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Abstract
Light propagating in opposite directions around the same loop in general
shows a relative phase shift when recombined. This phenomenon is known as
the Sagnac effect after Georges Sagnac who, in 1913, demonstrated with an
interferometer on a rotating table that the phase shift depended on the angular
velocity of the table. In previous work we have given a very general formula
for the Sagnac effect, valid in full general relativity. The relativistic effect not
only contains the ‘classical’ contribution from the rotation of the laboratory
but also contributions due its acceleration and due to incoming gravitational
waves. Here, we point out a major consequence of this gravitational effect
which may have implications for third generation gravitational wave detectors.
We describe ‘antenna’ designs which pick out specific components of the
Weyl tensor describing the incident gravitational waves.
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In general relativity, a laboratory is modeled as a time-like world-line to measure the proper
time 7 passing in the lab together with a set of space-like mutually orthogonal vectors (e;, €, €3)
attached at each point of the world-line [1]. This reference frame indicates the orientation of
the lab in space-time at each instant of time. The lab may rotate, it may be accelerated and
it may travel through an arbitrarily curved region of space-time. Introducing (generalized)
Fermi coordinates (¢, xl,x2,x3) adapted to the lab [2, 3] one can describe the geometry of
space-time by means of its metric g,, with respect to these coordinates by

200 = 1 — 2aix’ + 3(apx™)* 4 winw W X"X" 4 Ryonox™x" 4+ O(x*),

2
gor = wyx' + ngOnkf" X'+ 0(x°),
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8u = —Ou + nglnkxmxn +0(x?).

Here, a', w'y and R0 etc are components of the acceleration and the angular velocity of
the lab and of the Riemann tensor of the space-time. These quantities depend on ¢ and the
expressions are valid up to the given order in the spatial coordinates. The expressions will
be good approximations to the exact expressions if the curvature terms are reasonably small.
Therefore, we assume that the lab is in a reasonably flat region and not near any strong
gravitational fields or singularities.

Suppose two photons travel around a closed loop C which has no self-intersections. It
can be given in parametrised form as x'(s). The photons start at the same time at the point
0 = x/(0), returning back to Q at different times depending on the travel direction. In [4] we
derived the general formula for the difference in the arrival times of the photons. This formula
is not immediately useful since it involves the solution of a differential equation along the
path. However, with the very reasonable assumption that the travel time of the photons is
negligibly small compared to the time scales of changes in the lab motion and the surrounding
curvature one can derive the succinct formula

AT = —2/ LU
c 800

Using the Stokes theorem? we can recast this line integral as a surface integral over a surface S

which is bounded by the curve C. Inserting the expression for the metric in terms of the Fermi
coordinates one obtains three terms contributing to the time difference.

To discuss them we use the usual 3-vector notation a and w for the acceleration and the
angular velocity (describing an infinitesimal rotation using the right-hand rule) and we use the
position vector x and the vector n normal to the surface S. In this approximation, the inner
product between these vectors is the usual flat 3-metric. Then, the first term becomes

AwT:4/w-nd2S.
s

This is the classical Sagnac effect as first described by Sagnac [5, 6] expressed as the ‘rotation
flux’ through the surface S. It is proportional to the magnitude of the angular velocity but it
also depends on its direction in relation to the surface S and therefore to the curve C. In fact,
by considering different shapes of C one can construct different ‘antennas’, i.e. configurations
with different directional dependence. For instance, the curve which is described by the seam
of a tennis ball is insensitive to rotations around the two axes piercing the opposite lobes but
can detect rotations around the third axis. This contribution is translation invariant.
The second term depends on the rotation as well as the acceleration:

AT = 4/S(a ‘w)(n-x) = 3(a- x)(w-n) &S,

The appearance of x shows that this contribution is not translation invariant, the time differ-
ence also depends on the position of the loop. This term can, at least in principle, be used to
detect the acceleration of the lab in relation to the rotation axis and the orientation of the curve.

The third term is due to the curvature of the space-time and has two separate parts. One of
the pieces is caused by the Weyl tensor and, hence, is related to gravitational waves while the

2We can use Stokes’ theorem here since we assume that the lab is far from singularities so that there are no
topological restrictions.
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other part comes from the Ricci tensor and, therefore due to the Einstein equation, is caused
by the matter content of the space-time:

ART:4/n-]B%-xd2S— 167r/n~ (x x j)d*S.

s s

In the first term, B = (B,j) is a symmetric, trace-free 3 x 3-matrix which describes the magn-
etic part of the Weyl tensor. It contains the information of gravitational waves propagating
in the three spatial directions together with their two independent polarisation states. In the
second part we find the momentum density j of the matter so that this term is caused by the
flux of the material angular momentum density through S.

Both parts of the gravitational contribution depend on the position of the curve. For the
remainder we focus on the gravitational wave part. To give a very simple example we consider
a closed path without self-intersections in a plane with normal vector n through a point xo. We
choose the axes so that n = e3, i.e. it points in the positive z-direction. Then the points on the
plane can be written in the form

X = Xq + ue; + vep

and the curve itself is specified by a parametrization (u(r), v(¢)). The time difference for pho-
tons traveling along that path is then obtained from the integral

ART:4/n-IBB-Xsz:4A(n-IB%-x0+n-IBB-e]u0—|—n-]B~e2vo)
N

where A is the (signed) area enclosed by the curve. Here, we have defined uy = A~! f s ududy
and similarly for vg. These define the ‘center of mass’ of the area surrounded by the curve.
Choosing this point as Xy we can obtain the simple formula

AxT = 4A(n - B - xo)

for the time difference along a simple path in a plane with normal vector n passing through the
point X which is the center of mass of the area A enclosed by the curve.

For this simple system the time difference depends on the location Xg of the loop. However,
we can combine such loops and obtain more complicated configurations with better behav-
iour. One example is shown in figure 1. Other possibilities exist. The configuration consists
of two identical loops which are almost closed and connected in such a way that a photon
which travels counterclockwise in the upper loop around the z-axis will loop around in the
clockwise direction in the lower loop. In the ideal situation, the vertical strip can be made arbi-
trarily small compared to the area enclosed by each loop. The loops are positioned so that the
upper loop is centred around xy = (a, b, ¢) and the lower one is centred at x; = (a, b, —c). The
orientation of the loops has the consequence that the normal vector is oriented along the posi-
tive z-axis in the upper part and points in the opposite direction in the lower part of the path.

The net effect of the time difference between two counter propagating photons can then be
obtained by simply adding the contributions from each loop taking into account their different
orientations. The result is

AT:4A(H-IB'X0+H'B~X1):4AB33H.

Here, we introduced the height H = 2c¢ of the configuration and we denote by A the area of one
loop. This ‘antenna’ is sensitive to exactly one component of the magnetic part of the Weyl
tensor. As a bonus, we find that it is not sensitive at all to the classical Sagnac effect when the
vertical area is made zero.



Class. Quantum Grav. 37 (2020) 05LTO01 W Letters

n=es

n= —es

Figure 1. A simple configuration of loops for a Sagnac detector for gravitational waves.
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Figure 2. A loop configuration to detect an off-diagonal element of the magnetic part
of the Weyl tensor.

In a similar way we can construct a configuration which is sensitive to an off-diagonal
element of the Weyl tensor, see figure 2. Here, we have assumed the loops to lie in the same
plane. They are traversed with different orientations so that n = e3 for one loop and n = —e3
for the other. The loops are centered around the points xg = (—a,0,0) and x; = (4,0,0),
respectively, and connected along two crossing lines. For this system we obtain for the time
difference between two counter propagating photons the value

AT =4A(n-B-xo+n-B-x;) = 4AB;;L

where we have introduced L = 2a, the distance between the centres of the two loops. This shows
that we can—at least in principle—devise configurations which are able to pick up all the com-
ponents of the Weyl tensor. In particular, a combination of such loops can be arranged in such a
way that the antenna is also sensitive to the polarisation of the incident gravitational wave.

In some sense, detecting gravitational waves as proposed here is dual to the use of current
detectors which are based on a Michelson type interferometer. These detect the wave form
due to the geodesic deviation equation which is driven by the electric part of the Weyl tensor.
This, and the particular design of Sagnac antennas may be of interest to future generations of
gravitational wave detectors, see [7].
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Finally, we want to provide a rough estimate for the size of the effect. To this end we need
to compute the Weyl tensor evaluated at the location the detector. We use the usual linear
approximation for gravitational wave propagating towards the detector described by a metric
perturbation &, exp(ik.x) which satisfies the transverse-traceless gauge conditions k%h,, = 0
and h,“ = 0. In this situation the Weyl tensor is proportional to 2k, /iy)[ckg). In the rest frame
of the detector described by the 4-velocity ¢ its magnetic part is given in terms of the left-dual
of the Weyl tensor by B, = *CLepatt?. In the detector frame the propagation vector k* has
the representation k* = w(1, z) with z being the unit vector in the direction of propagation of
the wave and w the angular frequency of the wave. The transverse-traceless amplitude of the
gravitational wave has the form

hap = hi (X@Xx—y®Y) +he(x®y+y®@X).

Here, (x,y,z) is the frame adapted to the propagating wave with z being the direction of
propagation and (X, y) spanning the transverse directions. The two polarisations of the wave
have amplitudes 4, and /. Putting these expressions together yields the magnetic part of the
Weyl tensor B, in the form

Babi—wz(h+(x®y+y®x)—hX(X®X_y®Y))'

Thus, the components of B, in the detector frame (e, e, €3) are easily obtained. For example,

By = —w” (2hy(x-e3)(y-e3) —hy((x-e3)> — (y-€3)°).

Incidentally, this expression shows that the configuration of figure 1 does not register a gravi-
tational wave propagating along the detector, i.e. along the es-direction. In any case, apart
from the geometric terms involving the relative orientation between the detector frame and the
incoming gravitational wave, the magnitude of the Weyl tensor components are determined by
hw? for a typical strain A.

With a strain of 2 2 10~2! and a frequency w of roughly 1kHz (see e.g. [8]) corresponding
to the time difference in physical SI units comes to

()= () (o) (&)

A very similar estimate holds for the other configuration. The reason for this very small value
is due to the factor ¢~ which is necessary to convert between geometric and SI units. The
smallness of the time difference makes it unlikely that this effect can be used in the very near
future to measure gravitational wave effects caused by so called gravito-magnetism.
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