ux  and uy are two independent vari-
ables. Thus, equation (1) can be simplified as

(xs − µx)
2

ux
2 +

(ys − µy)
2

uy
2 = s.� (2)

Equation (2) shows that s is the quadratic sum of two inde-
pendent variables. Therefore, s can be considered to obey the 
chi-squared distribution with two degrees of freedom. Then 
with a confidence level, s can be obtained by looking up the 
chi-squared distribution critical value table.

3.  Error ellipse theory integrated with Monte Carlo 
method

GUM is the internationally accepted master document for 
uncertainty evaluation, and it has already been included in the 
International Organization for Standardization/International 
Electrotechnical Commission (ISO/IEC) Guide 98. It provides 
a combined expression, based on the uncertainty propagation 
principle, to determine the uncertainty of the measured object 
which cannot be measured directly through experiments. The 
precondition is that the relation between the input quantities 
and output quantities can be expressed as a mathematical ana-
lytic function.

The evaluation methods [23] for straightness consist of the 
minimum zone, two endpoints line and least squares mean 
line methods. Based on the relatively efficient and widely-
used least squares mean line method, the straightness error δ 
is defined as the difference between the maximum and min-
imum distances from the point on the line profile to the datum 
line. Therefore, for a measured straight line with N sampling 
points, whose datum line function is y = kx + b, the expres-
sion of straightness error δ can be obtained as:

δ =
ymax − ymin − k(xmax − xmin)√

1 + k2
� (3)

where kis the slope of the datum line. (xmax, ymax)is the far-
thest point and (xmin, ymin)is the nearest point.

According to the above definition of straightness error, the 
literature [4] gives the analytical expression of the straightness 
uncertainty uδ as the combined uncertainty based on GUM.

uδ2 =

Å
∂δ

∂k
uk

ã2

+

Å
∂δ

∂xmax
uxmax

ã2

+

Å
∂δ

∂xmin
uxmin

ã2

+

Å
∂δ

∂ymax
uymax

ã2

+

Å
∂δ
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� (4)

where k =

∑N
i=1

xi
∑N

i=1
yi−N

∑N
i=1
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xi)
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Ä
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ä2], 

∂δ
∂k = −xmax+xmin√

1+k2
− k[ymax−ymin−k(xmax−xmin)]

(1+k2)3/2 , ∂δ
∂xmax

= −k√
1+k2

, 

∂δ
∂xmin

= k√
1+k2

, ∂δ
∂ymax

= 1√
1+k2

, ∂δ
∂ymin

= −1√
1+k2

,

3.1.  Uncertainty evaluation based on EE-MCM

Although the formula for the combined uncertainty yields a 
clear calculation of the straightness uncertainty, it requires a 
complex calculation process between the direct measurands 
and the final straightness uncertainty. In this case, the MCM 
provides an alternative choice, which can be implemented to 
estimate the uncertainty through many random virtual sam-
pling experiments on a computer without too much computa-
tion. Additionally, it is not required that the measured objects 
be expressed by an analytic function. Nevertheless, with the 
application of only MCM, the coupling mechanism of the x- 
and y -axes structure has not been fully taken into consider-
ation. Therefore, when the error ellipse theory is integrated 
with the Monte Carlo method, EE-MCM can solve the uncer-
tainty issue more precisely.

Figure 4.  EE-MCM procedure.
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First, the initial condition is the uncertainty of the sam-
pling points in the measuring space, which can be acquired 
in advance by the technical manual or by statistical analysis 
through a simple preliminary experiment. One group of original 
measuring points in the formal experiment can be chosen as 
the initial basic points in the following simulation. Next, based 
on the error ellipse theory, in the actual measurement by the 
CMM, the error distribution of sampling points is considered 
as the normal distribution. An ellipse can be used to represent 
the positional uncertainty of sampling points in the measuring 
space. Then, by integrating the MCM, the simulation of geo-
metrical features measurement was performed. Finally, many 
groups of simulation results are obtained, and the uncertainty 
can be determined through statistical analysis of the simulation 
results. The EE-MCM procedure is outlined in figure 4.

3.2.  Simulation case of straightness uncertainty based on 
EE-MCM

From the perspective of the specific straightness measure-
ment, for example, figure 5 shows the simulation process of 

straightness measurement with ten sampling points and the 
simulation was performed T times.

Located at the centre of each cluster of blue dots are the 
ten original sampling points from the actual measurement of 
the straightness profile. They are chosen as a group of basic 
points in the simulation. According to the uncertainty ux  and 
uy, which was acquired in advance by the technical manual 
or preliminary experiment, the error ellipses were generated 
around each basic point. Next, based on MCM, during each 
time of simulation, a point was selected randomly from each 
ellipse according to the normal distribution. Then the ten 
selected points can be obtained as the measuring points to 

Figure 5.  Straightness measurement simulation based on EE-MCM.

Figure 6.  Roughness measurement experiment using the Mitutoyo 
SJ-210.

Figure 7.  Straightness measurement experiment by the CMM.

Figure 8.  Straightness profile measurement with 14 sampling 
points in the x-direction.

Meas. Sci. Technol. 31 (2020) 035008
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form a straightness profile. In this way, the simulation pro-
cess was repeated T times on the computer. Therefore, T simu-
lated profiles were formed, and T straightness results could be 
correspondingly calculated. Consequently, the uncertainty of 
straightness could be determined by analysing the distribu-
tion of the straightness results. In figure  5, the ten clusters 
of blue dots represent ten different sampled positions on the 
straightness profile. The number of each cluster of blue dots is 
T, which represents the number of simulation times.

4.  Experiment

4.1.  Preliminary experiment

A preliminary experiment was conducted on the CMM to 
obtain the uncertainty of the measurement system to provide 
the initial condition for the simulation based on EE-MCM and 
the formula of the combined uncertainty given by GUM.

A polymethyl methacrylate bar with a high-quality surface 
was chosen for the experiment, so that the influence of surface 

roughness could be neglected. The roughness of the bar was 
measured as Ra  =  0.010 µm by the Mitutoyo SJ-210, as is 
shown in figure 6.

The CMM was the VGS Tech V3 696 with the Renishaw 
MH20i probe system. The ambient temperature was 19.7 °C,  
and humidity was 41%. A single point was measured 50 
times repeatedly in the x- and y-directions, respectively. 

Figure 9.  Straightness profile measurement with 14 sampling 
points in the y -direction.

Table 1.  Straightness error in the x-direction with 14 sampling 
points.

Number
Straightness error in 
the x-direction (mm) Number

Straightness error in 
the x-direction (mm)

1 0.071 36 5 0.072 42
2 0.071 27 6 0.070 71
3 0.072 91 7 0.07088
4 0.071 78 8 0.074 93

Table 2.  Straightness error in the y -direction with 14 sampling 
points.

Number
Straightness error in 
the y -direction (mm) Number

Straightness error in 
the y -direction (mm)

1 0.0832 5 0.0872
2 0.0855 6 0.0857
3 0.0888 7 0.0886
4 0.0897 8 0.0886

Figure 10.  Simulation results in the x-direction based on EE-MCM.

Figure 11.  Simulation results in the y -direction based on EE-MCM.

Figure 12.  Error interval in the 1D space obtained through EE-
MCM.

Meas. Sci. Technol. 31 (2020) 035008
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Based on GUM, the standard deviations of the corresponding 
positional coordinates could be considered as the standard 
uncertainties of the CMM in the x- and y -directions, which 
were ux = 1.165µm and uy = 1.677µm (original data are 
listed in appendix A). The results can also be applicable 
to the uncertainty evaluation of other geometrical features 
besides straightness. The uncertainty in the z-direction was 
not required since this paper focuses on the 2D features 
within the xy-plane.

Based on the formula for the combined uncertainty, 
uxmax = uxmin = ux = 1.165µm  and uymax = uymin =

uy = 1.677µm were substituted into equation  (4). Then the 
straightness uncertainties were calculated as 1.7340 µm in the 
x-direction and 2.4962 µm in the y -direction.

4.2.  Straightness measurement experiment

After the preliminary experiment, measurement experiments 
on straightness were conducted. In the measurement, the 
CMM was configured to set in auto mode. The polymethyl 
methacrylate bar, whose size was 600  ×  40  ×  14 mm, is hori-
zontally allocated on the worktable of CMM. The edge of the 
bar with the red mark was evenly sampled at 14 different posi-
tions by the CMM probe which moved along a straight line, 
as shown in figure 7.

The measurements were repeated eight times in the x- 
and y -directions, respectively. Therefore, 16 groups of sam-
pling point data were acquired, and detailed data are listed 
in appendices B and C. The straightness results can be read 
directly from the software of the CMM. Based on the GUM, 
the standard uncertainty of straightness can be evaluated by 
the standard deviation.

The line profiles along the x-axis and y -axis are shown sep-
arately in figures 8 and 9, respectively. The straightness results 
in the x- and y -directions, which correspond to the profiles, are 
listed in tables 1 and 2, respectively.

From table 1, similarly, the standard deviation of the straight-
ness in the x-direction is calculated as σδX = 1.3893µm.

From table 2, the standard deviation of the straightness in 
the y -direction is calculated as σδY = 2.1993µm.

Figures 8 and 9 show that the line profiles in the same 
direction are highly overlapped, illustrating that the straight-
ness was measured precisely.

5.  Comparison and discussion

According to the EE-MCM procedure mentioned in sec-
tion 3.2, one group of original sampling points in the actual 
experiment was chosen as the basic points for the EE-MCM 
simulation. Based on the error ellipse theory, with 99% confi-
dence level, the error ellipse of each basic point can be deter-
mined by the standard uncertainty ux  and uy in the preliminary 
experiment. The simulation was performed 2000 times which 
satisfies the stabilization criterion [24] that twice the stan-
dard deviation (0.0023 mm) is less than the numerical toler-
ance (0.005 mm). Then 2000 straightness results in the x- and 
y -directions were obtained. The distributions of the results are 
exhibited as figures 10 and 11.

To verify that the straightness results obey the normal dis-
tribution, Jarque–Bera tests [25] were done with 0.05 signifi-
cance level on the data of figures 10 and 11. The test results 
are both zero, which indicates that the sample data obey the 
normal distribution. Therefore, the error ellipse theory can 
also be applied to evaluate the uncertainty of the straightness 
results. While the sampling point with x- and y-coordinates is 
in the 2D space, the straightness result can be considered to 
be a point with a single coordinate in the 1D space. In other 
words, its uncertainty can also be presented by an error ellipse 
in the 1D space based on the error ellipse theory. As depicted 
in figure 12, through EE-MCM, the straightness results were 

Figure 13.  Comparison of the mean values obtained using two 
different methods. Figure 14.  Comparison of the uncertainties using four different 

methods.
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obtained as an interval obeying normal distribution, which is 
mentioned in section 2.

Instead of calculating the standard deviation directly as the 
standard uncertainty in the traditional MCM, an enveloping 
ellipse, which could be shown more distinctly in 2D or 3D 
cases like the centre of a circle, is fitted for the straightness 
results in EE-MCM. The 1D enveloping ellipse is just the error 
ellipse of the straightness uncertainty. Thus, the uncertainty in 
the x-direction can be obtained as 1.3716 µm. Likewise, the 
uncertainty in the y -direction can be obtained as 2.0974 µm.

The mean values obtained by two different methods, the 
experiment and EE-MCM, were compared. The results are 
shown in figure 13.

From figure 13, it can be concluded that the mean values in 
the two different methods are similar to each other. Therefore, 
the method based on EE-MCM can also be applied to estimate 
the straightness measurement result.

More importantly, the uncertainties obtained by the experi-
ment method, EE-MCM, MCM, and formula methods were 
compared; the uncertainties in the x- and y -directions are 
shown in figure 14.

From figure  14, the results of the formula method 
are approximately 19% in the x-direction and 16% in the 
y -direction greater than the results of EE-MCM. The reason 
for this is that the computed results based on the formula 
are under the condition of maximum error propagation. 
Additionally, it can be easily seen that the results of both 
the experiment and EE-MCM agree well with each other, 
which proves the validity of EE-MCM. Specifically, the 
results of EE-MCM are approximately 1% in the x-direc-
tion and 5% in the y -direction smaller than the experimental 
results, which can reasonably be attributed to the unaccount-
able influencing factors, such as the dynamic measuring 
errors during the actual measurement process. Besides, the 
results of EE-MCM are more accurate than the results of 
MCM since the distribution of sampling points through the 
error ellipse theory is more consistent with the actual meas-
urement. Further, the number of samples in the simulation 
based on EE-MCM is large enough so that the simulation 
value is closer to the true value.

In EE-MCM, the initial condition was the uncertainty of 
the sampling points in the coordinate measurement system, 
which was acquired in the preliminary experiment. Besides, 
it is also the essential condition in the uncertainty evaluation 
using the formula method. Moreover, it is the fundamental 
parameter that can reflect the measuring point accuracy of the 
whole workspace of the CMM. Therefore, it can also be used 
in the measurement of other geometrical features by CMM.

Unlike the method based on repeated experiments, 
EE-MCM requires no repeated labour. Only limited sets 
of measured data are needed, and the rest of the simula-
tion procedure can be finished by the computer quickly. 

Furthermore, EE-MCM is more precise than the formula 
method based on GUM, and does not require complicated 
formula derivation.

6.  Conclusion

A method based on EE-MCM was proposed to evaluate the 
uncertainties in the measurement of geometric features, like 
straightness, using CMMs efficiently. The integration of the 
error ellipse theory and the MCM can achieve more precise 
results than those obtained using only one method.

Normally, in the measuring space of the coordinate measure-
ment system, the uncertainty of sampling points can be acquired 
beforehand through the technical manual or a simple prelimi-
nary experiment. When evaluating other geometrical features 
besides straightness, it is not necessary to calculate again the 
point uncertainty as a reflection on the measurement charac-
teristics of the CMM. Based on the error ellipse theory, it can 
be represented by an ellipse, which is taken as the initial condi-
tion in EE-MCM. The uncertainty propagation from a single 
sampling point to the whole straight line can be simulated by 
integrating the MCM. Ultimately, the uncertainty of straight-
ness can be obtained only with a limited set of measured data.

The comparison of the results from different methods dem-
onstrates that EE-MCM is valid and practical, with the fol-
lowing three advantages.

	(1)	�EE-MCM provides a more accurate estimation of 
measurement uncertainty associated with straightness 
measurement, compared to the experiment method, 
MCM and formula methods.

	(2)	�EE-MCM eliminates the need for repeated straightness 
measurements which make the experiment method time-
consuming.

	(3)	�EE-MCM requires no formula derivation, a significant 
contributor to the complexity of implementing the 
formula method by GUM.

The method based on EE-MCM was successfully applied to 
the uncertainty evaluation of straightness. In future research, it 
could also be extended to other features or to form and posi-
tion error, such as planes, cylinders, roundness, linear contour, 
and cylindricity. Additionally, it can also significantly reduce 
the CMM measurement time since the uncertainty result can 
be obtained with a single, or very few, CMM measurements. 
Further advantages of EE-MCM will be shown, especially in 
the uncertainty evaluation of 3D space measurement.

Acknowledgment

This work is financially supported by the National Natural 
Science Foundation of China (Grant No. 51527806).

Meas. Sci. Technol. 31 (2020) 035008



M Zhu et al

9

Appendix A.  Measurements repeated 50 times for one certain point to determine the measurement  
uncertainty of the CMM in the x- and y -directions

y -direction x-direction

X Y Z X Y Z

1 3.6287 0.0121 −3.0058 0.006 4.8915 −3.0253
2 3.6237 0.0126 −3.0064 0.006 4.8915 −3.0253
3 3.6227 0.0126 −3.0069 0.006 4.8915 −3.0253
4 3.6232 0.0111 −3.0064 0.0055 4.8915 −3.0253
5 3.6227 0.0141 −3.0064 0.0055 4.8915 −3.0253
6 3.6227 0.0126 −3.0064 0.0065 4.8915 −3.0248
7 3.6222 0.0136 −3.0059 0.007 4.8914 −3.0248
8 3.6227 0.0121 −3.0069 0.006 4.8915 −3.0248
9 3.6222 0.0146 −3.0069 0.006 4.8915 −3.0248
10 3.6227 0.0146 −3.0064 0.0065 4.892 −3.0248
11 3.6222 0.0146 −3.0064 0.006 4.892 −3.0248
12 3.6232 0.0146 −3.0064 0.0075 4.8914 −3.0243
13 3.6217 0.0142 −3.0059 0.007 4.8914 −3.0248
14 3.6222 0.0136 −3.0054 0.0065 4.8915 −3.0248
15 3.6217 0.0137 −3.0059 0.006 4.8915 −3.0243
16 3.6222 0.0136 −3.0059 0.0075 4.8914 −3.0243
17 3.6217 0.0132 −3.0059 0.0065 4.8915 −3.0243
18 3.6222 0.0136 −3.0049 0.0065 4.8915 −3.0243
19 3.6222 0.0141 −3.0054 0.009 4.8914 −3.0253
20 3.6217 0.0142 −3.0059 0.0065 4.8915 −3.0243
21 3.6222 0.0156 −3.0054 0.0065 4.8915 −3.0248
22 3.6222 0.0161 −3.0054 0.007 4.8919 −3.0238
23 3.6222 0.0156 −3.0054 0.0059 4.8915 −3.0238
24 3.6222 0.0156 −3.0054 0.0074 4.8914 −3.0233
25 3.6217 0.0167 −3.0059 0.0075 4.8914 −3.0248
26 3.6222 0.0156 −3.0064 0.007 4.8914 −3.0238
27 3.6212 0.0142 −3.0059 0.007 4.8919 −3.0243
28 3.6222 0.0126 −3.0049 0.0075 4.8914 −3.0248
29 3.6212 0.0112 −3.0054 0.008 4.8914 −3.0248
30 3.6222 0.0151 −3.0059 0.0085 4.8914 −3.0243
31 3.6217 0.0132 −3.0054 0.0075 4.8914 −3.0238
32 3.6212 0.0147 −3.0059 0.0085 4.8914 −3.0248
33 3.6217 0.0142 −3.0069 0.0085 4.8919 −3.0238
34 3.6217 0.0142 −3.0054 0.0085 4.8914 −3.0238
35 3.6217 0.0127 −3.0054 0.008 4.8914 −3.0248
36 3.6217 0.0102 −3.0049 0.0085 4.8914 −3.0243
37 3.6217 0.0097 −3.0044 0.008 4.8919 −3.0248
38 3.6207 0.0097 −3.0044 0.0085 4.8914 −3.0243
39 3.6212 0.0102 −3.0054 0.0085 4.8914 −3.0243
40 3.6212 0.0102 −3.0054 0.0085 4.8914 −3.0243
41 3.6217 0.0122 −3.0054 0.0085 4.8919 −3.0243
42 3.6202 0.0117 −3.0049 0.0085 4.8919 −3.0243
43 3.6207 0.0117 −3.0054 0.0085 4.8914 −3.0243
44 3.6212 0.0127 −3.0054 0.0085 4.8919 −3.0248
45 3.6217 0.0132 −3.0049 0.009 4.8914 −3.0243
46 3.6217 0.0137 −3.0049 0.009 4.8914 −3.0243
47 3.6222 0.0136 −3.0054 0.009 4.8914 −3.0243
48 3.6217 0.0142 −3.0049 0.009 4.8919 −3.0243
49 3.6207 0.0142 −3.0049 0.0095 4.8914 −3.0248
50 3.6212 0.0147 −3.0049 0.0095 4.8914 −3.0243
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Appendix B.  Coordinates of the evenly sampled points and the straightness value in the y -direction 
acquired by CMM

1 2 3 4

X Y X Y X Y X Y

1 −441.1131 −528.597 −51.1423 −528.508 −41.3785 −528.494 −431.174 −528.604
2 −411.103 −528.612 −81.1292 −528.543 −71.3639 −528.535 −401.163 −528.62

3 −381.2888 −528.624 −111.116 −528.569 −101.35 −528.563 −371.152 −528.632

4 −351.2804 −528.634 −141.104 −528.593 −131.339 −528.588 −341.142 −528.642

5 −321.271 −528.6405 −171.092 −528.608 −161.325 −528.606 −311.132 −528.647

6 −291.2611 −528.641 −202.311 −528.619 −191.312 −528.618 −281.12 −528.647

7 −261.2507 −528.637 −232.301 −528.63 −221.302 −528.629 −251.107 −528.64

8 −231.2386 −528.628 −262.292 −528.64 −251.292 −528.639 −221.094 −528.63

9 −201.2261 −528.6175 −292.283 −528.644 −281.28 −528.646 −191.081 −528.619

10 −171.2169 −528.607 −322.271 −528.643 −311.267 −528.646 −161.071 −528.607

11 −141.2075 −528.5925 −352.259 −528.636 −341.254 −528.642 −131.061 −528.588

12 −111.1972 −528.5685 −382.247 −528.626 −371.242 −528.632 −101.05 −528.563

13 −81.1888 −528.5435 −412.237 −528.613 −401.23 −528.619 −71.0404 −528.535

14 −51.1804 −528.5085 −442.23 −528.598 −431.218 −528.604 −41.2445 −528.494

δ 0.0832 0.0855 0.0888 0.0897

5 6 7 8

X Y X Y X Y X Y

1 −56.9214 −528.516 −446.994 −528.596 −56.7983 −528.516 −448.516 −528.595

2 −86.9073 −528.55 −416.981 −528.613 −86.7837 −528.55 −418.504 −528.612

3 −116.893 −528.576 −386.97 −528.626 −116.768 −528.576 −388.49 −528.626

4 −146.879 −528.599 −356.959 −528.638 −146.754 −528.6 −358.477 −528.638

5 −176.869 −528.613 −326.948 −528.646 −176.74 −528.614 −328.492 −528.647

6 −206.858 −528.624 −296.936 −528.648 −206.727 −528.625 −298.49 −528.649

7 −236.846 −528.636 −266.924 −528.644 −236.715 −528.637 −268.477 −528.647

8 −267.145 −528.644 −236.911 −528.636 −266.704 −528.646 −238.463 −528.639

9 −297.135 −528.647 −206.897 −528.624 −296.691 −528.65 −208.449 −528.627

10 −327.121 −528.645 −176.885 −528.613 −326.676 −528.647 −178.436 −528.615

11 −357.105 −528.637 −146.875 −528.599 −356.662 −528.638 −148.426 −528.602

12 −387.091 −528.625 −116.864 −528.576 −386.647 −528.626 −118.413 −528.579
13 −417.078 −528.612 −86.8517 −528.55 −416.634 −528.612 −88.4018 −528.552
14 −447.066 −528.596 −56.8418 −528.517 −446.775 −528.596 −58.3909 −528.519

δ 0.0872 0.0857 0.0886 0.0886
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Appendix C.  Coordinates of the evenly sampled points and the straightness value in the x-direction 
acquired by CMM

1 2 3 4

Y X Y X Y X Y X

1 −420.239 −528.5525 −30.2338 −528.557 −420.237 −528.553 −30.2338 −528.5565

2 −390.238 −528.573 −60.2344 −528.571 −390.237 −528.574 −60.2354 −528.5705

3 −360.239 −528.5905 −90.2351 −528.585 −360.237 −528.592 −90.2361 −528.585

4 −330.24 −528.6005 −120.235 −528.599 −330.238 −528.602 −120.237 −528.5975

5 −300.239 −528.6075 −150.236 −528.61 −300.237 −528.609 −150.237 −528.6095

6 −270.239 −528.616 −180.235 −528.619 −270.237 −528.618 −180.238 −528.619

7 −240.238 −528.6225 −210.236 −528.624 −240.237 −528.624 −210.239 −528.6235

8 −210.237 −528.6235 −240.236 −528.623 −210.236 −528.625 −240.238 −528.6225

9 −180.236 −528.619 −270.238 −528.617 −180.236 −528.62 −270.24 −528.6165

10 −150.236 −528.6095 −300.238 −528.609 −150.236 −528.61 −300.242 −528.608

11 −120.236 −528.5985 −330.239 −528.601 −120.237 −528.599 −330.242 −528.6005

12 −90.2351 −528.5845 −360.239 −528.592 −90.2361 −528.585 −360.242 −528.5905

13 −60.2349 −528.5705 −390.237 −528.574 −60.2354 −528.571 −390.24 −528.5725

14 −30.2348 −528.5565 −420.238 −528.553 −30.2358 −528.557 −420.242 −528.552

δ 0.071 361 665 0.071 269 305 0.072 907 737 0.071 777 058

5 6 7 8

Y X Y X Y X Y X

1 −420.242 −528.553 −30.2393 −528.556 −420.245 −528.553 −30.2463 −528.556

2 −390.242 −528.574 −60.2399 −528.57 −390.245 −528.573 −60.2464 −528.57

3 −360.243 −528.592 −90.24 −528.585 −360.247 −528.585 −90.2465 −528.584

4 −330.243 −528.602 −120.241 −528.599 −330.247 −528.597 −120.248 −528.598

5 −300.243 −528.609 −150.241 −528.61 −300.247 −528.609 −150.247 −528.609

6 −270.242 −528.617 −180.242 −528.619 −270.246 −528.617 −180.248 −528.618

7 −240.242 −528.624 −210.243 −528.624 −240.246 −528.623 −210.249 −528.623

8 −210.241 −528.624 −240.243 −528.622 −210.245 −528.624 −240.25 −528.625

9 −180.24 −528.62 −270.244 −528.616 −180.245 −528.619 −270.252 −528.621

10 −150.239 −528.61 −300.245 −528.607 −150.246 −528.609 −300.252 −528.615

11 −120.24 −528.599 −330.245 −528.597 −120.245 −528.598 −330.253 −528.606

12 −90.239 −528.585 −360.244 −528.585 −90.2455 −528.584 −360.253 −528.595
13 −60.2389 −528.57 −390.244 −528.573 −60.2449 −528.57 −390.252 −528.573
14 −30.2388 −528.556 −420.245 −528.552 −30.2453 −528.556 −420.253 −528.552

δ 0.072 423 201 0.070 710 921 0.0708 769 93 0.074 933 031
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