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Abstract

®

CrossMark

We show, through an explicit calculation of the relevant Green’s functions, that the
transverse-traceless (TT) portion of the gravitational perturbations of Minkowski
spacetime and of spatially flat cosmologies with a constant equation-of-state w
receive contributions from their isolated matter source(s) outside the past null cone
of the observer. This implies the TT gravitational wave (GW) cannot be a standalone
observable—despite widespread (apparent) claims in the gravitational wave
literature to the contrary. About a Minkowski background, all 4 of the gauge-invariant
variables—the two scalars, one vector and tensor—play crucial roles to ensure the
spatial tidal forces encoded within the gauge-invariant linearized Riemann tensor
are causal. These gravitational tidal forces do not depend solely on the TT graviton
but rather on the causal portion of its acceleration. However, in the far zone radiative
limit, the flat spacetime ‘TT’ graviton Green’s function does reduce to the causal
‘tt” ones, which are the ones commonly used to compute gravitational waveforms.
Similar remarks apply to the spin-1 photon; for instance, the electric field does not
depend solely on the photon, but is the causal part of its velocity. As is known within
the quantum theory of photons and linearized gravitons, there are obstacles to the
construction of simultaneously gauge-invariant and Lorentz-covariant descriptions
of these massless spin-1 and spin-2 states. Our results transparently demonstrate
that the quantum operators associated with the helicity-1 photon and helicity-2
linear graviton both violate micro-causality: namely, they do not commute outside

the light cone in flat and cosmological spacetimes.
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1. Motivation

Students of gravitational wave (GW) physics are taught that the key observable—the frac-
tional distortion of the arms of laser interferometers employed by detectors such as LIGO,
Virgo, Kagra, etc—induced by the passage of a GW train generated by a distant astrophysical
source, is directly proportional to the ‘transverse-traceless’ portion of the metric perturbation.
Specifically, in a weakly curved spacetime®

G [t X] = Mo + hyu [1,X], | < 1 (1

if X denotes the Cartesian coordinate vector joining one end of an interferometer arm to
another, its change X’ due to a GW signal impinging upon the detector is often claimed to be’

i 1 TTvyj
OX' = Shi'X/, )

where h,»TjT is the ‘transverse-traceless’ portion of the space-space components of #,,, in equa-
tion (1). What does ‘transverse-traceless’ really mean in this context? Racz [1] and—more
recently—Ashtekar and Bonga [2, 3] have pointed out, the GW literature erroneously uses
two distinct notions of ‘transverse-traceless’ interchangeably®. (We shall adopt Ashtekar and
Bonga’s notation of “TT” and ‘tt’.) On the one hand, there is one involving the divergence-free
condition,

TT __ TT _ n — 541, TT.
8ihij = aihji =0=9 hij 3 3)
while on the other hand there is one involving a transverse-projection in position space,
tt
hl] = Pijabhab' (4)
4The Greek indices 1V, ..., run from O to d — 1, while the Latin ones i,, . . ., run over spatial coordinates from
1 tod — 1, and the ‘mostly plus’ sign convention for the metric is used, namely 7, = diag[—1,+1,...,+1].

Throughout this paper, the symmetrization and anti-symmetrization of indices are denoted by the symbols (. ..) and
[.. ], respectively, e.g. T(,) = 3 (Tuw + Top) and Ty = 3 (T — Top).

3 See, for example, equation (27.26) of Thorne and Blandford [6].

®Frenkel and Racz [4] have also pointed out a similar error within the electromagnetic context.
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The definition of transverse-projection in equation (4) is based on the unit radial vector
7 = X/|X| pointing from the isolated astrophysical source centered at O to the observer at X,
namely

Pijap = Py(iPpp — ﬁpijPab’ (5)

Pyj = 0; = Tirj. (6)
Because the rank-2 object is a projector, in the sense that

PPy = Py, @)
and is also transverse to the radial direction,

PPy =0= Py, ®)

we see that the ‘tt” GW in equation (4) enjoys the same traceless condition as its “TT’ counter-
part in equation (3) (i.e. 6ijhg = 0) but is transverse to the unit radial vector

7hi =0 = hijr/ )

instead of being divergence-free.

We believe the intent of much of the contemporary gravitational literature is to claim the
TT GW, obeying equation (3), to be the observable; while the tt one in equation (4) to be only
an approximate expression of the same gravitational signal when the observer is very far from
the source’. To our knowledge, the clearest enunciation of this stance may be found in the
review by Flanagan and Hughes [7]. After describing how the TT piece of the gravitational
perturbation of flat spacetime is the only gauge invariant portion that obeys a wave equa-
tion in section 2.2—the remaining 2 scalars and one vector obey Poisson equations—and after
attempting to justify how the TT GW is the one appearing in equation (2) (see equation (3.12)
of [7]) they went on in section 4.2 to assert, albeit without justification, that the far zone ver-
sion of this TT GW in fact reduces to the tt one. In equation (4.23), they then expressed the
final GW quadrupole formula in the latter tt form.

Other pedagogical discussions of GWs usually begin with the homogeneous TT wave solu-
tions in perturbed Minkowski spacetime completely devoid of matter®:

dd —1 ]_(' 5 . .

w1 = | G (Pislfealde +cc.), (10)

7 The exception appears to be Thorne and Blandford [6], where they went straight to the tt form of the GW (see Box
27.2) without any discussion of gauge invariance whatsoever.

8 See, for instance, sections 35.2—35.4 of Misner, Thorne, Wheeler [8]; section 10.2 of Weinberg [9]; or section 9.1
of Schutz [10]. Briefly, one may start with the de Donder gauge condition 9*h,,,, = (1/2)0,h, where h = n**h,,,,,
and solve the linearized vacuum Einstein’s equations 82 (h,,,, — (1/2)1,,h) = 0. By performing a gauge transfor-
mation in Fourier spacetime to set to zero the h,9 = ho, components, one would arrive at equation (10). Often,
equation (3) is called the ‘TT gauge’ but texts often do not caution the reader that this gauge condition can no
longer be imposed once matter is introduced into the setup, i.e. once the very source of GWs is present. (Maggiore
[11] does note that ‘TT gauge’ does not exist inside the source, but goes on to impose it anyway in the far zone.) We
wish to reiterate the remarks already made in section C of [12]: if the “TT gauge’ were to exist, that would mean the
initially non-trivial gauge invariant scalars and vector variables may be coordinate-transformed to zero. Further-
more, the misleading use of the phrase ‘“TT gauge’ suggests one may even choose a different gauge to compute GW
patterns—after all, one ought to be able to use any desired coordinate system—but this cannot be the case, as the
GW pattern is an observable and must therefore yield a unique result.
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k, = <f\k, ki) , K = kok? = 0; (11)
where ‘c.c.” denotes the complex conjugate of the preceding term; €, can be viewed as the
purely spatial gravitational wave amplitude tensor; and the projector is now one in momen-
tum/Fourier space,

~ - ~ o~ 1 ~ ~
Pijap k] = PyiPjyp — ﬁpijpab, (12)
_ I K

Because in Fourier space a spatial derivative is replaced with a momentum vector, 0; — ik;,
and because of the transverse-traceless properties

K'Pyap = k'Pjigp = 0 = 69Pyjup; (14)

the perturbations in equation (10) do indeed satisfy the ‘TT’ conditions in equation (3).

These GW discussions typically go on to justify equation (2) in vacuum before, as opposed
to after, solving the perturbations engendered by a non-trivial source. The excuse is that,
one expects these perturbations from an isolated system to approach TT plane GWs in the
asymptotic far zone limit. As we shall see below, the TT and tt GWs do indeed coincide in this
r = |¥| — oo limit. Hence, one might reasonably question: why bother with the distinction at
all? To this end, Ashtekar and Bonga point out that the tt GWs miss the ‘Coulombic aspects’
that are contained in the TT ones. Moreover, in Quantum Field Theory, each mode of the
superposition of TT GWs in equation (10) and not those of hg—because it is the former that
is fully gauge-invariant—would be regarded as an irreducible spin-2 graviton. Therefore, one
may be led to a principled stance and insist that it is hiTjT that is physical.

But is the TT GW really a standalone observable? One of us (YZC) has been confused by
this issue since several years ago, when he began developing a program to explore novel ways
to understand the causal structure of gravitational signals in curved spacetimes—i.e. how they
propagate both on and within the null cone. As highlighted in [7], the gauge invariant TT GW
is a nonlocal function of the metric perturbation £, in equation (1), because the TT projec-
tion process takes place in Fourier space. Since, at least about a Minkowski background, the
de Donder gauge gravitational perturbation depends on its matter source in a causal manner,
this suggests the TT GW may thus depend on the same matter source in an acausal manner
due to this nonlocal character. This in turn would render it unphysical, as no classical physical
observable should arise from outside the past light cone of the observer.

In this paper, we wish to clarify how the gauge-invariant forms of the vector potential and
metric perturbations of, respectively, electromagnetism and linearized gravitation contribute
to the observables of these theories. This will include understanding how all their gauge-
invariant field variables, not just the dynamical massless spin-1 and spin-2 ones, play crucial
roles in ensuring that their physical observables depend on their progenitors—namely, the
electric current and matter stress tensor—in a causal manner. Through a concrete evaluation of
the massless spin-1 photon and spin-2 graviton Green’s functions, in Minkowski and spatially
flat cosmological spacetimes, we will show that they are indeed acausally dependent on these
sources and therefore cannot be standalone observables. However, by ensuring the rest of
the gauge-invariant variables are included in the computation of the electromagnetic Faraday
tensor F,,, as well as the d;Ro;; components of the linearized Riemann tensor in Minkowski
and the §;C'gjp components of the linearized Weyl tensor in spatially flat cosmologies, the
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electromagnetic and gravitational tidal forces become strictly causal ones. In particular, we
gain the following insight into the gauge-invariant content of electromagnetism and linearized
General Relativity. While the magnetic field F;; does depend only on the massless spin-1 pho-
ton, the electric field Fi; depends on the causal portion of the velocity of the photon, with its
acausal portion canceled by the gauge-invariant scalar of the vector potential, in all spacetime
dimensions d > 3. For the gravitational case, tidal forces in a flat spacetime background are
encoded within the causal part of the acceleration of the massless spin-2 graviton, with the
acausal portion eliminated by the two gauge-invariant scalars and one vector potential for
all d > 4. Additionally, about a cosmological background, if the Weyl tensor describes the
dominant contributions to tidal forces, then the latter appear to depend on the causal por-
tions of both the massless spin-2 and the two gauge-invariant Bardeen scalar potentials. We
view this latter analysis as a first step towards an understanding of whether the two Bardeen
gauge-invariant scalar potentials ought to be considered an integral portion of gravitational
waves and their associated memories in cosmological settings—even though the dynamics
of General Relativity (in 3 + 1 dimensions) is usually attributed exclusively to its two spin-2
degrees of freedom.

In section 2 we will define the electromagnetic and gravitational gauge invariant variables;
and proceed to clarify what the relevant (classical) electromagnetic and gravitational observables
are. In section 3 we will use the non-local character of the transverse projection in momentum
space to argue why these gauge-invariant variables are expected to be acausal. Following which,
we begin in section 4 to compute the explicit forms of the transverse-photon and TT graviton
Minkowski Green’s functions, confirming their acausal nature. We also compute the solutions
to the gauge-invariant scalars and vectors; and combine the results to study how the electro-
magnetic Faraday tensor and gravitational linearized Riemann are causally dependent on their
respective sources. The far zone and stationary limit are examined; and micro-causality violated
is pointed out. In section 5, we move on to study similar issues but in a cosmology dominated
by a cosmological constant or driven by a relativistic fluid with equation of state 0 < w < 1.
Finally, we summarize our findings and outline future directions in section 6.

2. Gauge-invariance and observables

Setup Throughout the rest of this paper, we will be studying the d-dimensional per-
turbed Friedmann-Lemaitre—Robertson—Walker (FLRW)-like metric

guvx] = aln)? (uw + Xy [xl) = (n,3); (15)
where a = 1 for a flat background or
2
n\ ™
afn] = <> . gw=(d—3)+(d—w. (16)
o
In equation (16), if the perturbations ,,, were not present, setting w = —1 with < 0 yields
de Sitter spacetime and 0 < w < 1 with > 0 a spatially flat cosmology driven by a single
perfect fluid with equation-of-state w. The non-trivial perturbations Y, satisfy Einstein’s
equations coupled to the fluid plus a compact astrophysical system, linearized about the corre-
sponding backgrounds. The detailed analysis can be found in sections III and IV in [12], and
we will cite the relevant results below.
Let us consider an infinitesimal coordinate transformation

X=Xt 4 P, (17)
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where x’ = (n/,%") and £* is small in the same sense that /,,,, is small. Then up to first order in
perturbations, the metric tensor in the primed coordinate system may be written as
gurw 0, X = aln' 7 (Mo + Xy [0,X1) (18)

with all the coordinate transformation induced by equation (17) attributed to that of the metric
perturbation in the following way:

o afn’]
Xu'v! = Xuv[xl] + 2770(;481/)5 ]+ 261[77/] Eo[xl]n/u/' (19)
(The x,v[n',X'] and £#[x] on the right hand side of equation (19) are the perturbation and
gauge-transformation vector components in the ‘old” x* = (), ) coordinate basis, but with
the replacement x — x’.) Next, we perform a scalar—vector—tensor decomposition of both the
metric perturbations’

Xoo = E, Xoi = OiF + Fi,
_ D 0 &
as well as the astrophysical stress tensor
@To = p, @y = 5 + 9,5, 21
(@) — g i 2
Tij:mj+8(,-aj) +ﬁ6’/+ 8,»(9,— q_ IV T; (22)

where these variables subject to the following constraints

OF; = 0iD; = 0 = 6'D;; = 9,Dy;, (23)
0% = io; = 0 = 80 = Doy, (24)
We may then gather the following are gauge-invariant at first order in perturbations'’:
E 1 K
b=——+ - F—-— 2
L talo(r-5)), =
D-V2K K
U= _D-VK a4 F——], (26)
2d—1) a 2
D;
Vi=F;,— 5 and D; = XiTjT. (27)

Within the cosmological case, the solution of D;; can be found in equation (111), that of V; in
equation (119) and those of W in equations (123), (125) and (130) of [12]. ® and V¥ are related
through

(d—3)T — d = 87Gx Y. (28)

9 See, for example, section IV in [12] for a discussion of the scalar—vector—tensor decomposition and the gauge-
invariant formalism of linearized gravitation.

10 Notice that the sign convention for the metric as well as certain gauge-invariant variables are defined differ-
ently in [12]. To change the gauge-invariant notations into those employed in [12], we follow the conversions:
®lhere] — P[[12]]/2, U[here] — ®[[12]]/2, V;[here] — —V;[[12]], and Djhere] — —D;[[12]].

6
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Within the Minkowski case, on the other hand, equation (28) still holds but the solution of ¥
can be found in equation (A27); that of V; in equation (A28); and that of D;; in equation (A29)
of [12]. As already alluded to, of all the gauge invariant variables in a flat background, only
the tensor D;; admits wave solutions.

Because of the TT constraints in equation (23), note that the tensor mode D; exists only for
d > 4. The apparent physical importance of these field variables in equations (25)—(27) lies in
the fact that, if some observable can be expressed in terms of them, then the same observable
cannot be rendered trivial merely by a small change in coordinates since ®, ¥, V; and D;; will
remain invariant.

When dealing with electromagnetism, we will set to zero the perturbations X, in equa-
tion (15) and proceed to solve Maxwell’s equations

VvV, F* = J*, Fu, =20,A,. (29)
Under the gauge transformation
A, = A, —8,C, (30)

the vector potential A, leaves the Faraday tensor F,,,, invariant for an arbitrary function C. If
we perform a scalar—vector decomposition of the vector potential

Ai =q; + 8,-04, (’9,-04,» = 0, (31)
and that of the electric current

Jo = —p, (32)

Ji=T;+ 0T, ol =0; (33)

we may proceed to identify the following gauge-invariant scalar ¢ and transverse (helic-
ity — 1) photon ;'!:

d=a—Ag and o = AiT. (34)
In terms of these variables, the Faraday tensor reads
F(),' = di + 8,'(1), F,j = 23[iaj]. (35)

We refer the reader to section V of [12] for further details; again, we will cite the relevant
results below.

Electromagnetic observables In classical electromagnetism, it is the electric
Foi = —Fj and magnetic F;; fields in equation (35) that are regarded as observables, because
they provide the forces on electrically charged systems. We believe the situation for gravity is
more subtle, however.

Gravitational observables: (simplified) Weber bar Let us begin with a small lump
of freely falling material acting as a Weber-bar detector of GWs. In what follows, the assump-
tion of freely falling detectors makes it technically advantageous to describe their trajectories
using the synchronous gauge metric—where the perturbations are purely spatial:

1'We highlight that, in the electromagnetic case here, some conventions are defined differently relative to [12]. For
instance, when switching to the gauge-invariant variables used in [12], we may implement the following conver-
sions: a;[here] — —a;[[12]], @[here] — ®[[12]], p[here] — a?p[[12]], and T';[here] — —a?T;[[12]].

7
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g = @ (e + 3"V ddae) (36)

For, if the particles comprising the detectors experience negligible inter-particle forces, then
the synchronous gauge in equation (36) can be chosen such that each of them would in fact
have constant spatial trajectories; specifically, for the ith particle its timelike geodesic reads

ZZ) = (n,z(i)) , Z(i) constant. (37)

The tidal forces due to a passing GW acting between an infinitesimally nearby pair of
particles, whose worldlines are joined by ¢*, is given by the geodesic deviation equation

USU Y Vtt = —R", U L UP, (38)

The U* = a"é{f in equation (38) is the timelike geodesic vector tangent to either one of the
two worldlines. For the freely falling scenario at hand, it is in fact consistent to choose ¢* to
be purely spatial, i.e. 0 = 0, so that equation (38) becomes

Minkowski analysis In a flat background, a = 1, we witness from equation (39) that the
01Roio; components of the linearized Riemann tensor must therefore describe the first-order
tidal forces between infinitesimally nearby particles within our idealized Weber bar. Any inter-
particle (electromagnetic) forces that are responsible for holding the lump of material together
must therefore counter the §;Ro; on the right hand side of equation (39). Moreover, as long as
our Weber bar’s proper size is very small compared to that of the GW wavelength, the physical
pattern of rarefaction and compression of the material asserted by the GW’s passage must also
be encoded entirely within d;Ro;o;. Now, not only do these components carry physical mean-
ing, the entire linearized Riemann tensor is in fact gauge invariant because the full Riemann
tensor is zero when evaluated on the background g,,,, = 7,,,.. These reasons explain why we
will, in the coming sections, compute §; Ro;p; within the gauge invariant formalism:

(SlR()i()j = 5U\If + 8,81@ + 8(,1/]) — ED,']', (a = 1) (40)

Cosmological background If our freely falling particles were in a cosmological back-
ground, the geodesic deviation equation (39) continues to be applicable. However, the lin-
earized Riemann tensor is no longer gauge invariant because its background value, when
uv = aQnm,, is no longer zero. This renders its physical interpretation more subtle. On the
other hand, the traceless portion of the Riemann tensor, i.e. the Weyl tensor C*,3, is con-
formally invariant. This means C* ;g = a*n,,] = 0 and the §;C'yjp components of the
linearized Weyl tensor is gauge invariant. It may be possible to argue that §;C'g;o provides
the dominant contribution to tidal forces in cosmology—for, in flat spacetime, it is exactly
equivalent to the Riemann tensor whenever the zero cosmological constant form of Einstein’s
equations holds and the Weber bar is in a vacuum region'>—but we shall leave the detailed
analysis of this cosmological case to future work [13].

Gravitational observable: (simplified) laser interferometer We move on to consider
a toy model of a freely falling laser interferometer. If we assume the proper size of the inter-
ferometer is small compared to the GW wavelength, it is reasonable to then state the observed
interference pattern will be proportional to the differences in its arm-lengths. As argued in

12 See, for e. g. equation (14) of [12] or equation (24).
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section C of [12], we may again employ the synchronous gauge in equation (36) to compute
the time dependent proper distance between two ends (1, ¥o) and (1, Zy) of a single arm.
(Remember the Y and Z, here are constants.) Using Synge’s world function, and assuming
the interferometer is turned on at i’ but does not operate over cosmological timescales, the
fractional distortion of this ¥ <> Z arm is (see equation (6) of [12])

oL h\ih\j : nei nel 2 .
(E) >nl== /0 A" A+ 0 {(Xf&y ) L0 - n’)a[n’]/a[n’}} ; 1)

where 71 = (Zy — Yo)/|Zo — Y| is the unit radial vector pointing from one mass to the other;
and the A-integral involves a Euclidean straight line between the two end points:

AX,_-(,-SynCh) = X,;(,-Symh) [77, I70 + A (Zo - I70)} - X;,-Symh) [77/, I70 +A (Zo - 170)} .

(42)
Minkowski analysis Now, in the synchronous gauge of equation (36), the linearized
Riemann tensor reads
1.
BiRoy = —5 45" (43)

We may thus solve for the synchronous gauge perturbation needed in equation (41) by first
connecting it to the gauge-invariant variables. This, in turn, is achieved by exploiting the
gauge-invariance of the linearized Riemann tensor in a Minkowski background. In other
words, since equations (40) and (43) refer to the same object, we have

RN = Dy — 20,V — 20,0 — 20,00@,  (a=1). (44)
Equations (40), (43) and (44) inform us that the fractional distortion formula in equation (41) is
therefore—at least in principle—related to the double time integral of the linearized Riemann
tensor itself'. In any event, as long as the GW detector is sufficiently far enough from the
astrophysical source, we may take the far zone limit of the right hand side of equation (44).
Below, we will use methods different from those in [2, 3] to argue that, this far zone limit
yields

(Dij — 28(,~Vj) — 26, — 28,»8]@)) = Dyj[far zone] = Xjjlfar zone], (a=1); (45)

far zone

where X}} is the tt projection of the de Donder gauge solution as r = |¥| — oco. Comparing
equations (44) and (45) allows us to deduce:

X" %) = il 3+ (g — 0 Wyl 5+ Wyl 5, (46)
where V;; and Wj; are the two undetermined initial conditions at 7', and, on both sides, the far
zone limit has been taken. One issue that is often not addressed is, why the initial conditions—
the last two terms on the right hand side of equation (46)—are usually neglected. We will
take the perspective that realistic GW detectors are sensitive to waves within a limited band-
width, and since the second and third terms of equation (46) are zero-frequency ‘waves’ one
may ignore their contributions. More explicitly, the (w-)frequency transform of equation (46)
becomes

13 See, for example, equations (27.22) and (27.24) of [6].
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Synch)[ —»] Sajt[w’ﬂ B (27”)5/ [w]eiwnlvy[ )?] =+ (271') [ } [ ﬂ 47)

where §|w] and §’[w] are the Dirac delta function and its derivative.

We close this section by providing an expedited method to obtain the synchronous
gauge metric perturbation from the gauge-invariance of the linearized Riemann tensor, at
least in (3 + 1) dimensional Minkowski spacetime. The key is that the de Donder gauge
0"x v = (1/2)0,x, with x = 1”7 X0, allows us to solve x,,,, rather easily with the massless
scalar Green’s function. In terms of the ‘trace-reversed’ variable

- 1 — po—
Xpw = Xpw = 5w X X =1"Xpo (43)
the linearized Einstein’s equations lead us to the following far zone solution:
— 4Gy ~ X
XX = — | E¥Tln—r+x 7%, 7= (49)
roJre |1

(Note: we have chosen 0 to lie within the astrophysical system.) We also have, in de Donder
gauge, the following components of the linearized Riemann tensor

1 1 1 1 1
01Roij = 3 (2313(%)1 -3 <Yij - 55@1) - §5ij813mY1m - 581‘3/?11 - 531‘31‘?00> : (50)
Upon inserting equation (49) into equation (50), one may recognize that every spatial deriva-

tive acting on %, may be replaced with a time derivative, via
0 — =7 0y. (51)

In the far zone limit we are working in, the error incurred by this replacement scales as (time-
scale of source)/(observer-source distance) or (characteristic size of source)/(observer-source
distance), both of which are small by assumption. At this point, one would find that equa-
tion (50) has been massaged into

Loy
—5 X (52)

where the tt perturbation is the following projection (see equation (5)) of the de Donder gauge
solution

01Roioj =

X§j = PijabXap|de Donder]. (53)
Comparing equations (43) and (52) now hands us, for finite frequency w,
Symh)[ X = Xjjlw, %] (Far zone). (54)

Finally, we once again leave to future work [13] the connection between the cosmological
synchronous gauge metric perturbation to its gauge-invariant counterparts.

3. Why are the massless spin-1 photon and spin-2 graviton acausal?
Before we proceed to tackle the computations of the massless spin-1 and spin-2 Green’s func-

tions, let us first explain why acausality is to be expected. Since this section is meant to be
heuristic, we shall be content to work strictly in a Minkowski background.

10
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Spin-1 photons We begin by recalling the fact that the Lorenz gauge vector potential,
which obeys 6#A4,, = 0 and °A,, = —J,,, is causally dependent on the electric current J,. If
G denotes the retarded Green’s function of the massless scalar, we have

Al =— / dY' G [x — X)) (55)
Rd—1,1

In even dimensions, where Gj propagates signals strictly on the null cone, A, is the field due
to the electric current lying on the past light cone of the observer. In odd dimensions, where
G(}L propagates signals strictly inside the null cone (at least for timelike sources [12]), A, is
the field due to the electric current lying within the past light cone of the observer. On the
other hand, the transverse spin-1 photon can be constructed from the Lorenz gauge photon via
the following Fourier-space projection involving the spatial Fourier transform of the spatial
components of the vector potential Zj [n, l?]

g o e

_ 7] k%
ai[n,X] = - WPU["]AJ'[W, kle™™, (56)

where the transverse projector ﬁij [k] is defined in equation (13). Now, in Fourier space, —1 />
is simply the Euclidean Green’s function

d—17  aik-(F—%')
(E) = . 1 N — d k e
G —X| = —X| = —_— 57
d [ o ] 8,'8,‘ [ * ] Ad—l (27‘()‘171 —k2 ( )
with the concrete expressions
E,reg) - 1 1
G- =~ (£ v o) - 2miuR] ) 68
r[45]

(59)

where GgE) has been dimensional-regularized in equation (58) with an arbitrary mass scale
 introduced and v being the Euler-Mascheroni constant, and —0;0; is replaced with k;k;.
Utilizing eqgs. (57), (58) and (59) in equation (56) informs us that the transverse photon itself
must therefore be related to its Lorenz gauge counterpart through the subtraction of the latter’s
longitudinal piece:

ol ) = Al 5] + Al [n. 7. (60)
I o, In [|¥— %] =
Alns) = -0, [ & =5 laln.) (d=3) 61)
R2 27T
L (4]
= 0,0, A =4, ¥ (d=>4). (62)
RA—1 471_T|—'_ )-C’/|d73

We will now explain how the second term A,“ [,%] in equation (60) is most likely acausal,
because it is essentially the causal Lorenz gauge vector potential but smeared over all space,
weighted by the Euclidean Green’s function in equations (58) and (59). Referring to figure 1,
we see that equations (61) and (62) are the weighted superposition of A;[n, '] over all X',
which—for a fixed X'—receives signals from the electric current from the past light cone of

1
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(n,X") (for even dimensions) or within it (for odd dimensions). But from the perspective of
the observer at (7, X), this means Al“ is getting a signal from the portion of the source residing
within the shaded (blue) region, which lies outside its past null cone.

Spin-2 gravitons The de Donder gauge 0"x ., = (1/2)0,x, with x = 7?7 X0, like
the Lorenz gauge for photons, yields gravitational perturbations that are causally sourced by
their matter 7,,,. Equation (A39) of [12] tells us

Xuvx] = —167Gx / A6 Gy [ — ¥ T Y] (63)
Rd—11
The transverse-traceless spin-2 graviton is gotten from its de Donder gauge counterpart via

the Fourier space projection

ddfll_é R o~ y
RURES - Wpijmn[k] X 1, K], (64)

where the projection tensor f’,-jm,, [E] is given in equation (12), which can also be expressed
explicitly in terms of k,

~ 1 =~

2\)ijmn[l:] = ﬁm(tpj)n m ijﬁmn’
_ s o5 OyOm (K Ken + Oniky o)
- m(ij)”_d_z_ ];’2
Sikkn + Opkik;  (d =3 kikikyk,
i i, (65)
(d—2)@ i-2) @

The same sort of arguments made for the spin-1 photon would apply here to tell us the spin-2
graviton receives signals from T),,, from outside the observer’s past light cone. For instance,
the third and fourth group of terms in the second equality in equation (65) involves two spatial
derivatives acting on the weighted superposition of the de Donder GW over all space but at
the same observer time 7, namely

— =

=11, X

~ D0 / dd—‘f%; (66)
Rd—1 ‘X — x’\ -

whereas the last group of terms in equation (65) involves four spatial derivatives acting on a

different weighted superposition of the same:

dd71)2y Y:][TI’E/]
‘)? _ f/‘d—s :

~ 0300.0,

Rd—1

(67)

4. Minkowski spacetime

As demonstrated in the previous section, both massless spin-1 and spin-2 fields are expected
to contain the acausal information from their isolated sources. To quantify this acausality, we
will in this section perform a detailed analysis of the effective Minkowski spacetime Green’s
functions of the electromagnetic and gravitational gauge-invariant variables.

12



Class. Quantum Grav. 37 (2020) 055001 Y-Z Chu and Y-W Liu

A

Time

Alnx Alnxl | J

Space

>

Figure 1. The A;[n,X] is the Lorenz gauge photon vector potential at the observer’s
location (7, X). The A;[n,¥'] is the Lorenz gauge potential at some other spatial location

.
>

but at the same time 7. The solid cone is the past null cone of the observer at (7, X)
while the dotted one is that of (n,X'). The gray thick line denotes the worldtube of the
electric current. (See Brill and Goodman [5] for a closely related discussion, but from
the Coulomb gauge perspective.)

4.1. Electromagnetism

We will begin with electromagnetism in all spacetime dimensions equal to or higher than
three, d > 3; for d = 3 corresponds to the lowest physical dimension for spin-1 photons to
exist. In addition, the discussion for the electromagnetic field here will provide a useful guide
for us to tackle the more complicated and subtle case of linearized gravitation.

Field equations In terms of the gauge-invariant variables (34) and provided the electric
current J* is conserved, the non-redundant portions of Maxwell’s equations (29)—see [12]
for a discussion—are the dynamical wave equation for the transverse spin-1 photon «;,

azai =TI (68)
with 8> = *¥9,,0,, and a Poisson’s equation obeyed by the gauge-invariant scalar @,
V20 = —p. (69)

Notice both equations involve non-locality. The source I'; on the right hand side of equa-
tion (68) is the transverse component J;, which (recalling arguments from the previous sec-
tion) is thus a non-local functional of J;. Whereas the Poisson equation obeyed by ®[n, X]
means it is sensitive to the charge density p[n, X] on the right hand side of equation (69) at the
same instant 7. As we will show later in this section, only when «; and @ are both involved,
do the physical observables—i.e. the field strength F,,,—become causally dependent on the
electromagnetic current J,.

Spin-1 photons To solve for «; in equation (68) through its effective Green’s function
convolved against its localized sources, it is convenient to first go to the Fourier space, where

13
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the transverse property is implemented through a projection of the Fourier transform of the
current J;. For all k # 0, the o; can be written as the superposition

d-1E - N kik:\ ~ o e
[ x=— [ dy ——— GFn k) (6 — =L ) T, k] e,
ai[r), X] /Rn/wl(zﬁ)dfl pRUNY ](, 5 )il Ke
(70)
where E}j denotes the Fourier transform of the retarded Green’s function of the massless sca-
lar. In flat spacetime, it enjoys time-translation symmetry and reads

sin [k|T

Gl K] = —6IT =2

, (71)

with T = n — 7. As we have seen before, kik; in momentum space can be pulled out with the
replacement k;k; — —0;0; acting on the Fourier integral. Therefore, the expression (70) can
be re-cast into the convolution of the spin-1 effective Green’s function Gi'; against the local
electromagnetic current,

ol == [ ¢GRI 72)

where R = ¥ — ¥ and the G;f takes the form

G [T.R] = —O[T|Cy(T.R),

. (73)
C,‘j[T, R] = (SUCl,d[T, R] + 8i(9jC2,d[T, R]
The C, 4 and C, 4 are respectively defined to be two scalar Fourier integrals
Ak sin|k|T 75
Cq4|T,R| = R iR
l,d[ ] ,/]Rd—l (27T)d_l |k‘ € (74)

Ak sin kT 75
C4|T,R| = —_— kR
24[T, R] /RH T i e (75)

with the observer-source spatial distance denoted as R = |¥ — X’|. Hence, the effective Green’s

function G;- can be gotten explicitly through equation (73) once C; 4 and C, 4 are known. One
of the advantages of using C, 4 and C» 4 to compute G; is that our calculations can be simpli-
fied by exploiting the fact that they both obey the homogeneous wave equation 8*C 4 = 0 and
9%Cy,4 = 0 with the initial conditions

Cl,d[T =0, R] =0 and Cz’d[T = O,R] =0; (76)
as well as the initial velocities
ClalT=0.R|=6“D¥—%] and  C4[T =0.R = -GP[R], (77)

where the overdot denotes the time derivative with respect to 7. In addition, C 4 and C, 4 are
connected via the spatial Laplacian operator or double-time derivatives:

Cra|T.R] = —C14[T, R], (78)

V2Co4|T.R] = —C14[T.R]. (79)

14
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(Equations (76) through (79) conditions follow readily from the Fourier representations in
equations (57), (74) and (75).) Moreover, note that

Gilx — x'] = FO[ET]C14[T. R] (80)
are the retarded (+)/advanced (—) massless scalar Green’s functions; obeying

PG =D x —¥]. (81)
In other words, —C} 4 itself is the retarded minus advanced Green’s function:

—Cra=Glx—x]-G;[x—X]. (82)

Likewise, for the spin-1 case, the —Cj; in equation (73) is the difference between the retarded
Green’s function in equation (73) and that of its advanced counterpart:

—CU:G;[x—x'] —Gijf[x—x’]. (83)
In Quantum Field Theory, the C; 4 in equation (82) is proportional to the commutator of mass-
less scalar fields. In turn, Cj; is proportional to the commutator of (spin-1) photon fields.
Therefore, the elucidation of the (classical) causal structure of Cj will also lead to insights
regarding the quantization of the associated spin-1 photons.

Before moving on to the analytic solutions, let us show that the source of G;}' in equa-
tion (73) is an extended one, as opposed to the usual spacetime point source of, say, the mass-
less scalar Green’s function. Applying the wave operator to the expression (73) for G;f hands
us

O*GHIT.R) = 6;6@[x — x'] - 8[T18:0,G [R] (84)
= o[1] (8, F— %) - 0.9G7 R]) : (85)

where the GfiE) is the Euclidean Green’s function of equation (57) and the relations in equa-
tion (77) were employed. We may view equation (84) as a (d — 1) x (d — 1) matrix of mass-
less scalar wave equations. That —8i<9ijiE) [|X¥ — ¥'|] is non-zero everywhere in space at T = 0
tells us, for a fixed pair of indices #j, the (retarded) signal it generates likely fills all of space-
time to the future of 7. This is to be contrasted against the massless scalar Green’s function
equation itself in equation (81); where, because the source at x’ is point-like, the signal it gen-
erates propagates only on and/or within its future light cone. If the observer at x lies outside
the light cone of x/, the signal G [x — x’] will be zero and causality respected. Returning to
equation (84), if one continues to insist on viewing G;- [x — x’] as the signal at x generated at
X', since it is non-zero throughout all X whenever > 7', once x lies outside the light cone of
X' the observer at x would be led to conclude the signal is acausal.
Recursion relations In both Minkowski and spatially flat cosmologies, we are aided by
the spatial-translation and spatial-parity invariance of the underlying spacetimes. In particular,
these symmetries allow us to solve for C; 4 and C,, for all dimensions once we know their
3- and 4-dimensional solutions. This is because the higher-dimensional ones can be generated
through the ‘dimension-raising operator’
1 0

Pr="5rRoR (86)
(See appendix (E) of [12] for a detailed discussion.) In brief, any bi-scalar function f,; that
depends on space solely through R = |¥ — ¥’| and takes the same Fourier integral form
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dd_]lz ~ ]‘(‘ (‘& 4)
Rl = | ———fa4llk||e" 87
1R = [ il 87)
for all relevant spacetime dimensions d, obeys the recursion relation
1 9fu[R]
Rl =—— .
Jua R = =5 R " oR (8%)

This remark applies to both C, ; and C, 4; specifically, we only need C) 4 and C;4 to determine
their counterparts in all even d > 4:

u

Cievendz4 = Dg* Cig, (89)
H

Coeven a4 = Dg* Cog. (90)

Likewise, we only need C; 3 and C, 3 to obtain their counterparts in all odd d > 3:

d—3

Cload a>3 = Dg* Ci3, on
d—3

Corodd a>3 = Dp* Caj. (92)

Also notice that, by counting the powers |k in the integrals (74) and (75) as k| — 0, Cy 4 is
finite for all d, while C, 4 is expected to diverge when d < 3. However, on physical grounds,
the full effective Green’s function G;}’ should converge for all spacetime dimensions d > 3.
This suggests that, for d = 3, the two spatial derivatives acting on C; 3 in equation (73) will
eliminate the divergence completely.

Time integral method According to equation (82), —O[T]C, 4 is the retarded Green’s
function Gj of the massless scalar. Because equation (82) will continue to hold even in cos-
mology and because the analytic position spacetime solutions to C; ; and Gj are known in all
Minkowski and constant equation-of-state universes [12], we shall introduce a ‘time-integral’
method here that will allow us to solve the (retarded part of) C, 4 in terms of time integrals
of C; 4. We first recall that equation (78) provides us a ordinary differential equation (ODE)
relating C, 4 to Cj 4. Integrating it twice with respect to time, and taking into account the initial
conditions in equations (76) and (77),

T T2 .
Cz‘d[T,R] = —/ de/ dT]C]gd[T],R] —|—TC2yd[T=0,R] —|—C2,d[T=0,R]
0 0
(93)

T T
- / dr / d7iCy 41, R] — TGP[R]. (94)
0 0

Now, any casual quantity Q% [n,X;n’, X']—which we define as one that is non-zero only
when T > R > 0—may be multiplied by O[T — R~]. While any anti-causal expression
Q7 [n, %, ', ¥]—which we define as one that is non-zero only when T < —R < 0—may be
multiplied by ©[—T — R~]'. If we then consider

n' 47 n' 47 T
/ dnQt[n, %7, ¥] = / dnOn—n -R7]Q" = / dr’'e[r’ —R7)QT. (95)
n 0

’ n’

4 The R~ guarantees that signals on the null cone proportional to §[T — R] and its derivatives are included.
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We see that, whenever 7 > R~, we may set O[r' — R™] to one for 7’ € (R™, 7); whereas
whenever 7 < R, the latter is to be set to zero.

/ dr’'e[r —R7]QT =0t —R7| / dr’'Q™

0

(96)

T'=n—=n'
Iterating this reasoning, we may deduce that one or multiple nested integrals of a causal
quantity would return another causal one:

T T3 k) T 3 k)
/ dr,- - / de/ dr®[r —R71QT = O[T — R / dr,- - / de/ drnQt
0 0 0 R- - -

Similarly, if we instead consider

Ti=n—n'

O7)

n' n' 0
/ I / Ol —1)— R :/ arOl—7 —RQ".  (98)
n n T

/T /T

We see that, whenever 7 < —R™, we may set ©[—7" — R™] to one for 7’ € (7, —R™); whereas
whenever 7 > —R ™, the latter is to be set to zero.

/ dr'e[-7' —R7|Q” =O6[-7 —R7] / dr'Q~
0

—R—

(99)

T'=n-=n'
Iterating this reasoning, we may deduce that one or multiple nested integrals of an anti-causal
quantity would return another anti-causal one:

Ti=n-n'

T T ) T T3 iy
/ dr,- / de/ drn®[-7 —R7]Q” =6[-T—R7| / dr,- - / de/ driQ~
0 0 0 —R- —R- —R-
(100)

This discussion implies the integral of the difference between the causal Green’s function
and its anti-causal counterpart—recall equation (82)—namely —C| 4, returns a causal minus
anti-causal object:

/OT dT'(Gj[T/,R} - G;[7,R])

T T
:@[TfR_}/ dT’G:[[T’,R]fG[foR_]/ dr' G, [7,R). (101)
—R—

Furthermore, referring to equations (82) and (94), we see that the retarded portion of C, ;—
which is what we need—is gotten by integrating the retarded portion of C 4

T T
C;fd[T,R]:G)[T—R_]/ dn/ dri Gi[r. R — ©[1] - TG\ [R],  (102)

where CZ ;= O[T]C,4. Observe that the first term on the right hand side is strictly causal,
whereas the second term arising from the initial condition is retarded but acausal because it
contributes a non-zero signal outside the past null cone. As additional Minkowski and cosmo-
logical examples below will further corroborate, the ‘time-integral’ method not only allows
us to compute (up to quadrature) the retarded part of C, 4 from the known solutions of the
massless scalar causal Green’s functions, it provides a clean separation between the strictly
causal versus the retarded-but-acausal terms arising from the initial conditions— even if the
time-integrals themselves cannot be performed analytically.
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Exact solutions in even dimensions d > 4 The retarded and advanced Green’s functions
of a massless scalar in 4D Minkowski are

O[T FR]

4R
The J-function teaches us that Gj( propagates signals strictly on the forward null cone; and the
G, strictly on the backward null cone. From equation (82), C| 4 thus reads:

C14[T.R] = 47%13 (6T —R] — 0[T +R]). (104)

GElx— ] = — (103)

Of course, C 4 can be worked out straightforwardly from equation (74) by setting d = 4.
To compute C; 4, on the other hand, we insert equation (104) into equation (94) and obtain
1 T
C24[T,R] = i (6T —R]—©[-T —R]) + - (O[T)O[-T + R] + ©[-T|O[T + R]) . (105)

We may check this result by tackling equation (75) directly. After integrating over the angular
coordinates in k-space,

T gk sinkT sinkR
C2,4[T’R] :/;oo (27_[_)2 k kR . (106)

The sines can be converted into exponentials; and because there are no singularities the con-
tour on the real line may be displaced slightly toward the positive or negative imaginary k-axis
near k = 0. The resulting expression would consist of 4 terms, each of which would now be
amendable to the residue theorem by closing the contour appropriately in the lower or upper
half complex k plane.

From the retarded portion of equation (105), we find that the contribution of C,4 comes
from both inside and outside the past light cone of the observer; however, the signal that resides
within the light cone—its ‘tail’—is a spacetime constant and will therefore be removed by the
spatial derivatives in equation (73). In contrast, the acausal one with 7' < R still remains and
does contribute to the 4D effective Green’s function Gl'jIr along with some additional light-
cone contributions from differentiating the step functions in C 4.

O[T — R] T
R ©[T|O[—T + R]0;0; e
(107)

To sum: the 4D effective Green’s function GE;FAD) [x — x’] propagates signals on and outside

+4D) [ B ==
G (T, R] = — (5,7 - RiRj)

the forward light cone of the source at x’—namely, it is acausal.
With the 4D solutions in equations (104) and (105) at hand, we may employ egs. (89) and
(90) to state:

Clleven asalT-R) = Dyt <5[Z7TRR]) , (108)
where C{, = O[T]C 4, and
+ = 1 T .
Chrwn TR =D (BT RI -+ OITOL-T+RI )0 (109)

where only the retarded contributions are shown, and we highlight that the tail portion of
equation (105) in higher dimensions d > 6 partially cancels the acausal part of it upon
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H
differentiation. Like the 4D case, the TDg” (47R) ™" part of CJ .., 454 indicates the latter

continues to receive acausal contribution from outside the light cone.

Exact solutions in odd dimensions d > 3 Odd-dimensional solutions differ from even
ones due to the presence of inside-the-null-cone propagation—-*tail’ signals. In (2 + 1)-dimen-
sions, the retarded Green’s function of the massless scalar is

O[T —R]
27V/T? — RZ’

which, unlike the 4D case, is pure tail. We now turn to solving the integral C, 3, which, as we
have reasoned earlier, is expected to blow up when considered alone, but its divergent piece

ClLIT. R = —G{[T,R] = (110)

does not really enter the physical spin-1 Green’s function Gl'jIr as it will be eliminated by the
two spatial derivatives 0;0; in equation (73). Despite being divergent, C, 3 can nonetheless be
regularized to a finite expression in the time-integral method, where the divergence only takes
place on the initial condition. Within dimensional regularization, the resulting regularized
form of it, Cgfzge), is given by
“Tln |:/,L <T+ VT2 = RZ)} FVTT_R

2m

+ O[T)O[-T + R]

S (T,R) = O[T — K]

#WU‘R] Lo % (% - *1”[”]) '
(1

¢ _contribute

By referring to equation (73), we see that both tail and the acausal parts of Cg; ¥

to the three-dimensional GlTjF, with no pure light-cone signals involved.
To further justify the validity of equation (111), we independently computed finite C; 5

using its Fourier representation in equation (75):

T—T? —R?
+ _
CJ5[T,R] = O[T — R] iR + O[T]|O[-T + R] IR (112)
This then allows us to verify C;f s = DRCE;S’? in equation (92). Higher odd-dimensional

results follow from equations (91), (92), (110), and (111), where we can simply drop the last
term of equation (111) and set the mass scale p to one, since they will be removed in G;- by
the spatial derivatives in equation (73),

a3 O[T — R]
%mwwmngm@_m) (113)
d—3 —Tln|(T+ \/TZ—R2 +\/T2—R2 B
Czodd a3 TRl = Dg* <®[T —R] [< o )] + O[T|O-T + K] Z:THR
(114)

With equations (113) and (114) plugged into equation (73), we now have the explicit spin-1
Green’s function G,TJ'-r for all odd dimensions d > 3. These analytic solutions reveal that, in
odd dimensions, the spin-1 photon receives not only the causal tail signals from both C;,
and C» 4, with no strictly é-function light-cone counterpart, but also the acausal contribution
from C,4[0 < T < R]. As a result, we have explicitly shown that, in the presence of the local
electromagnetic source, the spin-1 photon being acausal turns out to be a generic feature in
any spacetime dimensions d > 3.
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Scalar The scalar solution for the gauge-invariant @, which obeys the Poisson’s equa-
tion (69), is given by a Coulomb-type form,

o, 7] = 4% GP IR o, 7], (115)
Rd*l

)

where we recall that G‘(iE takes the form of equation (58) for d = 3 and equation (59) ford > 4.

Clearly, this solution manifestly violates causality, in the sense that the scalar ® is instanta-
neously sourced by the local charge density p. Therefore, neither the spin-1 photon «; nor the
scalar ® can be a standalone observable in classical electromagnetism, which then leads us
to pose the question: how do these gauge-invariant variables enter the key observable—the
Faraday tensor—such that the result is causally dependent on their corresponding sources?

Faraday tensor The causal nature of F,,,, can be seen from its own wave equation,
derived by taking the divergence of the identity 9, F,,) = 0 and imposing the Maxwell eqau-
tions (29),

UF ., -i-Rpgw,Fpo + ZRU[NFV]U = —2V[#],,], O=V,V. (116)

In Minkowski spacetime, the geometric tensors vanish and the electromagnetic fields encoded
within F,,, are thus given by the massless scalar Green’s function convoluted against the first
derivatives of the electromagnetic sources,

Fu ] = -2 /]R - Ay 0y,G 1, [¥]. (117)

Here, we have dropped the surface terms at infinity when integrating by parts, which can be
justified by the causal structures of equations (108) and (113) as well as the fact that those at
past infinity (T — oo) in odd dimensions are negligible (see equation (113)).

Let us now recover equation (117) within the gauge-invariant formalism. We first make
use of the conservation law for the electromagnetic current, 9,J; = Jo, to re-write the spin-1
expression (72),

il = — / ' (G — O[T) Csadol¥]). (118)
Rd*l‘l

where the second term is now the convolution with the charge density Jy. The surface terms
from integration by parts—namely, [ dn’ d?~2¥ ©[T]9;C,,4J; evaluated at spatial infinity and
J 7o [T)0;C.4J0 at past infinity—have been neglected, as the former falls off as R — oo
in both even and odd dimensions, and the electric current is assumed to be isolated; whereas
the latter, when T — oo, has zero contribution in even dimensions and becomes negligible
in odd dimensions (see equations (109) and (114)). The magnetic field, according to equa-
tion (35), is therefore consistent with equation (117):

Fijlx] = 2005 = -2 /]R . dx’ 0yGy Iy Y], (119)

This calculation shows that, despite «; being acausal, taking the curl of the spin-1 field ends up
removing its acausal information encoded in the second term of equation (118).
According to equation (35), the electric field Fy; is the sum of &; and 9;®. Employing

C2’d|T:O = —G[(,E) and C‘z,d = —C) 4 in equations (77) and (78), the time derivative of equa-
tion (118) is
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ilx] = — / A (GHI) — 0,GF o)) — / 4% 0,6 Jo[n. 7).
d—1,1 d—1
: 8 (120)

We see that the acausal term containing GLSE) in equation (120) is canceled by adding to ¢; the
spatial gradient of equation (115). The result is

Foilx] = a;[x] + 0:®[x] = —/ A (G JilY'] — 0.GL Io[x')) (121)
Rd—11

which, again, agrees exactly with equation (117). To sum: the spin-1 photon «; contains all
relevant electromagnetic information, but is acausal. On the other hand, the primary role of
® is to cancel the acausal part of ¢;, rendering the electric field Fyy strictly causal. In other
words, the electric field turns out to be determined by the causal portion of the velocity of the
transverse spin-1 field,

FOi = (di)causal = (A;'r)causal' (122)

Next, we move on to investigate how the spin-1 field and the Faraday tensor behave under
certain physically interesting limits.

Stationary limit and ¢ That the electric field in equation (122) is the causal piece of
&; reveals a subtlety in the stationary limit, where the electric current is time independent. For,

the first term containing G;}' in equation (120) integrates to zero, which then informs us that

&7 = A '%0,G\ [x — X[ — / A% 0,6 P [ — ¥)J0[®] = 0;
Rd-1 Rd—1
(123)
because in the second term of equation (120),

/dn’Gj[n*an*ﬂ = Gy R ¥]. (124)
R

In words: within the stationary limit, the causal structure of ¢; itself becomes degenerate—the
otherwise causal and acausal terms in equation (120) cancel one another.

At first sight, equation (69) appears to tell us @ is the Coulomb potential of a static charge
distribution. This seems to be further reinforced by the fact that 9;® from equation (115) is the
sole contribution to the electric field Fy; in equation (121), since ¢; = 0. But the interpreta-
tion that 9;® is (the dominant piece of) the electric force becomes erroneous once there is the
mildest non-trivial time dependence in the electric current—as already pointed out—because
® is purely acausal and hence cannot be a standalone physical observable. Instead, the gradi-
ent of equation (115) cancels the (normally acausal) second term in the first equality of equa-
tion (123) and thus equation (122) continues to hold:

Foilx] = () e = /RH A2 0,GP [¥ — #)Jo[®). (125)

Far-zone limit Provided that the observer is very far from the isolated sources, the
leading-order term of the field, which scales as 1/ re corresponds to the radiative piece that
is capable of carrying energy-momentum to infinity. To extract the leading contribution of the
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spin-1 field in such a regime, firstly, we re-express the spin-1 commutator Cj;, by explicitly
carrying out the spatial derivatives assuming R # 0, in the following form'?

Cy|T, R) = Py[R) Cy4[T, R + T1[R] 27w Ca442T, R], (126)
where the projection tensor Pj; and I, respectively, are defined as

P;[R] = 6; — RiR;, (127)

I;[R] = =6, + (d — )RR;; (128)

the R = (¥ — ) /|® — ¥| is pointing from the source location ¥ to the observer ¥; and Cy 4.2
in the second term of equations (126) is the (d + 2)-dimensional form of equations (90) and
(92) but its R is the one in d — 1 spatial dimensions. Note also that, to reach equation (126),
we have employed the homogeneous wave equation, 5‘2C2,d =0, with R # 0, as well as the
conversion Cg,d = —C} 4, torelate its second spatial derivatives to C 4. Also, it can be checked
directly that the expression (126) for R # 0 is indeed divergenceless. Altogether, as long as
the observer is away from the source, we have an alternative expression for the spin-1 effective
Green’s function by inserting equation (126) into G;r = —O[T]C;;. The purpose of putting C;;
in this form is that, the dominant far-zone contribution of the field can be extracted simply by
comparing C; 4 and C; 4;,. Furthermore, each term in equation (126) is manifestly finite for
all spacetime dimensions in which photons exist, since there is no divergence incurred in C) 4
and Cp 44 ford > 3.

If 7. and r, are respectively the characteristic time scale and proper size of the source, and r
is the observer-source distance, the far zone is defined as the limits 7./r < land r./r < 1. To
perform this limit on the Green’s function, we will work in frequency w-space. Specifically,
the far zone then translates into |w|r >> 1. We shall be content in extracting the leading expres-
sions in the limit |w|R > 1.

In terms of the superposition of individual frequencies, the spin-1 field «; can be written as

dw ~ L
alnil =~ [ a7 [ G o Re . (129)
Rd—1 R 27 4
with 6; [w, R] being the frequency transform of the spin-1 effective Green’s function,
Gl lw.R] = /R dT G} [T, R] "

= Py[R| G [w, R] — TTy[R) 27 CF ,,[w, R], (130)

where we have assumed R # 0 and used the expression (126). The 5; [w, R] and E‘;‘ diolws R],

respectively, denote the frequency transforms of the massless scalar Green’s function G; and

+ 16
C2,d+2

Spin-1 photons in even dimensions d > 4 A direct calculation starting from equa-
tions (108) and (109) tells us, in all even d = 4 + 2n > 4,

15 At R = 0, when two spatial derivatives 8,0,- act on 1/R473, terms involving §d=1 [f — )‘c"] could arise. However, if
the observer is away from the source, then those local terms will not contribute to the effective Green’s function,
and therefore, we can simply ignore them in the calculation.

16 The E;j [w, R]in equation (130) is the frequency transform of G [ — ; R]; this is to be distinguished from

(~¥d+ [.7'; k] in equation (70), which is the spatial-Fourier transform of the same Gfln—1;R].
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~ ein iw2n+l (1)
G R =-Dp| —|=—-————h R|,
4+2n[w ] R (47TR) 2(271’)”+1(LUR)" n [w ] (131)
. ein ein (21’! + 1)” w2n+l
Cy, .R] = D} - - ,
2l Rl = D (8W2R2(iw) 872R3 (iw)2> 2(2m) 2 (wR)2H

(132)
where h,(ll) is the spherical Hankel function of the first kind. Notice that the last term in equa-
tion (132) does not contain the factor e“¥; it describes the non-propagating portion of the
signal in frequency space, which in turn arises from the acausal effect found in position space.
In the limit |w|R > 1, equations (131) and (132) behave asymptotically as

. __1\n+lin, 2n+1
Goonlw, R = D)Wk (1 + O{LD , (133)

2(2nwR)"t1 wR
1
(@] [wR:|> ) (134)

which reveals that, for any fixed dimension d =4 + 2n and at leading order, the acausal

~ (_1)n+linw2n+1 'w i
CZ6+2n[w’R} =t F

2027wk © 2nwR

E‘; 6+2n[w, R] term is suppressed as 1/(wR) relative to 5:;2”'7. Therefore, at leading 1/(wR)
order, the effective Green’s function G;f [w,I_é], in frequency space, is exclusively dependent
on (N}j [w, R]; moreover, with the assumption r,/r < 1, its far-zone leading contribution can be
extracted from the first term of equation (130), which is given by

P =y = VA - 1 re
G [w.R) = PGy [wi %, ¥ <1 +0 [D (135)
where P;; is the far-zone spatial projector defined in equation (6) and

(_1)n+1 (iw)n eiw(rf,'v" )

é(+,fz)
2(27T)n+1 rn+1

442n [W?f’f{] =

(136)

By performing the inverse frequency transform, in the far-zone radiative limit, the transverse
spin-1 photon «; = AT reduces to a transverse projection in space:

lim o — A, A =Py (_ / A G [T;)’c’,)'c”]Jj[x’}), (137)
r—ro0 Rd—11
where Gf;“ fz) [T;X,%'] is the far-zone contribution of the massless scalar Green’s function,
Gfﬁ"fz) [T; %] = / dw (N}L(;"fz) [w; %, ¥ ]e™ T
R 27T
ﬂ
== ! = (2) 2 S[T—r+%-7]. (evend) (138)

227r) T \9n

Spin-1 photons in odd dimensions d > 3 For d = 3 + 2n, we can frequency transform

the retarded position-space solutions (113) and (114) to obtain

iw2n

e = (O
4(27roJR)”H” [wR], (139)

6;+2n[w > 0,R] = —

17 Strictly speaking, equation (133) applies only for n > 0. There are no 1/(wR) corrections in (3 + 1)-dimensions,
because equation (131) informs us that G [w, R] = —e“R/(47R).
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iw?” n 2"n) w2

WHn+l [WR] - W’ (140)

Cys olw > 0,R] =
where H,(,l) is the Hankel function of the first kind and its differential recursion relation
has been employed, and these expressions are only valid for positive frequencies w > 0;
however, since G} and C2 442 are real, the negative-frequency modes can be expressed in
terms of the complex conjugates of equations (139) and (140), G} [~w, R] = G} *[w, R] and
Cygyal—w.R] = C;T 712w, R], where the asterisk ‘+” denotes complex conjugatlon. As in the
even-dimensional case, the non-propagating piece of signals also shows up in the second
term of equation (140). At leading 1/(wR) order, the Hankel function goes asymptotically to
" [wR] = \/2/TwR el@R="m/2=7/4) 1 O [1/(wR)3/?], so we can read off the leading-order
pieces of equations (139) and (140) accordingly,

~ iw? . nr_m 1
Gi., |w>0,R :—76(“’1{*7*?) 1+0|—1 ),
sl = = Ry R (141)
Cs. [w>0R]:—7iwzn err-5). 1 (10| Lliol L ]),
e | 2(27wR)"* 2 2nwR wR (wR)"+2

(142)
from which we infer that, unlike the even-dimensional results, amplitudes of these tail signals
contain fractional powers of frequencies. And, these asymptotic behaviors tell us that, in the
far-zone regime |w|R > 1, the massless scalar Green’s function Gd [w, R] still dominates over
C2+ 442w, R] here. Hence, we can extract the far-zone leading order in 1/r piece of GJr [w, R]in
the same way,

wr r

6;’[(,0 > 0,R] = P, Ggisz’[ X < +0 { rc]> , (143)

with G§) defined by

S ooy
Gy w7 = TR e, : (144)

Consequently, in the radiative limit » — oo, we reach the same conclusion stated in equa-

tion (137) for odd dimensions d = 3 + 2n as well, where G£,+’fz) is given instead by
Gl(;r’fz) [T;%,¥] = ———5Re [/ W o (w3 =) 27 | (odd d). (145)
0

Thus, based on the frequency-space analysis, the fact that o; = AT — A! as r — oo holds
generically in any spacetime dimensions d > 3, clearly demonstrating that the acausal portion
of the spin-1 field actually contributes negligibly to the far-zone signals.

Summary: far zone transverse Green’s functions To sum, the massless spin-1 transverse
photon «; in the radiative regime will coincide with another notion of the ‘transverse’ vector
potential A}. While a; in equation (56) involves a transverse projection in Fourier space, the
A} in equation (137) is a local-in-space transverse projection of the far-zone Lorenz-gauge
causal solution for the vector potential, i.e. 7A! = 0, which consists solely of the light-cone
signals in even dimensions. In 4D Minkowski spacetime, that the two different notions of the
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transverse vector potential overlap in the far zone has already been pointed out in [2, 3]. The
method used here allows us to generalize the conclusion to all dimensions.

Faraday tensor Since we have already shown the spin-1 photons «;, for all d > 3,
reduce asymptotically to causal A} in the far zone, we then expect in this regime the magnetic
and electric fields, equations (119) and (122), to become

Fj ~ —27AY, (146)

Fo ~ A (147)

Here, the far-zone limit has been taken on both sides of the equations, and we have also used
the results in egs. (133), (134), (141) and (142) to deduce—as far as the leading-order contrib-
ution is concerned—the replacement rule 0; = —0y = —R;0p holds at the leading 1/(wR)
level, and after which the dominant far-zone contribution in terms of  can be extracted read-
ily. In addition, the far-zone expressions (146) and (147) can also be checked for consistency
through equation (117), by using the replacement rule as well as the conservation law for the
charge current.

Commutator of spin-1 photons As already alluded to, the results for the retarded
Green’s function of the massless spin-1 «; are intimately related to the commutator of these
photon operators in Quantum Field Theory. Let us first consider a free scalar field ¢ as a
simple example. Its commutator is related to C) 4 in the following manner:

[px], p[x']] = —iCy14[T.R]. (148)

According to equation (82), since the retarded/advanced Green’s functions on the right hand
side are strictly zero outside the null cone, this C 4 consists of only causal information—i.e.
it too is zero whenever the two spacetime points are spacelike: (x — x’)? > 0. In contrast,
because the spin-1 Green’s functions are non-zero outside the light cone, according to equa-
tion (83), the non-interacting spin-1 commutator is therefore acausal:

[ailx], oy [¥']] = —iCy[T, R). (149)

In quantum field theory, operators that commute outside the light cone are said to obey micro-
causality. Free spin-1 photons are therefore seen to violate micro-causality. It is likely that
this acausal character of their commutator is a manifestation of the known tension between
Lorentz covariance and gauge invariance when constructing massless helicity-1 theories in
flat spacetime.

4.2. Linearized gravitation

We now turn to the linearized theory of General Relativity in a Minkowski background, as
described in section 2. The relevant Green’s functions will be computed analytically for all
spacetime dimensions d > 4; i.e. excluding those without spin-2 degrees of freedom.

Field equations The gauge-invariant form of the linearized Einstein’s equations can
be expressed in terms of the variables defined in equations (25)—(27), where, as a constrained
system, the full set of gauge-invariant field equations can be reduced to four fundamental
ones, i.e. equation (28) and the following three [12]:

(d —2)V*U = 8nGnp. (150)
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V2V, = —167Gx Y, (151)

9’Dy = —167Gnoy; (152)

where the source terms p, ¥;, and oy; refer to different parts of the scalar-vector—tensor
decomposition of the astrophysical stress-energy tensor (@) T, (see equations (21) and (22)).
These four independent equations, along with the law of energy-momentum conservation,
o @ T,, = 0, already imply the other three remaining ones in the linearized Einstein’s equa-
tions. We see that only the spin-2 graviton field, D; = Xl.TjT, admits dynamical wave solutions,
sourced by the TT portion of @7 T,.., while the Bardeen scalar potential ¥, as well as the vector
mode V;, obey Poisson-type ones. This set of equations appear to be similar to their electro-
magnetic counterparts, and thus, by the same arguments used earlier, we already expect these
gauge-invariant variables to be acausal in nature once the GW sources are taken into account.
In this sense, none of these gauge-invariant variables—including the spin-2 D;—may be
regarded as a standalone observable. Indeed, as we will see in the subsequent discussion, the
linearized Riemann tensor d1Roj;, discussed in section 2, in close analogy to the field strength
F,,,, for electromagnetism, does require all their contributions to become a causal object.

Spin-2 gravitons The analytic solutions for the effective Green’s functions are cru-
cially important for capturing the propagation of wave signals in this linearized system. Here,
we start with the massless spin-2 field Dy;, obeying the wave equation (152). Since the TT
projection of the source takes place locally in Fourier space, as long as k # 0, we can firstly
express D; as
_ / // 41k =+ LD 71 ()7 IR
Dyn, X} = —167Gn [ dn a1 Oa 1115 K] Pin k] T [, k] €7,
R a1 (2m)4-1
(153)
where éj [n,1; k] is given in equation (71), and the spin-2 TT projector ﬁijm,, [l;] is defined in
equation (12). Then, the expression (153), with each k; in equation (65) replaced by a spatial
derivative via 9; — ik;, can be re-written as the spin-2 effective Green’s function Gumn con-
volved against the local stress-energy tensor of the source,
Djj[x] = 167Gy d%'GE [T, R O T, [x], (154)

ijmn
Rd—1.1

where the spin-2 effective Green’s function G;/ is given by the following tensor structure,

ijmn
G;mn[ } - G[T] Cijmn[T R]

= 04j0m
Cljmn[T’ R] (6}71(16])7! - d— 2)C1d[T R] + < m(laj)an + 6n(zaj)am

fW)m[nRH(j 3>aaaac3d[r R, (155

with C; 4 and C, 4 defined previously in equations (74) and (75), and Cs 4 defined by

A4k sin KT ;5
Cs4[T.R]) = e
3.4[T, R] /RH P RTT e (156)

Compared with the spin-1 photon case, even though the whole tensor structure of Cj;,,, here is
very different than that of C;; (see equation (73)), the first two terms have structural similarity

to Cy;, and the scalar Fourier integrals C; 4 and C; 4 have already been dealt with analytically;
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the only new term that remains to be computed is C; 4. Moreover, it can be checked readily
that, by employing the relations V2Cpy = —Cy4 and V2Cs 4 = —C,4 (see equations (74),
(75), and (156)), the expression (155) indeed satisfies the TT conditions 6’G; =0 and

ijmn

&-G;}'mn = @G;Tmn = 0. We shall soon deploy the time-integral method, which amounts to
solving

Csa = —Coy. (157)

By integrating equation (157) twice, followed by recalling equation (94), we have

T T2 .
C3‘d[T,R] = —/ de/ dr ngd[T],R] =+ TC3’d[T = O,R] =+ C3’d[T = O,R], (158)
0 0

T T4 ) ) T3
- / dry / drs / dr / dry Cl,d[Tl,R]+€G§E)[R]+TD¢1[R], (159)
0 0 0 0

where the initial conditions Cs 4[T = 0,R] = O and C3,d[T = 0, R] = D[R] have been employed
(see equation (156)), with D, defined by

dd—l]_(' eil_c"ié
Dy[R] = —_— 160
d[ ] /Rd—l (27‘()‘171 4 ( )
whose concrete position-space expressions read
(reg) R (1
Dy [R] = ~Te-\z ™ (v+1In[r] — 1) —2In[uR] ), (161)
(reg) R
D{*® R = ——
s [R] o (162)
DER IR = g (£ 5~ nfr] — 2muk] ) (163)
t2e 1672 \ €
r [@}
Dy>6[R] = e (164)
[ 1677 Ri—5
Note that D3, Dy, and Ds are in the dimensional-regularized forms. Finally, parallel to equa-

-+

jmn €an be seen at the level of its wave

tion (84) in the photon case, acausality encoded in G
equation,

0°G,[T. R —5[T1{ <5m(i5f)n - %)5(‘1_1) X —x] - (%(iaj)an + (0 Om

5jOmOn — Sund0\ () d—3
(165)

The last two terms in equation (165) correspond to the acausal contributions to the signal
attributed to x’ = (1, X’), but arising from a non-zero source smeared over the rest of the
equal-time spatial hypersurface at p = 7’.

To compute C3 4 in equation (156), we first notice that the integral itself diverges when

d < 5, inferred from the power of |k| in the limit k| — 0. However, in the physical spacetime
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dimensions where spin-2 gravitons exist, namely d > 4, those divergences in C34 and C3 s
are expected to be removed by the multiple spatial derivatives in the spin-2 effective Green’s
function (155). Furthermore, since the dimension-raising operator still applies to Cs 4, in either
even or odd spacetime dimensions, the lowest-dimensional form is already adequate for us to
generate all the higher-dimensional ones.

Exact solutions in even dimensions d > 4 Since the analytic forms of C;,; and Cp 4,
for all even d > 4, have been obtained in equations (108) and (109), we now focus on the
(34 term needed in equation (155). Similar methods used to compute C, 4 will be performed
to tackle this new integral. Here, we start with Cs 4, the lowest even dimension for the spin-2
graviton to exist. Even though Cs 4 itself is a divergent integral, we can still extract its regu-
larized finite contribution through the time-integral method, as we did for C, 3 in the spin-1
calculation. Utilizing dimensional-regularization, the result turns out to be finite:

—R> - 372 —3R*T - T3

o+ OITIO[-T + R —— ——.(166)

Similar to Cy 4, the tail function in equation (166), when plugged into equation (155), will be

C{i™1.R = O[T - R

eliminated by the spatial derivatives in Gl .- Whereas the acausal portion of the signals, from
the second term of equation (166), will still remain. In addition, this regularized form can be
justified by checking whether this expression, with one dimension-rasing operator acting on
it, coincides with C;f ¢ obtained by a direct contour-integral calculation:
3R’T — T3
OTIO|-T+R| ————. 167

242+H[ +]487r2R3 (167)
(One may check, indeed, that C3 5 = DrCs, (+:7°8) ) With this solution at hand, applying dimen-
sion-raising operators to it then produces all the higher even-dimensional results,

CioT.R] = O[T — R

s R2 — 372 —3R’T —T*
_ (168)

ClrnanlT. R =07 (007 =1 = 3T s oirolr 41 =5 1
Now, plugging equation (168) for Cs 4, along with known C; 4 and C, 4, into the spin-2 effec-
tive Green’s function (155), we find that the spin-2 causal structure is analogous to that of the
spin-1 field. More precisely, for all even dimensions d > 4, no tail signals exist in G”mn, but
the spin-2 graviton receives not only the light-cone signals but also the acausal ones from both
C2,d and C3!d.

Exact solutions in odd dimensions d > 5 For odd spacetime dimensions, we begin with
d =5, since TT gravitons are non-existent in lower odd dimensions. To calculate C3 5, we can
make use of the time-integral method to first extract the regularized C;3, namely inserting
equation (110) into equation (159) along with the dimensional-regularized initial conditions:

1 31 2
CL YT, R) =O[T — R & ( (- R - §(13R2 +2T°)VT?* - R* + T(R2 + gTZ)
™

xln{u<T+\/T2—R2 ) o[T]e| T+R]Th81£fR] (R2+§T2)

3

- 9[ ]1; ((R2 + §T2> <% —In] w]) +R2>. (169)
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By applying the raising operator Dy once,

re; 1 T2 T3
DT, R =0T — R — <<2 + ﬁ> VT? —R2 - 3TIn [u (T +/T2 R2)] - ﬁ)

2472

+ O[T]|O[-T +R) 2417r2 (_% — 3T1n[,uR]) + 0[T] 167;2 <% e ln[ﬂ]) ,

(170)
which is still a regularized expression of the divergent integral Cs s, and again, whose validity
can be justified in the same way. Through a direct computation of the finite integral Cs 7, as we
did for C, 5, we can show that the resulting expression of C3 7, namely

3
2(T? — R*)? +3R*T — 277 3R*T —2T°

_ KT — 217 (171)
18R + O[T|O[-T + R] 18R

C3,IT.R] = O[T — R

is simply Dchgizgg . Following through the same procedures, we can extend the analytic solu-

tion (170) to all odd dimensions d > 5 via dimension-rasing operators, where, similar to the
odd-dimensional photon case, we may discard the last term of equation (170) and set x = 1 as

they will be eliminated in the physical G;‘mn (see equation (155)),
i=s 1 72 T
g assIT-R] =Dy <@[T ~Rl 3 ((2 + ﬁ) VIR 3T [ (T4 VT - R)| - ﬁ)
OIT0[-T + R —= (=T —37mR 172
+OITIOI-T +R) 55 (~ 35 ~3TuR) . (172)

As with spin-1 photons in odd dimensions, the spin-2 effective Green’s function (155) in this
case explicitly reveals that, besides pure tails from C 4, the spin-2 graviton receives extra tail
and acausal contributions from both C, 4 and Cs 4 for all odd d > 5; and moreover, no signals
traveling strictly on its past light cone—namely, no d-function light-cone contributions.

Therefore, the acausal nature of the TT spin-2 field in all relevant spacetime dimensions is

+

explicitly confirmed by the analytic solutions of G;| = obtained in this section. Now, we pro-

ijmn
ceed to solve for other gauge-invariant variables involved in this system.
Bardeen scalars In a flat background, one of the Bardeen scalar potentials U obeys the
Poisson’s equation (150), which then leads to a Coulomb-type solution,
&rG
v = 7= / A% G R Too[r, 7). (173)
- Rd—1

This transparently shows the acausal character of W, since it is instantaneously sourced by the
local matter energy density. The other Bardeen potential ® is related to ¥ via equation (28);

recall that Y is the nonlocal scalar portion of decomposed (2) T}; (see equation (22)), which, in
Fourier space with k # 0, is given by the following local projection [12],

~ . d—1\ 1 e ~ L
Tn.k] = — (dZ) 7 (kikj - dl(SiJ) OT;[n, k). (174)

29



Class. Quantum Grav. 37 (2020) 055001 Y-Z Chu and Y-W Liu

By virtue of this local decomposition, we can inverse Fourier transform equation (174) to
yield

D[n,X] =(d — 3)¥[n, x|

S0 / dd"f”<G§E)[R](a’Tu[n,?} —(d- 1)8i8de[R](a)sz[n,i”}), (175)
Rd—l

+d—2

where ()T}, denotes the spatial trace of the (ij) components of the matter stress-energy tensor,
@7, =67 @ T;, and Dy[R]is defined in equation (160). Inserting equation (173) into equa-
tion (175), we can express ® itself in terms of the following convolution,

87G : -

.5 = / ety ((d3)G§E)[R}(A)Too[77,7]+G§E)[R](3)Tu[77,x]
— |

- (@~ 1)0ODIROT .71 (176)

where we see that @ is effectively dependent on different components of the matter stress-

)

energy tensor, weighted either by GL(IE or D, on the instantaneous 1 = ' surface.

Vector potential The gauge-invariant vector mode V;, in linearized gravity, also obeys
the Poisson’s equation (151), but is instead sourced by the nonlocal transverse part of Okpe
(see eq.(21)). As before, since the decomposition is local in momentum space,

. Kk \ s o -
Si[n. k] = <5ij— 1}’2]> @ Ty[n. &), (177)

the solution of equation (151) can first be cast into a Fourier form using equation (177), and
then translated back to the position space,

V,'[’I],)?] = 16’/TGN/

@17 (20Da[R) W Ty, %) — G R Tuln. 7).
Rd—1

(178)
which is yet again an instantaneous acausal signal. Therefore, in Minkowski background,

other than the spin-2 graviton field Dy, the rest of the gauge-invariant variables depend exclu-
sively on the weighted superposition of the matter sources evaluated at the instantaneous
observer time 7.

Linearized Riemann tensor In our discussion of gravitational observables in sec-
tion 2, we have argued that, in a free-falling synchronous-gauge setup, the §; Ro;o; components
of the linearized Riemann tensor encode the gravitational tidal forces exerted upon the neigh-
boring test particles in the geodesic deviation equation (see equation (39)). And, being also
gauge-invariant in Minkowski spacetime, it would reasonably be regarded as a classical physi-
cal observable and expected to be strictly causal as well.

As with the Faraday tensor in electromagnetism, it can be directly shown via its second-
order wave equation that the linearized Riemann tensor is causal with respect to the flat back-
ground. Firstly, by taking the divergence of the Bianchi identity obeyed by the exact Riemann
tensor, followed by imposing Einstein’s equations, one may obtain

o lea o o T
OR? ., + [V} VIP]R = 327Gy VIV, (TV] I 51,]] - 2)) - (179)
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The linearized version in Minkowski background is thus

5 o] (@
O*61R7 ,,, = 32nGy POy, | DT, — 67— ), (180)
“I(d -2)
where (®) T isnow thetrace of the matterstresstensorin flatspacetime, namely @ T = 5 (@) T,. 18
The wave equation (180) then leads immediately to the fact that the linearized Riemann tensor
is causally sourced by the second derivatives of the astrophysical stress-energy tensor, from
which its d; Ry, components can be expressed explicitly as

/ 0jj a / a /
81Roio; ] =87TGN/ 43 Gf (@) Tyle'] + —— (< M Too[x'] — ¢ >T,,[x})> = 20,GJ W T[]
RA—1.1 (d — 2)

+ s 00G] ((d =3O Tl + DT[] } (181)
(d 2)

To arrive at equation (181), we have integrated by parts and dropped the boundary contrib-

utions evaluated at the spatial and past infinity. Not only does equation (181) show d1Ro;; is

completely causal for all d > 4, it also provides a check for our calculations in the gauge-

invariant approach.

As we have shown earlier, all the gauge-invariant variables—the two scalars ¥ and ®, one
vector V;, and one tensor D;—are acausal. From the similar issue encountered in the electro-
magnetic case, we would expect that, in describing the physical GW observables, a mutual can-
cellation of the acausal contributions must occur among these variables. Let us now check this
statement more carefully using their analytic solutions. Given in equation (40) is the linearized
Riemann tensor ;R expressed in terms of four gauge-invariant variables in Minkowski
spacetime, all of which are non-trivial whenever matter sources are present. Notice that the
spin-2 graviton field D;; enters d;Roio; through its acceleration; before taking time derivatives,
the spin-2 field given in equation (154) can firstly be re-cast into another convolution,

5 .
Djj[n, %] = — 167Gy / 'y’ {G; ((a)Tij[xl] + ﬁ <(a)Too ] — @ TuM)) —20[T10:C2.4 M T [x']
Rd—11 —

o (- i+ o)

1671'GN
d-—2

(182)

/ di- 14((5 G <a)T00[77 V] + (d73)8i('3de(a>TOO[77,iv]>v
Rd—1

where we have utilized the conservation of the matter stress-energy tensor, @7 Ty = o )T,J
and (7] Too 0;0; (a )T,], the conversion properties Cz 4= —Cjqand C} 4 = —C»4, and the ini-
tial conditions Cg,d’TZO = —ij )and Cg,d T—0 = D,. Also, as in the spin-1 case, the boundary
terms from integrations by parts all vanish, which can be justified using the analytic expres-
sions of C,4 and C3 4 obtained above. Note also that, in equation (182), the second integral
is performed on the equal-time surface, which is clearly acausal, but the whole expression
for Dj; is not yet a clean separation based on causality, since C, 4 in the first integral still con-
tains both causal and acausal pieces. Furthermore, we highlight that the energy-momentum

18 Strictly speaking, the matter stress tensor in equation (179), when perturbed around a background Minkowski
spacetime g,,, = Ty + X, Would typically admit an infinite series in x . Whereas the matter stress tensor in
equation (180) does not contain . The matter stress tensor appearing everywhere else in this paper denotes the
latter.
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conservation law is always assumed throughout this paper. However, this is no longer true in a
self-gravitating system, such as the in-spiraling pairs of black holes/neutron stars whose GWs
LIGO have detected to date. Conceptually speaking, to make the theory self-consistent, non-
linear corrections of gravity must be incorporated into the right-hand side of the linearized
wave equation, so that the conservation of total stress tensor remains valid at linear level. We
hope to address this subtlety more systematically in future work.

Now, we proceed to take double-time derivative of the spin-2 field in equation (182),

. 5 /. "
dty’ {Gf ((d) Tyl + ]2 ((“>T00[x’] - ‘”T,,[x’})) — 206G O T[]

Rd—11

1 .
+ H&QGJ ((d — 3) (@) Too[x/] + (@) T][[Xﬁ) }

1
+ 167Gy /}R Aty {— 20,006 DT, [0, ¥] + ) (5,,8,,18,,05,5) @ T, [0, %]

d-3

+ 096 ((d — 3Tl ¥] + OT,fn. 7)) ) + ( 3

) 8,'(9j8m6nDd(a) T [779 f,] }a

(183)
where the same properties used in the previous calculation have been employed to carry out
the differentiation!®, and we observe that the first integral in equation (183) is completely
causal and is exactly —2 times the expression in equation (181), whereas the second one is
acausally performed over the equal-time hypersurface, which is therefore expected to con-
nect to the other gauge-invariant variables. According to equation (40), the scalar and vector

contributions to d;Rg; come from 0, 0,0;®, and 8(i\7j), the explicit forms of which can be
readily deduced from equations (173), (176) and (178),

- 871G
Gl d = >—% / AR 0,0,G O T, [0, 7], (184)
d—2 Juis
0;0;®[n, x] :iﬂGg / ¢ ((d — 300Gy O Tool. %) + 0,0,G O Ty [, &'
- ]Rd—l
— (d — D)030nOD Tl x*]) , (185)

0yl = —167Gx | d % (0,006 OT00. 7] — 0000004 T, %]) . (186)
Rd—1

where the conservation law of ) T, allows us to switch between different components of

the stress-energy tensor. As it turns out, the scalar and vector contributions, added together

in accord with equation (40), do conspire to cancel the acausal portion of the accelera-

tion of the spin-2 TT graviton completely, i.e. the second integral of equation (183). As a

19 Whenever a second time derivative acts on the expression involving a step function O[T], we make use of the fol-
lowing simplification for any function F[n, '],

0y (BITIF[, ') = O[TIF[n. ) + S[TIF . of ] + S[TIE[. ]|, .-
where we have made the replacement T8[T] — —4[T, which results from differentiating the identity T3[T] = 0

with respect to 7). Notice that the last two terms only contribute at 7 = 7', and this property will also be utilized
later on in the cosmological case.
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result, the remaining part of equation (40) is then strictly causal and exactly consistent with
equation (181),
.. . 1.. 1. 1
01Roioj = 0¥ + 0i0® + 0V — 5D = =5 (D) s = =5 (85") s>

(187)

which is valid in general weak-field situations. The physical insight gained from the gauge-

invariant formalism is that the information regarding gravitational tidal forces is exclusively

encoded within the causal part of the acceleration of the spin-2 field; whereas the acausal

portion of Dj; is completely canceled by the gauge-invariant Bardeen scalars and vector

mode. This situation is very similar to that of the spin-1 field describing the electric field in

electromagnetism.

Stationary limit and ¢ Like the photon case, the limit where the stress tensor ) T,
becomes time-independent leads to a degenerate causal structure for the acceleration of the
spin-2 graviton; namely, its otherwise causal and acausal pieces cancel. In such a situation,

one may further verify from eqs. (173), (178), and (183) that U=V = D,-j = 0, leaving the
tidal forces to depend only on ®:

81Rowj = 0i0;®. (188)

Since equation (187) holds in general, we may maintain that, despite appearances, it is really
the acausal pieces of Dij—which are equal in magnitude but opposite in sign to the causal
ones—that are canceling the 0;0;®. This interpretation ensures that causality is respected once
there is the slightest time-dependence in the (@) T,..

| 871G
S1Roij[¥] = -3 (Dy) o = p ; / a1y &@G((P ((d —3) @ T[] + (a)Tu[)'c"]) . (189)
— RA—1

Far-zone limit To extract the far-zone GW signals generated by the isolated astrophys-
ical systems, we perform the same frequency space analysis for the spin-2 effective Green’s
function here as for its spin-1 counterpart. Before taking the far-zone limit, we first re-cast the
spin-2 effective Green’s function (155) into the one analogous to equation (126) for spin-1
photons, by carrying out all the spatial derivatives involved in Cj;,, while avoiding the point
R=0,
Cijnn[ T R] = Pisun[R] Cra[T R] + s [R] 27 Co. 2T R] + i [R] 47 Cr s [T K], (90
where Pjj, [ﬁ] denotes the TT spatial projector based on the unit vector R,

. . . 1 - .
Pijmn[R] EPm(i[R]Pj)n[R] - EPU[R}Pmn[R]’ (191)
with P;[R] given in equation (127), and the other symmetric tensor structures IT;,,[R] and
Eijmn|R], respectively, are defined as

. L d(d -3 o S
L [R] = —2PjjnlR) + dd-3) (5m(iRj)R,, + 04 Ry R — 2RRRR,

d—2
(192)
— = d—73 o o P
Sijmn [R] = d—2 (;ijémn + 2§m(i5j)n - (d + 1) (6in’"R” + 6m”RiRj + 26m(iRj)R”
+25,.<,~R,~)Rm) +(d+1)(d+ 3)RiRijRn) : (193)
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We have taken advantage of the homogeneous wave equation obeyed by both C, 4 and Cs 4,
along with the properties C‘z,d =—C4and 5‘3,4 = —Cy 4, to relate different scalar functions.
Here, we highlight again that, for a fixed d, the notations C; 41> and C34.4 used in equa-
tion (190) represent their corresponding (d 4 2) and (d + 4)-dimensional functional forms,
but the R is the one in d — 1 spatial dimensions. Essentially, as long as R # 0, equation (190)
is equivalent to its original expression (155), and, as explained in the similar spin-1 situation,
this form is useful for the far-zone analysis and is manifestly finite in all relevant spacetime
dimensions, because C; 4, C1 442, and Cs 414 all converge for d > 4. As a consistency check of
equation (190), its TT properties can be shown explicitly by a direct calculation.

The leading contribution of GWs, responsible for the far-zone tidal forces, can be extracted
from the spin-2 effective Green’s function using equation (190) in frequency space. The rela-
tive amplitudes of the three scalar functions can in turn be directly compared in the limit
|w|R > 1. To begin, we express the spin-2 field D;; in terms of the superposition of monochro-
matic modes,

dw ~ Y
Djj[n,X] = 167Gy / 'y / G W R e OT, [w.F], (194)
Rd—1 R 2 Y
where éi—}_mn [w, I_é] is the frequency transform of the spin-2 effective Green’s function assuming
R#0,

Gihlw. R] = /]R dT G, [T.R] "
= PR G [, R] — Wy [R] 200CF 5[0, R] — S [R] 472CE, [, R (195)
= Pijm[R] G [w, R] jmn [R] 270 2,d+2[w’ ] — Ejjmn[R] 47 3,d+4[‘*” ],

with 6; [w, R, 6; 42w, R], and E;r 44lw, R], respectively, defined to be the frequency trans-
forms of their real-space counterparts, Gj, C;f a1 and C;f did As we did for the far-zone
spin-1 waves, we now take the limit of equation (195) as |w|R — oo, from which to extract
the dominant spin-2 GWs in the radiative regime. Since we have calculated (N}ZZr [w, R] and
5;“ 442w, R] earlier in the photon case, E’;“ d+4w, R] is the only term left to evaluate here.

Spin-2 gravitons in even dimensions d > 4 For even-dimensional spacetimes, 6:{ [w, R]
and Czd+2 [w, R], for d = 4 + 2n, have been obtained in equations (131) and (132). In the same
way, with the analytic expression of C;4 given in equation (168), its frequency transform

C;f 44w, R] can be computed straightforwardly,

~ elwR 3elwk 3elwk (2n + 1)1 @2+l
C+ R —pn _ _
ss+22[0> Rl =D <167T3R3(iw)2 1673 R* (iw)? * 167r3R5(iw)4) 4(27)n+3 (wR)2n+3
(2n + 3)N1 w21

20 TR oo

which, analogous to Z’;r 442w, R], comprises the non-propagating modes associated with the
acausal effect, as well as the propagating ones with the e factor. Moreover, C;f g42n[ws R]
turns out to be suppressed relative to (N;j' [w, R] and E‘; ds2lw, R] when |w|R — oo (see equa-
tions (131) and (132)). More explicitly, at leading 1/(wR) order, it behaves like

- _1)n+1inw2n+1 . 1 1
-+ Rl = ( iwR . 1 . .
o+l Rl 2(2nwR)" ! © (27wR)? +0o wR (197
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Hence, as inferred from the asymptotic behaviors of three scalar functions (133), (134) and
(197), the pure causal one, é; [w, R), is still the dominant contribution to the spin-2 effective
Green’s function in the limit |w|R >> 1. In close analogy with the spin-1 case, the spin-2 GWs
in the radiative zone is dominated by the first term of equation (195) That is, under the far-

zone assumptions |w|r > 1 and r./r < 1, the leading 1/r piece of Gymn is given by
+.fz re
G;mn[ R = PumnGz(wzn)[ LX) ( +0 [wr r}) , (198)

where Py, the far-zone ‘tt’ projector, is defined in equation (5) and Gﬁrz") given in equa-

tion (136). Accordingly, as already alluded to in section 2, the spin-2 TT graviton Dj;, in the
far-zone radiative regime (r — 00), reduces to the causal ‘tt” GWs,

. fz - F
Tim Dy = X, xS = P (—mch [ avar 1% %)W, [x']) : (199)
where G‘(IJ“ fz) [T %,X], as before, denotes the far-zone version of the massless scalar Green’s

function, which, for even d > 4, is given in equation (138) consisting of pure light-cone sig-
nals. This xE} is thus the tt projection of the far-zone de Donder-gauge solution of the metric
perturbations, Xj; = PjjmnX,[de Donder]. In other words, like the consequence of the far-
zone spin 1 field (137), the two distinct notions of ‘transverse-traceless’ metric perturbations,
Dj; Xt/ and XU’ are shown to coincide as r — oo, where the acausal effect in D;; becomes
sufﬁc:lently insignificant.

Spin-2 gravitons in odd dimensions d > 5 Following the similar procedures, we are able
to extract the far-zone portion of the spin-2 GWs for odd dimensions as well. Odd-dimensional
(~;+[ R] and E‘j 442w, R] for d = 5 + 2n and positive frequencies can be obtained simply by
replacing n — n + 1 in equations (139) and (140). And, given equation (172), C;“d+4 [w, R] can
be tackled similarly to C5 ., [w, R},

jw2nt2 2"(n+1)! Wtz gnt2 (n+2)! wt?

WH£I+)3[ wR] — (27 )4 (wR) >+ - (2m)n+4(wR) 2 +6 >

Clg4aulw > 0.R] = (200)

which, as in the even-dimensional case, resembles the structure of C2 442w, R] in equa-

tion (140), and tends to be more suppressed than both G+ [w, R} and C2 442w, R] at leading
1/(wR) order. That is, as |w|R > 1, the asymptotic behavior of C3, dy4lw, R] reads
~ _iw2"+2 . (n+D7w  x 1 1
Clo o w>O0R = — 2 gi(wr—t52m-g) 1 1+0[—] +0|——1 |
3,9+2n[ ] 2(27T(,«.)R)n+% (27TLUR)2 WR (UJR)"JF?
01)

where the expression has been factorized into the leading 1/(wR) piece of G5 4 on[w, R] times
the suppression factor. Likewise, among the three scalar functions in equation (195), G [w, R]
continues to be the dominant contribution in the limit |w|R — co. As a result, the far-zone

behavior of G;mn [w, R] here admits the same ‘tt’ structure as equation (198) for even d,

+ SChi) o L or
Gljmn[w > O’R] PUm”G5+2n [w’x"f,] (1 +0 |:(JJV’ r:|> > (202)

where 6;;2;2) is given in equation (144) with n replaced by n + 1; and Pj;,, in equation (5).

A similar line of arguments then reveals that the spin-2 TT graviton Dj;, in odd dimensions

ijs
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d > 5, also reduces to Xg' as r — 00, where the acausal nature of D;; becomes trivial; namely,

the feature (199) still holds here, with odd-dimensional G‘(;“ f2) given in equation (145).
Linearized Riemann tensor Through the analysis of the spin-2 effective Green’s func-

tion, we have just shown that, in the radiative limit, the spin-2 TT GWs in fact coincide with
the tt ones, D — X}j‘-, for all spacetime dimensions d > 4. For this reason, the far-zone ver-
sion of the tidal forces (52) for all d > 4, as well as the statement (45), follows immediately
from equation (187) and the fact that X}; is completely causal. This result can alternatively
be derived from the expression (181) for d;Ro;, by repeatedly employing the replacement

rule 0; = —0y = —R;0y and the conservation of the matter stress tensor in the intermedi-
ate steps before reaching the final far-zone expression. Furthermore, the far-zone connection
(Synch)

between Xg' and the synchronous-gauge metric x can be made via equation (46), where

ij
as explained in section 2 the initial conditions could be dropped for GW detectors sensitive
to only finite frequencies. In particular, the fractional distortion spin-2 pattern of the laser
interferometer, described in equation (41) are exclusively attributed to the causal XS Such a
characterization of the GW observables in terms of X%}’ however, is legitimate only when the
GW detector is sufficiently far away from the matter sources.

Commutator of spin-2 gravitons Earlier in this section, we have shown micro-causal-
ity is violated for the massless spin-1 photons (see equation (149)). A similar line of reasoning
then reveals that the massless spin-2 graviton field violates micro-causality too. For, the tensor
structure Cjj,,, in equation (155) is related to the commutator of the corresponding quantum

operators via the relationship
[Dylx], Dyn[¥']] = —=iCijnlT. R]. (203)

The acausal nature of Cy,,, immediately tells us that the massless spin-2 gravitons do not com-
mute at spacelike separations. Once again, it is likely that this violation of micro-causality is
linked to the tension between gauge invariance and Lorentz covariance when constructing
massless helicity-2 quantum Fock states.

5. Spatially flat cosmologies with constant w

We now move on to the spatially-flat cosmological background, driven by a perfect fluid
with a constant equation-of-state w. Again, we will consider both the electromagnetism and
linearized gravitation cases, where the dynamics of the linearized gravitational system, unlike
that of electromagnetism, has non-trivial dependence on w. In cosmology, there is no longer
a time-translation symmetry, and the full analytic expressions for spin-1 and spin-2 effective
Green’s functions may generally be difficult to attain. On the other hand, the background
space-translation symmetry is still preserved, so the similar Fourier-space analysis exploited
in Minkowski spacetime continues to apply in the cosmological setup. At a more technical
level, the translation symmetry in space would still allow us to utilize the time-integral method
to express the spin-1 and spin-2 effective Green’s functions in terms of the analytic solutions
found in [12], so that the corresponding causal structures can be analyzed.

5.1. Electromagnetism

We start with the electromagnetic field in the cosmological background spacetime, described
by the metric (15) with X, set to zero, and our focus here will be the causal structure of the
theory in the gauge-invariant content for all 4 > 3.
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Field equations In spatially-flat cosmologies, the Maxwell’s equations (29), in terms of
the gauge-invariant variables (34), are translated into a set of two independent field equations,

—4 .
_M + V2 = —a’T, (204)
=

V20 = —d’p. (205)

Notice that the spatial components of equation (29) encode not only equation (204) but also
the equation 9y (a?~* @) /a’~* = a°T', which is in fact redundant, as is already implied by the
Poisson’s equation (205) inserted into the conservation law of the charge current V,J* = 0,

0y (ad_z.l())

ad—2 = ai‘]i' (206)

Moreover, equations (204) and (205) together show that, except the re-scaling J,, — a2J,,,
the theory is conformally invariant when d = 4, and, like its Minkowski counterpart, only
the spin-1 photon field «; admits dynamical wave solutions, with the scalar ® still obeying a
Poisson-type equation.

Spin-1 photons To solve for the transverse spin-1 field «; in the cosmological system,
we first re-write its wave equation (204) as
d—4 . -
{82 + % ((d A YC 27—[)} (a%a,-) — a1, (207)

where H = a/a, denoting the conformal Hubble parameter. Then, following the same manip-
ulations in Fourier space performed in Minkowski spacetime, we are able to express the spin-1
field «; in terms of the following convolution based on equation (207),

d—4 e
aln] = a;n.xX] = —/R[ ldd"i”/ ' aln)2 G I, s R il %), (208)
. .

where the time interval of integration (7, ) covers all the possible values of 1 for an expand-

ing universe, and the spin-1 effective Green’s function Gi(j”’ﬂ is given by
Gy n.nf K] = ~6IT1C;" [n. 1+ R,
s R) = ;) [n.1'sR) + 0,8,C5)) [, s R, (209)
with C g d) and Cyd), respectively, defined by
d—1
™) d'k ¢ [ } R
C. R G k 210
a 07 R] = /Rd_l ) 17’5 K] (210)
d—1 ik-R
Dl R = 'k <>[ *}e :
C ,n;R] = c k|| —=—: 211
2.d [77 n ] /]R"*l (27T)d 1.d m, 77 | | k2 ( )
the Fourier transform of C('Y) can be equivalently expressed in terms of the following
decomposition,
C) [no's K] =i (0 o ') = o) " il o 1) 212)
IK] || i ||
where 917 are in fact the mode functions of the massless scalar field that satisfies the homo-

|K]
geneous (i.e. I'; = 0) form of the wave equation (207), the Fourier-space version of which

37



Class. Quantum Grav. 37 (2020) 055001 Y-Z Chu and Y-W Liu

is therefore obeyed by UI(:Y\) itself and C i'z), mOoreover, vm) have been normahzed so that the

initial condition imposed on the time derivative of CE 4> hamely C 1d |n—17’ = 1, coincides

with the Wronskian condition for the mode functions, v‘(]j‘)v‘(z‘)* U(Z\)*vfj\) = i. In this lan-

guage, the properties of CYZ} and C%) become more transparent. Specifically, both of the
scalar functions obey the homogeneous wave equation associated with the wave operator in
equation (207), and the equal-time initial conditions for CYZ}, Cgfi), and their velocities, can be

immediately read off,

Cgl}) ’77:77’ = ngd) |7]=77’ = O’ (213)
CMmy = =0wC), = 0 VE=F], 214)
- E

o),y =—owC)|, . = —GPIR]. (215)

It turns out that de) and Cé are the cosmological generalization of their Minkowski counter-
parts (74) and (75), and Gy (7) is connected to the commutator of the massless spin-1 photons
in the cosmological background,

[oilx], o[']] = —iCi(j”) [n.7; R]. (216)

When specializing to the constant-w cosmologies considered in this section, where
H =2/(qun) with (1p.m) = (=00,0) for w < —(d —3)/(d 1) and (1. ) = (0. 00)
for w> —(d —3)/(d — 1), the analytic solution of the massless scalar Green’s func-
tion G‘(i'y’+) = —0IT] CEZ} for d > 3 has been derived in [12] via Nariai’s ansatz (see equa-
tions (205) and (206) of [12]), instead of computing equation (210); the result shows that
Gfﬂ’ﬂ contains pure causal signals propagating either on or inside the light cone. Since C; (7)
is known, we may employ the time integral method to compute Cg,) without resorting to tack—
ling the integral in equation (211) directly. The homogeneous counterpart of equations (207)

together with the relation —V2C}’ ) — CYZ} leads us to

_ 2c —a (1)
O (“ 0, (4 ) ) e d—4 217)
a =G =g

With the initial conditions (213) and (215), we are able to write down

d—4

(v) aza 7 —a—a [T (v)
Coln.n'sR) = —an] = / dr afr] ¢ >/ dalm)= €).'+ R)
n’ n’

o () o ()T e

)
d’

C ) " [n,m'; R is strictly causal (i.e. its retarded part is proportional to @[T — R™)), the first term

If we only consider the retarded piece (n > 7’) of Cg then as explained in section 4 since

of equatlon (218) would in turn yield a strictly causal contribution. Whereas the second term
is a smooth function of spacetime, consisting of the signals that pervade all physical space-
time points with > 7/, including the region outside the light cone. Hence, the time-integral
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method has cleanly elucidated the causal structure of C&), even if the integrals cannot be

performed in closed form: acausality is present for all > 3 and is encoded only in the second
term of equation (218). Moreover, it also implies the spin-1 quantum operator violates micro-
causality in constant-w cosmologies (see equation (216)).

Scalar The Poisson’s equation (205) for scalar ® can be solved immediately by utiliz-
ing the Euclidean Green’s function,

oA = [ a7 alnP Gy [R] Jo[n. 7). (219)
Ri—
which, except for the factor a[n]?, is precisely the same as its Minkowski counterpart (115).
This in turn implies that, despite the distinct waveforms of the spin-1 field in cosmology, the
acausal portion of its velocity must take such a simple form to ensure a causal electric field,
as we will demonstrate below.
Faraday tensor Let us now turn to the causal structure of the Faraday tensor F,
within the cosmological context, where F,,, in the gauge-invariant formalism still takes the
form of equation (35). To make the causality analysis more transparent, we first re-cast the
spin-1 photon field (208) in the following convolution that involves both time and spatial
components of the electric current J,,,

Ui -
alnd=- [« [ dn'amr%a[n'ﬁ(G;”*’J,»[n',m
Rd—1 M

d—4

+O[T)aln]7 8, (a[n/]—%aic§7d>) Jo w,m), (220)

where we have employed the conservation law (206) and removed the boundary terms that
arise from integration by parts®®. The resulting expression is in fact the cosmological gener-
alization of equation (118), and notice that, due to the lack of time-translation symmetry, the

time derivative of C Pd) or ng) with respect to n’ cannot simply be replaced with the negative

of that with respect to 7.

Start with the (ij) components of F,,. Taking the spatial curl of either equation (208)
or equation (220) gives rise to the magnetic field in the cosmological background (see
equation (35)),

Ui d—sd
Fyln. ¥ = 20405 = —2 / ¥ / dn’ aln] =" alnf) 9G¥,
Rd—1 n
' 221)
which is completely causal for d > 3, since the acausal effect of the spin-1 photons, encap-
sulated in the second term of equation (208) or equation (220), is eliminated by the curl

operation here—as was the case in the Minkowski background. Next, to obtain the electric
field Fy;, we first compute the velocity of the spin-1 field by taking the time derivative of equa-

tion (220), with the expression (218) substituted for Cézl),

20'With the assumption that the electric current is sufficiently localized, the boundary contributions evaluated at spa-
tial infinity are zero, whereas the ones at past infinity, namely at ' = —oo forw < —(d —3)/(d — 1) and’ =0
forw > —(d — 3)/(d — 1), still require further justification. However, those boundary terms at past infinity are in

fact the surface integrals of C;Wd) at )’ = —oo or ’ = 0, indicating the fact that they satisfy the homogeneous wave

equation and do not alter the exact inhomogeneous solution to the spin-1 wave equation. We hope to clarify this
issue further in our later work.
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. _ " _d=d o : d—4
Gl =~ / iy / di aly]~" amz’{ (Gfﬂ‘“[n, iR = o, n/;R]) Jiln' ¥
Ri— ),

b qwn
/ % d—4 n d—4
#(2) 7 o (atr) = [ amaln] <065 R0l
a[n] n’
- /RH &% aln? 0,6 [RIo[n, ¥, (222)

where the spacetime integral involving G[(ﬁ’” is purely causal, whereas the last term is an

acausal instant-time-surface integral. Then, summing the expression (222) for ¢; and the gra-
dient of @ in equation (219) amounts to canceling the acausal term in the last line of equa-
tion (222), and yields the purely causal electric field Fyy;,

Foi[n, X] =cun, x] + 0,®[n, x]

_ g R . d—4
- /1 .dd 15‘”/ dn'aln)™ = a[n’]l{ (G,(ﬂ’+)[77,n’;R] - %Gy’”[n,n’;RD Jiln' ¥
R(* w

Mo

! % d—4 n d—4
(4 " oy (ar = [ an a[m]za-cfﬁ'”[m,n';m)fo[n',f]}. (223)

afn] n

This result extends equation (122) to the cosmological context; i.e. the electric field is still the
causal piece of the velocity of the spin-1 photon «;. Furthermore, as a simple check of consis-
tency, one can show equation (223) does reduce to its Minkowski counterpart (121), by setting

a — 1 and assuming G((ﬂ’ﬂ takes its Minkowski form Gj with time-translation symmetry.
Although we have shown explicitly that causality is preserved for the electromagnetic
observables in constant-w spatially-flat cosmologies, the second line of equation (223) still

involves a time integral from some initial time 7’ to the present . However, by introducing a
(y|time,+)

new Green’s function G, obeying
d—4 w + d—4 ime.
{82 + Ezqz 7 ) }Gﬁﬂ‘ iR =8Pk~ 224)
w

the effective Green’s function of Fy; in equation (223) can be further reduced to a localized
form,

ne dea .
Foln.7) = — / Ry / dn aln] =T alp)} { (Gfﬂ’” o R]
Rd—1 n

P

- MTZ;‘)GQ’H [, n’;R]>Ji[n’,5C” | = %G oy Rl 7] }
(225)
We will leave the detailed derivation of equation (225) to our future work [13]. It turns
out that the result (225) is exactly consistent with Fj; computed directly using the solu-
tion of the generalized Lorenz-gauge vector potential A, in [12]; the analytic solutions of
GOt = —e[r|ghismace and G — _@[T]G(1me) can be found in equations (B38),
(B39), (B40), and (B41) of [12].
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5.2. Linearized gravitation

Linearized gravity coupled to the isolated astrophysical sources in cosmology is, in fact, a
more sophisticated system, due to the additional first-order perturbations of the very fluid driv-
ing cosmic expansion. A detailed analysis of this linearized gravitational system, described
in terms of the perturbed metric (15), has been performed in [12] within a constant equa-
tion-of-state universe, where the background perfect fluid is modeled through an effective
field theory description. As explicitly demonstrated in [12], the field equations for the gauge-
invariant metric perturbations, deduced from the full linearized Einstein’s equations, can be
put in a decoupled form with no perturbed fluid quantities involved. The set of resulting equa-
tions then reveals that the dynamics of Bardeen scalar potentials varies in different ranges of
the equation-of-state w. Here, we will focus on the causal structure of the system in the de
Sitter (w = —1) and relativistic-fluid (0 < w < 1) cases for all d > 4.

Field equations In terms of the gauge-invariant variables formed in equations (25),
(26), and (27), the relevant equations are derived from Einstein’s equations of this cosmologi-
cal system, linearized about the spatially-flat background with a constant equation-of-state
w. Based on the results obtained in [12], the character of the decoupled field equation of the
Bardeen scalar ¥ for w = —1 is distinct from the O < w < 1 case. Hence, in what follows, we
will consider these two cases separately.

Field equations forw = —1 When w = —1, there is no fluid and the background geom-
etry is de Sitter spacetime. The corresponding gauge-invariant equations are given by equa-
tions (28) and (151), both of which remain unchanged, and

(d — 2)V2U = 87Gy (p Y (d— 1)%2) : (226)
—Dy — (d — 2)HD; + V?D; = 2T Dy
@ 9, (V/Iglg"0,Dy)

= —16wGnoyj,
\/@ ij (227)

where g denotes the determinant of the background metric g,,, = aznw, the scale factor is
a[n] = —1/(Hn), with H denoting the constant Hubble parameter, and the conformal Hubble
parameter reads H = —1/7. Compared with their Minkowski counterparts (150) and (152),
both ¥ and D;; retain similar dynamics in the de Sitter case here; the Bardeen scalar ¥ still
obeys a Poisson-type equation, sourced not only by the local energy density p, but also by the
non-local longitudinal part ¥ of @) Ty, while the spin-2 field D;; obeys a tensor wave equa-
tion in de Sitter background.

Field equations for 0 <w < 1 For a physical relativistic equation-of-state within
the range 0 < w < 1, the field equations (28), (151), and (227) still hold with H = 2/(g.n)
—recall equation (16)—but the Bardeen scalar ¥ now obeys a dynamical wave-like equa-

tion [12], instead of being governed by a Poisson-type one?!,

21 The left-hand side of equation (228) can also be re-expressed in terms of the d’ Alembertian (¥)(J associated with

4(qw+d—2)

(o) v ny e 2l g
gudxtdx” = % (7dn +w d.xdx)

See equation (128) of [12].
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d—2
0 — (g +d —2)HT +wV?T = —87Gy ( i;)faz);)z - (dw_pz) + ’HT), (228)
which implies the existence of the acoustic cone, /wT = R, on which these scalar gravita-
tional signals propagate at speed /w. It is worth noting that there exists no counterpart of this
phenomenon in Minkowski and de Sitter spacetimes; this change in the character of the scalar
equation for W is presumably tied to the dynamics of the background fluid.

In addition, as we have already noticed from our previous calculations, the energy-momen-
tum conservation of the astrophysical sources, \via (a)TW = 0, where ﬁu is the covariant
derivative associated with the background metric, will be crucial in extracting the relevant
effective Green’s functions and their causal structures. For later convenience, in spatially-flat
cosmologies, the conservation law can be re-expressed as

O (a2 W)

o;® T, = g , (229)
o d—2 (a)T
3j(a) Ty = 0 (a — 00) - ((a) Too — (a) Tll) . (230)
a
Spin-2 gravitons The spin-2 wave equation for either w = —1 or 0 < w < 1 takes the

same form as equation (227) with H = 2/(q,n); therefore, for both cases, the method used
in the previous photon computation can be applied directly to solving equation (227) via the
spin-2 effective Green’s function convolved against the local matter sources.

The first step is to re-cast the tensor wave equation (227) into a conformal re-scaled form,

d—2)(d—2—qy d—2 a—2
{82+( )<2 — )} (477" Dy) = 167G oy, (231)
qwn
and then, a similar procedure of implementing the local Fourier-space projection of equa-
tion (231) leads us to the following convolution for the spin-2 gravitons,

=2 _ K =2 (g a
aln]= Dy[n,x] = —167Gx /R 4 ¥ / dn’ alif )= GE D .0 s RO Tl 7, (232)
d—1 T
where the time interval (7, 7¢) corresponds to (—o0, 0) for w = —1 and (0, 00)for0 < w < 1,

and Gi(jf;l:) refers to the spin-2 effective Green’s function,

A+ 5 =
G In.nf'sR) = —O[TICE) In. 7' ),
(g) D 5i‘§mn
Cijfnn[n’ U/,R] - (5m(i6j)n - dJ, )

55i0mOn — i) d—3
- g) ).’ R + (m) 0,0,0m0nC) In, 115 R),

>C£i1) (.7 R] + (5m(iaj)an + 0(i0)) O

d—2
(233)
which has the same tensor structure as equation (155), with the scalar functions C ff’d), Cé‘f’g, and
Cgfg generalized to their cosmological versions,
d—17
&)1 . Pl — Ak ) T 7] SRR
Ciylnn'sRl = /Rd—l Wcl’d [77,77,|k|} e, (234)
d—17 ik-R
&1 /Pl — d k~<g>{ ' ﬂ}e
C ) 7R - C 5 5 k = 235
2,d[77 n';R] /]Rd—l (2m)d—1 14 |11 |K| 2 (235)
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A% ~ 1?13
Cg,gd)[n’ n';R] = /Rd_] 2niT ng) [77 ' |k|}

(236)

G(g +)

ijmn

the Fourier transform of C fgd) is denoted by C fi}. For to be a Green’s function, the C%¥’s
in equations (233) must obey the homogeneous version of equation (231). This implies, for

instance,

(g (g) @), _ . (8)* (&),
where v‘(g‘) are the mode functions obeying the same homogeneous wave equation as C 5*’2, and
are normahzed to match the Wronskian condition U\(lfl) I(lfl)* Ul(lfl)*vl(%) = i, or the initial con-

dition C | d| n = 1. Furthermore, because their Fourier transforms indicate V2C§gd) = ngg

and —V2C§ G 8 — C%‘f’d), the homogeneous equations for Cfi}, Cg’ ‘) and Cgfd) translate to the

relations:
—0Op <‘12a Oy (aia Céi?) )

(9 (238)
= C R
ac 1.d
_ a2a o a“ C(g) )
”( " ( 3’4) o _d=2 (239)
a® 2d> 2

We may now apply the time-integral method here to relate Cégg and ngd) to C Egd), without evalu-

(g)

ating their Fourier transform integrals, since C,°; itself has already been derived in [12] (see

equations (112) and (113) therein). As we shall Wltness, this will also yield a clean elucidation
of their causal structure. To this end, note that the initial conditions for the C®®)s at n = 7/ may
be identified from their Fourier transforms and the anti-symmetric nature of the mode decom-
position in equation (237):

)l = C, = C¥, . =0, (240)

C(g)| -9 ,C(g)| _ 6(d71)[)—5_ 7 241)
Ld lp=n’ n“1d =y ,

- E

Cs) —— — 0y C¥) e = ~GP[R], (242)

) =t = ~0, ) =y = DalR]. (243)

With equations (240) (242) and (243) imposed, Cégg and Cg d) can both be expressed in terms
of (the known) C ) ", by integrating equations (238) and (239),

2

d—2 e 2
C)n.n'sR) = —aln) = / drp amp) ™ 2)/ dnralm] = C&)[m.,n'; R]
7’/ 7]/

d—2

saw () [ () e
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_ 4 3
Cgi?[’?a 7' R] :a[nl%/ dny alns) =72 /, dns a2 // S // dnalm]T [771 'R
n n
d—
T m 2 aln’ d—=2
+G(E)[R < ) / dns alns] (d_z)/ dmp a[ﬁz]d_z/ dm < [I]>
n n n' ‘1[771]

+ DylR) (“[’”) / ( )d B (245)
n'
Although the integrals in the first lines of equations (244) and (245) can be difficult to carry
out, just like equation (218) for C&), the causal structures of these expressions can still be
readily identified. Firstly, the retarded portion of C f"gd), or equivalently Gfig’ﬂ = —-0[T|C fii),
is composed only of the causal signals [12]. Then, as already discussed in section 4, the first
terms of both equations (244) and (245) are causal as well when 1 > 7’; whereas the remain-
ing terms of C(g) and ngj, associated with their initial conditions, being non-zero for all

n > n’, admit contrlbutlons from outside the light cone. For this reason, we see that, after
plugging equations (244) and (245) into equation (233), the spin-2 effective Green’s function

Gi(jf,’;) is acausal for all d > 4

At the quantum level, therefore, the free massless spin-2 operator D;; necessarily violates
micro-causality in spatially flat cosmologies:

(D[], Dyl'] = —iCy), .77 R). (246)

ijmn

For later convenience, the expression (232) for spin-2 gravitons can be re-cast into another
form analogous to their Minkowski counterpart (182),

d—2
_ K aln'l\ = 8ij
Dyl =~ 167Gy [ a7 [Ca ( m> G (<a)z-j[n’,x“]f—”@mn',fl)
Rd—1 p a[n] d—2
5

+2017laly] 5 0, (al]~F0,CE)) Ol ¥] + = O[Tlaly) T

x (8%/ (aln') =% €)@l %] + Al 0y (ali') =5 €5) (9Tl %] = Tl %1 )
1 (©)(a d-3 2 ®) @

+ 5 OITOGCE) Tl ¥ - (d 2) o[Tlaly)=" (ag, (b1~ 00,C5)) Tl 7]

+ 110y (aly |~ T 00,85 ) (Tl ¥) = Ty 7)) ) }

16m1Gn
d—2

. ddil)ACM <5UG2E) (a)Too[n,fl] =+ (d — 3)8,'(9]'1)(1(“)7"00[7],)?/]) N (247)
Rd—1

where Ty = 67 @) T;;, and we have used the conservation laws given in equations (229) and
(230) as well as the initial conditions (240), (242) and (243), and removed all the boundary
contributions that result from integrations by parts2. The convolution in equation (247) now
involves different components of (*)T,,,, from that in equation (232). Below, the former would

22 Similar to the spin-1 case, the surface integrals upon integration by parts always involve C<g and Cﬁg;, therefore,
when evaluated at past infinity, i.e. n’ = —oco forw = —1 or 5/ = 0 for 0 < w < 1, those terms obey the spin-2

homogeneous wave equation and will not change the inhomogeneous solution obtained here.
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help us identify how the acausal portions of the spin-2 contribution to the Weyl tensor are
canceled by those from other gauge-invariant variables.

Bardeen scalars Unlike the spin-2 gravitons, the field equation for the Bardeen scalar ¥ no
longer takes an universal form for both w = —1 and 0 < w < 1, which will be solved separately
for each case in the following. Once the solution of W is obtained, the other Bardeen scalar poten-
tial @, related to ¥ via the formula in equation (28), is given immediately by equation (175).

Solutions forw = —1 In de Sitter background (w = —1), the Poisson-type equation (226)
obeyed by W involves a non-local function X of the matter source (see equation (21)), whose
momentum-space counterpart for k # 0 reads

- o ki~ o

S,k = L Ty, k). (248)

ik?

Once again, the solution to equation (226) can be readily derived by implementing the Fourier
transform of equation (226) with equation (248),

Un,x] =

&G

T e (Ggﬁmwwm[n,m +(d— 1A @Dd[R}<ﬁ>T0j[n,x*J), (249)
- Rd—1

which is again the weighted superposition of local source terms over the equal-time

hypersurface.

Solutions for0 < w < 1 When 0 < w < 1, the Bardeen scalar ¥ becomes dynamical in
the sense of being governed by the wave equation (228), from which we see that the propaga-
tion of scalar GWs is in general different than that of the spin-2 ones. However, the strategy of
solving the spin-2 wave equation in light of causality still applies here for ¥-waves.

In the same vein, the scalar wave equation (228) can firstly be re-written as a re-scaling
form,

> (d—=2)(gw+d—2) L(gytd—2
{8“”4_ T (ater2w)

1 Oy (ad_ZE) wp .
= — 5<qw+d—2) — T
STaa ((d2>ad2 -2 ) (250)

where 8(2W) = —8727 + wV2. Then, using equations (174) and (248) through the same proce-
dure employed for the spin-2 wave equation, we have

_ 81Gn
T d—2 Jrae

al] 2wy, o Mﬁfl diy’ ©[T]a[y/]* @42
-F ¥ e —2(a w a
e { -9 [””’/;%] aln'|~“ Doy (“W]d 2( )To,-[n’,x”]) - [n,n’;%] @ Too[n', ¥

+ ((d =~ 0wad ) [mafs o] OTyb ¥+ €5 [no's <a>mn’.x*1) } (251)

where the scalar functions C %), Cg;), and Cg;), respectively, are defined in a manner similar to
equations (234), (235), and (236),

(w) /. R | — &t dd_lE =(w) / 21 kR
Cg [77,7) ;W} =w:? - WCM [77,77 ,W|k\] e, (252)
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d—17 ik-R
M s | = wE S 253
i o 8] = | e o] % e
d— 1?13
() s dk 254
CSd |:77 77 f} =wr Rd—1 (27T)d ! 1d |:77 77 \F|k|} ( )

in which C( d) represents the Fourier transform of C (v ) with respect to I_é/ \/w, and it obeys

the Fourier-transformed homogeneous wave equatlon of equation (250) with initial condi-

e &

tions specified by Ciy|, _,, =0and Cyy4|, _,, = —8,7/C$f2) = 123, Analogous to equa-

tions (212) and (237), lefl) admits the following decomposition in terms of the mode functions
w)

o
Vwlk|

that obey the same homogeneous wave equation in momentum space,
(W) [ } _ ( o™ W) (W)* (W) ! )

where the Wronskian COHdlthI(l inf)lk\viwf)rkl viwf)rk\i)iwf)w

tent with the initial condition C; , n = 1. By construction, these C"s are solutions to the

=1, is fulfilled to be consis-

homogeneous version of equation (250). Moreover, their equal-time initial conditions may be
readily identified,

Cm) n=n’ Cg;) n=n' Cg’t‘) n=n' " 0, (256)
el == Cl)| = wT aUIE -7, (257)
),y = =0, = ~w > GPIR), (258)
oM,y = =00 €, = W' DIR]. (259)

Exploiting their Fourier representations to observe that —wV2Cyy =C'") and
—WVZCSZ) = Cg d), we see that the homogeneous cousins of equation (250) are

—0y (azo‘ O (a_o‘ C%)) )

C(w) (260)
a“ 1d
_ aZa o (a—a C(W)>
n K 3.d ) _d-2 (261)
o =G> A=
23 The factor of w appearing in equation (252) has been arranged such that the corresponding massless scalar
Green’s function, G[(iw’ﬂ = -0[T|C ff;) with re-scaled coordinates (1, ¥) = (1, ¥/y/w), obeys the wave equation

d—2)(qy+d—2 - W,
{—af,+%+v§} G4 (.ot |5 — 7] = 8ln — 164V — 7],

where ﬁ% is the spatial Laplacian with respect to y. The analytic solution of G[(,w’ﬂ for 0 < w < 1 has been obtained
in[12].
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At this point we may integrate these equations to express Cg;) and Cg;) in terms of C%), which

had been derived analytically in [12] (see equations (131) and (132) of [12]). The resulting
expressions are

c T I nd d-2 md -7 cw) R
2d |15 | =—aln] dipaln] - dimalm] td M e
n n

s gy (] T [ am]\“7?
52 GE) g (4] /d( ) (262)
g ”(a[m) 4 ]
a2 [ T
Cgf‘; [n,ﬁ';%] :a[n]—T// dny ans) =% /, dns alnz) =2
n n

3 7
X/ dnza[nz](’j_z)/ dnralm] T ) o' ]
» .

d—2

TGPk }(a[[?ﬂ}) X / sl z/jwd””[’” e /n " (a[n )

om0 o)

which bear close resemblance to equations (244) and (245). The retarded part of Cf d), or the

massless scalar Green’s function G(W = -o[T }C%VZ, has been shown to contain only the

causal scalar GW signals propagating either on or within the acoustic cone [12]. Applying the

arguments in section 4—the first terms of equations (262) and (263) are causal when 1 > 7’
because C(Z) is; while the rest of the terms are non-zero both inside and outside the light cone

of (n,X'). The Bardeen scalar U is therefore acausal for all relevant spacetime dimensions
(see equation (251)).
Alternatively, we can perform integration-by-parts and employ the energy-momentum con-

servation laws (229) and (230), as well as the properties of Cgfi) and Cgfj), to re-express the
effective Green’s function of ¥ in equation (251) as

: 3(qutd—2)
876N d—l—a//Oo (aln']? -3 (w,+) (a
Uln, %] = d d GO, &
[n,%] d—2/ﬂw. o S wo T 3Gy o[, ¥']

_ @[T}a[n/r%(tzwdfz)a , (a[n/]%(qw+d72)%[n/] Cg;)) @y, @] + (d — z)e[ﬂa[n/r%(qfdﬂ)
x Oy (alif 120~ 3') €12 ) OToolf 7]+ (d — )OI P €82 (9 Tool', ¥ = O Tuly', 7))
~ O[Tjaly| e, (awﬁd 20y (a2 ¢)) )<a> Tool' |

— O[Tlaly | ey 10, (a2 ¢4) (O Tl 7] - OTly', 7))

~ wld = 1Ol 14525 al 420y (a1 €7) ) Tl )

—wl(d = D)®[Tlal'] "2~ H[y10, (a[n’r“*z)an (a2 }c“‘)) (“To0ln'. %]

a — 381G, — a a
! ’Tu[n',x]) } + d—; /}MI d'¥ (Gf,,E)”Too[n,?]-F(d— DH[n]9;Da" )To/‘[ﬁ,f'}), (264)

47



Class. Quantum Grav. 37 (2020) 055001 Y-Z Chu and Y-W Liu

where all the boundary terms that arise from the integrations by parts have been discarded?*.
This form shows more transparently the convolution with the local matter stress-energy ten-
sor, and will be used for our later analysis of the physical observables.

Vector potential According to [12], the vector mode V, in de Sitter space (w = —1),
obeys the Poisson-type equation (151), while for 0 < w < 1, if perturbations are assumed to
be negligible in the far past, then the same vector equation, i.e. equation (151), is satisfied as
well. Therefore, in both cases, the solution of V; is that in equation (178).

Linearized Weyl tensor As we have discussed in section 2, the linearized Riemann
tensor in the cosmological background is no longer gauge invariant due to its non-zero back-
ground value. In cosmological spacetimes, which are conformally flat, the causal and gauge-
invariant counterpart to the linearized Riemann in flat spacetimes is the linearized Weyl tensor
01C* 3. More specifically, since the Weyl tensor ct vaf is conformally invariant, it is zero
when evaluated on the unperturbed cosmological geometry g, = azn,“, and must therefore
be gauge-invariant at first order in . Furthermore, its exact wave equation is simply the
traceless part of equation (179); but since it is zero at zeroth order, the first order Weyl ten-
sor 6;C" 5 must therefore obey an equation involving the wave operator with respect to the
background FLRW metric.
Motivated by these considerations, we shall proceed to calculate

i d—3 (Si‘ - . 1/.. 1 N
61C'ojo = (m) { (8@ - lvz) (@ +¥)+0uV) — 5 <Dij + ﬁVZDu) } (265)

It is likely that §, Ci()j(] encodes the dominant contributions to the first-order tidal forces
described in equation (39); but we shall leave this analysis to future work [13]. Here, we will
instead focus on the causal structure of this quantity with respect to the background spacetime.
Linearized Weyl tensor for w = —I Within the de Sitter case, plugging into equa-
tion (265) the solution of Dj; in equation (247), those of ¥ and ® in equations (249) and (175),
and that of V; in equation (178), with H[n] = —1/n and (7, 1r) = (—00,0), we find that, after
employing the conservation conditions (229) and (230), the scalars and vector act to cancel the
acausal signals from the tensor contributions to Weyl. In more detail,

. 1/d-3 . 1 -
st =4 (42 (b 7o,
’ 2\d-2 ! d—=3 ! causal

87GN (@ i (@ (@) . (266)
+d—2( 7= g2 (@=3)0T+20m) )

where the first line of equation (266) denotes the causal part of the spin-2 contributions that

depend exclusively on the retarded Green’s function Gf,g’+) [, 7'; R),

24 As previously reasoned in the spin-1 and spin-2 cases, discarding the boundary contributions at past infinity
does not affect the inhomogeneous solutions of the Bardeen scalars, since the corresponding homogeneous wave

equation is obeyed by those surface terms, which correspond to evaluating the surface integrals of Cg;) and Cg_’f,) at
7 = —oo (forw=—1)orny =0 (for0 <w < 1).
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(B + 759Dyl
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while the second line of equation (266) consists solely of the stress-energy tensor of the GW
source evaluated at the observer location. (Recall that a[n] = —1/(Hn) and ¢,, = —2 in de

Sitter spacetime.) As long as the observer at (7, X) is not located at the source, these @7 Ty, X)
terms in equation (266) are zero®.

25 This calculation is greatly simplified by first using the commutator C 5*2, and only re-expressing the fi-

G(& +)

nal result in terms of the massless scalar Green’s function via -o[r|C fl’j at the very end. In par-

ticular, we notice that a local term will show up in the conversion involving a second time derivative, namely

Gf,g’+) = 0D —x] - @[T}Cig[; or ag,Gf,g'” =0k —x] - O[T C (‘) .A simple check of equation (266)
can be made by taking the limit of equation (267) as @ — 1 and assuming G (& +) takes the form of G ' in Minkowski
spacetime. We may then show explicitly that the first line of equation (266) reduces to d;Rojo; given in equa-

tion (181), and the resulting ¢; Ci()j() is consistent with its Minkowski counterpart obtained from the solutions derived
in the last section. Moreover, the Minkowski form of 6;C'¢jo also agrees with the relationship between the Riemann
and the Weyl tensor,

167G 2¢°PT,
Cpauu = Rpauu - N (6p vle = go'[uTl/]p - 6ﬁ¢gu]au) P (268)

d—2 d—1

linearized about the Minkowski background; where T,,, is the total energy-momentum tensor of matter and Einstein’s
equation has been imposed on the trace parts of the Riemann tensor.
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To sum: the result in equation (266) reveals that §; C inO on a de Sitter background receives
only signals from the spin-2 sector, as long as the observer is away from the isolated matter
source(s) of GWs.

Analogous to the localization of the effective Green’s function of Fy; shown in equa-
tion (225), the expression of equation (267) in de Sitter spacetime can be further simplified
in a localized manner by introducing two additional massless scalar Green’s functions GISV’H

and GL(JTH) that, respectively, obey the following wave equations,

{62 + (d_?f_z)} Gy 'R = 6 1x — ¥, (269)
{82 + Z)TSzd_ . } Gy n.n's Rl = 6V — ). (270)

The effective Green’s function of §; C'¢; in equation (266) can then be localized accordingly
in terms of G‘(ig"*'), G§V~+)’ and G((ITr,-i-)’

d

. i 0 . —3). —2)(d -
61Coo[n.X] = SnGN/ ddfl)?’/ dn’ <L],> <G‘(f‘+) + @-3 3)Gf,g'+) + @d-2)d-6) 4)(20,’ 6 Ggg‘ﬂ)
Ra-1 —o00 n Y U

di _dzs 4=
(1 g 1) <2, (17 0000 ) Tl

d—4

5[.. _d=4 ] ] _d=4 d—4 s
: (“’"’) = 0,00 () T 637) Ol %)+ 0 (nzG&V”)“Tzz[n',ﬂ)

d-2
1 . a a
+ ma,-ajcff ) <(d —3)@ Ty, ] + ¢ )Tu[??',)ﬂ) }
87N (@ypr g i _ 3@ )
+ SO (100 = 2 (@3 Tl )+ 29Taf7) ). o)

which will be explained in more detail in [13]. Equation (271) turns out to be consistent with
§1C'ojo computed from the generalized de Donder gauge X, solution obtained in [14]; the
analytic solutions of ¥ = —@[T]g™, G\ = —O[T]6™), and G = —O[1]G™
can be found in equations (28), (29), (33), (34), (38), and (39) of [14].

Linearized Weyl tensor for 0 <w < 1 To obtain 51Ci0j0 for a relativistic equation-
of-state w within 0 < w < 1, we insert into equation (265) equation (247) for D;, equa-
tions (264) and (175) for ¥ and ®, and equation (178) for V;; recalling that H[n] = 2/(qwn)
and (1, m¢) = (0, 00). A direct computation then reveals that an exact cancellation of the acau-
sal signals takes place again in equation (265), so that

4 d—3 5 = 1/ 1
81Clojo = <7d72) {((3@- dj1V2> (<I>+\I’)> *E(Diﬁﬁvzl)ij) 1}

causal

871G i
4 876y ((a>T,-,- - ((d O Z(a)T”)) . (272)

d—2 d—
The causal portion of the spin-2 sector takes precisely the same form as equation (267) but

with scale factor given in equation (16) and (7, 7r) = (0, 00). On the other hand, the causal
contributions of the Bardeen scalar potentials in the first line are given by
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Observe that equation (273) is fully determined by the massless scalar Green’s function

G(W +) [n, 7' %], and whose contributions to d; Ci()j() are therefore restricted either on or
inside the acoustic cone?.

The physically intriguing feature of the relativistic w result in equation (272) is that, not
only do spin-2 gravitons contribute to &; C'gj, it appears the Bardeen scalars do so as well. To
be sure, however, it would be prudent to obtain a more explicit expression for equation (273).
In an upcoming work, we hope to tackle this important step towards a more comprehensive

understanding of gravitational tidal forces within a cosmological setting.

26 Once again, notice that in equation (273), we have switched from C (W) to G(W’H, where the local terms are
incurred in the conversion between their second time derivatives, G|" +) —wT W [x - ¥] — O[T]C E'“d) and

top GU P = —w T 5D — ¥ — O[T] a.c E‘;) Similarly, the Minkowski counterpart of §; C'qj is again recovered
by letting a — 1, replacing G( ) with G 4 in equation (267), and assuming no scalar contributions of equa-
tion (273) to equation (272).

51



Class. Quantum Grav. 37 (2020) 055001 Y-Z Chu and Y-W Liu

6. Summary, discussions, and future directions

In this paper, we have sought to clarify the physical roles played by the TT and tt gravitational
perturbations; as well as the analogous issues for the spin-1 photon. Even though the TT GW
is gauge-invariant—it remains un-altered under an infinitesimal change in coordinates—it is
acausal. Since the bulk of the paper involves heavy mathematical analysis for arbitrary dimen-
sions and cosmological equations-of-state, we summarize here the 4D Minkowski case for the
reader’s convenience.

Let us begin with the electromagnetic sector. The gauge-invariant 4D transverse photon,
which obeys 0;a; = 0, cannot be a standalone observable because its solution

amjy:f/ dY' G [T, R . ¥ (T=n—n'andR=%—7) (274)
R31

receives contributions from portions of the electric current J;[n',¥'] lying outside the past
lightcone of the observer at (7, X). This is because, the photon retarded Green’s function

) ST—R 1 T
+ -y N~ 9. _ - _
Gy IT.R) = ~0;° Mﬁ@(@T R]+ OITIOIR ﬂ) (275)
contains an acausal portion: G§j+’acausa]) = —(4m)"'O[T|OR — T|TO:O;R~". However,

since this acausal term of the photon Green’s function is part of a pure gradient, namely
—(47)7'9,0;(O[T]O[R — T]T/R), the magnetic field F;; = djoy; — Jjoy—which involves its
curl—is therefore entirely causal. The electric field, on the other hand, is the sum of the pho-
ton velocity ¢; and the gradient of the gauge-invariant scalar potential,

Foi = &; + 0;®. (276)

In detail, integration-by-parts (IBPs) and the conservation of the electric current yield

Jo[n, ¥']
. o . 3 0 773 .
ai[n’ﬂ - (ai)causal + \/R‘ dx ai 4R ’ (277)
where we have denoted the causal part of the photon velocity as
. S[T — R] ST — R
— 4.7 =7 /oA
(ai)causal = /RB,I d'x (877 AnR 11[77 ’x] - ai 471_R7J0[77 ,X] . (278)
Whereas, the gradient of the scalar potential is
Jo[n, ¥']
90 =— [ &¥o, .
i /R3 X Oj 7R (279)

Adding equations (277) and (279) to obtain equation (276), we see that the sole purpose of ¢
—as far as electromagnetic fields are concerned—is to cancel the acausal part of the photon
velocity. This in turn ensures the electric field of equation (276), in a given inertial frame, is
the causal part of the latter; namely, Fo; = (&;)causal-

We have also pointed out: upon quantization, these transverse massless spin-1 photon
operators violate microcausality, because their Green’s functions do not vanish at spacelike
intervals.

The transverse-traceless graviton, which obeys 9;D; = 0 = §YD;;, also cannot be a stan-
dalone observable—for very similar reasons as its acausal transverse photon counterpart. Its
solution
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Djj[n, %] = 167Gy / d*' G [T, R T[] (280)

receives signals from regions of the stress tensor T, [, X'] outside the past null cone of the
observer at (), X). For, this TT graviton Green’s function reads

0ij0mn \ O[T — R]
tjmn[T R} (6m(i6j)" - 2 ) 4TI'R

1
- E (5m(iaj) O + 5}1(18])8"1

; (281)

2 3
+ %a,-ajama,, (@[T R (R +37%) + O[TIOR — T] M)
yis

which contains the acausal terms —O|[T|O[R — T]T (8,(:0;)0n + 0 (i0j O — (1/2) (8Om0 —
6un0:0)) (47R)~" and O[T|O[R — T)0;0,0,40,{ BR*T + T%)(487R) ' }.

On the other hand, the dominant physical tidal forces ought to be encoded within the lin-
earized Riemann tensor, which in turn involves all the gauge-invariant variables, not just the

spin-2 graviton. In particular, its 0i0j components—which are usually associated with the
spatial tidal forces in a given nearly-Lorentzian inertial frame—are

51R0[0j = 5,’]‘11 + 8@@ + 8(,-\/j) — EDU (282)

As one may expect from the preceding discussion for the spin-1 photon, the linearized
Riemann d; R;o; really only depends on the causal part of the spin-2 graviton acceleration:

01 Roioj = (283)

1,..
2 (DU) causal ;

where, upon IBPs and invoking the conservation of the energy-momentum-shear-stress tensor,
we have

O[T — R Oii (1, .
(D) s =46 /]Ru d'y’ {8727[R] ((a)Tij[W/,)_C”] + % ((d)Too[n',fC”] - (d)Tzz[n',?D)

S[T —R]
R

. 1 O[T — R ) \
— 20,9, (d)Tj)o[n/,f’] + éaiaj% ((d)Too[n/,)_C"] + (d)Tu[ﬁ/,ﬂ) }

(284)
The sole purpose of the rest of the gauge-invariant variables (¥, ®, V;), as far as the 6, R,
components are concerned, is to cancel the acausal part of the graviton acceleration. Moreover,
all of them are needed to ensure causality. We may verify these claims by simply comparing
the following expressions.

’] [TI’ 56] ( ) causal

1, 1 1,
— 4GN /1;3'1 dS.;CV {— 28,,,8(,E(d)7})m[77,)?"} + 5 (5,]8,"8,1R( )Tmn[n’f’}

1 1
+ ala]ﬁ ((a) TOO [77’ ;C‘I] + @) TZZ[TL 56/]) ) + ZaiajamanR(a) Tmn [77’ fl]} (285)
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. 1 1
\11[77,)?] = 4GN/ de, ama"ﬁ(a)Tm”[n7fl]s

R3

FNISN

0:0;®[n, %] = — 4Gx / ¥

1 1 3
- (@@'E(a)TOO[n,ﬂ + aiaj‘E(a)Tll[ﬂ,fl] - EaiajamanR(a) Tmn[n,f']>,

) 1 1
94 Vyn, ¥ =4Gy / &7 (ama(iﬁ(ﬂ)Tj)m[n,f} - Ea,-a,-a,,,anR@)T,,,,,[n,;c*]) . (286)
R3

These massless spin-2 graviton fields, upon quantization, would violate microcausality,
because their Green’s functions do not vanish at spacelike intervals.

It is worth highlighting, we are not asserting that relativists are computing gravitational
wave-forms wrongly. In the far zone, |w|r >> 1, we have shown that the distortion of space due
to GWs (at finite frequencies) do reduce to the tt ones gotten by performing a local-in-space
projection of the (de Donder gauge) spatial perturbations x;;. These tt GWs, as opposed to
their TT counterparts, are in fact the ones computed in the gravitational literature. On the other
hand, within this far zone, these tt GWs in fact coincide with the TT ones, because the acausal
parts of the latter begin at higher orders in 1/(wr).

In a cosmology driven by a relativistic fluid, we have uncovered tentative evidence that
the Bardeen scalar potentials contribute to gravitational tidal forces, and their wave-like solu-
tions could therefore be legitimately dubbed ‘scalar gravitational waves’ in this sense. More
work would be required to confirm or deny this [13]. Nonetheless, if the Bardeen ¥ and
® are indeed an integral part of cosmological GWs, we hope this work constitutes the first
step towards illuminating not only their associated GW patterns but also potential scalar GW
memory effects.

Let us end on a more speculative note. Even though the TT graviton is acausal and cannot
be a standalone observable within classical physics, it may be produced quantum mechani-
cally—and independently of other gauge-invariant perturbations—during a (still hypotheti-
cal) exponentially expanding phase of the early universe?’. On the other hand, we have also
pointed out that the quantum operators associated with both the free massless spin-1 and
spin-2 particles violate micro-causality. Is it possible to exploit this violation to ascertain
whether B-modes in the Cosmic Microwave Background, if we ever detect them, were truly
engendered by quantum fluctuations of spacetime itself? Or, for the photon case, are there
laboratory experiments involving quantum generation of photons that could not only serve
as analogs to the inflationary scenario, but also allow the quantum nature of their production
mechanism to be probed directly?
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