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Abstract
In this paper we generate, for the first time, the most general class of conformal 
Killing vectors, that lies in the two dimensional subspace described by the null 
and radial coordinates, that are admitted by the generalised Vaidya geometry. 
Subsequently we find the most general class of generalised Vaidya mass 
functions that give rise to such conformal symmetry. From our analysis it is 
clear that why some well known subclasses of generalised Vaidya geometry, 
like pure Vaidya or charged Vaidya solutions, admit only homothetic Killing 
vectors but no proper conformal Killing vectors with non-constant conformal 
factors. We also study the gravitational collapse of generalised Vaidya 
spacetimes that possess proper conformal symmetry to show that if the central 
singularity is naked then in the vicinity of the central singularity the spacetime 
becomes almost self-similar. This study definitely sheds new light on the 
geometrical properties of generalised Vaidya spacetimes.

Keywords: generalised Vaidya spacetimes, conformal symmetries, 
gravitational collapse

1.  Introduction

Symmetries provide us with a deeper insight into properties of the spacetime manifold and 
assist in finding new solutions to the Einstein field equations. Conformal symmetries are con-
nected to the causal structure of spacetimes. If a spacetime admits conformal symmetry then 
there exists a conformal Killing vector (CKV) field in the spacetime. If the metric is Lie 
dragged along this vector field the causal structure of the spacetime remains invariant. It is 
thus obvious that homothetic symmetry or Killing symmetries are special case of conformal 
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symmetry. For general results connecting conformal symmetries to kinematical and dynamical 
quantities see the investigations for anisotropic relativistic fluids by Maartens et al [1], Mason 
and Maartens [2] and Coley and Tupper [3]. Several examples of conformal Killing vectors 
have been found mainly in spherically symmetric spacetimes. In a recent study, Moopanar and 
Maharaj [4, 5] obtained the general CKV in spherically symmetric spacetimes. It is interesting 
to observe that homothetic and conformal symmetries arise in general in locally rotationally 
symmetric (LRS) spacetimes as shown by Singh et al [6, 7] using covariant semitetrad formal-
isms. It is known that the Vaidya spacetime admits a homothetic vector associated with a self-
similarity. However, it does not admit a proper CKV since it contains pure radiation as shown 
in Lewandowski [8]. The existence of proper conformal symmetries in generalised Vaidya 
spacetimes remains an open question as the matter content is not only pure radiation and the 
conditions of Lewandowski are not applicable. This paper attempts to answer the question of 
existence of conformal symmetries in generalised Vaidya spacetimes.

The Vaidya spacetime [9] is widely used in many astrophysical applications with strong 
gravitational fields. In general relativity, this spacetime assumed added importance with the 
completion of the junction conditions at the surface of the star by Santos [10]. The pressure at 
the surface is nonzero and the star dissipates energy in the form of heat flux. This made it pos-
sible to study dissipation and physical features associated with gravitational collapse as shown 
by Herrera et al [11, 12]. Some recent studies of the temperature properties inside the radiat-
ing star include Reddy et al [13], Thirukkanesh et al [14] and Thirukkanesh and Govender 
[15]. The metric in [9, 16] may be extended to include both null dust and null string fluids 
leading to the generalised Vaidya spacetime. The properties of the generalised Vaidya metric 
have been studied by Hussain [17], Wang and Wu [18], Glass and Krisch [20, 21]. Maharaj 
et al [22] modelled a radiating star with a generalised Vaidya atmosphere in general relativity. 
Detailed study of continual gravitational collapse of these spacetimes in the context of the 
Cosmic Censorship Conjecture were done in [23, 24]. In the geometrical context, gravitational 
collapse has been considered in Lovelock gravity theory [25], black holes in dynamical cos-
mology backgrounds [26] and in electromagnetic fluids [27]. The influence of dust, radiation, 
quintessence and the cosmological constant are included in these studies.

Previous studies in conformal symmetries have mainly used the 1  +  3 decomposition of 
spacetime and the orthonomal tetrad. We follow this approach so that comparison with ear-
lier results are made easier. Our intention is to generate the most general class of conformal 
Killing vectors, that lies in the two-dimensional subspace described by the null and radial 
coordinates, that are admitted by the generalised Vaidya geometry. Subsequently we find the 
most general class of generalised Vaidya mass functions that give rise to such conformal sym-
metry. This analysis transparently brings out the reason for some well known subclasses of 
generalised Vaidya geometry, like pure Vaidya or charged Vaidya solutions, admitting only 
homothetic Killing vectors but no proper conformal Killing vectors with non-constant confor-
mal factors. We also study the continual collapse of generalised Vaidya spacetimes that admit 
conformal symmetry and show that if the central singularity is naked or in the transition from 
a naked singularity to a covered one, the spacetime in the vicinity of the central singularity is 
almost self-similar.

The paper is organised as follows: in section 2 we discuss the generalised Vaidya metric 
and the associated matter content. We generate the master equation governing the existence 
of the conformal symmetry in section 3 and show that a solution always exists. Special cases 
corresponding to particular mass functions are listed in section 4. In section 5 we study the 
collapse of generalised Vaidya spacetimes that admit proper conformal symmetry. Some gen-
eral comments are given in section 6.
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Unless otherwise specified, we use natural units (c = 8πG = 1) throughout this paper, 
Latin indices run from 0 to 3. The symbol ∇ represents the usual covariant derivative and 
∂ corresponds to partial differentiation. We use the (−,+,+,+) signature and the Riemann 
tensor is defined by

Ra
bcd = Γa

bd,c − Γa
bc,d + Γe

bdΓ
a

ce − Γe
bcΓ

a
de,� (1)

and the Ricci tensor is obtained by contracting the first and the third indices of the Riemann 
tensor.

2.  Generalised Vaidya spacetimes

We know, the only types of physical matter fields are those whose energy momentum tensor 
either have one timelike and three spacelike eigenvectors or have double null eigenvectors 
[28]. The former (which includes dust, perfect fluid form of matter) is called Type I matter 
field while the later (which includes radiation) is known as Type II matter field. The most gen-
eral spherically symmetric line element for arbitrary combination of Type I matter fields and 
Type II matter fields is given as [29]

ds2 = −e2ψ(v,r)
[

1 − 2m(v, r)
r

]
dv2 + 2εeψ(v,r)dvdr

+ r2(dθ2 + sin2 θdφ2), (ε = ±1),
�

(2)

where m(v, r) is the Misner-Sharp mass function that relates to the gravitational energy inside 
a given radius r [30]. When ε = +1, the null coordinates v is the Eddington advanced time, 
where r is decreasing towards the future along a ray v = Const. This depicts ingoing (or col-
lapsing) null congruence with negative volume expansion. For ε = −1, the null coordinate v is 
the Eddington retarded time and it depicts an outgoing null congruence with positive volume 
expansion. In this paper, as we focus on gravitational collapse of generalized Vaidya space-
times, we will keep ε = +1 throughout.

Wang and Wu [18] established that there always exist classes of specific combinations of 
Type I and Type II matter fields, that makes the metric function ψ(v, r) = 0. This gives rise to 
the generalised Vaidya geometry with the line element

ds2 = −
(

1 − 2m(v, r)
r

)
dv2 + 2dvdr + r2dΩ2.� (3)

This line element is the generalisation of well known Vaidya spacetime [9], and this generali-
sation comes from the observation that the energy momentum tensor for these matter fields are 
linear in terms of the mass function. Therefore any linear superposition of particular solutions 
is also a solution to the field equations. Hence, we can easily construct the monopole-de Sitter-
charged Vaidya solutions and the Husain solutions that fall in this class. Generalised Vaidya 
spacetimes are also widely used in describing the formation of regular black holes [31] and 
black holes with closed apparent horizon [32]. It should be noted, however that ψ(v, r) = 0 is 
a choice on the metric and not imposed by any physical requirements and can be avoided (see 
for example [19]).

For these spacetimes, the non-vanishing components of the Einstein tensor can be written 
as

Gv
v = Gr

r = −2m,r

r2 ,� (4a)
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Gr
v =

2m,v

r2 ,� (4b)

Gθ
θ = Gφ

φ = −m,rr

r
.� (4c)

We define the null vectors lµ and nµ in the following way

lµ = δ0
µ, nµ =

1
2

[
1 − 2m(v, r)

r

]
δ0
µ − δ1

µ� (5)

where lµlµ = nµnµ = 0 and lµnµ = −1. Using these null vectors we can now define the 
orthonormal basis

Eµ
(0) =

lµ + nµ√
2

, Eµ
(1) =

lµ − nµ

√
2

,

Eµ
(2) =

1
r
δµ2 , Eµ

(3) =
1

r sin θ
δµ3 .

� (6)

Using the Einstein field equations, the corresponding energy momentum tensor, when pro-
jected to this orthonormal basis can be written in the form

[
T(µ)(ν)

]
=




µ
2 + ρ µ

2 0 0
µ
2

µ
2 − ρ 0 0

0 0 P 0
0 0 0 P


� (7)

where

µ =
2m,v

r2 , ρ =
2m,r

r2 , P =
2m,rr

r2 .� (8)

This is the form of energy momentum of a specific combination of Type I and Type II fluid as 
defined in [28], with the following energy conditions:

	 1.	�The weak and strong energy conditions:

µ � 0, ρ � 0, P � 0, (µ �= 0).� (9)

	 2.	�The dominant energy conditions:

µ � 0, ρ � P � 0, (µ �= 0).� (10)

We can suitably choose the mass function m(v, r), to satisfy all these energy condition. For 
Vaidya spacetimes, when m = m(v), the fluid is a pure Type II fluid, and the energy conditions 
are satisfied when µ � 0. On the other hand when m = m(r) we have µ = 0, and the matter 
field degenerates to a pure Type I fluid with the usual energy conditions.

3.  Existence of conformal Killing vectors

Any spacetime (with coordinates xa and metric gab) is said to possess a CKV ‘X’, if it solves 
the following conformal Killing equation

LXgab = S(xa)gab.� (11)
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If the components of the vector X  is represented by Xa then the above equation simplifies to 
the set of equations

∇(aXb) = Sgab.� (12)

We know the CKV becomes a Killing vector when S  =  0. In that case the metric remains 
invariant when it is Lie dragged along this vector field. Homothetic Killing vector is a special 
case of CKV if the conformal function S is a non-zero constant. Then without any loss of 
generality we can always take S to be unity. The spacetimes that possess a homothetic Killing 
vector are called self-similar spacetimes. Henceforth we will denote a CKV as proper if S is a 
non-constant function of the coordinates.

We would now like to find the existence of non-trivial CKV’s in the (v, r) subspace of a 
generalised Vaidya spacetime. We note that since the spacetime is spherically symmetric, the 
(θ,φ) subspace will have the usual symmetries of a 2-sphere. Therefore any non-trivial sym-
metry must lie in the (v, r) subspace. Thus, we look for a CKV of the form

X = A(r, v)∂v + B(r, v)∂r,� (13)

where A(r, v) and B(r, v) are unknown functions to be determined by solving the conformal 
Killing equation (12). We note that due to the spherical symmetry and the form of the CKV 
chosen, (12) becomes a set of four non-trivial equations. The (θ, θ) component gives

B = Sr,� (14)

which is just a definition of the conformal factor S in terms of the vector component. The (r, r) 
component gives

A,r = 0,� (15)

which constraints the function A ≡ A(v). We note that for proper CKV and homothetic Killing 
vectors, we may use the scaling freedom of the null coordinate ‘v’ to write A(v) = v, without 
any loss of generality. (Although this is not true for Killing vectors where A(v) is constant, 
we exclude that singular case here). Now using the above two equations the (r, v) component 
becomes

1 + Br − 2
B
r
= 0.� (16)

Solving the above equation for the function B(r, v), we get

B(r, v) = g(v)r2 + r,� (17)

where g(v) is an arbitrary function of integration. This completes the demonstration of the 
following proposition:

Proposition 1.  The most general class of proper CKV in the (v, r) subspace of a gener-
alised Vaidya spacetime is of the form X = v∂v + (gr2 + r)∂r . The corresponding conformal 
factor is given by S  =  1  +  rg.

From the above proposition, it is obvious that when g  =  0, the CKV becomes homothetic. 
We would now like to find out what classes of mass function can admit these general CKV’s in 
(v, r) sunspace. We use the (v, v) component of (12) and using equations (14)–(16), to obtain

(
1 − 2m

r

)
B,r + B,v +

B
r

(
m,r +

m
r
− 1

)
+

m,vv
r

= 0.� (18)

S Ojako et alClass. Quantum Grav. 37 (2020) 055005
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Now the interesting point about the above equation is: given any function B(r, v), the equa-
tion becomes a quasilinear equation for the function m(r, v), whose solution is guaranteed. 
Therefore we plug in the form of B(r, v) from equation (17) to get the required quasilinear 
equation

vm,v +
(
gr2 + r

)
m,r − m (3gr + 1) +

(
gr2 + g,vr3) = 0.� (19)

The general solution of the above completes the demonstration of the following:

Proposition 2.  The most general class of Misner-Sharp mass function that allows for a 
proper CKV in the (v, r) subspace of a generalised Vaidya spacetimes is given as

m(r, v) =
r
x2

(
F (Φ)−

∫ v [
y

dg(y)
dy

+ g(y)
(∫ v

g(w)dw −
∫ y

g(z)dz + x
)]

dy
)

,� (20)

where x ≡ v/r, Φ =
∫

g(v)dv + x  and the function F is an arbitrary function of integration.

In the above equation, we treat the variables v, y  and x as independent variables. We first 
perform the inner integrals and then integrate with respect to the variable y  (assuming v and 
x as constants) and finally substitute y = v to get the required mass function. We can now 
immediately state a corollary to the above proposition:

Corollary 1.  If pure Vaidya spacetimes with m(r, v) = m(v) possess a CKV, we must have 
g  =  0 and consequently F (Φ) ∝ Φ3. In this case the CKV is a homothetic Killing vector. Thus 
although pure Vaidya spacetimes allows for self-similar solutions, they do not admit a proper 
conformal symmetry.

The above corollary is consistent with the result by Lewandowski [8], that a spacetime with 
pure null radiation cannot contain a proper CKV. Note that the absence of proper CKV’s will 
also apply to simple extensions of the Vaidya spacetimes considered by Wang and Wu [18], 
including charged Vaidya and Husain metrics.

4.  Examples of some special cases

In this section we will look into some physically interesting special cases for which we can 
exactly integrate the equation (20) to get some specific class of mass functions. Again note 
that by rescaling A(v) ≡ v, we have excluded the singular case of Killing vectors.

4.1.  Case of homothety

Homothetic Killing vector is a special case of CKV if the conformal function S is a non-zero 
constant. Without any loss of generality we can always take S to be unity. The spacetimes 
that possess a homothetic Killing vector are called self similar spacetimes. Now from equa-
tion (14) we get B  =  r. So then the homothetic Killing vector is of the form

X = v∂v + r∂r,� (21)

and equation (18) reduces to

m,r +
m,vv

r
− m

r
= 0.� (22)

S Ojako et alClass. Quantum Grav. 37 (2020) 055005
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The general solution of the above equation is

m(v, r) = rF(x),� (23)

where x = v/r and F is an arbitrary function. Thus the only self-similar Vaidya solution is for 
m(v) = λv for some constant λ.

Similarly for charged Vaidya, the self-similar spacetime is obtained when

m(v, r) = λ1v + λ2
v2

r
.� (24)

In general, any mass function of the form

m(r, v) =
∞∑

n=−∞

mn(v)
rn−1� (25)

will allow for a homothety iff

mn(v) = λnvn.� (26)

4.2.  Case of S = S(r)

Next we look for spacetimes with proper conformal symmetry, where the conformal factor is 
a function of the radial coordinate only. Thus substituting g(v) = K  in equation (19) and solv-
ing, we get the general class of solutions

m(r, v) = G (x(Kr + 1))
[
K2r3 + 2Kr2 + r

]
+

1
2

r� (27)

where x ≡ v/r and the function G is an arbitrary function of integration. It is interesting to 
see that a dynamic spacetime of the above form admits a static conformal factor. However, 
when G  =  const., we can always have a subclass of anisotropic deSitter spacetime of the form

m(r, v) = m(r) = K2r3 + 2Kr2 +
3
2

r,� (28)

which admits proper CKV with static conformal factor.

4.3.  Case of S = 1 + vnr2

Here we take the function g(v) = vn. Again substituting in equation (19) and solving, we get 
the general class of solutions

m(r, v) =
r

x2(n + 1)3 H(Γ)− 1
(n + 1)2x2

(
1
2

v2n+2r + vn+1(n + 1)(nr + v)
)

�

(29)

where we have

Γ =

(
v (vnr + n + 1)

r (n + 1)

)
,� (30)

and H is again an arbitrary function of integration.

S Ojako et alClass. Quantum Grav. 37 (2020) 055005
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5.  Collapse of generalised Vaidya spacetimes admitting proper conformal 
symmetry

In [24], the continual gravitational collapse of generalised Vaidya spacetimes was investigated 
in detail in the context of Cosmic Censorship Conjecture. It was shown that all the non-central 
singularities must be covered behind the apparent horizon. However the central singularity 
at (v = 0, r = 0) can be naked, subjected to certain conditions on the mass function. These 
conditions are as follows:

	 1.	�m0 ≡ limv→0,r→0 m(v, r) = 0.

	 2.	�ṁ0 ≡ limv→0,r→0 m,v and m′
0 = limv→0,r→0 m,r  are well defined.

	 3.	�The quantities b± ≡ (1−2m′
0)±

√
(1−2m′

0)
2−16ṁ0

4ṁ0
, that denotes the slope of outgoing null 

geodesics that terminate in the past at the central singularity, must be positive and real.
	 4.	�At least one of the b± must be less than the slope of apparent horizon at the central 

singularity.

Now we would like to investigate the the final outcome of the continual collapse of those 
generalised Vaidya spacetimes that admit a proper conformal symmetry, with a class of mass 
functions given by (20). By the arbitrariness of the functions F and g, it is clear that once the 
first two conditions are satisfied there always exist sets of non-zero measure in the functional 
space for which the third and fourth conditions are also satisfied, and hence for these space-
times the Cosmic Censorship Conjecture may be violated. However the first two conditions 
give an interesting insight. They specifically force the functions F and g to be at least C1 func-
tions in the limit of the central singularity (v = 0, r = 0). Therefore g(0) must be well defined 
and bounded. By Proposition 1, we can now immediately see that for small enough values of 
the coordinate r, (where we can neglect the O(r2) term), the proper CKV becomes a HKV as 
X ∼ v∂v + r∂r . This observation enables us to state the following proposition:

Proposition 3.  Let the end state of a continual gravitational collapse of generalised 
Vaidya spacetimes that admit a proper conformal symmetry, be a naked singularity or in the 
transition region of naked singularity and black hole phases. In that case there exist an open 
set about the central singularity where the spacetime is almost self similar. Also the almost 
homothetic Killing vector becomes null at the central singularity, indicating the formation of 
a horizon at the centre.

In the above context there is a remarkable similarity between generalised Vaidya space-
times, Lake’s results [33] and Choptuik’s numerical results of massless scalar field collapse 
[34].

6.  Discussion

In this paper, we performed a detailed investigation on the conformal symmetry in the (v, r) 
subspace of generalised Vaidya spacetimes. Due to the spherically symmetry, we noted that 
the (θ,φ) subspace will have the usual symmetries of a 2-sphere and hence any non-trivial 
symmetry must lie in the (v, r) subspace. We integrated the conformal Killing equations to 
explicitly find the most general form of CKV that may lie in the (v, r) subspace, and subse-
quently found the most general class of mass functions that admit such a symmetry.

From our analysis it is very transparent that some very well known solutions of the general-
ised Vaidya class (for example pure Vaidya or charged Vaidya), although admitting homothetic 
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symmetry, do not admit any proper conformal symmetry. We also regained the mass function 
for the well known class of anisotropic deSitter spacetimes that admit a proper CKV. And 
finally we studied the continual gravitational collapse of generalised Vaidya spacetimes that 
admit a proper conformal symmetry, to show that there exist sets of non-empty measure in the 
parameter space of the mass function for which Cosmic Censorship Conjecture is violated. 
However when such scenario happens, there exist an open set about the central singularity 
where the spacetime is almost self similar and the almost homothetic Killing vector becomes 
null at the central singularity as the horizon forms. This result is at par with the observations 
of Lake and Choptuik.

A study of the complete set of conformal Killing vectors in generalised Vaidya spacetimes 
will definitely shed more light on the above results and we keep that for future works.

Acknowledgment

The authors would like to thank Dr AMK Nzioki for GRTensor help. We are indebted to the 
National Research Foundation and the University of KwaZulu-Natal for financial support. 
SDM acknowledges that this work is based upon research supported by the South African 
Research Chair Initiative of the Department of Science and Technology.

ORCID iDs

Samson Ojako  https://orcid.org/0000-0001-5327-2075
Rituparno Goswami  https://orcid.org/0000-0002-5355-3288
Sunil D Maharaj  https://orcid.org/0000-0002-1967-2849

References

	 [1]	 Maartens R, Ellis G F R and Stoeger W R 1995 Phys. Rev. D 51 1525
	 [2]	 Mason D P, Maartens R and Tsamparlis M 1986 J. Math. Phys. 27 2987
	 [3]	 Coley A A and Tupper B O J 1994 Class. Quantum Grav. 11 2553
	 [4]	 Moopanar S and Maharaj S D 2013 J. Eng. Math. 82 125
	 [5]	 Israel W 1967 Phys. Lett. A 24 184
	 [6]	 Singh S, Ellis G F R, Goswami R and Maharaj S D 2017 Phys. Rev D 96 064049
	 [7]	 Singh S, Goswami R and Maharaj S D 2019 J. Math. Phys. 60 052503
	 [8]	 Lewandowski J 1990 Class. Quantum Grav. 7 L135
	 [9]	 Vaidya P C 1951 Proc. Indian Acad. Sci. A 33 264
	[10]	 Santos N O 1985 Mon. Not. R. Astron. Soc. 216 403
	[11]	 Herrera L, Di Prisco A and Ospino J 2006 Phys. Rev. D 74 044001
	[12]	 Herrera L, Le Denmat G and Santos N O 2012 Gen. Relativ. Gravit. 44 1143
	[13]	 Reddy K P, Govender M and Maharaj S D 2015 Gen. Relativ. Gravit. 47 35
	[14]	 Thirukkanesh S, Moopanar S and Govender M 2012 Pramana J. Phys. 79 223
	[15]	 Thirukkanesh S and Govender M 2013 Int. J. Mod. Phys. D 22 1350087
	[16]	 Lindquist R W, Schwartz R A and Misner C W 1965 Phys. Rev. B 137 1364
	[17]	 Husain V 1996 Phys. Rev. D 53 R1759
	[18]	 Wang A and Wu Y 1999 Gen. Relativ. Gravit. 31 107
	[19]	 Aniceto P and Rocha J V 2019 J. High Energy Phys. JHEP10(2019)151 
	[20]	 Glass E N and Krisch J P 1998 Phys.Rev. D 57 5945
	[21]	 Glass E N and Krisch J P 1999 Class. Quantum Grav. 16 1175
	[22]	 Maharaj S D, Govender G and Govender M 2012 Gen. Relativ. Gravit. 44 1089
	[23]	 Mkenyeleye M D, Goswami R and Maharaj S D 2015 Phys. Rev. D 92 024041
	[24]	 Mkenyeleye M D, Goswami R and Maharaj S D 2014 Phys. Rev. D 90 064034

S Ojako et alClass. Quantum Grav. 37 (2020) 055005

https://orcid.org/0000-0001-5327-2075
https://orcid.org/0000-0001-5327-2075
https://orcid.org/0000-0002-5355-3288
https://orcid.org/0000-0002-5355-3288
https://orcid.org/0000-0002-1967-2849
https://orcid.org/0000-0002-1967-2849
https://doi.org/10.1103/PhysRevD.51.1525
https://doi.org/10.1103/PhysRevD.51.1525
https://doi.org/10.1063/1.527225
https://doi.org/10.1063/1.527225
https://doi.org/10.1088/0264-9381/11/10/015
https://doi.org/10.1088/0264-9381/11/10/015
https://doi.org/10.1007/s10665-012-9573-x
https://doi.org/10.1007/s10665-012-9573-x
https://doi.org/10.1016/0375-9601(67)90756-6
https://doi.org/10.1016/0375-9601(67)90756-6
https://doi.org/10.1103/PhysRevD.96.064049
https://doi.org/10.1103/PhysRevD.96.064049
https://doi.org/10.1063/1.5080197
https://doi.org/10.1063/1.5080197
https://doi.org/10.1088/0264-9381/7/3/007
https://doi.org/10.1088/0264-9381/7/3/007
https://doi.org/10.1007/BF03173260
https://doi.org/10.1007/BF03173260
https://doi.org/10.1093/mnras/216.2.403
https://doi.org/10.1093/mnras/216.2.403
https://doi.org/10.1103/PhysRevD.74.044001
https://doi.org/10.1103/PhysRevD.74.044001
https://doi.org/10.1007/s10714-012-1331-x
https://doi.org/10.1007/s10714-012-1331-x
https://doi.org/10.1007/s10714-015-1880-x
https://doi.org/10.1007/s10714-015-1880-x
https://doi.org/10.1142/S0218271813500879
https://doi.org/10.1142/S0218271813500879
https://doi.org/10.1103/PhysRev.137.B1364
https://doi.org/10.1103/PhysRev.137.B1364
https://doi.org/10.1103/PhysRevD.53.4327
https://doi.org/10.1103/PhysRevD.53.4327
https://doi.org/10.1023/A:1018819521971
https://doi.org/10.1023/A:1018819521971
https://doi.org/10.1007/JHEP10(2019)151
https://doi.org/10.1007/JHEP10(2019)151
https://doi.org/10.1103/PhysRevD.57.R5945
https://doi.org/10.1103/PhysRevD.57.R5945
https://doi.org/10.1088/0264-9381/16/4/007
https://doi.org/10.1088/0264-9381/16/4/007
https://doi.org/10.1007/s10714-012-1329-4
https://doi.org/10.1007/s10714-012-1329-4
https://doi.org/10.1103/PhysRevD.92.024041
https://doi.org/10.1103/PhysRevD.92.024041
https://doi.org/10.1103/PhysRevD.90.064034
https://doi.org/10.1103/PhysRevD.90.064034


10

	[25]	 Rudra P, Biswas R and Debnath U 2011 Astrophys. Space Sci. 335 505
	[26]	 Heydarzade Y and Darabi F 2018 Eur. Phys. J. C 78 582
	[27]	 Heydarzade Y and Darabi F 2018 Eur. Phys. J. C 78 1004
	[28]	 Hawking S W and Ellis G F R 1973 The Large Scale Structure of Spacetime (Cambridge: Cambridge 

University Press)
	[29]	 Barrabes C and Israel W 1991 Phys. Rev. D 43 1129
	[30]	 Lake K and Zannias T 1990 Phys. Rev. D 43 1798
	[31]	 Hayward S A 2006 Phys. Rev. Lett. 96 031103
	[32]	 Frolov V P 2014 J. High Energy Phys. JHEP(2014)49
	[33]	 Lake K 1992 Phys. Rev. Lett. 68 3129
	[34]	 Choptuik M W 1993 Phys. Rev. Lett. 70 9

S Ojako et alClass. Quantum Grav. 37 (2020) 055005

https://doi.org/10.1007/s10509-011-0759-x
https://doi.org/10.1007/s10509-011-0759-x
https://doi.org/10.1140/epjc/s10052-018-6041-4
https://doi.org/10.1140/epjc/s10052-018-6041-4
https://doi.org/10.1140/epjc/s10052-018-6465-x
https://doi.org/10.1140/epjc/s10052-018-6465-x
https://doi.org/10.1103/PhysRevD.43.1129
https://doi.org/10.1103/PhysRevD.43.1129
https://doi.org/10.1103/PhysRevD.43.1798
https://doi.org/10.1103/PhysRevD.43.1798
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1007/JHEP05(2014)049
https://doi.org/10.1007/JHEP05(2014)049
https://doi.org/10.1103/PhysRevLett.68.3129
https://doi.org/10.1103/PhysRevLett.68.3129
https://doi.org/10.1103/PhysRevLett.70.9
https://doi.org/10.1103/PhysRevLett.70.9

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Conformal symmetries in generalised Vaidya spacetimes﻿﻿﻿﻿
	﻿﻿Abstract
	﻿﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿2. ﻿﻿﻿Generalised Vaidya spacetimes
	﻿﻿3. ﻿﻿﻿Existence of conformal Killing vectors
	﻿﻿4. ﻿﻿﻿Examples of some special cases
	﻿﻿4.1. ﻿﻿﻿Case of homothety
	﻿﻿4.2. ﻿﻿﻿Case of ﻿﻿
	﻿﻿4.3. ﻿﻿﻿Case of ﻿﻿

	﻿﻿5. ﻿﻿﻿Collapse of generalised Vaidya spacetimes admitting proper conformal symmetry
	﻿﻿6. ﻿﻿﻿Discussion
	﻿﻿﻿Acknowledgment
	﻿﻿﻿﻿﻿﻿ORCID iDs
	﻿﻿﻿References﻿﻿﻿﻿


