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Abstract
Kerr black hole immersed in test, asymptotically homogeneous magnetic 
field, aligned along the symmetry axis, is described by Wald’s solution. We 
show how the static case of this solution may be generalized for nonlinear 
electromagnetic models via perturbative approach. Using this technique 
we find the lowest order correction to Wald’s solution on Schwarzschild 
spacetime in Euler–Heisenberg and Born–Infeld theories. Finally, we discuss 
the problem of highly conducting star in asymptotically homogeneous 
magnetic field.

Keywords: black hole electrodynamics, nonlinear electromagnetic fields, 
neutron stars

1.  Introduction

Astrophysical black holes are surrounded by electromagnetic fields, produced by accompany-
ing accretion disk or a wider galactic environment. It is believed that some of these fields play 
a crucial role in formation of powerful jets, ejected from galactic centres by supermassive 
black holes. Apart from this, electromagnetic potentials and charges appear among the vari-
ables of black hole thermodynamics, representing a meeting point of gravity, thermodynamics 
and gauge theories. Therefore, the study of black hole electrodynamics spreads across the 
wide spectrum between phenomenological physics and academic, purely conceptual research.

Papapetrou has noticed [1] back in the 1960s that Killing vector fields, taken as gauge 
fields, satisfy the source-free Maxwell’s equations. Namely, if Ka is a Killing vector field of 
a spacetime (M,gab), then the 2-form F = dK immediately satisfies dF = 0. Furthermore, by 
the Killing lemma [2] we have

∇b∇bKa = Rab
bcKc = −Ra

cKc .� (1)
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So, if the spacetime metric gab is a solution of vacuum Einstein field equation Rab  =  0, it fol-
lows that d ∗F = 0 as well. In other words, such 2-form Fab represents a test electromagnetic 
field, solution of the source-free Maxwell’s equations on the spacetime (M, gab).

Using this observation, Wald [3] has found a solution representing a simplified analytical 
model of the natural black hole environment: Kerr black hole immersed in a magnetic field 
which is asymptotically homogeneous and aligned with the axis of symmetry of the black 
hole. Suppose that k = ∂/∂t is stationary Killing vector field, m = ∂/∂ϕ axial Killing vector 
field and a constant B∞ magnetic field strength at infinity. Then Wald’s solution in a space-
time of Kerr black hole with mass M and angular momentum J is given by

F =
1
2

B∞ (2a dk + dm)� (2)

where a  =  J/M. Normalization is chosen such that both corresponding Komar electric and 
magnetic charges [4] evaluated on sphere at infinity vanish,

Q∞ =
1

4π

∮

S∞

∗F = B∞(−2aM + 2J) = 0,� (3)

and

P∞ =
1

4π

∮

S∞

F = 0 .� (4)

In this paper we go one step further, by looking at nonlinear modifications of the clas-
sical Maxwell’s electrodynamics. Two earliest models of nonlinear electrodynamics (NLE) 
appeared back in 1930s: a phenomenological one proposed by Max Born and Leopold Infeld 
[5, 6] and a 1-loop QED correction calculated by Werner K. Heisenberg and Hans H. Euler 
[7]. Curiously enough, Born–Infeld theory reappeared half century later in low energy lim-
its of the string theory [8, 9]. Paradigmatic particle process which reveals nonlinearities in 
electromagnetic interaction is the ‘light-by-light’, γγ → γγ , scattering. The first direct exper
imental evidence of this process has been recently found by the ATLAS Collaboration [10], 
via measurement of colliding ultra-relativistic lead ions at the Large Hadron Collider (an 
overview of earlier experimental constraints on NLE models can be found in [11]). Further 
analyses [12, 13] of these results have strengthened the constraints on dimensionful parameter 
of Born–Infeld theory.

Compact astrophysical objects, such as neutron stars, often harbour very strong magnetic 
fields. In fact, magnetars, a special subclass of neutron stars, have the strongest magnetic fields 
known in the universe [14, 15], estimated to reach up to 1011 T  at the star’s surface. Such 
environments offer an opportunity for tests of nonlinear electromagnetic effects, complemen-
tary to those performed in particle colliders [16–19] (a critical re-examination of ‘quantum 
vacuum friction’ for the neutron star spin-down process has been recently presented in [20]).

The niche of NLE models has been heavily populated over the last three decades, based on 
various choices of NLE Lagrangian functions [21–28]. Large part of the motivation for this 
line of research comes from the quest for regular black hole solutions [29–36]. Namely, just 
as the quantum corrections can regularize divergences related to classical point charges, it is 
expected that a resolution of black hole singularities [37–40] might also appear within some 
of the NLE models (see, however, Bronnikov’s constraints in [41]). In order to understand 
consequences of nonlinearities of electromagnetic fields in general relativistic context better, 
it is important to analyse black hole exteriors immersed in such fields. Main objective of this 
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paper is to find a NLE generalization of the Wald’s solution on Schwarzschild spacetime, a 
magnetic field which is homogenoeus at spatial infinity and regular on the black hole horizon.

The paper is organized as follows. In section 2 we overview complications introduced by 
nonlinearities in Maxwell’s equations and why it is not straightforward to generalize Wald’s 
solution for NLE. In section 3 we explain the details of perturbative approach to problem 
and in section 4 we present a solution on Schwarzschild black hole background. Section 5 
is devoted to brief analysis of asymptotic properties of the field. In section 6 we present an 
alternative approach to the problem, via introduction of the magnetic scalar potential and in 
section 7 we discuss a related problem of (spherically symmetric, highly conducting) neutron 
star immersed in nonlinear magnetic field. In final section we briefly analyse the NLE gener-
alization of the Wald’s solution and highlight major open problems.

Conventions and notation. Basic electromagnetic invariants are defined as

F ≡ FabFab and G ≡ Fab ∗Fab .� (5)

One must be careful about the variations of the abbreviations used throughout the literature, 
where F  and G might come with an extra factor, such as ±1/4. Derivatives of functions with 
respect to these variables are denoted by subscripts, such as HF = ∂FH, HG = ∂GH and 
HFG = ∂G∂FH for some function H = H(F,G). We use subscript ‘∞’ for fields evaluated 
at infinity, that is in the limit when r → ∞, while the subscript ‘0’ is reserved for fields 
which are part of the basic Wald’s solution. Unless stated otherwise, we use natural units with 
c = G = 4πε0 = µ0/4π = 1.

2.  Nonlinear obstacles

Large class of NLE models can be described by Lagrangian density L (F,G), a sufficiently 
smooth function of electromagnetic invariants F  and G. Corresponding generalized Maxwell’s 
equations can be written as

dF = 0 , d ∗Z = 0� (6)

where Zab is an auxiliary 2-form,

Z = −4(LF F + LG ∗F) .� (7)

Can we still use Papapetrou’s ansatz in this NLE context? The second generalized Maxwell’s 
equation for F = dK is reduced to

dLF ∧ ∗F − dLG ∧ F = 0 .� (8)

Furthermore, as

dLF = LFF dF + LFG dG and dLG = LGF dF + LGG dG,� (9)

here one has to deal with terms such as dF ∧ F , dG ∧ F , dF ∧ ∗F  and dG ∧ ∗F . For example, 
using an auxiliary vector field Xa ≡ ∇aF , we have

∗(dF ∧ ∗F) = −iXF = −iXdK = (diX − £X)K .� (10)

Now, although

iXK = Ka∇aF = £KF = 0,� (11)

and

£XKa = −£KXa = −£K∇aF = −gab ∇a£KF = 0,� (12)
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nevertheless

£XKa = £X(gabKb) = Kb£Xgab,� (13)

which in general does not have to vanish! There is even less hope that combination of all the 
terms mentioned above might ‘conspire’ to cancel each other. The bottom line is that the basic 
ansatz F = dK simply does not work for general NLE and one has to find an alternative.

One possible modification of the original idea is to use rescaled Killing vector field, so that 
F = d(ψK) with some auxiliary function ψ. However, although we immediately have dF = 0, 
the other equation d ∗Z = 0 implies

(LF ∗dK + dLG ∧ K) ∧ dψ + dLF ∧ iK∗dψ
+ LF(∗d£Kψ − (�ψ) ∗K) + (dLF ∧ ∗dK − dLG ∧ dK)ψ = 0 .
� (14)

Main complication here comes from the fact that both invariants F  and G are quadratic in 
ψ, thus for some general Lagrangian we are dealing with highly nonlinear differential equa-
tion for ψ. Unfortunately, we were not able to find a systematic approach for the exact solution 
of this problem.

In order to make some progress we resort to an approximation scheme, by looking at the 
perturbative expansion around original Wald’s solution.

3.  Perturbative approach

NLE Lagrangian densities considered throughout the literature are usually assumed to be a 
function that allows a double Taylor series expansion,

L (F,G) =
∞∑

m,n=0

cmn F
mGn

� (15)

with some real coefficients cmn. Without loss of generality one might assume here that 
c00 = c01 = 0, as these are non-dynamical terms. Also, for consistency with low-energy 
Maxwellian limit, we must take c10  =  −1/4. CP-violating term c11 [16, 42] has been recently 
constrained by the measurements at the ATLAS Collaboration [13]. Here we are mainly inter-
ested in models with c11  =  0. Two most well-known examples are Euler–Heisenberg theory, 
with

L (EH) = −1
4
F +

α2

360m4
e

(
4F2 + 7G2)+ . . .� (16)

where α is the fine-structure constant and me electron mass, and Born–Infeld theory,

L (BI) = b2

(
1 −

√
1 +

F

2b2 − G2

16b4

)
� (17)

with parameter b (effectively, the upper bound for electromagnetic field strength). Lagrangian 
density (17) can be expanded as

L (BI) = −1
4
F +

1
32b2

(
F2 + G2)+ . . .� (18)

In what follows, we shall assume that electromagnetic Lagrangian density, expanded with 
respect to a physical coupling constant λ, has a form
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L (F,G) = −1
4
F + λ�(F,G) + O(λ2) .� (19)

For the gauge field 1-form Aa we use the ansatz

Aa = Ka + λva + O(λ2)� (20)

where va is some unknown 1-form, perturbative correction to the basic Wald’s solution. 
Consequently, electromagnetic 2-form is

F = F0 + λ dv + O(λ2),� (21)

with F0 ≡ dK . We already know that dF0 = 0 = d∗F0, so that dF = 0 is satisfied at the O(λ1) 
order. Let us look more closely at the second NLE Maxwell’s equation,

d(LF ∗F − LG F) = 0 .� (22)

Using expansions

LF = −1
4
+ λ�F + O(λ2) , LG = λ�G + O(λ2)� (23)

we get

d∗Z = λ (d∗dv − 4 d�F ∧ ∗dK + 4 d�G ∧ dK) + O(λ2) .� (24)

Furthermore, using

d�F = �FF dF + �FG dG,� (25)

d�G = �GF dF + �GG dG� (26)

and expansions of the electromagnetic invariants,

F = F0 + 2λ(dK)ab(dv)ab + O(λ2),� (27)

G = G0 + 2λ(∗dK)ab(dv)ab + O(λ2),� (28)

we get the master equation for va,

d∗dv = ∗Jeff� (29)

with ‘effective 4-current’ Ja
eff , such that

∗Jeff = 4(�FF dF + �FG dG)0 ∧ ∗dK − 4(�GF dF + �GG dG)0 ∧ dK .� (30)

The ‘0’ subscript above implies that terms in parenthesis have to be evaluated for the basic 
F0 = dK  ansatz. Just for consistency, it is straightforward to check that ∗Jeff is indeed a closed 
3-form,

d∗Jeff = 0 .� (31)

Our main focus will be on the Euler–Heisenberg Lagrangian, with

�(EH) = 4F2 + 7G2 , λ(EH) =
α2

360m4
e

,� (32)

and the Born–Infeld Lagrangian, with

�(BI) = F2 + G2 , λ(BI) =
1

32b2 .� (33)
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As in both of these examples we have �FG = 0, that is c11  =  0, the master equation  (29) 
reduces to

d∗dv = 4(�FF dF)0 ∧ ∗dK − 4(�GG dG)0 ∧ dK .� (34)

Before we proceed, let us make several comments on the regime of applicability of the 
approximation scheme presented in this section. Namely, we assume that the electromagnetic 
field is strong enough to reveal nonlinear corrections, but still weak enough to allow test field 
approximation. In the absence of exact solutions, magnitude of order estimations in differ
ential equations are often a slippery slope, but still one can hope that basic relevant infor-
mation might be extracted if all relevant scales are taken into account. For example, if the 
Einstein’s tensor Gab is of order L−2

g , where Lg is a characteristic gravitational length scale 
for the problem, while the energy density of the magnetic field is B2/2µ0, then the weak field 
condition, based on comparison of the left and right hand sides of the Einstein gravitational 
field equation, could be written as L−2

g � 4πGB2/c4µ0. A sensible choice for Lg would be 
Schwarzschild radius, Lg ∼ 3(M/M�) · 103 m, where M� is the Solar mass. This gives us 
condition |B| � (M�/M) · 1015 T, which indicates that even the strongest known magnetic 
fields can be treated as test fields, as long as the black hole mass M is below the order of 
104 M� (similar discussion can be found in [43]).

4.  Setting the problem upon the Schwarzschild spacetime

Schwarzschild spacetime metric is a static, spherically symmetric solution of vacuum Einstein 
equation [2],

ds2 = −f (r) dt2 +
dr2

f (r)
+ r2 (dθ2 + sin2 θ dϕ2)� (35)

with

f (r) = 1 − 2M
r

.� (36)

Schwarzschild spacetime possesses two Killing vector fields, stationary k = ∂/∂t and axial 
m = ∂/∂ϕ. In general we might start with the Killing vector field

Ka = αka + βma,� (37)

with some real constants α and β. Corresponding electromagnetic invariants, evaluated for 
F0 = dK , are given by

F0 = −8M2

r4 α2 + 8
(

1 − 2M
r

sin2 θ

)
β2� (38)

and

G0 = −16M
cos θ

r2 αβ .� (39)

As in the Wald’s solution for the Schwarzschild case, we shall focus on the choice α = 0, 
which will a posteriori prove to be appropriate for our problem (note that in the Wald’s solu-
tion parameter α is proportional to the angular momentum J). Here we have an important 
simplification G0 = 0, so that equation (29) reduces even further to

A Bokulić and I SmolićClass. Quantum Grav. 37 (2020) 055004
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d∗dv = 4β(�FF dF)0 ∧ ∗dm .� (40)

Direct calculation gives

dF0 ∧ ∗dm =
32Mβ2 sin θ

r

(
f (r) sin2 θ − 2 cos2 θ

)
dt ∧ dr ∧ dθ .� (41)

Symmetries of the problem suggest that an appropriate ansatz is of the form v = h(r, θ) dϕ. 
This allows us to find a solution of the equation (40)

v = C
(

4(2r − 5M) cos(2θ) + (M − 2r)
(
3 + cos(4θ)

))
dϕ,� (42)

with a constant C. As

d∗dv =
64C sin θ

r

(
f (r) sin2 θ − 2 cos2 θ

)
dt ∧ dr ∧ dθ� (43)

it follows that C = 2β3M(�FF)0 . The remaining constant β can be fixed from boundary con-
ditions, as discussed below.

5.  Asymptotia

We want to make sure that the perturbative solution found in the previous section is such that 
(a) asymptotically represents homogeneous magnetic field, and (b) corresponding electric and 
magnetic Komar charges remain zero at the O(λ1) level.

Homogeneous magnetic field in Minkowski spacetime can be written as B∞ dz =  
B∞ d(r cos θ), with constant B∞, and the corresponding electromagnetic 2-form is

F∞ = B∞
(
r sin2 θ dr ∧ dϕ+ r2 cos θ sin θ dθ ∧ dϕ

)
.� (44)

Wald’s solution in Schwarzschild is given by 2-form

F0 =
1
2

B∞ dm = B∞
(
r sin2 θ dr ∧ dϕ+ r2 cos θ sin θ dθ ∧ dϕ

)
.� (45)

Formally, this has exactly the same functional form as (44). As Schwarzschild spacetime met-
ric is asymptotically flat, this immediately proves that field (45) asymptotically represents 
homogeneous magnetic field.

In the NLE case one has to check behaviour of the 1-form va at spatial infinity. As

dv =− 32β3M(�FF)0
(
sin4 θ dr ∧ dϕ

+ (2r − 5M + (M − 2r) cos(2θ)) sin θ cos θ dθ ∧ dϕ
)�

(46)

we have

lim
r→∞

(dv)rϕ

(F0)rϕ
= 0, and lim

r→∞

(dv)θϕ
(F0)θϕ

= 0,� (47)

so that 2-form F = F0 + λdv  asymptotically behaves as Wald’s F0. Also, note that corre
sponding vector field va, unlike gauge field Aa = Ka, vanishes at infinity, limr→∞ vµ = 0.

All this allows us to choose normalization just as in the Wald’s solution, β = B∞/2, so 
that finally

v =
(�FF)0

4
B3
∞M

(
4(2r − 5M) cos(2θ) + (M − 2r)

(
3 + cos(4θ)

))
dϕ .

� (48)
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Electric charge QS and magnetic charge PS enclosed by a smooth closed 2-surface S are 
given by Komar integrals,

QS =
1

4π

∮

S

∗Z, and PS =
1

4π

∮

S

F .� (49)

Now, we know that both Q∞ and P∞ for Wald’s solution are zero by construction. Using the 
expansion

∗Z = ∗F0 +
(

4(−�F∗F + �GF)0 + ∗dv
)
λ+ O(λ2)� (50)

and the fact that �F = 2F , �G = 2G, limr→∞ F0 = 8β2, (∗F0)θϕ = 0 and (∗dv)θϕ = 0, elec-
tric charge Q∞ remains unaltered in our solution at the O(λ1) order. Furthermore, (dv)θϕ con-
tains sin(2θ) and sin(4θ) parts, both of which vanish upon integration over the interval [0,π], 
so that magnetic charge P∞ also remains unaltered, that is zero.

6.  Scalar potentials

Just as in classical electrostatics and magnetostatics, a useful strategy for problem solving is 
introduction of scalar potentials, whenever this is possible [44–46]. Magnetic field 1-form 
defined with respect to a vector field Xa is given by B[X]a ≡ Xb ∗Fba. A convenient choice 
for Xa is a Killing vector field Ka: Assuming that electromagnetic field is symmetry inheriting 
[47–56], £KFab = 0, solution of source-free Maxwell’s equations, corresponding magnetic 
1-form will be closed,

dB[K] = diK∗F = (£K − iKd) ∗F = 0 .� (51)

Furthermore, if the black hole exterior is simply connected, then there is a globally defined 
function Ψ, magnetic scalar potential, such that B[K] = −dΨ. Just as the surface gravity, the 
potential Ψ is also constant over a Killing horizon [44, 45]. For example, magnetic field for 
Wald’s solution, defined with respect to the Killing vector field k = ∂/∂t, is

B0[k] = B∞ (cos θ dr − rf (r) sin θ dθ) ,� (52)

and, up to constant, corresponding scalar potential is

Ψ0 = −B∞f (r) r cos θ .� (53)

The gauge choice implicitly used here is such that potential vanishes at the horizon, 
limr→2M Ψ0 = 0. At the spatial infinity we have limr→∞ Ψ0 = −B∞z.

In NLE the magnetic field 1-form B[K]a is no longer necessarily closed, but one might 
introduce another, ‘nonlinear H-field’ H[K]a ≡ Kb ∗Zba, which is closed [56] by analogous 
reasoning,

dH[K] = diK∗Z = (£K − iKd) ∗Z = 0 .� (54)

This allows us to introduce NLE magnetic scalar potential Υ, via H[K] = −dΥ. Constancy of 
the potential Υ over a Killing horizon was recently discussed in [56].

On static spacetime Maxwell’s equations imply a divergence equation [4]

∇a

(
B[k]a

N

)
= 0,� (55)

where N ≡ kaka. From here we immediately have the equation for the scalar potential. For 
example, for axially symmetric potential Ψ in Schwarzschild spacetime it reads

A Bokulić and I SmolićClass. Quantum Grav. 37 (2020) 055004
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L[Ψ] ≡ f (r)
∂

∂r

(
r2 ∂Ψ

∂r

)
+

1
sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
= 0,� (56)

where we have, in order to simplify some equations below, introduced a differential operator 
L. Note that L[Ψ] = −r2f (r)∇a((∇aΨ)/N). Partial differential equation (56) allows a sepa-
ration of variables via Ψ(r, θ) = R(r)P(cos θ). The θ-part comes out, not surprisingly, as a 
solution of the Legendre differential equation, while the radial part is a function of the form

R�(r) =
( r

2M
− 1

)(
a�P′

�

( r
M

− 1
)
+ b�Q′

�

( r
M

− 1
))

,� (57)

with Legendre polynomial P� and Legendre function of the second kind Q�. Some of the earli-
est treatments of these solutions can be traced back to 1960s [57, 58] and early 1970s [59, 60].

The NLE case is considerably more delicate and, in order to simplify matters, we shall 
reach for some additional assumptions. Despite the fact that (55) still holds in the NLE case, as 
the magnetic scalar Υ is defined with respect to the H-field, we need to find the corresponding 
divergence equations. Our focus will be on solution which are ‘purely magnetic’ in a sense 
that kbFab = 0. In this case we have a useful relation

H[k]a = −4kb ∗Zba = −4LF kb ∗Fba = −4LFB[k]a� (58)

which can be used in (55) to get

∇a

(
H[k]a

NLF

)
= 0 .� (59)

Again, as above, we resort to perturbative approach, by expanding everything with respect to 
coupling constant λ. In order to simplify notation, we assume that � = pF2 + qG2, with some 
real constants p  and q. Note that ( p, q) = (4, 7) in the Euler–Heisenberg case, ( p, q) = (1, 1) 
in the Born–Infeld case, and �FF = 2p in both of them. First of all we have

Υ = Ψ0 + λΨ1 + O(λ2),� (60)

and, after some algebra,

∇a

(
Ha

N

)
− 16pλ∇a

(
HbHb

N2 Ha
)
+ O(λ2) = 0,� (61)

where, for simplicity, we have suppressed the argument ‘[k]’. This gives us back the zeroth 
order equation ∇a((∇aΨ0)/N) = 0 and the equation for the perturbation,

∇a
(
∇aΨ1

N

)
= 16p∇a

(
(∇bΨ0)(∇bΨ0)

N2 ∇aΨ0

)
.� (62)

More concretely, if we insert Wald’s solution (53), equation (62) becomes

L[Ψ1] = 48pMB3
∞f (r) sin(2θ) sin θ .� (63)

For this problem one may use an ansatz of the form

Ψ1(r, θ) = f (r)
(

a(r) + b(r) cos(2θ)
)
cos θ� (64)

and, by choice of integration constants, discard part of the solution that grows faster than O(r1) 
at spatial infinity. Finally, this gives us

Ψ1(r, θ) = 4pB3
∞ f (r)

(
4r − 5M + M cos(2θ)

)
cos θ .� (65)
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It is straightforward but tedious exercise to check that the electromagnetic field given by this 
scalar potential indeed agrees with the previously obtained correction (48) to Wald’s solution.

7.  Remarks on neutron stars

The analysis above assumes that a black hole is present in spacetime, and part of the boundary 
conditions is regularity of the fields at the black hole horizon. Somewhat different situation 
appears if instead of a black hole we have a star. Here we are looking at an idealized model 
of a relativistic, spherically symmetric and highly conducting star. Although the electric con-
ductivity in different parts of a neutron star may significantly vary, from non-superconducting 
outer layers to superconducting core [61–63], we shall simply assume that the whole star is 
represented by a ball of infinite electric conductance. On top of all this, we shall initially strip 
the star of its internal magnetic field (which may be subsequently superposed for slightly more 
realistic model) and immerse it in external test homogeneous magnetic field, just as we did 
with the black hole.

Superconducting materials in laboratory exhibit the Meissner effect, expulsion of external 
magnetic field. If a superconducting ball of radius R is placed in a homogeneous magnetic 
field of strength B∞, the resulting field is a superposition of the external field and a dipole 
magnetic field produced by induced surface currents. Induced magnetic dipole can be found 
from classical junction condition, continuity of normal component of magnetic field at bound-
ary surface, and in flat, Minkowski case is given by µ = −B∞R3/2.

Let us now turn to a more general case of a static spacetime. We assume that spacetime 
can be foliated by diffeomorphic ‘equal time’ hypersurfaces Σ, each of which contains a com-
pact spacelike 2-surface S ⊆ Σ, such as a boundary of a star, with normal na. The divergence 
relation (55) allows us to deduce a junction condition for the magnetic field at S. Assuming 
that square of the Killing vector N is continuous at S, it follows that the normal component of 
magnetic field, naBa, has to be continuous at S as well. If, in addition, magnetic field vanishes 
in part of the spacetime bounded by S (star’s interior) then we know that in fact naBa = 0 at S, 
and the scalar potential Ψ satisfies Neumann boundary condition, na∇aΨ = 0 at S.

Back in the 1960s, in a precursor to no-hair theorems, Ginzburg and Ozernoy [57] have 
analysed the magnetic dipole field in Schwarzschild spacetime. Part of the solutions, discussed 
in section 6, corresponding to this field is given by the � = 1 term in the scalar potential,

ΨGO(r, θ) =
3µ

(2M)2

(
1 + f (r) +

r
M

f (r) ln f (r)
)
cos θ .� (66)

Expansion for large r reveals classical potential on Minkowski background in the lowest order 
term,

ΨGO(r, θ) =
(

r−2 + O(r−3)
)
µ cos θ .� (67)

As we seek for the asymptotically homogeneous field, we may simply add Wald’s solution,

Ψ = Ψ0 +ΨGO .� (68)

Neumann boundary condition has to be imposed on the surface of our superconducting ball 
of radius R  >  2M,

∂Ψ(R, θ)
∂r

= 0,� (69)
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from where one may find the induced magnetic dipole moment,

µ =
(2M)2B∞

3

(
3 − f (R)

R
+

1
M

ln f (R)
)−1

.� (70)

We are not aware if this result was discussed previously in the literature. If one looks at the 
dipole moment µ as a function of mass M, its Taylor series around M  =  0 reads

µ(M) = −B∞R3

2
+

3B∞R2

4
M + O(M2),� (71)

in agreement with the flat case, as limM→0 µ(M) = −B∞R3/2. Furthermore, as Maxwell’s 
equations are linear, we might bring back the internal star’s magnetic field simply by super-
posing it with the solution obtained here. For example, if the star’s magnetic field is modelled 
by the dipole field, effectively we just have to replace the magnetic dipole moment µ with 
some novel µ̃ .

Now, one might ask what happens if we take into account nonlinear electromagnetic effects? 
First we have to carefully re-examine junction conditions. In ‘purely magnetic’ case 1-forms 
B[k]a and H[k]a are related by equation (58). Assuming that LF is finite at S, vanishing of 
naBa = 0 at the superconducting boundary S implies that naHa = 0 and na∇aΥ = 0 at S.

If we write the basic solution as Ψ = R(r) cos θ, the linearized equation for the potential 
(62) takes the form

L[Ψ1] = −4p sin(2θ)
f (r)

(ρ+(r) + ρ−(r) cos(2θ)),� (72)

where we have introduced two auxiliary functions,

ρ±(r) =±
(

r(r − 2M)R′′ − 2MR′ − 4R
)

R2

+ r(r − 2M)
(
(r − 2M)(3rR′′ + 2R′) + (−2 ± 4)R

)
R′2 .

�
(73)

Figure 1.  Contour plots in r–θ plane for M  =  1 (black hole horizon is denoted by the 
black circle in the middle). Left: Contour plot of correction F̂1. Right: Contour plot of 
rescaled relative correction 8β2 F̂1/F0 .
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This is a linear, nonhomogeneous partial differential equation, with known homogeneous 
solutions (see section  6). Usual technique for the particular solution includes integration 
of the associated Green’s function (see [60, 64, 65]) with the inhomogeneity. However, in 
this case the result is an infinite series, where each term (evaluated with help of the package 
Mathematica) is itself a nontrivial sum of over a hundred of functions, combination of poly-
nomials, logarithms and polylogarithms in radial coordinate. Written in this way, solution 
becomes completely intractable and it is highly nontrivial to impose boundary conditions. It 
remains an open question if this problem can be solved in a closed, analytical form.

We note in passing that the analysis in [43, 66] is somewhat related as it treats the QED 
corrections (modelled by the Euler–Heisenberg Lagrangian) of magnetic dipole on spherically 
symmetric neutron star, albeit with completely different formalism.

8.  Discussion

Correction to Wald’s solution may be represented in multitude ways. If one expands magnetic 
field, defined with respect to the Killing vector field ka,

B[k] = B0[k] + λB1[k] , B1[k] ≡ ik∗dv,� (74)

we have explicitly

B1[k] =4M(�FF)0B3
∞

(
f (r) sin3 θ dθ

− cos θ

r
(2r − 5M + (M − 2r) cos(2θ)) dr

)
.

�
(75)

Physical magnetic field, on the other hand, is the one measured by some concrete physi-
cal observer (measuring apparatus). For example, for the static observer with 4-velocity 
ua = ka/

√
−N  we have

B[u]a =
1√
f (r)

B[k]a .� (76)

Still, we find that it is better to look first at the observer independent quantities, such as 
electromagnetic invariants. Correction to the first electromagnetic invariant may be decom-
posed as F = F0 + δF . Just to put all the prefactors aside we introduce

F̂1 ≡ − 1
16B3

∞M(�FF)0
(dm)ab(dv)ab,� (77)

so that

δF = −16λB4
∞M(�FF)0 F̂1 + O(λ2) .� (78)

Direct calculation gives

F̂1 =
1
r

f (r) sin4 θ +
cos2 θ

r

(
(3 + f (r)) sin2 θ − 2(1 − f (r))

)
.� (79)

The solution is regular on the black hole horizon, as F̂1 remains bounded for r → 2M . Contour 
plots for F̂1 can be seen on figure 1.

The picture reveals an interesting feature, local maxima of F̂1 along two circles at (rc, θ±). 
Analytically, from ∂rF̂1 = 0 and ∂θF̂1 = 0, one gets respectfully
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48M − 7r + 4(r + 4M) cos(2θ) + 3r cos(4θ) = 0,� (80)

(r + 2M + 3r cos(2θ)) sin(2θ) = 0 .� (81)

This system of equations may be simplified with a substitution x = cos(2θ), leading to a solu-
tion (here we are looking only at the black hole exterior, r  >  2M)

rc =
4 +

√
13

2
M , cos(2θ±) =

4
√

13 − 19
9

.� (82)

Approximately, these are rc ≈ 3.8M, θ+ ≈ 60.3◦ and, as cos(2(π − θ)) = cos(2θ), 
θ− ≈ 119.7◦. It would be interesting to see if this local maxima has some ramifications on 
trajectories of charged particles around the black hole, opening an opportunity for astrophysi-
cal tests.

A recent pair of papers [67, 68] treat electromagnetic perturbations of static, spherically 
symmetric, charged black holes, bearing some resemblance to the analysis presented here. 
However, these papers are mainly focused on study of quasinormal modes (thus, different 
asymptotic boundary conditions) with less general class of NLE Lagrangians, L = L (F).

What happens if we have a NLE model with a c11 term? Assuming that we still have 
G0 = 0, the additional term on the right hand side of the master equation (29) is proportional 
to

dF0 ∧ dm = 96β2M sin3 θ cos θ dr ∧ dθ ∧ dϕ .� (83)

Using a generalized ansatz, Aa = βma + λ(va + ṽa), we were able to find a solution

ṽ = 2Mf (r)(cos(3θ)− 9 cos θ) dt .� (84)

Although this correction does not affect asymptotic homogeneous magnetic field, nor does it 
alter the zero values of charges Q∞ and P∞, it however introduces the electric field in a sense 
that in general kbFab �= 0 throughout the spacetime, even as r → ∞. A natural step forward 
is to look at the further generalization with Ka = αka + βma, but as this introduces G0 �= 0, 
equations become considerably more complicated and we leave this line of research for the 
future work.

Finally, two most important open questions that remain are (1) NLE perturbations of the 
neutron star immersed in homogeneous magnetic field (partially solved in section 7 above), 
and (2) generalization of this whole analysis for rotating compact objects, first and foremost 
Kerr black hole immersed in NLE environment. The rotating case is, as usual, a formidable 
task, which in the case of NLE perturbations can be easily demonstrated by complexity of 
invariants F0 and G0 evaluated on the Kerr spacetime, which directly translates into complex-
ity of the ‘effective 4-current’ Ja in the master equation  (29). Investigation of the possible 
alternative techniques (see e.g. [69]) of generalization of these solutions to non-static cases is 
left for the future work.
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Appendix A.  Some identities from differential geometry

Suppose that (M, gab) is a smooth Lorentzian manifold. The Hodge dual of a p -form ωa1...ap 
is defined as

(∗ω)ap+1...am =
1
p!

ωa1...apε
a1...ap

ap+1...am ,� (A.1)

while twice applied Hodge dual results in

∗∗ω = (−1) p(m−p)+1 ω .� (A.2)

Contraction of a p -form ωa1...ap with a vector Xa is defined by

(iXω)a1...ap−1 = Xb ωba1...ap−1 .� (A.3)

Calculations can often be simplified by ‘flipping over the Hodge’,

iX∗α = ∗(α ∧ X),� (A.4)

with a slight abuse of notation: the X on the right hand side denotes the 1-form Xa = gabXb 
associated with the vector Xa. For a smooth vector field Xa we have the Cartan’s identity

£X ω = (iXd + diX)ω .� (A.5)

The Lie derivative commutes with the exterior derivative, £Xdω = d£Xω, while the Lie deriv-
ative with respect to a Killing vector field Ka commutes with the Hodge dual, £K ∗ω = ∗£Kω.

Appendix B.  Useful bits

Throughout the calculations one has to repeatedly use some Hodge duals, so it is useful to 
collect them in one place,

∗(dt ∧ dr) = −r2 sin θ dθ ∧ dϕ , ∗(dθ ∧ dϕ) =
1

r2 sin θ
dt ∧ dr� (B.1)

∗(dt ∧ dθ) =
sin θ

f (r)
dr ∧ dϕ , ∗(dr ∧ dϕ) = − f (r)

sin θ
dt ∧ dθ� (B.2)

∗(dt ∧ dϕ) = − 1
f (r) sin θ

dr ∧ dθ , ∗(dr ∧ dθ) = f (r) sin θ dt ∧ dϕ.� (B.3)

Also, we have

1
2

dm = r sin2 θ dr ∧ dϕ+ r2 cos θ sin θ dθ ∧ dϕ,� (B.4)

and

1
2
∗dm = cos θ dt ∧ dr − rf (r) sin θ dt ∧ dθ .� (B.5)
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For 1-form w = v/C , where va is the solution given by (42), we have

dw =− 16 sin4 θ dr ∧ dϕ

− 8 sin(2θ)
(

2r − 5M + (M − 2r) cos(2θ)
)

dθ ∧ dϕ,
�

(B.6)

and

∗dw =16f (r) sin3 θ dt ∧ dθ

− 16
cos θ

r2

(
2r − 5M + (M − 2r) cos(2θ)

)
dt ∧ dr .

�
(B.7)
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