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Abstract

We further develop the gravitational model, Thomas-Whitehead gravity
(TW Gravity), that arises when projective connections become dynamical
fields. TW Gravity has its origins in geometric actions from string theory
where the TW projective connection appears as a rank two tensor, D, on
the spacetime manifold. Using a Gauss—Bonnet (GB) action built from the
(d + 1)-dimensional TW connection, and applying the tensor decomposition
Dap = Doy +4A/(d(d — 1))gap, we arrive at a gravitational model made
up of a d-dimensional Einstein—Hilbert + GB action sourced by D,, and
with cosmological constant A. The d = 4 action is studied and we find that
A o 1/Jy, with Jy the coupling constant for D,,. For A equal to the current
measured value, Jj is on the order of the measured angular momentum of the
observable Universe. We view this as A controlling the scale of patches of the
Universe that acquire angular momentum, with the net angular momentum
of multiple patches vanishing, as required by the cosmological principle. We
further find a universal axial scalar coupling to all fermions where the trace,
D = D,»g® acts as the scalar. This suggests that D is also a dark matter portal
for non-standard model fermions.
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1. Introduction

The two great, outstanding cosmological and astrophysical problems are the natures of dark
energy and dark matter. Together, they comprise roughly 95% of the energy of the Universe,
though their identities are unknown. Dark matter is hypothetically the glue holding galaxies
together, since current measurements indicate that the outer regions of galaxies are spinning
faster than what would be predicted from the gravitational pull of only the baryonic matter
within the galaxies. Using merry-go-rounds as analogies to galaxies, the outer regions of gal-
axies are like children standing on the edges of rapidly spinning merry-go-rounds, with Dark
matter playing the role of the adults holding on to the children to keep them from flying off.

Dark energy is the name given to the unknown substance which acts like a negative pres-
sure, pulling the Universe apart. We are currently in an era of dark energy domination as the
density of matter has become diffuse enough within the last four or five billion years for the
small yet constant density of dark energy to become larger than the density of matter. Current
measurements indicate that the present action of dark energy is consistent with a cosmological
constant, thus dark energy will continue to expand the universe at an accelerated rate for an
infinite amount of time, given there are not changes in the identity of dark energy.

Treating cosmological parameters as fundamental constants has a long history, though it is
seldom discussed. In 1937, Dirac considered dimensionless constants involving for instance
the Hubble constant Hy and the charge e and mass m of the electron [1]. Dirac noted that
Homc? /e* was on order of the ratio between the electric and gravitational forces between
electrons and protons. In 1972, Weinberg [2] reviewed this approach as an introduction to his
review of Brans and Dicke’s model of scalar-tensor gravity [3]. More recently [4] considered
arelation between the vacuum energy and the hierarchy of forces. In [5] the cosmological con-
stant itself was considered as a fundamental constant. In this paper, we introduce the cosmic
angular momentum constant Jj as a coupling constant in the recently introduced tensor—tensor
model of gravity based on dynamical projective geometry [6]. We refer to this model as TW
gravity after Thomas and Whitehead’s early work in projective geometry [7-9].

While the action of TW gravity will be manifestly invariant under projective transforma-
tions, it is not necessarily true that physical observables will also be projectively invariant.
Indeed, cosmological observables such as the deceleration (g) and jerk (/) have been shown
[10] to transform non-trivially under projective transformations. We also stress the point that
the construction of TW gravity only exploits the existence of a projective structure. It is well-
known that both projective and conformal structure are necessary to fully set up the notion of
space-time geometry [11].

We demonstrate both dark energy and some dark matter applications of TW gravity. In
the context of recent work [6], we consider TW gravity to be inspired by string theory and
2D quantum gravity. We present here the pure Gauss—Bonnet TW gravity as an initial invest-
igation. The pure GB action has the feature of becoming an Einstein—Hilbert action with an
additional interaction when we use a particular ansatz for the diffeomorphism field. In par-
ticular, we are able to predict a bare cosmological constant term in the action that depends
on an angular momentum parameter Jj, that we argue is of cosmological scale (i.e. sums of
galactic and/or CMB angular momenta), rather than the fundamental physics scale . This
predicts the bare cosmological constant to be on the order of today’s measurements. We also
argue that it is more natural to take this angular momentum parameter Jy of TW gravity to be
of cosmological scales as TW gravity is a classical action taken to describe the entire Universe
rather than individual particle physics experiments. We demonstrate how the Einstein—Hilbert
action becomes manifest within this pure Gauss—Bonnet TW gravity, for a particular decom-
position of the diffeomorphism field. The cosmological constant then arises naturally. This
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distinguishes the present strategy from other efforts where f(R) gravity and/or massive grav-
ity is included in gravitational studies of dark energy and dark matter [12—-15].

It is important to note that the cosmological constant we generate arises from the angular
momentum parameter J associated with a dynamical projective connection. The references
[10, 16, 17] demonstrate how a projective transformation between different Friedmann—
Lemaitre—Robertson—Walker metrics leads to a shift in the cosmological constant. However,
they do so without association to a dynamical projective connection.

This paper is organized as follows. In section 2 we review the cosmological constant prob-
lem and outline our approach to a solution. We mostly focus on generating a small, bare cos-
mological constant related to the cosmic angular momentum constant J,. We defer analysis of
quantum fluctuations of the vacuum to a later time, noting that developing a supersymmetric
version of TW gravity is an obvious avenue to consider. Alternatively, there are many non-
supersymmetric ideas that may bear fruit with a merger of TW gravity [18-24].

Since projective connections are central in the TW gravity approach, we give a brief projec-
tive geometry primer in section 3. The salient ingredients needed to discuss cosmology in the
framework of TW gravity are laid out. These ingredients are then used in section 4 to construct
the pure (i.e no explicit Einstein—Hilbert action) Gauss—Bonnet TW action using the dynam-
ics discussed in [6]. By starting with the projective Gauss—Bonnet action, and using a natural
decomposition of the diffeomorphism field,

4
Da =D, Aias .
b b+ d@d— 15 (1.1)

we generate an Einstein—Hilbert action with bare cosmological constant A, and an interac-
tion term that couples D, to the metric. D, will further be decomposed into a traceless and
trace term. We show that the scalar field proportional to the trace, D = D,,g, yields a theory
which is free from ghosts and tachyons. We derive the field equations and stress—energy tensor
for D, from the TW action.

Section 5 contains our result that the vacuum solutions require the bare cosmological con-
stant be related to the parameter Jy of the TW action. We dub the parameter Jj as the cosmic
angular momentum constant, as its relation to the cosmological constant is given by

_ 33
© 327GA

In section 5.2, using various cosmic rotation measurements, we estimate a range of values for
the upper bound of the angular momentum of the observable Universe Jops:

Jo ~10% 7T .. (1.2)

Jobs <107 7-s—10°17 - s. (1.3)

~

Clearly, Jj fits within this range and can be thought of as a plausible cosmic angular momen-
tum scale.

In the last section it is shown how we couple the projective connection to fermions and
arrive at the Dirac equation in the presence of the diffeomorphism field. We find that one has
the usual gravitational interaction arising from the spin connection plus an axial scalar cou-
pling to the trace of the diffeomorphism field. This has implications for both dark matter and
as a portal from fermions to dark matter.

Our conventions and dimensions of the various constants and fields are summarized in
appendix A and the beginning of appendix B. Appendix B gives a general review of general
relativity and cosmology, including recent results from measurements of relevant cosmologi-
cal parameters. The rest of the appendices explicitly show our derivation of the d dimensional
TW action from the (d + 1)-dimensional action, the extraction of Einstein—Hilbert gravity
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sourced by D, and A through the decomposition in equation (1.1), derivations of the equa-
tions of motion and stress tensor for TW gravity, and a proof that the stress tensor is diver-
gence free.

2. The cosmological constant problem

Here we review the cosmological constant problem and our proposed method to investigate
solutions via TW gravity [6]. A more complete review of the cosmological constant problem is
given in [25]. In appendix B, we summarize general relativity and cosmology in a Friedmann—
Lemaitre—Robertson—Walker background, describing the calculation of the cosmological con-
stant using current data. The simplest description of the cosmological constant problem comes
from dimensional analysis of the cosmological constant. As the cosmological constant has
units of curvature, or inverse area, its ‘natural’ value constructed from fundamental constants
would be one over the Planck length squared

A =" =3.829 x 10 m™? (2.1)

where the Planck length is Ipy = /AG/c® = 1.616 x 1073 m. This natural value is famously
roughly 120 orders of magnitude larger than the measured value’

A=x~12x1072m™ 2 (2.2)

This simple derivation illustrates at least a partial possible solution: find an appropriate angu-
lar momentum parameter, other than 7, that predicts equation (2.2). This alternative angular
momentum parameter would have to be enormously larger than & and in this paper, we argue
that such an enormous angular momentum parameter arises naturally from TW gravity.

Simply choosing an appropriately sized angular momentum parameter is only part of the
solution, as summarized nicely by Weinberg [25] where an expected value of the cosmological
constant is demonstrated to arise from particle physics. In quantum field theory, the mass den-
sity of the vacuum in curved space-time is non-zero {p) and gives rise to an energy momentum
tensor for the vacuum given by

0. = (p)cg™. 2.3)

So even in a vacuum, the right hand side of Einstein’s equations will not be zero and Einstein’s
equations would be instead

1 8rG
R — S8R+ "N = — =7 (p)g". 24

Rearranging, we see that (p) adds a contribution to the cosmological constant, forming an
effective cosmological constant A

1
R — S8R+ g" Aoty = 0 (2.5)
8nG
Aetr = A+ 7<P> (2.6)

3 The discrepancy between equations (2.1) and (2.2) is more precisely 121 orders of magnitude. Taking instead A
to be proportional to the reduced Planck mass squared A ~ M3 c?/h ~ 10% m~2 where the reduced Planck mass is
Mpy = \/he/(87G) =~ 4.341 x 10~ kg results in a 120 order of magnitude discrepancy from equation (2.2).
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The original constant A is sometimes referred to as the bare cosmological constant. The cos-
mological constant problem is that the vacuum density (p) is calculated to be much larger than
the measured value of A, that we previously called A in equation (2.2)

Aegr = 1.2 x 1072 m ™2, (2.7

The vacuum density can be estimated as the following integral with quantum grav-
ity scale momentum cutoff of p = Mpc where Mp is the reduced Planck mass

Mp = \/hic/(87G) ~ 4341 x 10~° kg

817G 87G  4r Mpic 1
> (p) = i / dpp? S V/p? + mie?
0

c 2 (2rh)
M 06 105 m
e e T X m (2.8)

for m < Mp;. These vacuum contributions are 118 order of magnitude larger than the mea-
sured effective cosmological constant A, thus it is considered unnatural to choose the bare
parameter A in equation (2.6) on the scale of the contribution from < p > but with a discrep-
ancy that is fine tuned to be 118 orders of magnitude smaller.

We separate the cosmological constant problem into the following two parts, focusing in
this paper on the first part:

1. Use projective geometry to provide a mechanism that produces a small, bare cosmological
constant.

2. Uncover ‘beyond the standard model physics’ that cancels all vacuum contributions from
quantum field theory.

By using TW gravity to examine the first problem, we are exploiting a symmetry in Einstein’s
equations associated with geodesics and using a gauge principle to dictate the form of the
Lagrangian. Furthermore, TW gravity makes contact with structures found in 2D quantum
gravity [26-29] through the coadjoint orbits of the Virasoro algebra [30]. The cosmologi-
cal constant arises as a natural decomposition of the associated gauge field, D,,, which has
been dubbed the diffeomorphism field in the physics literature and is known as the projec-
tive Schouten tensor by differential geometers. We do not address the second problem fully.
However, we do discuss how projective geometry interacts with fermions and find that an
axial scalar coupling to all fermions can serve as a portal for dark matter. We note here that an
obvious avenue to address the second problem would be to use supersymmetry which auto-
matically has a vacuum energy of zero. However, in a Universe such as ours, where supersym-
metry is clearly broken, it is not known how to maintain this zero of vacuum energy below
supersymmetry breaking scales. Nonetheless, we wish to investigate a supersymmetric ver-
sion of TW gravity in the future to address problem two above.

3. Projective geometry primer

In string theory, the coadjoint orbits of the Virasoro algebra and affine Lie algebras gave rise
to geometric actions that are identified as the Polyakov 2D quantum gravity action and the
Wess—Zumino—Witten model [26-28, 30]. Associated with the Polyakov action is a back-
ground field, D,,, and with the affine Lie algebra another background field A,. Although A,
can easily be related to a Yang—Mills potential which has fundamental roots in the Lie algebra,
D, 1s often taken as a composite field of fundamental fields and an energy-momentum tensor
that transforms anomalously under conformal transformations. Because of this interpretation,
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D, was historically external to gravity. TW gravity was born out of theoretical investigations
[29, 31-33] that sought to put D, on the same footing as A, where it was also fundamental
and directly related to gravitation. With the interpretation of D,;, as a projective connection in
TW gravity, its fundamental gravitational origins have been achieved [6].

There are many excellent reviews and discussions of projective geometry [34-37] so this
section will only give a pragmatic discussion on how one constructs the projective connection,
the curvature tensors, the spin connection and how to build a metric that can be used to solder
these constructs together to form an action.

3.1. The TW projective connection

Here we briefly describe the projective connection and explicitly show the construction of
the TW covariant derivative operator. This will set us up to study cosmology in the context of
projective geometry.

Projective geometry arose from the question of connection ambiguities in geodesics on a
manifold, say M [7-9, 38-40]. Since objects moving along geodesics is a principal way for
physicists to infer the underlying metric, the question also has experimental relevance. Two
affine connections are said to be projectively related on M, when there exists a one-form with
components A; such that

fijk = Fijk + (Sll(AJ + (S;Ak (31)

Connections which are related in this way give rise to the same geodesics and are said to be
projectively equivalent.

Let us suppose that M is a d-dimensional manifold. Projective geometry [34, 36, 41], can
then be cast as a gauge theory over M giving rise to (d + 1)-dimensional manifold called
the Thomas Cone. It is equipped with a Thomas-Whitehead connection, @(f‘aﬂv) [42]. The
extra dimension arises from adding a ‘volume’ dimension with a new real coordinate A which
takes values 0 < A < oo. The coordinates on the (d + 1)-dimensional Thomas cone are now
denoted as x* = (x°,--- ,x4=1, X). Throughout this paper we will use Greek indices to repre-
sent the full (d + 1) coordinates and Latin indices to represent the restriction to coordinates of
M. On the Thomas Cone, there exists a preferred vector field, T, which generates the projec-
tive transformations through its Lie derivative, where, for example,

Srh = TOuh = \O\h, (3.2)

for a function 4. This Lie derivative will vanish when £ is a projective invariant. There is also
a preferred one-form w on the Thomas cone, which is related to T by the conditions that
wao T = land £yw, = 0. From the volume form,

vol(\) = f(£)eq,...q,dx - - - dx™,

the relationship between A and the volume is established through a function f(¢) where the

parameter £ = /\AO is dimensionless and )\ is a constant. The projective connection and Y are
compatibly related by,

Vo XP =65 (3.3)
By explicitly writing the pair, T and w, as,

T =(0,0,...,)) and wy = (0,0,...,A71), (3.4)

the connection coefficients , s o May be written as [34]:
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FA)\a = F)\a)\ =0

. =0
By = I =T = wx 9 (3.5
];a be — 11 bc
™, =T'D,

where the projective invariant connection I1¢ . is defined

e, =14, (0“0 g + 64,1 ) (3.6)

©d+1
with I'?,, the connection coefficients on the spacetime M. The projective connection D, is
independent of the coordinate A and transforms as a rank two tensor with an additional inho-
mogeneous term related to the Jacobian of the transformation on M. To be precise, consider
a coordinate transformation on the Thomas Cone given by

p*=(p%p' "N = ¢% = (°(p).q' (p).- ~~qd’1(p),AJ(q,p)%3))7,)

where J(g,p) = \37‘1” corresponds to the determinant of the Jacobian of the transformation of

the coordinates on M. Then, in order for V,, to transform as an affine connection, D,;, must
transform as

;o apc apd apl azqc azpd aqm 83pn

= ag og "+ og Opiopt oqpog) T o oo
when (p°,p',---p=1) = (¢%¢',---q*") on M. From here, one can construct the projective
curvature tensor that remains invariant when a connection on M transforms as equation (3.1)
and is covariant under the coordinate transformation equation (3.7). In the physics litera-
ture, D,y is called the diffeomorphism field and the projective Schouten tensor in differential
geometry. Two connections, then, are in the same projective equivalence class, [['%, ] = [[%, ],
when they have the same projective curvature tensor. We explicitly construct the projective
curvature tensor in what follows.

(3.8)

3.2. Projective curvature

Using the explicit construction of projective connection coefficients, it is straightforward to
compute the curvature invariants. Explicitly, on a vector field k% and co-vector K, on the

Thomas cone, we define the projective curvature tensor K’ pap 10 the usual way,
[V, Va]s7 = K’Ypaﬁnp and [V, Vplk, = prmBnp. (3.9)

In terms of the connection coefficients,

K“V()Lﬂ = fuu[B,a] + I~V)l/[BI~1H(JL]p' (3.10)
Using equation (3.5), the only non-vanishing components of K, g are

K%ea = Rbea + 6" Dayp> (3.11)

K*cap = Ay Dyje + A1, Dy (3.12)

Here
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Rpea = 01 4 — 04117, + 117 II¢ , — 119, IT€ ) (3.13)

is the curvature produced from the 11 ;. connections. Although K“.; and K* 4 are tensors
under general coordinate transformations on M, R4, and D, are not. However, both R4
and D, are tensors under volume-preserving diffeomorphisms. Since we are interested in
metric compatible connections in what follows, we fix the coordinates in a constant volume
gauge so that equation (3.12) becomes:

K%%ed = Rbea + 6" Dapps (3.14)

KAcab = )‘a[apb]c + )\ch[bDa]d' (3.15)

From here we calculate the only non-vanishing components of the projective Ricci tensor
Kop = K” o5, and the projective scalar curvature K = K, 3G (the metric will be defined in
a moment) to be

Ky =Rup — (d— 1)Dyp, K = G(Ryp — (d — 1)Dyp). (3.16)

In the above R%,., is the Riemann curvature tensor over the manifold M, defined in terms of
its connection coefficients, ['*.. It is important to note that we have not yet defined the d + 1
dimensional metric G,g. Its construction will be made explicit in the following section 3.3.

3.3. Projective metric and spin connection

We now proceed to construct the metric, Gqg, for the (d + 1)-dimensional manifold, that was
alluded to in equation (3.16). Let us assume for the moment that d is even. The Dirac matrices
are related to a metric g, on the spacetime manifold, M, by

{v.7"} = 25" (3.17)

As stated above, we will write the indices related to coordinateson M asa,b =0, --- ,d — 1,
where d is the dimension of the manifold. We can define an extra gamma matrix, g (with
index down) that is related to the volume parameter A via,

14
Y(A)a = 6%6%...%,,#(’ S0 A (3.18)

with € chosen to be 1 so that the new direction is space-like in the constructed metric. Then an
extended metric can be defined on the Thomas cone through

{Yas 78} = 2Gap 1, (3.19)
where a,, 5 =0, - - - ,d, 11is the fermion identity, and

8ab 0 )

Gop = 3.20

’ ( 0 —f(0)? (3:20)
ab

g 0

G*P = ) .
(5 o) (20

For our purposes in four dimensions, we have chosen € above so the chiral matrix, 75 = iv*.
This will later guarantee that the spinor connection, i €2,, defined below is self-adjoint. Metrics
of this form have been used in the literature to study other projective properties of Einstein man-
ifolds, geodesics paths on Einstein spaces, higher spin fields and Bernstein—Gelfand—Gelfand
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complexes [43—45]. Although this Dirac matrices construction required d to be even, this form
of the metric G,g can be used in any dimension. For us, the relationship with the volume and
chirality becomes pronounced when we include fermions. In what follows, we will use G, to
contract with the projective curvature for the interaction Lagrangian and the dynamical action
for the diffeomorphism field.

We proceed with the construction of the spin connection on the Thomas cone. G,z admits
frame fields through,

G = elfeVBnAB and nap = g E' E'g, (3.22)

where the ‘flat’ indices, A,B = 0...d. Since the projective connection is incompatible with
a metric, we define the spin connection for the projective connection and the frame fields
through,

Bapa = €S (DaE" + T, 5Ep ) Nac (3.23)
This guarantees that
V.Ey = 0,E + 17 Ef — &% E’, = 0. (3.24)

For transparency, let us write the spin connection in terms of the four spacetime dimensions
and the volume direction explicitly. The flat directions will be denoted by a, b for the space-
time directions and the number ‘4’ for the flat volume direction. Similarly, we will use , p for
the spacetime coordinates and reserve ‘A’ for the volume direction on the Thomas cone. With
this we may write the projective spin connection as

Wabps A=a,B=b,u=0,---,3
%nab, A=a,B=b,u= X\
—ﬁ(@eﬂ]ac, A=aB=4,41=0,---.3
Wapy = § M(O)DypE’), A=4,B=0b,u=0,---,3 (3.25)
0 A=a,B=4,u=\
0 A=4B=b,u= X\
0 A=4B=4,4=0,---,3.

4. The diffeomorphism field action

Using the metric G,g from above, the determinant G = det(Gag) and its square root are
respectively,

G = —gf(0)* and /|G| = \/|glf(0). (4.1)

where g = det (g4») and |g| is the absolute value of g. From the non-vanishing components of
KO‘ﬁW, equations (3.15) and (3.15) become,

Kab = Kuah,u = Rah - (d - I)Dab (42)
K=G*YK,s=R—(d—1)D (4.3)
R=g"Ru, D =g"Da. (44)
In performing these calculations, it is important to keep in mind that the symmetry properties
of Koguw = GapK? g and Ryped = gamR™ bea are not the same. For instance Rupmn = —Rpamn

9
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but Ko, 7 —Kgauw. This is due to the connection re wv being incompatible with G,
although I', is compatible with g,,,. The astute reader will realize that Ky, = 0 while

K* b # 0. The complete symmetries of K.gu and Rgpeq are

Kaﬁuu = *Kaﬁu,u (45)

Raped = —Rpaca = Rpadc = Redab- (46)
The rank three tensor, K, g5, is called the projective Cotton—York tensor and is defined as

Kogy = K apyw, = XK 0. 4.7
The only non-vanishing components of K, g are

Kbac - vanc - vcpbw (48)
This satisfies the Bianchi identity

K[acm] = Kuem + Koma + Kipae = 0. 4.9)

The action of projective Gauss—Bonnet with coupling constant Jy, which we refer to as TW
gravity, is given by
J

Stw == [ 0 d%/[G] [K? = 4KasK™? + Koy K] . (4.10)
Interestingly enough only the measure depends on the parameter ¢(\). Therefore we can
reduce the (d+ 1)-dimensional action, above to d-dimensions by integrating out the /-
dependence. As shown in appendix C, all /-integrations take the form of one of the two integrals
below, the first of which we normalize to one, the other we define through a new constant ay:

& &
/ der(0) =1, ag = N / dee’f (o). (4.11)
¢ £

Once we choose f(¢), and properly normalize to satisfy the first integral, this will fix o in
terms of ¢; and /;. As shown explicitly in appendix C, using the above expansions of the pro-

jective curvature K%, and the metric G,,,,, the TW action can be written as

Buv
STW = /ddX\/ |g|£D + SGB, (412)
Joc bmn ~ab
Lo = 5= |aoKomK"™" = DD (*.13)
Joc
Scs = f% dxv/]g] (R? = 4RupR™ + RpmnR™™) (4.14)
where
D% = (d— 1)g™D — 2(2d — 3)D? (4.15)
Dap = (d = 1)Dap — 2Rap = —Ka — Rap (4.16)
D=g"Dy=(d—1)D—2R=—K —R. (4.17)

10
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Generally, we define the star () operation on an arbitrary rank-two tensor as
T% = M®™T,,, = (d — 1)g®T — 2(2d — 3)T* (4.18)
where T = g"™T,,, and the M*™" tensor is
M = (d—1)g®g"™ —2(2d — 3)g™"g"". (4.19)
This tensor is symmetric under any permutation involving all four of its indices:

Mabmn _ Mbanm _ anab _ Mnmba' (420)

At this point it is important to observe that the Sty action is a function of three dynami-
cal variables, viz gap, 1'%, and D,. The field equations for the metric and connection can
be examined independently [46-49] in the context of Gauss—Bonnet, and because we are in
four-dimensions, metric compatibility is still a solution to the field equations. Also, we have
already mentioned in section 3 that when one of the members of a projective equivalence class
[I'“,.] is a metric compatible connection, the projective Schouten tensor collapses to a constant
times the metric [44, 45]. D, is that projective Schouten tensor when it is not dynamical.
We exploit this observation when we promote D,;, to a dynamical field by separating out a
part that vanishes in the projective Cotton—York tensor, equation (4.8), from the non-trivial
dynamical degrees of freedom. It is natural, therefore, to write the diffeomorphism field as,

4

D =Dy + ——Agy

b b+ dd—1 ab
4.21)

= |Wup + Kg o| + LAg
ab Jod ab d(d—l) ab
when we assume V,g,. = 0. Here W, is traceless

gWu =0 (4.22)

and A is the bare cosmological constant. The parameter m is the mass of the scalar field ¢,
arising from the trace of D,;,. This decomposition will naturally produce an Einstein—Hilbert
action with cosmological constant and an accompanying interaction for the dynamical degrees
of freedom, by starting with only the projective Gauss—Bonnet equation (4.13). In this paper,
we will analyze the TW action in terms of D,, and use the ¢ decomposition to show an
absence of ghost and tachyon pathologies. The rank three tensor K, is the same whether
written in terms of Dy, or D, owing to the covariant derivative. The decomposition, equa-
tion (4.21), does modify Lp slightly by producing terms involving A in the product Dabﬁfklb.
The details of this are found in appendix C. The result is

1
Stw = o / dtey/Tel (R = 2A) + / dxy/[g|C + Sas. 4.23)
£5 = 2 [auKimnK"™ — DD — y(d)AD) (424

where k is the d-dimensional gravitational coupling related to the bare cosmological constant
as

d—-1

= Joey@n ™™ (425

y(d) =8(d —2)(d - 3)/d. (4.26)

1
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The new tensors appearing above are

D% = (d—1)g®D —2(2d — 3)D®

(4.27)

- 4
Dy = (d - I)Dab —2Rup = —Kup — Rap — aAgab (4.28)
D=g"D,, = (d—1)D—2R = —K — R — 4A. (4.29)

For d = 4 dimensions, x becomes the Newton constant, with appropriate factors of 7 and ¢

k= 81G/c* for d = 4. (4.30)

4.1. Tachyons and ghosts

It is desirable that the consideration of the TW gravity action equation (4.23) not introduce
any potential pathologies like ghost and tachyonic fields at the classical level. To determine
the potential for such problematic fields, we analyze the dynamical trace degrees of freedom
from the decomposition in equation (4.21) in a Minkowski background. For the sake of this
analysis, we will take the dimensionally extended metric equation (3.20) to be

_ [ Nab 0
Cos = ( 0 Af(f)z) @30

where A will ultimately be 4-1. Ghosts and tachyons arise from the kinetic and potential terms
so here we will only concern ourselves with terms quadratic in the fields. The relevant piece
from the TW gravity Lagrangian is

Joc

L = = (—AK K™ — D D) . (4.32)

Applying the decomposition D,, = %nabqb to this piece, we find

2.3
Lo = 5 [ FAME=19,060" — ad = 1)(d = 2)(d = 3)¢?] 433)
2.3 .
= % [—%A(d - 1) (¢2 - (v¢)2) —d(d—1)(d—2)d— 3)&} (4.34)

where we have separated temporal and spatial components on the last line. To clearly deter-
mine the potential for ghost/tachyon fields, we need the corresponding Hamiltonian. Defining
the conjugate momentum as

OLgp  aA(d — 1)m2c3¢

"= T (4.35)
we can write the Hamiltonian as
_agA(d— 1)m? o,
Hy = e ¢ — Ly (4.36)
e T 0, (62 + (V)?) +d(d — 1)(d - 2)(d - 3)¢?| . (4.37)
2Jod? 2 T

12
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Since a negative kinetic term results in a ghost field, and a negative sign in the mass term
results in a tachyonic field, we see that setting A = —1 results in a non-pathological classical
field while setting A = +1 results in a ghost field, the field being non-tachyonic in either case.
We expect this analysis to hold, at least perturbatively, for other metrics. We note thatind = 4,
¢ becomes a massive field suggesting a short range gravitational wave. The phenomenology
of these waves, along with the traceless components, will be part of a future study.

4.2. Equations of motion

Here we present the equations of motion, detailed derivations are given in appendices D and
E. Variation of the action Stw with respect to the diffeomorphism field D, yields its equa-
tions of motion

VK@ = _gab (4.38)
where equations (4.28), (4.18) and (4.26) can be used to show that the source can be written as
K2 =R — (d~ DY — Zy(d)Ag”
=- %Ti” +(d = 1)DY + y(d)Ag™). (4.39)
Einstein’s equations for the diffeomorphism field coupled to g, are
Rab _ % Py ——cT (4.40)

In terms of V<@,
1 m
Veab — oK (“b)’"Dmc + 3 gc(“VmDi) — V”Dib 4.41)

the stress—energy tensor can be expressed as
. . J. :
@ab =Jyc (chwb _ vcv(ab)c) + g [K(amnKb)mn + ZKLm(aKcmb)}
Ji ~b)c J c(ag~ a. a a.
- %CDC(“ e %CD*( D — Jocy(d)AD® — gL + Oy (4.42)

with £p the Lagrangian density, equation (4.24). @‘(‘ZB) is the contribution from Sgg which in
d < 4 does not contribute to the classical field equations [50].

5. Vacuum solution and angular momentum of the universe

5.1. Vacuum solution of the equations of motion

In this section we demonstrate that for d = 4 the trivial solution D,, = 0 is consistent with
both equations (4.38) and (4.40) and reduces these equations to the vacuum Einstein equa-
tions sourced by a cosmological constant. Recalling the decomposition in equation (4.21) and
then setting D, = 0 in the action in equation (4.23) is tantamount to setting D,;, proportional
to the metric in the original action in equation (4.10). Setting D, = 0 results in the following
simplifications

13
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4
K% = R — aAgab, K =R —4A, Ky =0. (5.1)

For d < 4, the stress energy tensor, equation (4.42), vanishes under these conditions (as
@‘(‘éB) = 0), and equation (4.40) reduces to the pure cosmological constant sourced vacuum
Einstein equations

1
R® — 5g‘”’R +g%A=0. (5.2)

The D, equation of motion equation (4.38) reduces to

1d-1 y(d)
ab ab ab
———g"R ————A =0, )
224-3% T8 4nd—3) (5-3)
where to cast the term involving the cosmological constant in this form, we have used equa-
tion (4.25). If we contract equations (5.2) and (5.3) with the metric, we arrive at the following
constraints, respectively

(d=2)R=2dA, R(d-3)(d—2)=4(d-3)(d-2)A. (5.4)

The first equation in equation (5.4) is the usual condition for an Einstein manifold with
Ry = %Agab and the second equation is trivial for d =2 and d =3 and leads to
R, = aAga;, = Agy for d = 4. In d = 2 we can readily see that the first equation implies
A =0and in d = 3 we have that R = 6A. Ford > 4, @‘(‘gB) # 0 so the analysis presented in
this section would not apply. We will focus on d = 4 in which we find a consistent solution
to equation (5.4) where R,, = Agy or equivalently R = 4A. Then equation (4.25) for the
cosmological constant becomes

3
A=——, ford=4. .
4Jock or -5
Using the value for the Cosmological constant calculated from an average of the Planck data
and the Riess collaboration, A ~ 1.2 x 10752 m~2 as shown in appendix B, we solve equa-
tion (5.5) for Jy:

Jo~1.0x10%7.s for A~ 1.2x 1072 m™2 (5.6)

Comparing with astronomical data as explained in the next section, the above value for the
angular momentum parameter Jy lies within the range for the upper limit of angular momen-
tum of the observable Universe Jop, calculated from various measurements of cosmic rotation

Jobs <107°7-5s—10°1 7 -s. 5.7

~

We therefore now refer to Jy as the cosmic angular momentum constant.

5.2. Calculation of expected angular momentum of the observable universe from
astronomical data

In this section we briefly review the astronomical data suggesting a global rotation of the
observable universe and from this data calculate a range of upper bounds to the angular
momentum of the universe. The Universe having patches of angular momentum that sum to
zero is consistent with the cosmological principle. In fact, taking the cosmic angular momen-
tum constant Jy as a fundamental constant would set the natural scale over patches where the
Universe could have net angular momentum. At present there does appear to be some evidence

14
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for the rotation of the universe on large scales, though we caution that this is somewhat con-
troversial, as global rotation is difficult to measure and seems to be highly model dependent.

Observational evidence of angular momentum of the present day universe on large scales
has been seen in the parity violation of the angular momentum of spiral galaxies with a
preferred axis [51]. Models of global rotation using input from observations [52, 53] have
been in agreement on the order of magnitude of the current angular rotation of the universe
of w ~ 10713 rad yr~!. Another clear indication of rotation would appear in CMB data as
anisotropy with a preferred axis. New Planck data has found anisotropies at large angular
scales at about the 2-3 o level that could be physically significant, see for example [54].
A theoretical model using CMBA data constrained the rotation of the early universe to be
w ~ 1072 rad yr~! [55]. A more conservative estimate using tighter constraints from both
temperature and polarization data from Planck on Bianchi models of rotation [56] conclude
that w/Hy < 10~!!, which using the average value Hy as in equation (B.29) and inserting a
factor of 27 to convert to rad/yr yields w < 1072! rad yr~!. It should be noted that these val-
ues correspond to the rotation of the universe at the surface of last scattering and not the cur-
rent value, which would be significantly lower. It is possible, however, that only shear rotation
can affect the CMB data and that global rotation may not influence CMB data.

Given these several pieces of evidence for rotation on cosmic scales, we present a simple
order of magnitude estimation that demonstrates the cosmic angular momentum constant Jy
associated with the measured value of cosmological constant as in equation (5.5) is within
the range of plausible angular momentum of the observable Universe. If we approximate
the observable Universe as a homogeneous rotating sphere of radius Rops = 46.5 x 10° lyr
and use the current estimate for mass density of the universe to be p = 1072°kg m—3 we
can calculate the total mass of the ob servable Universe Mops = 3mRgy p and moment of
inertia Iops = %MObSRébS. The total angular momentum then depends on the estimate
of angular rotation w as Jops = Iopsw. Using the rotation estimate of w ~ 10~13 rad yr*1
we obtain Jops ~ 1087 J-s. This is within a single order of magnitude of the calcu-
lated value of Jy in equation (5.6). Using the smallest and largest values of w above as
w~ 1072 rad yr~! — 107 rad yr~!' gives us a range of plausible upper limits to a Jops of
the universe as Jops ~ 1072 J-s — 10°! J-s. The cosmic angular momentum constant Jj in
equation (5.5) clearly fits within this range, matching within several orders of magnitude of
the estimated values.

6. Fermions and dark matter

We now briefly present how projective geometry enters into a discussion of fermions as a
potential source for dark matter. Fields on the four-manifold are introduced into the Lagrangian
as scalars under projective transformations. This follows since the Lie derivative of any A
independent scalar has vanishing Lie derivative with respect to Y. Also, the equi-projective
extended vector fields that we use are of the form A* = {AO, S A3, 0} and have a Lie deriva-
tive with respect to Y that vanishes, i.e.

LrAF = T9,AM — A%9,TH = 0. 6.1)

For projectively invariant fermions we need to compute their Lie derivative with respect to Y.
For the fermions we will use the Kosmann derivative [5S7-61] to determine the conditions on
f(£) so that fermions transform trivially from the Lie derivative with respect to Y. The projec-
tive connection acts on the gamma matrices via
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Vi =0 + (7] + T4, (6.2)
and the spin connection on fermions is given by

~ 1

Q, = govABwAvB. 6.3)

In four dimensions, the fermion representation does not change when adding the 4*. Therefore,
the projective connection on chiral fermions will introduce a natural axial coupling to projec-
tive gravity, as we will see shortly.

To continue with the Lie derivative, we have that for a connection f‘ﬁw and spinor con-
nection Q u» the Lie derivative of a spin % field, ¢ with respect to a vector field 5 is given by

- 1/« = y
Lot = B (9a +@asa?"1") ¥ — 5 (Vi = ViBu) 1770 (6.4)
Requiring that £y = 0, yields the condition
Ad
1 - I log(f(¢£)) =0, (6.5)

which implies that f(¢) = (%0)4. With this the ‘volume component’ of the spinor connection,
Q; = 0. Here we consider four component Dirac fermions, ¥'. Then the interaction action for
the Ith spinor ' with mass M’ is given by (here there is no sum over I),

S]’)irac = / V |glf(£)d£d4x ‘Cl’)irac’ (66)
where

Lhirge = ihe "V, ) — MY = gl (ihey Vo — M = he @) ¥,

6.7)
We observe there is an axial scalar coupling through,
1 A 1 A mc 4
b=—++-D=——+—(— =A
vo TaP =y Ta 50ty ©8)

which due to the +° in equation (6.7) is CP violating. The projective geometry has induced
an axial scalar coupling to every fermion through D and has generated a chiral asymmetric
mass term,

MI 0 1UTAN 0
0 MI 0 1UTAN
nya 0 MI 0 ’
0 myp O Mm!

M§ =M+ mupy’ = (6.9)

where mgy = & (ﬁ + %A). After doing the ¢ integral, with f(¢) = i—g = (* and where ¢

is chosen so

U
[ a0 =1,
V4

i

the mass eigenvalues are
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4hA R (5+£63)3
I=M+ =+ —log | ——|.
ie: 3¢ C)\() 8 ( gi (610)

Thus the parameter ¢; tunes the axial contributions for the fermion masses. The function,

h

5.1
o~ log <(5+;_")5), is positive definite and cannot be used to set the )\ scale. The parameters

must be chosen so the total mass is non-negative. The values of g and ¢; will be further con-
strained by phenomenology. This is presently being investigated. It should be noted that the
axial scalar coupling also provides a portal for non-standard model fermions to interact with
standard model fermions. This will put further constraints on this axial scalar interaction.

7. Conclusion

We have further developed the Thomas-Whitehead gravitational theory and its phenomeno-
logical applications to dark energy and some issues related to dark matter. We have demon-
strated that a (d + 1)-dimensional action consisting of a pure projective Gauss—Bonnet term
constructed out of projective curvature quantities naturally produces an Einstein—Hilbert term
with cosmological constant and in d = 4 introduces a new angular momentum constant, Jo, of
cosmological scale. We gave a simple order of magnitude plausibility argument for what can
be described as the angular momentum of the universe that is consistent with today’s cosmo-
logical measurements and on the order of Jy. This arose from a natural decomposition of the
diffeomorphism field in terms of non-dynamical degrees of freedom and dynamical degrees of
freedom. Furthermore, we were able to find the interaction of this field with fermions through
the Dirac equation. The theory predicts that fermion masses will receive an axial dependent
contribution through the trace of the diffeomorphism field and the projective spin connection.
The interaction itself acts as a dark matter source as well as a portal for non-standard model
fermions. The phenomenological consequences of this are under investigation. It should be
noted that the origins of this theory are rooted in principles related to sprays [36] and projec-
tive Tractor calculus [35] that are manifest in Einstein geodesics and string theory. The use of
the projective Gauss—Bonnet action in four dimensions gives rise to dynamics for the diffeo-
morphism field without introducing higher derivative terms to the metric. We also give ratio-
nale for the absence of ghosts and tachyons in the scalar sector of the field theory. This may
be viewed as a covariant but non-linear strategy to include fluctuations to Einstein gravity.

Acknowledgments

The authors would like to thank Leo Rodriguez, Shanshan Rodriguez, and members of the
Nuclear and High Energy Theory group at the University of lowa for discussion. We also
thank Xiaole Jiang, Biruk Chafamo, Yehe Yan, Eric Peters, Alexis Leali, Patrick Vecera, Cole
Dorman, Salvatore Quaid, Taylor De Mello, and Indira Sheumaker from the summer research
programs at Bates College, the University of lowa, and Grinnell College. The research of KS
is supported in part by the endowment of the Ford Foundation Professorship of Physics at
Brown University.

Appendix A. Conventions and units
The units of the various constants used throughout this paper for d = 4 are

17



Class. Quantum Grav. 37 (2020) 055003 S Brensinger et al

ol = (D) = [A] = [Ra) = L7 [o] = 12
[Mo] =[a] =L, [£] = [r] = [k] = dimensionless, [f] =T
r° M M —1 d d—1
(K] =L’ o] = R [p] = 77 H] =T, [dx] =TL"". (A.1)
We may at times set ¢ =1 but expose factors of ¢ when calculating numerical val-
ues. Latin indices take values a,b,---=0,1,2,...,d — 1 and Greek indices take values
v, -+ =0,1,2,...,d, with the exception of the Greek letter A, which refers to the projec-

tive coordinate x4 = A = \¢f. Our conventions for the Riemann curvature tensor R%., are the
same as for the projective curvature K*,, 3. The Riemann curvature tensor is written in terms

of I'",, where as the projective curvature is written in terms of f“a 8

K" ap = FMI/[B,O&] + I‘pywl—‘”a]p. (A.2)
Here and throughout, brackets mean anti-symmetrization and parenthesis symmetrization.

K g1) = K% gy — Koy Ky = Kpw + Ko (A.3)
Equation (A.2) means the following must be true

Va: VaIV? = K705V [Vau ValVy = =K 5V, (A4)
We define the d-dimensional Christoffel symbol I, in the usual way

1

Fmab = Egmn(gn(a,b) - gab,n), (AS)

but as G, is not compatible with [ uvs the analogous definition for [ uv 1S DOt correct.
Instead, I'?,,, is defined in equation (3.5). We define the projective curvature three-tensor as

Kpuw = K®gpvwa = K g A" (A.6)
‘We contract over the first and fourth indices of the curvature tensor to form the Ricci tensor
K. =K% a.

The d-dimensional metric g, is embedded in the (d + 1)-dimensional metric Gqg, equa-
tions (3.20) and (3.21),

_ 8ab 0
Gaﬁ - ( O —f(€)2> ’ (A.7)
ab 0
GoP = (g _ ) A8
0 7f(€) 2 ( )
where the d-dimensional metric g,, has signature (4, —, —, —, - - - , —) and the dimensionless

parameter £ = \/)\g. The d-dimensional Riemann curvature tensor R“, , satisfies the same
relation as the (d + 1)-dimensional tensor K%, , equation (A.4), but in terms of the d-dimen-
sional covariant derivative V,. The commutator of covariant derivatives on an arbitrary rank
m-covariant, rank n-contravariant tensor is equivalent to the following action of R“, ;

d]..‘d,, — 14 d]dz.“d,, 14 d]dz..‘dn
[vﬂ’ vh]Tcl...cm =—-R crabtecs...cm —--—R cmachlcz...e

+ Rd[ TCI. e“.d,, + - + Rdm T'C1 dl...e'

eab Cp eab il

(A.9)
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Finally, we list all non-vanishing connections and curvatures below

T = ADup, T =T, = A7, T =%, (A.10)
Kabcd = Rabcd + 6[caDd]bs K)\cab = )‘a[apb]c + )‘ch[bDa]d’ (A.11)
K = Kuabu =Ry — (d - 1>Dab (Al2)
K=G*YK,s=R—(d—1)D (A.13)
R =g¢"Rap, D =g Duy, (A.14)
along with the tensor decomposition of D,
Dup =Dap + 1A
ab —tab d(d—l) 8ab
(A.15)
= Wy + " g + g
ab J()d ab d(d*l) ab
and the relation between D, and curvature
D% = (d—1)g®D —2(2d — 3)D® (A.16)
~ 4
Dab - (d - I)Dab - 2Rab = —Rgp — Rab - aAgab (A]7)
D=g®D, = (d—1)D—2R = —K — R — 4A. (A.18)

We note that W, is traceless W,,g®” = 0 and write the general star () operator used through-
out the paper

T% = M®™T,,, = (d — 1)g®T — 2(2d — 3)T* (A.19)
where T = g"™T,,, and the M*™" tensor is

Mabmn _ (d _ l)gabgmn _ 2(2d _ 3)gamgbn. (Azo)

Appendix B. General relativity and cosmology review

Here we present a quick proof of Einstein’s field equations from the Einstein—Hilbert action
and a brief overview of standard cosmology in four space-time dimensions. In the following
the constants s; are convention dependent and are equal to plus or minus one. The various
conventions in the literature are given in table B1

In this paper we wuse the conventions of Ohanian and Ruffini [68].
Also, in the ‘mathtensor’ package of Mathematica, the default setting are:
s, = Rmsign = +1, s3 = spRcsign = +1, 51 = MetricgSign = +1.

The cosmological principle demands the large scale structure of the universe to be spa-
tially homogeneous and isotropic. The metric encompassing these qualities is known as the
Friedmann-Lemaitre—Robertson—Walker (FLRW) metric
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Table B1. Sign conventions of different authors.

Reference S1 52 $3 S4
Kolb and Turner [62] - + + _
MTW [63], Liddle and Lyth [64] + + 4 +
HEL [65] — + _

Weinberg [66] + _ _
Weinberg [2], RY [33] + — _ _
Dirac [67] — 4 _ _
Ohanian and Ruffini [68] — + — +
518mdX"dx" = —d + a(f)? <1 5+ r?(d6? + sin® 0d¢2)> . (B.1)

— kr

The stress tensor and equations of motion for the diffeomorphism field derived in this paper
assume a metric of constant volume 8‘,\/3? = \/ngab = 0. Therefore, the vacuum solution
presented in section 5 is in terms of a constant volume FLRW metric that is a coordinate
transformation of equation (B.1). An example of such a coordinate transformation for k = 0 is
a3(t)dt =dr, x =rsinfcos ¢, y = rsinfsin ¢, and z = rcosf. A constant volume FLRW
metric with k = %1 can be found as well.

The Riemann curvature tensor and Ricci tensors can be defined independent of convention
as

S2Rambn = _Famb,n + Iwmn,b - chbranc + chnrabc’ (B.2)

$3Rmy = SZRaman = _Fama,n + Famn,a - churanc + chnraac (B.3)
so that s3 is the sign of the curvature of a sphere. The Christoffel symbol is given in terms of

the metric by

a 1 a
r mn — Eg b(gbm,n + 8bnm — gmn,b)~ (B4)

Defining the Ricci scalar as R = R,,,g™", the Einstein equations are derived from the
Einstein—Hilbert action plus source Ssource

S.
S = i d*x ‘g|(R — 2S1S3A) + Ssource (B.5)

where k = 87G/c* and A is the cosmological constant. Variation of the action yields
f— 1
68S =0= /d4x |g| 6gmn (Rmn - EgmnR + SISSAgmn - 53H/@mn)

+ / d*x/[g[0gRung™ (B.6)

where we have defined the stress—energy tensor ©,,, through

538 53
5gSsource = % /d4x\/ |g|®mn5gmn = *% d4x\/ |g|@mn6gmn- (B7)
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We can discard the last term in the action’s variation as it yields the surface term

/d4x\/|g|§ngngm” = /d4x( |glg"" 0T ) ) = O (B.8)

where ; denotes a covariant derivative. As promised, Einstein’s equations become

1
Gun = Ry — EgmnR = S3Kf®mn - sls3Agmn' (B.9)
With the FLRW metric, equation (B.1), and a stress tensor of the form for a perfect fluid
Omn = (P +1)0,°6," + 518mnp (B.10)

with p the mass density and p the pressure of the Universe, the Einstein equations become
what are known as the Friedmann equations:

Ak
H(t)? = 3/571 +3 5 (00 equation of motion), (B.11)
.. A
4 _ fg(p+3p) +3 (ij eqm. with 00 eqm.) (B.12)

where the Hubble parameter is
1) = —=. (B.13)

Notice a positive cosmological constant will accelerate the scale factor, a(z), as evidenced
in equation (B.12) that it has the opposite sign as pressure. In this way, the cosmological
constant, or presumably dark energy which is its cause, acts like a negative pressure tending
to pull the universe apart rather than squeeze it together as one would expect from a regular,
positive pressure. These Friedmann equations are redundant with the continuity equation

p+3H(p+p)=0
p=p()
which is actually sign convention independent with the form of the perfect fluid given above.

The system can then be succinctly described by the either the ij equation or 00 equation of
motion and the continuity equation. We define the mass density and pressure of the vacuum

(pa, pa) and curvature (pg, pi) as

V,0" =0— { (B.14)

pa=—pa=r"'A (B.15)
3
P = —3pr = *@k (B.16)

and combine them with p and p to form p. and p,, respectively
Pe = P+ pa+ pr (B.17)

De =P +PA+ Pr. (B.18)

The quantity p. is known as the critical density as it is the critical value p takes in a flat
Universe (k = 0) with no cosmological constant. The Friedmann equations can be succinctly
written in terms of p. and p.:
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3

pe = —H* (B.19)
K

a K

i fg(pc + 3pe). (B.20)

The pressure p and mass density p are a combination of contributions from matter (p,,,
pm), radiation (p,, p,), and any other source (Pother> Pother) SUCh as the diffeomorphism field
presented in this paper so we write

D¢ = Pm + Pr + Dother + PA + Pk (B.21)

Pc = Pm + Pr + Pother + PA + Pk- (B22)

Note that for radiation or other massless fields, the mass density is defined as the energy-

density per unit ¢*:
pr = uy/ ¢?, and similar for other massless fields. (B.23)

There will in general be field equations to satisfy for the cosmological sources of p and p
as well, such as the field equations for the diffeomorphism field in this paper. The diffeomor-
phism field equations and stress tensor derived in this paper are in a gauge where the metric
has constant volume. Thus using these equations and stress tensor for the diffeomorphism
field requires the Friedmann equations to be expressed in terms of a constant volume metric
as well as described in the text after equation (B.1).

More generally, cosmological measurements of each species (matter, vacuum, etc) are typi-
cally quoted in terms of a density parameter §; = p;/p. for each species i: i = m for matter,
i = A for vacuum (cosmological constant), etc. For instance, the density parameter for the
vacuum is defined as

PA
Qp = == (B.24)
Pe
Equation (B.21) is often written in terms of 2:
1= Qp + Q + Qoher + Q2 + U (B.25)

Solving equations (B.24), (B.19) and (B.15) for A and putting in appropriate factors of the
speed of light ¢ yields

A =3H?Qy /. (B.26)

The value of the Hubble parameter at ¢ = today is denoted as Hy. Recent measurements of 2
and H, by Planck are [69]

Qp &2 0.68, Hopianck = 67 km/s/Mpc. (B.27)

On the other hand, the Reiss collaboration of cosmic distance ladder redshift measurements
finds the following measurement of the Hubble parameter [70]:

HO,Riess ~ 74 km/S/MPC~ (B28)

These two measurements are both too precise to be in agreement with each other, a problem
known as the Hubble tension. For all calculations in this paper, we thus take the Hubble
parameter to be an average of the two measurements and use Planck’s measurement of 25

Qp =~ 0.68, Hy~ 71 km/s/Mpc. (B.29)
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Plugging these values into equation (B.26) yields the measured value of the Cosmological
constant we will use throughout the paper.

Ax12x 1072 m™2. (B.30)

Often, the Cosmological constant is given in terms of its associated mass density, equa-
tion (B.15). For the above value of the cosmological constant, this density is

2

pA = %A =59x 107" kgm™? (B.31)

where we have used equation (4.30) to write out x~ ! in terms of G and put back factors of c.
Weritten in natural units, this is

e
A = %A =2.5x 1074 GeV*. (B.32)

Appendix C. Expansion of the projective Gauss—Bonnet Lagrangian

We expand the projective Gauss—Bonnet Lagrangian Lrw in terms of the diffeomorphism
field and d-dimensional curvature tensors as follows. Using equation (4.3), the projective cur-
vature scalar squared K? is

K?> =(R — (d — 1)D)?
=R*>+4 (d— 1)*D? —2(d — 1)RD
=R’ + (d - 1)DD, (C.1)

where we are introducing D,;,, defined as

15 = gabﬁab’ 5ab = (d - 1)Dab - 2Rab~ (C2)

Next, we calculate the projective Ricci squared KK b,
KopK®? =KpK + K\ K™ + 2K 0K
=(Rap — (d = 1)De) (R — (d — 1)D*)
=R,R™ + (d — 1)*Dypy D — 2(d — 1)D,R?
=RpR™ + (d — 1)Dy, D™. (C.3)

To calculate the projective Riemann curvature squared Kq g, K aBuv e utilize our knowl-
edge of the non-vanishing terms in equation (3.15) to first write

Ko = 00 GoaK g + 00 Kupuws KO = 6,058,168, Ko™, (C.4)

With this, we calculate Ka/gw,K“ﬂ“” as

23



Class. Quantum Grav. 37 (2020) 055003 S Brensinger et al

Kapu K =62 GaaK s + 00 Kap )06 6, 8,7 K™
=K b K" Gox + Kapmn K™
=N KoK Gor + (Rabmn + 8alnDip) (R + g0 D)
= = N KpmuK"™" + RapmaR"™" + 4R" 0, D"
+ 28umPurg"" D" — 28an Dung" D"
= — N KomnK"™ + RapynR"™" + 2dDy D — 2Dy D — 4Ry D™
= — X KpmnK"™ + RapmnR™"™" + 2(d — 1)Dgy D — 4D R
_ )\2f2 Kinmn Kby Rovmn Rebmn ZIDabﬁab. (C.5)

With the results of equations (C.1), (C.3) and (C.5), the projective Gauss—Bonnet Lagrangian
becomes

‘CTW :K2 _ 4KaBKaﬁ + Koz,BpuKaﬁl“/
=R> + (d — 1)DD — 4(RyR™ + (d — 1)D,, D)
- AzfthmnKbmn + RahmnRubmn + 2Dahbab

=L6B — N KppK"™ + (d — 1)DD — 2(2d — 3)D,, D €6)
where the d-dimensional Gauss—Bonnet Lagrangian is
Log = R* — 4R4pR™ + RupynR™. (C.7)
We collect the terms quadratic in D,;, and ﬁlb and use equation (4.18) to define
D% = M D,,, = (d — 1)g*D — 2(2d — 3)D™. (C.8)
This allows us to simplify the Lagrangian to
Lrw = L6g — N KpmnK"™ + Dy D2 (€.9)

Introducing the coupling constant Jy and a factor of ¢ for proper units, we construct the full
action

Stw = — % /ddxdﬁx/\GwTw
J()C d
= — 7 d X\/ ‘g| dff(f)ﬁ'rw

Joc -
_ % dxy/|g] / (o) (LGB (02K K" DabDi”)

Ji ~ b
S %C /ddx lg| (ﬁGB + DabDZb> / def(o)
Y4

&
2 [ e TelKak 3 [ atep (o) (€.10)

i

where we have substituted A = Ao/ and factored terms involving D, D%, and K, out of
the £ integral as these terms are /-independent. We have also introduced cutoff’s ¢; and {;. We
can define one of these integrals to be whatever number we wish by ensuring f(¢) is properly
normalized. The other integral, we will define as a new constant to be determined once f(¢) is
chosen and appropriately normalized. With this in mind, we define
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/ der(0) =1, ag = N / dee*f(e)3. (C.11)
Y4

i Zi

With these definitions, the TW action becomes

Ji ~ Ji
St = =2 [ abe/[el (Con + DuD2) + 22 [ aber/[el aokonsk™.

(C.12)
Simplifying we have
Stw = /d“x\/lglﬁp + Scas (C.13)
L5 =" (oK K™ — Dy DY) (C14)
_ 7@ d 2 ab abmn
Sge = > dx \g| (R AR, RY + RypmnR ) . (C.15)
Next, we decompose as in equation (4.21)
4
Dawp = Dop + ——Agup- .
b b+d(d_1) 8ab (C.16)
This results in the following decomposition for ﬁﬁb
~ ~ 1
D =D + 5y(d)Ag” (C.17)

with y(d) as in equation (4.26) and Kupe = V Doy — VD, unchanged because of the covari-
ance of the metric. The Lagrangian L£p becomes

J ~
Lp = %C [aoKbm,,Kbm" — DD + AL (C.18)
where
Joc 4 ~ 1 2y(d) |,
ALp=—— |————=AD, + -y(d)AD + ——A"|. .
P=T [d(dl) T WAD+ T (C.19)
Using equations (4.18) and (4.29), we rewrite D, as
~ dd-1 dy(d
D, = %y(d)D _ #R (C.20)
resulting in the following for ALp
1 y(d
ALp = E%AJOC [R—2A — (d—1)D)]. (€.21)
Thus, producing the Einstein—Hilbert term with the correct coefficient demands
_ 41 ”
" y(d)AJyc (€22)

so that
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1
ALp = o [R—2A—(d—1)D)]. (C.23)
Substituting this into equation (C.18) and integrating results in the first two terms of the action
1
Stw = ﬂ/ddx lg| (R —2A) + /ddx\/ lg|Lp + ScB. (C.24)
_ Joc bmn Tab
Lp = 7 o Kpun K - DabD* - y(d)AD (C.25)

where Sgg, equation (4.14), has come along for the ride.

Appendix D. Equations of motion derivation

In Stw, only £p contains the diffeomorphism field D,,. Therefore, we restrict our derivation
of the diffeomorphism field equations of motion to the variation of Lp:

2 - -
—50Lp =~ 200K 5 Koy 4+ (6D gD + D6D ) + y(d)Ag™ 6Dy
0
= — 2a0K’””bV[a5Db]m + [bib + (d - I)Dib + y(d)Ag"b 5Dah

= — 4aoK" N 46Dy, — 2K5D,p.
(D.1)

In the last line we have used the fact that K"’ is antisymmetric in its last two indices as well
as equations (4.28), (4.18) and (4.26) to make the substitution

D® +(d — 1)D? + y(d)Ag® = —2K®. (D.2)

After rewriting the derivative term up to a total derivative, renaming indices, and simplifying,
the variation 6 Lp becomes

2
—ﬁéﬁD = [~40oV, K" — 2K ] 5D p. (D.3)
0

Symmetrizing over ab and setting the factor in parenthesis to zero yields the diffeomorphism
equation of motion

gV, K@ = g, (D.4)

Appendix E. Stress—energy tensor derivation

The stress—energy tensor for a source action Ssource 1S defined as

0Ssource = —% /ddx 1g|0%5g. = %/ddx\/g@abég“b. (E.1)
For action variations involving terms such as the following containing 61,

VT (E.2)
with V4 symmetrized in its last two indices

Ve =yt (E.3)
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we shall find the following useful in deriving the associated stress—energy tensor:
0Ssource = — %/ddx 1g|0“6ga
=— %/ddx |g|®‘(’§)(5gab+/ddx |g| V.21
= % / dx/|g [@?g) + Vv, vl _ vj/wb} 68ab. (E.4)

Comparing the first and last lines of equation (E.4) we conclude that the full stress tensor for
Ssource ls

0% = 0 + V.V @r — vy (E.5)

where @’(lg) is the term associated with dg,;,, and not %ﬂb , as in the second and third lines of
equation (E.4). In the next section we will prove equation (E.4). For now we will simply use
it to derive the stress—energy tensor associated with £p, equation (4.24). In doing so, we will
find the following property useful

58" Yap = —08arY™ (E.6)

for some arbitrary tensor Y. Also, the mixed rank tensor M, bn P
ML = gopgamMP™ = (d — 1)5.26," —2(2m — 3)5."6,". (E.7)

We use this last definition to write the source Lagrangian in the most useful form for our pres-
ent purposes as below. Neglecting the Gauss—Bonnet portion, as we will ultimately focus on
d = 4, the source action is

Sp = / d*x/|g| L. (E.8)

J()C ~
Lp = 2 [aoKbmnKapqg bgmpgm] Damenganmndbdn - Y(d)ADabgab
(E.9)

To derive the associated stress—energy tensor, we vary this with respect to the metric

/ [\/ 1g]0Lp + |glg**0gan L

1
=-3 / d+/|g| [—26Lp — 8" Lpogas] - (E.10)
We now focus on the 6 Lp term. After a little simplification, this results in
T(SACD —zaOKhmn(SKbmn + O4OI(bmrL amn(sgab =+ 20401(1711111I(bchsgnq
oC
- DTnéﬁmn - DabﬁmnMchmn(sgac - DumenMabdn(ngd
— y(d)AD,6g". (E.11)
Expanding out the definition of Kj,,, and l~)m,, and relabeling indices and using equation (E.6)
to rewrite the variation in terms of the covariant dg,, we have
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—TéﬁD = — 4a0K”’””5(V Dnb) + aoKamnKbmn(Sgab + ZOéoKmnaKmnbégab
oC

~ ~ E.12
+ D™ §(=2Ry) — D D258y, — DD 5g., — y(d)AD® 5 g,y E.12)

Next, we expand out the covariant derivative on D,;, and use the fact that
ORpmn = V[, 0T, (E.13)

to simplify the variation to
fJ—MD = [aOK K™ 4 200K™ K, — D 4D — DD b — y(d)AD‘”’} Sgus
o
— 4agK"™" 5 (~T y(uDp)c) — 2DV 46T o + 2DV 6T .
The variation has split into dg,;, terms and dI';,, terms as in equation (E.4). We thus peel off
part of the @?g) piece, defining

(oc) 'Oy =5 [K<“mn1<”>'"" + 2Kk, D
c 1 c(as a
2 D\DY* — DD — y(d)AD®. (E.14)

Along with this, we integrate by parts in the last two terms and simplify

——MD =(Joc) 'O 08ab + 40K De(p 0T pyn + 2(V, D" ) 0T oy — 2V D" 6T
=(Joc) T O 08a> + 400K DenST  pyn + 2(Vu D" )5 6T by
— 2(VeD)0TS, + 400K ™ Do T
=(Joc) 'Oy 08a + (420K Doy + 2(V,DY")5," — 2V DY) 6T 4. (E.15)
Plugging this back into the action yields
50 =~ [ atx/lel 6t ¢Lo) dgu + [ abe/lVetors @16)
where
vcab _ (—J()C) (aOK(ab)mD + c(avab)m chZb> ) (E.17)

Comparing with equation (E.4) and reinserting the contribution from the Gauss—Bonnet por-
tion of the source action (which is zero in d = 4) we find that the stress—energy tensor is

@ab :vc";(ab)c _ vc"‘}cab CM()J()C [
2

K(u Kb)mn + 2Kcm(aK b):|

(an)c _Joe
2

DD — Joey(d)AD™ — gLy + O,

(E.18)
Defining V¢ without the tilde as a scaled version of yeab by removing the proportionality
factor —Jyc

‘ 1 S
Ve = agk "D, ¢ + 2V, D" — VDY (E.19)

the stress—energy tensor can be expressed as
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@ab =Joc (vcvcab _ vcv(ab)c> aOZJOC [K(a Kb)mn + 2Kcm(aK b)

Joc

_ (ng)c Joc
2 2

E.1. Proof of equation (E.4)

We shall find the following useful in this endeavor

\/|?Tubc ’c _ \/E (V Tubc ]-—wdchbC _ deCTadc)
\/ETcab 9c . \/E (v Tcab FadcTcdb . thcTcad)

for some tensor 7% and the commas denote partial derivatives

(\/@Tﬂbc) e = 80(\/ETabc)-

We first prove the above useful equations:
gT).e =gl 8T e
(VI8IT").c = /18] T + V/Ig| T
1818% aese T + /18I T c

|g| (chdTahC + Tahc’c) .

2CpseD D — Joey(d)AD —

gabLD + (__)

(GB)

(E.20)

(E21)

(E.22)

(E23)

(E.24)

Using the relationship between covariant derivatives and ordinary partial derivatives on the last
line reproduces the result in equation (E.21). Equation (E.22) follows by permuting indices.
Now we will prove equation (E.4). We start by expanding out the variation 61",

~ 1
/ddx |g| V0T gy = /ddx\/ g|V. [ 68 (8a(ap) — 8avd) + Eng(Z(Sgda,b - 5gab,d):| .

Next, we relabel some indices, integrate by parts, and simplify

o 1 .
/ddx\/ |g|Vcab6F6ab :/dd-x |g|Vcab§(gd(a,b) - gab,d)(;g d

_ /ddx<\/g"7dab>’h 520d + /ddx% <\/@"7dab)’d S2u

~.nl
- /ddx ‘g|Vmb§g6d(gd(a,b) - gab,d)(sgce

_ /ddx |:(\/‘gf|§bad)‘d_ % (\/@?dab)‘d} 59u-

Now we use the definition of the Christoffel symbol in the first term and equations (E.21) and

(E.22) in the second line
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/ddx \g|\~/c“b6F"ab =— /ddx |g|\~/””b1"eab(5gcg
_ /ddx &l 'vdf/bud _ b, vead _a jbed

1_ -~ 1 ~ 1 ~
_ivdvdab + 7Faedvdeb + Fbedvdae:| 5gab

2 2

Z—/ddx s

_FaedVdeb _ Faedvbed + Faedvdd] 6gab'
(E.25)

- 1~ 1 ~
Faedthd + Evcv(ab)t‘ _ Evcvc’ab

The first and fifth terms cancel and the fourth and sixth terms cancel, leaving us with

~ 1 ~ ~
/ dix+/|g| V26T = —5 / dix\/|g] [VCVW’)C - vcvw”} 58 (E.26)

Plugging this into the second line of equation (E.4) reduces it to the third line.

Appendix F. Covariant conservation of the stress—energy tensor

In this section, we show that the divergence of the stress—energy tensor vanishes. This will
require use of the equations of motion

gV, K@ = g, (F.1)

The stress—energy tensor % is

Gah :e?{i) + apJoc [K(umnKh)mn + ZKcm(aKcmh):|
J 2 p (F.2)
- %CDC(“BZ)” - %CD‘;“IBC”) — Jocy(d)AD™ — gy
Oty = Joc (VCV“’I’ - VCV(”I’)“) . (F3)
The divergence of the stress—energy tensor is
Vu@ub :V,IG)’(I?) + OZOJOCvu (K(amnKb)mn + 2Kcm(chmh)) _ VbED
e 2 ~ N (F4)
-3V (Dc("D*b)‘ + D*"(“ch)) — Jocy(d) AV, D,
First, we focus on the V, @‘(lfl) term:
—(Joe) "' VuOpy =V VeV + VYV VP = Y,V Ve
=V, V.V 4V, V.V V.V, Ve
=[V,, V]V + v,V Ve
:Radac dec + Rbdac Vadc + Rcdac Vabd 4 vavcvbac
— _ RchdbC + thac Vadc + Rdu Vabd + vuvcvbac
— RchdCb + Rbdac Vadc + Rda Vadb + vavcvbac
) . E.5
:Rbdac Vadc + vavc VbaL . ( )
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In going from the third to fourth line, we have used the following property of the Riemann
curvature tensor as pertains to rank three contravariant tensors:

[Ve, Vf] Vabc _ Radefvdbc =+ Rbdefvadc + Rcdgfvabd . (F6)

Then equation (F.4) becomes,

1 m
VO =V, 08 +JocR" 4, (V“D‘ff - Eg"“v,,,sz) )

1 ~ ~
+JocV,Ve <VbD‘,’f - Egb<“v,,,Df,)’”) - %va (DC<“DZ)C + Dc(“DZ)C) (F7)
+ %vb (Dmnf)':" + y(d)AD) — Joey(d)AV,D®

where we have collected all terms proportional to oy into

J .
Va@‘(d;()) :Va@‘(l?,ao) i CYOZOC v, (K(amnKb)mn + ZKLm(aKcmb))
aonc (E.8)
= =5V (KenaK ™)

Our first goal is to demonstrate that V, @l(llb“,ao) can be written independent of ap. We will do
so by simplifying it to terms involving only V,K(“")¢ which, via the equation of motion (F.1),
simplify to terms independent of a. In the following, we will often commute partial deriva-
tives at the cost of generating Riemann curvature tensor terms according to equation (A.9) and

simplify via use of the following useful identities

1 1 1 1
VaDpm = 7§K(bm)a + Ev(me)a = EKmab + Ev(an)m (F.10)
1
Kaml’l VmDnb — EKamnKbmn (Fl 1)
VoViuDua = Vi VpDyg — Dc(aRCn)bm (F.12)
cma 1 (cm)a 1 acm
K[cm]a — _gucm (F14)
R0 = 0. (F.15)

Moving common proportional factors in equation (F.9) to the left hand side and simplifying,
we have
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-1 ab b (deympy a (ac)mpy b
mVQG(F,QO) =R dacK Dm + VaVC(K Dm )

:thaCK(dc)mDma + (vach(ac)m)Dmb + K(ac)mvachmh
+2(VK@m™)v.D,b

:thaCK(dc)mDma + {Vm vc}KacmDmh
+ Kacmva VCDmb 4 Kcamvachmb

+2(VK“™V.D,t +2(V,K“"\V.D,".
(F.16)

To simplify further, we use the following identity
{Va, VK@M = —2V VKM _3gm, gead, (F.17)

Substituting these into equation (F.16) and simplifying results in

-1
\V4 @ab ) :RbdaCK(dc)mDma + (*2VCVHK(C’”)“ _ 3Rmdecad)Dmb

Oé().]()C ¥ (lao
1 1
+ EKacmv“V[cDm]b + K" <§va[aDm]b - Rdmachb + RbdacDmd> (E.18)
+ vaKacmv[CDm]b _ (vaK(cm)a)chmb _ (vaKcma)v[CDm]b.

In the last terms we have used the antisymmetry of K““", equation (4.8), along with the follow-
ing property of the Riemann curvature tensor as applies to rank-two tensors of mixed indices:

[VC’ vﬂ]Dmb = _Rdmachb + RbdacDmd‘ (F19)

Collecting the Riemann curvature terms together and simplifying and substituting
Kb = V[CDm]b results in

-1

mvaglg?‘,ao) :2RbdacKCdema —2R"

cad b
K™D m

dea
—2(V VKD, b — (VK V.D,>
F VK KD — (VKK (F20)
The first five terms are of the form we seek. We are left to simplify the last term:
(VK"K )y = = (VaK ") (~Kien”)
= (VK™ ) K — (VK™K
=Va(K"Ken”) = K"V Ko = (VK" )K" (E21)
=2V (K™ Ko”) — V(K™ Kon”) — K™V (Ko — (VoK™) Ko
—V (KK, D) — (VKK b — 2K Kb
Plugging this back into equation (F.20) yields
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—1 ab b
— Va@(l«’ao) :2R

chm Dma _2R™
Of()]()c

cad b
dac dca KD m

_ 2(VL-VaK(Cm)a)Dmb _ (VaK(cm)a)vCDmb
1
+ EVU (K(achb)cm) +V, (Kcm(aKcmb))
— (VoK “NK b — 2K (K. (F.22)

The third line can be seen to cancel with the other terms in V,0% proportional to cy and qua-
dratic in K" except for the term proportional to the metric g?°. It must be that the very last
term in equation (F.21) cancels with the remaining metric term. We now show this:

—2KMN (Ko = — 2K (VD . — VD)
= — K[V, V,,|D’. + 2K ,V’ D,
— _ gema Rbdam Ddc 4+ Kema Rdcam Dbd
+ 2K NN oDy — 2K RY 1" Dinya
— _ gemd Rbadm D, + Kead R" . Dbm
+ KN Keam + 2K R g D,

m)
1
— 5 vb (KcmaKcma) + Kdemcdanm
_ KCdebadeac + ZKcdebda(cDm)a- (F.23)

Upon substituting this into equation (F.22), all terms involving the Reimann curvature tensor

cancel owing to the Bianchi identity R’”[ dac] = 0. The remaining terms are

;1 ab — (em)a b (em)a b
Va0 oy =~ 2AVTK D, — (VKD

1
+ EV‘I (K(achh)cm) + Va (Kcm(aKcmb))
1
_ (VHK(cm)a)Kcmb o Evb(KcmaKcma). (F24)

Upon substituting this into equation (E.8), all terms cancel aside from three terms related to
the equations of motion

(Joc) ™' VaOE, ) =200(V. VKD, + ag(VK“)V.D,
+ ap(V KK, P, (23
These three terms can be combined into two terms

(Joo) "' VaOE, ) = 200V (D, VK ™) — ag(V K )V’ Dy (F26)

Now we can substitute in the equations of motion (F.1) to remove the oy dependence

(Joc) "' V4O ) = =2Ve(D,/KX) + KXV Dy (F.27)
Using equations (4.28) and (4.18) we can show
. ~. 1 )

K¢ = —R¢ — D — Ey(d)Ag‘“. (F.28)
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Using this equation along with some rearrangement of the derivatives, we can expand the last
term in equation (F.27) as follows:

: 1 ~ . . 1
K“V’D,. = —EV”(DMD‘;‘) — D“V’R,. — 5y(d)AvbD. (F.29)
With this expansion, equation (F.27) becomes

1 ~
(o)™ Va0, = 57" (Duchf n y(d)AD) —2V,(D,PK@) — DV'R,.
(F.30)

Upon substituting into equation (F.7), the first term of equation (F.30) cancels with the first
term on the last line of equation (F.7). After some simplifications, this leaves us with the fol-
lowing for the divergence of the full stress energy tensor

. . N "
V0% x — 2V (D,”K) — D*V’Ry + R®y,. [V“D‘j; - Eg”@v,,,z)‘,?
1 )
+V,V. |:vbDic o 2gb(ava*)m:|

1 ~ ~ F.31
~5Va [Dc(”Di)C +D,“pe + 2y(d)AD“b} (31

with the proportionality constant equal to Joc. Next, we expand and substitute in for Dy, leav-
ing us with

1
V.0 o« —2V.(D,’K) — D*VR,e + R, VD — ERcbvan,f*

1 1 )
+ [Vavcvb - Evavbvc — iv”vavc} D“

1 Cc c C
-5V [2(d —1)D, DY —2p @RYC 1 y(d)AD *g"e — 2R (DY } .
(E32)

Using again equation (F.28), the first three terms in the last line can be collapsed into a single
term involving K¢, Doing this as well as reorganizing the triple derivative terms leaves us with

1
V0% x — 2V (D, K) — D*V°R,e + R, . VDY — ERj’vaz)ff’

1 . ¢
+ {va [V, VP - E[vb, Vo Ve | D + V(D “KY) + V(R “DY°).

(E.33)

Substituting the Riemann and Ricci tensors in the commutator terms and simplifying and
combining the first terms on the first line with the last two terms on the last line results in

. . 1 .
V.0 oV, (D K) — DCVPR, + R, VDY — FRIVaDS!

(o a a C ac 1 c

— D*VR’ . — R? 3, . V*D* — V ,(R° D) — ER”dchg’
+ Vo(RODY) + Vo (R" D). (F.34)
The third and sixth terms cancel, the seventh and tenth terms cancel, and the fourth and eighth
terms combine. These simplifications along with using equations (4.28) and (4.18) to expand

K’¢ in the first term leads to
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V0% o —2(2d — 3)V,(D“R") — D*V'R,. — R"V,D% — D!,V R"%
+ Vll (RcaDic)
(E.35)
where we have also raised and relabeled indices in the Riemann term. We can use the contrac-
tion of the second Bianchi identity to simplify the term with the Riemann tensor

vdecda — VRN — ybRea, (E.36)

This leads us to
V0% x —2(2d — 3)V,(D *R"¢) — D*V*R,. — R 'V , D

* ¢ pba * ca anybe (F37)
— D;.V°R* + D! VPR + V,(R.SDY).

The second and fifth terms cancel and we combine the rest into total derivatives and relabel
indices leaving us with

V.0 oc —2(2d — 3)V,(D R¢) — V,(DL“R 1), (F.38)
Using equation (4.18) to expand the second term leads to
V0% o —2(2d — 3)V,(DUR Y — (d — 1)V, (Dg R )

F.39
+2(2d — 3)V, (DR ). (39

The first and third terms cancel and the second term is zero due to the symmetry of the Ricci
tensor. Therefore, we have shown that

v,0% = 0. (F.40)
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