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Abstract
We introduce an imagingmethod based on solving the Lippmann-Schwinger equation of acoustic
scattering theory.We compare and contrast the proposed Lippmann-Schwinger inversionwith the
well-established linear samplingmethod using numerical examples.We demonstrate that the two
imagingmethods are physically grounded in different but relatedwave propagation problems:
Lippmann-Schwinger inversion seeks to reconstruct the space and time dependence of a scatterer
based on the observed scatteredfield in a performed physical experiment, whereas the linear sampling
method seeks to focuswavefields in a simulated virtual experiment by estimating the space and time
dependence of an inverse source function that cancels the effects of the scatterer at a specified focusing
point. In both cases, themedium inwhich thewaves propagate is the same; however, neithermethod
requires prior knowledge or assumptions on the physical properties of the unknown scatterer—only
knowledge of the backgroundmedium is needed.We demonstrate that the linear samplingmethod is
preferable to Lippmann-Schwinger inversion for target-oriented imaging applications, as Lippmann-
Schwinger inversion gives nonphysical results when the chosen imaging domain does not contain the
scatterer.

1. Introduction

Imaging is a qualitative inverse scattering problem that seeks to localize the boundaries betweenmedia of
different physical properties. In this paper, we restrict our attention to imaging acousticmedia, inwhich scalar
pressure fields propagate and the scattering is caused by variations in the bulkmodulus andmass density of the
media. Imaging the boundaries of such variations is challenging due to imprecise (or altogether absent)
knowledge of themedium. If the acoustic impedance contrast is sufficiently strong,much of thewave energy
that is sent into amedium can become localized amongst the inhomogeneities, where it is scattered and
redirectedmultiple times, before finally being recorded at a receiver. Such strongmultiple scatteringmakes it
difficult to interpret where the observed scatteredfields originated.

To construct accurate images, it is necessary for imaging algorithms to properly account for themultiple
scattering undertaken by awavefield as it propagates through amedium.Of fundamental importance to
scattering theory is the Lippmann-Scwhinger equation (e.g. [1]), which explains not only primary (or single)
scatteredwaves, but allmultiply scatteredwaves aswell. The Lippmann-Schwinger equation provides an exact
representation of the scattered field in terms of aweighted superposition of the impulse response of the
backgroundmediumover the region containing the scatterer. Theweights of the superposition are determined
by the physical properties of the scatterer (e.g. the variations in acoustic impedance), and also on the totalfield
incident to the scatterer. Naturally, the Lippmann-Schwinger equation forms the basis ofmany quantitative
inversion schemes that seek to recover some of the physical properties of a scatterer (e.g. [2–4]).

The Lippmann-Schwinger equation has been investigated for imaging purposes aswell. However, previous
attempts at using the Lippmann-Schwinger equation for imaging have often relied on aweak-scattering

OPEN ACCESS

RECEIVED

2December 2019

REVISED

16December 2019

ACCEPTED FOR PUBLICATION

24December 2019

PUBLISHED

6 January 2020

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 4.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2020TheAuthor(s). Published by IOPPublishing Ltd

https://doi.org/10.1088/2399-6528/ab6570
https://orcid.org/0000-0003-2822-5220
https://orcid.org/0000-0003-2822-5220
https://orcid.org/0000-0003-1445-0857
https://orcid.org/0000-0003-1445-0857
mailto:prunty@mines.edu
https://crossmark.crossref.org/dialog/?doi=10.1088/2399-6528/ab6570&domain=pdf&date_stamp=2020-01-06
https://crossmark.crossref.org/dialog/?doi=10.1088/2399-6528/ab6570&domain=pdf&date_stamp=2020-01-06
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0


approximation (e.g. [5]) or a re-normalization of the Lippmann-Schwinger equation to obtain an absolutely
convergent series which can then be inverted (e.g. [6, 7]). In this paper, we introduce a noniterative technique for
inverting the Lippmann-Schwinger equationwithoutmaking anyweak-scattering approximations. The
obtained solution approximates the spatiotemporal dependence of the scatterer needed to reconstruct the
observed scattered field.

The linear samplingmethod is another imaging technique that has garnered considerable attention [8–13].
To demarcate the boundary of a scatterer, themethod relies on a characteristic blowup behavior of the solution to
an ill-posed integral equation. Themethodworks by attempting to estimate the spatiotemporal dependence of
an inverse source that cancels the effects of the scatterer at a given point in themedium. Such a process has a
physical solutionwithfinite energy onlywhen the given point lies inside the scatterer. Clearly, the inverse source
cannot exist for any point outside the scatterer, and numerically this ‘law of causality’manifests as a blowup in
the normof the solution [13]. Consequently, an image of the scatterer can be obtained by notingwhere the norm
of the solution becomes arbitrarily large.More recently, it has been shown that quantitative information about
the scatterer can be extracted from the linear samplingmethod [14–18].

The linear samplingmethod has been interpreted as a focusing technique [13, 19]. Aswe show in this paper,
the solution to the ill-posed integral equation in the linear samplingmethod corresponds to a focusing function,
which is a type of distributed source for focusingwavefields in amedium.When the specified point lies inside
the scatterer, the focusing function contains the inverse time dependence of the scatterer needed to focuswave
fields onto the specified point.

Our paper is organized as follows.We formulate the direct acoustic scattering problem to establish the
relevant physical quantities of interest in section 2. Lippmann-Schwinger inversion is introduced in section 3
and comparedwith the linear samplingmethod in section 4.Numerical experiments are given in section 5 and
the conclusions follow in section 6.

2. Formulation of the direct acoustic scattering problem

Weare interested in the problemof reconstructing the shape of a scatterer frommeasurements of the scattered
pressure field.We assume the scattering is due to localized inhomogeneities, which represent variations in the
bulkmodulusκ andmass density ρ of the acousticmedium.We assume the inhomogeneities have total compact
support Ì D 3, wherewe denote the boundary ofD by∂D and the closure ofD by È= ¶D D D. Specifically,
we assume the acousticmedium is determined by the functions
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whereκ0, ρ0 denote the background bulkmodulus andmass density andκs, ρs denote perturbations in the bulk
modulus andmass density inside the scatterer, respectively. In this paper, we further assume the density is
continuous across the boundary of the scatterer, so that r  0s as  ¶Dx from inside the scatterer. Variations
in the bulkmodulus andmass density will in general cause the pressure field to propagate at different speeds,
since the acoustic velocity varies as k r=c . For a point source located at Î xs

3, let p denote the total
pressure field satisfying the acoustic wave equation
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where δ is theDirac delta distribution and z Î C2( ) is a time-dependent function that describes the shape of
thewave.With the background velocity given by k r=c0 0 0 , we define the refractive indexn, the velocity
contrastm, and the density ratioq as
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Using the definitions given in (2), the total pressure field can be decomposed into an unperturbedwave p0 and a
scatteredwave ps such that p=p0+ps is the unique solution to (1). It follows that if the unperturbed pressure
field p0 satisfies
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then the scattered pressure field ps satisfies
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whereχ is the contrast source function given by
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Expression (5) states that the contrast source functionχ is a combination of bothmonopole sources (due to
velocity variations) and dipole sources (due to density variations). Note that the time dependence of the contrast
source is determined by the total pressure field p at the scatterer. As seen from the definitions given in (2), the
velocity contrastm and the gradient of the density ratio∇q are in general nonzero only inside the scatterer. It
follows that the contrast source functionχ has compact supportD. In deriving expression (5), we have assumed
that the density is smoothly varying across the boundary of the scatterer. If the density is discontinuous across
the boundary of the scatterer, the contrast source function has an additional term proportional to the jump
discontinuity in the density [20].We do not address such complexities in this paper.

LetG0 denote the unperturbedGreen function of the backgroundmedium satisfying
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By linearity, the solutions to equations (3) and (4) are given by
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respectively. Expression (8) is the Lippmann-Schwinger equation for the scattered pressure field ps. If the
contrast source (5) is known, we could use equation (8) to exactly compute the scattered pressure field observed
at any point x and at any time t. In practice, however, the contrast source function (5) is unknown sincewe do
not know the velocity or density variations of the scatterer, nor the total pressure field inside themedium.

On the other hand, supposewe know (or can estimate) the backgroundmediumwithout the scatterer so that
we can compute the unperturbedGreen functionG0. Then, providedwe can separate the scattered pressure field
ps from the recorded totalfield p, equation (8) provides ameans to solve for the unknown contrast source
functionχwithout requiring any prior knowledge orweak-scattering approximations of the contrast source.

3. Lippmann-Schwinger inversion

In an imaging experiment, we record the total pressure field p at receiver locations xr, which are typically
restricted to an acquisition surfacewe denote byΓr. Similarly, the sources used to generate the pressure field are
restricted to points xs of an acquisition surfacewe denote byΓs (possibly equal toΓr). Both surfacesΓr andΓs are
assumed to be disjoint from D . By evaluating equation (8) on the receiver surfaceΓr, we can relate the recorded
scattered field to the unknown contrast source function.

The inversion of equation (8) for the contrast source function is well known to be ill-posed due to
nonuniqueness of the solution (e.g. [21–23]). This ill-posedness holds in general for the inverse source and
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inversemediumproblems [22]. As a simple example, consider a wave incident to a planar interface at normal
incidence. Certain combinations of themass density and velocity exist such that the contrast in acoustic
impedance is zero, resulting in a reflectionless interface. The inverse problemof determining the interface from
the (identically zero) scattered field does not have a unique solution: we cannot distinguish the trivial solution
(i.e. no interface) from any of the specific combinations of velocity and density that yield zero impedance
contrast. As another example, Zhang et al [24] construct an ‘invisible’medium, where single-reflectedwaves
fromdeeper layers of themedium exactly cancelmultiply reflectedwaves from shallower layers. Since the
reflectedwaves vanish, one cannot reconstruct the contrast across the interfaces from the data.Moreover, the
data we collect in practice is discrete and finite, whereas the contrast source is a continuous function of space and
timewith infinitelymany degrees of freedom.Hence, the inversion of equation (8) is also ill-conditioned.
Consequently, a regularization scheme is needed to obtain an approximate solution that satisfies a set of desired
constraints (in section 5, we use Tikhonov regularization [25] to solve the inverse source problem). Additionally,
the unperturbedGreen function satisfying equation (6)maynot be a known function, since the background
mediummay be arbitrarily heterogeneous. In such cases, numericalmethods are needed to approximate the
Green function. Furthermore, to properly account for the spatial distribution of the contrast source functionχ,
it is necessary to discretize the volume integral in equation (8) using a quadrature rule. Thismay prove
challenging and computationally expensive when attempting to accommodate the arbitrary structure of the
backgroundmedium.

To address these issues, let Î S C2( ) be a time-dependent function possessing the same frequency band as
the scattered pressure field ps. For an arbitrary point Î z 3, we define the test function

ò t t tY -


t G t S dx z x z, ; , ; , 9r r0( ) ≔ ( ) ( ) ( )

which represents a band-limited impulse response of the backgroundmediumdue to amonopole point source
at location z, and can be effectivelymodeled using numericalmethods. The choice of the time function Sneed
only bemade in consideration of the frequency band of the data, and does not necessarily need to be equal to the
generating pulse function ζ (whichmay be unknown). Next, letΩ denote a subset of the backgroundmedium
containing the scatterer, so that Ì WD . Our imaging procedure is then based on approximating the
spatiotemporal dependence of the contrast source functionχ over the domainΩ.We do this by regularizing the
solution of themodified Lippmann-Schwinger equation
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in a least-squares sense. By using expression (9) as a proxy for the unperturbedGreen functionG0 in equation (8),
we can avoid the cost of performing a quadrature rule for the volume integral in equation (10) by discretizing the
domainΩ into a sufficiently dense grid, say a few grid points per the dominant wavelength of the test functionΨ.
Such an approach effectively exploits the fact that a superposition of the band-limited test functionswill achieve
sufficient smoothness in the obtained solution.

Due to the compact support of the contrast source function, we expect the solutionχ to be nonzero only for
those points zäD. It follows that an image of the scatterer can be obtained by plotting the energy of the solution
to equation (10) over the domainΩ and notingwhere the energy is greater than zero:
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Wenumerically implement our proposed imaging technique as follows. Given amodel of the background
medium,we discretize the imaging domainΩ intoNz distinct points using a regularly sampled grid that covers
the scatterer. LetNr denote the number of receivers,Nt the number of time samples, andNs the number of
sources. For each grid point zn, n=1,K,Nz, we discretize the test function observed at the receivers as

Y Y Di k n k tx z, , , ; ,i n( ) ≔ ( )

where i=1,K,Nr, k=0,K,Nt−1, andΔt is the time sampling interval. For a general heterogeneous
backgroundmedium, numericalmethods are needed to compute these test functions. In section 5, we consider
the special case of a constant backgroundmedium for which the test functions assume a simple, analytic
expression. In any case, the test functions can be efficiently computed using source-receiver reciprocity
whenever the number of grid pointsNz is expected to be greater than the number of receiversNr.

Similarly, the scattered pressure field is discretized as

Di k j p k tp x y, , , ; ,s i j( ) ≔ ( )

where j=1,K,Ns. Figure 1 shows a schematic inwhichwe construct a regularly sampled grid that covers an
unknown scatterer.
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Next, we discretize themodified Lippmann-Schwinger equation (10) into a sumover the grid points zn.
Since equation (10) is convolutional in time, the problem is efficiently solved in the frequency domain.Here, we
use a circumflex ˆ to denote frequency-domain quantities and w to denote a vector of angular frequencies. For
each source j=1,K,Ns, we take the scattered pressure field jp , ,ˆ (· · ) and solve for a regularized solution to the
discretized Lippmann-Schwinger equation

å w c w wY =
=

i n n j i jp, , , , , , 11
n

N

1

z
ˆ ( ) ˆ ( ) ˆ ( ) ( )

in a least-squares sense. An image is obtained for each source as

cI n jz , , ,j n 2( ) ≔ ˆ ( · ) 

where the 2-norm is computed over all angular frequencies w. Thefinal image produced fromLippmann-
Schwinger inversion is defined as the root-mean-square of the normalized images Ij:
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It follows that thefinal image satisfies 0�ILSI(zn)�1 for all points zn in the imaging domainΩ, where
values close to 1 indicate points which are likely inside the scatterer and values close to 0 indicate otherwise.

4. Comparisonwith the linear samplingmethod

The linear samplingmethod exploits the use of the source position xsäΓs as a free parameter in the physical
experiment to designwavefields of a simulated virtual experiment [14]. Bymultiplying equations (3) and (4) by a
functionj Î G ´ L s

2( ) and integrating over G ´ s , it follows by linearity that the functions
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are also solutions to equations (3) and (4), respectively. The functions vj andwj are the ‘unperturbed’ and
‘scattered’fields of a virtual experiment corresponding to the unperturbed and scattered fields p0 and ps of the
physical experiment, respectively. The dependence of the functions vj andwj on the choice ofj is emphasized
in the notation.

In the linear samplingmethod, we force the scattered fieldwj of the virtual experiment to coincide with a
band-limited impulse responseΨz that radiates from afixed point z in the imaging domainΩ, as observed on the
receiver surfaceΓr. This amounts to evaluating expression (14) on the receiver surfaceΓr to form the ill-posed
near-field equation

ò ò t j t- = Y
G

p t t ds dtx x x z x x z, ; , ; , ; . 15s r s s s r
s

( ) ( ) ( ) ( ) ( )

Since the scattered field of the virtual experiment ismade to radiate from a single point zäΩ, the incident
field jv z of the virtual experimentmust focus onto this point. To construct this focusingwavefield, we regularize
the solution of the near-field equation (15) for the functionjz in a least-squares sense.We call the solutionjz a
focusing function, which is parameterized by the focusing point zäΩ. The focusing functionjz extracts the
properties of the contrast sourceχ at the prescribed point zäΩ from the information encoded in the scattered

Figure 1.A schematic illustrating the discretization of an imaging domain that covers an unknown scatterer. The scattered pressure
field ps is approximated by a linear combination of the test functionsΨ over the imaging domain.
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field ps. Of course, this is physically possible onlywhen the prescribed point lies inside the scatterer. It can be
shown that the focusing functionj is proportional to the inverse of the contrast source functionχ [13]. In
particular, the inverse ofχ exists and is bounded in the L2 normonly for points zäD (whereχ is strictly
nonzero). Otherwise, for points Î  Dz 3⧹ , the inverse ofχ does not exist and the solutionjz becomes
unbounded (due to a division by zero sinceχ is zero outside the scatterer). This is the so-called blowup behavior
of solutions to the near-field equation.

Note that the impulse response appearing on the right-hand side of equation (15) is that due to amonopole
point source, whereas the contrast source function (5) for amore general acoustic scatterer is comprised of both
monopole and dipole sources. As demonstrated byHaddar et al [12], the linear samplingmethod requires a
combination of bothmonopole and dipole test functions to accurately reconstruct obstacles ofmixedmonopole
and dipole source distributions. Here, a dipole test function is defined as the gradient of expression (9)with
respect to the variable xr, taken in the direction of a user-specified unit vector Î d 2, where 2 denotes a unit
sphere embedded in 3. Of course, the boundary of the scatterer is unknown, so the true orientation of a dipole
source at a given point zäΩ is not known a priori. Consequently, a search proceduremust be undertaken tofind
an optimal direction d* for the dipole test function [12]. The computational cost for such a procedure can be
significant in all but the simplest cases (e.g. a scatterer with known spherical symmetry [26]), as it requires the
solution of equation (15) for each direction Î d 2 of the dipole test function at each point zäΩ. In this paper,
we apply the linear samplingmethod formonopole test functions only.

In the frequency domain, the discretization of the near-field equation (15) leads to the linear system
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Aswas the case for Lippmann-Schwinger inversion, it follows that the image obtained from the linear sampling
method satisfies 0�ILSM(zn)�1 for all points zn in the imaging domain.

By comparing the discretized equations (11) and (16), we see that Lippmann-Scwhinger inversion is
reciprocal to the linear samplingmethod in the sense that the roles of the scattered pressure fieldsp and the test
functionsY have been interchanged. In equation (11), we take a linear combination of the test functions over
the imaging domain to solve for the contrast source function that best reconstructs the observed scattered field at
the receivers. In equation (16), we take a linear combination of the observed scattered fields to solve for the
inverse source function that best reconstructs a prescribed impulse response. Thus, thematrix operations in
equations (11) and (16) perform the same actions but using opposite kernels. From a computational perspective,
thismeans that a generic convolutional operator can be defined once, and the test functionsY or the scattered
pressure fieldsp can be substituted as the kernel of the operator to switch back and forth between Lippmann-
Schwinger inversion and the linear samplingmethod, respectively.

An important difference between Lippmann-Schwinger inversion and the linear samplingmethod lies in the
domain of definition of their solutions. The contrast source functionχ obtained fromLippmann-Schwinger
inversion is a global solution defined over the entire imaging domainΩ. Consequently, the image obtained from
Lippmann-Schwinger inversion depends on every point in the imaging domain. Conversely, the focusing
functionjz obtained from the linear samplingmethod is defined over the acquisition surfaceΓs and
parameterized by a single image point zäΩ. Thus, each image point obtained from the linear samplingmethod
depends only on the blowup behavior of the solutionjz, and is independent of every other point in the imaging
domain.

This difference between the twomethods has profound implications should the chosen imaging domain not
contain the scatterer. In particular, Lippmann-Schwinger inversionwould fail to give a physically plausible
source functionχ, since the least-squares solution of equation (11) forces a nonzero solution over a given
imaging domain. Consequently, the resulting image cannot always be trusted. This issue is of significant
practical importance since the location of the scatterer is often not known in advance. In contrast, the image
obtained from the linear samplingmethodwould remain unaffected by the choice of the imaging domain, since
themethod relies on the blowup behavior of the solutionsjz to localize the scattering target.We illustrate this
important difference in the next section.

6

J. Phys. Commun. 4 (2020) 015007 ACPrunty andRKSnieder



5.Numerical experiments

Inwhat follows, we demonstrate Lippmann-Schwinger inversion as a source reconstructionmethod for the
performed physical experiment and the linear samplingmethod as a focusing technique for the corresponding
virtual experiment. Special attention is paid to the influence of the chosen imaging domain on the obtained
images for eachmethod. Finally, we compare and contrast the twomethods in their ability to image
morphologically random scatterers.

Figure 2.Avelocitymodel with the scatterer given by the box-shaped anomaly in red. 24 sources and receivers (shown as dots) are
co-located in a circle surrounding the scatterer. The imaging domainsΩ1 andΩ2 are shown by the black dashed lines. The dominant
wavelength of the Ricker pulse is shown for scale.

Figure 3.The scattered pressurefield of the physical experiment corresponding to the source shown by the red dot. Other source and
receiver locations are indicated by blue dots and the boundary of the scatterer by thewhite dashed line. Left column: the scattered
pressure field obtained byfinite-differencemodeling: the unperturbed pressurefield p0 is subtracted from the total pressure field p.
Right column: the reconstructed scattered pressure field obtained by usingχ as a source function over the imaging domain (yellow
dashed line). Here, the imaging domainΩ1 contains the scatterer. Thewavefields in each row are shown at the same time step.
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For simplicity, wemodel the scattering experiments in a two-dimensional acousticmedium. The
backgroundmedium is taken to be homogeneous, characterized by a constant wave speed c0=2 m s−1 and a
constant density ρ0=1 kg m−3. In the following experiments, we interrogate themediumusing 24 sources and
receivers which are placed along a circle surrounding the scatterers. The time dependence of each source is given
by the Ricker pulse

z p n- - p n- -t t e1 2 0.1 ,t2 2 2 0.12 2 2( ) ≔ [ ( ) ] ( )

where the dominant frequency νwill be specified before each example. The test function is computed for each
point zn in the backgroundmedium as

z

p
Y =

D - -

D - -
i k n

k t c

k t c

x z

x z
, ,

2
18i n

i n

0

2 2 2
0
2

( ) ( ) ( ) 

 

when kΔt�xi−zn/c0 and is zero otherwise.
To generate the scattered pressure field ps at the receivers, we simulate the total pressure field p in the

presence of the scatterers by finite-differencemodeling and subtract from it the unperturbed pressure field
computed using equation (18)with the grid points zn replaced by the source points xs.

We use the LSMR algorithm [27] andTikhonov regularization [25] to solve equations (11) and (16) in a least-
squares sense. The value of the regularization parameterα is indicated in each example.

5.1.Demonstrating the physical bases of themethods
To test the physical interpretation of Lippmann-Schwinger inversion as a source reconstruction technique and
the linear sampling as a focusing technique, we consider the velocitymodel shown infigure 2. Themodel is
intentionally simple, consisting of a single box-shaped anomaly embeddedwithin the homogeneous

Figure 4.The scattered pressurefield of the physical experiment corresponding to the source shown by the red dot. Other source and
receiver locations are indicated by blue dots and the boundary of the scatterer by thewhite dashed line. Left column: the scattered
pressure field obtained byfinite-differencemodeling: the unperturbed pressurefield p0 is subtracted from the total pressure field p.
Right column: the reconstructed scattered pressure field obtained by usingχ as a source function over the imaging domain (yellow
dashed line). Here, the imaging domainΩ2 does not contain the scatterer. Thewavefields in each row are shown at the same time step.
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backgroundmedium. In this experiment, we interrogate the scatterer using theRicker pulsewith a dominant
frequency ν=25 Hz. The dominant wavelengthλ of the Ricker pulse is shown infigure 2 for scale.We apply
Lippmann-Schwinger inversion and the linear samplingmethod to two different imaging domains: one domain
that contains the scatterer and another domain that does not (Ω1 andΩ2 infigure 2, respectively). Both imaging
domains are discretized into a 15×15 point regularly sampled grid.

The left columnoffigure 3 shows snapshots of themodeled scattered pressure field corresponding to the
source shownby the red dot. The boundary of the scatterer is indicated by thewhite dashed line. The right
columnoffigure 3 shows the same snapshots of the reconstructed scattered pressure field obtained from
Lippmann-Schwinger inversion applied to the imaging domainΩ1 (shownby the yellowdashed line). In this
case, the obtained contrast source functionχ correctly replicates the spatiotemporal behavior of the scatterer to
reconstruct the scattered pressure field observed at the receivers. The anomalouswaveforms seen in the
reconstructedwavefield are likely due to coarse receiver sampling along the acquisition circle and could be
reducedwith denser acquisition.

Figure 4 shows the same snapshots of themodeled scattered pressure field but now alongside the
reconstructed scattered pressure field obtained fromLippmann-Schwinger inversion applied to the imaging
domainΩ2. In this case, the imaging domain does not contain the scatterer and the obtained contrast source
functionχ poorly reconstructs the scattered pressure field observed at the receivers. Interestingly, the contrast
source still attempts to reconstruct the back-scatteredwaves observed at the receivers at the top-left quadrant of
the acquisition circle. The imprint of the coarse receiver sampling is again obvious in the reconstructed
waveforms.

Figure 5 shows snapshots of the corresponding virtual experiments obtained from the linear sampling
method. The boundary of the scatterer is again shown by thewhite dashed line. The left column shows the total
wavefield before, at, and after the time of focusing for the case when the image point (shown as the yellow dot)
lies inside the scatterer. In this case, the obtained focusing functionj correctly synchronizes the sources (shown
as blue dots) to focus the incident field onto the prescribed image point. Conversely, the right column shows the

Figure 5.Thewavefield of the virtual experiment before, at, and after the time of focusing. The focusing point is shown as the yellow
dot and source locations as blue dots. The boundary of the scatterer is indicated by thewhite dashed line. Left column: the incident
field vj focuseswhen the focusing point is inside the scatterer.Right column: the incident field vj does not focuswhen the focusing
point is outside the scatterer. Thewavefields in each row are shown at the same time step.
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same snapshots of the total wavefield for the case when the image point does not lie inside the scatterer. Here, the
obtained focusing functionj is nonphysical, since it could not extract the properties of the contrast sourceχ at
the given image point. Consequently, focusing is not achieved.

Figure 6 shows the obtained images fromLippmann-Schwinger inversion (left column) and the linear
samplingmethod (right column) using definitions (12) and (17), respectively. The top row shows the
reconstructions for the imaging domainΩ1, which contains the scatterer. Clearly, bothmethods accurately
reconstruct the shape of the box anomaly. The bottom row shows the reconstructions for the imaging domain
Ω2, which does not contain the scatterer. Here, Lippmann-Schwinger inversion incorrectly suggests there is a
scatterer inside the imaging domain, whereas the linear samplingmethod correctly indicates there is no
scatterer. The images in the bottom row are plotted on the same scale as the corresponding images in the
top row.

5.2. Imaging random inclusions
Wecompare Lippmann-Schwinger inversion and the linear samplingmethod in their ability to reconstruct
morphologically random inclusions (figure 7). In this experiment, the random inclusions represent
perturbations in both themodel wave speed andmass density, with c=2.3 m s−1 and ρ=1.3 kg m−3 inside the
inclusions. As discussed in section 2, the jumpdiscontinuities in the density across the boundaries of the random
inclusionswill contribute an additional term to the contrast source functionwhich is not accounted for in
Lippmann-Schwinger inversion. Similarly, because the impulse response appearing on the right-hand side of the
near-field equation is due to amonopole source, the linear samplingmethodwill fail to capture the directional

Figure 6.Reconstructions of the box-shaped anomaly using (left column) Lippmann-Schwinger inversion and (right column) the
linear samplingmethod.Top row: the imaging domain contains the scatterer.Bottom row: the imaging domain does not contain the
scatterer. Images in the bottom row are plotted on the same scale as the corresponding image in the top row. The value of the
regularization parameterα is indicated above each plot.
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dependence of the density discontinuities. Still, it is instructive to compare howwell thesemethods perform
when the physics of the scattering problem is not fully captured in the imaging algorithms.

We interrogate the acousticmediumusing staggered sources and receivers along the acquisition circle as
depicted infigure 7. Since the sources and receivers are not co-located, we use reciprocity to add ‘fictitious’ data
to the linear systemof equations and enhance our coverage of the imaging domain. In this experiment, we
interrogate the scatterers using the Ricker pulsewith a dominant frequency ν=20 Hz. The dominant
wavelengthλ of the Ricker pulse is shown in figure 7 for scale.We construct an imaging domain covering the
region from0.7 m to 1.3 m along the x-axis and from0.2 m to 0.8 m along the y-axis with a 31×31 point
regularly sampled grid.

Figure 7.Models of the acoustic velocity (left) andmass density (right) for the random inclusions. Sources are indicated by blue dots
and receivers by green dots. The dashed line indicates the imaging domain. The dominant wavelength of the Ricker pulse is shown for
scale.

Figure 8. (a)Anoise-free shot gather showing the recorded scattered pressure field ps. (b)The same shot gather in (a) superimposed
with uniformly distributed noise lying in the same frequency band as ps. The SNR=0.3.Note that only the primary scatteredwave is
visible at this noise level. (c)A common shot gather showing the scattered pressure field ps for the case inwhich only themass density ρ
varies as shown in the right panel offigure 7.
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We test the imagingmethods under three different scenarios. In thefirst scenario, the backgroundmedium
is known exactly and the scatteredwave ismeasured noise-free. An example shot gather for this scenario is
shown infigure 8(a). In the second scenario, we test the ability of themethods to reconstruct the random
inclusions in the presence of noisy data and an erroneous backgroundmodel. Here, we incorrectly assume the
background velocity is c0=2.3 m s−1, which is a 15% increase from the true background velocity.We add
randomnoise to the scattered pressure field that is uniformly distributedwithin the same frequency band as the
data.We set the signal-to-noise ratio (SNR) to 0.3, which is defined as

Figure 9.Reconstructions of the random inclusions using (left) Lippmann-Schwinger inversion and (right) the linear sampling
method.Top row: reconstructions obtained using the correct backgroundmodel and noise-free data.Middle row: reconstructions
obtained using an erroneous background velocitymodel and noisy data.Bottom row: reconstructions obtained for the case inwhich
only themass density varies. The value of the regularization parameterα is indicated above each plot.
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=
P

P
SNR ,

signal

noise

where P denotes average power (i.e. themean-square amplitude). Here,Psignal denotes the average signal power
taken over 24 traces per shot gather. A common shot gather of the scattered pressure fieldwith noise is shown in
figure 8(b).

In the third scenario, we generate the scattered pressure field psusing only the densitymodel shown in right
panel offigure 7, while the acoustic velocity is heldfixed at c0=2 m s−1 everywhere in themodel. Since neither
Lippmann-Schwinger inversion nor the linear samplingmethod are formulated to account for the jump
discontinuities in the density, bothmethods are expected to fail. Figure 8(c) shows a typical shot gather
corresponding to this limiting case.

Figure 9 shows the images obtained fromLippmann-Schwinger inversion (left column) and the linear
samplingmethod (right column) for each of the three scenarios. The top row shows the images obtained for the
case of the exact backgroundmodel and noise-free data. Bothmethods clearly reconstruct the shapes of the
random inclusions. This suggests that imagingwith thesemethods is still feasible despite jumpdiscontinuities in
the density so long as the velocity contrast is the dominant term in the contrast source function (5). Themiddle
row shows the images obtained for the case of an erroneous backgroundmodel and noisy data. For both
methods, we observe a dilation in the size and location of the random inclusions due to the erroneous
background velocity. The imprint of the noisy signal is evident in the gritty texture of the reconstructions
comparedwith the images in the top row. The bottom row shows the images obtained for the case inwhich the
scatterers represent pure density contrasts. As expected, bothmethods have failed to identify any coherent
structure of the random inclusions.

6.Discusion andConclusions

Wehavepresented an imagingmethodbased on solving the Lippmann-Schwinger equation of acoustic scattering
theory.Comparedwith the linear samplingmethod, both techniques formulate the imagingproblemwithout
using any prior knowledge orweak-scattering approximations of the unknownscatterer.Wehave validated the
physical interpretations of Lippmann-Schwinger inversion as a source reconstructionmethod for theperformed
physical experiment and the linear samplingmethod as a focusing technique for the corresponding virtual
experiments.Our numerical experiments show that the two imagingmethods give comparable reconstructions
when the imagingdomain fully contains the scatterer. Even in the presence of noise and an erroneous background
model, both imaging techniques give reasonable reconstructions.However, only the linear samplingmethod gives
physically consistent resultswhen the imaging domaindoes not contain the scatterer.

As discussed byMartin [20], many practical applications of acoustic scattering involve jump discontinuities
in themass density across the boundary of a scatterer. Unfortunately, these jump discontinuitiesmanifest as an
additional surface integral in the Lippmann-Schwinger equation over the unknown boundary of the scatterer.
This poses a significant challenge for Lippmann-Schwinger inversion in reconstructing such jump
discontinuities, especially if the scatterer is primarily caused by strong and sudden density variations. According
to expression (5), the contrast source function is sensitive to the illumination direction provided by the known
source position. Itmay be possible to gleanmore detailed information about the density properties of a scatterer
by analyzing the gradients of the contrast sourcewith respect to known source positions. As discussed byHaddar
et al [12], the sensitivity of the linear samplingmethod to dipole source distributions (such as density variations)
can be improved bymodeling the impulse response due to a dipole source.How to optimally choose the
orientation for the dipole test function remains an open problem, however. Additionally, the procedure
described byHaddar et al [12] requires solving the near-field equation formonopole and dipole sources
separately; it would be of practical interest if this could be done concurrently. Further work on acoustic inverse
scatteringmethods should consider these suggestions for handling jump discontinuities in themass density.
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