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Abstract
We further develop the gravitational model, Thomas-Whitehead gravity 
(TW Gravity), that arises when projective connections become dynamical 
fields. TW Gravity has its origins in geometric actions from string theory 
where the TW projective connection appears as a rank two tensor, Dab, on 
the spacetime manifold. Using a Gauss–Bonnet (GB) action built from the 
(d + 1)-dimensional TW connection, and applying the tensor decomposition 
Dab = Dab + 4Λ/(d(d − 1))gab, we arrive at a gravitational model made 
up of a d-dimensional Einstein–Hilbert  +  GB action sourced by Dab and 
with cosmological constant Λ. The d = 4 action is studied and we find that 
Λ ∝ 1/J0, with J0 the coupling constant for Dab. For Λ equal to the current 
measured value, J0 is on the order of the measured angular momentum of the 
observable Universe. We view this as Λ controlling the scale of patches of the 
Universe that acquire angular momentum, with the net angular momentum 
of multiple patches vanishing, as required by the cosmological principle. We 
further find a universal axial scalar coupling to all fermions where the trace, 
D = Dabgab acts as the scalar. This suggests that D is also a dark matter portal 
for non-standard model fermions.
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1.  Introduction

The two great, outstanding cosmological and astrophysical problems are the natures of dark 
energy and dark matter. Together, they comprise roughly 95% of the energy of the Universe, 
though their identities are unknown. Dark matter is hypothetically the glue holding galaxies 
together, since current measurements indicate that the outer regions of galaxies are spinning 
faster than what would be predicted from the gravitational pull of only the baryonic matter 
within the galaxies. Using merry-go-rounds as analogies to galaxies, the outer regions of gal-
axies are like children standing on the edges of rapidly spinning merry-go-rounds, with Dark 
matter playing the role of the adults holding on to the children to keep them from flying off.

Dark energy is the name given to the unknown substance which acts like a negative pres
sure, pulling the Universe apart. We are currently in an era of dark energy domination as the 
density of matter has become diffuse enough within the last four or five billion years for the 
small yet constant density of dark energy to become larger than the density of matter. Current 
measurements indicate that the present action of dark energy is consistent with a cosmological 
constant, thus dark energy will continue to expand the universe at an accelerated rate for an 
infinite amount of time, given there are not changes in the identity of dark energy.

Treating cosmological parameters as fundamental constants has a long history, though it is 
seldom discussed. In 1937, Dirac considered dimensionless constants involving for instance 
the Hubble constant H0 and the charge e and mass m of the electron [1]. Dirac noted that 
H0mc3/e2 was on order of the ratio between the electric and gravitational forces between 
electrons and protons. In 1972, Weinberg [2] reviewed this approach as an introduction to his 
review of Brans and Dicke’s model of scalar-tensor gravity [3]. More recently [4] considered 
a relation between the vacuum energy and the hierarchy of forces. In [5] the cosmological con-
stant itself was considered as a fundamental constant. In this paper, we introduce the cosmic 
angular momentum constant J0 as a coupling constant in the recently introduced tensor–tensor 
model of gravity based on dynamical projective geometry [6]. We refer to this model as TW 
gravity after Thomas and Whitehead’s early work in projective geometry [7–9].

While the action of TW gravity will be manifestly invariant under projective transforma-
tions, it is not necessarily true that physical observables will also be projectively invariant. 
Indeed, cosmological observables such as the deceleration (q) and jerk ( j) have been shown 
[10] to transform non-trivially under projective transformations. We also stress the point that 
the construction of TW gravity only exploits the existence of a projective structure. It is well-
known that both projective and conformal structure are necessary to fully set up the notion of 
space-time geometry [11].

We demonstrate both dark energy and some dark matter applications of TW gravity. In 
the context of recent work [6], we consider TW gravity to be inspired by string theory and 
2D quantum gravity. We present here the pure Gauss–Bonnet TW gravity as an initial invest
igation. The pure GB action has the feature of becoming an Einstein–Hilbert action with an 
additional interaction when we use a particular ansatz for the diffeomorphism field. In par
ticular, we are able to predict a bare cosmological constant term in the action that depends 
on an angular momentum parameter J0 that we argue is of cosmological scale (i.e. sums of 
galactic and/or CMB angular momenta), rather than the fundamental physics scale �. This 
predicts the bare cosmological constant to be on the order of today’s measurements. We also 
argue that it is more natural to take this angular momentum parameter J0 of TW gravity to be 
of cosmological scales as TW gravity is a classical action taken to describe the entire Universe 
rather than individual particle physics experiments. We demonstrate how the Einstein–Hilbert 
action becomes manifest within this pure Gauss–Bonnet TW gravity, for a particular decom-
position of the diffeomorphism field. The cosmological constant then arises naturally. This 
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distinguishes the present strategy from other efforts where f (R) gravity and/or massive grav-
ity is included in gravitational studies of dark energy and dark matter [12–15].

It is important to note that the cosmological constant we generate arises from the angular 
momentum parameter J0 associated with a dynamical projective connection. The references 
[10, 16, 17] demonstrate how a projective transformation between different Friedmann–
Lemaitre–Robertson–Walker metrics leads to a shift in the cosmological constant. However, 
they do so without association to a dynamical projective connection.

This paper is organized as follows. In section 2 we review the cosmological constant prob-
lem and outline our approach to a solution. We mostly focus on generating a small, bare cos-
mological constant related to the cosmic angular momentum constant J0. We defer analysis of 
quantum fluctuations of the vacuum to a later time, noting that developing a supersymmetric 
version of TW gravity is an obvious avenue to consider. Alternatively, there are many non-
supersymmetric ideas that may bear fruit with a merger of TW gravity [18–24].

Since projective connections are central in the TW gravity approach, we give a brief projec-
tive geometry primer in section 3. The salient ingredients needed to discuss cosmology in the 
framework of TW gravity are laid out. These ingredients are then used in section 4 to construct 
the pure (i.e no explicit Einstein–Hilbert action) Gauss–Bonnet TW action using the dynam-
ics discussed in [6]. By starting with the projective Gauss–Bonnet action, and using a natural 
decomposition of the diffeomorphism field,

Dab = Dab + Λ
4

d(d − 1)
gab,� (1.1)

we generate an Einstein–Hilbert action with bare cosmological constant Λ, and an interac-
tion term that couples Dab to the metric. Dab will further be decomposed into a traceless and 
trace term. We show that the scalar field proportional to the trace, D = Dabgab, yields a theory 
which is free from ghosts and tachyons. We derive the field equations and stress–energy tensor 
for Dab from the TW action.

Section 5 contains our result that the vacuum solutions require the bare cosmological con-
stant be related to the parameter J0 of the TW action. We dub the parameter J0 as the cosmic 
angular momentum constant, as its relation to the cosmological constant is given by

J0 =
3c3

32πGΛ
∼ 1086 J · s.� (1.2)

In section 5.2, using various cosmic rotation measurements, we estimate a range of values for 
the upper bound of the angular momentum of the observable Universe JObs:

JObs � 1079 J · s − 1091 J · s.� (1.3)

Clearly, J0 fits within this range and can be thought of as a plausible cosmic angular momen-
tum scale.

In the last section it is shown how we couple the projective connection to fermions and 
arrive at the Dirac equation in the presence of the diffeomorphism field. We find that one has 
the usual gravitational interaction arising from the spin connection plus an axial scalar cou-
pling to the trace of the diffeomorphism field. This has implications for both dark matter and 
as a portal from fermions to dark matter.

Our conventions and dimensions of the various constants and fields are summarized in 
appendix A and the beginning of appendix B. Appendix B gives a general review of general 
relativity and cosmology, including recent results from measurements of relevant cosmologi-
cal parameters. The rest of the appendices explicitly show our derivation of the d dimensional 
TW action from the (d + 1)-dimensional action, the extraction of Einstein–Hilbert gravity 
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sourced by Dab and Λ through the decomposition in equation (1.1), derivations of the equa-
tions of motion and stress tensor for TW gravity, and a proof that the stress tensor is diver-
gence free.

2. The cosmological constant problem

Here we review the cosmological constant problem and our proposed method to investigate 
solutions via TW gravity [6]. A more complete review of the cosmological constant problem is 
given in [25]. In appendix B, we summarize general relativity and cosmology in a Friedmann–
Lemaitre–Robertson–Walker background, describing the calculation of the cosmological con-
stant using current data. The simplest description of the cosmological constant problem comes 
from dimensional analysis of the cosmological constant. As the cosmological constant has 
units of curvature, or inverse area, its ‘natural’ value constructed from fundamental constants 
would be one over the Planck length squared

Λ ≈ l−2
Pl = 3.829 × 1069 m−2� (2.1)

where the Planck length is lPl =
√
�G/c3 = 1.616 × 10−35 m. This natural value is famously 

roughly 120 orders of magnitude larger than the measured value5

Λ ≈ 1.2 × 10−52 m−2.� (2.2)

This simple derivation illustrates at least a partial possible solution: find an appropriate angu-
lar momentum parameter, other than �, that predicts equation (2.2). This alternative angular 
momentum parameter would have to be enormously larger than � and in this paper, we argue 
that such an enormous angular momentum parameter arises naturally from TW gravity.

Simply choosing an appropriately sized angular momentum parameter is only part of the 
solution, as summarized nicely by Weinberg [25] where an expected value of the cosmological 
constant is demonstrated to arise from particle physics. In quantum field theory, the mass den-
sity of the vacuum in curved space-time is non-zero 〈ρ〉 and gives rise to an energy momentum 
tensor for the vacuum given by

Θab
vac = 〈ρ〉c2gab.� (2.3)

So even in a vacuum, the right hand side of Einstein’s equations will not be zero and Einstein’s 
equations would be instead

Rab − 1
2

gabR + gabΛ = −8πG
c2 〈ρ〉gab.� (2.4)

Rearranging, we see that 〈ρ〉 adds a contribution to the cosmological constant, forming an 
effective cosmological constant Λeff

Rab − 1
2

gabR + gabΛeff = 0� (2.5)

Λeff = Λ+
8πG
c2 〈ρ〉.� (2.6)

5 The discrepancy between equations (2.1) and (2.2) is more precisely 121 orders of magnitude. Taking instead Λ 
to be proportional to the reduced Planck mass squared Λ ∼ M2

Plc
3/� ∼ 1068 m−2 where the reduced Planck mass is 

MPl =
√
�c/(8πG) ≈ 4.341 × 10−9 kg results in a 120 order of magnitude discrepancy from equation (2.2).
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The original constant Λ is sometimes referred to as the bare cosmological constant. The cos-
mological constant problem is that the vacuum density 〈ρ〉 is calculated to be much larger than 
the measured value of Λeff , that we previously called Λ in equation (2.2)

Λeff ≈ 1.2 × 10−52 m−2.� (2.7)

The vacuum density can be estimated as the following integral with quantum grav-
ity scale momentum cutoff of p = MPlc where MPl is the reduced Planck mass 
MPl =

√
�c/(8πG) ≈ 4.341 × 10−9 kg

8πG
c2 〈ρ〉 =8πG

c2

4π
(2π�)3c

∫ MPlc

0
dpp2 1

2

√
p2 + m2c2

≈M2
Pl

c2

16π2�2 = 9.6 × 1065 m−2

�

(2.8)

for m � MPl. These vacuum contributions are 118 order of magnitude larger than the mea-
sured effective cosmological constant Λeff , thus it is considered unnatural to choose the bare 
parameter Λ in equation (2.6) on the scale of the contribution from < ρ > but with a discrep-
ancy that is fine tuned to be 118 orders of magnitude smaller.

We separate the cosmological constant problem into the following two parts, focusing in 
this paper on the first part:

	 1.	�Use projective geometry to provide a mechanism that produces a small, bare cosmological 
constant.

	 2.	�Uncover ‘beyond the standard model physics’ that cancels all vacuum contributions from 
quantum field theory.

By using TW gravity to examine the first problem, we are exploiting a symmetry in Einstein’s 
equations associated with geodesics and using a gauge principle to dictate the form of the 
Lagrangian. Furthermore, TW gravity makes contact with structures found in 2D quantum 
gravity [26–29] through the coadjoint orbits of the Virasoro algebra [30]. The cosmologi-
cal constant arises as a natural decomposition of the associated gauge field, Dab, which has 
been dubbed the diffeomorphism field in the physics literature and is known as the projec-
tive Schouten tensor by differential geometers. We do not address the second problem fully. 
However, we do discuss how projective geometry interacts with fermions and find that an 
axial scalar coupling to all fermions can serve as a portal for dark matter. We note here that an 
obvious avenue to address the second problem would be to use supersymmetry which auto-
matically has a vacuum energy of zero. However, in a Universe such as ours, where supersym-
metry is clearly broken, it is not known how to maintain this zero of vacuum energy below 
supersymmetry breaking scales. Nonetheless, we wish to investigate a supersymmetric ver-
sion of TW gravity in the future to address problem two above.

3.  Projective geometry primer

In string theory, the coadjoint orbits of the Virasoro algebra and affine Lie algebras gave rise 
to geometric actions that are identified as the Polyakov 2D quantum gravity action and the 
Wess–Zumino–Witten model [26–28, 30]. Associated with the Polyakov action is a back-
ground field, Dab, and with the affine Lie algebra another background field Aa. Although Aa 
can easily be related to a Yang–Mills potential which has fundamental roots in the Lie algebra, 
Dab is often taken as a composite field of fundamental fields and an energy-momentum tensor 
that transforms anomalously under conformal transformations. Because of this interpretation, 
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Dab was historically external to gravity. TW gravity was born out of theoretical investigations 
[29, 31–33] that sought to put Dab on the same footing as Aa where it was also fundamental 
and directly related to gravitation. With the interpretation of Dab as a projective connection in 
TW gravity, its fundamental gravitational origins have been achieved [6].

There are many excellent reviews and discussions of projective geometry [34–37] so this 
section will only give a pragmatic discussion on how one constructs the projective connection, 
the curvature tensors, the spin connection and how to build a metric that can be used to solder 
these constructs together to form an action.

3.1. The TW projective connection

Here we briefly describe the projective connection and explicitly show the construction of 
the TW covariant derivative operator. This will set us up to study cosmology in the context of 
projective geometry.

Projective geometry arose from the question of connection ambiguities in geodesics on a 
manifold, say M [7–9, 38–40]. Since objects moving along geodesics is a principal way for 
physicists to infer the underlying metric, the question also has experimental relevance. Two 
affine connections are said to be projectively related on M, when there exists a one-form with 
components Ai such that

Γ̂i
jk = Γi

jk + δi
kAj + δi

jAk.� (3.1)

Connections which are related in this way give rise to the same geodesics and are said to be 
projectively equivalent.

Let us suppose that M is a d-dimensional manifold. Projective geometry [34, 36, 41], can 
then be cast as a gauge theory over M giving rise to (d + 1)-dimensional manifold called 

the Thomas Cone. It is equipped with a Thomas-Whitehead connection, ∇̃(Γ̃α
βγ) [42]. The 

extra dimension arises from adding a ‘volume’ dimension with a new real coordinate λ which 
takes values 0 < λ < ∞. The coordinates on the (d + 1)-dimensional Thomas cone are now 
denoted as xα = (x0, · · · , xd−1,λ). Throughout this paper we will use Greek indices to repre-
sent the full (d + 1) coordinates and Latin indices to represent the restriction to coordinates of 
M. On the Thomas Cone, there exists a preferred vector field, Υ, which generates the projec-
tive transformations through its Lie derivative, where, for example,

LΥh = Υα∂αh = λ ∂λh,� (3.2)

for a function h. This Lie derivative will vanish when h is a projective invariant. There is also 
a preferred one-form ω  on the Thomas cone, which is related to Υ by the conditions that 
ωαΥ

α = 1 and LΥωρ = 0. From the volume form,

vol(λ) = f (�)εa1···an dxa1 · · · dxan ,

the relationship between λ and the volume is established through a function f (�) where the 

parameter � ≡ λ
λ0

 is dimensionless and λ0 is a constant. The projective connection and Υ are 
compatibly related by,

∇̃αΥ
β = δβα.� (3.3)

By explicitly writing the pair, Υα and ωα as,

Υα = (0, 0, . . . ,λ) and ωα = (0, 0, . . . ,λ−1),� (3.4)

the connection coefficients , Γ̃β
ρα may be written as [34]:
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Γ̃α
βγ =





Γ̃λ
λa = Γ̃λ

aλ = 0
Γ̃α

λλ = 0
Γ̃a

λb = Γ̃a
bλ = ωλ δ

a
b

Γ̃a
bc = Πa

bc

Γ̃λ
ab = ΥλDab

� (3.5)

where the projective invariant connection Πa
bc is defined

Πa
bc = Γa

bc −
1

d + 1
(δa

cΓ
d

bd + δa
bΓ

d
cd)� (3.6)

with Γb
c a the connection coefficients on the spacetime M. The projective connection Dab is 

independent of the coordinate λ and transforms as a rank two tensor with an additional inho-
mogeneous term related to the Jacobian of the transformation on M. To be precise, consider 
a coordinate transformation on the Thomas Cone given by

pα = ( p0, p1, · · · pd−1,λ) → qα = (q0( p), q1( p), · · · qd−1( p),λJ(q, p)
−1
d+1 )),

� (3.7)

where J(q, p) = | ∂qi

∂p j | corresponds to the determinant of the Jacobian of the transformation of 

the coordinates on M. Then, in order for ∇̃α to transform as an affine connection, Dab must 
transform as

D′
ab =

∂pc

∂qa

∂pd

∂qb Dcd +
∂pl

∂qc (
∂2qc

∂pl∂pd

∂2pd

∂qa∂qb ) +
∂qm

∂pn

∂3pn

∂qm∂qa∂qb ,� (3.8)

when ( p0, p1, · · · pd−1) → (q0, q1, · · · qd−1) on M. From here, one can construct the projective 
curvature tensor that remains invariant when a connection on M transforms as equation (3.1) 
and is covariant under the coordinate transformation equation  (3.7). In the physics litera-
ture, Dab is called the diffeomorphism field and the projective Schouten tensor in differential 
geometry. Two connections, then, are in the same projective equivalence class, [Γa

bc] = [Γ̂a
bc], 

when they have the same projective curvature tensor. We explicitly construct the projective 
curvature tensor in what follows.

3.2.  Projective curvature

Using the explicit construction of projective connection coefficients, it is straightforward to 
compute the curvature invariants. Explicitly, on a vector field κα and co-vector κα on the 

Thomas cone, we define the projective curvature tensor Kγ
ραβ in the usual way,

[∇̃α, ∇̃β ]κ
γ = Kγ

ραβκ
ρ and [∇̃α, ∇̃β ]κγ = −Kρ

γαβκρ.� (3.9)

In terms of the connection coefficients,

Kµ
ναβ ≡ Γ̃µ

ν[β,α] + Γ̃ρ
ν[βΓ̃

µ
α]ρ.� (3.10)

Using equation (3.5), the only non-vanishing components of Kµ
ναβ are

Ka
bcd = Ra

bcd + δ[c
aDd]b,� (3.11)

Kλ
cab = λ∂[aDb]c + λΠd

c[bDa]d.� (3.12)

Here
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Ra
bcd = ∂cΠ

a
db − ∂dΠ

a
cb +Πa

ceΠ
e

db −Πa
deΠ

e
cb� (3.13)

is the curvature produced from the Πa
bc connections. Although Ka

bcd and Kλ
cab are tensors 

under general coordinate transformations on M, Ra
bcd and Dab are not. However, both Ra

bcd 
and Dab are tensors under volume-preserving diffeomorphisms. Since we are interested in 
metric compatible connections in what follows, we fix the coordinates in a constant volume 
gauge so that equation (3.12) becomes:

Ka
bcd = Ra

bcd + δ[c
aDd]b,� (3.14)

Kλ
cab = λ∂[aDb]c + λΓd

c[bDa]d.� (3.15)

From here we calculate the only non-vanishing components of the projective Ricci tensor 
Kαβ ≡ Kρ

αβρ and the projective scalar curvature K ≡ KαβGαβ (the metric will be defined in 
a moment) to be

Kab = Rab − (d − 1)Dab, K = Gab(Rab − (d − 1)Dab).� (3.16)

In the above Ra
bcd  is the Riemann curvature tensor over the manifold M, defined in terms of 

its connection coefficients, Γa
bc. It is important to note that we have not yet defined the d + 1 

dimensional metric Gαβ. Its construction will be made explicit in the following section 3.3.

3.3.  Projective metric and spin connection

We now proceed to construct the metric, Gαβ, for the (d + 1)-dimensional manifold, that was 
alluded to in equation (3.16). Let us assume for the moment that d is even. The Dirac matrices 
are related to a metric gab on the spacetime manifold, M, by

{γa, γb} = 2gab.� (3.17)

As stated above, we will write the indices related to coordinates on M as a, b = 0, · · · , d − 1, 
where d is the dimension of the manifold. We can define an extra gamma matrix, γd (with 
index down) that is related to the volume parameter λ via,

γ(λ)d = ε
f (�)
d!

εa0···ad−1γ
a0 · · · γad−1 ,� (3.18)

with ε chosen to be 1 so that the new direction is space-like in the constructed metric. Then an 
extended metric can be defined on the Thomas cone through

{γα, γβ} = 2Gαβ 1,� (3.19)

where α,β = 0, · · · , d, 1 is the fermion identity, and

Gαβ =

(
gab 0
0 −f (�)2

)
� (3.20)

Gαβ =

(
gab 0
0 −f (�)−2

)
.� (3.21)

For our purposes in four dimensions, we have chosen ε above so the chiral matrix, γ5 ≡ iγ4. 
This will later guarantee that the spinor connection, iΩµ defined below is self-adjoint. Metrics 
of this form have been used in the literature to study other projective properties of Einstein man-
ifolds, geodesics paths on Einstein spaces, higher spin fields and Bernstein–Gelfand–Gelfand 
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complexes [43–45]. Although this Dirac matrices construction required d to be even, this form 
of the metric Gαβ can be used in any dimension. For us, the relationship with the volume and 
chirality becomes pronounced when we include fermions. In what follows, we will use Gαβ to 
contract with the projective curvature for the interaction Lagrangian and the dynamical action 
for the diffeomorphism field.

We proceed with the construction of the spin connection on the Thomas cone. Gαβ admits 
frame fields through,

Gµν = e A
µ e B

ν ηAB and ηAB = gµνEµ
A Eν

B ,� (3.22)

where the ‘flat’ indices, A, B = 0 . . . d. Since the projective connection is incompatible with 
a metric, we define the spin connection for the projective connection and the frame fields 
through,

ω̃ABα = e C
ν (∂αEν

B + Γ̃ν
αβEβ

B ) ηAC.� (3.23)

This guarantees that

∇̃µEβ
B ≡ ∂µEβ

B + Γ̃β
µαEα

B − ω̃A
BµEβ

A = 0.� (3.24)

For transparency, let us write the spin connection in terms of the four spacetime dimensions 
and the volume direction explicitly. The flat directions will be denoted by a, b for the space-
time directions and the number ‘4’ for the flat volume direction. Similarly, we will use µ, ρ for 
the spacetime coordinates and reserve ‘λ’ for the volume direction on the Thomas cone. With 
this we may write the projective spin connection as

ω̃ABµ =





ωabµ, A = a, B = b,µ = 0, · · · , 3
1
ληab, A = a, B = b,µ = λ

− 1
λf (�)e c

µηac, A = a, B = 4,µ = 0, · · · , 3
λf (�)DµρEρ

b, A = 4, B = b,µ = 0, · · · , 3
0 A = a, B = 4,µ = λ

0 A = 4, B = b,µ = λ

0 A = 4, B = 4,µ = 0, · · · , 3.

� (3.25)

4. The diffeomorphism field action

Using the metric Gαβ from above, the determinant G = det(Gαβ) and its square root are 
respectively,

G = −gf (�)2 and
√
|G| =

√
|g|f (�),� (4.1)

where g = det (gab) and |g| is the absolute value of g. From the non-vanishing components of 
Kα

βµν, equations (3.15) and (3.15) become,

Kab = Kµ
abµ = Rab − (d − 1)Dab� (4.2)

K ≡ GαβKαβ = R − (d − 1)D� (4.3)

R = gabRab, D = gabDab.� (4.4)

In performing these calculations, it is important to keep in mind that the symmetry properties 
of Kαβµν = GαρKρ

βµν and Rabcd = gamRm
bcd are not the same. For instance Rabmn = −Rbamn 
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but Kαβµν �= −Kβαµν . This is due to the connection Γ̃α
µν being incompatible with Gµν  

although Γa
mn is compatible with gmn. The astute reader will realize that Kc

λab = 0 while 
Kλ

cab �= 0. The complete symmetries of Kαβµν and Rabcd are

Kαβµν = −Kαβνµ� (4.5)

Rabcd = −Rbacd = Rbadc = Rcdab.� (4.6)

The rank three tensor, Kαβγ, is called the projective Cotton–York tensor and is defined as

Kαβγ ≡ Kρ
αβγωρ = λ−1Kλ

αβγ .� (4.7)

The only non-vanishing components of Kαβγ are

Kbac = ∇aDbc −∇cDba.� (4.8)

This satisfies the Bianchi identity

K[acm] = Kacm + Kcma + Kmac = 0.� (4.9)

The action of projective Gauss–Bonnet with coupling constant J0, which we refer to as TW 
gravity, is given by

STW = −J0c
2

∫
d� ddx

√
|G|

[
K2 − 4KαβKαβ + KαβµνKαβµν

]
.� (4.10)

Interestingly enough only the measure depends on the parameter �(λ). Therefore we can 
reduce the (d + 1)-dimensional action, above to d-dimensions by integrating out the �- 
dependence. As shown in appendix C, all �-integrations take the form of one of the two integrals 
below, the first of which we normalize to one, the other we define through a new constant α0:

∫ �f

�i

d�f (�) = 1, α0 = λ2
0

∫ �f

�i

d��2f (�)3.� (4.11)

Once we choose f (�), and properly normalize to satisfy the first integral, this will fix α0 in 
terms of �i  and �f . As shown explicitly in appendix C, using the above expansions of the pro-
jective curvature Kα

βµν and the metric Gµν , the TW action can be written as

STW =

∫
ddx

√
|g|LD + SGB,� (4.12)

LD =
J0c
2

[
α0KbmnKbmn −DabD̃ab

∗

]
,� (4.13)

SGB = −J0c
2

∫
ddx

√
|g|

(
R2 − 4RabRab + RabmnRabmn)� (4.14)

where

D̃ab
∗ = (d − 1)gabD̃ − 2(2d − 3)D̃ab� (4.15)

D̃ab = (d − 1)Dab − 2Rab = −Kab − Rab� (4.16)

D̃ = gabD̃ab = (d − 1)D − 2R = −K − R.� (4.17)
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Generally, we define the star (∗) operation on an arbitrary rank-two tensor as

Tab
∗ = MabmnTmn = (d − 1)gabT − 2(2d − 3)Tab� (4.18)

where T = gmnTmn and the Mabmn tensor is

Mabmn = (d − 1)gabgmn − 2(2d − 3)gamgbn.� (4.19)

This tensor is symmetric under any permutation involving all four of its indices:

Mabmn = Mbanm = Mmnab = Mnmba.� (4.20)

At this point it is important to observe that the STW action is a function of three dynami-
cal variables, viz gab,Γa

bc, and Dab. The field equations for the metric and connection can 
be examined independently [46–49] in the context of Gauss–Bonnet, and because we are in 
four-dimensions, metric compatibility is still a solution to the field equations. Also, we have 
already mentioned in section 3 that when one of the members of a projective equivalence class 
[Γa

bc] is a metric compatible connection, the projective Schouten tensor collapses to a constant 
times the metric [44, 45]. Dab is that projective Schouten tensor when it is not dynamical. 
We exploit this observation when we promote Dab to a dynamical field by separating out a 
part that vanishes in the projective Cotton–York tensor, equation (4.8), from the non-trivial 
dynamical degrees of freedom. It is natural, therefore, to write the diffeomorphism field as,

Dab =Dab +
4

d(d − 1)
Λgab

=

[
Wab +

mc
J0d

gabφ

]
+

4
d(d − 1)

Λgab

� (4.21)

when we assume ∇agbc = 0. Here Wab is traceless

gabWab = 0� (4.22)

and Λ is the bare cosmological constant. The parameter m is the mass of the scalar field φ, 
arising from the trace of Dab. This decomposition will naturally produce an Einstein–Hilbert 
action with cosmological constant and an accompanying interaction for the dynamical degrees 
of freedom, by starting with only the projective Gauss–Bonnet equation (4.13). In this paper, 
we will analyze the TW action in terms of Dab and use the φ decomposition to show an 
absence of ghost and tachyon pathologies. The rank three tensor Kabc is the same whether 
written in terms of Dab or Dab, owing to the covariant derivative. The decomposition, equa-
tion (4.21), does modify LD slightly by producing terms involving Λ in the product DabD̃ab

∗ . 
The details of this are found in appendix C. The result is

STW =
1

2κ

∫
ddx

√
|g| (R − 2Λ) +

∫
ddx

√
|g|LD + SGB,� (4.23)

LD =
J0c
2

[
α0KbmnKbmn − DabD̃ab

∗ − y(d)ΛD
]

,� (4.24)

where κ is the d-dimensional gravitational coupling related to the bare cosmological constant 
as

Λ =
d − 1

J0cy(d)κ
and� (4.25)

y(d) = 8(d − 2)(d − 3)/d.� (4.26)
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The new tensors appearing above are

D̃ab
∗ = (d − 1)gabD̃ − 2(2d − 3)D̃ab

� (4.27)

D̃ab = (d − 1)Dab − 2Rab = −Kab − Rab − 4
d
Λgab� (4.28)

D̃ = gabD̃ab = (d − 1)D − 2R = −K − R − 4Λ.� (4.29)

For d = 4 dimensions, κ becomes the Newton constant, with appropriate factors of π and c

κ = 8πG/c4 for d = 4.� (4.30)

4.1. Tachyons and ghosts

It is desirable that the consideration of the TW gravity action equation (4.23) not introduce 
any potential pathologies like ghost and tachyonic fields at the classical level. To determine 
the potential for such problematic fields, we analyze the dynamical trace degrees of freedom 
from the decomposition in equation (4.21) in a Minkowski background. For the sake of this 
analysis, we will take the dimensionally extended metric equation (3.20) to be

Gαβ =

(
ηab 0
0 Af (�)2

)
� (4.31)

where A will ultimately be ±1. Ghosts and tachyons arise from the kinetic and potential terms 
so here we will only concern ourselves with terms quadratic in the fields. The relevant piece 
from the TW gravity Lagrangian is

LD2 =
J0c
2

(
−α0AKbmnKbmn − DabD̃ab

∗
)

.� (4.32)

Applying the decomposition Dab = mc
J0dηabφ to this piece, we find

Lφ2 =
m2c3

2J0d2

[
−α0

2
A(d − 1)∂µφ∂µφ− d(d − 1)(d − 2)(d − 3)φ2

]
� (4.33)

=
m2c3

2J0d2

[
−α0

2
A(d − 1)

(
φ̇2 − (∇φ)2

)
− d(d − 1)(d − 2)(d − 3)φ2

]
� (4.34)

where we have separated temporal and spatial components on the last line. To clearly deter-
mine the potential for ghost/tachyon fields, we need the corresponding Hamiltonian. Defining 
the conjugate momentum as

π ≡
∂Lφ2

∂φ̇
= −α0A(d − 1)m2c3

2J0d2 φ̇,� (4.35)

we can write the Hamiltonian as

Hφ2 = −α0A(d − 1)m2c3

2J0d2 φ̇2 − Lφ2� (4.36)

=
m2c3

2J0d2

[
−α0

2
A(d − 1)

(
φ̇2 + (∇φ)2

)
+ d(d − 1)(d − 2)(d − 3)φ2

]
.� (4.37)
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Since a negative kinetic term results in a ghost field, and a negative sign in the mass term 
results in a tachyonic field, we see that setting A  =  −1 results in a non-pathological classical 
field while setting A  =  +1 results in a ghost field, the field being non-tachyonic in either case. 
We expect this analysis to hold, at least perturbatively, for other metrics. We note that in d = 4, 
φ becomes a massive field suggesting a short range gravitational wave. The phenomenology 
of these waves, along with the traceless components, will be part of a future study.

4.2.  Equations of motion

Here we present the equations of motion, detailed derivations are given in appendices D and 
E. Variation of the action STW with respect to the diffeomorphism field Dab yields its equa-
tions of motion

α0∇nK(ab)n = −Kab
∗� (4.38)

where equations (4.28), (4.18) and (4.26) can be used to show that the source can be written as

Kab
∗ =Rab

∗ − (d − 1)Dab
∗ − 1

2
y(d)Λgab

=− 1
2
[D̃ab

∗ + (d − 1)Dab
∗ + y(d)Λgab].

�

(4.39)

Einstein’s equations for the diffeomorphism field coupled to gab are

Rab − 1
2

gabR + gabΛ = −κ Θab.� (4.40)

In terms of Vcab,

Vcab = α0K(ab)mD c
m +

1
2

gc(a∇mDb)m
∗ −∇cDab

∗� (4.41)

the stress–energy tensor can be expressed as

Θab = J0c
(
∇cVcab −∇cV(ab)c

)
+

α0J0c
2

[
K(a

mnKb)mn + 2Kcm(aK b)
cm

]

− J0c
2

D (a
c D̃b)c

∗ − J0c
2

Dc(a
∗ D̃ b)

c − J0cy(d)ΛDab − gabLD +Θab
(GB)

�
(4.42)

with LD the Lagrangian density, equation (4.24). Θab
(GB) is the contribution from SGB which in 

d � 4 does not contribute to the classical field equations [50].

5.  Vacuum solution and angular momentum of the universe

5.1.  Vacuum solution of the equations of motion

In this section we demonstrate that for d = 4 the trivial solution Dab  =  0 is consistent with 
both equations (4.38) and (4.40) and reduces these equations to the vacuum Einstein equa-
tions sourced by a cosmological constant. Recalling the decomposition in equation (4.21) and 
then setting Dab  =  0 in the action in equation (4.23) is tantamount to setting Dab proportional 
to the metric in the original action in equation (4.10). Setting Dab  =  0 results in the following 
simplifications
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Kab = Rab − 4
d
Λgab, K = R − 4Λ, Kabc = 0.� (5.1)

For d � 4, the stress energy tensor, equation  (4.42), vanishes under these conditions (as 

Θab
(GB) = 0), and equation (4.40) reduces to the pure cosmological constant sourced vacuum 

Einstein equations

Rab − 1
2

gabR + gabΛ = 0.� (5.2)

The Dab equation of motion equation (4.38) reduces to

Rab − 1
2

d − 1
2d − 3

gabR + gab y(d)
4(2d − 3)

Λ = 0,� (5.3)

where to cast the term involving the cosmological constant in this form, we have used equa-
tion (4.25). If we contract equations (5.2) and (5.3) with the metric, we arrive at the following 
constraints, respectively

(d − 2)R = 2dΛ, R(d − 3)(d − 2) = 4(d − 3)(d − 2)Λ.� (5.4)

The first equation  in equation  (5.4) is the usual condition for an Einstein manifold with 

Rab = 2
d−2Λgab and the second equation  is trivial for d = 2 and d = 3 and leads to 

Rab = 4
dΛgab = Λgab for d = 4. In d = 2 we can readily see that the first equation implies 

Λ = 0 and in d = 3 we have that R = 6Λ. For d > 4, Θab
(GB) �= 0 so the analysis presented in 

this section would not apply. We will focus on d = 4 in which we find a consistent solution 
to equation  (5.4) where Rab = Λgab or equivalently R = 4Λ. Then equation  (4.25) for the 
cosmological constant becomes

Λ =
3

4J0cκ
, for d = 4.� (5.5)

Using the value for the Cosmological constant calculated from an average of the Planck data 
and the Riess collaboration, Λ ≈ 1.2 × 10−52 m−2 as shown in appendix B, we solve equa-
tion (5.5) for J0:

J0 ≈ 1.0 × 1086 J · s for Λ ≈ 1.2 × 10−52 m−2.� (5.6)

Comparing with astronomical data as explained in the next section, the above value for the 
angular momentum parameter J0 lies within the range for the upper limit of angular momen-
tum of the observable Universe JObs calculated from various measurements of cosmic rotation

JObs � 1079 J · s − 1091 J · s.� (5.7)

We therefore now refer to J0 as the cosmic angular momentum constant.

5.2.  Calculation of expected angular momentum of the observable universe from  
astronomical data

In this section we briefly review the astronomical data suggesting a global rotation of the 
observable universe and from this data calculate a range of upper bounds to the angular 
momentum of the universe. The Universe having patches of angular momentum that sum to 
zero is consistent with the cosmological principle. In fact, taking the cosmic angular momen-
tum constant J0 as a fundamental constant would set the natural scale over patches where the 
Universe could have net angular momentum. At present there does appear to be some evidence 
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for the rotation of the universe on large scales, though we caution that this is somewhat con-
troversial, as global rotation is difficult to measure and seems to be highly model dependent.

Observational evidence of angular momentum of the present day universe on large scales 
has been seen in the parity violation of the angular momentum of spiral galaxies with a 
preferred axis [51]. Models of global rotation using input from observations [52, 53] have 
been in agreement on the order of magnitude of the current angular rotation of the universe 
of ω ∼ 10−13 rad yr−1. Another clear indication of rotation would appear in CMB data as 
anisotropy with a preferred axis. New Planck data has found anisotropies at large angular 
scales at about the 2–3 σ level that could be physically significant, see for example [54]. 
A theoretical model using CMBA data constrained the rotation of the early universe to be 
ω ∼ 10−9 rad yr−1 [55]. A more conservative estimate using tighter constraints from both 
temperature and polarization data from Planck on Bianchi models of rotation [56] conclude 
that ω/H0 < 10−11, which using the average value H0 as in equation (B.29) and inserting a 
factor of 2π to convert to rad/yr yields ω � 10−21 rad yr−1. It should be noted that these val-
ues correspond to the rotation of the universe at the surface of last scattering and not the cur
rent value, which would be significantly lower. It is possible, however, that only shear rotation 
can affect the CMB data and that global rotation may not influence CMB data.

Given these several pieces of evidence for rotation on cosmic scales, we present a simple 
order of magnitude estimation that demonstrates the cosmic angular momentum constant J0 
associated with the measured value of cosmological constant as in equation (5.5) is within 
the range of plausible angular momentum of the observable Universe. If we approximate 
the observable Universe as a homogeneous rotating sphere of radius RObs = 46.5 × 109 lyr  
and use the current estimate for mass density of the universe to be ρ = 10−26kg m−3 we 
can calculate the total mass of the ob servable Universe MObs =

4
3πR3

Obsρ  and moment of 
inertia IObs =

2
5 MObsR2

Obs. The total angular momentum then depends on the estimate 
of angular rotation ω  as JObs = IObsω. Using the rotation estimate of ω ∼ 10−13 rad yr−1 
we obtain JObs ∼ 1087 J · s. This is within a single order of magnitude of the calcu-
lated value of J0 in equation  (5.6). Using the smallest and largest values of ω  above as 
ω ∼ 10−21 rad yr−1 − 10−9 rad yr−1 gives us a range of plausible upper limits to a JObs of 
the universe as JObs ∼ 1079 J · s − 1091 J · s. The cosmic angular momentum constant J0 in 
equation (5.5) clearly fits within this range, matching within several orders of magnitude of 
the estimated values.

6.  Fermions and dark matter

We now briefly present how projective geometry enters into a discussion of fermions as a 
potential source for dark matter. Fields on the four-manifold are introduced into the Lagrangian 
as scalars under projective transformations. This follows since the Lie derivative of any λ 
independent scalar has vanishing Lie derivative with respect to Υ. Also, the equi-projective 
extended vector fields that we use are of the form Aµ = {A0, · · ·A3, 0} and have a Lie deriva-
tive with respect to Υ that vanishes, i.e.

LΥAµ = Υα∂αAµ − Aα∂αΥ
µ = 0.� (6.1)

For projectively invariant fermions we need to compute their Lie derivative with respect to Υ. 
For the fermions we will use the Kosmann derivative [57–61] to determine the conditions on 
f (�) so that fermions transform trivially from the Lie derivative with respect to Υ. The projec-
tive connection acts on the gamma matrices via

S Brensinger et alClass. Quantum Grav. 37 (2020) 055003



16

∇̃µγ
ν = ∂µγ

ν + [Ω̃µ, γν ] + Γ̃ν
µσγ

σ ,� (6.2)

and the spin connection on fermions is given by

Ω̃µ =
1
8
ω̃ABµγ

AγB.� (6.3)

In four dimensions, the fermion representation does not change when adding the γ4 . Therefore, 
the projective connection on chiral fermions will introduce a natural axial coupling to projec-
tive gravity, as we will see shortly.

To continue with the Lie derivative, we have that for a connection Γ̃β
µα and spinor con-

nection Ω̃µ, the Lie derivative of a spin 12 field, ψ with respect to a vector field βα is given by

Lβψ = βα
(
∂α + ω̃ABαγ

AγB)ψ − 1
8

(
∇̃µβν − ∇̃νβµ

)
γµγνψ.� (6.4)

Requiring that LΥψ = 0, yields the condition

1 − λ

4
d

dλ
log( f (�)) = 0,� (6.5)

which implies that f (�) = ( λ
λ0
)4. With this the ‘volume component’ of the spinor connection, 

Ω4 = 0. Here we consider four component Dirac fermions, ψI . Then the interaction action for 
the Ith spinor ψI  with mass MI is given by (here there is no sum over I),

SI
Dirac =

∫ √
|g|f (�)d� d4xLI

Dirac,� (6.6)

where

LI
Dirac = i� c ψ̄Iγµ∇̃µψ

I − c2MIψ̄IψI = ψ̄I (i� c γa∇a − c2MI − � cΦγ5)ψI .
� (6.7)

We observe there is an axial scalar coupling through,

Φ =
1

λf (�)
+

λ

4
D =

1
λf (�)

+
λ

4
(

mc
J0

φ+
4
3
Λ)� (6.8)

which due to the γ5 in equation (6.7) is CP violating. The projective geometry has induced 
an axial scalar coupling to every fermion through D and has generated a chiral asymmetric 
mass term,

MI
5 = MI + m�Λγ

5 =




MI 0 m�Λ 0
0 MI 0 m�Λ

m�Λ 0 MI 0
0 m�Λ 0 MI


 ,� (6.9)

where m�Λ = �
c

(
1

λf (�) +
4
3Λ

)
. After doing the � integral, with f (�) = λ4

λ4
0
= �4 and where �f  

is chosen so
∫ �f

�i

d�f (�) = 1,

the mass eigenvalues are
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mI
± = MI ± 4�Λ

3c
± �

cλ0
log

(
(5 + �5

i )
1
5

�i

)
.� (6.10)

Thus the parameter �i  tunes the axial contributions for the fermion masses. The function, 

�
cλ0

log

(
(5+�5

i )
1
5

�i

)
, is positive definite and cannot be used to set the λ0 scale. The parameters 

must be chosen so the total mass is non-negative. The values of λ0 and �i  will be further con-
strained by phenomenology. This is presently being investigated. It should be noted that the 
axial scalar coupling also provides a portal for non-standard model fermions to interact with 
standard model fermions. This will put further constraints on this axial scalar interaction.

7.  Conclusion

We have further developed the Thomas-Whitehead gravitational theory and its phenomeno-
logical applications to dark energy and some issues related to dark matter. We have demon-
strated that a (d + 1)-dimensional action consisting of a pure projective Gauss–Bonnet term 
constructed out of projective curvature quantities naturally produces an Einstein–Hilbert term 
with cosmological constant and in d = 4 introduces a new angular momentum constant, J0, of 
cosmological scale. We gave a simple order of magnitude plausibility argument for what can 
be described as the angular momentum of the universe that is consistent with today’s cosmo-
logical measurements and on the order of J0. This arose from a natural decomposition of the 
diffeomorphism field in terms of non-dynamical degrees of freedom and dynamical degrees of 
freedom. Furthermore, we were able to find the interaction of this field with fermions through 
the Dirac equation. The theory predicts that fermion masses will receive an axial dependent 
contribution through the trace of the diffeomorphism field and the projective spin connection. 
The interaction itself acts as a dark matter source as well as a portal for non-standard model 
fermions. The phenomenological consequences of this are under investigation. It should be 
noted that the origins of this theory are rooted in principles related to sprays [36] and projec-
tive Tractor calculus [35] that are manifest in Einstein geodesics and string theory. The use of 
the projective Gauss–Bonnet action in four dimensions gives rise to dynamics for the diffeo-
morphism field without introducing higher derivative terms to the metric. We also give ratio-
nale for the absence of ghosts and tachyons in the scalar sector of the field theory. This may 
be viewed as a covariant but non-linear strategy to include fluctuations to Einstein gravity.
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Appendix A.  Conventions and units

The units of the various constants used throughout this paper for d = 4 are
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[J0] =
ML2

T
, [Dab] = [Λ] = [Rab] = L−2, [α0] = L2

[λ0] =[a] = L, [�] = [r] = [k] = dimensionless, [t] = T

[κ] =
T2

ML
, [ρ] =

M
L3 , [ p] =

M
LT2 , [H] = T−1, [ddx] = TLd−1.

�

(A.1)

We may at times set c  =  1 but expose factors of c when calculating numerical val-
ues. Latin indices take values a, b, · · · = 0, 1, 2, . . . , d − 1 and Greek indices take values 
µ, ν, · · · = 0, 1, 2, . . . , d, with the exception of the Greek letter λ, which refers to the projec-
tive coordinate xd = λ = λ0�. Our conventions for the Riemann curvature tensor Ra

bcd  are the 
same as for the projective curvature Kµ

ναβ. The Riemann curvature tensor is written in terms 
of Γm

ab where as the projective curvature is written in terms of Γ̃µ
αβ:

Kµ
ναβ ≡ Γ̃µ

ν[β,α] + Γ̃ρ
ν[βΓ̃

µ
α]ρ.� (A.2)

Here and throughout, brackets mean anti-symmetrization and parenthesis symmetrization.

Kα
β[µν] = Kα

βµν − Kα
βνµ, K(µν) = Kµν + Kνµ.� (A.3)

Equation (A.2) means the following must be true

[∇̃α, ∇̃β ]Vγ = Kγ
ραβVρ, [∇̃α, ∇̃β ]Vγ = −Kρ

γαβVρ.� (A.4)

We define the d-dimensional Christoffel symbol Γm
ab in the usual way

Γm
ab =

1
2

gmn(gn(a,b) − gab,n),� (A.5)

but as Gµν  is not compatible with Γ̃α
µν, the analogous definition for Γ̃α

µν is not correct. 
Instead, Γ̃a

mn is defined in equation (3.5). We define the projective curvature three-tensor as

Kβµν ≡ Kα
βµνωα = Kλ

βµνλ
−1.� (A.6)

We contract over the first and fourth indices of the curvature tensor to form the Ricci tensor

Kµν = Kα
µνα.

The d-dimensional metric gab is embedded in the (d + 1)-dimensional metric Gαβ, equa-
tions (3.20) and (3.21),

Gαβ =

(
gab 0
0 −f (�)2

)
,� (A.7)

Gαβ =

(
gab 0
0 −f (�)−2

)
� (A.8)

where the d-dimensional metric gab has signature (+,−,−,−, · · · ,−) and the dimensionless 
parameter � = λ/λ0. The d-dimensional Riemann curvature tensor Ra

bcd satisfies the same 
relation as the (d + 1)-dimensional tensor Kα

βµν , equation (A.4), but in terms of the d-dimen-
sional covariant derivative ∇a. The commutator of covariant derivatives on an arbitrary rank 
m-covariant, rank n-contravariant tensor is equivalent to the following action of Ra

bcd

[∇a,∇b]T d1...dn
c1...cm

=− Re
c1abT d1d2...dn

ec2...cm
− · · · − Re

cmabT d1d2...dn
c1c2...e

+ Rd1
eabT e...dn

c1...cm
+ · · ·+ Rdm

eabT d1...e
c1...cm

.
� (A.9)
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Finally, we list all non-vanishing connections and curvatures below

Γ̃λ
ab = λDab, Γ̃a

λb = Γ̃a
bλ = λ−1δb

a, Γ̃a
bc = Γa

bc,� (A.10)

Ka
bcd = Ra

bcd + δ[c
aDd]b, Kλ

cab = λ∂[aDb]c + λΓd
c[bDa]d,� (A.11)

Kab = Kµ
abµ = Rab − (d − 1)Dab� (A.12)

K ≡ GαβKαβ = R − (d − 1)D� (A.13)

R = gabRab, D = gabDab,� (A.14)

along with the tensor decomposition of Dab

Dab =Dab +
4

d(d − 1)
Λgab

=

[
Wab +

mc
J0d

gabφ

]
+

4
d(d − 1)

Λgab

� (A.15)

and the relation between Dab and curvature

D̃ab
∗ = (d − 1)gabD̃ − 2(2d − 3)D̃ab� (A.16)

D̃ab = (d − 1)Dab − 2Rab = −Kab − Rab − 4
d
Λgab� (A.17)

D̃ = gabD̃ab = (d − 1)D − 2R = −K − R − 4Λ.� (A.18)

We note that Wab is traceless Wabgab = 0 and write the general star (∗) operator used through-
out the paper

Tab
∗ = MabmnTmn = (d − 1)gabT − 2(2d − 3)Tab� (A.19)

where T = gmnTmn and the Mabmn tensor is

Mabmn = (d − 1)gabgmn − 2(2d − 3)gamgbn.� (A.20)

Appendix B.  General relativity and cosmology review

Here we present a quick proof of Einstein’s field equations from the Einstein–Hilbert action 
and a brief overview of standard cosmology in four space-time dimensions. In the following 
the constants si are convention dependent and are equal to plus or minus one. The various 
conventions in the literature are given in table B1

In this paper we use the conventions of Ohanian and Ruffini [68]. 
Also, in the ‘mathtensor’ package of Mathematica, the default setting are: 
s2 = Rmsign = +1, s3 = s2Rcsign = +1, s1 = MetricgSign = +1.

The cosmological principle demands the large scale structure of the universe to be spa-
tially homogeneous and isotropic. The metric encompassing these qualities is known as the 
Friedmann–Lemaitre–Robertson–Walker (FLRW) metric
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s1gmndxmdxn = −dt2 + a(t)2
(

dr2

1 − kr2 + r2(dθ2 + sin2 θ dφ2)

)
.� (B.1)

The stress tensor and equations of motion for the diffeomorphism field derived in this paper 
assume a metric of constant volume ∂a

√
g =

√
gΓb

ab = 0. Therefore, the vacuum solution 
presented in section 5 is in terms of a constant volume FLRW metric that is a coordinate 
transformation of equation (B.1). An example of such a coordinate transformation for k  =  0 is 
a3(t)dt = dτ , x = r sin θ cosφ, y = r sin θ sinφ, and z = r cos θ. A constant volume FLRW 
metric with k = ±1 can be found as well.

The Riemann curvature tensor and Ricci tensors can be defined independent of convention 
as

s2Ra
mbn = −Γa

mb,n + Γa
mn,b − Γc

mbΓ
a
nc + Γc

mnΓ
a
bc,� (B.2)

s3Rmn = s2Ra
man = −Γa

ma,n + Γa
mn,a − Γc

maΓ
a
nc + Γc

mnΓ
a
ac� (B.3)

so that s3 is the sign of the curvature of a sphere. The Christoffel symbol is given in terms of 
the metric by

Γa
mn =

1
2

gab(gbm,n + gbn,m − gmn,b).� (B.4)

Defining the Ricci scalar as R = Rmngmn, the Einstein equations  are derived from the 
Einstein–Hilbert action plus source Ssource

S =
s4

2κ

∫
d4x

√
|g|(R − 2s1s3Λ) + Ssource� (B.5)

where κ = 8πG/c4 and Λ is the cosmological constant. Variation of the action yields

δgS = 0 =

∫
d4x

√
|g| δgmn

(
Rmn −

1
2

gmnR + s1s3Λgmn − s3κΘmn

)

+

∫
d4x

√
|g|δgRmngmn

�

(B.6)

where we have defined the stress–energy tensor Θmn through

δgSsource =
s3s4

2

∫
d4x

√
|g|Θmnδgmn = − s3s4

2

∫
d4x

√
|g|Θmnδgmn.� (B.7)

Table B1.  Sign conventions of different authors.

Reference s1 s2 s3 s4

Kolb and Turner [62] − + + −
MTW [63], Liddle and Lyth [64] + + + +
HEL [65] − + −
Weinberg [66] + − −
Weinberg [2], RY [33] + − − −
Dirac [67] − + − −
Ohanian and Ruffini [68] − + − +
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We can discard the last term in the action’s variation as it yields the surface term
∫

d4x
√
|g|δgRmngmn =

∫
d4x(

√
|g|gmnδΓa

m[n);a] = 0� (B.8)

where ; denotes a covariant derivative. As promised, Einstein’s equations become

Gmn ≡ Rmn −
1
2

gmnR = s3κΘmn − s1s3Λgmn.� (B.9)

With the FLRW metric, equation (B.1), and a stress tensor of the form for a perfect fluid

Θmn = (ρ+ p)δ 0
m δ 0

n + s1gmnp,� (B.10)

with ρ  the mass density and p  the pressure of the Universe, the Einstein equations become 
what are known as the Friedmann equations:

H(t)2 =
ρ

3κ−1 +
Λ

3
− k

a2 , (00 equation of motion),� (B.11)

ä
a
= −κ

6
(ρ+ 3p) +

Λ

3
, (ij eqm. with 00 eqm.)� (B.12)

where the Hubble parameter is

H(t) ≡ ȧ(t)
a(t)

.� (B.13)

Notice a positive cosmological constant will accelerate the scale factor, a(t), as evidenced 
in equation  (B.12) that it has the opposite sign as pressure. In this way, the cosmological 
constant, or presumably dark energy which is its cause, acts like a negative pressure tending 
to pull the universe apart rather than squeeze it together as one would expect from a regular, 
positive pressure. These Friedmann equations are redundant with the continuity equation

∇nΘ
mn = 0 →

{
ρ̇+ 3H(ρ+ p) = 0
p = p(t)� (B.14)

which is actually sign convention independent with the form of the perfect fluid given above. 
The system can then be succinctly described by the either the ij equation or 00 equation of 
motion and the continuity equation. We define the mass density and pressure of the vacuum 
(ρΛ, pΛ) and curvature (ρk, p k) as

ρΛ = −pΛ = κ−1Λ� (B.15)

ρk = −3pk = − 3
κa2 k� (B.16)

and combine them with ρ  and p  to form ρc and p c, respectively

ρc = ρ+ ρΛ + ρk� (B.17)

pc = p + pΛ + pk.� (B.18)

The quantity ρc is known as the critical density as it is the critical value ρ  takes in a flat 
Universe (k  =  0) with no cosmological constant. The Friedmann equations can be succinctly 
written in terms of ρc and p c:
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ρc =
3
κ

H2� (B.19)

ä
a
= −κ

6
(ρc + 3pc).� (B.20)

The pressure p  and mass density ρ  are a combination of contributions from matter (p m, 
ρm), radiation (p r, ρr ), and any other source (pother, ρother) such as the diffeomorphism field 
presented in this paper so we write

pc = pm + pr + pother + pΛ + pk� (B.21)

ρc = ρm + ρr + ρother + ρΛ + ρk.� (B.22)

Note that for radiation or other massless fields, the mass density is defined as the energy-
density per unit c2:

ρr ≡ ur/c2, and similar for other massless fields.� (B.23)

There will in general be field equations to satisfy for the cosmological sources of ρ  and p  
as well, such as the field equations for the diffeomorphism field in this paper. The diffeomor-
phism field equations and stress tensor derived in this paper are in a gauge where the metric 
has constant volume. Thus using these equations and stress tensor for the diffeomorphism 
field requires the Friedmann equations to be expressed in terms of a constant volume metric 
as well as described in the text after equation (B.1).

More generally, cosmological measurements of each species (matter, vacuum, etc) are typi-
cally quoted in terms of a density parameter Ωi = ρi/ρc for each species i: i  =  m for matter, 
i = Λ for vacuum (cosmological constant), etc. For instance, the density parameter for the 
vacuum is defined as

ΩΛ =
ρΛ
ρc

.� (B.24)

Equation (B.21) is often written in terms of Ω:

1 = Ωm +Ωr +Ωother +ΩΛ +Ωk.� (B.25)

Solving equations (B.24), (B.19) and (B.15) for Λ and putting in appropriate factors of the 
speed of light c yields

Λ = 3H2ΩΛ/c2.� (B.26)

The value of the Hubble parameter at t = today is denoted as H0. Recent measurements of ΩΛ 
and H0 by Planck are [69]

ΩΛ ≈ 0.68, H0,Planck ≈ 67 km/s/Mpc.� (B.27)

On the other hand, the Reiss collaboration of cosmic distance ladder redshift measurements 
finds the following measurement of the Hubble parameter [70]:

H0,Riess ≈ 74 km/s/Mpc.� (B.28)

These two measurements are both too precise to be in agreement with each other, a problem 
known as the Hubble tension. For all calculations in this paper, we thus take the Hubble 
parameter to be an average of the two measurements and use Planck’s measurement of ΩΛ

ΩΛ ≈ 0.68, H0 ≈ 71 km/s/Mpc.� (B.29)
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Plugging these values into equation (B.26) yields the measured value of the Cosmological 
constant we will use throughout the paper.

Λ ≈ 1.2 × 10−52 m−2.� (B.30)

Often, the Cosmological constant is given in terms of its associated mass density, equa-
tion (B.15). For the above value of the cosmological constant, this density is

ρΛ =
c2

8πG
Λ = 5.9 × 10−27 kg m−3� (B.31)

where we have used equation (4.30) to write out κ−1 in terms of G and put back factors of c. 
Written in natural units, this is

ρΛ =
�3c7

8πG
Λ = 2.5 × 10−47 GeV4.� (B.32)

Appendix C.  Expansion of the projective Gauss–Bonnet Lagrangian

We expand the projective Gauss–Bonnet Lagrangian LTW in terms of the diffeomorphism 
field and d-dimensional curvature tensors as follows. Using equation (4.3), the projective cur-
vature scalar squared K2 is

K2 =(R − (d − 1)D)2

=R2 + (d − 1)2D2 − 2(d − 1)RD
=R2 + (d − 1)DD̃,

�

(C.1)

where we are introducing D̃ab, defined as

D̃ ≡ gabD̃ab, D̃ab = (d − 1)Dab − 2Rab.� (C.2)

Next, we calculate the projective Ricci squared KαβKαβ :

KαβKαβ =KabKab + KλλKλλ + 2KaλKaλ

=(Rab − (d − 1)Dab)(Rab − (d − 1)Dab)

=RabRab + (d − 1)2DabDab − 2(d − 1)DabRab

=RabRab + (d − 1)DabD̃ab.

�

(C.3)

To calculate the projective Riemann curvature squared KαβµνKαβµν, we utilize our knowl-
edge of the non-vanishing terms in equation (3.15) to first write

Kαβµν = δα
λGλλKλ

βµν + δα
aKaβµν , Kαβµν = δb

βδm
µδn

νKαbmn.� (C.4)

With this, we calculate KαβµνKαβµν as
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KαβµνKαβµν =(δα
λGλλKλ

βµν + δα
aKaβµν)δb

βδm
µδn

νKαbmn

=Kλ
bmnKλbmnGλλ + KabmnKabmn

=λ2KbmnKbmnGλλ + (Rabmn + ga[mDn]b)(Rabmn + ga[mDn]b)

=− λ2f 2KbmnKbmn + RabmnRabmn + 4Rm
bmnDnb

+ 2gamDnbgamDnb − 2ganDmbgamDnb

=− λ2f 2KbmnKbmn + RabmnRabmn + 2dDabDab − 2DabDab − 4RabDab

=− λ2f 2KbmnKbmn + RabmnRabmn + 2(d − 1)DabDab − 4DabRab

=− λ2f 2KbmnKbmn + RabmnRabmn + 2DabD̃ab.

�

(C.5)

With the results of equations (C.1), (C.3) and (C.5), the projective Gauss–Bonnet Lagrangian 
becomes

LTW =K2 − 4KαβKαβ + KαβµνKαβµν

=R2 + (d − 1)DD̃ − 4(RabRab + (d − 1)DabD̃ab)

− λ2f 2KbmnKbmn + RabmnRabmn + 2DabD̃ab

=LGB − λ2f 2KbmnKbmn + (d − 1)DD̃ − 2(2d − 3)DabD̃ab

�

(C.6)

where the d-dimensional Gauss–Bonnet Lagrangian is

LGB = R2 − 4RabRab + RabmnRabmn.� (C.7)

We collect the terms quadratic in Dab and D̃ab and use equation (4.18) to define

D̃ab
∗ = MabmnD̃mn = (d − 1)gabD̃ − 2(2d − 3)D̃ab.� (C.8)

This allows us to simplify the Lagrangian to

LTW = LGB − λ2
0�

2f 2KbmnKbmn +DabD̃ab
∗ .� (C.9)

Introducing the coupling constant J0 and a factor of c for proper units, we construct the full 
action

STW =− J0c
2

∫
ddxd�

√
|G|LTW

=− J0c
2

∫
ddx

√
|g|

∫
d�f (�)LTW

=− J0c
2

∫
ddx

√
|g|

∫
d�f (�)

(
LGB − λ2f (�)2KmabKmab +DabD̃ab

∗

)

=− J0c
2

∫
ddx

√
|g|

(
LGB +DabD̃ab

∗

)∫ �f

�i

d�f (�)

+
J0c
2

∫
ddx

√
|g|KmabKmabλ2

0

∫ �f

�i

d��2f (�)3

�

(C.10)

where we have substituted λ = λ0� and factored terms involving Dab, D̃ab
∗ , and Kmab out of 

the � integral as these terms are �-independent. We have also introduced cutoff’s �i  and �f . We 
can define one of these integrals to be whatever number we wish by ensuring f (�) is properly 
normalized. The other integral, we will define as a new constant to be determined once f (�) is 
chosen and appropriately normalized. With this in mind, we define
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∫ �f

�i

d�f (�) = 1, α0 = λ2
0

∫ �f

�i

d��2f (�)3.� (C.11)

With these definitions, the TW action becomes

STW = −J0c
2

∫
ddx

√
|g|

(
LGB +DabD̃ab

∗

)
+

J0c
2

∫
ddx

√
|g| α0KmabKmab.

� (C.12)
Simplifying we have

STW =

∫
ddx

√
|g|LD + SGB,� (C.13)

LD =
J0c
2

[
α0KbmnKbmn −DabD̃ab

∗

]
,� (C.14)

SGB = −J0c
2

∫
ddx

√
|g|

(
R2 − 4RabRab + RabmnRabmn) .� (C.15)

Next, we decompose as in equation (4.21)

Dab = Dab +
4

d(d − 1)
Λgab.� (C.16)

This results in the following decomposition for D̃ab
∗

D̃ab
∗ = D̃ab

∗ +
1
2

y(d)Λgab� (C.17)

with y(d) as in equation (4.26) and Kabc = ∇bDca −∇cDba unchanged because of the covari-
ance of the metric. The Lagrangian LD becomes

LD =
J0c
2

[
α0KbmnKbmn − DabD̃ab

∗

]
+∆LD� (C.18)

where

∆LD = −J0c
2

[
4

d(d − 1)
ΛD̃∗ +

1
2

y(d)ΛD +
2y(d)
d − 1

Λ2
]

.� (C.19)

Using equations (4.18) and (4.29), we rewrite D̃∗ as

D̃∗ =
d(d − 1)

8
y(d)D − d y(d)

4
R� (C.20)

resulting in the following for ∆LD

∆LD =
1
2

y(d)
d − 1

ΛJ0c [R − 2Λ− (d − 1)D)] .� (C.21)

Thus, producing the Einstein–Hilbert term with the correct coefficient demands

κ =
d − 1

y(d)ΛJ0c� (C.22)

so that
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∆LD =
1

2κ
[R − 2Λ− (d − 1)D)] .� (C.23)

Substituting this into equation (C.18) and integrating results in the first two terms of the action

STW =
1

2κ

∫
ddx

√
|g| (R − 2Λ) +

∫
ddx

√
|g|LD + SGB,� (C.24)

LD =
J0c
2

[
α0KbmnKbmn − DabD̃ab

∗ − y(d)ΛD
]

� (C.25)

where SGB, equation (4.14), has come along for the ride.

Appendix D.  Equations of motion derivation

In STW, only LD contains the diffeomorphism field Dab. Therefore, we restrict our derivation 
of the diffeomorphism field equations of motion to the variation of LD:

− 2
J0c

δLD =− 2α0KmabδKmab + (δDabD̃ab
∗ + Dab

∗ δD̃ab) + y(d)ΛgabδDab

=− 2α0Kmab∇[aδDb]m +
[
D̃ab

∗ + (d − 1)Dab
∗ + y(d)Λgab

]
δDab

=− 4α0Kmab∇aδDbm − 2Kab
∗ δDab.

� (D.1)
In the last line we have used the fact that Kmab is antisymmetric in its last two indices as well 
as equations (4.28), (4.18) and (4.26) to make the substitution

D̃ab
∗ + (d − 1)Dab

∗ + y(d)Λgab = −2Kab
∗ .� (D.2)

After rewriting the derivative term up to a total derivative, renaming indices, and simplifying, 
the variation δLD becomes

− 2
J0c

δLD =
[
−4α0∇nKabn − 2Kab

∗
]
δDab.� (D.3)

Symmetrizing over ab and setting the factor in parenthesis to zero yields the diffeomorphism 
equation of motion

α0∇nK(ab)n = −Kab
∗ .� (D.4)

Appendix E.  Stress–energy tensor derivation

The stress–energy tensor for a source action Ssource  is defined as

δSsource = −1
2

∫
ddx

√
|g|Θabδgab =

1
2

∫
ddx

√
|g|Θabδgab.� (E.1)

For action variations involving terms such as the following containing δΓc
ab

Ṽc
abδΓc

ab� (E.2)

with Ṽc
ab symmetrized in its last two indices

Ṽc
ab = Ṽc

ba� (E.3)
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we shall find the following useful in deriving the associated stress–energy tensor:

δSsource =− 1
2

∫
ddx

√
|g|Θabδgab

=− 1
2

∫
ddx

√
|g|Θab

(g)δgab +

∫
ddx

√
|g|Ṽc

abδΓc
ab

=− 1
2

∫
ddx

√
|g|

[
Θab

(g) +∇cṼ(ab)c −∇cṼcab
]
δgab.

�

(E.4)

Comparing the first and last lines of equation (E.4) we conclude that the full stress tensor for 
Ssource  is

Θab = Θab
(g) +∇cṼ(ab)c −∇cṼcab� (E.5)

where Θab
(g) is the term associated with δgab, and not Ṽc

ab, as in the second and third lines of 
equation (E.4). In the next section we will prove equation (E.4). For now we will simply use 
it to derive the stress–energy tensor associated with LD, equation (4.24). In doing so, we will 
find the following property useful

δgabYab = −δgabYab� (E.6)

for some arbitrary tensor Yab. Also, the mixed rank tensor M b n
c d  is

M b n
c d = gcpgdmM pbmn = (d − 1)δc

bδd
n − 2(2m − 3)δc

nδd
b.� (E.7)

We use this last definition to write the source Lagrangian in the most useful form for our pres-
ent purposes as below. Neglecting the Gauss–Bonnet portion, as we will ultimately focus on 
d = 4, the source action is

SD =

∫
ddx

√
|g|LD,� (E.8)

LD =
J0c
2

[
α0KbmnKapqgabgmpgnq − DabD̃mngacgmdM b n

c d − y(d)ΛDabgab
]

.
� (E.9)

To derive the associated stress–energy tensor, we vary this with respect to the metric

δSD =

∫
ddx

[√
|g|δLD +

1
2

√
|g|gabδgabLD

]

=− 1
2

∫
ddx

√
|g|

[
−2δLD − gabLDδgab

]
.

�

(E.10)

We now focus on the δLD term. After a little simplification, this results in

2
J0c

δLD =2α0KbmnδKbmn + α0KbmnKa
mnδgab + 2α0KbmnKbm

qδgnq

− Dmn
∗ δD̃mn − DabD̃mnMc

bmnδgac − DabD̃mnMab
d

nδgmd

− y(d)ΛDabδgab.

�

(E.11)

Expanding out the definition of Kbmn and D̃mn and relabeling indices and using equation (E.6) 
to rewrite the variation in terms of the covariant δgab we have
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− 2
J0c

δLD =− 4α0Kbmnδ(∇mDnb) + α0Ka
mnKbmnδgab + 2α0KmnaKmn

bδgab

+ Dmn
∗ δ(−2Rmn)− Da

cD̃bc
∗ δgab − Dbc

∗ D̃a
cδgab − y(d)ΛDabδgab.

�

(E.12)

Next, we expand out the covariant derivative on Dnb and use the fact that

δRmn = ∇[nδΓ
c
c]m� (E.13)

to simplify the variation to

− 2
J0c

δLD =
[
α0Ka

mnKbmn + 2α0KmnaKmn
b − D a

c D̃bc
∗ − Dca

∗ D̃ b
c − y(d)ΛDab

]
δgab

− 4α0Kbmnδ(−Γc
m(nDb)c)− 2Dmn

∗ ∇nδΓ
c

cm + 2Dmn
∗ ∇cδΓ

c
nm.

The variation has split into δgab terms and δΓc
mn terms as in equation (E.4). We thus peel off 

part of the Θab
(g) piece, defining

(J0c)−1Θab
(g1) =

α0

2

[
K(a

mnKb)mn + 2Kmn(aKmn
b)
]

− 1
2

D (a
c D̃b)c

∗ − 1
2

Dc(a
∗ D̃ b)

c − y(d)ΛDab.
�

(E.14)

Along with this, we integrate by parts in the last two terms and simplify

− 2
J0c

δLD =(J0c)−1Θab
(g1)δgab + 4α0KbmnDc(bδΓ

c
n)m + 2(∇nDmn

∗ )δΓc
cm − 2∇cDmn

∗ δΓc
mn

=(J0c)−1Θab
(g1)δgab + 4α0KbmnDcnδΓ

c
bm + 2(∇nDmn

∗ )δc
bδΓc

bm

− 2(∇cDab
∗ )δΓc

ab + 4α0KbmnDcbδΓ
c

nm

=(J0c)−1Θab
(g1)δgab +

(
4α0KabnDcn + 2(∇nDan

∗ )δc
b − 2∇cDab

∗
)
δΓc

ab.

�

(E.15)

Plugging this back into the action yields

δSD = −1
2

∫
ddx

√
|g|

[
θab
(g1) − gabLD

]
δgab +

∫
ddx

√
|g|Ṽc

abδΓc
ab� (E.16)

where

Ṽcab = (−J0c)
(
α0K(ab)mD c

m +
1
2

gc(a∇mDb)m
∗ −∇cDab

∗

)
.� (E.17)

Comparing with equation (E.4) and reinserting the contribution from the Gauss–Bonnet por-
tion of the source action (which is zero in d = 4) we find that the stress–energy tensor is

Θab =∇cṼ(ab)c −∇cṼcab +
α0J0c

2

[
K(a

mnKb)mn + 2Kcm(aK b)
cm

]

− J0c
2

D (a
c D̃b)c

∗ − J0c
2

Dc(a
∗ D̃ b)

c − J0cy(d)ΛDab − gabLD +Θab
(GB).

� (E.18)
Defining Vcab without the tilde as a scaled version of Ṽcab by removing the proportionality 
factor  −J0c

Vcab = α0K(ab)mD c
m +

1
2

gc(a∇mDb)m
∗ −∇cDab

∗� (E.19)

the stress–energy tensor can be expressed as
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Θab =J0c
(
∇cVcab −∇cV(ab)c

)
+

α0J0c
2

[
K(a

mnKb)mn + 2Kcm(aK b)
cm

]

− J0c
2

D (a
c D̃b)c

∗ − J0c
2

Dc(a
∗ D̃ b)

c − J0cy(d)ΛDab − gabLD +Θab
(GB).

� (E.20)

E.1.  Proof of equation (E.4)

We shall find the following useful in this endeavor

(
√
|g|Tabc),c =

√
|g|

(
∇cTabc − Γa

dcTdbc − Γb
dcTadc)� (E.21)

(
√
|g|Tcab),c =

√
|g|

(
∇cTcab − Γa

dcTcdb − Γb
dcTcad)� (E.22)

for some tensor Tabc and the commas denote partial derivatives

(
√
|g|Tabc),c = ∂c(

√
|g|Tabc).� (E.23)

We first prove the above useful equations:

(
√
|g|Tabc),c =

√
|g|,cTabc +

√
|g|Tabc,c

=
1
2

√
|g|gdegde,c Tabc +

√
|g|Tabc,c

=
√
|g|

(
Γd

cdTabc + Tabc,c
)

.

�

(E.24)

Using the relationship between covariant derivatives and ordinary partial derivatives on the last 
line reproduces the result in equation (E.21). Equation (E.22) follows by permuting indices.

Now we will prove equation (E.4). We start by expanding out the variation δΓc
ab

∫
ddx

√
|g|Ṽc

abδΓc
ab =

∫
ddx

√
|g|Ṽc

ab
[

1
2
δgcd(gd(a,b) − gab,d) +

1
2

gcd(2δgda,b − δgab,d)

]
.

Next, we relabel some indices, integrate by parts, and simplify
∫

ddx
√
|g|Ṽc

abδΓc
ab =

∫
ddx

√
|g|Ṽc

ab 1
2
(gd(a,b) − gab,d)δgcd

−
∫

ddx
(√

|g|Ṽdab
)

,b
δgad +

∫
ddx

1
2

(√
|g|Ṽdab

)
,d
δgab

=−
∫

ddx
√
|g|Ṽcab 1

2
ged(gd(a,b) − gab,d)δgce

−
∫

ddx
[(√

|g|Ṽbad
)

,d
− 1

2

(√
|g|Ṽdab

)
,d

]
δgab.

Now we use the definition of the Christoffel symbol in the first term and equations (E.21) and 
(E.22) in the second line
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∫
ddx

√
|g|Ṽc

abδΓc
ab =−

∫
ddx

√
|g|ṼcabΓe

abδgce

−
∫

ddx
√
|g|

[
∇dṼbad − Γb

edṼead − Γa
edṼbed

−1
2
∇dṼdab +

1
2
Γa

edṼdeb +
1
2
Γb

edṼdae
]
δgab

=−
∫

ddx
√
|g|

[
Γa

edṼbed +
1
2
∇cṼ(ab)c − 1

2
∇cṼcab

−Γa
edṼdeb − Γa

edṼbed + Γa
edṼdeb

]
δgab.

� (E.25)
The first and fifth terms cancel and the fourth and sixth terms cancel, leaving us with

∫
ddx

√
|g|Ṽc

abδΓc
ab = −1

2

∫
ddx

√
|g|

[
∇cṼ(ab)c −∇cṼcab

]
δgab.� (E.26)

Plugging this into the second line of equation (E.4) reduces it to the third line.

Appendix F.  Covariant conservation of the stress–energy tensor

In this section, we show that the divergence of the stress–energy tensor vanishes. This will 
require use of the equations of motion

α0∇nK(ab)n = −Kab
∗ .� (F.1)

The stress–energy tensor Θab is

Θab =Θab
(Γ) +

α0J0c
2

[
K(a

mnKb)mn + 2Kcm(aK b)
cm

]

− J0c
2

D (a
c D̃b)c

∗ − J0c
2

Dc(a
∗ D̃ b)

c − J0cy(d)ΛDab − gabLD

� (F.2)

Θab
(Γ) = J0c

(
∇cVcab −∇cV(ab)c

)
.� (F.3)

The divergence of the stress–energy tensor is

∇aΘ
ab =∇aΘ

ab
(Γ) +

α0J0c
2

∇a

(
K(a

mnKb)mn + 2Kcm(aK b)
cm

)
−∇bLD

− J0c
2

∇a

(
D (a

c D̃ b)c
∗ + D c(a

∗ D̃ b)
c

)
− J0cy(d)Λ∇aDab.

� (F.4)

First, we focus on the ∇aΘ
ab
(Γ) term:

−(J0c)−1∇aΘ
ab
(Γ) =∇a∇cVabc +∇a∇cVbac −∇a∇cVcab

=∇a∇cVabc +∇a∇cVbac −∇c∇aVacb

=[∇a,∇c]Vabc +∇a∇cVbac

=Ra
dacVdbc + Rb

dacVadc + Rc
dacVabd +∇a∇cVbac

=− RdcVdbc + Rb
dacVadc + RdaVabd +∇a∇cVbac

=− RdcVdcb + Rb
dacVadc + RdaVadb +∇a∇cVbac

=Rb
dacVadc +∇a∇cVbac.

�

(F.5)
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In going from the third to fourth line, we have used the following property of the Riemann 
curvature tensor as pertains to rank three contravariant tensors:

[∇e,∇f ]Vabc = Ra
def Vdbc + Rb

def Vadc + Rc
def Vabd.� (F.6)

Then equation (F.4) becomes,

∇aΘ
ab =∇aΘ

ab
(α0)

+ J0cRb
dac

(
∇aDdc

∗ − 1
2

ga(c∇mDd)m
∗

)

+ J0c∇a∇c

(
∇bDac

∗ − 1
2

gb(a∇mDc)m
∗

)
− J0c

2
∇a

(
D (a

c D̃b)c
∗ + D̃ (a

c Db)c
∗

)

+
J0c
2

∇b
(

DmnD̃mn
∗ + y(d)ΛD

)
− J0cy(d)Λ∇aDab

� (F.7)

where we have collected all terms proportional to α0 into

∇aΘ
ab
(α0)

=∇aΘ
ab
(Γ,α0)

+
α0J0c

2
∇a

(
K(a

mnKb)mn + 2Kcm(aK b)
cm

)

− α0J0c
2

∇b(KcmaKcma)
� (F.8)

∇aΘ
ab
(Γ,α0)

= −α0J0c
[
Rb

dacK(dc)mD a
m +∇a∇c

(
K(ac)mD b

m

)]
.� (F.9)

Our first goal is to demonstrate that ∇aΘ
ab
(Γ,α0)

 can be written independent of α0. We will do 
so by simplifying it to terms involving only ∇aK(cm)a which, via the equation of motion (F.1), 
simplify to terms independent of α0. In the following, we will often commute partial deriva-
tives at the cost of generating Riemann curvature tensor terms according to equation (A.9) and 
simplify via use of the following useful identities

∇aDbm = −1
2

K(bm)a +
1
2
∇(bDm)a =

1
2

Kmab +
1
2
∇(aDb)m� (F.10)

Kamn∇mDnb =
1
2

KamnKbmn� (F.11)

∇b∇mDna = ∇m∇bDna − Dc(aRc
n)bm� (F.12)

Kcma =
1
2

K(cm)a − 1
2

Kacm� (F.13)

K[cm]a = −Kacm� (F.14)

Rb
[dac] = 0.� (F.15)

Moving common proportional factors in equation (F.9) to the left hand side and simplifying, 
we have
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−1
α0J0c

∇aΘ
ab
(Γ,α0)

=Rb
dacK(dc)mD a

m +∇a∇c(K(ac)mD b
m )

=Rb
dacK(dc)mD a

m + (∇a∇cK(ac)m)D b
m + K(ac)m∇a∇cD b

m

+ 2(∇aK(ac)m)∇cD b
m

=Rb
dacK(dc)mD a

m + {∇a,∇c}KacmD b
m

+ Kacm∇a∇cD b
m + Kcam∇a∇cD b

m

+ 2(∇aKacm)∇cD b
m + 2(∇aKcam)∇cD b

m .
� (F.16)

To simplify further, we use the following identity

{∇a,∇c}Kacm = −2∇c∇aK(cm)a − 3Rm
dcaKcad.� (F.17)

Substituting these into equation (F.16) and simplifying results in

−1
α0J0c

∇aΘ
ab
(Γ,α0)

=Rb
dacK(dc)mD a

m + (−2∇c∇aK(cm)a − 3Rm
dcaKcad)D b

m

+
1
2

Kacm∇a∇[cDm]
b + Kcam

(
1
2
∇c∇[aD b

m] − Rd
macD b

d + Rb
dacD d

m

)

+∇aKacm∇[cDm]
b − (∇aK(cm)a)∇cD b

m − (∇aKcma)∇[cD b
m] .

� (F.18)

In the last terms we have used the antisymmetry of Kacm, equation (4.8), along with the follow-
ing property of the Riemann curvature tensor as applies to rank-two tensors of mixed indices:

[∇c,∇a]D b
m = −Rd

macD b
d + Rb

dacD d
m .� (F.19)

Collecting the Riemann curvature terms together and simplifying and substituting 

K b
cm = ∇[cD b

m]  results in

−1
α0J0c

∇aΘ
ab
(Γ,α0)

=2Rb
dacKcdmD a

m − 2Rm
dcaKcadD b

m

− 2(∇c∇aK(cm)a)D b
m − (∇aK(cm)a)∇cD b

m

+
1
2
∇a(K(a

cmKb)cm)− (∇aKcma)Kb
cm.

�

(F.20)

The first five terms are of the form we seek. We are left to simplify the last term:

−(∇aKcma)Kb
cm =− (∇aKcma)(−K[cm]

b)

=(∇aKcma)Kcm
b − (∇aKcma)Kmc

b

=∇a(KcmaKcm
b)− Kcma∇aKcm

b − (∇aKcma)Kmc
b

=2∇a(KcmaKcm
b)−∇a(KcmaKcm

b)− Kcma∇aKcm
b − (∇aKcma)Kmc

b

=∇a(Kcm(aKcm
b))− (∇aK(cm)a)Kcm

b − 2Kcma∇aKcm
b.

� (F.21)

Plugging this back into equation (F.20) yields
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−1
α0J0c

∇aΘ
ab
(Γ,α0)

=2Rb
dacKcdmD a

m − 2Rm
dcaKcadD b

m

− 2(∇c∇aK(cm)a)D b
m − (∇aK(cm)a)∇cD b

m

+
1
2
∇a(K(a

cmKb)cm) +∇a(Kcm(aKcm
b))

− (∇aK(cm)a)Kcm
b − 2Kcma∇aKcm

b.

�

(F.22)

The third line can be seen to cancel with the other terms in ∇aΘ
ab proportional to α0 and qua-

dratic in Kcma except for the term proportional to the metric gab. It must be that the very last 
term in equation (F.21) cancels with the remaining metric term. We now show this:

−2Kcma∇aKcm
b =− 2Kcma∇a(∇mDb

c −∇bDmc)

=− Kcma[∇a,∇m]Db
c + 2Kcma∇a∇bDmc

=− KcmaRb
damDd

c + KcmaRd
camDb

d

+ 2Kcma∇b∇aDmc − 2KcmaRd b
(c|a| Dm)d

=− KcmdRb
admDa

c + KcadRm
cdaDb

m

+ Kcma∇bKcam + 2KcmaRb
ad(cD a

m)

=− 1
2
∇b(KcmaKcma) + KcadRm

cdaDb
m

− KcmdRb
admDa

c + 2KcmdRb
da(cD a

m) .

�

(F.23)

Upon substituting this into equation (F.22), all terms involving the Reimann curvature tensor 
cancel owing to the Bianchi identity Rm

[dac] = 0. The remaining terms are

−1
α0J0c

∇aΘ
ab
(Γ,α0)

=− 2(∇c∇aK(cm)a)D b
m − (∇aK(cm)a)∇cD b

m

+
1
2
∇a(K(a

cmKb)cm) +∇a(Kcm(aKcm
b))

− (∇aK(cm)a)Kcm
b − 1

2
∇b(KcmaKcma).

�

(F.24)

Upon substituting this into equation (F.8), all terms cancel aside from three terms related to 
the equations of motion

(J0c)−1∇aΘ
ab
(α0)

=2α0(∇c∇aK(cm)a)D b
m + α0(∇aK(cm)a)∇cD b

m

+ α0(∇aK(cm)a)K b
cm .

� (F.25)

These three terms can be combined into two terms

(J0c)−1∇aΘ
ab
(α0)

= 2α0∇c(D b
m ∇aK(cm)a)− α0(∇aK(cm)a)∇bDcm.� (F.26)

Now we can substitute in the equations of motion (F.1) to remove the α0 dependence

(J0c)−1∇aΘ
ab
(α0)

= −2∇c(D b
a Kca

∗ ) + Kac
∗ ∇bDac.� (F.27)

Using equations (4.28) and (4.18) we can show

Kca
∗ = −Rca

∗ − D̃ca
∗ − 1

2
y(d)Λgca.� (F.28)

S Brensinger et alClass. Quantum Grav. 37 (2020) 055003



34

Using this equation along with some rearrangement of the derivatives, we can expand the last 
term in equation (F.27) as follows:

Kac
∗ ∇bDac = −1

2
∇b(DacD̃ac

∗ )− Dac
∗ ∇bRac −

1
2

y(d)Λ∇bD.� (F.29)

With this expansion, equation (F.27) becomes

(J0c)−1∇aΘ
ab
(α0)

= −1
2
∇b

(
DacD̃ac

∗ + y(d)ΛD
)
− 2∇c(D b

a Kca
∗ )− Dac

∗ ∇bRac.
� (F.30)

Upon substituting into equation (F.7), the first term of equation (F.30) cancels with the first 
term on the last line of equation (F.7). After some simplifications, this leaves us with the fol-
lowing for the divergence of the full stress energy tensor

∇aΘ
ab ∝− 2∇c(D b

a Kca
∗ )− Dac

∗ ∇bRac + Rb
dac

[
∇aDdc

∗ − 1
2

ga(c∇mDd)m
∗

]

+∇a∇c

[
∇bDac

∗ − 1
2

gb(a∇mDc)m
∗

]

− 1
2
∇a

[
D (a

c D̃b)c
∗ + D̃ (a

c Db)c
∗ + 2y(d)ΛDab

]

�

(F.31)

with the proportionality constant equal to J0c. Next, we expand and substitute in for D̃ab  leav-
ing us with

∇aΘ
ab ∝− 2∇c(D b

a Kca
∗ )− Dac

∗ ∇bRac + Rb
dac∇aDdc

∗ − 1
2

R b
c ∇aDca

∗

+

[
∇a∇c∇b − 1

2
∇a∇b∇c −

1
2
∇b∇a∇c

]
Dac

∗

− 1
2
∇a

[
2(d − 1)D (a

c Db)c
∗ − 2D (a

c Rb)c
∗ + y(d)ΛD (a

c gb)c − 2R (a
c Db)c

∗

]
.

� (F.32)
Using again equation (F.28), the first three terms in the last line can be collapsed into a single 
term involving Kbc

∗ . Doing this as well as reorganizing the triple derivative terms leaves us with

∇aΘ
ab ∝− 2∇c(D b

a Kca
∗ )− Dac

∗ ∇bRac + Rb
dac∇aDdc

∗ − 1
2

R b
c ∇aDca

∗

+

[
∇a[∇c,∇b]− 1

2
[∇b,∇a]∇c

]
Dac

∗ +∇a(D (a
c Kb)c

∗ ) +∇a(R (a
c Db)c

∗ ).

� (F.33)
Substituting the Riemann and Ricci tensors in the commutator terms and simplifying and 
combining the first terms on the first line with the last two terms on the last line results in

∇aΘ
ab ∝∇a(D [a

c Kb]c
∗ )− Dac

∗ ∇bRac + Rb
dac∇aDdc

∗ − 1
2

R b
c ∇aDca

∗

− Ddc
∗ ∇aRb

dac − Rb
dac∇aDdc

∗ −∇a(Rb
cDac

∗ )−
1
2

Rb
d∇cDdc

∗

+∇a(R a
c Dbc

∗ ) +∇a(Rb
cDac

∗ ).

�

(F.34)

The third and sixth terms cancel, the seventh and tenth terms cancel, and the fourth and eighth 
terms combine. These simplifications along with using equations (4.28) and (4.18) to expand 
Kbc
∗  in the first term leads to
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∇aΘ
ab ∝− 2(2d − 3)∇a(D [a

c Rb]c)− Dac
∗ ∇bRac − R b

c ∇aDca
∗ − D∗

ac∇dRbcda

+∇a(R a
c Dbc

∗ )
� (F.35)

where we have also raised and relabeled indices in the Riemann term. We can use the contrac-
tion of the second Bianchi identity to simplify the term with the Riemann tensor

∇dRbcda = ∇cRba −∇bRca.� (F.36)

This leads us to

∇aΘ
ab ∝− 2(2d − 3)∇a(D [a

c Rb]c)− Dac
∗ ∇bRac − R b

c ∇aDca
∗

− D∗
ac∇cRba + D∗

ac∇bRca +∇a(R a
c Dbc

∗ ).
� (F.37)

The second and fifth terms cancel and we combine the rest into total derivatives and relabel 
indices leaving us with

∇aΘ
ab ∝ −2(2d − 3)∇a(D [a

c Rb]c)−∇a(D
c[a
∗ R b]

c ).� (F.38)

Using equation (4.18) to expand the second term leads to

∇aΘ
ab ∝− 2(2d − 3)∇a(Dc[aR b]

c )− (d − 1)∇a(Dgc[aR b]
c )

+ 2(2d − 3)∇a(Dc[aR b]
c ).

� (F.39)

The first and third terms cancel and the second term is zero due to the symmetry of the Ricci 
tensor. Therefore, we have shown that

∇aΘ
ab = 0.� (F.40)
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