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Abstract
We show, through an explicit calculation of the relevant Green’s functions, that the 
transverse-traceless (TT) portion of the gravitational perturbations of Minkowski 
spacetime and of spatially flat cosmologies with a constant equation-of-state w 
receive contributions from their isolated matter source(s) outside the past null cone 
of the observer. This implies the TT gravitational wave (GW) cannot be a standalone 
observable—despite widespread (apparent) claims in the gravitational wave 
literature to the contrary. About a Minkowski background, all 4 of the gauge-invariant 
variables—the two scalars, one vector and tensor—play crucial roles to ensure the 
spatial tidal forces encoded within the gauge-invariant linearized Riemann tensor 
are causal. These gravitational tidal forces do not depend solely on the TT graviton 
but rather on the causal portion of its acceleration. However, in the far zone radiative 
limit, the flat spacetime ‘TT’ graviton Green’s function does reduce to the causal 
‘tt’ ones, which are the ones commonly used to compute gravitational waveforms. 
Similar remarks apply to the spin-1 photon; for instance, the electric field does not 
depend solely on the photon, but is the causal part of its velocity. As is known within 
the quantum theory of photons and linearized gravitons, there are obstacles to the 
construction of simultaneously gauge-invariant and Lorentz-covariant descriptions 
of these massless spin-1 and spin-2 states. Our results transparently demonstrate 
that the quantum operators associated with the helicity-1 photon and helicity-2 
linear graviton both violate micro-causality: namely, they do not commute outside 
the light cone in flat and cosmological spacetimes.
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1.  Motivation

Students of gravitational wave (GW) physics are taught that the key observable—the frac-
tional distortion of the arms of laser interferometers employed by detectors such as LIGO, 
Virgo, Kagra, etc—induced by the passage of a GW train generated by a distant astrophysical 
source, is directly proportional to the ‘transverse-traceless’ portion of the metric perturbation. 
Specifically, in a weakly curved spacetime4

gµν [t,�x] = ηµν + hµν [t,�x], |hµν | � 1;� (1)

if Xi denotes the Cartesian coordinate vector joining one end of an interferometer arm to 
another, its change δXi due to a GW signal impinging upon the detector is often claimed to be5

δXi =
1
2

hTT
ij X j,� (2)

where hTT
ij  is the ‘transverse-traceless’ portion of the space-space components of hµν in equa-

tion (1). What does ‘transverse-traceless’ really mean in this context? Rácz [1] and—more 
recently—Ashtekar and Bonga [2, 3] have pointed out, the GW literature erroneously uses 
two distinct notions of ‘transverse-traceless’ interchangeably6. (We shall adopt Ashtekar and 
Bonga’s notation of ‘TT’ and ‘tt’.) On the one hand, there is one involving the divergence-free 
condition,

∂ihTT
ij = ∂ihTT

ji = 0 = δijhTT
ij ;� (3)

while on the other hand there is one involving a transverse-projection in position space,

htt
ij ≡ Pijabhab.� (4)

4 The Greek indices µ, ν, . . . , run from 0 to d  −  1, while the Latin ones i, j, . . . , run over spatial coordinates from 
1 to d  −  1, and the ‘mostly plus’ sign convention for the metric is used, namely ηµν = diag[−1,+1, . . . ,+1]. 
Throughout this paper, the symmetrization and anti-symmetrization of indices are denoted by the symbols (. . .) and 
[. . .], respectively, e.g. T(µν) ≡ 1

2 (Tµν + Tνµ) and T[µν] ≡ 1
2 (Tµν − Tνµ).

5 See, for example, equation (27.26) of Thorne and Blandford [6].
6 Frenkel and Rácz [4] have also pointed out a similar error within the electromagnetic context.
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The definition of transverse-projection in equation  (4) is based on the unit radial vector 
r̂ ≡ �x/|�x| pointing from the isolated astrophysical source centered at �0  to the observer at �x , 
namely

Pijab ≡ Pa(iPj)b −
1

d − 2
PijPab,� (5)

Pij ≡ δij − r̂ir̂j.� (6)

Because the rank-2 object is a projector, in the sense that

PiaPaj = Pij,� (7)

and is also transverse to the radial direction,

r̂iPij = 0 = Pijr̂ j,� (8)

we see that the ‘tt’ GW in equation (4) enjoys the same traceless condition as its ‘TT’ counter-
part in equation (3) (i.e. δijhtt

ij = 0) but is transverse to the unit radial vector

r̂ihtt
ij = 0 = htt

ijr̂
j� (9)

instead of being divergence-free.
We believe the intent of much of the contemporary gravitational literature is to claim the 

TT GW, obeying equation (3), to be the observable; while the tt one in equation (4) to be only 
an approximate expression of the same gravitational signal when the observer is very far from 
the source7. To our knowledge, the clearest enunciation of this stance may be found in the 
review by Flanagan and Hughes [7]. After describing how the TT piece of the gravitational 
perturbation of flat spacetime is the only gauge invariant portion that obeys a wave equa-
tion in section 2.2—the remaining 2 scalars and one vector obey Poisson equations—and after 
attempting to justify how the TT GW is the one appearing in equation (2) (see equation (3.12) 
of [7]) they went on in section 4.2 to assert, albeit without justification, that the far zone ver-
sion of this TT GW in fact reduces to the tt one. In equation (4.23), they then expressed the 
final GW quadrupole formula in the latter tt form.

Other pedagogical discussions of GWs usually begin with the homogeneous TT wave solu-
tions in perturbed Minkowski spacetime completely devoid of matter8:

hTT
ij [t,�x] =

∫

Rd−1

dd−1�k
(2π)d−1

(
P̂ijab[�k]εab[�k]eikµxµ + c.c.

)
,� (10)

7 The exception appears to be Thorne and Blandford [6], where they went straight to the tt form of the GW (see Box 
27.2) without any discussion of gauge invariance whatsoever.
8 See, for instance, sections 35.2–35.4 of Misner, Thorne, Wheeler [8]; section 10.2 of Weinberg [9]; or section 9.1 
of Schutz [10]. Briefly, one may start with the de Donder gauge condition ∂µhµν = (1/2)∂νh, where h ≡ ηµνhµν , 
and solve the linearized vacuum Einstein’s equations ∂2(hµν − (1/2)ηµνh) = 0. By performing a gauge transfor-
mation in Fourier spacetime to set to zero the hµ0 = h0µ components, one would arrive at equation (10). Often, 
equation (3) is called the ‘TT gauge’ but texts often do not caution the reader that this gauge condition can no 
longer be imposed once matter is introduced into the setup, i.e. once the very source of GWs is present. (Maggiore 
[11] does note that ‘TT gauge’ does not exist inside the source, but goes on to impose it anyway in the far zone.) We 
wish to reiterate the remarks already made in section C of [12]: if the ‘TT gauge’ were to exist, that would mean the 
initially non-trivial gauge invariant scalars and vector variables may be coordinate-transformed to zero. Further-
more, the misleading use of the phrase ‘TT gauge’ suggests one may even choose a different gauge to compute GW 
patterns—after all, one ought to be able to use any desired coordinate system—but this cannot be the case, as the 
GW pattern is an observable and must therefore yield a unique result.
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kµ ≡
(
−|�k|, ki

)
, k2 ≡ kσkσ = 0;� (11)

where ‘c.c.’ denotes the complex conjugate of the preceding term; εab can be viewed as the 
purely spatial gravitational wave amplitude tensor; and the projector is now one in momen-
tum/Fourier space,

P̂ijab[�k] ≡ P̂a(iP̂j)b −
1

d − 2
P̂ijP̂ab,� (12)

P̂ij ≡ δij − k̂ik̂j, k̂i ≡
ki

|�k|
.� (13)

Because in Fourier space a spatial derivative is replaced with a momentum vector, ∂j → ikj, 
and because of the transverse-traceless properties

kiP̂ijab = kiP̂jiab = 0 = δijP̂ijab;� (14)

the perturbations in equation (10) do indeed satisfy the ‘TT’ conditions in equation (3).
These GW discussions typically go on to justify equation (2) in vacuum before, as opposed 

to after, solving the perturbations engendered by a non-trivial source. The excuse is that, 
one expects these perturbations from an isolated system to approach TT plane GWs in the 
asymptotic far zone limit. As we shall see below, the TT and tt GWs do indeed coincide in this 
r ≡ |�x| → ∞ limit. Hence, one might reasonably question: why bother with the distinction at 
all? To this end, Ashtekar and Bonga point out that the tt GWs miss the ‘Coulombic aspects’ 
that are contained in the TT ones. Moreover, in Quantum Field Theory, each mode of the 
superposition of TT GWs in equation (10) and not those of htt

ij—because it is the former that 
is fully gauge-invariant—would be regarded as an irreducible spin-2 graviton. Therefore, one 
may be led to a principled stance and insist that it is hTT

ij  that is physical.
But is the TT GW really a standalone observable? One of us (YZC) has been confused by 

this issue since several years ago, when he began developing a program to explore novel ways 
to understand the causal structure of gravitational signals in curved spacetimes—i.e. how they 
propagate both on and within the null cone. As highlighted in [7], the gauge invariant TT GW 
is a nonlocal function of the metric perturbation hµν in equation (1), because the TT projec-
tion process takes place in Fourier space. Since, at least about a Minkowski background, the 
de Donder gauge gravitational perturbation depends on its matter source in a causal manner, 
this suggests the TT GW may thus depend on the same matter source in an acausal manner 
due to this nonlocal character. This in turn would render it unphysical, as no classical physical 
observable should arise from outside the past light cone of the observer.

In this paper, we wish to clarify how the gauge-invariant forms of the vector potential and 
metric perturbations of, respectively, electromagnetism and linearized gravitation contribute 
to the observables of these theories. This will include understanding how all their gauge-
invariant field variables, not just the dynamical massless spin-1 and spin-2 ones, play crucial 
roles in ensuring that their physical observables depend on their progenitors—namely, the 
electric current and matter stress tensor—in a causal manner. Through a concrete evaluation of 
the massless spin-1 photon and spin-2 graviton Green’s functions, in Minkowski and spatially 
flat cosmological spacetimes, we will show that they are indeed acausally dependent on these 
sources and therefore cannot be standalone observables. However, by ensuring the rest of 
the gauge-invariant variables are included in the computation of the electromagnetic Faraday 
tensor Fµν  as well as the δ1R0i0j components of the linearized Riemann tensor in Minkowski 
and the δ1Ci

0j0 components of the linearized Weyl tensor in spatially flat cosmologies, the 

Y-Z Chu and Y-W Liu﻿Class. Quantum Grav. 37 (2020) 055001
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electromagnetic and gravitational tidal forces become strictly causal ones. In particular, we 
gain the following insight into the gauge-invariant content of electromagnetism and linearized 
General Relativity. While the magnetic field Fij does depend only on the massless spin-1 pho-
ton, the electric field F0i depends on the causal portion of the velocity of the photon, with its 
acausal portion canceled by the gauge-invariant scalar of the vector potential, in all spacetime 
dimensions d � 3. For the gravitational case, tidal forces in a flat spacetime background are 
encoded within the causal part of the acceleration of the massless spin-2 graviton, with the 
acausal portion eliminated by the two gauge-invariant scalars and one vector potential for 
all d � 4. Additionally, about a cosmological background, if the Weyl tensor describes the 
dominant contributions to tidal forces, then the latter appear to depend on the causal por-
tions of both the massless spin-2 and the two gauge-invariant Bardeen scalar potentials. We 
view this latter analysis as a first step towards an understanding of whether the two Bardeen 
gauge-invariant scalar potentials ought to be considered an integral portion of gravitational 
waves and their associated memories in cosmological settings—even though the dynamics 
of General Relativity (in 3  +  1 dimensions) is usually attributed exclusively to its two spin-2 
degrees of freedom.

In section 2 we will define the electromagnetic and gravitational gauge invariant variables; 
and proceed to clarify what the relevant (classical) electromagnetic and gravitational observables 
are. In section 3 we will use the non-local character of the transverse projection in momentum 
space to argue why these gauge-invariant variables are expected to be acausal. Following which, 
we begin in section 4 to compute the explicit forms of the transverse-photon and TT graviton 
Minkowski Green’s functions, confirming their acausal nature. We also compute the solutions 
to the gauge-invariant scalars and vectors; and combine the results to study how the electro
magnetic Faraday tensor and gravitational linearized Riemann are causally dependent on their 
respective sources. The far zone and stationary limit are examined; and micro-causality violated 
is pointed out. In section 5, we move on to study similar issues but in a cosmology dominated 
by a cosmological constant or driven by a relativistic fluid with equation of state 0 < w � 1. 
Finally, we summarize our findings and outline future directions in section 6.

2.  Gauge-invariance and observables

 Setup        Throughout the rest of this paper, we will be studying the d-dimensional per-
turbed Friedmann–Lemaître–Robertson–Walker (FLRW)-like metric

gµν [x] = a[η]2 (ηµν + χµν [x]) , xµ ≡ (η,�x);� (15)

where a  =  1 for a flat background or

a[η] =
(

η

η0

) 2
qw

, qw ≡ (d − 3) + (d − 1)w.� (16)

In equation (16), if the perturbations χµν  were not present, setting w  =  −1 with η < 0 yields 
de Sitter spacetime and 0 � w � 1 with η > 0 a spatially flat cosmology driven by a single 
perfect fluid with equation-of-state w. The non-trivial perturbations χµν  satisfy Einstein’s 
equations coupled to the fluid plus a compact astrophysical system, linearized about the corre
sponding backgrounds. The detailed analysis can be found in sections III and IV in [12], and 
we will cite the relevant results below.

Let us consider an infinitesimal coordinate transformation

xµ = x′µ + ξµ[x′],� (17)

Y-Z Chu and Y-W Liu﻿Class. Quantum Grav. 37 (2020) 055001
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where x′ ≡ (η′,�x′) and ξµ is small in the same sense that hµν is small. Then up to first order in 
perturbations, the metric tensor in the primed coordinate system may be written as

gµ′ν′ [η′,�x′] = a[η′]2 (ηµν + χµ′ν′ [η′,�x′]) ,� (18)

with all the coordinate transformation induced by equation (17) attributed to that of the metric 
perturbation in the following way:

χµ′ν′ [x′] = χµν [x′] + 2ησ(µ∂ν′)ξ
σ[x′] + 2

ȧ[η′]
a[η′]

ξ0[x′]ηµν .� (19)

(The χµν [η
′,�x′] and ξµ[x′] on the right hand side of equation (19) are the perturbation and 

gauge-transformation vector components in the ‘old’ xµ ≡ (η,�x) coordinate basis, but with 
the replacement x → x′.) Next, we perform a scalar–vector–tensor decomposition of both the 
metric perturbations9

χ00 ≡ E, χ0i ≡ ∂iF + Fi,

χij ≡ Dij + ∂(iDj) +
D

d − 1
δij +

(
∂i∂j −

δij

d − 1
�∇2

)
K,

�
(20)

as well as the astrophysical stress tensor

(a)T00 ≡ ρ, (a)T0i ≡ Σi + ∂iΣ,� (21)

(a)Tij ≡ σij + ∂(iσj) +
σ

d − 1
δij +

(
∂i∂j −

δij

d − 1
�∇2

)
Υ;� (22)

where these variables subject to the following constraints

∂iFi = ∂iDi = 0 = δijDij = ∂iDij,� (23)

∂iΣi = ∂iσi = 0 = δijσij = ∂iσij.� (24)

We may then gather the following are gauge-invariant at first order in perturbations10:

Φ ≡ −E
2
+

1
a
∂0

{
a
(

F − K̇
2

)}
,� (25)

Ψ ≡ −D − �∇2K
2(d − 1)

− ȧ
a

(
F − K̇

2

)
,� (26)

Vi ≡ Fi −
Ḋi

2
and Dij ≡ χTT

ij .� (27)

Within the cosmological case, the solution of Dij can be found in equation (111), that of Vi in 
equation (119) and those of Ψ in equations (123), (125) and (130) of [12]. Φ and Ψ are related 
through

(d − 3)Ψ− Φ = 8πGNΥ.� (28)

9 See, for example, section IV in [12] for a discussion of the scalar–vector–tensor decomposition and the gauge-
invariant formalism of linearized gravitation.
10 Notice that the sign convention for the metric as well as certain gauge-invariant variables are defined differ-
ently in [12]. To change the gauge-invariant notations into those employed in [12], we follow the conversions: 
Φ[here] → Ψ[[12]]/2, Ψ[here] → Φ[[12]]/2, Vi[here] → −Vi[[12]], and Dij[here] → −Dij[[12]].

Y-Z Chu and Y-W Liu﻿Class. Quantum Grav. 37 (2020) 055001
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Within the Minkowski case, on the other hand, equation (28) still holds but the solution of Ψ 
can be found in equation (A27); that of Vi in equation (A28); and that of Dij in equation (A29) 
of [12]. As already alluded to, of all the gauge invariant variables in a flat background, only 
the tensor Dij admits wave solutions.

Because of the TT constraints in equation (23), note that the tensor mode Dij exists only for 
d � 4. The apparent physical importance of these field variables in equations (25)–(27) lies in 
the fact that, if some observable can be expressed in terms of them, then the same observable 
cannot be rendered trivial merely by a small change in coordinates since Φ, Ψ, Vi and Dij will 
remain invariant.

When dealing with electromagnetism, we will set to zero the perturbations χµν  in equa-
tion (15) and proceed to solve Maxwell’s equations

∇νFµν = Jµ, Fµν ≡ 2∂[µAν].� (29)

Under the gauge transformation

Aµ → Aµ − ∂µC,� (30)

the vector potential Aµ leaves the Faraday tensor Fµν  invariant for an arbitrary function C. If 
we perform a scalar–vector decomposition of the vector potential

Ai ≡ αi + ∂iα, ∂iαi = 0,� (31)

and that of the electric current

J0 ≡ −ρ,� (32)

Ji ≡ Γi + ∂iΓ, ∂iΓi = 0;� (33)

we may proceed to identify the following gauge-invariant scalar Φ and transverse (helic-
ity  −  1) photon αi

11:

Φ ≡ α̇− A0 and αi ≡ AT
i .� (34)

In terms of these variables, the Faraday tensor reads

F0i = α̇i + ∂iΦ, Fij = 2∂[iαj].� (35)

We refer the reader to section V of [12] for further details; again, we will cite the relevant 
results below.

Electromagnetic observables        In classical electromagnetism, it is the electric 
F0i = −Fi0 and magnetic Fij fields in equation (35) that are regarded as observables, because 
they provide the forces on electrically charged systems. We believe the situation for gravity is 
more subtle, however.

Gravitational observables: (simplified) Weber bar        Let us begin with a small lump 
of freely falling material acting as a Weber-bar detector of GWs. In what follows, the assump-
tion of freely falling detectors makes it technically advantageous to describe their trajectories 
using the synchronous gauge metric—where the perturbations are purely spatial:

11 We highlight that, in the electromagnetic case here, some conventions are defined differently relative to [12]. For 
instance, when switching to the gauge-invariant variables used in [12], we may implement the following conver-
sions: αi[here] → −αi[[12]], Φ[here] → Φ[[12]], ρ[here] → a2ρ[[12]], and Γi[here] → −a2Γi[[12]].

Y-Z Chu and Y-W Liu﻿Class. Quantum Grav. 37 (2020) 055001
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gµν = a2
(
ηµνdxµdxν + χ

(Synch)
ij dxidx j

)
.� (36)

For, if the particles comprising the detectors experience negligible inter-particle forces, then 
the synchronous gauge in equation (36) can be chosen such that each of them would in fact 
have constant spatial trajectories; specifically, for the ith particle its timelike geodesic reads

Zµ
(i) =

(
η,�Z(i)

)
, �Z(i) constant.� (37)

The tidal forces due to a passing GW acting between an infinitesimally nearby pair of  
particles, whose worldlines are joined by �µ, is given by the geodesic deviation equation

UαUβ∇α∇β�
µ = −Rµ

ναβUν�αUβ .� (38)

The Uµ = a−1δµ0  in equation (38) is the timelike geodesic vector tangent to either one of the 
two worldlines. For the freely falling scenario at hand, it is in fact consistent to choose �µ to 
be purely spatial, i.e. �0 = 0, so that equation (38) becomes

∇0∇0�
i = −Ri

0j0�
j.� (39)

Minkowski analysis        In a flat background, a  =  1, we witness from equation (39) that the 
δ1R0i0j components of the linearized Riemann tensor must therefore describe the first-order 
tidal forces between infinitesimally nearby particles within our idealized Weber bar. Any inter-
particle (electromagnetic) forces that are responsible for holding the lump of material together 
must therefore counter the δ1R0i0j on the right hand side of equation (39). Moreover, as long as 
our Weber bar’s proper size is very small compared to that of the GW wavelength, the physical 
pattern of rarefaction and compression of the material asserted by the GW’s passage must also 
be encoded entirely within δ1R0i0j. Now, not only do these components carry physical mean-
ing, the entire linearized Riemann tensor is in fact gauge invariant because the full Riemann 
tensor is zero when evaluated on the background gµν = ηµν. These reasons explain why we 
will, in the coming sections, compute δ1R0i0j within the gauge invariant formalism:

δ1R0i0j = δijΨ̈ + ∂i∂jΦ+ ∂(iV̇j) −
1
2

D̈ij, (a = 1).� (40)

Cosmological background        If our freely falling particles were in a cosmological back-
ground, the geodesic deviation equation  (39) continues to be applicable. However, the lin-
earized Riemann tensor is no longer gauge invariant because its background value, when 
gµν = a2ηµν, is no longer zero. This renders its physical interpretation more subtle. On the 
other hand, the traceless portion of the Riemann tensor, i.e. the Weyl tensor Cµ

ναβ, is con-
formally invariant. This means Cµ

ναβ [gµν = a2ηµν ] = 0 and the δ1Ci
0j0 components of the 

linearized Weyl tensor is gauge invariant. It may be possible to argue that δ1Ci
0j0 provides 

the dominant contribution to tidal forces in cosmology—for, in flat spacetime, it is exactly 
equivalent to the Riemann tensor whenever the zero cosmological constant form of Einstein’s 
equations holds and the Weber bar is in a vacuum region12—but we shall leave the detailed 
analysis of this cosmological case to future work [13].

Gravitational observable: (simplified) laser interferometer        We move on to consider 
a toy model of a freely falling laser interferometer. If we assume the proper size of the inter-
ferometer is small compared to the GW wavelength, it is reasonable to then state the observed 
interference pattern will be proportional to the differences in its arm-lengths. As argued in 

12 See, for e.g. equation (14) of [12] or equation (24).
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section C of [12], we may again employ the synchronous gauge in equation (36) to compute 
the time dependent proper distance between two ends (η, �Y0) and (η,�Z0) of a single arm. 
(Remember the �Y0 and �Z0 here are constants.) Using Synge’s world function, and assuming 
the interferometer is turned on at η′ but does not operate over cosmological timescales, the 
fractional distortion of this �Y ↔ �Z arm is (see equation (6) of [12])
(
δL
L0

)
[η > η′] =

n̂in̂ j

2

∫ 1

0
∆χ

(Synch)
ij dλ+O

[(
χ(Synch)

mn

)2
, (η − η′)ȧ[η′]/a[η′]

]
,

�

(41)

where n̂ ≡ (�Z0 − �Y0)/|�Z0 − �Y0| is the unit radial vector pointing from one mass to the other; 
and the λ-integral involves a Euclidean straight line between the two end points:

∆χ
(Synch)
ij ≡ χ

(Synch)
ij

[
η, �Y0 + λ

(
�Z0 − �Y0

)]
− χ

(Synch)
ij

[
η′, �Y0 + λ

(
�Z0 − �Y0

)]
.

� (42)
Minkowski analysis        Now, in the synchronous gauge of equation (36), the linearized 
Riemann tensor reads

δ1R0i0j = −1
2
χ̈
(Synch)
ij .� (43)

We may thus solve for the synchronous gauge perturbation needed in equation (41) by first 
connecting it to the gauge-invariant variables. This, in turn, is achieved by exploiting the 
gauge-invariance of the linearized Riemann tensor in a Minkowski background. In other 
words, since equations (40) and (43) refer to the same object, we have

χ̈
(Synch)
ij = D̈ij − 2∂(iV̇j) − 2δijΨ̈− 2∂i∂jΦ, (a = 1).� (44)

Equations (40), (43) and (44) inform us that the fractional distortion formula in equation (41) is 
therefore—at least in principle—related to the double time integral of the linearized Riemann 
tensor itself13. In any event, as long as the GW detector is sufficiently far enough from the 
astrophysical source, we may take the far zone limit of the right hand side of equation (44). 
Below, we will use methods different from those in [2, 3] to argue that, this far zone limit 
yields
(

D̈ij − 2∂(iV̇j) − 2δijΨ̈− 2∂i∂jΦ
)

far zone
= D̈ij[far zone] = χ̈tt

ij[far zone], (a = 1);� (45)

where χtt
ij  is the tt projection of the de Donder gauge solution as r ≡ |�x| → ∞. Comparing 

equations (44) and (45) allows us to deduce:

χ
(Synch)
ij [η,�x] = χtt

ij[η,�x] + (η − η′)Vij[η
′,�x] +Wij[η

′,�x],� (46)

where Vij and Wij are the two undetermined initial conditions at η′, and, on both sides, the far 
zone limit has been taken. One issue that is often not addressed is, why the initial conditions—
the last two terms on the right hand side of equation (46)—are usually neglected. We will 
take the perspective that realistic GW detectors are sensitive to waves within a limited band-
width, and since the second and third terms of equation (46) are zero-frequency ‘waves’ one 
may ignore their contributions. More explicitly, the (ω-)frequency transform of equation (46) 
becomes

13 See, for example, equations (27.22) and (27.24) of [6].
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χ̃
(Synch)
ij [ω,�x] = χ̃tt

ij[ω,�x]− (2πi)δ′[ω]eiωη′
Vij[η

′,�x] + (2π)δ[ω]Wij[η
′,�x],� (47)

where δ[ω] and δ′[ω] are the Dirac delta function and its derivative.
We close this section  by providing an expedited method to obtain the synchronous 

gauge metric perturbation from the gauge-invariance of the linearized Riemann tensor, at 
least in (3 + 1) dimensional Minkowski spacetime. The key is that the de Donder gauge 
∂µχµν = (1/2)∂νχ, with χ ≡ ηρσχρσ, allows us to solve χµν  rather easily with the massless 
scalar Green’s function. In terms of the ‘trace-reversed’ variable

χµν ≡ χµν − 1
2
ηµνχ, χ = ηρσχρσ;� (48)

the linearized Einstein’s equations lead us to the following far zone solution:

χµν [η,�x] =
4GN

r

∫

R3
d3�x′Tµν [η − r +�x′ · r̂,�x′], r̂ ≡ �x

|�x|
.� (49)

(Note: we have chosen �0  to lie within the astrophysical system.) We also have, in de Donder 
gauge, the following components of the linearized Riemann tensor

δ1R0i0j =
1
2

(
2∂l∂(iχj)l − ∂2

0

(
χij −

1
2
δijχll

)
− 1

2
δij∂l∂mχlm − 1

2
∂i∂jχll −

1
2
∂i∂jχ00

)
.� (50)

Upon inserting equation (49) into equation (50), one may recognize that every spatial deriva-
tive acting on χµν  may be replaced with a time derivative, via

∂i → −r̂i∂0.� (51)

In the far zone limit we are working in, the error incurred by this replacement scales as (time-
scale of source)/(observer-source distance) or (characteristic size of source)/(observer-source 
distance), both of which are small by assumption. At this point, one would find that equa-
tion (50) has been massaged into

δ1R0i0j = −1
2
χ̈tt

ij,� (52)

where the tt perturbation is the following projection (see equation (5)) of the de Donder gauge 
solution

χtt
ij = Pijabχab[de Donder].� (53)

Comparing equations (43) and (52) now hands us, for finite frequency ω ,

χ̃
(Synch)
ij [ω,�x] = χ̃tt

ij[ω,�x] (Far zone).� (54)

Finally, we once again leave to future work [13] the connection between the cosmological 
synchronous gauge metric perturbation to its gauge-invariant counterparts.

3.  Why are the massless spin-1 photon and spin-2 graviton acausal?

Before we proceed to tackle the computations of the massless spin-1 and spin-2 Green’s func-
tions, let us first explain why acausality is to be expected. Since this section is meant to be 
heuristic, we shall be content to work strictly in a Minkowski background.

Y-Z Chu and Y-W Liu﻿Class. Quantum Grav. 37 (2020) 055001



11

Spin-1 photons        We begin by recalling the fact that the Lorenz gauge vector potential, 
which obeys ∂µAµ = 0 and ∂2Aµ = −Jµ, is causally dependent on the electric current Jµ. If 
G+

d  denotes the retarded Green’s function of the massless scalar, we have

Aµ[x] = −
∫

Rd−1,1
ddx′G+

d [x − x′]Jµ[x′].� (55)

In even dimensions, where G+
d  propagates signals strictly on the null cone, Aµ is the field due 

to the electric current lying on the past light cone of the observer. In odd dimensions, where 
G+

d  propagates signals strictly inside the null cone (at least for timelike sources [12]), Aµ is 
the field due to the electric current lying within the past light cone of the observer. On the 
other hand, the transverse spin-1 photon can be constructed from the Lorenz gauge photon via 
the following Fourier-space projection involving the spatial Fourier transform of the spatial 
components of the vector potential Ãj[η,�k]:

αi[η,�x] =
∫

Rd−1

dd−1�k
(2π)d−1 P̂ij[�k]Ãj[η,�k]ei�k·�x,� (56)

where the transverse projector P̂ij[�k] is defined in equation (13). Now, in Fourier space, −1/�k2 
is simply the Euclidean Green’s function

G(E)
d [�x −�x′] =

1
∂i∂i

[�x −�x′] =
∫

Rd−1

dd−1�k
(2π)d−1

ei�k·(�x−�x′)

−�k2
,� (57)

with the concrete expressions

G(E,reg)
3+2ε [�x −�x′] = − 1

4π

(
1
ε
− γ − ln[π]− 2 ln[µR]

)
,� (58)

G(E)
d�4[�x −�x′] = −

Γ[ d−3
2 ]

4π
d−1

2 |�x −�x′|d−3
;� (59)

where G(E)
3  has been dimensional-regularized in equation (58) with an arbitrary mass scale 

µ introduced and γ  being the Euler-Mascheroni constant, and −∂i∂j is replaced with kikj. 
Utilizing eqs. (57), (58) and (59) in equation (56) informs us that the transverse photon itself 
must therefore be related to its Lorenz gauge counterpart through the subtraction of the latter’s 
longitudinal piece:

αi[η,�x] = Ai[η,�x] + A‖
i [η,�x],� (60)

A‖
i [η,�x] ≡ −∂i∂j

∫

R2
d2�x′

ln
[
|�x −�x′|

]
2π

Aj[η,�x′] (d = 3)� (61)

≡ ∂i∂j

∫

Rd−1
dd−1�x′

Γ
[ d−3

2

]

4π
d−1

2 |�x −�x′|d−3
Aj[η,�x′] (d � 4).� (62)

We will now explain how the second term A‖
i [η,�x] in equation (60) is most likely acausal, 

because it is essentially the causal Lorenz gauge vector potential but smeared over all space, 
weighted by the Euclidean Green’s function in equations (58) and (59). Referring to figure 1, 
we see that equations  (61) and (62) are the weighted superposition of Ai[η,�x′] over all �x′, 
which—for a fixed �x′—receives signals from the electric current from the past light cone of 

Y-Z Chu and Y-W Liu﻿Class. Quantum Grav. 37 (2020) 055001



12

(η,�x′) (for even dimensions) or within it (for odd dimensions). But from the perspective of 

the observer at (η,�x), this means A‖
i  is getting a signal from the portion of the source residing 

within the shaded (blue) region, which lies outside its past null cone.

Spin-2 gravitons        The de Donder gauge ∂µχµν = (1/2)∂νχ, with χ ≡ ηρσχρσ, like 
the Lorenz gauge for photons, yields gravitational perturbations that are causally sourced by 
their matter Tµν. Equation (A39) of [12] tells us

χµν [x] = −16πGN

∫

Rd−1,1
ddx′G+

d [x − x′]Tµν [x′].� (63)

The transverse-traceless spin-2 graviton is gotten from its de Donder gauge counterpart via 
the Fourier space projection

χTT
ij [η,�x] =

∫

Rd−1

dd−1�k
(2π)d−1 P̂ijmn[�k] χ̃mn[η,�k]ei�k·�x,� (64)

where the projection tensor P̂ijmn[�k] is given in equation (12), which can also be expressed 
explicitly in terms of �k ,

P̂ijmn[�k] = P̂m(iP̂j)n −
1

d − 2
P̂ijP̂mn,

= δm(iδj)n −
δijδmn

d − 2
−

(
δm(ikj)kn + δn(ikj)km

)
�k2

+
δijkmkn + δmnkikj

(d − 2)�k2
+

(
d − 3
d − 2

)
kikjkmkn

�k4
.

�

(65)

The same sort of arguments made for the spin-1 photon would apply here to tell us the spin-2 
graviton receives signals from Tµν from outside the observer’s past light cone. For instance, 
the third and fourth group of terms in the second equality in equation (65) involves two spatial 
derivatives acting on the weighted superposition of the de Donder GW over all space but at 
the same observer time η, namely

∼ ∂a∂b

∫

Rd−1
dd−1�x′

χij[η,�x′]
|�x −�x′|d−3 ;� (66)

whereas the last group of terms in equation (65) involves four spatial derivatives acting on a 
different weighted superposition of the same:

∼ ∂a∂b∂c∂e

∫

Rd−1
dd−1�x′

χij[η,�x′]
|�x −�x′|d−5 .� (67)

4.  Minkowski spacetime

As demonstrated in the previous section, both massless spin-1 and spin-2 fields are expected 
to contain the acausal information from their isolated sources. To quantify this acausality, we 
will in this section perform a detailed analysis of the effective Minkowski spacetime Green’s 
functions of the electromagnetic and gravitational gauge-invariant variables.
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4.1.  Electromagnetism

We will begin with electromagnetism in all spacetime dimensions equal to or higher than 
three, d � 3; for d  =  3 corresponds to the lowest physical dimension for spin-1 photons to 
exist. In addition, the discussion for the electromagnetic field here will provide a useful guide 
for us to tackle the more complicated and subtle case of linearized gravitation.
Field equations        In terms of the gauge-invariant variables (34) and provided the electric 
current Jµ is conserved, the non-redundant portions of Maxwell’s equations (29)—see [12] 
for a discussion—are the dynamical wave equation for the transverse spin-1 photon αi,

∂2αi = −Γi,� (68)

with ∂2 ≡ ηµν∂µ∂ν , and a Poisson’s equation obeyed by the gauge-invariant scalar Φ,

�∇2Φ = −ρ.� (69)

Notice both equations  involve non-locality. The source Γi  on the right hand side of equa-
tion (68) is the transverse component Ji, which (recalling arguments from the previous sec-
tion) is thus a non-local functional of Ji. Whereas the Poisson equation  obeyed by Φ[η,�x] 
means it is sensitive to the charge density ρ[η,�x] on the right hand side of equation (69) at the 
same instant η. As we will show later in this section, only when αi and Φ are both involved, 
do the physical observables—i.e. the field strength Fµν—become causally dependent on the 
electromagnetic current Jµ.
Spin-1 photons        To solve for αi in equation (68) through its effective Green’s function 
convolved against its localized sources, it is convenient to first go to the Fourier space, where 

Figure 1.  The Ai[η,�x] is the Lorenz gauge photon vector potential at the observer’s 
location (η,�x). The Ai[η,�x′] is the Lorenz gauge potential at some other spatial location 
but at the same time η. The solid cone is the past null cone of the observer at (η,�x); 
while the dotted one is that of (η,�x′). The gray thick line denotes the worldtube of the 
electric current. (See Brill and Goodman [5] for a closely related discussion, but from 
the Coulomb gauge perspective.)
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the transverse property is implemented through a projection of the Fourier transform of the 
current J̃i. For all �k �= �0 , the αi can be written as the superposition

αi[η,�x] = −
∫

R
dη′

∫

Rd−1

dd−1�k
(2π)d−1 G̃+

d [η, η′;�k]
(
δij −

kikj

�k2

)
J̃j[η

′,�k] ei�k·�x,

� (70)

where G̃+
d  denotes the Fourier transform of the retarded Green’s function of the massless sca-

lar. In flat spacetime, it enjoys time-translation symmetry and reads

G̃+
d [η, η′;�k] = −Θ[T]

sin |�k|T
|�k|

,� (71)

with T ≡ η − η′. As we have seen before, kikj in momentum space can be pulled out with the 
replacement kikj → −∂i∂j acting on the Fourier integral. Therefore, the expression (70) can 
be re-cast into the convolution of the spin-1 effective Green’s function G+

ij  against the local 
electromagnetic current,

αi[x] = −
∫

Rd−1,1
ddx′ G+

ij [T ,�R] Jj[x′],� (72)

where �R ≡ �x −�x′ and the G+
ij  takes the form

G+
ij [T ,�R] ≡ −Θ[T]Cij[T ,�R],

Cij[T ,�R] = δijC1,d[T , R] + ∂i∂jC2,d[T , R].
� (73)

The C1,d and C2,d are respectively defined to be two scalar Fourier integrals

C1,d[T , R] ≡
∫

Rd−1

dd−1�k
(2π)d−1

sin |�k|T
|�k|

ei�k·�R,� (74)

C2,d[T , R] ≡
∫

Rd−1

dd−1�k
(2π)d−1

sin |�k|T
|�k|3

ei�k·�R,� (75)

with the observer-source spatial distance denoted as R ≡ |�x −�x′|. Hence, the effective Green’s 
function G+

ij  can be gotten explicitly through equation (73) once C1,d and C2,d are known. One 
of the advantages of using C1,d and C2,d to compute G+

ij  is that our calculations can be simpli-
fied by exploiting the fact that they both obey the homogeneous wave equation ∂2C1,d = 0 and 
∂2C2,d = 0 with the initial conditions

C1,d[T = 0, R] = 0 and C2,d[T = 0, R] = 0;� (76)

as well as the initial velocities

Ċ1,d[T = 0, R] = δ(d−1)[�x −�x′] and Ċ2,d[T = 0, R] = −G(E)
d [R],� (77)

where the overdot denotes the time derivative with respect to η. In addition, C1,d and C2,d are 
connected via the spatial Laplacian operator or double-time derivatives:

C̈2,d[T , R] = −C1,d[T , R],� (78)

�∇2C2,d[T , R] = −C1,d[T , R].� (79)
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(Equations (76) through (79) conditions follow readily from the Fourier representations in 
equations (57), (74) and (75).) Moreover, note that

G±
d [x − x′] = ∓Θ[±T]C1,d[T , R]� (80)

are the retarded (+)/advanced (−) massless scalar Green’s functions; obeying

∂2G±
d = δ(d)[x − x′].� (81)

In other words, −C1,d itself is the retarded minus advanced Green’s function:

−C1,d = G+
d [x − x′]− G−

d [x − x′].� (82)

Likewise, for the spin-1 case, the  −Cij in equation (73) is the difference between the retarded 
Green’s function in equation (73) and that of its advanced counterpart:

−Cij = G+
ij [x − x′]− G−

ij [x − x′].� (83)

In Quantum Field Theory, the C1,d in equation (82) is proportional to the commutator of mass-
less scalar fields. In turn, Cij is proportional to the commutator of (spin-1) photon fields. 
Therefore, the elucidation of the (classical) causal structure of Cij will also lead to insights 
regarding the quantization of the associated spin-1 photons.

Before moving on to the analytic solutions, let us show that the source of G+
ij  in equa-

tion (73) is an extended one, as opposed to the usual spacetime point source of, say, the mass-
less scalar Green’s function. Applying the wave operator to the expression (73) for G+

ij  hands 
us

∂2G+
ij [T ,�R] = δijδ

(d)[x − x′]− δ[T]∂i∂jG
(E)
d [R]� (84)

= δ[T]
(
δijδ

(d−1)[�x −�x′]− ∂i∂jG
(E)
d [R]

)
;� (85)

where the G(E)
d  is the Euclidean Green’s function of equation (57) and the relations in equa-

tion (77) were employed. We may view equation (84) as a (d − 1)× (d − 1) matrix of mass-

less scalar wave equations. That −∂i∂jG
(E)
d [|�x −�x′|] is non-zero everywhere in space at T  =  0 

tells us, for a fixed pair of indices ij, the (retarded) signal it generates likely fills all of space-
time to the future of η′. This is to be contrasted against the massless scalar Green’s function 
equation itself in equation (81); where, because the source at x′ is point-like, the signal it gen-
erates propagates only on and/or within its future light cone. If the observer at x lies outside 
the light cone of x′, the signal G+

d [x − x′] will be zero and causality respected. Returning to 
equation (84), if one continues to insist on viewing G+

ij [x − x′] as the signal at x generated at 
x′, since it is non-zero throughout all �x  whenever η > η′ , once x lies outside the light cone of 
x′ the observer at x would be led to conclude the signal is acausal.
Recursion relations        In both Minkowski and spatially flat cosmologies, we are aided by 
the spatial-translation and spatial-parity invariance of the underlying spacetimes. In particular, 
these symmetries allow us to solve for C1,d and C2,d for all dimensions once we know their 
3- and 4-dimensional solutions. This is because the higher-dimensional ones can be generated 
through the ‘dimension-raising operator’ 

DR ≡ − 1
2πR

∂

∂R
.� (86)

(See appendix (E) of [12] for a detailed discussion.) In brief, any bi-scalar function f d that 
depends on space solely through R ≡ |�x −�x′| and takes the same Fourier integral form
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fd [R] =
∫

dd−1�k
(2π)d−1 f̃d

[
|�k|

]
ei�k·(�x−�x′)� (87)

for all relevant spacetime dimensions d, obeys the recursion relation

fd+2[R] = − 1
2πR

∂fd[R]
∂R

.� (88)

This remark applies to both C1,d and C2,d; specifically, we only need C1,4 and C2,4 to determine 
their counterparts in all even d � 4:

C1,even d�4 = D
d−4

2
R C1,4,� (89)

C2,even d�4 = D
d−4

2
R C2,4.� (90)

Likewise, we only need C1,3 and C2,3 to obtain their counterparts in all odd d � 3:

C1,odd d�3 = D
d−3

2
R C1,3,� (91)

C2,odd d�3 = D
d−3

2
R C2,3.� (92)

Also notice that, by counting the powers |�k| in the integrals (74) and (75) as |�k| → 0, C1,d is 
finite for all d, while C2,d is expected to diverge when d � 3. However, on physical grounds, 
the full effective Green’s function G+

ij  should converge for all spacetime dimensions d � 3. 
This suggests that, for d  =  3, the two spatial derivatives acting on C2,3 in equation (73) will 
eliminate the divergence completely.

Time integral method        According to equation (82), −Θ[T]C1,d is the retarded Green’s 
function G+

d  of the massless scalar. Because equation (82) will continue to hold even in cos-
mology and because the analytic position spacetime solutions to C1,d and G+

d  are known in all 
Minkowski and constant equation-of-state universes [12], we shall introduce a ‘time-integral’ 
method here that will allow us to solve the (retarded part of) C2,d in terms of time integrals 
of C1,d. We first recall that equation (78) provides us a ordinary differential equation (ODE) 
relating C2,d to C1,d. Integrating it twice with respect to time, and taking into account the initial 
conditions in equations (76) and (77),

C2,d[T , R] = −
∫ T

0
dτ2

∫ τ2

0
dτ1C1,d[τ1, R] + TĊ2,d[T = 0, R] + C2,d[T = 0, R]

� (93)

= −
∫ T

0
dτ2

∫ τ2

0
dτ1C1,d[τ1, R]− TG(E)

d [R].� (94)

Now, any casual quantity Q+[η,�x; η′,�x′]—which we define as one that is non-zero only 
when T � R � 0—may be multiplied by Θ[T − R−]. While any anti-causal expression 
Q−[η,�x; η′,�x′]—which we define as one that is non-zero only when T � −R � 0—may be 
multiplied by Θ[−T − R−]14. If we then consider
∫ η′+τ

η′
dηQ+[η,�x; η′,�x′] =

∫ η′+τ

η′
dηΘ[η − η′ − R−]Q+ =

∫ τ

0
dτ ′Θ[τ ′ − R−]Q+.� (95)

14 The R− guarantees that signals on the null cone proportional to δ[T − R] and its derivatives are included.
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We see that, whenever τ > R−, we may set Θ[τ ′ − R−] to one for τ ′ ∈ (R−, τ); whereas 
whenever τ < R−, the latter is to be set to zero.∫ τ

0
dτ ′Θ[τ ′ − R−]Q+ = Θ[τ − R−]

∫ τ

R−
dτ ′Q+

∣∣∣∣
τ ′=η−η′

.� (96)

Iterating this reasoning, we may deduce that one or multiple nested integrals of a causal 
quantity would return another causal one:
∫ T

0
dτn· · ·

∫ τ3

0
dτ2

∫ τ2

0
dτ1Θ[τ1 − R−]Q+ = Θ[T − R−]

∫ T

R−
dτn· · ·

∫ τ3

R−
dτ2

∫ τ2

R−
dτ1Q

+

∣∣∣∣
τ1=η−η′

.

� (97)
Similarly, if we instead consider
∫ η′

η′+τ

dηQ−[η,�x; η′,�x′] =
∫ η′

η′+τ

dηΘ[−(η − η′)− R−]Q− =

∫ 0

τ

dτ ′Θ[−τ ′ − R−]Q−.� (98)

We see that, whenever τ < −R−, we may set Θ[−τ ′ − R−] to one for τ ′ ∈ (τ ,−R−); whereas 
whenever τ � −R−, the latter is to be set to zero.

∫ τ

0
dτ ′Θ[−τ ′ − R−]Q− = Θ[−τ − R−]

∫ τ

−R−
dτ ′Q−

∣∣∣∣
τ ′=η−η′

.� (99)

Iterating this reasoning, we may deduce that one or multiple nested integrals of an anti-causal 
quantity would return another anti-causal one:
∫ T

0
dτn· · ·

∫ τ3

0
dτ2

∫ τ2

0
dτ1Θ[−τ1 − R−]Q− = Θ[−T − R−]

∫ T

−R−
dτn· · ·

∫ τ3

−R−
dτ2

∫ τ2

−R−
dτ1Q

−
∣∣∣∣
τ1=η−η′

.

� (100)
This discussion implies the integral of the difference between the causal Green’s function 
and its anti-causal counterpart—recall equation (82)—namely  −C1,d, returns a causal minus 
anti-causal object:
∫ T

0
dτ ′

(
G+

d [τ
′, R]− G−

d [τ ′, R]
)

= Θ[T − R−]

∫ T

R−
dτ ′ G+

d [τ
′, R]−Θ[−T − R−]

∫ T

−R−
dτ ′ G−

d [τ ′, R].

�

(101)

Furthermore, referring to equations (82) and (94), we see that the retarded portion of C2,d—
which is what we need—is gotten by integrating the retarded portion of C1,d:

C+
2,d[T , R] = Θ[T − R−]

∫ T

R−
dτ2

∫ τ2

R−
dτ1 G+

d [τ1, R]−Θ[T] · TG(E)
d [R],� (102)

where C+
2,d ≡ Θ[T]C2,d. Observe that the first term on the right hand side is strictly causal, 

whereas the second term arising from the initial condition is retarded but acausal because it 
contributes a non-zero signal outside the past null cone. As additional Minkowski and cosmo-
logical examples below will further corroborate, the ‘time-integral’ method not only allows 
us to compute (up to quadrature) the retarded part of C2,d from the known solutions of the 
massless scalar causal Green’s functions, it provides a clean separation between the strictly 
causal versus the retarded-but-acausal terms arising from the initial conditions— even if the 
time-integrals themselves cannot be performed analytically.

Y-Z Chu and Y-W Liu﻿Class. Quantum Grav. 37 (2020) 055001



18

Exact solutions in even dimensions d � 4        The retarded and advanced Green’s functions 
of a massless scalar in 4D Minkowski are

G±
4 [x − x′] = −δ[T ∓ R]

4πR
.� (103)

The δ-function teaches us that G+
4  propagates signals strictly on the forward null cone; and the 

G−
4  strictly on the backward null cone. From equation (82), C1,4 thus reads:

C1,4[T , R] =
1

4πR

(
δ[T − R]− δ[T + R]

)
.� (104)

Of course, C1,4 can be worked out straightforwardly from equation (74) by setting d  =  4.
To compute C2,4, on the other hand, we insert equation (104) into equation (94) and obtain

C2,4[T , R] =
1

4π
(
Θ[T − R]−Θ[−T − R]

)
+

T
4πR

(
Θ[T]Θ[−T + R] + Θ[−T]Θ[T + R]

)
.� (105)

We may check this result by tackling equation (75) directly. After integrating over the angular 
coordinates in �k -space,

C2,4[T , R] =
∫ +∞

−∞

dk
(2π)2

sin kT
k

sin kR
kR

.� (106)

The sines can be converted into exponentials; and because there are no singularities the con-
tour on the real line may be displaced slightly toward the positive or negative imaginary k-axis 
near k  =  0. The resulting expression would consist of 4 terms, each of which would now be 
amendable to the residue theorem by closing the contour appropriately in the lower or upper 
half complex k plane.

From the retarded portion of equation (105), we find that the contribution of C2,4 comes 
from both inside and outside the past light cone of the observer; however, the signal that resides 
within the light cone—its ‘tail’—is a spacetime constant and will therefore be removed by the 
spatial derivatives in equation (73). In contrast, the acausal one with T  <  R still remains and 
does contribute to the 4D effective Green’s function G+

ij , along with some additional light-
cone contributions from differentiating the step functions in C2,4.

G(+,4D)
ij [T ,�R] = −

(
δij − R̂iR̂j

) δ[T − R]
4πR

−Θ[T]Θ[−T + R]∂i∂j

(
T

4πR

)
.

� (107)

To sum: the 4D effective Green’s function G(+,4D)
ij [x − x′] propagates signals on and outside 

the forward light cone of the source at x′—namely, it is acausal.
With the 4D solutions in equations (104) and (105) at hand, we may employ eqs. (89) and 

(90) to state:

C+
1,even d�4[T , R] = D

d−4
2

R

(
δ[T − R]

4πR

)
,� (108)

where C+
1,d ≡ Θ[T]C1,d, and

C+
2,even d�4[T , R] = D

d−4
2

R

(
Θ[T − R]

1
4π

+Θ[T]Θ[−T + R]
T

4πR

)
;� (109)

where only the retarded contributions are shown, and we highlight that the tail portion of 
equation  (105) in higher dimensions d � 6 partially cancels the acausal part of it upon 
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differentiation. Like the 4D case, the TD
d−4

2
R (4πR)−1 part of C+

2,even d�4 indicates the latter 

continues to receive acausal contribution from outside the light cone.
Exact solutions in odd dimensions d � 3        Odd-dimensional solutions differ from even 
ones due to the presence of inside-the-null-cone propagation—‘tail’ signals. In (2 + 1)-dimen-
sions, the retarded Green’s function of the massless scalar is

C+
1,3[T , R] = −G+

3 [T , R] =
Θ[T − R]

2π
√

T2 − R2
,� (110)

which, unlike the 4D case, is pure tail. We now turn to solving the integral C2,3, which, as we 
have reasoned earlier, is expected to blow up when considered alone, but its divergent piece 
does not really enter the physical spin-1 Green’s function G+

ij , as it will be eliminated by the 
two spatial derivatives ∂i∂j in equation (73). Despite being divergent, C2,3 can nonetheless be 
regularized to a finite expression in the time-integral method, where the divergence only takes 
place on the initial condition. Within dimensional regularization, the resulting regularized 

form of it, C(+,reg)
2,3+2ε, is given by

C(+,reg)
2,3+2ε [T , R] = Θ[T − R]

−T ln
[
µ
(

T +
√

T2 − R2
)]

+
√

T2 − R2

2π

+Θ[T]Θ[−T + R]
−T ln[µR]

2π
+Θ[T]

T
4π

(
1
ε
− γ − ln[π]

)
.

� (111)
By referring to equation (73), we see that both tail and the acausal parts of C(reg)

2,3+2ε contribute 

to the three-dimensional G+
ij , with no pure light-cone signals involved.

To further justify the validity of equation  (111), we independently computed finite C2,5 
using its Fourier representation in equation (75):

C+
2,5[T , R] = Θ[T − R]

T −
√

T2 − R2

4π2R2 +Θ[T]Θ[−T + R]
T

4π2R2 .� (112)

This then allows us to verify C+
2,5 = DRC(+,reg)

2,3+2ε  in equation  (92). Higher odd-dimensional 

results follow from equations (91), (92), (110), and (111), where we can simply drop the last 
term of equation (111) and set the mass scale µ to one, since they will be removed in G+

ij  by 
the spatial derivatives in equation (73),

C+
1,odd d�3[T , R] = D

d−3
2

R

(
Θ[T − R]

2π
√

T2 − R2

)
,� (113)

C+
2,odd d�3[T , R] = D

d−3
2

R

(
Θ[T − R]

−T ln
[(

T +
√

T2 − R2
)]

+
√

T2 − R2

2π
+Θ[T]Θ[−T + R]

−T lnR
2π

)
.

� (114)
With equations (113) and (114) plugged into equation (73), we now have the explicit spin-1 
Green’s function G+

ij  for all odd dimensions d � 3. These analytic solutions reveal that, in 
odd dimensions, the spin-1 photon receives not only the causal tail signals from both C1,d 
and C2,d, with no strictly δ-function light-cone counterpart, but also the acausal contribution 
from C2,d[0 � T < R]. As a result, we have explicitly shown that, in the presence of the local 
electromagnetic source, the spin-1 photon being acausal turns out to be a generic feature in 
any spacetime dimensions d � 3.
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Scalar        The scalar solution for the gauge-invariant Φ, which obeys the Poisson’s equa-
tion (69), is given by a Coulomb-type form,

Φ[η,�x] =
∫

Rd−1
dd−1�x′ G(E)

d [R] J0[η,�x′],� (115)

where we recall that G(E)
d  takes the form of equation (58) for d  =  3 and equation (59) for d � 4. 

Clearly, this solution manifestly violates causality, in the sense that the scalar Φ is instanta-
neously sourced by the local charge density ρ . Therefore, neither the spin-1 photon αi nor the 
scalar Φ can be a standalone observable in classical electromagnetism, which then leads us 
to pose the question: how do these gauge-invariant variables enter the key observable—the 
Faraday tensor—such that the result is causally dependent on their corresponding sources? 

Faraday tensor        The causal nature of Fµν  can be seen from its own wave equation, 
derived by taking the divergence of the identity ∂[µFνσ] = 0 and imposing the Maxwell eqau-
tions (29),

�Fµν + RρσµνFρσ + 2Rσ
[µFν]σ = −2∇[µJν], � ≡ ∇σ∇σ .� (116)

In Minkowski spacetime, the geometric tensors vanish and the electromagnetic fields encoded 
within Fµν  are thus given by the massless scalar Green’s function convoluted against the first 
derivatives of the electromagnetic sources,

Fµν [x] = −2
∫

Rd−1,1
ddx′ ∂[µG+

d Jν][x′].� (117)

Here, we have dropped the surface terms at infinity when integrating by parts, which can be 
justified by the causal structures of equations (108) and (113) as well as the fact that those at 
past infinity (T → ∞) in odd dimensions are negligible (see equation (113)).

Let us now recover equation (117) within the gauge-invariant formalism. We first make 
use of the conservation law for the electromagnetic current, ∂jJj = J̇0, to re-write the spin-1 
expression (72),

αi[x] = −
∫

Rd−1,1
ddx′

(
G+

d Ji[x′]−Θ[T] ∂iĊ2,dJ0[x′]
)

,� (118)

where the second term is now the convolution with the charge density J0. The surface terms 
from integration by parts—namely, 

∫
dη′ dd−2�x′ Θ[T]∂iC2,dJj evaluated at spatial infinity and ∫

dd−1�x′ Θ[T]∂iC2,dJ0 at past infinity—have been neglected, as the former falls off as R → ∞ 
in both even and odd dimensions, and the electric current is assumed to be isolated; whereas 
the latter, when T → ∞, has zero contribution in even dimensions and becomes negligible 
in odd dimensions (see equations (109) and (114)). The magnetic field, according to equa-
tion (35), is therefore consistent with equation (117):

Fij[x] = 2∂[iαj] = −2
∫

Rd−1,1
ddx′ ∂[iG

+
d Jj][x′].� (119)

This calculation shows that, despite αi being acausal, taking the curl of the spin-1 field ends up 
removing its acausal information encoded in the second term of equation (118).

According to equation  (35), the electric field F0i is the sum of α̇i and ∂iΦ. Employing 

Ċ2,d
∣∣
T=0 = −G(E)

d  and C̈2,d = −C1,d in equations (77) and (78), the time derivative of equa-

tion (118) is
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α̇i[x] = −
∫

Rd−1,1
ddx′

(
Ġ+

d Ji[x′]− ∂iG+
d J0[x′]

)
−
∫

Rd−1
dd−1�x′ ∂iG

(E)
d J0[η,�x′].

� (120)

We see that the acausal term containing G(E)
d  in equation (120) is canceled by adding to α̇i the 

spatial gradient of equation (115). The result is

F0i[x] = α̇i[x] + ∂iΦ[x] = −
∫

Rd−1,1
ddx′

(
Ġ+

d Ji[x′]− ∂iG+
d J0[x′]

)
� (121)

which, again, agrees exactly with equation (117). To sum: the spin-1 photon αi contains all 
relevant electromagnetic information, but is acausal. On the other hand, the primary role of 
Φ is to cancel the acausal part of α̇i, rendering the electric field F0i strictly causal. In other 
words, the electric field turns out to be determined by the causal portion of the velocity of the 
transverse spin-1 field,

F0i =
(
α̇i
)

causal =
(
ȦT

i

)
causal.� (122)

Next, we move on to investigate how the spin-1 field and the Faraday tensor behave under 
certain physically interesting limits.
Stationary limit and Φ        That the electric field in equation (122) is the causal piece of 
α̇i reveals a subtlety in the stationary limit, where the electric current is time independent. For, 
the first term containing Ġ+

d  in equation (120) integrates to zero, which then informs us that

α̇i[�x] =
∫

Rd−1
dd−1�x′∂iG

(E)
d [�x −�x′]J0[�x′]−

∫

Rd−1
dd−1�x′ ∂iG

(E)
d [�x −�x′]J0[�x′] = 0;

� (123)
because in the second term of equation (120),

∫

R
dη′G+

d [η − η′,�x −�x′] = G(E)
d [�x −�x′].� (124)

In words: within the stationary limit, the causal structure of α̇i itself becomes degenerate—the 
otherwise causal and acausal terms in equation (120) cancel one another.

At first sight, equation (69) appears to tell us Φ is the Coulomb potential of a static charge 
distribution. This seems to be further reinforced by the fact that ∂iΦ from equation (115) is the 
sole contribution to the electric field F0i in equation (121), since α̇i = 0. But the interpreta-
tion that ∂iΦ is (the dominant piece of) the electric force becomes erroneous once there is the 
mildest non-trivial time dependence in the electric current—as already pointed out—because 
Φ is purely acausal and hence cannot be a standalone physical observable. Instead, the gradi-
ent of equation (115) cancels the (normally acausal) second term in the first equality of equa-
tion (123) and thus equation (122) continues to hold:

F0i[�x] =
(
α̇i
)

causal =

∫

Rd−1
dd−1�x′∂iG

(E)
d [�x −�x′]J0[�x′].� (125)

Far-zone limit        Provided that the observer is very far from the isolated sources, the 
leading-order term of the field, which scales as 1/r

d
2 −1, corresponds to the radiative piece that 

is capable of carrying energy-momentum to infinity. To extract the leading contribution of the 
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spin-1 field in such a regime, firstly, we re-express the spin-1 commutator Cij, by explicitly 
carrying out the spatial derivatives assuming R �= 0, in the following form15

Cij[T ,�R] = Pij[�R]C1,d[T , R] + Πij[�R] 2πC2,d+2[T , R],� (126)

where the projection tensor Pij and Πij, respectively, are defined as

Pij[�R] ≡ δij − R̂iR̂j,� (127)

Πij[�R] ≡ −δij + (d − 1)R̂iR̂j;� (128)

the R̂ ≡ (�x −�x′)/|�x −�x′| is pointing from the source location �x′ to the observer �x ; and C2,d+2 
in the second term of equations (126) is the (d + 2)-dimensional form of equations (90) and 
(92) but its R is the one in d  −  1 spatial dimensions. Note also that, to reach equation (126), 
we have employed the homogeneous wave equation, ∂2C2,d = 0, with R �= 0, as well as the 
conversion C̈2,d = −C1,d, to relate its second spatial derivatives to C1,d. Also, it can be checked 
directly that the expression (126) for R �= 0 is indeed divergenceless. Altogether, as long as 
the observer is away from the source, we have an alternative expression for the spin-1 effective 
Green’s function by inserting equation (126) into G+

ij = −Θ[T]Cij. The purpose of putting Cij 
in this form is that, the dominant far-zone contribution of the field can be extracted simply by 
comparing C1,d and C2,d+2. Furthermore, each term in equation (126) is manifestly finite for 
all spacetime dimensions in which photons exist, since there is no divergence incurred in C1,d 
and C2,d+2 for d � 3.

If τc and rc are respectively the characteristic time scale and proper size of the source, and r 
is the observer-source distance, the far zone is defined as the limits τc/r � 1 and rc/r � 1. To 
perform this limit on the Green’s function, we will work in frequency ω-space. Specifically, 
the far zone then translates into |ω|r � 1. We shall be content in extracting the leading expres-
sions in the limit |ω|R � 1.

In terms of the superposition of individual frequencies, the spin-1 field αi can be written as

αi[η,�x] = −
∫

Rd−1
dd−1�x′

∫

R

dω
2π

G̃+
ij [ω,�R]e−iωη J̃j[ω,�x′],� (129)

with G̃+
ij [ω, R] being the frequency transform of the spin-1 effective Green’s function,

G̃+
ij [ω,�R] =

∫

R
dT G+

ij [T ,�R] eiωT

= Pij[�R] G̃+
d [ω, R]−Πij[�R] 2πC̃+

2,d+2[ω, R],
�

(130)

where we have assumed R �= 0 and used the expression (126). The G̃+
d [ω, R] and C̃+

2,d+2[ω, R], 
respectively, denote the frequency transforms of the massless scalar Green’s function G+

d  and 
C+

2,d+2
16.

Spin-1 photons in even dimensions d � 4        A direct calculation starting from equa-
tions (108) and (109) tells us, in all even d = 4 + 2n � 4,

15 At R  =  0, when two spatial derivatives ∂i∂j act on 1/Rd−3, terms involving δ(d−1)[�x −�x′] could arise. However, if 
the observer is away from the source, then those local terms will not contribute to the effective Green’s function, 
and therefore, we can simply ignore them in the calculation.
16 The G̃+

d [ω, R] in equation (130) is the frequency transform of G+
d [η − η′; R]; this is to be distinguished from 

G̃+
d [η, η′;�k] in equation (70), which is the spatial-Fourier transform of the same G+

d [η − η′; R].
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G̃+
4+2n[ω, R] = −Dn

R

(
eiωR

4πR

)
= − iω2n+1

2(2π)n+1(ωR)n h(1)
n [ωR],� (131)

C̃+
2,6+2n[ω, R] = Dn

R

(
eiωR

8π2R2(iω)
− eiωR

8π2R3(iω)2

)
− (2n + 1)!!ω2n+1

2(2π)n+2(ωR)2n+3 ,

� (132)

where h(1)
n  is the spherical Hankel function of the first kind. Notice that the last term in equa-

tion  (132) does not contain the factor eiωR; it describes the non-propagating portion of the 
signal in frequency space, which in turn arises from the acausal effect found in position space. 
In the limit |ω|R � 1, equations (131) and (132) behave asymptotically as

G̃+
4+2n[ω, R] =

(−1)n+1inω2n+1

2(2πωR)n+1 eiωR
(

1 +O
[

1
ωR

])
,� (133)

C̃+
2,6+2n[ω, R] =

(−1)n+1inω2n+1

2(2πωR)n+1 eiωR · i
2πωR

(
1 +O

[
1
ωR

])
,� (134)

which reveals that, for any fixed dimension d  =  4  +  2n and at leading order, the acausal 
C̃+

2,6+2n[ω, R] term is suppressed as 1/(ωR) relative to G̃+
4+2n

17. Therefore, at leading 1/(ωR) 
order, the effective Green’s function G̃+

ij [ω,�R], in frequency space, is exclusively dependent 
on G̃+

d [ω, R]; moreover, with the assumption rc/r � 1, its far-zone leading contribution can be 
extracted from the first term of equation (130), which is given by

G̃+
ij [ω,�R] = PijG̃

(+, fz)
4+2n [ω;�x,�x′]

(
1 +O

[
1
ωr

,
rc

r

])
,� (135)

where Pij is the far-zone spatial projector defined in equation (6) and

G̃(+, fz)
4+2n [ω;�x,�x′] ≡ (−1)n+1(iω)n

2(2π)n+1

eiω(r−�x′ ·̂r)

rn+1 .� (136)

By performing the inverse frequency transform, in the far-zone radiative limit, the transverse 
spin-1 photon αi = AT

i  reduces to a transverse projection in space:

lim
r→∞

αi → At
i, At

i[x] ≡ Pij

(
−
∫

Rd−1,1
ddx′ G(+, fz)

d [T;�x,�x′]Jj[x′]
)

,� (137)

where G(+, fz)
d [T;�x,�x′] is the far-zone contribution of the massless scalar Green’s function,

G(+, fz)
d [T;�x,�x′] =

∫

R

dω
2π

G̃(+, fz)
d [ω;�x,�x′]e−iωT

= − 1

2(2πr)
d−2

2

(
∂

∂η

) d−4
2

δ
[
T − r +�x′ · r̂

]
. (even d)

�
(138)

Spin-1 photons in odd dimensions d � 3        For d  =  3  +  2n, we can frequency transform 
the retarded position-space solutions (113) and (114) to obtain

G̃+
3+2n[ω > 0, R] = − iω2n

4(2πωR)n H(1)
n [ωR],� (139)

17 Strictly speaking, equation (133) applies only for n  >  0. There are no 1/(ωR) corrections in (3  +  1)-dimensions, 
because equation (131) informs us that G̃+

4 [ω, R] = −eiωR/(4πR).
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C̃+
2,5+2n[ω > 0, R] =

iω2n

4(2πωR)n+1 H(1)
n+1[ωR]− 2nn!ω2n

(2π)n+2(ωR)2n+2 ,� (140)

where H(1)
n  is the Hankel function of the first kind and its differential recursion relation 

has been employed, and these expressions are only valid for positive frequencies ω > 0; 
however, since G+

d  and C+
2,d+2 are real, the negative-frequency modes can be expressed in 

terms of the complex conjugates of equations (139) and (140), G̃+
d [−ω, R] = G̃+∗

d [ω, R] and 
C̃+

2,d+2[−ω, R] = C̃+∗
2,d+2[ω, R], where the asterisk ‘∗’ denotes complex conjugation. As in the 

even-dimensional case, the non-propagating piece of signals also shows up in the second 
term of equation (140). At leading 1/(ωR) order, the Hankel function goes asymptotically to 

H(1)
n [ωR] =

√
2/πωR ei(ωR−nπ/2−π/4) +O

[
1/(ωR)3/2

]
, so we can read off the leading-order 

pieces of equations (139) and (140) accordingly,

G̃+
3+2n[ω > 0, R] = − iω2n

2(2πωR)n+ 1
2

ei(ωR− nπ
2 −π

4 )
(

1 +O
[

1
ωR

])
,� (141)

C̃+
2,5+2n[ω > 0, R] = − iω2n

2(2πωR)n+ 1
2

ei(ωR− nπ
2 −π

4 ) · i
2πωR

(
1 +O

[
1
ωR

]
+O

[
1

(ωR)n+ 1
2

])
,

� (142)
from which we infer that, unlike the even-dimensional results, amplitudes of these tail signals 
contain fractional powers of frequencies. And, these asymptotic behaviors tell us that, in the 
far-zone regime |ω|R � 1, the massless scalar Green’s function G̃+

d [ω, R] still dominates over 
C̃+

2,d+2[ω, R] here. Hence, we can extract the far-zone leading order in 1/r piece of G̃+
ij [ω,�R] in 

the same way,

G̃+
ij [ω > 0,�R] = PijG̃

(+, fz)
3+2n [ω;�x,�x′]

(
1 +O

[
1
ωr

,
rc

r

])
,� (143)

with G̃(+, fz)
3+2n  defined by

G̃(+, fz)
3+2n [ω;�x,�x′] ≡ − iωn− 1

2

2(2π)n+ 1
2

ei(ω(r−�x′ ·̂r)− nπ
2 −π

4 )

rn+ 1
2

.� (144)

Consequently, in the radiative limit r → ∞, we reach the same conclusion stated in equa-

tion (137) for odd dimensions d  =  3  +  2n as well, where G(+, fz)
d  is given instead by

G(+, fz)
d [T;�x,�x′] = − 1

(2πr)
d−2

2

Re
[∫ ∞

0

dω
2π

iω
d−4

2 ei(ω(r−�x′ ·̂r−T)− (d−2)π
4 )

]
. (odd d).� (145)

Thus, based on the frequency-space analysis, the fact that αi ≡ AT
i → At

i as r → ∞ holds 
generically in any spacetime dimensions d � 3, clearly demonstrating that the acausal portion 
of the spin-1 field actually contributes negligibly to the far-zone signals.

Summary: far zone transverse Green’s functions        To sum, the massless spin-1 transverse 
photon αi in the radiative regime will coincide with another notion of the ‘transverse’ vector 
potential At

i . While αi in equation (56) involves a transverse projection in Fourier space, the 
At

i  in equation (137) is a local-in-space transverse projection of the far-zone Lorenz-gauge 
causal solution for the vector potential, i.e. r̂iAt

i = 0, which consists solely of the light-cone 
signals in even dimensions. In 4D Minkowski spacetime, that the two different notions of the 
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transverse vector potential overlap in the far zone has already been pointed out in [2, 3]. The 
method used here allows us to generalize the conclusion to all dimensions.

Faraday tensor        Since we have already shown the spin-1 photons αi, for all d � 3, 
reduce asymptotically to causal At

i  in the far zone, we then expect in this regime the magnetic 
and electric fields, equations (119) and (122), to become

Fij ≈ −2 r̂[iȦt
j],� (146)

F0i ≈ Ȧt
i.� (147)

Here, the far-zone limit has been taken on both sides of the equations, and we have also used 
the results in eqs. (133), (134), (141) and (142) to deduce—as far as the leading-order contrib
ution is concerned—the replacement rule ∂i = −∂i′ = −R̂i∂0 holds at the leading 1/(ωR) 
level, and after which the dominant far-zone contribution in terms of r can be extracted read-
ily. In addition, the far-zone expressions (146) and (147) can also be checked for consistency 
through equation (117), by using the replacement rule as well as the conservation law for the 
charge current.

Commutator of spin-1 photons        As already alluded to, the results for the retarded 
Green’s function of the massless spin-1 αi are intimately related to the commutator of these 
photon operators in Quantum Field Theory. Let us first consider a free scalar field φ as a 
simple example. Its commutator is related to C1,d in the following manner:

[
φ[x],φ[x′]

]
= −iC1,d[T , R].� (148)

According to equation (82), since the retarded/advanced Green’s functions on the right hand 
side are strictly zero outside the null cone, this C1,d consists of only causal information—i.e. 
it too is zero whenever the two spacetime points are spacelike: (x − x′)2 > 0. In contrast, 
because the spin-1 Green’s functions are non-zero outside the light cone, according to equa-
tion (83), the non-interacting spin-1 commutator is therefore acausal:

[
αi[x],αj[x′]

]
= −iCij[T ,�R].� (149)

In quantum field theory, operators that commute outside the light cone are said to obey micro-
causality. Free spin-1 photons are therefore seen to violate micro-causality. It is likely that 
this acausal character of their commutator is a manifestation of the known tension between 
Lorentz covariance and gauge invariance when constructing massless helicity-1 theories in 
flat spacetime.

4.2.  Linearized gravitation

We now turn to the linearized theory of General Relativity in a Minkowski background, as 
described in section 2. The relevant Green’s functions will be computed analytically for all 
spacetime dimensions d � 4; i.e. excluding those without spin-2 degrees of freedom.

Field equations        The gauge-invariant form of the linearized Einstein’s equations can 
be expressed in terms of the variables defined in equations (25)–(27), where, as a constrained 
system, the full set of gauge-invariant field equations  can be reduced to four fundamental 
ones, i.e. equation (28) and the following three [12]:

(d − 2)�∇2Ψ = 8πGNρ,� (150)
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�∇2Vi = −16πGNΣi,� (151)

∂2Dij = −16πGNσij;� (152)

where the source terms ρ , Σi , and σij refer to different parts of the scalar–vector–tensor 
decomposition of the astrophysical stress-energy tensor (a)Tµν  (see equations (21) and (22)). 
These four independent equations, along with the law of energy-momentum conservation, 
∂µ (a)Tµν = 0, already imply the other three remaining ones in the linearized Einstein’s equa-
tions. We see that only the spin-2 graviton field, Dij ≡ χTT

ij , admits dynamical wave solutions, 
sourced by the TT portion of (a)Tµν , while the Bardeen scalar potential Ψ, as well as the vector 
mode Vi, obey Poisson-type ones. This set of equations appear to be similar to their electro
magnetic counterparts, and thus, by the same arguments used earlier, we already expect these 
gauge-invariant variables to be acausal in nature once the GW sources are taken into account. 
In this sense, none of these gauge-invariant variables—including the spin-2 Dij—may be 
regarded as a standalone observable. Indeed, as we will see in the subsequent discussion, the 
linearized Riemann tensor δ1R0i0j, discussed in section 2, in close analogy to the field strength 
Fµν  for electromagnetism, does require all their contributions to become a causal object.

Spin-2 gravitons        The analytic solutions for the effective Green’s functions are cru-
cially important for capturing the propagation of wave signals in this linearized system. Here, 
we start with the massless spin-2 field Dij, obeying the wave equation (152). Since the TT 
projection of the source takes place locally in Fourier space, as long as �k �= �0 , we can firstly 
express Dij as

Dij[η,�x] = −16πGN

∫

R
dη′

∫

Rd−1

dd−1�k
(2π)d−1 G̃+

d [η, η′;�k] P̂ijmn[�k] (a)T̃mn[η
′,�k] ei�k·�x,

� (153)

where G̃+
d [η, η′;�k] is given in equation (71), and the spin-2 TT projector P̂ijmn[�k] is defined in 

equation (12). Then, the expression (153), with each kj  in equation (65) replaced by a spatial 
derivative via ∂j → ikj, can be re-written as the spin-2 effective Green’s function G+

ijmn con-
volved against the local stress-energy tensor of the source,

Dij[x] = −16πGN

∫

Rd−1,1
ddx′G+

ijmn[T ,�R] (a)Tmn[x′],� (154)

where the spin-2 effective Green’s function G+
ijmn is given by the following tensor structure,

G+
ijmn[T ,�R] =−Θ[T]Cijmn[T ,�R],

Cijmn[T ,�R] =
(
δm(iδj)n −

δijδmn

d − 2

)
C1,d[T , R] +

(
δm(i∂j)∂n + δn(i∂j)∂m

−
δij∂m∂n − δmn∂i∂j

d − 2

)
C2,d[T , R] +

(
d − 3
d − 2

)
∂i∂j∂m∂nC3,d[T , R],

�

(155)

with C1,d and C2,d defined previously in equations (74) and (75), and C3,d defined by

C3,d[T , R] ≡
∫

Rd−1

dd−1�k
(2π)d−1

sin |�k|T
|�k|5

ei�k·�R.� (156)

Compared with the spin-1 photon case, even though the whole tensor structure of Cijmn here is 
very different than that of Cij (see equation (73)), the first two terms have structural similarity 
to Cij, and the scalar Fourier integrals C1,d and C2,d have already been dealt with analytically; 
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the only new term that remains to be computed is C3,d. Moreover, it can be checked readily 
that, by employing the relations �∇2C2,d = −C1,d and �∇2C3,d = −C2,d (see equations  (74), 
(75), and (156)), the expression (155) indeed satisfies the TT conditions δijG+

ijmn = 0 and 
∂iG+

ijmn = ∂jG+
ijmn = 0. We shall soon deploy the time-integral method, which amounts to 

solving

C̈3,d = −C2,d.� (157)

By integrating equation (157) twice, followed by recalling equation (94), we have

C3,d[T , R] = −
∫ T

0
dτ2

∫ τ2

0
dτ1 C2,d[τ1, R] + TĊ3,d[T = 0, R] + C3,d[T = 0, R],

�

(158)

=

∫ T

0
dτ4

∫ τ4

0
dτ3

∫ τ3

0
dτ2

∫ τ2

0
dτ1 C1,d[τ1, R] +

T3

6
G(E)

d [R] + TDd[R],� (159)

where the initial conditions C3,d[T  =  0,R]  =  0 and Ċ3,d[T = 0, R] = Dd[R] have been employed 
(see equation (156)), with Dd defined by

Dd[R] ≡
∫

Rd−1

dd−1�k
(2π)d−1

ei�k·�R

�k4
,� (160)

whose concrete position-space expressions read

D(reg)
3+2ε[R] = − R2

16π

(
1
ε
−

(
γ + ln[π]− 1

)
− 2 ln[µR]

)
,� (161)

D(reg)
4 [R] = − R

8π
,� (162)

D(reg)
5+2ε[R] =

1
16π2

(
1
ε
− γ − ln[π]− 2 ln[µR]

)
,� (163)

Dd�6[R] =
Γ
[ d−5

2

]

16π
d−1

2 Rd−5
.� (164)

Note that D3, D4, and D5 are in the dimensional-regularized forms. Finally, parallel to equa-
tion (84) in the photon case, acausality encoded in G+

ijmn can be seen at the level of its wave 
equation,

∂2G+
ijmn[T ,�R] =δ[T]

{(
δm(iδj)n −

δijδmn

d − 2

)
δ(d−1)[�x −�x′]−

(
δm(i∂j)∂n + δn(i∂j)∂m

−
δij∂m∂n − δmn∂i∂j

d − 2

)
G(E)

d [R] +
(

d − 3
d − 2

)
∂i∂j∂m∂nDd[R]

}
.

� (165)
The last two terms in equation  (165) correspond to the acausal contributions to the signal 
attributed to x′ ≡ (η′,�x′), but arising from a non-zero source smeared over the rest of the 
equal-time spatial hypersurface at η = η′ .

To compute C3,d in equation (156), we first notice that the integral itself diverges when 
d � 5, inferred from the power of |�k| in the limit |�k| → 0. However, in the physical spacetime 
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dimensions where spin-2 gravitons exist, namely d � 4, those divergences in C3,4 and C3,5 
are expected to be removed by the multiple spatial derivatives in the spin-2 effective Green’s 
function (155). Furthermore, since the dimension-raising operator still applies to C3,d, in either 
even or odd spacetime dimensions, the lowest-dimensional form is already adequate for us to 
generate all the higher-dimensional ones.

Exact solutions in even dimensions d � 4        Since the analytic forms of C1,d and C2,d, 
for all even d � 4, have been obtained in equations (108) and (109), we now focus on the 
C3,d term needed in equation (155). Similar methods used to compute C2,d will be performed 
to tackle this new integral. Here, we start with C3,4, the lowest even dimension for the spin-2 
graviton to exist. Even though C3,4 itself is a divergent integral, we can still extract its regu-
larized finite contribution through the time-integral method, as we did for C2,3 in the spin-1 
calculation. Utilizing dimensional-regularization, the result turns out to be finite:

C(+,reg)
3,4 [T , R] = Θ[T − R]

−R2 − 3T2

24π
+Θ[T]Θ[−T + R]

−3R2T − T3

24πR
.� (166)

Similar to C2,4, the tail function in equation (166), when plugged into equation (155), will be 
eliminated by the spatial derivatives in G+

ijmn. Whereas the acausal portion of the signals, from 
the second term of equation (166), will still remain. In addition, this regularized form can be 
justified by checking whether this expression, with one dimension-rasing operator acting on 
it, coincides with C+

3,6 obtained by a direct contour-integral calculation:

C+
3,6[T , R] = Θ[T − R]

1
24π2 +Θ[T]Θ[−T + R]

3R2T − T3

48π2R3 .� (167)

(One may check, indeed, that C3,6 = DRC(+,reg)
3,4 .) With this solution at hand, applying dimen-

sion-raising operators to it then produces all the higher even-dimensional results,

C+
3,even d�4[T , R] = D

d−4
2

R

(
Θ[T − R]

−R2 − 3T2

24π
+Θ[T]Θ[−T + R]

−3R2T − T3

24πR

)
.� (168)

Now, plugging equation (168) for C3,d, along with known C1,d and C2,d, into the spin-2 effec-
tive Green’s function (155), we find that the spin-2 causal structure is analogous to that of the 
spin-1 field. More precisely, for all even dimensions d � 4, no tail signals exist in G+

ijmn, but 
the spin-2 graviton receives not only the light-cone signals but also the acausal ones from both 
C2,d and C3,d.

Exact solutions in odd dimensions d � 5        For odd spacetime dimensions, we begin with 
d  =  5, since TT gravitons are non-existent in lower odd dimensions. To calculate C3,5, we can 
make use of the time-integral method to first extract the regularized C3,3, namely inserting 
equation (110) into equation (159) along with the dimensional-regularized initial conditions:

C(+,reg)
3,3+2ε [T , R] =Θ[T − R]

1
8π

(
−
(
T2 − R2) 3

2 − 1
9
(
13R2 + 2T2)√T2 − R2 + T

(
R2 +

2
3

T2
)

× ln
[
µ
(

T +
√

T2 − R2
)])

+Θ[T]Θ[−T + R]
T ln[µR]

8π

(
R2 +

2
3

T2
)

−Θ[T]
T

16π

((
R2 +

2
3

T2
)(

1
ε
− γ − ln[π]

)
+ R2

)
.

�

(169)
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By applying the raising operator DR once,

C(+,reg)
3,5+2ε [T , R] =Θ[T − R]

1
24π2

((
2 +

T2

R2

)√
T2 − R2 − 3T ln

[
µ
(

T +
√

T2 − R2
)]

− T3

R2

)

+Θ[T]Θ[−T + R]
1

24π2

(
−T3

R2 − 3T ln[µR]
)
+Θ[T]

T
16π2

(
1
ε
− γ − ln[π]

)
,

� (170)

which is still a regularized expression of the divergent integral C3,5, and again, whose validity 
can be justified in the same way. Through a direct computation of the finite integral C3,7, as we 
did for C2,5, we can show that the resulting expression of C3,7, namely

C+
3,7[T , R] = Θ[T − R]

2
(
T2 − R2

) 3
2 + 3R2T − 2T3

48π3R4 +Θ[T]Θ[−T + R]
3R2T − 2T3

48π3R4 ,� (171)

is simply DRC(+,reg)
3,5+2ε . Following through the same procedures, we can extend the analytic solu-

tion (170) to all odd dimensions d � 5 via dimension-rasing operators, where, similar to the 
odd-dimensional photon case, we may discard the last term of equation (170) and set µ = 1 as 
they will be eliminated in the physical G+

ijmn (see equation (155)),

C+
3,odd d�5[T , R] =D

d−5
2

R

(
Θ[T − R]

1
24π2

((
2 +

T2

R2

)√
T2 − R2 − 3T ln

[(
T +

√
T2 − R2

)]
− T3

R2

)

+Θ[T]Θ[−T + R]
1

24π2

(
−T3

R2 − 3T lnR
))

.

�

(172)

As with spin-1 photons in odd dimensions, the spin-2 effective Green’s function (155) in this 
case explicitly reveals that, besides pure tails from C1,d, the spin-2 graviton receives extra tail 
and acausal contributions from both C2,d and C3,d for all odd d � 5; and moreover, no signals 
traveling strictly on its past light cone—namely, no δ-function light-cone contributions.

Therefore, the acausal nature of the TT spin-2 field in all relevant spacetime dimensions is 
explicitly confirmed by the analytic solutions of G+

ijmn obtained in this section. Now, we pro-
ceed to solve for other gauge-invariant variables involved in this system.
Bardeen scalars        In a flat background, one of the Bardeen scalar potentials Ψ obeys the 
Poisson’s equation (150), which then leads to a Coulomb-type solution,

Ψ[η,�x] =
8πGN

d − 2

∫

Rd−1
dd−1�x′ G(E)

d [R](a)T00[η,�x′].� (173)

This transparently shows the acausal character of Ψ, since it is instantaneously sourced by the 
local matter energy density. The other Bardeen potential Φ is related to Ψ via equation (28); 
recall that Υ is the nonlocal scalar portion of decomposed (a)Tij (see equation (22)), which, in 
Fourier space with �k �= �0 , is given by the following local projection [12],

Υ̃[η,�k] = −
(

d − 1
d − 2

)
1
�k4

(
kikj −

�k2

d − 1
δij

)
(a)T̃ij[η,�k].� (174)
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By virtue of this local decomposition, we can inverse Fourier transform equation  (174) to 
yield

Φ[η,�x] =(d − 3)Ψ[η,�x]

+
8πGN

d − 2

∫

Rd−1
dd−1�x′

(
G(E)

d [R](a)Tll[η,�x′]− (d − 1)∂i∂jDd[R](a)Tij[η,�x′]
)

,
�

(175)

where (a)Tll denotes the spatial trace of the (ij) components of the matter stress-energy tensor, 
(a)Tll ≡ δij (a)Tij , and Dd[R] is defined in equation (160). Inserting equation (173) into equa-
tion (175), we can express Φ itself in terms of the following convolution,

Φ[η,�x] =
8πGN

d − 2

∫

Rd−1
dd−1�x′

(
(d − 3)G(E)

d [R](a)T00[η,�x′] + G(E)
d [R](a)Tll[η,�x′]

− (d − 1)∂i∂jDd[R](a)Tij[η,�x′]
)

,

�

(176)

where we see that Φ is effectively dependent on different components of the matter stress-

energy tensor, weighted either by G(E)
d  or Dd on the instantaneous η = η′  surface.

Vector potential        The gauge-invariant vector mode Vi, in linearized gravity, also obeys 
the Poisson’s equation (151), but is instead sourced by the nonlocal transverse part of (a)T0i 
(see eq.(21)). As before, since the decomposition is local in momentum space,

Σ̃i[η,�k] =
(
δij −

kikj

�k2

)
(a)T̃0j[η,�k],� (177)

the solution of equation (151) can first be cast into a Fourier form using equation (177), and 
then translated back to the position space,

Vi[η,�x] = 16πGN

∫

Rd−1
dd−1�x′

(
∂i∂jDd[R] (a)T0j[η,�x′]− G(E)

d [R](a)T0i[η,�x′]
)

,

� (178)
which is yet again an instantaneous acausal signal. Therefore, in Minkowski background, 
other than the spin-2 graviton field Dij, the rest of the gauge-invariant variables depend exclu-
sively on the weighted superposition of the matter sources evaluated at the instantaneous 
observer time η.

Linearized Riemann tensor        In our discussion of gravitational observables in sec-
tion 2, we have argued that, in a free-falling synchronous-gauge setup, the δ1R0i0j components 
of the linearized Riemann tensor encode the gravitational tidal forces exerted upon the neigh-
boring test particles in the geodesic deviation equation (see equation (39)). And, being also 
gauge-invariant in Minkowski spacetime, it would reasonably be regarded as a classical physi-
cal observable and expected to be strictly causal as well.

As with the Faraday tensor in electromagnetism, it can be directly shown via its second-
order wave equation that the linearized Riemann tensor is causal with respect to the flat back-
ground. Firstly, by taking the divergence of the Bianchi identity obeyed by the exact Riemann 
tensor, followed by imposing Einstein’s equations, one may obtain

�Rρσ
µν +

[
∇λ,∇[ρ

]
Rσ]

λµν = 32πGN∇[ρ∇[µ

(
Tν]

σ] − δ
σ]
ν]

T
(d − 2)

)
.� (179)
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The linearized version in Minkowski background is thus

∂2δ1Rρσ
µν = 32πGN ∂[ρ∂[µ

(
(a)Tν]

σ] − δ
σ]
ν]

(a)T
(d − 2)

)
,� (180)

where (a)T  is now the trace of the matter stress tensor in flat spacetime, namely (a)T ≡ ηµν (a)Tµν
18.  

The wave equation (180) then leads immediately to the fact that the linearized Riemann tensor 
is causally sourced by the second derivatives of the astrophysical stress-energy tensor, from 
which its δ1R0i0j components can be expressed explicitly as

δ1R0i0j[x] =8πGN

∫

Rd−1,1
ddx′

{
G̈+

d

(
(a)Tij[x′] +

δij

(d − 2)

(
(a)T00[x′]− (a)Tll[x′]

))
− 2∂(iĠ

+
d
(a)Tj)0[x′]

+
1

(d − 2)
∂i∂jG+

d

(
(d − 3)(a)T00[x′] + (a)Tll[x′]

)}
.

�

(181)

To arrive at equation (181), we have integrated by parts and dropped the boundary contrib
utions evaluated at the spatial and past infinity. Not only does equation (181) show δ1R0i0j is 
completely causal for all d � 4, it also provides a check for our calculations in the gauge-
invariant approach.

As we have shown earlier, all the gauge-invariant variables—the two scalars Ψ and Φ, one 
vector Vi, and one tensor Dij—are acausal. From the similar issue encountered in the electro
magnetic case, we would expect that, in describing the physical GW observables, a mutual can-
cellation of the acausal contributions must occur among these variables. Let us now check this 
statement more carefully using their analytic solutions. Given in equation (40) is the linearized 
Riemann tensor δ1R0i0j expressed in terms of four gauge-invariant variables in Minkowski 
spacetime, all of which are non-trivial whenever matter sources are present. Notice that the 
spin-2 graviton field Dij enters δ1R0i0j through its acceleration; before taking time derivatives, 
the spin-2 field given in equation (154) can firstly be re-cast into another convolution,

Dij[η,�x] =− 16πGN

∫

Rd−1,1
ddx′

{
G+

d

(
(a)Tij[x′] +

δij

d − 2

(
(a)T00[x′]− (a)Tll[x′]

))
− 2Θ[T]∂(iĊ2,d

(a)Tj)0[x′]

+
1

d − 2
Θ[T]∂i∂jC2,d

(
(d − 3)(a)T00[x′] + (a)Tll[x′]

)}

+
16πGN

d − 2

∫

Rd−1
dd−1�x′

(
δijG

(E)
d

(a)T00[η,�x′] + (d − 3)∂i∂jDd
(a)T00[η,�x′]

)
,

�

(182)

where we have utilized the conservation of the matter stress-energy tensor, (a)Ṫ0j = ∂i
(a)Tij 

and (a)T̈00 = ∂i∂j
(a)Tij, the conversion properties C̈2,d = −C1,d and C̈3,d = −C2,d, and the ini-

tial conditions Ċ2,d
∣∣
T=0 = −G(E)

d  and Ċ3,d
∣∣
T=0 = Dd . Also, as in the spin-1 case, the boundary 

terms from integrations by parts all vanish, which can be justified using the analytic expres-
sions of C2,d and C3,d obtained above. Note also that, in equation (182), the second integral 
is performed on the equal-time surface, which is clearly acausal, but the whole expression 
for Dij is not yet a clean separation based on causality, since C2,d in the first integral still con-
tains both causal and acausal pieces. Furthermore, we highlight that the energy-momentum 

18 Strictly speaking, the matter stress tensor in equation (179), when perturbed around a background Minkowski 
spacetime gµν = ηµν + χµν , would typically admit an infinite series in χµν . Whereas the matter stress tensor in 
equation (180) does not contain χµν . The matter stress tensor appearing everywhere else in this paper denotes the 
latter.
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conservation law is always assumed throughout this paper. However, this is no longer true in a 
self-gravitating system, such as the in-spiraling pairs of black holes/neutron stars whose GWs 
LIGO have detected to date. Conceptually speaking, to make the theory self-consistent, non-
linear corrections of gravity must be incorporated into the right-hand side of the linearized 
wave equation, so that the conservation of total stress tensor remains valid at linear level. We 
hope to address this subtlety more systematically in future work.

Now, we proceed to take double-time derivative of the spin-2 field in equation (182),

D̈ij[η,�x] = −16πGN

∫

Rd−1,1
ddx′

{
G̈+

d

(
(a)Tij[x′] +

δij

d − 2

(
(a)T00[x′]− (a)Tll[x′]

))
− 2∂(iĠ

+
d
(a)Tj)0[x′]

+
1

d − 2
∂i∂jG+

d

(
(d − 3) (a)T00[x′] + (a)Tll[x′]

)}

+ 16πGN

∫

Rd−1
dd−1�x′

{
− 2∂m∂(iG

(E)
d

(a)Tj)m[η,�x′] +
1

d − 2

(
δij∂m∂nG(E)

d
(a)Tmn[η,�x′]

+ ∂i∂jG
(E)
d

(
(d − 3)(a)T00[η,�x′] + (a)Tll[η,�x′]

))
+

(
d − 3
d − 2

)
∂i∂j∂m∂nDd

(a)Tmn[η,�x′]

}
,

� (183)
where the same properties used in the previous calculation have been employed to carry out 
the differentiation19, and we observe that the first integral in equation  (183) is completely 
causal and is exactly  −2 times the expression in equation (181), whereas the second one is 
acausally performed over the equal-time hypersurface, which is therefore expected to con-
nect to the other gauge-invariant variables. According to equation (40), the scalar and vector 

contributions to δ1R0i0j come from Ψ̈, ∂i∂jΦ, and ∂(iV̇j), the explicit forms of which can be 

readily deduced from equations (173), (176) and (178),

Ψ̈[η,�x] =
8πGN

d − 2

∫

Rd−1
dd−1�x′ ∂m∂nG(E)

d
(a)Tmn[η,�x′],� (184)

∂i∂jΦ[η,�x] =
8πGN

d − 2

∫

Rd−1
dd−1�x′

(
(d − 3)∂i∂jG

(E)
d

(a)T00[η,�x′] + ∂i∂jG
(E)
d

(a)Tll[η,�x′]

− (d − 1)∂i∂j∂m∂nDd
(a)Tmn[η,�x′]

)
,

�
(185)

∂(iV̇j)[η,�x] = −16πGN

∫

Rd−1
dd−1�x′

(
∂m∂(iG

(E)
d

(a)Tj)m[η,�x′]− ∂i∂j∂m∂nDd
(a)Tmn[η,�x′]

)
,� (186)

where the conservation law of (a)Tµν  allows us to switch between different components of 
the stress-energy tensor. As it turns out, the scalar and vector contributions, added together 
in accord with equation  (40), do conspire to cancel the acausal portion of the accelera-
tion of the spin-2 TT graviton completely, i.e. the second integral of equation  (183). As a 

19 Whenever a second time derivative acts on the expression involving a step function Θ[T], we make use of the fol-
lowing simplification for any function F[η, η′],

∂2
η

(
Θ[T]F[η, η′]

)
= Θ[T]F̈[η, η′] + δ̇[T]F[η′, η′] + δ[T]Ḟ[η, η′]

∣∣
η=η′ ,

where we have made the replacement T δ̇[T] → −δ[T], which results from differentiating the identity Tδ[T] = 0 
with respect to η. Notice that the last two terms only contribute at η = η′ , and this property will also be utilized 
later on in the cosmological case.
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result, the remaining part of equation (40) is then strictly causal and exactly consistent with 
equation (181),

δ1R0i0j = δijΨ̈ + ∂i∂jΦ+ ∂(iV̇j) −
1
2

D̈ij = −1
2
(
D̈ij

)
causal = −1

2
(
χ̈TT

ij

)
causal

,
� (187)

which is valid in general weak-field situations. The physical insight gained from the gauge-
invariant formalism is that the information regarding gravitational tidal forces is exclusively 
encoded within the causal part of the acceleration of the spin-2 field; whereas the acausal 
portion of Dij is completely canceled by the gauge-invariant Bardeen scalars and vector 
mode. This situation is very similar to that of the spin-1 field describing the electric field in 
electromagnetism.

Stationary limit and Φ        Like the photon case, the limit where the stress tensor (a)Tµν  
becomes time-independent leads to a degenerate causal structure for the acceleration of the 
spin-2 graviton; namely, its otherwise causal and acausal pieces cancel. In such a situation, 
one may further verify from eqs. (173), (178), and (183) that Ψ̈ = V̇i = D̈ij = 0, leaving the 
tidal forces to depend only on Φ:

δ1R0i0j = ∂i∂jΦ.� (188)

Since equation (187) holds in general, we may maintain that, despite appearances, it is really 
the acausal pieces of D̈ij—which are equal in magnitude but opposite in sign to the causal 
ones—that are canceling the ∂i∂jΦ. This interpretation ensures that causality is respected once 
there is the slightest time-dependence in the (a)Tµν .

δ1R0i0j[�x] = −1
2
(
D̈ij

)
causal =

8πGN

d − 2

∫

Rd−1
dd−1�x′ ∂i∂jG

(E)
d

(
(d − 3)(a)T00[�x′] + (a)Tll[�x′]

)
.� (189)

Far-zone limit        To extract the far-zone GW signals generated by the isolated astrophys-
ical systems, we perform the same frequency space analysis for the spin-2 effective Green’s 
function here as for its spin-1 counterpart. Before taking the far-zone limit, we first re-cast the 
spin-2 effective Green’s function (155) into the one analogous to equation (126) for spin-1 
photons, by carrying out all the spatial derivatives involved in Cijmn while avoiding the point 
R  =  0,

Cijmn[T ,�R] = Pijmn[�R]C1,d[T , R] + Πijmn[�R] 2πC2,d+2[T , R] + Ξijmn[�R] 4π2C3,d+4[T , R],� (190)
where Pijmn[�R] denotes the TT spatial projector based on the unit vector R̂,

Pijmn[�R] ≡ Pm(i[�R]Pj)n[�R]−
1

d − 2
Pij[�R]Pmn[�R],� (191)

with Pij[�R] given in equation (127), and the other symmetric tensor structures Πijmn[�R] and 
Ξijmn[�R], respectively, are defined as

Πijmn[�R] = −2Pijmn[�R] +
d(d − 3)

d − 2

(
δm(iR̂j)R̂n + δn(iR̂j)R̂m − 2R̂iR̂jR̂mR̂n

)

� (192)

Ξijmn[�R] =
(

d − 3
d − 2

)(
δijδmn + 2δm(iδj)n − (d + 1)

(
δijR̂mR̂n + δmnR̂iR̂j + 2δm(iR̂j)R̂n

+2δn(iR̂j)R̂m

)
+ (d + 1)(d + 3)R̂iR̂jR̂mR̂n

)
.

�

(193)
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We have taken advantage of the homogeneous wave equation obeyed by both C2,d and C3,d, 
along with the properties C̈2,d = −C1,d and C̈3,d = −C2,d, to relate different scalar functions. 
Here, we highlight again that, for a fixed d, the notations C2,d+2 and C3,d+4 used in equa-
tion (190) represent their corresponding (d + 2) and (d + 4)-dimensional functional forms, 
but the R is the one in d  −  1 spatial dimensions. Essentially, as long as R �= 0, equation (190) 
is equivalent to its original expression (155), and, as explained in the similar spin-1 situation, 
this form is useful for the far-zone analysis and is manifestly finite in all relevant spacetime 
dimensions, because C1,d, C2,d+2, and C3,d+4 all converge for d � 4. As a consistency check of 
equation (190), its TT properties can be shown explicitly by a direct calculation.

The leading contribution of GWs, responsible for the far-zone tidal forces, can be extracted 
from the spin-2 effective Green’s function using equation (190) in frequency space. The rela-
tive amplitudes of the three scalar functions can in turn be directly compared in the limit 
|ω|R � 1. To begin, we express the spin-2 field Dij in terms of the superposition of monochro-
matic modes,

Dij[η,�x] = −16πGN

∫

Rd−1
dd−1�x′

∫

R

dω
2π

G̃+
ijmn[ω,�R] e−iωη (a)T̃mn[ω,�x′],� (194)

where G̃+
ijmn[ω,�R] is the frequency transform of the spin-2 effective Green’s function assuming 

R �= 0,

G̃+
ijmn[ω,�R] =

∫

R
dT G+

ijmn[T ,�R] eiωT

= Pijmn[�R] G̃+
d [ω, R]−Πijmn[�R] 2πC̃+

2,d+2[ω, R]− Ξijmn[�R] 4π2C̃+
3,d+4[ω, R],

�
(195)

with G̃+
d [ω, R], C̃+

2,d+2[ω, R], and C̃+
3,d+4[ω, R], respectively, defined to be the frequency trans-

forms of their real-space counterparts, G+
d , C+

2,d+2, and C+
3,d+4. As we did for the far-zone 

spin-1 waves, we now take the limit of equation (195) as |ω|R → ∞, from which to extract 
the dominant spin-2 GWs in the radiative regime. Since we have calculated G̃+

d [ω, R] and 
C̃+

2,d+2[ω, R] earlier in the photon case, C̃+
3,d+4[ω, R] is the only term left to evaluate here.

Spin-2 gravitons in even dimensions d � 4        For even-dimensional spacetimes, G̃+
d [ω, R] 

and C̃+
2,d+2[ω, R], for d  =  4  +  2n, have been obtained in equations (131) and (132). In the same 

way, with the analytic expression of C3,d given in equation  (168), its frequency transform 
C̃+

3,d+4[ω, R] can be computed straightforwardly,

C̃+
3,8+2n[ω, R] =Dn

R

(
eiωR

16π3R3(iω)2 − 3eiωR

16π3R4(iω)3 +
3eiωR

16π3R5(iω)4

)
− (2n + 1)!!ω2n+1

4(2π)n+3(ωR)2n+3

− (2n + 3)!!ω2n+1

2(2π)n+3(ωR)2n+5 ,
�

(196)

which, analogous to C̃+
2,d+2[ω, R], comprises the non-propagating modes associated with the 

acausal effect, as well as the propagating ones with the eiωR factor. Moreover, C̃+
3,8+2n[ω, R] 

turns out to be suppressed relative to G̃+
d [ω, R] and C̃+

2,d+2[ω, R] when |ω|R → ∞ (see equa-
tions (131) and (132)). More explicitly, at leading 1/(ωR) order, it behaves like

C̃+
3,8+2n[ω, R] =

(−1)n+1inω2n+1

2(2πωR)n+1 eiωR · 1
(2πωR)2

(
1 +O

[
1
ωR

])
.� (197)
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Hence, as inferred from the asymptotic behaviors of three scalar functions (133), (134) and 
(197), the pure causal one, G̃+

d [ω, R], is still the dominant contribution to the spin-2 effective 
Green’s function in the limit |ω|R � 1. In close analogy with the spin-1 case, the spin-2 GWs 
in the radiative zone is dominated by the first term of equation (195). That is, under the far-

zone assumptions |ω|r � 1 and rc/r � 1, the leading 1/r piece of G̃+
ijmn is given by

G̃+
ijmn[ω,�R] = PijmnG̃(+, fz)

4+2n [ω;�x,�x′]
(

1 +O
[

1
ωr

,
rc

r

])
,� (198)

where Pijmn, the far-zone ‘tt’ projector, is defined in equation (5) and G̃(+, fz)
4+2n  given in equa-

tion (136). Accordingly, as already alluded to in section 2, the spin-2 TT graviton Dij, in the 
far-zone radiative regime (r → ∞), reduces to the causal ‘tt’ GWs,

lim
r→∞

Dij → χtt
ij, χtt

ij[x] ≡ Pijmn

(
−16πGN

∫

Rd−1,1
ddx′ G(+, fz)

d [T;�x,�x′](a)Tmn[x′]
)

,� (199)

where G(+, fz)
d [T;�x,�x′], as before, denotes the far-zone version of the massless scalar Green’s 

function, which, for even d � 4, is given in equation (138) consisting of pure light-cone sig-
nals. This χtt

ij  is thus the tt projection of the far-zone de Donder-gauge solution of the metric 
perturbations, χtt

ij = Pijmnχmn[de Donder]. In other words, like the consequence of the far-
zone spin-1 field (137), the two distinct notions of ‘transverse-traceless’ metric perturbations, 
Dij = χTT

ij  and χtt
ij , are shown to coincide as r → ∞, where the acausal effect in Dij becomes 

sufficiently insignificant.

Spin-2 gravitons in odd dimensions d � 5        Following the similar procedures, we are able 
to extract the far-zone portion of the spin-2 GWs for odd dimensions as well. Odd-dimensional 
G̃+

d [ω, R] and C̃+
2,d+2[ω, R] for d  =  5  +  2n and positive frequencies can be obtained simply by 

replacing n → n + 1 in equations (139) and (140). And, given equation (172), C̃+
3,d+4[ω, R] can 

be tackled similarly to C̃+
2,d+2[ω, R],

C̃+
3,9+2n[ω > 0, R] =

iω2n+2

4(2πωR)n+3 H(1)
n+3[ωR]− 2n(n + 1)!ω2n+2

(2π)n+4(ωR)2n+4 − 2n+2(n + 2)!ω2n+2

(2π)n+4(ωR)2n+6 ,� (200)

which, as in the even-dimensional case, resembles the structure of C̃+
2,d+2[ω, R] in equa-

tion (140), and tends to be more suppressed than both G̃+
d [ω, R] and C̃+

2,d+2[ω, R] at leading 
1/(ωR) order. That is, as |ω|R � 1, the asymptotic behavior of C̃+

3,d+4[ω, R] reads

C̃+
3,9+2n[ω > 0, R] =

−iω2n+2

2(2πωR)n+ 3
2

ei(ωR− (n+1)π
2 −π

4 ) · 1
(2πωR)2

(
1 +O

[
1
ωR

]
+O

[
1

(ωR)n+ 1
2

])
,

� (201)

where the expression has been factorized into the leading 1/(ωR) piece of G̃+
5+2n[ω, R] times 

the suppression factor. Likewise, among the three scalar functions in equation (195), G̃+
d [ω, R] 

continues to be the dominant contribution in the limit |ω|R → ∞. As a result, the far-zone 
behavior of G̃+

ijmn[ω, R] here admits the same ‘tt’ structure as equation (198) for even d,

G̃+
ijmn[ω > 0,�R] = PijmnG̃(+, fz)

5+2n [ω;�x,�x′]
(

1 +O
[

1
ωr

,
rc

r

])
,� (202)

where G̃(+, fz)
5+2n  is given in equation (144) with n replaced by n  +  1; and Pijmn in equation (5). 

A similar line of arguments then reveals that the spin-2 TT graviton Dij, in odd dimensions 
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d � 5, also reduces to χtt
ij  as r → ∞, where the acausal nature of Dij becomes trivial; namely, 

the feature (199) still holds here, with odd-dimensional G(+, fz)
d  given in equation (145).

Linearized Riemann tensor        Through the analysis of the spin-2 effective Green’s func-
tion, we have just shown that, in the radiative limit, the spin-2 TT GWs in fact coincide with 
the tt ones, Dij → χtt

ij , for all spacetime dimensions d � 4. For this reason, the far-zone ver-
sion of the tidal forces (52) for all d � 4, as well as the statement (45), follows immediately 
from equation (187) and the fact that χtt

ij  is completely causal. This result can alternatively 
be derived from the expression (181) for δ1R0i0j, by repeatedly employing the replacement 
rule ∂i = −∂i′ = −R̂i∂0 and the conservation of the matter stress tensor in the intermedi-
ate steps before reaching the final far-zone expression. Furthermore, the far-zone connection 

between χtt
ij  and the synchronous-gauge metric χ(Synch)

ij  can be made via equation (46), where 

as explained in section 2 the initial conditions could be dropped for GW detectors sensitive 
to only finite frequencies. In particular, the fractional distortion spin-2 pattern of the laser 
interferometer, described in equation (41) are exclusively attributed to the causal χtt

ij . Such a 
characterization of the GW observables in terms of χtt

ij , however, is legitimate only when the 
GW detector is sufficiently far away from the matter sources.
Commutator of spin-2 gravitons        Earlier in this section, we have shown micro-causal-
ity is violated for the massless spin-1 photons (see equation (149)). A similar line of reasoning 
then reveals that the massless spin-2 graviton field violates micro-causality too. For, the tensor 
structure Cijmn in equation (155) is related to the commutator of the corresponding quantum 
operators via the relationship

[
Dij[x], Dmn[x′]

]
= −iCijmn[T ,�R].� (203)

The acausal nature of Cijmn immediately tells us that the massless spin-2 gravitons do not com-
mute at spacelike separations. Once again, it is likely that this violation of micro-causality is 
linked to the tension between gauge invariance and Lorentz covariance when constructing 
massless helicity-2 quantum Fock states.

5.  Spatially flat cosmologies with constant w

We now move on to the spatially-flat cosmological background, driven by a perfect fluid 
with a constant equation-of-state w. Again, we will consider both the electromagnetism and 
linearized gravitation cases, where the dynamics of the linearized gravitational system, unlike 
that of electromagnetism, has non-trivial dependence on w. In cosmology, there is no longer 
a time-translation symmetry, and the full analytic expressions for spin-1 and spin-2 effective 
Green’s functions may generally be difficult to attain. On the other hand, the background 
space-translation symmetry is still preserved, so the similar Fourier-space analysis exploited 
in Minkowski spacetime continues to apply in the cosmological setup. At a more technical 
level, the translation symmetry in space would still allow us to utilize the time-integral method 
to express the spin-1 and spin-2 effective Green’s functions in terms of the analytic solutions 
found in [12], so that the corresponding causal structures can be analyzed.

5.1.  Electromagnetism

We start with the electromagnetic field in the cosmological background spacetime, described 
by the metric (15) with χµν  set to zero, and our focus here will be the causal structure of the 
theory in the gauge-invariant content for all d � 3.
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Field equations        In spatially-flat cosmologies, the Maxwell’s equations (29), in terms of 
the gauge-invariant variables (34), are translated into a set of two independent field equations,

−
∂0

(
ad−4 α̇i

)
ad−4 + �∇2αi = −a2Γi,� (204)

�∇2Φ = −a2ρ.� (205)

Notice that the spatial components of equation (29) encode not only equation (204) but also 
the equation ∂0

(
ad−4 Φ

)
/ad−4 = a2Γ, which is in fact redundant, as is already implied by the 

Poisson’s equation (205) inserted into the conservation law of the charge current ∇µJµ = 0,

∂0
(
ad−2J0

)
ad−2 = ∂iJi.� (206)

Moreover, equations (204) and (205) together show that, except the re-scaling Jµ → a2Jµ, 
the theory is conformally invariant when d  =  4, and, like its Minkowski counterpart, only 
the spin-1 photon field αi admits dynamical wave solutions, with the scalar Φ still obeying a 
Poisson-type equation.
Spin-1 photons        To solve for the transverse spin-1 field αi in the cosmological system, 
we first re-write its wave equation (204) as

{
∂2 +

(d − 4)
4

(
(d − 4)H2 + 2Ḣ

)}(
a

d−4
2 αi

)
= −a

d
2 Γi,� (207)

where H ≡ ȧ/a, denoting the conformal Hubble parameter. Then, following the same manip-
ulations in Fourier space performed in Minkowski spacetime, we are able to express the spin-1 
field αi in terms of the following convolution based on equation (207),

a[η]
d−4

2 αi[η,�x] = −
∫

Rd−1
dd−1�x′

∫ ηf

ηp

dη′ a[η′]
d
2 G(γ,+)

ij [η, η′; R] Jj[η
′,�x′],� (208)

where the time interval of integration (ηp, ηf) covers all the possible values of η for an expand-

ing universe, and the spin-1 effective Green’s function G(γ,+)
ij  is given by

G(γ,+)
ij [η, η′;�R] = −Θ[T]C(γ)

ij [η, η′;�R],

C(γ)
ij [η, η′;�R] = δijC

(γ)
1,d [η, η′; R] + ∂i∂jC

(γ)
2,d [η, η′; R],

�
(209)

with C(γ)
1,d  and C(γ)

2,d , respectively, defined by

C(γ)
1,d [η, η′; R] ≡

∫

Rd−1

dd−1�k
(2π)d−1 C̃(γ)

1,d

[
η, η′; |�k|

]
ei�k·�R,� (210)

C(γ)
2,d [η, η′; R] ≡

∫

Rd−1

dd−1�k
(2π)d−1 C̃(γ)

1,d

[
η, η′; |�k|

] ei�k·�R

�k2
;� (211)

the Fourier transform of C(γ)
1,d  can be equivalently expressed in terms of the following 

decomposition,
C̃(γ)

1,d

[
η, η′; |�k|

]
= i

(
v(γ)
|�k|

[η] v(γ)∗
|�k|

[η′]− v(γ)∗
|�k|

[η] v(γ)

|�k|
[η′]

)
,� (212)

where v(γ)

|�k|
 are in fact the mode functions of the massless scalar field that satisfies the homo-

geneous (i.e. Γi = 0) form of the wave equation (207), the Fourier-space version of which 
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is therefore obeyed by v(γ)

|�k|
 itself and C̃(γ)

1,d ; moreover, v(γ)

|�k|
 have been normalized so that the 

initial condition imposed on the time derivative of C̃(γ)
1,d , namely ˙̃C

(γ)

1,d

∣∣
η=η′ = 1, coincides 

with the Wronskian condition for the mode functions, v(γ)

|�k|
v̇(γ)∗
|�k|

− v(γ)∗
|�k|

v̇(γ)
|�k|

= i. In this lan-
guage, the properties of C(γ)

1,d  and C(γ)
2,d  become more transparent. Specifically, both of the 

scalar functions obey the homogeneous wave equation associated with the wave operator in 

equation (207), and the equal-time initial conditions for C(γ)
1,d , C(γ)

2,d , and their velocities, can be 

immediately read off,

C(γ)
1,d

∣∣
η=η′ = C(γ)

2,d

∣∣
η=η′ = 0,� (213)

Ċ(γ)
1,d

∣∣
η=η′ = −∂η′C(γ)

1,d

∣∣
η=η′ = δ(d−1)[�x −�x′],� (214)

Ċ(γ)
2,d

∣∣
η=η′ = −∂η′C(γ)

2,d

∣∣
η=η′ = −G(E)

d [R].� (215)

It turns out that C(γ)
1,d  and C(γ)

2,d  are the cosmological generalization of their Minkowski counter-

parts (74) and (75), and C(γ)
ij  is connected to the commutator of the massless spin-1 photons 

in the cosmological background,
[
αi[x],αj[x′]

]
= −iC(γ)

ij [η, η′;�R].� (216)

When specializing to the constant-w cosmologies considered in this section, where 
H = 2/(qwη) with (ηp, ηf) = (−∞, 0) for w < −(d − 3)/(d − 1) and (ηp, ηf) = (0,∞) 
for w > −(d − 3)/(d − 1), the analytic solution of the massless scalar Green’s func-

tion G(γ,+)
d = −Θ[T]C(γ)

1,d  for d � 3 has been derived in [12] via Nariai’s ansatz (see equa-

tions  (205) and (206) of [12]), instead of computing equation  (210); the result shows that 

G(γ,+)
d  contains pure causal signals propagating either on or inside the light cone. Since C(γ)

1,d  

is known, we may employ the time integral method to compute C(γ)
2,d  without resorting to tack-

ling the integral in equation (211) directly. The homogeneous counterpart of equations (207) 

together with the relation −�∇2C(γ)
2,d = C(γ)

1,d  leads us to

−∂η

(
a2α ∂η

(
a−α C(γ)

2,d

))

aα
= C(γ)

1,d , α =
d − 4

2
.

� (217)

With the initial conditions (213) and (215), we are able to write down

C(γ)
2,d [η, η′; R] =− a[η]

d−4
2

∫ η

η′
dη2 a[η2]

−(d−4)
∫ η2

η′
dη1 a[η1]

d−4
2 C(γ)

1,d [η1, η′; R]

− G(E)
d [R]

(
a[η]
a[η′]

) d−4
2
∫ η

η′
dη1

(
a[η′]
a[η1]

)d−4

.

�

(218)

If we only consider the retarded piece (η > η′) of C(γ)
2,d , then as explained in section 4 since 

C(γ)
1,d [η, η′; R] is strictly causal (i.e. its retarded part is proportional to Θ[T − R−]), the first term 

of equation (218) would in turn yield a strictly causal contribution. Whereas the second term 
is a smooth function of spacetime, consisting of the signals that pervade all physical space-
time points with η > η′ , including the region outside the light cone. Hence, the time-integral 
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method has cleanly elucidated the causal structure of C(γ)
2,d , even if the integrals cannot be 

performed in closed form: acausality is present for all d � 3 and is encoded only in the second 
term of equation (218). Moreover, it also implies the spin-1 quantum operator violates micro-
causality in constant-w cosmologies (see equation (216)).

Scalar        The Poisson’s equation (205) for scalar Φ can be solved immediately by utiliz-
ing the Euclidean Green’s function,

Φ[η,�x] =
∫

Rd−1
dd−1�x′ a[η]2G(E)

d [R] J0[η,�x′],� (219)

which, except for the factor a[η]2, is precisely the same as its Minkowski counterpart (115). 
This in turn implies that, despite the distinct waveforms of the spin-1 field in cosmology, the 
acausal portion of its velocity must take such a simple form to ensure a causal electric field, 
as we will demonstrate below.
Faraday tensor        Let us now turn to the causal structure of the Faraday tensor Fµν  
within the cosmological context, where Fµν  in the gauge-invariant formalism still takes the 
form of equation (35). To make the causality analysis more transparent, we first re-cast the 
spin-1 photon field (208) in the following convolution that involves both time and spatial 
components of the electric current Jµ,

αi[η,�x] = −
∫

Rd−1
dd−1�x′

∫ ηf

ηp

dη′ a[η]−
d−4

2 a[η′]
d
2

(
G(γ,+)

d Ji[η
′,�x′]

+ Θ[T] a[η′]
d−4

2 ∂η′

(
a[η′]−

d−4
2 ∂iC

(γ)
2,d

)
J0[η

′,�x′]
)

,
�

(220)

where we have employed the conservation law (206) and removed the boundary terms that 
arise from integration by parts20. The resulting expression is in fact the cosmological gener-
alization of equation (118), and notice that, due to the lack of time-translation symmetry, the 

time derivative of C(γ)
1,d  or C(γ)

2,d  with respect to η′ cannot simply be replaced with the negative 

of that with respect to η.
Start with the (ij) components of Fµν . Taking the spatial curl of either equation  (208) 

or equation  (220) gives rise to the magnetic field in the cosmological background (see 
equation (35)),

Fij[η,�x] = 2∂[iαj] = −2
∫

Rd−1
dd−1�x′

∫ ηf

ηp

dη′ a[η]−
d−4

2 a[η′]
d
2 ∂[iG

(γ,+)
d Jj][η

′,�x′],

� (221)
which is completely causal for d � 3, since the acausal effect of the spin-1 photons, encap-
sulated in the second term of equation  (208) or equation  (220), is eliminated by the curl 
operation here—as was the case in the Minkowski background. Next, to obtain the electric 
field F0i, we first compute the velocity of the spin-1 field by taking the time derivative of equa-

tion (220), with the expression (218) substituted for C(γ)
2,d ,

20 With the assumption that the electric current is sufficiently localized, the boundary contributions evaluated at spa-
tial infinity are zero, whereas the ones at past infinity, namely at η′ = −∞ for w < −(d − 3)/(d − 1) and η′ = 0 
for w > −(d − 3)/(d − 1), still require further justification. However, those boundary terms at past infinity are in 

fact the surface integrals of C(γ)
2,d  at η′ = −∞ or η′ = 0, indicating the fact that they satisfy the homogeneous wave 

equation and do not alter the exact inhomogeneous solution to the spin-1 wave equation. We hope to clarify this 
issue further in our later work.
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α̇i[η,�x] =−
∫

Rd−1
dd−1�x′

∫ ηf

ηp

dη′ a[η]−
d−4

2 a[η′]
d
2

{(
Ġ(γ,+)

d [η, η′; R]− (d − 4)
qwη

G(γ,+)
d [η, η′; R]

)
Ji[η

′,�x′]

+

(
a[η′]
a[η]

) d−4
2

∂η′

(
a[η′]−

d−4
2

∫ η

η′
dη1 a[η1]

d−4
2 ∂iG

(γ,+)
d [η1, η′; R]

)
J0[η

′,�x′]

}

−
∫

Rd−1
dd−1�x′ a[η]2∂iG

(E)
d [R]J0[η,�x′],

�
(222)

where the spacetime integral involving G(γ,+)
d  is purely causal, whereas the last term is an 

acausal instant-time-surface integral. Then, summing the expression (222) for α̇i and the gra-
dient of Φ in equation (219) amounts to canceling the acausal term in the last line of equa-
tion (222), and yields the purely causal electric field F0i,

F0i[η,�x] =α̇i[η,�x] + ∂iΦ[η,�x]

=−
∫

Rd−1
dd−1�x′

∫ ηf

ηp

dη′ a[η]−
d−4

2 a[η′]
d
2

{(
Ġ(γ,+)

d [η, η′; R]− (d − 4)
qwη

G(γ,+)
d [η, η′; R]

)
Ji[η

′,�x′]

+

(
a[η′]
a[η]

) d−4
2

∂η′

(
a[η′]−

d−4
2

∫ η

η′
dη1 a[η1]

d−4
2 ∂iG

(γ,+)
d [η1, η′; R]

)
J0[η

′,�x′]

}
.

�

(223)

This result extends equation (122) to the cosmological context; i.e. the electric field is still the 
causal piece of the velocity of the spin-1 photon αi. Furthermore, as a simple check of consis-
tency, one can show equation (223) does reduce to its Minkowski counterpart (121), by setting 

a → 1 and assuming G(γ,+)
d  takes its Minkowski form G+

d  with time-translation symmetry.
Although we have shown explicitly that causality is preserved for the electromagnetic 

observables in constant-w spatially-flat cosmologies, the second line of equation (223) still 
involves a time integral from some initial time η′ to the present η. However, by introducing a 

new Green’s function G(γ|time,+)
d  obeying

{
∂2 +

(d − 4) (qw + d − 4)
q2

wη
2

}
G(γ|time,+)

d [η, η′; R] = δ(d)[x − x′],� (224)

the effective Green’s function of F0i in equation (223) can be further reduced to a localized 
form,

F0i[η,�x] = −
∫

Rd−1
dd−1�x′

∫ ηf

ηp

dη′ a[η]−
d−4

2 a[η′]
d
2

{(
Ġ(γ,+)

d [η, η′; R]

− (d − 4)
qwη

G(γ,+)
d [η, η′; R]

)
Ji[η

′,�x′]− ∂iG
(γ|time,+)
d [η, η′; R]J0[η

′,�x′]

}
.

�
(225)

We will leave the detailed derivation of equation  (225) to our future work [13]. It turns 
out that the result (225) is exactly consistent with F0i computed directly using the solu-
tion of the generalized Lorenz-gauge vector potential Aµ in [12]; the analytic solutions of 

G(γ,+)
d = −Θ[T]G(γ|space) and G(γ|time,+)

d = −Θ[T]G(γ|time) can be found in equations (B38), 
(B39), (B40), and (B41) of [12].
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5.2.  Linearized gravitation

Linearized gravity coupled to the isolated astrophysical sources in cosmology is, in fact, a 
more sophisticated system, due to the additional first-order perturbations of the very fluid driv-
ing cosmic expansion. A detailed analysis of this linearized gravitational system, described 
in terms of the perturbed metric (15), has been performed in [12] within a constant equa-
tion-of-state universe, where the background perfect fluid is modeled through an effective 
field theory description. As explicitly demonstrated in [12], the field equations for the gauge-
invariant metric perturbations, deduced from the full linearized Einstein’s equations, can be 
put in a decoupled form with no perturbed fluid quantities involved. The set of resulting equa-
tions then reveals that the dynamics of Bardeen scalar potentials varies in different ranges of 
the equation-of-state w. Here, we will focus on the causal structure of the system in the de 
Sitter (w  =  −1) and relativistic-fluid (0 < w � 1) cases for all d � 4.

Field equations        In terms of the gauge-invariant variables formed in equations (25), 
(26), and (27), the relevant equations are derived from Einstein’s equations of this cosmologi-
cal system, linearized about the spatially-flat background with a constant equation-of-state 
w. Based on the results obtained in [12], the character of the decoupled field equation of the 
Bardeen scalar Ψ for w  =  −1 is distinct from the 0 < w � 1 case. Hence, in what follows, we 
will consider these two cases separately.

Field equations for w  =  −1        When w  =  −1, there is no fluid and the background geom-
etry is de Sitter spacetime. The corresponding gauge-invariant equations are given by equa-
tions (28) and (151), both of which remain unchanged, and

(d − 2)�∇2Ψ = 8πGN

(
ρ+ (d − 1)HΣ

)
,� (226)

−D̈ij − (d − 2)HḊij + �∇2Dij = a2 �
(S)

Dij

≡
a2 ∂µ

(√
|g|gµν∂νDij

)
√
|g|

= −16πGNσij,
�

(227)

where g  denotes the determinant of the background metric gµν = a2ηµν, the scale factor is 
a[η] = −1/(Hη), with H denoting the constant Hubble parameter, and the conformal Hubble 
parameter reads H = −1/η. Compared with their Minkowski counterparts (150) and (152), 
both Ψ and Dij retain similar dynamics in the de Sitter case here; the Bardeen scalar Ψ still 
obeys a Poisson-type equation, sourced not only by the local energy density ρ , but also by the 
non-local longitudinal part Σ of (a)T0i, while the spin-2 field Dij obeys a tensor wave equa-
tion in de Sitter background.

Field equations  for 0 < w � 1        For a physical relativistic equation-of-state within 
the range 0 < w � 1, the field equations (28), (151), and (227) still hold with H = 2/(qwη)
—recall equation (16)—but the Bardeen scalar Ψ now obeys a dynamical wave-like equa-
tion [12], instead of being governed by a Poisson-type one21,

21 The left-hand side of equation (228) can also be re-expressed in terms of the d’Alembertian (Ψ)� associated with

(Ψ)gµνdxµdxν =

(
η

η0

) 4(qw+d−2)
(d−2)qw (

−dη2 + w−1d�x · d�x
)

.

See equation (128) of [12].
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−Ψ̈−
(
qw + d − 2

)
HΨ̇ + w�∇2Ψ = −8πGN

(
∂0

(
ad−2Σ

)
(d − 2)ad−2 − wρ

(d − 2)
+HΥ̇

)
,

�

(228)

which implies the existence of the acoustic cone, 
√

w T = R, on which these scalar gravita-
tional signals propagate at speed 

√
w. It is worth noting that there exists no counterpart of this 

phenomenon in Minkowski and de Sitter spacetimes; this change in the character of the scalar 
equation for Ψ is presumably tied to the dynamics of the background fluid.

In addition, as we have already noticed from our previous calculations, the energy-momen-
tum conservation of the astrophysical sources, ∇µ (a)Tµν = 0, where ∇µ is the covariant 
derivative associated with the background metric, will be crucial in extracting the relevant 
effective Green’s functions and their causal structures. For later convenience, in spatially-flat 
cosmologies, the conservation law can be re-expressed as

∂i
(a)Tij =

∂0
(
ad−2 (a)T0j

)
ad−2 ,� (229)

∂j
(a)T0j =

∂0
(
ad−2 (a)T00

)
ad−2 −H

(
(a)T00 − (a)Tll

)
.� (230)

Spin-2 gravitons        The spin-2 wave equation for either w  =  −1 or 0 < w � 1 takes the 
same form as equation (227) with H = 2/(qwη); therefore, for both cases, the method used 
in the previous photon computation can be applied directly to solving equation (227) via the 
spin-2 effective Green’s function convolved against the local matter sources.

The first step is to re-cast the tensor wave equation (227) into a conformal re-scaled form,
{
∂2 +

(d − 2) (d − 2 − qw)

q2
wη

2

}(
a

d−2
2 Dij

)
= −16πGNa

d−2
2 σij,� (231)

and then, a similar procedure of implementing the local Fourier-space projection of equa-
tion (231) leads us to the following convolution for the spin-2 gravitons,

a[η]
d−2

2 Dij[η,�x] = −16πGN

∫

Rd−1
dd−1�x′

∫ ηf

ηp

dη′ a[η′]
d−2

2 G(g,+)
ijmn [η, η′; R](a)Tmn[η

′,�x′],� (232)

where the time interval (ηp, ηf) corresponds to (−∞, 0) for w  =  −1 and (0,∞) for 0 < w � 1, 

and G(g,+)
ijmn  refers to the spin-2 effective Green’s function,

G(g,+)
ijmn [η, η′;�R] = −Θ[T]C(g)

ijmn[η, η′;�R],

C(g)
ijmn[η, η′;�R] =

(
δm(iδj)n −

δijδmn

d − 2

)
C(g)

1,d [η, η′; R] +
(
δm(i∂j)∂n + δn(i∂j)∂m

−
δij∂m∂n − δmn∂i∂j

d − 2

)
C(g)

2,d [η, η′; R] +
(

d − 3
d − 2

)
∂i∂j∂m∂nC(g)

3,d [η, η′; R],

� (233)
which has the same tensor structure as equation (155), with the scalar functions C(g)

1,d, C(g)
2,d, and 

C(g)
3,d generalized to their cosmological versions,

C(g)
1,d [η, η′; R] ≡

∫

Rd−1

dd−1�k
(2π)d−1 C̃(g)

1,d

[
η, η′; |�k|

]
ei�k·�R,� (234)

C(g)
2,d [η, η′; R] ≡

∫

Rd−1

dd−1�k
(2π)d−1 C̃(g)

1,d

[
η, η′; |�k|

] ei�k·�R

�k2
,� (235)
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C(g)
3,d [η, η′; R] ≡

∫

Rd−1

dd−1�k
(2π)d−1 C̃(g)

1,d

[
η, η′; |�k|

] ei�k·�R

�k4
;� (236)

the Fourier transform of C(g)
1,d is denoted by C̃(g)

1,d. For G(g,+)
ijmn  to be a Green’s function, the C(g)s 

in equations (233) must obey the homogeneous version of equation (231). This implies, for 
instance,

C̃(g)
1,d

[
η, η′; |�k|

]
= i

(
v(g)
|�k|

[η] v(g)∗
|�k|

[η′]− v(g)∗
|�k|

[η] v(g)
|�k|

[η′]
)

,� (237)

where v(g)
|�k|

 are the mode functions obeying the same homogeneous wave equation as C̃(g)
1,d, and 

are normalized to match the Wronskian condition v(g)
|�k|

v̇(g)∗
|�k|

− v(g)∗
|�k|

v̇(g)
|�k|

= i , or the initial con-

dition ˙̃C
(g)

1,d

∣∣
η=η′ = 1. Furthermore, because their Fourier transforms indicate −�∇2C(g)

3,d = C(g)
2,d  

and −�∇2C(g)
2,d = C(g)

1,d , the homogeneous equations  for C(g)
1,d, C(g)

2,d, and C(g)
3,d translate to the 

relations:

−∂η

(
a2α ∂η

(
a−α C(g)

2,d

))

aα
= C(g)

1,d ,
� (238)

−∂η

(
a2α ∂η

(
a−α C(g)

3,d

))

aα
= C(g)

2,d , α =
d − 2

2
.

� (239)

We may now apply the time-integral method here to relate C(g)
2,d and C(g)

3,d to C(g)
1,d, without evalu-

ating their Fourier transform integrals, since C(g)
1,d itself has already been derived in [12] (see 

equations (112) and (113) therein). As we shall witness, this will also yield a clean elucidation 
of their causal structure. To this end, note that the initial conditions for the C(g)s at η = η′  may 
be identified from their Fourier transforms and the anti-symmetric nature of the mode decom-
position in equation (237):

C(g)
1,d

∣∣
η=η′ = C(g)

2,d

∣∣
η=η′ = C(g)

3,d

∣∣
η=η′ = 0,� (240)

Ċ(g)
1,d

∣∣
η=η′ = −∂η′C(g)

1,d

∣∣
η=η′ = δ(d−1)[�x −�x′],� (241)

Ċ(g)
2,d

∣∣
η=η′ = −∂η′C(g)

2,d

∣∣
η=η′ = −G(E)

d [R],� (242)

Ċ(g)
3,d

∣∣
η=η′ = −∂η′C(g)

3,d

∣∣
η=η′ = Dd[R].� (243)

With equations (240), (242) and (243) imposed, C(g)
2,d and C(g)

3,d can both be expressed in terms 

of (the known) C(g)
1,d by integrating equations (238) and (239),

C(g)
2,d [η, η′; R] =− a[η]

d−2
2

∫ η

η′
dη2 a[η2]

−(d−2)
∫ η2

η′
dη1 a[η1]

d−2
2 C(g)

1,d [η1, η′; R]

− G(E)
d [R]

(
a[η]
a[η′]

) d−2
2
∫ η

η′
dη1

(
a[η′]
a[η1]

)d−2

,

�

(244)
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C(g)
3,d [η, η′; R] =a[η]

d−2
2

∫ η

η′
dη4 a[η4]

−(d−2)
∫ η4

η′
dη3 a[η3]

d−2
∫ η3

η′
dη2 a[η2]

−(d−2)
∫ η2

η′
dη1 a[η1]

d−2
2 C(g)

1,d [η1, η′; R]

+ G(E)
d [R]

(
a[η]
a[η′]

) d−2
2
∫ η

η′
dη3 a[η3]

−(d−2)
∫ η3

η′
dη2 a[η2]

d−2
∫ η2

η′
dη1

(
a[η′]
a[η1]

)d−2

+ Dd[R]
(

a[η]
a[η′]

) d−2
2
∫ η

η′
dη1

(
a[η′]
a[η1]

)d−2

.

�

(245)

Although the integrals in the first lines of equations (244) and (245) can be difficult to carry 

out, just like equation (218) for C(γ)
2,d , the causal structures of these expressions can still be 

readily identified. Firstly, the retarded portion of C(g)
1,d, or equivalently G(g,+)

d = −Θ[T]C(g)
1,d, 

is composed only of the causal signals [12]. Then, as already discussed in section 4, the first 

terms of both equations (244) and (245) are causal as well when η > η′; whereas the remain-

ing terms of C(g)
2,d and C(g)

3,d, associated with their initial conditions, being non-zero for all 

η > η′ , admit contributions from outside the light cone. For this reason, we see that, after 
plugging equations (244) and (245) into equation (233), the spin-2 effective Green’s function 

G(g,+)
ijmn  is acausal for all d � 4.
At the quantum level, therefore, the free massless spin-2 operator Dij necessarily violates 

micro-causality in spatially flat cosmologies:

[Dij[x], Dmn[x′]] = −iC(g)
ijmn[η, η′;�R].� (246)

For later convenience, the expression (232) for spin-2 gravitons can be re-cast into another 
form analogous to their Minkowski counterpart (182),

Dij[η,�x] = − 16πGN

∫

Rd−1
dd−1�x′

∫ ηf

ηp

dη′
(

a[η′]
a[η]

) d−2
2
{

G(g,+)
d

(
(a)Tij[η

′,�x′]−
δij

d − 2
(a)Tll[η

′,�x′]
)

+ 2Θ[T]a[η′]
d−2

2 ∂η′

(
a[η′]−

d−2
2 ∂(iC

(g)
2,d

)
(a)Tj)0[η

′,�x′] +
δij

d − 2
Θ[T]a[η′]

d−2
2

×
(
∂2
η′

(
a[η′]−

d−2
2 C(g)

2,d

)
(a)T00[η

′,�x′] +H[η′] ∂η′

(
a[η′]−

d−2
2 C(g)

2,d

)(
(a)T00[η

′,�x′]− (a)Tll[η
′,�x′]

))

+
1

d − 2
Θ[T]∂i∂jC

(g)
2,d

(a)Tll[η
′,�x′]−

(
d − 3
d − 2

)
Θ[T]a[η′]

d−2
2

(
∂2
η′

(
a[η′]−

d−2
2 ∂i∂jC

(g)
3,d

)
(a)T00[η

′,�x′]

+H[η′] ∂η′

(
a[η′]−

d−2
2 ∂i∂jC

(g)
3,d

)(
(a)T00[η

′,�x′]− (a)Tll[η
′,�x′]

))}

+
16πGN

d − 2

∫

Rd−1
dd−1�x′

(
δijG

(E)
d

(a)T00[η,�x′] + (d − 3)∂i∂jDd
(a)T00[η,�x′]

)
,

�

(247)

where (a)Tll ≡ δij (a)Tij , and we have used the conservation laws given in equations (229) and 
(230) as well as the initial conditions (240), (242) and (243), and removed all the boundary 
contributions that result from integrations by parts22. The convolution in equation (247) now 
involves different components of (a)Tµν  from that in equation (232). Below, the former would 

22 Similar to the spin-1 case, the surface integrals upon integration by parts always involve C(g)
2,d and C(g)

3,d; therefore, 
when evaluated at past infinity, i.e. η′ = −∞ for w  =  −1 or η′ = 0 for 0 < w � 1, those terms obey the spin-2 
homogeneous wave equation and will not change the inhomogeneous solution obtained here.
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help us identify how the acausal portions of the spin-2 contribution to the Weyl tensor are 
canceled by those from other gauge-invariant variables.
Bardeen scalars        Unlike the spin-2 gravitons, the field equation for the Bardeen scalar Ψ no 
longer takes an universal form for both w  =  −1 and 0 < w � 1, which will be solved separately 
for each case in the following. Once the solution of Ψ is obtained, the other Bardeen scalar poten-
tial Φ, related to Ψ via the formula in equation (28), is given immediately by equation (175).

Solutions for w  =  −1        In de Sitter background (w  =  −1), the Poisson-type equation (226) 
obeyed by Ψ involves a non-local function Σ of the matter source (see equation (21)), whose 
momentum-space counterpart for �k �= �0  reads

Σ̃[η,�k] =
kj

i�k2
(a)T̃0j[η,�k].� (248)

Once again, the solution to equation (226) can be readily derived by implementing the Fourier 
transform of equation (226) with equation (248),

Ψ[η,�x] =
8πGN

d − 2

∫

Rd−1
dd−1�x′

(
G(E)

d [R](a)T00[η,�x′] + (d − 1)H[η] ∂jDd[R](a)T0j[η,�x′]
)

,� (249)

which is again the weighted superposition of local source terms over the equal-time 
hypersurface.

Solutions for 0 < w � 1        When 0 < w � 1, the Bardeen scalar Ψ becomes dynamical in 
the sense of being governed by the wave equation (228), from which we see that the propaga-
tion of scalar GWs is in general different than that of the spin-2 ones. However, the strategy of 
solving the spin-2 wave equation in light of causality still applies here for Ψ-waves.

In the same vein, the scalar wave equation (228) can firstly be re-written as a re-scaling 
form,
{
∂2
(w)+

(d − 2) (qw + d − 2)
q2

wη
2

}(
a

1
2 (qw+d−2)Ψ

)

= −8πGN a
1
2 (qw+d−2)

(
∂0

(
ad−2Σ

)
(d − 2)ad−2 − wρ

(d − 2)
+HΥ̇

)
,

�

(250)

where ∂2
(w) ≡ −∂2

η + w�∇2. Then, using equations (174) and (248) through the same proce-
dure employed for the spin-2 wave equation, we have

a[η]
1
2 (qw+d−2)Ψ[η,�x] =

8πGN

d − 2

∫

Rd−1
dd−1�x′

∫ ∞

0
dη′ Θ[T]a[η′]

1
2 (qw+d−2)

× w− d−3
2

{
− ∂jC

(w)
2,d

[
η, η′; R√

w

]
a[η′]−(d−2)∂η′

(
a[η′]d−2 (a)T0j[η

′,�x′]
)
− C(w)

1,d

[
η, η′; R√

w

]
(a)T00[η

′,�x′]

+H[η′]

(
(d − 1)w ∂i∂jC

(w)
3,d

[
η, η′; R√

w

]
(a)Ṫij[η

′,�x′] + C(w)
2,d

[
η, η′; R√

w

]
(a)Ṫll[η

′,�x′]
)}

,

�

(251)

where the scalar functions C(w)
1,d , C(w)

2,d , and C(w)
3,d , respectively, are defined in a manner similar to 

equations (234), (235), and (236),

C(w)
1,d

[
η, η′; R√

w

]
≡ w

d−1
2

∫

Rd−1

dd−1�k
(2π)d−1 C̃(w)

1,d

[
η, η′;

√
w|�k|

]
ei�k·�R,� (252)
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C(w)
2,d

[
η, η′; R√

w

]
≡ w

d−3
2

∫

Rd−1

dd−1�k
(2π)d−1 C̃(w)

1,d

[
η, η′;

√
w|�k|

] ei�k·�R

�k2
,� (253)

C(w)
3,d

[
η, η′; R√

w

]
≡ w

d−5
2

∫

Rd−1

dd−1�k
(2π)d−1 C̃(w)

1,d

[
η, η′;

√
w|�k|

] ei�k·�R

�k4
,� (254)

in which C̃(w)
1,d  represents the Fourier transform of C(w)

1,d  with respect to �R/
√

w , and it obeys 

the Fourier-transformed homogeneous wave equation of equation  (250) with initial condi-

tions specified by C̃(w)
1,d

∣∣
η=η′ = 0 and ˙̃C

(w)

1,d

∣∣
η=η′ = −∂η′ C̃(w)

1,d

∣∣
η=η′ = 123. Analogous to equa-

tions (212) and (237), C̃(w)
1,d  admits the following decomposition in terms of the mode functions 

v(w)
√

w|�k|
 that obey the same homogeneous wave equation in momentum space,

C̃(w)
1,d

[
η, η′;

√
w|�k|

]
= i

(
v(w)
√

w|�k|
[η] v(w)∗

√
w|�k|

[η′]− v(w)∗
√

w|�k|
[η] v(w)

√
w|�k|

[η′]
)

,� (255)

where the Wronskian condition, v(w)
√

w|�k|
v̇(w)∗
√

w|�k|
− v(w)∗

√
w|�k|

v̇(w)
√

w|�k|
= i, is fulfilled to be consis-

tent with the initial condition ˙̃C
(w)

1,d

∣∣
η=η′ = 1. By construction, these C(w)s are solutions to the 

homogeneous version of equation (250). Moreover, their equal-time initial conditions may be 
readily identified,

C(w)
1,d

∣∣
η=η′ = C(w)

2,d

∣∣
η=η′ = C(w)

3,d

∣∣
η=η′ = 0,� (256)

Ċ(w)
1,d

∣∣
η=η′ = −∂η′C(w)

1,d

∣∣
η=η′ = w

d−1
2 δ(d−1)[�x −�x′],� (257)

Ċ(w)
2,d

∣∣
η=η′ = −∂η′C(w)

2,d

∣∣
η=η′ = −w

d−3
2 G(E)

d [R],� (258)

Ċ(w)
3,d

∣∣
η=η′ = −∂η′C(w)

3,d

∣∣
η=η′ = w

d−5
2 Dd[R].� (259)

Exploiting their Fourier representations to observe that −w�∇2C(w)
2,d = C(w)

1,d  and 

−w�∇2C(w)
3,d = C(w)

2,d , we see that the homogeneous cousins of equation (250) are

−∂η

(
a2α ∂η

(
a−α C(w)

2,d

))

aα
= C(w)

1,d ,
� (260)

−∂η

(
a2α ∂η

(
a−α C(w)

3,d

))

aα
= C(w)

2,d , α = −d − 2
2

.
� (261)

23 The factor of w appearing in equation (252) has been arranged such that the corresponding massless scalar 

Green’s function, G(w,+)
d = −Θ[T]C(w)

1,d  with re-scaled coordinates (η,�y) ≡ (η,�x/
√

w), obeys the wave equation
{
− ∂2

η +
(d − 2) (qw + d − 2)

q2
wη

2 + �∇2
�y

}
G(w,+)

d [η, η′; |�y −�y′|] = δ[η − η′]δ(d−1)[�y −�y′],

where �∇2
�y  is the spatial Laplacian with respect to �y . The analytic solution of G(w,+)

d  for 0 < w � 1 has been obtained 
in [12].
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At this point we may integrate these equations to express C(w)
2,d  and C(w)

3,d  in terms of C(w)
1,d , which 

had been derived analytically in [12] (see equations (131) and (132) of [12]). The resulting 
expressions are

C(w)
2,d

[
η, η′; R√

w

]
=− a[η]−

d−2
2

∫ η

η′
dη2 a[η2]

d−2
∫ η2

η′
dη1 a[η1]

− d−2
2 C(w)

1,d

[
η1, η′; R√

w

]

− w
d−3

2 G(E)
d [R]

(
a[η′]
a[η]

) d−2
2
∫ η

η′
dη1

(
a[η1]

a[η′]

)d−2

,
�

(262)

C(w)
3,d

[
η, η′; R√

w

]
=a[η]−

d−2
2

∫ η

η′
dη4 a[η4]

(d−2)
∫ η4

η′
dη3 a[η3]

−(d−2)

×
∫ η3

η′
dη2 a[η2]

(d−2)
∫ η2

η′
dη1 a[η1]

− d−2
2 C(w)

1,d

[
η1, η′; R√

w

]

+ w
d−3

2 G(E)
d [R]

(
a[η′]
a[η]

) d−2
2
∫ η

η′
dη3 a[η3]

d−2
∫ η3

η′
dη2 a[η2]

−(d−2)
∫ η2

η′
dη1

(
a[η1]

a[η′]

)d−2

+ w
d−5

2 Dd[R]
(

a[η′]
a[η]

) d−2
2
∫ η

η′
dη1

(
a[η1]

a[η′]

)d−2

,

�

(263)

which bear close resemblance to equations (244) and (245). The retarded part of C(w)
1,d , or the 

massless scalar Green’s function G(w,+)
d = −Θ[T]C(w)

1,d , has been shown to contain only the 

causal scalar GW signals propagating either on or within the acoustic cone [12]. Applying the 
arguments in section 4—the first terms of equations (262) and (263) are causal when η > η′  

because C(w)
1,d  is; while the rest of the terms are non-zero both inside and outside the light cone 

of (η′,�x′). The Bardeen scalar Ψ is therefore acausal for all relevant spacetime dimensions 
(see equation (251)).

Alternatively, we can perform integration-by-parts and employ the energy-momentum con-

servation laws (229) and (230), as well as the properties of C(w)
2,d  and C(w)

3,d , to re-express the 

effective Green’s function of Ψ in equation (251) as

Ψ[η,�x] =
8πGN

d − 2

∫

Rd−1
dd−1�x′

∫ ∞

0
dη′

(
a[η′]
a[η]

) 1
2 (qw+d−2)

w− d−3
2

{
G(w,+)

d
(a)T00[η

′,�x′]

−Θ[T]a[η′]−
1
2 (qw+d−2)∂η′

(
a[η′]

1
2 (qw+d−2)H[η′]C(w)

2,d

)
(a)Tll[η

′,�x′] + (d − 2)Θ[T]a[η′]−
1
2 (qw−d+2)

× ∂η′

(
a[η′]

1
2 (qw−d+2)H[η′]C(w)

2,d

)
(a)T00[η

′,�x′] + (d − 2)Θ[T]H[η′]2 C(w)
2,d

(
(a)T00[η

′,�x′]− (a)Tll[η
′,�x′]

)

−Θ[T]a[η′]−
1
2 (qw−d+2)∂η′

(
a[η′]−(d−2)∂η′

(
a[η′]

1
2 (qw+d−2) C(w)

2,d

))
(a)T00[η

′,�x′]

−Θ[T]a[η′]−
1
2 (qw+d−2)H[η′]∂η′

(
a[η′]

1
2 (qw+d−2) C(w)

2,d

)(
(a)T00[η

′,�x′]− (a)Tll[η
′,�x′]

)

− w(d − 1)Θ[T]a[η′]−
1
2 (qw−d+2)∂2

η′

(
a[η′]−(d−2)∂η′

(
a[η′]

1
2 (qw+d−2)H[η′]C(w)

3,d

))
(a)T00[η

′,�x′]

− w(d − 1)Θ[T]a[η′]−
1
2 (qw−d+2)H[η′]∂η′

(
a[η′]−(d−2)∂η′

(
a[η′]

1
2 (qw+d−2)H[η′]C(w)

3,d

))(
(a)T00[η

′,�x′]

−(a)Tll[η
′,�x′]

)}
+

8πGN

d − 2

∫

Rd−1
dd−1�x′

(
G(E)

d
(a)T00[η,�x′] + (d − 1)H[η]∂jDd

(a)T0j[η,�x′]
)

,

�

(264)
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where all the boundary terms that arise from the integrations by parts have been discarded24. 
This form shows more transparently the convolution with the local matter stress-energy ten-
sor, and will be used for our later analysis of the physical observables.

Vector potential        According to [12], the vector mode Vi, in de Sitter space (w  =  −1), 
obeys the Poisson-type equation (151), while for 0 < w � 1, if perturbations are assumed to 
be negligible in the far past, then the same vector equation, i.e. equation (151), is satisfied as 
well. Therefore, in both cases, the solution of Vi is that in equation (178).

Linearized Weyl tensor        As we have discussed in section 2, the linearized Riemann 
tensor in the cosmological background is no longer gauge invariant due to its non-zero back-
ground value. In cosmological spacetimes, which are conformally flat, the causal and gauge-
invariant counterpart to the linearized Riemann in flat spacetimes is the linearized Weyl tensor 
δ1Cµ

ναβ. More specifically, since the Weyl tensor Cµ
ναβ is conformally invariant, it is zero 

when evaluated on the unperturbed cosmological geometry gµν = a2ηµν and must therefore 
be gauge-invariant at first order in χµν . Furthermore, its exact wave equation is simply the 
traceless part of equation (179); but since it is zero at zeroth order, the first order Weyl ten-

sor δ1Cµ
ναβ must therefore obey an equation involving the wave operator with respect to the 

background FLRW metric.
Motivated by these considerations, we shall proceed to calculate

δ1Ci
0j0 =

(
d − 3
d − 2

){(
∂i∂j −

δij

d − 1
�∇2

)
(Φ + Ψ) + ∂(iV̇j) −

1
2

(
D̈ij +

1
d − 3

�∇2Dij

)}
.� (265)

It is likely that δ1Ci
0j0 encodes the dominant contributions to the first-order tidal forces 

described in equation (39); but we shall leave this analysis to future work [13]. Here, we will 
instead focus on the causal structure of this quantity with respect to the background spacetime.
Linearized Weyl tensor for w  =  −1        Within the de Sitter case, plugging into equa-
tion (265) the solution of Dij in equation (247), those of Ψ and Φ in equations (249) and (175), 
and that of Vi in equation (178), with H[η] = −1/η and (ηp, ηf) = (−∞, 0), we find that, after 
employing the conservation conditions (229) and (230), the scalars and vector act to cancel the 
acausal signals from the tensor contributions to Weyl. In more detail,

δ1Ci
0j0 = −1

2

(
d − 3
d − 2

)(
D̈ij +

1
d − 3

�∇2Dij

)

causal

+
8πGN

d − 2

(
(a)Tij −

δij

d − 1

(
(d − 3)(a)T00 + 2(a)Tll

))
;

�

(266)

where the first line of equation (266) denotes the causal part of the spin-2 contributions that 

depend exclusively on the retarded Green’s function G(g,+)
d [η, η′; R],

24 As previously reasoned in the spin-1 and spin-2 cases, discarding the boundary contributions at past infinity 
does not affect the inhomogeneous solutions of the Bardeen scalars, since the corresponding homogeneous wave 

equation is obeyed by those surface terms, which correspond to evaluating the surface integrals of C(w)
2,d  and C(w)

3,d  at 

η′ = −∞ (for w  =  −1) or η′ = 0 (for 0 < w � 1).
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(
D̈ij[η,�x] +

1
d − 3

�∇2Dij[η,�x]
)

causal

=− 16πGN

(
d − 2
d − 3

)∫

Rd−1
dd−1�x′

∫ ηf

ηp

dη′
(

a[η′]
a[η]

) d−2
2
{(

G̈(g,+)
d − 2(d − 3)

qwη
Ġ(g,+)

d

+
(d − 2) (qw + d − 4)

q2
wη

2 G(g,+)
d

)(
(a)Tij[η

′,�x′]−
δij

d − 2
(a)Tll[η

′,�x′]
)

+ 2a[η′]
d−2

2 ∂η′

(
a[η′]−

d−2
2

(
∂(iG

(g,+)
d − 2(d − 3)

qwη
a[η]−

d−2
2

∫ η

η′
dη1 a[η1]

d−2
2 ∂(iG

(g,+)
d

))
(a)Tj)0[η

′,�x′]

+
δij

d − 2
a[η′]

d−2
2

(
∂2
η′

(
a[η′]−

d−2
2

(
G(g,+)

d − 2(d − 3)
qwη

a[η]−
d−2

2

∫ η

η′
dη1 a[η1]

d−2
2 G(g,+)

d

))
(a)T00[η

′,�x′]

+
2

qwη′
∂η′

(
a[η′]−

d−2
2

(
G(g,+)

d − 2(d − 3)
qwη

a[η]−
d−2

2

∫ η

η′
dη1 a[η1]

d−2
2 G(g,+)

d

))(
(a)T00[η

′,�x′]− (a)Tll[η
′,�x′]

))

+
1

d − 2

(
∂i∂jG

(g,+)
d − 2(d − 3)

qwη
a[η]−

d−2
2

∫ η

η′
dη1 a[η1]

d−2
2 ∂i∂jG

(g,+)
d

)
(a)Tll[η

′,�x′]

+

(
d − 3
d − 2

)
a[η′]

d−2
2 a[η]

d−2
2

(
∂2
η′

(
a[η′]−

d−2
2

(∫ η

η′
dη2 a[η2]

−(d−2)
∫ η2

η′
dη1 a[η1]

d−2
2 ∂i∂jG

(g,+)
d

− 2(d − 3)
qwη

a[η]−(d−2)
∫ η

η′
dη3 a[η3]

d−2
∫ η3

η′
dη2 a[η2]

−(d−2)
∫ η2

η′
dη1 a[η1]

d−2
2 ∂i∂jG

(g,+)
d

))
(a)T00[η

′,�x′]

+
2

qwη′
∂η′

(
a[η′]−

d−2
2

(∫ η

η′
dη2 a[η2]

−(d−2)
∫ η2

η′
dη1 a[η1]

d−2
2 ∂i∂jG

(g,+)
d

− 2(d − 3)
qwη

a[η]−(d−2)
∫ η

η′
dη3 a[η3]

d−2
∫ η3

η′
dη2 a[η2]

−(d−2)
∫ η2

η′
dη1 a[η1]

d−2
2 ∂i∂jG

(g,+)
d

))

×
(
(a)T00[η

′,�x′]− (a)Tll[η
′,�x′]

))}
,

�

(267)

while the second line of equation (266) consists solely of the stress-energy tensor of the GW 
source evaluated at the observer location. (Recall that a[η] = −1/(Hη) and qw  =  −2 in de 
Sitter spacetime.) As long as the observer at (η,�x) is not located at the source, these (a)Tµν [η,�x] 
terms in equation (266) are zero25.

25 This calculation is greatly simplified by first using the commutator C(g)
1,d, and only re-expressing the fi-

nal result in terms of the massless scalar Green’s function via G(g,+)
d = −Θ[T]C(g)

1,d at the very end. In par

ticular, we notice that a local term will show up in the conversion involving a second time derivative, namely 

G̈(g,+)
d = −δ(d)[x − x′]−Θ[T]C̈(g)

1,d  or ∂2
η′G(g,+)

d = −δ(d)[x − x′]−Θ[T]∂2
η′C(g)

1,d .A simple check of equation (266) 
can be made by taking the limit of equation (267) as a → 1 and assuming G(g,+)

d  takes the form of G+
d  in Minkowski 

spacetime. We may then show explicitly that the first line of equation (266) reduces to δ1R0i0j given in equa-
tion (181), and the resulting δ1Ci

0j0 is consistent with its Minkowski counterpart obtained from the solutions derived 
in the last section. Moreover, the Minkowski form of δ1Ci

0j0 also agrees with the relationship between the Riemann 
and the Weyl tensor,

Cρ
σµν = Rρ

σµν − 16πGN

d − 2

(
δρ[µTν]σ − gσ[µTν]

ρ − δρ[µgν]σ
2gαβTαβ

d − 1

)
,

�
(268)

linearized about the Minkowski background; where Tµν is the total energy-momentum tensor of matter and Einstein’s 
equation has been imposed on the trace parts of the Riemann tensor.
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To sum: the result in equation (266) reveals that δ1Ci
0j0 on a de Sitter background receives 

only signals from the spin-2 sector, as long as the observer is away from the isolated matter 
source(s) of GWs.

Analogous to the localization of the effective Green’s function of F0i shown in equa-
tion (225), the expression of equation (267) in de Sitter spacetime can be further simplified 

in a localized manner by introducing two additional massless scalar Green’s functions G(V,+)
d  

and G(Tr,+)
d  that, respectively, obey the following wave equations,

{
∂2 +

(d − 4)(d − 2)
4η2

}
G(V,+)

d [η, η′; R] = δ(d)[x − x′],� (269)

{
∂2 +

(d − 6)(d − 4)
4η2

}
G(Tr,+)

d [η, η′; R] = δ(d)[x − x′].� (270)

The effective Green’s function of δ1Ci
0j0 in equation (266) can then be localized accordingly 

in terms of G(g,+)
d , G(V,+)

d , and G(Tr,+)
d ,

δ1Ci
0j0[η,�x] = 8πGN

∫

Rd−1
dd−1�x′

∫ 0

−∞
dη′

(
η

η′

) d−2
2
{(

G̈(g,+)
d +

(d − 3)
η

Ġ(g,+)
d +

(d − 2)(d − 6)
4η2 G(g,+)

d

)

×
(

(a)Tij[η
′,�x′]−

δij

d − 2
(a)Tll[η

′,�x′]
)
− 2η−

d−4
2 ∂η

(
η

d−4
2 ∂(iG

(V,+)
d

)
(a)Tj)0[η

′,�x′]

−
δij

d − 2

(
(ηη′)

− d−4
2 ∂η∂η′

(
(ηη′)

d−4
2 G(V,+)

d

)
(a)T00[η

′,�x′] + η′−1η−
d−4

2 ∂η

(
η

d−4
2 G(V,+)

d

)
(a)Tll[η

′,�x′]

)

+
1

d − 2
∂i∂jG

(Tr,+)
d

(
(d − 3)(a)T00[η

′,�x′] + (a)Tll[η
′,�x′]

)}

+
8πGN

d − 2

(
(a)Tij[η,�x]−

δij

d − 1

(
(d − 3)(a)T00[η,�x] + 2(a)Tll[η,�x]

))
,

�
(271)

which will be explained in more detail in [13]. Equation (271) turns out to be consistent with 
δ1Ci

0j0 computed from the generalized de Donder gauge χµν  solution obtained in [14]; the 

analytic solutions of G(g,+)
d = −Θ[T]G(T), G(V,+)

d = −Θ[T]G(V), and G(Tr,+)
d = −Θ[T]G(Tr) 

can be found in equations (28), (29), (33), (34), (38), and (39) of [14].

Linearized Weyl tensor for 0 < w � 1        To obtain δ1Ci
0j0 for a relativistic equation-

of-state w within 0 < w � 1, we insert into equation  (265) equation  (247) for Dij, equa-
tions (264) and (175) for Ψ and Φ, and equation (178) for Vi; recalling that H[η] = 2/(qwη) 
and (ηp, ηf) = (0,∞). A direct computation then reveals that an exact cancellation of the acau-
sal signals takes place again in equation (265), so that

δ1Ci
0j0 =

(
d − 3
d − 2

){((
∂i∂j −

δij

d − 1
�∇2

)
(Φ + Ψ)

)

causal

− 1
2

(
D̈ij +

1
d − 3

�∇2Dij

)

causal

}

+
8πGN

d − 2

(
(a)Tij −

δij

d − 1

(
(d − 3)(a)T00 + 2(a)Tll

))
.

�

(272)

The causal portion of the spin-2 sector takes precisely the same form as equation (267) but 
with scale factor given in equation (16) and (ηp, ηf) = (0,∞). On the other hand, the causal 
contributions of the Bardeen scalar potentials in the first line are given by
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((
∂i∂j −

δij

d − 1
�∇2

)(
Φ[η,�x] + Ψ[η,�x]

))

causal

= −8πGN

∫

Rd−1
dd−1�x′

∫ ∞

0
dη′

(
a[η′]
a[η]

) 1
2 (qw+d−2)

w− d−1
2

{
δij

d − 1

((
G̈(w,+)

d − (d − 2) (qw + d − 2)
q2

wη
2 G(w,+)

d

− a[η′]−
1
2 (qw−3d+8)∂η′

(
a[η′]−(2d−5)∂η′

(
a[η′]

1
2 (qw+d−2) G(w,+)

d

))
− (d − 2)

2qw + 4(d − 3)
q2

wη
′2 G(w,+)

d

)
(a)T00[η

′,�x′]

+
2qw − 4(d − 2)

q2
wη

′2 G(w,+)
d

(a)Tll[η
′,�x′]

)
+ δijw a[η′]−

1
2 (qw−d+2)

(
∂2
η′

(
a[η′]−(d−2)∂η′

(
2

qwη′
a[η′]

1
2 (qw+d−2)a[η]−

d−2
2

×
∫ η

η′
dη2 a[η2]

(d−2)
∫ η2

η′
dη1 a[η1]

− d−2
2 G(w,+)

d

))
(a)T00[η

′,�x′] +
2

qwη′
∂η′

(
a[η′]−(d−2)∂η′

(
2

qwη′
a[η′]

1
2 (qw+d−2)

× a[η]−
d−2

2

∫ η

η′
dη2 a[η2]

(d−2)
∫ η2

η′
dη1 a[η1]

− d−2
2 G(w,+)

d

))(
(a)T00[η

′,�x′]− (a)Tll[η
′,�x′]

))

+ w

((
a[η′]−

1
2 (qw−3d+8)∂η′

(
a[η′]−(2d−5)∂η′

(
a[η′]

1
2 (qw+d−2)a[η]−

d−2
2

∫ η

η′
dη2 a[η2]

(d−2)
∫ η2

η′
dη1 a[η1]

− d−2
2 ∂i∂jG

(w,+)
d

))

+ (d − 2)
2qw + 4(d − 3)

q2
wη

′2 a[η]−
d−2

2

∫ η

η′
dη2 a[η2]

(d−2)
∫ η2

η′
dη1 a[η1]

− d−2
2 ∂i∂jG

(w,+)
d

)
(a)T00[η

′,�x′]

− 2qw − 4(d − 2)
q2

wη
′2 a[η]−

d−2
2

∫ η

η′
dη2 a[η2]

(d−2)
∫ η2

η′
dη1 a[η1]

− d−2
2 ∂i∂jG

(w,+)
d

(a)Tll[η
′,�x′]

)

− w ∂i∂jG
(w,+)
d

(a)T00[η
′,�x′]− (d − 1)w2a[η′]−

1
2 (qw−d+2)

(
∂2
η′

(
a[η′]−(d−2)∂η′

(
2

qwη′
a[η′]

1
2 (qw+d−2)a[η]−

d−2
2

×
∫ η

η′
dη4 a[η4]

(d−2)
∫ η4

η′
dη3 a[η3]

−(d−2)
∫ η3

η′
dη2 a[η2]

(d−2)
∫ η2

η′
dη1 a[η1]

− d−2
2 ∂i∂jG

(w,+)
d

))
(a)T00[η

′,�x′]

+
2

qwη′
∂η′

(
a[η′]−(d−2)∂η′

(
2

qwη′
a[η′]

1
2 (qw+d−2)a[η]−

d−2
2

∫ η

η′
dη4 a[η4]

(d−2)
∫ η4

η′
dη3 a[η3]

−(d−2)
∫ η3

η′
dη2 a[η2]

(d−2)

×
∫ η2

η′
dη1 a[η1]

− d−2
2 ∂i∂jG

(w,+)
d

))(
(a)T00[η

′,�x′]− (a)Tll[η
′,�x′]

))}
.

�

(273)

Observe that equation  (273) is fully determined by the massless scalar Green’s function 

G(w,+)
d

[
η, η′; R√

w

]
, and whose contributions to δ1Ci

0j0 are therefore restricted either on or 

inside the acoustic cone26.
The physically intriguing feature of the relativistic w result in equation (272) is that, not 

only do spin-2 gravitons contribute to δ1Ci
0j0, it appears the Bardeen scalars do so as well. To 

be sure, however, it would be prudent to obtain a more explicit expression for equation (273). 
In an upcoming work, we hope to tackle this important step towards a more comprehensive 
understanding of gravitational tidal forces within a cosmological setting.

26 Once again, notice that in equation (273), we have switched from C(w)
1,d  to G(w,+)

d , where the local terms are 
incurred in the conversion between their second time derivatives, G̈(w,+)

d = −w
d−1

2 δ(d)[x − x′]−Θ[T]C̈(w)
1,d  and 

∂2
η′G(w,+)

d = −w
d−1

2 δ(d)[x − x′]−Θ[T]∂2
η′C(w)

1,d . Similarly, the Minkowski counterpart of δ1Ci
0j0 is again recovered 

by letting a → 1, replacing G(g,+)
d  with G+

d  in equation (267), and assuming no scalar contributions of equa-
tion (273) to equation (272).
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6.  Summary, discussions, and future directions

In this paper, we have sought to clarify the physical roles played by the TT and tt gravitational 
perturbations; as well as the analogous issues for the spin-1 photon. Even though the TT GW 
is gauge-invariant—it remains un-altered under an infinitesimal change in coordinates—it is 
acausal. Since the bulk of the paper involves heavy mathematical analysis for arbitrary dimen-
sions and cosmological equations-of-state, we summarize here the 4D Minkowski case for the 
reader’s convenience.

Let us begin with the electromagnetic sector. The gauge-invariant 4D transverse photon, 
which obeys ∂iαi = 0, cannot be a standalone observable because its solution

αi[η,�x] = −
∫

R3,1
d4x′G+

ij [T ,�R]Jj[η
′,�x′] (T ≡ η − η′ and �R ≡ �x −�x′)

�

(274)

receives contributions from portions of the electric current Jj[η
′,�x′] lying outside the past 

lightcone of the observer at (η,�x). This is because, the photon retarded Green’s function

G+
ij [T ,�R] = −δij

δ[T − R]
4πR

− 1
4π

∂i∂j

(
Θ[T − R] +

T
R
Θ[T]Θ[R − T]

)
� (275)

contains an acausal portion: G(+,acausal)
ij = −(4π)−1Θ[T]Θ[R − T]T∂i∂jR−1. However, 

since this acausal term of the photon Green’s function is part of a pure gradient, namely 
−(4π)−1∂i∂j

(
Θ[T]Θ[R − T]T/R

)
, the magnetic field Fij = ∂iαj − ∂jαi—which involves its 

curl—is therefore entirely causal. The electric field, on the other hand, is the sum of the pho-
ton velocity α̇i and the gradient of the gauge-invariant scalar potential,

F0i = α̇i + ∂iΦ.� (276)

In detail, integration-by-parts (IBPs) and the conservation of the electric current yield

α̇i[η,�x] =
(
α̇i
)

causal +

∫

R3
d3�x′∂i

J0[η,�x′]
4πR

;� (277)

where we have denoted the causal part of the photon velocity as

(
α̇i
)

causal ≡
∫

R3,1
d4x′

(
∂η

δ[T − R]
4πR

Ji[η
′,�x′]− ∂i

δ[T − R]
4πR

J0[η
′,�x′]

)
.� (278)

Whereas, the gradient of the scalar potential is

∂iΦ = −
∫

R3
d3�x′∂i

J0[η,�x′]
4πR

.� (279)

Adding equations (277) and (279) to obtain equation (276), we see that the sole purpose of Φ
—as far as electromagnetic fields are concerned—is to cancel the acausal part of the photon 
velocity. This in turn ensures the electric field of equation (276), in a given inertial frame, is 
the causal part of the latter; namely, F0i = (α̇i)causal.

We have also pointed out: upon quantization, these transverse massless spin-1 photon 
operators violate microcausality, because their Green’s functions do not vanish at spacelike 
intervals.

The transverse-traceless graviton, which obeys ∂iDij = 0 = δijDij , also cannot be a stan-
dalone observable—for very similar reasons as its acausal transverse photon counterpart. Its 
solution
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Dij[η,�x] = −16πGN

∫

R3,1
d4x′G+

ijmn[T ,�R]Tmn[η
′,�x′]� (280)

receives signals from regions of the stress tensor Tmn[η
′,�x′] outside the past null cone of the 

observer at (η,�x). For, this TT graviton Green’s function reads

G+
ijmn[T ,�R] =−

(
δm(iδj)n −

δijδmn

2

)
δ[T − R]

4πR

− 1
4π

(
δm(i∂j)∂n + δn(i∂j)∂m −

δij∂m∂n − δmn∂i∂j

2

)(
Θ[T − R] +

T
R
Θ[T]Θ[R − T]

)

+
1

48π
∂i∂j∂m∂n

(
Θ[T − R]

(
R2 + 3T2)+Θ[T]Θ[R − T]

3R2T + T3

R

)
;

�

(281)

which contains the acausal terms −Θ[T]Θ[R − T]T
(
δm(i∂j)∂n + δn(i∂j)∂m − (1/2)(δij∂m∂n −

δmn∂i∂j)
)
(4πR)−1 and Θ[T]Θ[R − T]∂i∂j∂m∂n

{
(3R2T + T3)(48πR)−1

}
.

On the other hand, the dominant physical tidal forces ought to be encoded within the lin-
earized Riemann tensor, which in turn involves all the gauge-invariant variables, not just the 
spin-2 graviton. In particular, its 0i0j  components—which are usually associated with the 
spatial tidal forces in a given nearly-Lorentzian inertial frame—are

δ1R0i0j = δijΨ̈ + ∂i∂jΦ+ ∂(iV̇j) −
1
2

D̈ij.� (282)

As one may expect from the preceding discussion for the spin-1 photon, the linearized 
Riemann δ1R0i0j really only depends on the causal part of the spin-2 graviton acceleration:

δ1R0i0j = −1
2
(
D̈ij

)
causal;� (283)

where, upon IBPs and invoking the conservation of the energy-momentum-shear-stress tensor, 
we have

(
D̈ij

)
causal = 4GN

∫

R3,1
d4x′

{
∂2
η

δ[T − R]
R

(
(a)Tij[η

′,�x′] +
δij

2

(
(a)T00[η

′,�x′]− (a)Tll[η
′,�x′]

))

− 2∂η∂(i
δ[T − R]

R
(a)Tj)0[η

′,�x′] +
1
2
∂i∂j

δ[T − R]
R

(
(a)T00[η

′,�x′] + (a)Tll[η
′,�x′]

)}
.

� (284)
The sole purpose of the rest of the gauge-invariant variables (Ψ,Φ, Vi), as far as the δ1R0i0j 
components are concerned, is to cancel the acausal part of the graviton acceleration. Moreover, 
all of them are needed to ensure causality. We may verify these claims by simply comparing 
the following expressions.

D̈ij[η,�x] =
(
D̈ij

)
causal

− 4GN

∫

R3,1
d3�x′

{
− 2∂m∂(i

1
R

(a)Tj)m[η,�x′] +
1
2

(
δij∂m∂n

1
R

(a)Tmn[η,�x′]

+ ∂i∂j
1
R

(
(a)T00[η,�x′] + (a)Tll[η,�x′]

))
+

1
4
∂i∂j∂m∂nR(a)Tmn[η,�x′]

}

�

(285)
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Ψ̈[η,�x] =− 4GN

∫

R3
d3�x′

1
4
∂m∂n

1
R

(a)Tmn[η,�x′],

∂i∂jΦ[η,�x] =− 4GN

∫

R3
d3�x′

1
4

(
∂i∂j

1
R

(a)T00[η,�x′] + ∂i∂j
1
R

(a)Tll[η,�x′]− 3
2
∂i∂j∂m∂nR(a)Tmn[η,�x′]

)
,

∂(iV̇j)[η,�x] =4GN

∫

R3
d3�x′

(
∂m∂(i

1
R

(a)Tj)m[η,�x′]− 1
2
∂i∂j∂m∂nR(a)Tmn[η,�x′]

)
.

�

(286)

These massless spin-2 graviton fields, upon quantization, would violate microcausality, 
because their Green’s functions do not vanish at spacelike intervals.

It is worth highlighting, we are not asserting that relativists are computing gravitational 
wave-forms wrongly. In the far zone, |ω|r � 1, we have shown that the distortion of space due 
to GWs (at finite frequencies) do reduce to the tt ones gotten by performing a local-in-space 
projection of the (de Donder gauge) spatial perturbations χij . These tt GWs, as opposed to 
their TT counterparts, are in fact the ones computed in the gravitational literature. On the other 
hand, within this far zone, these tt GWs in fact coincide with the TT ones, because the acausal 
parts of the latter begin at higher orders in 1/(ωr).

In a cosmology driven by a relativistic fluid, we have uncovered tentative evidence that 
the Bardeen scalar potentials contribute to gravitational tidal forces, and their wave-like solu-
tions could therefore be legitimately dubbed ‘scalar gravitational waves’ in this sense. More 
work would be required to confirm or deny this [13]. Nonetheless, if the Bardeen Ψ and 
Φ are indeed an integral part of cosmological GWs, we hope this work constitutes the first 
step towards illuminating not only their associated GW patterns but also potential scalar GW 
memory effects.

Let us end on a more speculative note. Even though the TT graviton is acausal and cannot 
be a standalone observable within classical physics, it may be produced quantum mechani-
cally—and independently of other gauge-invariant perturbations—during a (still hypotheti-
cal) exponentially expanding phase of the early universe27. On the other hand, we have also 
pointed out that the quantum operators associated with both the free massless spin-1 and 
spin-2 particles violate micro-causality. Is it possible to exploit this violation to ascertain 
whether B-modes in the Cosmic Microwave Background, if we ever detect them, were truly 
engendered by quantum fluctuations of spacetime itself? Or, for the photon case, are there 
laboratory experiments involving quantum generation of photons that could not only serve 
as analogs to the inflationary scenario, but also allow the quantum nature of their production 
mechanism to be probed directly? 
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