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1.  Introduction

In recent years, the vision-based measuring system has been 
increasingly used in the field of industrial measurement, in 
areas such as processing, assembly, and quality inspection, 
etc [1]. As one of the significant technologies, the calibration 
of the parameters of vision sensors directly influences their 
measurement precision [2]. Calibration is the 3D metric infor-
mation extraction of an object in the spatial World Coordinate 
System (WCS) from its projections on the image plane or 
Image Coordinate System (ICS), based on a mathematical 
model and geometric relationship [3].

Generally speaking, camera calibration consists of two 
steps. The first step involves the choice of an appropriate 
camera model, which can be divided into either linear or 
non-linear, which can be used to describe the behavior of the 
imaging system [4, 5]. The second step is the estimation of all 
parameters that a certain camera model incorporates, i.e. the 

interior and exterior orientation of the vision system, as well 
as distortion parameters [6]. The linear camera model is an 
ideal model, and is very easy to calibrate, thus seldom used 
today [4]. Non-linear camera calibration has become main-
stream, in which the lens distortion model is included in the 
calibration process to improve the precision [7, 8].

Researchers have achieved many advances in the field, 
which can be classified into two categories [9, 10]. The first is 
auto- or self-calibration, which epipolar constraints and point 
correspondences between multiple views are used. Auto- or 
self-calibration does not need to know the 3D geometrical 
information of reference points [11], but the method lacks 
high stability [12]. The second achievement is general tradi-
tional calibration, which requires placing a calibration refer-
ence (also called targets) in front of the camera [13, 14]. The 
targets own multiple feature points whose 3D coordinates 
are exactly known. The parameters of the camera model are 
deduced from the relationship between the spatial coordinates 
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and image coordinates. Usually, 3D calibration targets are 
preferred, however fabricating such highly accurate 3D tar-
gets is sometimes difficult, and usually very expensive [15]. 
Thus, scholars try to use a 2D plane board with multiple loca-
tions to produce 3D information [16]. Zhang [17] presented a 
flexible technique and simple calibration method, which only 
requires three images of a 2D calibration template taken from 
different positions. This method also considered the lens dist
ortion by involving a non-linear refinement process. Based on 
this, a set of optimal algorithms [18] are proposed to enhance 
the calibration performance by optimizing the initial camera 
parameters accurately. Recently, more studies have been 
undertaken to provide high accuracy of the calibration results. 
Meanwhile, other researchers have reduced the calibration 
errors by constructing the non-linear objective function [19].

For the above calibration methods, lens distortion param
eters, as well as other intrinsic and extrinsic parameters of 
the camera, are estimated in a single optimization procedure 
at the same time [20]. Coupling among the linear and non-
linear parameters can also make the calibration result rather 
unreliable [8]. Based on the invariances of collinear points, 
Liu [21] put forward a distortion correction method with a 
2D checkboard. In addition to this, Moumen [22] and Zhou 
[23] derived distortion measurement that can be optimized by 
using non-linear search techniques to find the best distortion 
parameters. However, these methods need a lot of collinear 
points to achieve good performance. In terms of the projec-
tion optics, if a camera wants to obtain more collinear points 
in a certain view, the distance of the target needs to enlarge, 
which would lower the measurement accuracy and calibration 
result. Researchers have suggested an approach to deal with 
the lens distortion according to cross-ratio invariability [24], 
which can construct constraint function with four collinear 
points. It still requires a large target, though only four points 
are needed.

Our goal is therefore to derive an effective way to decouple 
the estimation process of distortion coefficients and linear 
parameters for the purpose of yielding more stable and reli-
able results. We utilize geometry similar constraint (GSC) to 
describe the relationship of the image points. In accordance 
with the GSC of a purely pin-hole model, we determine the 
distortion coefficients. Once the these are obtained, linear 
parameters are easy to calculate by linear camera equation. 
Furthermore, our method can estimate the parameters with a 
smaller number of pattern points. This means we can use a 
smaller target.

2.  Calibration model

2.1.  Imaging model

For any feature point P on the surface of a spatial object, the 
camera can observe the P from the world coordinates system 
Ow  −  xwy wzw, denoted by (xw, y w, zw). The arrangement of 
points in the image plane can be approximated by the pin-hole 
model [8, 17], as shown in figure 1. The point P is projected 
through the projection center of the lens to the point pu at the 
image plane. The coordinates of pu in the image coordinates 

system Om  −  XmYm are (xu, yu). Assume that p d is the real dis-
torted projection of P considering the lens distortion.

The coordinates of P in Ow  −  xwy wzw are denoted as M, 
and its image coordinates in Om  −  XmYm are m. The math 
expression between M and m is given by equation (1):
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where w is an arbitrary scale factor, and K is the intrinsic 
matrix which contains intrinsic parameters. When the axes Xm 
and Ym are exactly perpendicular, the skew parameter s equals 
0. The matrix [R t] is the extrinsic parameters, and ri is the ith 
column of R.

2.2.  Lens distortion

A real camera system usually exhibits unavoidable lens dist
ortion. In this paper, we only consider the first two terms 
of radial distortion and the tangential distortion, as they are 
enough to describe the lens distortion in high-accuracy mea-
surement [25]. Some more elaborate models, such as high-
term radial components and prism distortion, do not really help 
(as this is negligible when compared with sensor quantization), 
but instead may cause numerical instability [16, 26, 27].  
Without loss of generality, we can set the principle point as the 
center of distortion (COD), and the origin point of the ICS is 
moved to the COD. Thus, the distortion model is shown as:
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where k1, k2 are the radial distortion coefficients of the lens 
and p 1, p 2 are the tangential distortion coefficients. m̂ and m 
are the image coordinates of the real distorted point and undis-
torted point, respectively.
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Figure 1.  The imaging model of the vision sensor.
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3.  Methodology

3.1.  Dealing with distortion

Our goal is to find the transformation that maps the actual 
camera image plane onto an image following the perspective 
camera model. The following fundamental property is often 
used: a camera follows the perspective model if and only if 
the projection of every 3D line in space onto the camera plane 
is a line [20, 23]. Several distortion measures can be used to 
find the best calibration parameters. However, most of them 
are based on the method of linear regression, and lack enough 
precision in cases with a small number of collinear points. 
The basic idea of GSC is to evaluate the relevancy level of 
geometrical similarity. Theoretically, GSC needs as a few as 
three points.
Suppose there are n points on a spatial straight line l, their 
projections to the image plane compose points set L̂, and 
its corresponding undistorted ideal image points set is L, as 
follows:

L̂ =

®
L̂i =

ñ
x̂
ŷ

ô

i

, i = 1, 2, · · · , n

´
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®
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ñ
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´
.

� (3)

Assume there is another line with the same number of points 
in the images in the meantime. Their coordinate set is
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The points set, and their corresponding undistorted L, G are 
compliant with the distortion rule in equation (2).

According to the calibration model in section 2, the projec-
tion of a straight line to the image plane remains a straight 
line without lens distortion. Thus, the image points set L can 
constitute a straight line on the image plane. The equation of 
this straight line on the image plane can be denoted as:

θ1x + θ2y + θ3 = 0� (5)

where θi is a constant coefficient, i  =  1, 2, 3.

We solve the initial annihilator of L by:

L0 = {L0
i , i = 1, 2, · · · n}, with L0

i = Li − L1.� (6)

The points in L0 are located on a straight line with equation:

θ1x + θ2y = 0.� (7)

Besides this we define the one-term scale of L0 below:
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We take the same operation mentioned above to deal with 
another line points set G, and obtain the one-term scale set G1.

This leads us to being able to construct the GSC function 
as follows:
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where ξ is the resolution coefficient, satisfying ξ ∈ [0, 1]. 
Without loss of generality, we let ξ = 0.9 in this paper to 
improve accuracy. Thanks to all the points being on a straight 
line, the theoretical value of γ  is identically equal to 1.

We also construct function based on a single straight line; 
the GSC of points set L can be given by:
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Thus, we can solve them simultaneously to enhance the 
precision.

If a camera captures one image which contains f  lines, in a 
similar way a straight line map to γ, ε is denoted as:

®
εi, i = 1, · · · f
γa

b , a �= b = 1, · · · f� (11)

where theoretical values of elements in γ, ε are identically 
equal to 1 according to the straight-line invariance in the alge-
braic projection geometry.
To solve the distortion coefficients, an objective function 
Φ (k1, k2, p1, p2) is defined below:

Φ (k1, k2, p1, p2) =
∑

(γa
b − 1)2

+ (εi − 1)2.� (12)

The distortion coefficients are solved by minimizing 
Φ (k1, k2, p1, p2); we leverage a non-linear optimization algo-
rithm to acquire the results.

3.2.  Linear parameters calibration

Since a planar calibration board is used, we assume the plane 
xw  −  ow  −  y w coincides with the calibration board plane. As 
per this assumption, we let zw  =  0 without loss of generality. 
Therefore, the third column vector r3 of R in equation (1) is 
omitted, and equation (1) is simplified by:

w
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Table 1.  The extrinsic parameters of images.

Image No Rotation angle/° Translation vector/mm

1 [0, 0, 20] [−100, −100, 500]
2 [0, 20, 0] [−120, −100, 450]
3 [20, 0, 0] [−100, −120, 400]
4 [30, 10, 10] [−50, −70, 450]
5 [0, 15, 10] [−80, −100, 470]
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The homographic matrix H describes the mapping relation-
ship between the image plane and the object plane.

wm = HM, H =
[
h1 h2 h3

]
= τK

[
r1 r2 t

]
� (14)

where hi is the ith column of the homographic matrix H, 
which is defined up to a scale factor.

According to equation (14), we obtain the least squares esti-
mation of the homographic matrix H. We have the following 
two fundamental constraints for the intrinsic parameters:

ß
hT

1 K−TK−1h2 = 0
hT

1 K−TK−1h1 = hT
2 K−TK−1h2

.� (15)

The detailed algorithm for solving the intrinsic parameters 
matrix with an analytic solution after homographic estimation 
is in [16]. Once the intrinsic parameter matrix K is obtained, 
we get the extrinsic parameters of each image by employing 
equations (14) and (15).

4.  Experiment and analysis

Our proposed calibration method will be validated by both 
computer simulation and real calibration experiment. The cal-
ibration accuracy with both training and testing data are eval-
uated by comparing the computed camera parameter values 
with the simulated or physical values.

(a)

(b)

(c)

Figure 2.  The relative error of camera parameters calculated 
by using the NCM and our proposed method. (a) Results of our 
proposed method, (b) results using the NCM, (c) results using the 
CRI.

Figure 3.  Mean reprojection error of different numbers of collinear 
points.

Target

Camera with lens

Computer

Tripod

 

Figure 4.  Camera calibration experiment system.
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4.1. Training data

The number of collinear points directly influences the calibra-
tion precision. In terms of the projection optics, if a camera 
needs to obtain more collinear points in a certain view, a 
larger target is necessary. We conduct a computer simulation 
to confirm the validity of our proposed method with different 
numbers of collinear points. At the meantime, the cross-ratio 
invariability (CRI) [24] and nonmetric calibration method 
(NCM) [22], which also decouple the distortion coefficients 
and camera parameters, are used for comparison.

The resolution of the camera in simulation is 1280  ×  1024 
pixels with the principal point at (u0, v0)  =  (640, 512). 
The skew factor s is set to zero. The effective focal lengths 
along the Xm, Ym orientations in pixels are fx and fy and are 
1000 pixels respectively. The radial distortion is simulated 
with coefficients k1  =  −0.4 mm−2 and k2  =  −0.6 mm−4 
and tangential distortion coefficients p 1  =  0.01 mm−1 and 
p 2  =  0.0001 mm−1. We simulate five images with different 
extrinsic parameters (table 1). Considering the existence of 
image noise, we add Gaussian noise of mean zero and vari-
ance of two pixels to each image.

We assume the calibration target is a checkerboard target 
with (n  ×  n) corners uniformly distributed. The size of 

checkerboard is constant. The interval of the adjacent corner 
is 200

n−1
 mm which decreases along with n increasing. The 

number of collinear points is n (n  =  5, 10, 15, 20, 30 40, 50).
In simulation, the true values of the camera parameters are 

definite. Hence, we calculate the relative error of the camera 
parameters to denote the estimated accuracy. The relative 
error is defined:

Ef =

∣∣∣∣
Pc − Ptrue

Ptrue

∣∣∣∣× 100%� (16)

where Pc is the computational camera parameter and Ptrue is 
its corresponding true value.

The reprojection errors are the distances in pixels between 
the detected and the reprojected points. We define the mean 
reprojection error Ere for calibration accuracy evaluation as 
follows:

Ere =
1
nf

n∑
i=1

f∑
j=1

∥∥m̂j(i)− m̂r
j (i)

∥∥� (17)

where m̂r
j (i) is the reprojection image point coordinate calcu-

lated by using equation (1).
The relative error of the distortion coefficients and camera 

intrinsic parameters is displayed in figure 2. It is noticeable 
that the number of collinear points has a significant impact on 
the calibration results.

The comparisons of the mean reprojection error under dif-
ferent numbers of collinear points are shown in figure 3. For 
each n, five images were performed, and the results shown are 
the averages. In terms of figure 3, the mean reprojection error 
of our proposed method is less than that produced by using the 
NCM and CSI within all numbers. As illustrated by figures 2 
and 3, for different numbers of collinear points, particularly 
when the point number is small, the accuracy obtained from 
our proposed method is superior to that from the NCM in 
terms of both the relative error and the reprojection error. 
Besides this, our approach also works more successfully than 
CSI, which is very sensitive to the number.

4.2.  Real data

To further validate the effectiveness of our proposed method, 
we also carried out a practical experiment on real data. The 
result was then compared with that of Zhang’s method and 
the NCM. The camera we used is a piA2400-17gm with 

(a) (b)

(c) (d)

(e) (f)

Figure 5.  Images captured by the camera. (a)–(f) Show images 1–6, 
respectively.

Table 2.  Comparative results of the intrinsic parameters and 
distortion coefficients.

Method Zhang NCM Proposed

Calibrated 
parameters

f x (pixel) 2313.41 2306 2315.12
f y  (pixel) 2310.1 2303 2312.18
u0 (pixel) 1239.73 1211.58 1225.89
v0 (pixel) 1029.57 1018.92 997.33
k1(mm−2) −1.884 −1.827 −1.927
k2 (mm−4) 3.260 5.069 4.643

p 1 (mm−1) 0.0165 0.0169 0.0187

P2 (mm−1) 0.0004 0.0045 −0.0031
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resolution 2400  ×  2050 pixels. The lens is M1614-MPW2 
with a focal length of 16 mm. Because the distortion is most 
important factor in camera calibration [7, 23], we thus adopt 
a high distortion lens in our experiment to test our method. 
Figure 4 shows the calibration experiment system that con-
sists of a camera, a lens, an adjustment mechanism, a comp
uter, and a target.

We use the calibration planar chessboard pattern with 
48 corners (8  ×  6) uniformly distributed. The minimum 
point interval is 30 mm in both the horizontal and vertical 
directions. The manufactural precision of the chessboard is 
0.02 mm which is enough to evaluate the camera calibration. 
Each image includes 48 points and each straight line we used 
to estimate the lens distortion has 8 or 6 points. It is easy to 
observe the lens distortion within figure 5.

We randomly take six images from different views and 
locations, and the calibration procedure is carried out with 
these images. We compare our proposed method with Zhang’s 
method and the NCM respectively. The calibration results of 
different methods, including the intrinsic parameters and lens 
distortion coefficients, are shown in table 2.

The comparison of the reprojection error distributions 
evaluated by the three methods are displayed in figure  6. 
Figure  7 shows the mean reprojection error of each image, 
and intuitively shows the performance of calibration. Both fig-
ures 6 and 7 indicate the calibration accuracy of the proposed 
method is higher than that of Zhang’s method and the NCM. 
The average Ere of five images calculated by Zhang’s method 
is 0.307 pixels, 0.240 pixels by the NCM, which are signifi-
cantly larger than the 0.137 pixels produced by our method.

In addition, in order to further validate the calibration 
method, we apply a measurement validation test to our cali-
brated camera. As the 3D standard object is too expensive and 
not available, we utilize the chessboard to replace it. Since five 
of the six images are used to calibrate the camera to show the 
performance of the calibration, the unused image is utilized to 
evaluate the measurement accuracy. We calculate the distance 
of the corner points according to the calibration parameters of 
three methods separately.

We define the distance error as below:

Ed = |Dtrue − d| .� (18)

(a) (b) (c)

Figure 6.  Reprojection errors achieved by the three methods. The point marked as ‘.’ in the figure denotes the reprojection error of the 
image point. (a) Zhang’s method. (b) NCM. (c) Proposed method.

(a) (b) (c)

Figure 7.  Mean reprojection error of each image achieved by the three methods. (a) Zhang’s method. (b) NCM. (b) Proposed method.

Figure 8.  Position of corner points as calculated by using the three 
methods.
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Here Dtrue is the true distance of adjoin feature points, which 
is equal to 30 mm in this experiment, and the d is the measure-
ment distance.

The maximum distance error Emax, the minimum distance 
error Emin, and the mean distance error Eeq are defined below:




Emax =
N

max
1

(Ed)

Emin =
N

min
1

(Ed)

Eeq =
N∑
1
(Ed)

.

�
(19)

According to the calibrated parameters by these three 
methods, we utilize the principle of vision measurement based 
on the camera model in section 2 to calculate the distance of 
the adjoin points. The position of the corner points of the sixth 
image as calculated by using the three methods is shown in 
figure 8. Based on this, the distance error of the adjoin feature 
points is determined.

To illustrate the results quantitatively, we draw figure  9 
and table  3 based on the distance error results. From both 
the figure and table, we see that the distance error based on 
our proposed calibration method is less than that of Zhang’s 
and the NCM. The mean distance error from using Zhang’s 
method is 0.148 mm, and from the NCM is 0.129 mm, which 
is about two times more than our 0.097 mm. In summary, this 
supports the notion that the performance of our proposed 
method is superior to the other referenced methods in the con-
structed practical measurement process.

5.  Conclusion

In this paper, a novel effective vision sensor calibration 
method using GSC is proposed. This method can be divided 
into lens distortion coefficient and linear parameter calibra-
tion. The GSC model is constructed to obtain the distortion 
coefficients. The corrected images are used to calculate the 
linear parameters based on a linear model of the camera. To 
validate the effectiveness of our proposed method, we have 
carried out experiments by using both computer simulation 
and practical experiment. The simulation results show that the 
calibration performance of our proposed method is superior 
to that of the NCM and CRI under different numbers of col-
linear points. The real experiment results also indicate that 
the average reprojection error calculated by Zhang’s method 
and the NCM is 0.307 and 0.240 pixels, respectively, signifi-
cantly larger than the 0.137 pixels calculated by our method. 
Meanwhile, distance error can be used to inspect the mea-
surement precision. The mean distance error using Zhang’s 
method is 0.148 mm, and 0.129 mm using the NCM, nearly 
two times our result of 0.097 mm. Our proposed calibration 
method is therefore likely to produce effective and feasible 
results when practically employed.
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