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Abstract
Light propagating in opposite directions around the same loop in general 
shows a relative phase shift when recombined. This phenomenon is known as 
the Sagnac effect after Georges Sagnac who, in 1913, demonstrated with an 
interferometer on a rotating table that the phase shift depended on the angular 
velocity of the table. In previous work we have given a very general formula 
for the Sagnac effect, valid in full general relativity. The relativistic effect not 
only contains the ‘classical’ contribution from the rotation of the laboratory 
but also contributions due its acceleration and due to incoming gravitational 
waves. Here, we point out a major consequence of this gravitational effect 
which may have implications for third generation gravitational wave detectors. 
We describe ‘antenna’ designs which pick out specific components of the 
Weyl tensor describing the incident gravitational waves.
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Introduction

In general relativity, a laboratory is modeled as a time-like world-line to measure the proper 
time t passing in the lab together with a set of space-like mutually orthogonal vectors (e1, e2, e3) 
attached at each point of the world-line [1]. This reference frame indicates the orientation of 
the lab in space-time at each instant of time. The lab may rotate, it may be accelerated and 
it may travel through an arbitrarily curved region of space-time. Introducing (generalized) 
Fermi coordinates (t, x1, x2, x3) adapted to the lab [2, 3] one can describe the geometry of 
space-time by means of its metric gab with respect to these coordinates by

g00 = 1 − 2alxl + 3(amxm)2 + ωimω
i
nxmxn + Rm0n0xmxn + O(x3),

g0k = ωklxl +
2
3

Rm0nkxmxn + O(x3),
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gkl = −δkl +
1
3

Rmlnkxmxn + O(x3).

Here, ai, ωi
k  and Rm0n0 etc are components of the acceleration and the angular velocity of 

the lab and of the Riemann tensor of the space-time. These quantities depend on t and the 
expressions are valid up to the given order in the spatial coordinates. The expressions will 
be good approximations to the exact expressions if the curvature terms are reasonably small. 
Therefore, we assume that the lab is in a reasonably flat region and not near any strong  
gravitational fields or singularities.

Suppose two photons travel around a closed loop C which has no self-intersections. It 
can be given in parametrised form as xi(s). The photons start at the same time at the point 
Q  =  xi(0), returning back to Q at different times depending on the travel direction. In [4] we 
derived the general formula for the difference in the arrival times of the photons. This formula 
is not immediately useful since it involves the solution of a differential equation along the 
path. However, with the very reasonable assumption that the travel time of the photons is 
negligibly small compared to the time scales of changes in the lab motion and the surrounding 
curvature one can derive the succinct formula

∆T = −2
∫

C

g0i

g00
dxi.

Using the Stokes theorem2 we can recast this line integral as a surface integral over a surface S 
which is bounded by the curve C. Inserting the expression for the metric in terms of the Fermi 
coordinates one obtains three terms contributing to the time difference.

To discuss them we use the usual 3-vector notation a and ω for the acceleration and the 
angular velocity (describing an infinitesimal rotation using the right-hand rule) and we use the 
position vector x and the vector n normal to the surface S. In this approximation, the inner 
product between these vectors is the usual flat 3-metric. Then, the first term becomes

∆ωT = 4
∫

S
ω · n d2S.

This is the classical Sagnac effect as first described by Sagnac [5, 6] expressed as the ‘rotation 
flux’ through the surface S. It is proportional to the magnitude of the angular velocity but it 
also depends on its direction in relation to the surface S and therefore to the curve C. In fact, 
by considering different shapes of C one can construct different ‘antennas’, i.e. configurations 
with different directional dependence. For instance, the curve which is described by the seam 
of a tennis ball is insensitive to rotations around the two axes piercing the opposite lobes but 
can detect rotations around the third axis. This contribution is translation invariant.

The second term depends on the rotation as well as the acceleration:

∆aT = 4
∫

S
(a · ω)(n · x)− 3(a · x)(ω · n) d2S.

The appearance of x shows that this contribution is not translation invariant, the time differ-
ence also depends on the position of the loop. This term can, at least in principle, be used to 
detect the acceleration of the lab in relation to the rotation axis and the orientation of the curve.

The third term is due to the curvature of the space-time and has two separate parts. One of 
the pieces is caused by the Weyl tensor and, hence, is related to gravitational waves while the 

2 We can use Stokes’ theorem here since we assume that the lab is far from singularities so that there are no  
topological restrictions.
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other part comes from the Ricci tensor and, therefore due to the Einstein equation, is caused 
by the matter content of the space-time:

∆RT = 4
∫

S
n · B · x d2S − 16π

∫

S
n · (x × j) d2S.

In the first term, B = (Bij) is a symmetric, trace-free 3 × 3-matrix which describes the magn
etic part of the Weyl tensor. It contains the information of gravitational waves propagating 
in the three spatial directions together with their two independent polarisation states. In the 
second part we find the momentum density j of the matter so that this term is caused by the 
flux of the material angular momentum density through S.

Both parts of the gravitational contribution depend on the position of the curve. For the 
remainder we focus on the gravitational wave part. To give a very simple example we consider 
a closed path without self-intersections in a plane with normal vector n through a point x0. We 
choose the axes so that n = e3, i.e. it points in the positive z-direction. Then the points on the 
plane can be written in the form

x = x0 + ue1 + ve2

and the curve itself is specified by a parametrization (u(t), v(t)). The time difference for pho-
tons traveling along that path is then obtained from the integral

∆RT = 4
∫

S
n · B · x d2S = 4A(n · B · x0 + n · B · e1u0 + n · B · e2v0)

where A is the (signed) area enclosed by the curve. Here, we have defined u0 = A−1
∫

S ududv 
and similarly for v0. These define the ‘center of mass’ of the area surrounded by the curve. 
Choosing this point as x0 we can obtain the simple formula

∆RT = 4A(n · B · x0)

for the time difference along a simple path in a plane with normal vector n passing through the 
point x0 which is the center of mass of the area A enclosed by the curve.

For this simple system the time difference depends on the location x0 of the loop. However, 
we can combine such loops and obtain more complicated configurations with better behav-
iour. One example is shown in figure 1. Other possibilities exist. The configuration consists 
of two identical loops which are almost closed and connected in such a way that a photon 
which travels counterclockwise in the upper loop around the z-axis will loop around in the 
clockwise direction in the lower loop. In the ideal situation, the vertical strip can be made arbi-
trarily small compared to the area enclosed by each loop. The loops are positioned so that the 
upper loop is centred around x0 = (a, b, c) and the lower one is centred at x1 = (a, b,−c). The  
orientation of the loops has the consequence that the normal vector is oriented along the posi-
tive z-axis in the upper part and points in the opposite direction in the lower part of the path.

The net effect of the time difference between two counter propagating photons can then be 
obtained by simply adding the contributions from each loop taking into account their different 
orientations. The result is

∆T = 4A(n · B · x0 + n · B · x1) = 4AB33H.

Here, we introduced the height H  =  2c of the configuration and we denote by A the area of one 
loop. This ‘antenna’ is sensitive to exactly one component of the magnetic part of the Weyl 
tensor. As a bonus, we find that it is not sensitive at all to the classical Sagnac effect when the 
vertical area is made zero.
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In a similar way we can construct a configuration which is sensitive to an off-diagonal 
element of the Weyl tensor, see figure 2. Here, we have assumed the loops to lie in the same 
plane. They are traversed with different orientations so that n = e3 for one loop and n = −e3 
for the other. The loops are centered around the points x0 = (−a, 0, 0) and x1 = (a, 0, 0), 
respectively, and connected along two crossing lines. For this system we obtain for the time 
difference between two counter propagating photons the value

∆T = 4A(n · B · x0 + n · B · x1) = 4AB13L

where we have introduced L  =  2a, the distance between the centres of the two loops. This shows 
that we can—at least in principle—devise configurations which are able to pick up all the com-
ponents of the Weyl tensor. In particular, a combination of such loops can be arranged in such a 
way that the antenna is also sensitive to the polarisation of the incident gravitational wave.

In some sense, detecting gravitational waves as proposed here is dual to the use of current 
detectors which are based on a Michelson type interferometer. These detect the wave form 
due to the geodesic deviation equation which is driven by the electric part of the Weyl tensor. 
This, and the particular design of Sagnac antennas may be of interest to future generations of 
gravitational wave detectors, see [7].

Figure 2.  A loop configuration to detect an off-diagonal element of the magnetic part 
of the Weyl tensor.

Figure 1.  A simple configuration of loops for a Sagnac detector for gravitational waves.
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Finally, we want to provide a rough estimate for the size of the effect. To this end we need 
to compute the Weyl tensor evaluated at the location the detector. We use the usual linear 
approximation for gravitational wave propagating towards the detector described by a metric 
perturbation hab exp(ikcxc) which satisfies the transverse-traceless gauge conditions kahab = 0 
and ha

a = 0. In this situation the Weyl tensor is proportional to 2k[ahb][ckd]. In the rest frame 
of the detector described by the 4-velocity ta its magnetic part is given in terms of the left-dual 
of the Weyl tensor by Bab = �Cacbdtctd. In the detector frame the propagation vector ka has 
the representation ka .

= ω(1, z) with z being the unit vector in the direction of propagation of 
the wave and ω  the angular frequency of the wave. The transverse-traceless amplitude of the 
gravitational wave has the form

hab
.
= h+(x ⊗ x − y ⊗ y) + h×(x ⊗ y + y ⊗ x).

Here, (x, y, z) is the frame adapted to the propagating wave with z being the direction of 
propagation and (x, y) spanning the transverse directions. The two polarisations of the wave 
have amplitudes h+ and h×. Putting these expressions together yields the magnetic part of the 
Weyl tensor Bab in the form

Bab
.
= −ω2 (h+(x ⊗ y + y ⊗ x)− h×(x ⊗ x − y ⊗ y)) .

Thus, the components of Bab in the detector frame (e1, e2, e3) are easily obtained. For example,

B33 = −ω2 (2h+(x · e3)(y · e3)− h×((x · e3)
2 − (y · e3)

2) .

Incidentally, this expression shows that the configuration of figure 1 does not register a gravi-
tational wave propagating along the detector, i.e. along the e3-direction. In any case, apart 
from the geometric terms involving the relative orientation between the detector frame and the 
incoming gravitational wave, the magnitude of the Weyl tensor components are determined by 
hω2 for a typical strain h.

With a strain of h ≈ 10−21 and a frequency ω  of roughly 1kHz (see e.g. [8]) corresponding 
to the time difference in physical SI units comes to

(
∆T

s

)
≈ 10−43

( ω

kHz

)2
(

A
km2

)(
H

km

)
.

A very similar estimate holds for the other configuration. The reason for this very small value 
is due to the factor c−3 which is necessary to convert between geometric and SI units. The 
smallness of the time difference makes it unlikely that this effect can be used in the very near 
future to measure gravitational wave effects caused by so called gravito-magnetism.
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