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1.  Introduction

Various methods of approximation or interpolation of mea-
surement data have been researched in past decades [1]. The 
moving least-squares (MLS) method is one popular method 
for approximating a function from a set of scattered data [2, 
3]. The MLS method for smoothing and approximating scat-
tered data was first introduced by Shepard [4] in the lowest-
order case and generalized to a higher degree by Lancaster 
and Salkauska [5]. The principle of the MLS method is to 
start with the weighted least-squares (WLS) [6] estimation 
in the influence domain at an arbitrary fixed point and then 
move the point over the entire parameter domain, where the 
WLS fitting is calculated and evaluated for each measurement 
point independently. This method can be regarded in a way 
as a combination of WLS and piecewise least squares (PLS) 
[7]. Besides, as a flexible meshless method there is no need to 

construct meshes in the domain as with finite element method 
[8]. MLS has been widely used in many engineering fields. 
For example, it is known that meshless methods have been 
used to solve mathematical and physical problems where tra-
ditional calculation methods are not applicable [9–11], such 
as the element-free Galerkin method [12], the meshless local 
Petrov–Galerkin method [13] and the boundary element-free 
method [14]. In recent years, many scholars have studied and 
enhanced the MLS method [15, 16].

As an approximation method, the MLS method deter-
mines local approximants in the same way as the ordinary 
least-squares method [17], whereas errors always occur to all 
variables. To consider the influence of errors of all variables 
[18], it is more accurate to determine the local approximants 
using the total least-squares (TLS) method [17, 19]. For prac-
tical engineering problems, the measurement data are usu-
ally obtained by uniformly measuring curves and surfaces. 
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However, since the measurement data are not always suffi-
cient to express all the curve and surface information, it is nec-
essary to generate new non-measurement points, which may 
introduce new errors. Besides, outliers are inevitable and will 
result in deviation from the measurement data due to the influ-
ence of the testing environment and the instrument itself [20]. 
The moving total least-squares (MTLS) method suffers from 
the same problem as the MLS method and cannot be properly 
applied to curve and surface fitting when outliers occur in the 
measurement data [21–23].

As mentioned above, the MLS and MTLS methods can be 
greatly influenced by outliers. The fitting results often deviate 
from the real curve and the performance of fitting is strongly 
influenced even if only one outlier exists in the measurement 
data [24, 25]. Therefore, it is critical to avoid or reduce their 
influence on curve and surface fitting in order to achieve better 
results in most cases. Some applicable solutions have been pro-
posed [26–28]. One solution is to directly delete the samples 
which are probably outliers. In this method, a threshold value 
is set to determine whether the measurement data are outliers, 
and then the confirmed outliers are deleted from the meas-
urement data before the surface is fitted [29–32]. However, 
the accuracy of this method is directly related to the threshold 
value. Therefore, it is vital to choose the threshold appropri-
ately, which is not an easy task. Another method is to assign 
appropriate small weights to outliers instead of removing 
them directly, in which case the negative effects of outliers on 
the curve and surface reconstruction can be reduced indirectly. 
However, how to add small weights to outliers is actually a 
challenging problem, especially when there is more than one 
outlier in the measurement data. Moreover, although it is clear 
that the negative influences are relatively reduced, it is hard to 
know the exact impacts that will be generated by these small 
weights [31].

To avoid setting the threshold or adding small weights 
subjectively [31, 32], an improved curve and surface fitting 
approach called the trimmed MTLS (TrMTLS) method is 
introduced in this paper. In the domain of influence of the 
TrMTLS method, the TLS method based on singular value 
decomposition (SVD) [33] with a truncation procedure is 
adopted to deal with the outliers and the errors of all variables. 
It has been proved that the impact of outliers is mitigated and 
the fitting accuracy is improved. Even if there are no outliers, 
the results of the improved method are still better than those 
of the MLS and MTLS methods. In section 2, a brief intro-
duction to the MLS method is given. The TrMTLS method is 
presented in detail in section 3. Examples of curve and surface 
fitting including numerical simulation and experimental meas-
urements are given in section 4 to verify the performance of 
the TrMTLS method. Conclusions are shown given section 5.

2. The MLS method

We first give a brief description of the MLS method. To 
describe the principle of the MLS method, the trial approx
imation function [34] is defined as

uh (x) =
m∑

i=1

pi (x) ai = pT(x)a� (1)

where p i(x), i  =  1, 2, …, m are the monomial basis func-
tions, ai are the coefficients of the basis functions and m is the 
number of terms in the basis functions.

General polynomial basis functions include the linear basis 
function, the quadratic basis function and so on, with the 
linear basis function being widely applied. The two common 
basis functions can be expressed as follows.

Linear basis function:
ß

p (x) = (1, x)T
(m = 2)

p (x) =
(
1, x, x2

)
(m = 3)

.

Quadratic basis function:
®

p (x) =
(
1, x, x2

)T
(m = 3)

p (x) =
(
1, x, y, x2, xy, y2

)T
(m = 6)

.

At each point of x, an appropriate a can be chosen so that 
u(x) is well approximated by uh(x). To measure the approx
imation of the function, the approximation function of the dis-
crete weighted L2 norm can be defined as having the following 
form:

J =
n∑

I=1

w (‖x − xI‖ /r)

[
m∑

i=1

pi (xI) ai − u (xI)

]2

� (2)

where r is the radius of the compact influence domain and 
w (‖x − xI‖ /r) is a weight function, the value of which 
decreases increasing distance s  =  ‖x − xI‖ between x and xI. 
xI (I  =  1, 2, …, n) is the node in the influence domain of x. 
Many forms of weight function have been proposed in pre-
vious studies. Commonly used weight functions are the expo-
nential weight function and the spline weight function. The 
cubic spline weight function is applied in this paper; it is 
expressed as in equation (3) and shown in figure 1:

Figure 1.  Schematic graph of the cubic spline weight function.
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w (s) =





2
3 − 4s2 + 4s3 s � 1

2
4
3 − 4s+4s2 − 4

3 s3 1
2 < s � 1

0 s > 1
.� (3)

In the influence domain of x, the coefficients of local 
approximants are solved by

a = A−1 (x)B (x) u� (4)

where

A (x) = PTW (x)P

B(x) = PTW(x)

P =

à
p1 (x1) p2 (x1) · · · pm (x1)

p1 (x2) p2 (x2) · · · pm (x2)
...

...
. . .

...

p1 (xn) p2 (xn) · · · pm (xn)

í

W (x) = diag (w1 (s) , w2 (s) , · · · , wn (s))
u = (u (x1) , u (x2) , · · · , u (xn))

T .

The approximation function equation (1) can be rewritten 
as

uh (x) = pT (x) a = pT (x)A−1 (x)B (x) u.� (5)

In this paper, we only consider the linear least-squares esti-
mation of the influence domain.

3. The TrMTLS method

3.1. The MTLS method

The TLS method is a method for dealing with the errors-in-
variables (EIV) model [33, 35] in which errors of all variables 
are considered. The function model is defined as

AX = B� (6)

where

A = A1 +∆A

B = B1 +∆B.

An augmented matrix is constructed by the TLS method 
based on SVD:

C : =
[
A B

]
= UΣVT� (7)

where Σ  =  diag(σ1, σ2, …, σn+d). Let σ1  ⩾  σ2, …, ⩾  σn+d be 
the singular values of C; we define the partitionings as follows:

V : =

ï
V11 V12
V21 V22

ò
Σ : =

ï
Σ1 0
0 Σ2

ò
.� (8)

When V22 is non-singular, a solution exists by the TLS 
method. It is unique only if σn  ≠  σn+1. On this occasion, the 
solution by TLS is

X̂tls = −V12V−1
22 .� (9)

The TLS method based on SVD is applied to the MTLS 
method to determine the parameters of local approximants. 
Not only is the calculation faster, but also the order of the 
basis function is easier to change. The augmented matrix [33, 
36] can be expressed as

Cx : = Wx
[
A B

]
= UxΣxVT

x� (10)

where Wx  =  diag(w(x  −  x1), w(x  −  x2), …, w(x  −  xn)) is the 
weight matrix. The solution for equation (9) can be rewritten 
as

a = −Vx12V−1
x22.� (11)

3.2. The TrMTLS method

As mentioned above, the MLS and MTLS methods are sensi-
tive to the outliers in the measurement data. Therefore, the 
proposed TrMTLS method is a viable alternative that can 
reduce the influence of outliers. In this method, the residual 
is defined as

r (k) = w (yi − yif)� (12)

where y i is the real value, y if is the fitting value and w is the 
weight value.

Let m  <  N, where m is the number of nodes in the influence 
domain and N is the total number of nodes. Then the trunca-
tion procedure [37–39] is

θTr = arg max
¶

r2
1:m(r)

©
.� (13)

The TLS method with the truncation procedure is applied 
to determine the local coefficients in the TrMTLS method. In 
the influence domain of an arbitrary fixed point in the TrMTLS 
method, the TLS method based on SVD is first adopted to 
obtain the coefficients of local approximation. Then, the 
residuals of all nodes can be obtained by the coefficients of 
local approximation and the appropriate weight function, and 
the truncation procedure is used to trim the node for which 
the squared residual is the largest. Finally, the local approx
imation is recalculated to replace the original value by using 
the TLS method based on SVD. The arbitrary fixed point is 
moved over the entire parameter domain, where the truncation 
procedure is calculated for each point independently.

To further understand the principle of the TrMTLS method, 
the truncation procedure for the influence domain is shown in 
figure 2.

As shown in figure  2, Δe  <  Δb  <  Δc  <  Δd  <  Δa and 
wc  <  wa  <  wb  <  we  <  wd. In the influence domain of xi, it can 
be obtained that wdΔd of the square is the largest, so node d 
must be trimmed.

As mentioned above, the MLS method only considers 
the errors of the dependent variables, with the constraint of 
local approximation being carried out in the vertical direction. 
The MTLS method can be considered as an improved MLS 
method, and it takes into account the errors of all variables, 
with the constraint of local approximation being carried out in 
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the orthogonal direction. However, both methods are sensitive 
to outliers. Unlike the MTLS method, the TLS method based 
on SVD with a truncation procedure is adopted for dealing 
with the outliers and errors of all variables in the influence 
domain of TrMTLS.

The previous numerical simulation showed that it can be 
difficult to assign an appropriate weight function to the nodes 
in the influence domain before the node with the largest 
squared residual is trimmed. There are two ways to solve this: 
one is use the weight function whose value decreases with 
increasing distance between the nodes and the fitting points; 
the other is to add the same weight value to all nodes in the 
influence domain. These two methods suit different circum-
stances. It can be found that the result of the first way is more 
accurate when there are obvious outliers in the measurement 
data, and the second way is better when there are only unbi-
ased random errors or outliers with no obvious values. We 
named the first way ‘unweighted TrMTLS’ and the second 
‘weighted TrMTLS’.

The following procedure, as shown in the flowchart in 
figure 3, is carried out in numerical simulation experiments to 
verify the performance of the improved method:

Step 1: Add the random errors (δi, ɛi) and outliers (0, Δy j ) to 
the data (xi, y i) for getting tested data (xim, y im).

Step 2: Fit the tested data (xim, y im) by MLS, MTLS and 
unweighted TrMTLS for getting the fitting value (xif, y if).

Step 3: Calculate the fitting error s of the theoretical value y i 
and fitting value y if by

s =
n∑

i=1

|yi − yif|.
� (14)

Record the values s1, s2 and s3 for MLS, MTLS and TrMTLS, 
respectively.

Step 4: Calculate the value |s2  −  s3|/s2. If |s2  −  s3|/s2  >  ψ/100, 
perform Step 5; otherwise, Step 5 is skipped.

Step 5:Fit the tested data (xim, y im) using weighted TrMTLS 
for getting the fitting value (xif, y if), then recalculate the 
sum of errors to replace the previous and record the new 
value of s3.

Step 6: Repeat Steps 1–5 10 000 times.
Step 7: Average the recorded values of s1, s2 and s3, and take 

them as the final values of MLS, MTLS and TrMTLS, 
respectively.

4.  Case study

In this section, four examples are given to verify the perfor-
mance of the TrMTLS method. The MLS method and MTLS 
method are also applied for comparison.

4.1.  Example 1

Consider the aspheric profile function

y =
cx2

1 +
√

1 − (1 + k) c2x2� (15)

where c  =  1/1083 is the reciprocal of the radius of curva-
ture of the base vertex and k  =  −1.5 is the constant of the 
quadric surface. Select a uniformly distributed set of points 
(xi, y i), i  =  1, 2, …, n determined by equation  (15). Then, 
the random errors (δi, ɛi) and outliers (0, Δy j ) are added to 
the points (xi, y i), forming a set of tested data (xim, y im). In 
this section, normally distributed random errors with a zero 
mean are added. Outliers are generated by adding Δy j  to some 
points of the dependent variable. Ej , j   =  1, 2, 3, 4 are outliers 
as shown in figure 4. The fitting performance is characterized 
by equation (14).

In Example 1 let n  =  61 and d  =  (max(x)  −  min(x))/5. 
Figure 4 shows the fitting curves obtained using MLS, MTLS 

Figure 2.  Schematic graph of the TrMTLS method.

Figure 3.  Simulation flowchart of the TrMTLS method.
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and TrMTLS. The sum of errors for these three methods are 
listed in table 1.

4.2.  Example 2

In this example, we consider the oscillation function

y = eaxsin (bx)� (16)
where a  =  1/30 and b  =  0.4. The data are obtained in the same 
way as in Example 1 and are still fitted by the three methods. 
In Example 2 let n  =  161 and d  = (max(x)  −  min(x))  ×  2/25. 
The fitting results and curves are shown in table 2 and figure 5, 
respectively.

4.3.  Example 3

In this example, we consider the following function

z =
(
x2 − y2)2

� (17)

defined on the region Ω  =  [−1, 1]  ×  [−1, 1]. Taking a uni-
formly distributed set of points, the region is divided into a 
33  ×  33 regular node grid. The data are obtained in the same 
way as in Examples 1 and 2. The fitting results using these 
three methods are shown in table 3 and the fitted surfaces are 
shown in figure 6.

In Example 3 let n  =  1089 and d  =  (max(x)  +  max(y ))/10. 
The fitting performance is characterized by the sum of errors 
between the theoretical value and the fitting value

s =
n∑

i=1

|zi − zif|
�

(18)

where zi and zif are the theoretical and fitting values, 
respectively.

It can be seen from Examples 1–3 that MTLS and MLS 
methods are sensitive to outliers. Compared with these two 
methods, the improved algorithm, TrMTLS, obviously gives 
better results. Even when there are no outliers, the results of 
the improved method are still better. The function of Example 
1 is taken as an example to illustrate the performance of 
the TrMTLS method when the data only contain random 
errors. The fitting results and curves are shown in table 4 and 
figure 7, respectively. As shown in figure 7, all three methods 
give a nice approximation. From the results of table  4, the 

Figure 4.  Fitting the aspheric profile curve by the MLS, MTLS and 
TrMTLS methods.

Table 1.  The sum of errors s of three methods for Example 1.

Variance s

δi ɛi s1 s2 s3

0.000 001 0.001 0.508 742 0.570 558 0.048 801
0.000 01 0.001 0.508 678 0.570 478 0.048 792
0.0001 0.001 0.508 798 0.570 637 0.048 815
0.001 0.001 0.508 779 0.570 605 0.048 783
0.001 0.0001 0.508 130 0.568 753 0.046 874
0.001 0.000 01 0.508 135 0.568 739 0.047 012
0.001 0.000 001 0.508 133 0.568 737 0.047 013

Table 2.  The sum of errors s of the three methods for Example 2.

Variance s

δi ɛi s1 s2 s3

0.000 001 0.001 2.614 597 2.047 388 0.959 902
0.000 01 0.001 2.614 645 2.047 429 0.959 945
0.0001 0.001 2.614 580 2.047 395 0.959 946
0.001 0.001 2.614 596 2.047 389 0.960 077
0.001 0.0001 2.614 229 2.046 992 0.960 275
0.001 0.000 01 2.614 255 2.047 021 0.960 309
0.001 0.000 001 2.614 258 2.047 030 0.960 295

Figure 5.  Fitting the oscillation curve with MLS, MTLS and 
TrMTLS methods.

Table 3.  The sum of errors s for the three methods for Example 3.

Variance s

σx, σy  σz s1 s2 s3

0.000 001 0.001 8.267 936 4.924 211 3.702 649
0.000 01 0.001 8.267 709 4.924 068 3.727 679
0.0001 0.001 8.268 510 4.924 925 3.702 433
0.001 0.001 8.293 442 5.010 912 3.971 687
0.001 0.0001 8.283 595 4.994 708 3.708 152
0.001 0.000 01 8.290 440 5.006 132 3.733 076
0.001 0.000 001 8.276 531 4.991 401 3.708 305

Meas. Sci. Technol. 31 (2020) 045003
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improved method (TrMTLS) is more accurate than the other 
two methods.

4.4.  Example 4

An experiment was carried out to further illustrate the per-
formance of the TrMTLS method. As shown in figure 8, the 
coordinate measuring machine is used to measure the profile 
of a standard cylinder with a radius of 40.1840 mm. The pro-
file data are obtained by measuring the fixed cylinder surface 
horizontally with a non-contact displacement KEYENCE 

LK-G150 sensor. In Example 4 let n  =  950 and r  =  (max(x) 
−  min(x))  ×  9/1000. The repetitive positioning error of the 
X-axis is about 15 µm and the repetitive measurement error 

Figure 6.  Fitting the surface in Example 3 by three methods: (a) 
MLS, (b) MTLS and (c) TrMTLS.

Table 4.  The sum of errors s of the three methods for Example 1.

Variance s

δi ɛi s1 s2 s3

0.000 001 0.001 0.075 53 0.043 5786 0.043 5782
0.000 01 0.001 0.075 39 0.043 4438 0.043 4435
0.0001 0.001 0.075 40 0.043 4348 0.043 4345
0.001 0.001 0.075 56 0.043 6147 0.043 6143
0.001 0.0001 0.074 40 0.041 6549 0.041 6548
0.001 0.000 01 0.074 40 0.041 6153 0.041 6152
0.001 0.000 001 0.074 41 0.041 6154 0.041 6153

Figure 7.  Fitting the curve in Example 1 by the MLS, MTLS and 
TrMTLS methods.

Figure 8.  Profile measurement of a standard cylinder by a 
coordinate measuring machine.

Table 5.  The radius obtained with the three methods for Example 4.

Variance R (mm)

δi ɛi MLS MTLS TrMTLS

0.015 0.0005 40.1578 40.1600 40.1653

Meas. Sci. Technol. 31 (2020) 045003
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of the LK-G150 sensor is about 0.5 µm. All three methods 
are used to fit the measurement data and the circular regres-
sion algorithm based on the least-squares method is applied 
to obtain the regression radius. The results of MLS, MTLS 
and TrMTLS are shown in table  5. As shown in figure  9, 
the fitting curve of the proposed method is shown and the 
second profile is the local enlargement of a section of the fit-
ting curve. Compared with the other two methods, it can be 
seen that the result using the TrMTLS method is closest to 
the standard cylindrical radius under the same conditions. The 
experimental result verifies the performance of our proposed 
method.

As mentioned above, the TrMTLS method can deal with 
the outliers and the random errors of all variables without set-
ting the threshold or adding small weights subjectively. In all 
the above examples, TrMTLS has better fitting accuracy and 
robustness than the MLS and MTLS methods. Most impor-
tantly, it is noted that the truncation procedure is employed 
only once, and only one point is trimmed in each influence 
domain of the TrMTLS method. Although there are multiple 
outliers in the measurement data, the proposed method can 
give a better result after application of the truncation proce-
dure for the entire parameter domain independently. Even if 
there are no outliers, the node with the largest squared residual 
may be regarded as an outlier. Further research will be carried 
out to achieve good performance using the TrMTLS method 
without needing to choose a weight function for trimming the 
node with the largest squared residual.

5.  Conclusions

The advantage of the MLS and MTLS methods is that a shape 
function with high-order continuity and consistency can be 
obtained by employing a basis function with low order and 
choosing a suitable compact support weight function. These 
are the popular methods for curve fitting because of their good 
approximation properties. However, due to the way the MLS 
and MTLS methods are constructed both are sensitive to out-
liers. To avoid setting the threshold or adding small weights 

subjectively, an improved curve and surface fitting approach, 
named TrMTLS, is introduced in this paper. In the influence 
domain of TrMTLS method, the TLS method based on SVD 
with a truncation procedure is adopted to deal with the outliers 
and errors of all variables. To verify the performance of the 
proposed algorithm, the discrete points generated by numer
ical simulation and obtained by experimental measurement 
are fitted by the three methods under the same conditions. 
From all the fitting results, it can be seen that the TrMTLS 
method is more robust and accurate than MLS and MTLS, 
which confirms the validity of the proposed TrMTLS.
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