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Abstract — We investigate the non-equilibrium evolution of ideal Brownian particles confined
between two walls, following simultaneous quenches of the temperature and a constant external
force. We compute (analytically and in numeric simulations) the post-quench dynamics of the
density and the pressure exerted by the particles on the two walls perpendicular to the drift force.
For identical walls, symmetry breaking associated with the drift gives rise to unequal particle den-
sities and pressures on the two walls. While the pressure on one wall increases monotonically after
the quench, on the other wall, depletion causes a non-monotonic dynamics with an overshooting at
finite times, before the long-term steady-state value is reached. For walls immersed in a Brownian
gas, the effective interaction force changes sign from repulsive at short times to attractive at late
times. These findings have potential applications in various soft matter systems or fluids with
charged Brownian particles, as well as carrier dynamics in semiconducting structures.

Copyright © EPLA, 2020

Introduction. — Non-equilibrium processes are at the
heart of various areas physical phenomena, and have par-
ticular relevance to condensed matter physics [1]. Mathe-
matical descriptions of such processes fall broadly into two
main categories: models of non-equilibrium steady states
involving continuous energy pumping, e.g., for active mat-
ter, and models focusing on the explicit time evolution due
to external driving fields or quenches (sudden changes) of
some systemic parameters. In quench problems, the cen-
tral questions concern transient behavior of the system as
it approaches a steady state, as well as the nature of this
state. While quench-induced dynamics in closed quan-
tum mechanical systems have attracted much interest in
recent years [2,3], studies of post-quench dynamics have
their roots in the statistical physics of classical systems,
and particularly in critical phenomena [4].
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The presence of globally conserved quantities imposes
constraints on the time evolution of non-equilibrium
systems. Within coarse-grained models [4-6], such
non-trivial dynamics give rise to novel non-equilibrium
phenomena such as spinodal decomposition follow-
ing temperature quenches towards a symmetry-broken
phase [7-9]. Indeed, driven systems with conserved
quantities such as the particle number, exhibit long-
ranged correlations [10-12], which can in turn give
rise to fluctuation-induced forces (FIFs) [13,14] in non-
equilibrium systems [15-19]. Sudden quenches, e.g., of
the temperature, can modify or generate correlations and
FIFs in fluid media (see, e.g., refs. [20-25]). Remarkably,
transient long-ranged correlations even emerge following
quenches in fluids that have uncorrelated (i.e., force-free)
steady states [22,24,26]. However, temperature quenches
additionally modify the density field between objects
immersed in a fluid. Corresponding “density-induced”
non-equilibrium forces, which have been predicted and
observed in conserved fluid media [26], exist even in
non-interacting fluids, and are longer-ranged than their
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fluctuation-induced counterparts, which vanish in non-
interacting systems.

In this letter, we consider such a system of non-
interacting Brownian particles with conserved particle
number, subjected to simultaneous quenches of temper-
ature and of a constant external drift force applied to the
system. At large scales, this problem can be described in
terms of the post-quench density, which, in the presence of
an external force, obeys the diffusion-drift equation. The
quench thus involves sudden changes of both the diffu-
sion coefficient (which depends linearly on temperature)
and the drift velocity. We expect such a description to
be relevant for diffusive media in which quenches of the
temperature (or effective temperature [27,28]) can be re-
alized. Examples include (thermal) Brownian fluids [29],
but also active Brownian fluids [30,31], e.g., comprised of
driven colloids which self-propel due to illumination [32],
dilute vibrated granular matter [33,34], or dilute colloidal
systems in gravitational fields [35,36]. Intriguingly, similar
physics emerges in semiconducting structures in which, de-
spite the quantum nature of charge carriers, electron/hole
transport obeys classical diffusion-drift equations [37-41].

We study the time evolution of non-equilibrium forces
on parallel walls following the quenches, analytically and
with numerical simulations. The interplay of the tem-
perature quench and drift gives rise to complex and rich
dynamics. The pressure differs on the two walls, which are
positioned perpendicular to the drift direction. Further,
the pressure on one of the walls evolves non-monotonically
in time, reaching a maximum before decaying to the steady
state. Then, by considering Brownian particles both inside
and outside the walls, we show that the effective interac-
tion force between the walls changes sign from repulsive
at short times to attractive at late times times following
the quench.

System and simulation model. — We consider a
system of non-interacting overdamped Brownian particles
confined in the z-direction between two walls at x = 0, L
(see fig. 1). While our system lives in d dimensions, trans-
lational invariance along the walls implies that dynamics
is effectively 1D. Each particle i = 1,..., N is governed by
a (de-dimensionalized) Langevin equation,

dz; d‘_/ex
- = - . 1
dz dz ji‘f'm(f), ( )
T = Q'J/L, ‘7ex = ex/(kBT), t= Dt/L2

The wall separation L, thermal energy kg7, and collec-
tive diffusion coefficient D have been used to define di-
mensionless time ¢, positions Z;, and external potential
Vex. The random force 7; is a Gaussian white noise obey-
ing (n;(t)n;(t")) = 6(t — t')d;; where ¢ and j are particle
indices.

At time ¢ = 0 a linear external potential is turned
on (quenched) between the walls, giving rise to drift-like
forces on all particles for £ > 0. Assuming a harmonic

Fig. 1: External potential Vex(Z), consisting of a linear term
(generating a drift velocity vo between the two walls), and the
harmonic wall potentials. Inset sketch: two parallel plates at
Z =2/L = 0,1 immersed in a Brownian gas.

form for the wall potential, Vian(Z) = (AL?/2)0(—2)z2,
the total external potential reads

Vwall('f) + ’UOL/M7 T < 07
Vel®) = { (wl/p)(1-7), 0<z<l, ()
Vann (1 — 7), Tz>1,

as illustrated in fig. 1. Here, vo indicates the drift velocity
of the particles due to the quench of the external force, and
w = D/kpT is the mobility of the particles at thermal con-
ditions with temperature 7. The Langevin equation (1)
thus becomes

% = 204 — 5\[9_316(752'1) — (9_'31 — ]-)@(i'z _ ]_)] + Th(f), (3)

where 04 = voL/(2ukpT) and A = AL?/kpT are dimen-
sionless parameters representing the strengths of the drift-
and wall potentials, respectively.

Quench protocol.  The system is prepared in an ini-
tial state where particles are distributed uniformly in the
region € [0,1]. Physically, this corresponds to a zero
temperature state (and thus impenetrable walls) without
any drift potential (v4 = 0). At time ¢ = 0, both the
temperature and vy are quenched to finite, non-zero val-
ues. Representing temperature of the system before and
after the quench by 77 and T, respectively, we thus have
Tr = 0 and Tp # 0. We perform numerical integration
of eq. (3) for ¢ > 0 in order to solve the time evolution
of the system following the quenches. After the quench,
the particles gain kinetic energy and can penetrate into
the walls; this gives rise to a mechanical force on the walls
via, Vwall-

Coarse-grained description. Coarse-graining of the
Langevin equation (3) via the (fluctuation-averaged)
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particle density, which in dimensionless form reads

N
ﬁ(fa{):ng[ffjl({)]v (4)

naturally leads to the the Smoluchowski equation [42],

afﬁ(jaf) :89%/5(@70 _277d8ip(jaf) == fj('f’ﬂa (5)
for the density p and current j between the two walls (0 <
Z < 1). Without drift (o4 = 0), eq. (5) is simply the
diffusion equation (the diffusion coefficient D enters via ¢;
see eq. (1)). In the coarse-grained view, the characteristic
length-scale of the wall potentials, set by A\, is taken to
be much smaller than L, so that the walls simply impose
no-flux boundary conditions on p.

Quench-induced boundary layers. At large scales and
with v4 = 0, the temperature quench gives rise to an initial
adsorption/desorption of particles at the walls, while the
density far from the walls (where the potential is zero) re-
mains unchanged. The quench thus effectively changes the
volume that the confined particles can explore by modi-
fication of the boundary layer. After the quench, these
boundary layers (or depletions) diffuse into the “bulk”
between the plates, until a homogeneous distribution is
reached once more. For 95 = 0, the thickness of the
boundary layers has been quantified by considering the ini-
tial (homogeneous) distribution and the steady-state post-
quench distribution in terms of Boltzmann weights of the
wall potentials [26]. In the present system, with vy # 0,
we follow a similar approach to find the initial density
p(z,t = 0) given the boundary conditions in eq. (5). Be-
fore the quenches, the system is in equilibrium at a given
temperature T7, and there is no external potential between
the walls (v = 0 for t < 0). If v < 1 (weak driving com-
pared to the post-quench thermal energy), one may as-
sume that only the distribution of particles very close to
the walls changes at very short times, while away from the
boundaries the density remains unchanged. In this way,
boundary layers with finite widths ¢, form at z = 0,1,
representing regions with excess densities at very short
times after the quenches. Then, on coarse-grained scales,
the density obeys no-flux boundary conditions

(@ =0/1,1) = [-0:p(,1) + 204p(Z,)]5=01 =0 (6)
at the walls. In order to justify this boundary condition,
we note that in the microscopic model with quadratic
wall potentials, thermally activated particles can pene-
trate the walls up to some small characteristic length
(set by the potential strength and the temperature). The
walls are thus effectively impenetrable beyond that dis-
tance, beyond which the probability of finding particles
becomes vanishingly small. On the same grounds, the ini-
tial coarse-grained density is uniform between the walls,
excluding the boundary layers of thickness ¢, at the left

and right sides,

p(x,fzo)z{ﬁo’ B<f<l-& (7)
0, O<z<gorl—e<z<l,

with € = ¢/L. These boundary thicknesses will be esti-
mated below. Equation (7) is the pre-quench steady state
of the system (for ¢ = 07) and fulfils the boundary con-
dition (6). Immediately after the quench, the boundary
layers are formed as particles start to fill those regions,
i.e., the quench effectively alters the volume of the sys-
tem. In ref. [26] (where v = 0), the quench was cap-
tured in terms of delta-function—like ad/desorption layers
at the walls, which set the initial conditions of the bound-
ary layer. For 94 # 0, such distributions cannot satisfy
the boundary conditions in eq. (6). Thus eq. (7) provides
a mathematically consistent alternative for the initial den-
sity, and enables us to obtain analytical results that are
in excellent agreement with the simulations even at very
short times.

To calculate the thicknesses of boundary layers due to
the quench, we compute the pre- (R;) and post-quench
(Rr) penetration depth of the particles inside the left
walll,

RI/F Vwal1 (2)

0
Rip = 7 =/ dze FBTI/F
—0o0

(8)

Assuming identical wall potentials on the left and right,
an analogous relation to eq. (8) is obtained for the right
wall by changing the integration interval to (1, c0). Equa-
tion (8) is obtained by assuming Boltzmann-type distri-
butions long before and long after the quench, p;,p(Z) o
exp[—Vex(Z)/kpTr/r], and enforcing a conserved inte-
grated density. This allows us to find the (rescaled) change
in the thickness of the boundary layers induced by the
quench (g = €. =€),

= = VrkpTr — /rksT;
=Rr—Rr= .
TR V2N

For the quenches with 77 = 0, the boundary layer thick-
ness and the strength of the wall potential in eq. (3) are
directly related by € = 7/(2)\). We note that the bound-
ary condition (6) of the coarse-grained model is valid for
€ < 1. Thus, in order to be consistent with the micro-
scopic model we choose temperatures Tr < 2AL?/(7kp)
in the simulations.

(9)

Post-quench density dynamics. We now compute the
post-quench density for ¢ > 0 subject to the no-flux
boundary conditions in eq. (6), and subsequently find the
pressure and forces on the walls. Since the boundary con-
ditions are asymmetric (of “Robin” type), the method of
images used in ref. [26] cannot be employed here. Instead,
we use separation of variables, assuming a solution of the

1Specifically, R = Jo© dzp(x)/p(x = 0) for a given density p(z).
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form p(z,t) = X (z)T(t). Insertion into the diffusion-drift
equation (5) yields

204
X(z)

OT(E) _ 1 oy
To ~ XX @ -

X(z)
Via the boundary conditions we obtain complete sets of
spatial and temporal eigenfunctions,

0:X(z) = —a.  (10)

X, (Z) = €Y (nm cos BnT + Vgsin 3,7),

T,(f) = et Bn = (a0 —92)2 =nr
n() 9 n n d )

from which a general solution of eq. (5) follows:

Pz, 1) = a'e® 7+ an X, (2) T (8). (11)
n=0

The initial condition in eq. (7) and the orthogonality
condition 2 fol dz exp(—204%) X (Z) X (2) / (mP7? + 03) =
Omn for the spatial solutions X,,(z) lead to

, _ vae”"ipo(l — 2€)
“ sinh U4 ’ (12)

Qﬁoef’f)dg
@ +

—2vgnm(W,, — 1) cos(nmé)],

an = (14 W,,)(02 — n?x?) sin(nme)

(13)

with W,, = (—1)" exp[vq(2€ — 1)].
Pressure.  For an ideal gas of Brownian particles, pres-
sure on a confining surface follows from the contact den-

sity [26,30], P = kgTrp, i.e.,
-Pl/r

5 (7 _ _ pl@=0/1,1)
Pl/r(mfo/lai)* (pok'BTF) - 0o

;o (14)

where pg is the pre-quench density between the walls. In a
1D system, and thus in our simulations, pg = po/L. Thus
eq. (11) facilitates an analytical formula for the pressure
exerted on the left/right walls (z = 0/1) in the coarse-
grained system.

On the other hand, in explicit simulations of the
Langevin equation (3), pressure on the walls can be ob-
tained in terms of mechanical forces. For the left wall,
P = f_OOO dap(x)V, ., (x), and analogously for the right
wall. Using eq. (4), one finds

5\ N
P o ZI:QG( Z;),
Pr= = (z;—1)0(z;—1).

Results. — Following the quench at ¢ = 0, the driv-
ing force explicitly breaks the left/right symmetry of the
system. Consequently the two walls experience different
dynamic forces and pressures, as shown in fig. 2. For
pressure, we present both analytical coarse-grained results
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Fig. 2: Pressure on the right (a) and left (b) wall, as a function
of £ = Dt/L?, for different values of the effective drift o4. Solid
(colored) lines are simulation results from Langevin dynamics,
while dashed (black) lines represent the analytical description
(see eq. (14)). (c) Difference between the peak and the steady-
state pressures on the left wall as a function of 7,4 for different €.
(d) Approach of the pressure on the right wall to its stationary
value. In panels (a), (b), and (d) the effective boundary layer
thickness is € = 0.01.

as well as numerical simulations for N = 107 particles,
which are in excellent quantitative agreement with each
other. Since the drift velocity points towards the right
wall (74 > 0), the pressure on the right wall increases
monotonically as more particles penetrate into the wall,
until a steady-state value is reached. In contrast, time
evolution of the pressure on the left wall is non-monotonic,
exhibiting an “overshooting” behavior. Shortly after the
quench, particles penetrate into the wall so that the pres-
sure increases. At later times, the pressure decreases as
drift removes particles from the left wall, until the long-
time stationary state is reached. As shown in figs. 2(a)
and (b), an increase of the external field strength (i.e., of
the drift velocity v4) leads to an enhancement not only of
the difference between pressures on the two walls, but also
of the relative amplitude of the left pressure overshoot.
For very small values of 74, the evolution of density on
the right and left walls becomes equivalent as symmetry
is restored.

Figure 2(c) addresses the overshooting behavior, show-
ing the difference between the maximum value and the
steady-state value of the non-equilibrium pressure at the
left wall, in dependence on 4, for various € (see foot-
note 2). The overshooting becomes more pronounced with
increased drift: IBZ,maX — Py(t — 00) — 1 when the bound-
ary layer thickness becomes very small (¢ = 10~%). For
larger values of € (i.e., less steep wall potentials/larger
temperature quenches), the overshooting is slightly re-
duced, because the particles can penetrate deeper into the
wall before being removed by drift. While the time evolu-
tion of pressure on the right wall is monotonic in the pres-
ence of the external field, its approach to the steady regime

2€ captures the magnitude of the temperature quench via eq. (9).
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Fig. 3: Analytical results: time evolution of the force on the
left (a) and the right (b,d) walls, and the effective interaction
force Fine = F, + Fy (c), following the quenches, for different
values of 04, with £ = Dt/L*. Positive values of F,, imply
that the force points to the outside of the plates, while positive
values of Fin¢ indicate an effective repulsion of the plates. For
the interval of the external field strength 74 shown in panel (c),
the effective interaction force changes sign in time. Panel (d)
shows the force on the right wall for very small values of ¥4.
All results here are obtained for € = 1073, The legend of panel
(c) also applies to (a) and (b).

depends strongly on @4, as shown in fig. 2(d). At inter-
mediate times (107* < # < 1072), the pressure difference
P,.(t)— P,.(t — o0) follows a power-law decay ~ £~¢, where
the exponent ¢ changes from 1/2 to a vanishingly small
value upon varying the external field strength from a very
small 7g = 107% to 4 = 1. Because of the overshooting
effect in Pj(f), no power-law behavior is observed for the
left wall. At late times, the pressure on both walls decays
exponentially with time towards the stationary regime.

We now study the net forces exerted on the plates when
they are immersed in an infinite Brownian fluid. This
requires knowledge of the density evolution outside the
plates following the temperature quench. Since the drift
potential is set to zero outside, the initial condition on
the densities external to the plates, pout(Z,t = 0), can be
obtained from semi-infinite versions of eq. (7) for the left
and right outside regions: one has a constant density pg
away from the walls, and zero density inside the adsorption
layers of thickness € on each wall. Together with eq. (11),
this yields the corresponding expansion coefficients. The
net force on each wall is now obtained as the difference of
inside and outside pressures,

_ 1. B B
Fl/r({): %[p(:c:O/I,E)fpout(:c:O/l,f)], (16)
where we have used the definition F' = AF/(pokpTr) for

the dimensionless force®. We define an effective interac-
tion force between the plates as Fin(t) = Fi(t) + F,(t)

3Here the area A of the walls is d — 1 dimensional, i.e., in a 1D
system, pressure and force have the same dimension.

1 — T T T T T —
T~ B Vd
/é\ \\ T 10 B 1
3 N ZE O
0 - \ e ’/\\\ E 0.1
1072 — — SN 2wt \ 1
= R\ o 0.05
‘&l. EEREETE RN :\ 10- L w2
N )
= S 103
I 10 3 \\\ B 106
- 1 1 1 1 |\\ N {71/2
1073 -t 10 103
t

Fig. 4: Analytical results: approach of the force Fj on the
left wall towards its steady-state value following the quench,
for different effective drift strengths v4, with € = 102 and
t = Dt/L*. Inset: a similar plot for the effective interaction
force Fin for times after the overshoot has occurred.

which becomes positive (negative) if the plates experience
an effective repulsion (attraction).

The post-quench time evolution of the forces is shown
in fig. 3 for various v4. For sufficiently large values of vy,
the post-quench force on the left wall points towards the
inside, while the force on the right wall is towards the out-
side. This occurs since drift transports particles from the
left wall to the right wall. Figure 3(c) shows that the ef-
fective interaction force between the plates can change its
sign at short times following the quenches, since the left
and right forces evolve asymmetrically. In fact, while the
long-time interaction force is always negative (attractive),
at short times after the quenches, the net force can be
positive (repulsive). This behavior can be ascribed to the
interplay of the quench and the external field (drift), and
the fact that dynamics inside and away from the walls have
different characteristic time scales. The crossover time
from repulsive to attractive interaction forces strongly de-
pends on the strength of external field: for larger values of
U4, the repulsion is retained until much later times. Con-
cerning the net forces on the individual plates, fig. 3(d)
reveals that by decreasing the external field intensity to
small values vy < 1072-107°, an overshooting feature ap-
pears in the force on the right plate (in direct contrast
to the case of pressure, where the overshooting was ob-
served for left wall pressure). In addition, for very small
values of v4, the steady-state force is towards the out-
side of the right plate (F,« < 0), which is consistent with
the result obtained in ref. [26]: in the absence of drift,
repulsive net forces occur at late times. Figure 4 shows
how the force on the left plate and the effective interac-
tion force approach their steady states. The force on the
left wall does not exhibit overshooting. Both F; and Fj,;
have two dynamic regimes: At short times these forces de-
cay towards their steady state exponentially quickly, but
after diffusion across the plate separation has occurred
(t ~ 1), decay crosses over to t /2. This power-law de-
cay at late times has been explicitly shown for drift-free
(Bq = 0) post-quench dynamics [26]. Thus we infer that
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drift-related contributions are relevant at short times, be-
fore the ~ ¢t~ 1/2 scaling appears.

Conclusions. — We have studied dynamics of the den-
sity of an ideal Brownian gas between two plates, as well as
the associated non-equilibrium forces, following simultane-
ous quenches of the temperature and an external driving
field. Our analytical coarse-grained results and numeric
simulations show excellent agreement. At intermediate
post-quench times, the presence of drift leads to strong
deviations of the dynamics from the purely diffusive case.
For drift towards the right, the pressure on the left wall
exhibits a non-monotonic time evolution, while on the
right wall we see a monotonic increase, approaching the
steady pressure as ~t—¢. When the drift strength 74 is in-
creased from zero, ¢ decreases from 1/2 to 0 as drift begins
to dominate over diffusion. Further, for two walls embed-
ded inside the (bulk) gas, we studied the net forces on
each wall, as well as an effective interaction force between
the walls. At late times, the effective interaction force
F;,.; between the plates is always attractive, and decays as
~t~1/2 to its steady value, indicating diffusion-dominated
dynamics. At early times, however, the drift-induced over-
shoot on the left wall renders Fj,; repulsive for certain
values 4.

We expect the quenches and external fields described
here to be realizable in a variety of physical systems, in-
cluding colloidal suspensions, active matter and electri-
cally charged fluids.
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