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Turbulence collapses at a threshold particle loading in a dilute
particle-gas suspension
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PACS 47.55.Kf – Particle-laden flows.
PACS 47.27.E- – Turbulence simulation and modeling.

Abstract – Direct Numerical Simulations (DNS) of the flow of a particle-gas suspension in a
channel have been carried out to examine the turbulence attenuation due to particles. As the
volume fraction is increased in the range 0–3.5 × 10−3, there is a discontinuous decrease in the
turbulent velocity fluctuations at a critical volume fraction. The turbulent energy production
rate decreases by an order of magnitude, accompanied by a much smaller increase in the energy
dissipation due to particle drag, resulting in a decrease in the total energy dissipation. In contrast
to the current understanding, the results show that turbulence attenuation is a discontinuous
process, and is due to a disruption of the turbulent energy production mechanism, and not due
to the increased dissipation due to the particles.

Copyright c© EPLA, 2020

Introduction. – A central issue in the dynamics of
turbulent particle-gas suspensions is the effect of the par-
ticles on the gas phase turbulence. The turbulent velocity
fluctuations transport and redistribute particles across the
flow, and could cause enhanced aerosol dispersion, drop
coalescence as well as the break-up of large drops. An
important question, which has been studied extensively,
is whether the fluid turbulence is increased or decreased
due to the presence of the particles. Large particles could
enhance the turbulent fluctuations due to the wake gener-
ated behind the particles, while small particles are known
to attenuate turbulence due to particle drag. The effect
of particles is an additional layer of complexity on the
already complex problem of turbulent flows; however, it
is also critical for predicting the fate of important natu-
ral processes such as aerosol transport, formation of rain
drops and snow flakes, the phenomena such as sand and
dust storms, and in the modeling of important industrial
processes such as fluidised/circulating beds and pneumatic
transport of fine particles.

The appropriate drag law depends on the particle
Reynolds number (ratio of the fluid inertia and viscosity
at the particle scale) based on the relative velocity be-
tween the fluid and particles, the particle diameter and
gas viscosity. If terminal velocity is considered as the
relative velocity scale, the particle Reynolds number is
(ρpρfgd3

p/18μ2), where ρp and ρf are the particle and

fluid density, g is the acceleration due to gravity, dp is
the particle diameter and μ is the fluid viscosity. When
particles of diameter 100 μm or less and mass density
of about 2000 kg m−3, are suspended in air with density
1.2 kg m−3 and viscosity 1.8 × 10−5 kg m−1 s−1, the par-
ticle Reynolds number is less than 8.5. Due to the small
Reynolds number, the drag force on the particles can be
adequately described by the Stokes law or a modified drag
law that incorporates inertial corrections. The particle
Stokes number (ratio of particle inertia to fluid viscosity)
is typically large, about O(103) higher than the particle
Reynolds number due to the large ratio of particle and gas
densities. Due to this, the particles cross the fluid stream-
lines due to inertia, and there is a force exerted on the
fluid due to the instantaneous difference in the particle
and fluid velocities.

It is reported in an early review [1] that the turbulence
modification is determined by the ratio (dp/L), where dp

is the particle diameter and L is the integral length scale
of turbulence. Turbulence was found to be suppressed for
(dp/L) < 0.1, and augmented for (dp/L) > 0.1. Direct
Numerical Simulations (DNS) of particle-laden turbulent
flows have predicted that the particles are preferentially
concentrated in high strain regions, and expelled from
high vorticity regions [2]. It was also observed that parti-
cles increase the turbulent energy at high wave numbers.
A transfer of energy from the large to small scales in the
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absence of gravity, and a reverse cascade from small to
large scales in the presence of gravity was reported [3].
In particle-laden vertical channel flow, Li and McLaugh-
lin [4], reported that particles increase turbulence at low
mass loading of 0.2, but the particles could attenuate tur-
bulence by up to 90% at a higher mass loading of 2. Based
on a review of experimental and numerical results, a par-
ticle momentum number was identified [5]. It was found
that particles with small momentum number increase tur-
bulence, whereas those with moderate momentum number
decrease turbulence. Recent simulations [6,7] report that
the turbulence intensity progressively decreases with par-
ticle loading, as the increased dissipation due to the parti-
cles compensates for the decrease in the fluid turbulent
energy production. The generation of particle-induced
fluctuations due to clustering of the particles has also been
investigated [8]. Based on previous studies [7,8], the con-
sensus is that there is a gradual decrease in the turbulence
intensities with increasing particle loading, and this grad-
ual decrease is caused by the increasing dissipation of en-
ergy due to the particles. The range of Reynolds number,
Stokes number and particle volume fraction examined in
previous studies is as follows. The fluid Reynolds number
(based on the characteristic flow scale and the flow ve-
locity) reported in references [4,9,10] usually varies in the
range of 3000 to 5600, though Reynolds numbers greater
than 10000 have also been used in few studies [6,7]. In
simulations where the flow around the particles is not re-
solved, the particle Reynolds number is less than 100 and
Stokes number is less than 30. The particle mass loading
used in the earlier studies varies between 0 to 20 [4,6,7].

Here, we critically examine the turbulence attenu-
ation mechanism, specifically whether the decrease in
turbulence intensity is continuous as the particle loading
is increased, and whether the excess dissipation due to the
particle phase does result in turbulence attenuation. Since
the objective of the present study is to detect changes
in the turbulence attenuation due to the particle loading,
a large number of simulations were required at different
particle volume fractions and at different particle Stokes
numbers.

Two different values of the channel Reynolds number
based on the mean flow velocity ū and channel width
h, Re = (ūh/ν) = 3300 and 5600, both in the turbu-
lent regime, have been used. The equivalent Reynolds
numbers Remax = (umaxh/2ν) based on the half chan-
nel width (h/2), and the maximum velocity (umax) are
2000 and 3360 respectively. The friction Reynolds num-
ber Re∗ = (u∗h/2ν), based on the friction velocity u∗
are 115 and 180 respectively. For comparison, the transi-
tion to turbulence in a channel flow takes place in the
range 975 � Remax � 1200, 1300 � Re � 1800 and
62.5 � Re∗ � 73.5 [11–13]. Thus the Reynolds numbers Re
used here are 1.8 and 3 times the upper end of the tran-
sitional regime, and the flow is fully turbulent. For the
unladen flow, the Kolmogorov length scale, η = (ν3/ε)1/4,
is about 0.7 × 10−2 times the channel width near the wall

and 1.6×10−2 times the channel width at the center. Here
ε is the rate of dissipation of energy due to the turbulent
fluctuations at the wall, and ν = (μ/ρ) is the kinematic
viscosity.

The relevant velocity for the flow around a particle is the
local difference between the particle and fluid velocities,
which is about 5–8 times smaller than the average flow
velocity. The particle Reynolds number Re = (dpΔu/ν),
based on the particle diameter dp and the root mean
square of the velocity difference between the particles and
fluid Δu is in the range 4–15 for all the Reynolds and
Stokes numbers reported here. Since the particle Reynolds
number is greater than 1, the Stokes drag law cannot be
used. An inertia corrected drag law [14],

FD
I = 3πμdp(u − vI)(1 + 0.15Re0.687

I ), (1)

is used. Here, FD
I is the drag force on particle I, vI is

the particle velocity, u is the fluid velocity at the parti-
cle location, dp is the particle diameter, and ReI is the
particle Reynolds number based on the particle diameter,
difference in gas and particle velocities |u − vI | and the
gas kinematic viscosity. Equation (1) is accurate to within
about 0.2% when the particle Reynolds number Rep is less
than 15.

The particle Stokes number is the ratio of the viscous
relaxation time and the fluid integral time scale. The lat-
ter here has been considered as τf = (h/ū). For the inertia
corrected drag law (eq. (1)), the viscous relaxation time
is τv = (ρpd

2
p/18μ(1 + 0.15Re0.687)). The ratio of the two

time scales, St = (τv/τf) is varied in the range 1.62–130
when the channel Reynolds number is 3300, and 25–75
when the Reynolds number is 5600.

The time scale based on the friction velocity and kine-
matic viscosity is τf∗ = (ν/u2

∗), and the Stokes number
based on the friction velocity is defined as St∗ = (τv/τf∗).
The ratio of the Stokes number based on friction velocity
and that based on the integral scale, (St∗/St) = (τf/τf∗),
can be expressed in terms of the channel and friction
Reynolds numbers as 4Re2

∗/Re. This ratio is about 16
for Re = 3300 and about 23 for Re = 5600. Since the
present study is related to particles whose viscous relax-
ation time is much larger than the flow time scales, these
particles interact with fluid structures having largest time
scale in the turbulent flow, which is the integral time scale
for fluid turbulence. Therefore, we have defined the Stokes
number based on the integral time scale in this study.

The particles are considered to be rigid spheres, and
the ratio of the particle diameter and the channel width
is 1.84 × 10−2. The particle terminal velocity is 4 × 10−3

smaller than the fluid average velocity, and so the grav-
itational force on the particles is negligible compared to
the drag force due to the fluid. The ratio of the particle
and fluid densities, (ρp/ρf) is equal to (18St/Re)(h/dp)2,
where the the Stokes number is (ρpd

2
pū/18μh) and the

Reynolds number is (ρf ūh/μ). For the present simula-
tions, the ratio of mass densities is 16.4St for Re = 3300,
and 9.5St for Re = 5600. Here, (ρp/ρf) has been varied
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over the range 330–6667 for Re = 3300 and in the range
500–3000 for Re = 5600. For a volume fraction 2 × 10−3,
the mass loading (ρp/ρf)φ is in the range 0.66–13.3 for
Re = 3300, and in the range 1–6 for Re = 5600.

Recent studies [15,16] have pointed out that the point-
particle approximation is valid if the ratio of the particle
relaxation time and the Kolmogorov time is large, even
when the particle diameter and Kolmogorov scale are com-
parable. The Stokes number based on the Kolmogorov
time is defined as Stk ≈ (ρp/18ρf)(dp/η)2, where η is the
Kolmogorov scale. A comparison of particle-resolved and
point-particle simulations [17] has found that there is ex-
cellent agreement in the results for the kinetic energy and
energy dissipation rates for (d/η) = 1 when Stk = 100,
provided the correction for the undisturbed velocity at
the particle center (discussed in the section “Particle force
laws”) is incorporated. In the present study, the particle
diameter is comparable to the Kolmogorov scale, but the
ratio (ρp/18ρf) ∼ O(102). Therefore, we have used the
point-particle approximation, along with the velocity cor-
rection algorithm [18] to obtain the undisturbed velocity
field used in drag force calculation.

The particle volume fraction, in the range 0–3.5×10−3,
is at the higher end of the range of volume fractions used
in earlier studies. The values of the particle Reynolds
number (4–15) are comparable to those used in previous
studies. However, the range of particle Stokes numbers
used here, in the range 0–130, is significantly higher than
those used in previous investigations. In this range of pa-
rameters, we find a new phenomenon, which is the dis-
continuous decrease in the turbulence intensities as the
particle volume fraction is increased.

Particle force laws. – Care has to be exercised in
modeling the drag force on the particles, since there are
numerous physical effects which could affect the drag
force. Since the volume fraction of the particles is, at most,
3.5×10−3, simultaneous multi-particle interactions are ne-
glected in comparison to binary collisions between pairs
of particles. However, there are several single-particle
effects which could affect the drag force. In the low
Reynolds number limit, the drag force depends on the
“undisturbed” velocity at the particle center, that is, the
far-field velocity in the absence of the particle. Simula-
tions [17,18] have shown that it is necessary to correct
for the undisturbed velocity even at moderate particle
Reynolds number in order to correctly capture the drag
force in particle-resolved simulations. There is also a par-
ticle lift force [19–21] due to inertial effects in a shear flow
or when a particle is translating relative to the fluid. There
are also corrections to the drag and lift forces due to the
presence of a nearby wall [22]. While the effect of iner-
tia and boundaries on the drag and lift forces have been
studied for some time now, there is still a lot more work
to be done for refining the expressions of the force and
extending their validity, as well as for refining the torque
on a particle due to inertia and wall effects.

As explained previously, the objective here is to study
the qualitative features of turbulence modification due to
the presence of particles. In particular, we are interested
in examining if the turbulence intensity decreases con-
tinuously as the particle volume fraction increases, and
whether the turbulence attenuation is due to an increase
in the dissipation of energy due to particle drag. Rather
than carrying out simulations for one specific particle force
model which is subject to revision due to further research,
we have also examined the dependence of the qualitative
features and quantitative measures of turbulence modifi-
cation on the force law.

Apart from the results shown here using eq. (1) for the
drag force on a particle, simulations have also been per-
formed using the correction for the “undisturbed” velocity
using the procedure of [18], the particle lift force using the
expression of [21] and the wall corrections to the drag and
lift forces proposed in [22]. When the correction due to
undisturbed velocity field is included, there is a decrease of
about 10% in the mean square velocities, but virtually no
change when the lift force and the wall corrections to the
drag and lift force are included. The decrease in turbu-
lence intensities by 1–2 orders of magnitude at a critical
volume fraction, reported in results section, is observed
even when the drag and lift corrections are included. The
effect of the corrections for the drag and lift laws are briefly
discussed in the “Results” section.

Direct numerical simulation. – The pressure-driven
flow of a fluid with kinematic viscosity ν in a vertical
channel of width h with average velocity ū is simulated us-
ing two way coupled Direct Numerical Simulations (DNS).
The mean flow is in the direction of the direction of grav-
ity. As it is mentioned earlier that the terminal velocity is
smaller than the average flow velocity, gravitational effects
are negligible. An Eulerian-Lagrangian method has been
used. The configuration and co-ordinate system used for
the simulations is shown in fig. 1. The dimensions of the
channel are 4πh×h× (2πh/3) in the flow (x), wall-normal
(y) and the span-wise (z) directions, where h is the chan-
nel width. Zero velocity boundary conditions are applied
at the walls y = ±h/2, while periodic boundary condi-
tions are applied in the flow and the span-wise directions.
The pseudo-spectral method is used to solve the Navier
Stokes equation for fluid phase. Fourier transforms are
used in the stream-wise and span-wise directions which
are periodic, and Chebyshev transforms are used in the
cross-stream direction. In order to resolve the smallest
scales at Re = 3300, 128 Fourier modes are used in the
flow direction, 64 Fourier modes in the span-wise direc-
tion and 65 Chebyshev modes in the cross-stream (y) di-
rection. For Re = 5600, we use 192 Fourier modes are
used in the stream-wise direction, 160 Fourier modes in
the span-wise direction and 129 Chebyshev modes in the
cross-stream (y). Further details are available in ref. [23].
A temporal convergence study has also been performed
with different time steps between 0.003 h/ū and 0.01 h/ū.
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Fig. 1: Configuration and co-ordinate system used for the
simulations.

In the present simulations, we have used a time step of
0.008 h/ū for all the simulations reported here.

The hard sphere molecular dynamics simulation pro-
cedure is used to describe the dynamics of particle phase,
where the particle positions are updated based on the par-
ticle velocity, and the particle velocity is evolved using
Newton’s laws. The force on the particle is the sum of the
gravitational force (which is negligible in the present case),
the drag force (eq. (1)) and the force due to inter-particle
and particle-wall collisions. The inter-particle collisions
are modeled using the elastic hard-sphere model.

The lubrication forces between particles are neglected in
the present analysis, since we are considering high Stokes
number particles colliding in a gas. The force due to lubri-
cation between a pair of spheres approaching each other
is F = (6πμaΔu/ε), where Δu is the relative velocity, a is
the particle radius and ε is the ratio of the gap thickness
and the particle radius. In the continuum approxima-
tion, the energy dissipation due to the lubrication force
(ΔE ∼ 6πμa2Δu log (ε/ε0) for constant relative veloc-
ity Δu) diverges logarithmically as the particles approach
each other. In the above expression, ε0 is the scaled ini-
tial gap thickness. However, the continuum approximation
breaks down when the distance between surfaces is com-
parable to the mean free path, about 0.1 μm, or when the
ratio of gap thickness and diameter is about 2 × 10−2 for
50 μm particles. The lubrication force has a log-log diver-
gence for a free-molecular flow, and the energy dissipation
is finite for the particle with high inertia. Considering the
finite mean free path of the gas as λ, the initial gap thick-
ness is h0, and making a conservative assumption that the
particle velocity and the relative velocity scale as ū, the ra-
tio of the energy dissipated due to lubrication in a collision
and the particle kinetic energy 1

2mpū
2 of a particle, is [24]

(ΔE/E) = St−1(dp/h)(log (h0/λ)−1.28)(1+0.15Re0.687
p ).

Therefore, the ratio of energy dissipation due to the lubri-
cation and the energy of a particle is negligible in the limit
of high Stokes number St ∼ 10–102 and for (dp/h) ∼ 10−2.

The particle-wall collisions are considered specular,
where the particle velocity perpendicular to the wall is

reversed in a collision, while the particle velocity paral-
lel to the wall is unchanged. The force exerted by the
particle on the fluid, which is the negative of the drag
force, is treated as a delta function force which is pro-
jected on the neighbouring fluid grid points using the pro-
jection on nearest neighbours (PNN) technique which was
also used in [6,25]. The cell is divided into eight cuboids
using three orthogonal planes parallel to the cell faces in-
tersecting at the particle location. The fraction of the
force projected onto a neighbouring grid point is the ratio
of the volume of the cuboid opposite to that grid point and
the total cell volume. In contrast to the more commonly
used particle-in-cell (PIC) method [3,26], the particle force
changes continuously as a particle crosses a cell face in the
PNN method. The grid spacing in Chebyshev collocation
is compressed near the wall, and the grid spacing becomes
smaller than the particle size. In this case, the particle
force is interpolated among the cells straddled by the par-
ticle based on the ratio of the particle surface area in each
cell, as prescribed by the Faxen theorem for the velocity
field. The fluid velocity at the grid points is interpolated
on to the particle location using a fifth-order Lagrangian
interpolation scheme; the details of the scheme and vali-
dation are explained in [23].

The initial condition for the simulation is a stationary
unladen turbulent flow, where the particles are added at
random locations with the same velocity as the fluid ve-
locity. The simulation is run for 3000 integral times to
reach steady state. The fluid and particle statistics are
then calculated over a period of 1000 integral times. The
mean fluid velocity, ūx, is a function of the cross-stream
co-ordinate y. The velocity fluctuations in the flow, cross-
stream and span-wise directions are u′

x, u′
y and u′

z. The
overbars are used to denote time averages, for example the
mean square velocity in the flow direction is u′2

x . We have
estimated standard deviation for all the results by carry-
ing out three independent simulation runs for the same
particle volume fraction but with different random initial
particle locations and fluid perturbations. We found that
the error is around 1–4%, comparable to the size of the
symbols used.

Results. – The effect of particle loading on the mean
and the mean square of the fluctuating velocities are shown
in fig. 2 for channel Reynolds number 3300 and particle
Stokes number 32.45. The mean and mean square veloc-
ities are symmetric about the center-line of the channel,
and so each quantity is plotted in one half of the figure.
The left half of fig. 2(a) shows the variation in mean veloc-
ity profiles with particle volume fraction. The mean veloc-
ity is close to the turbulent velocity profile for the unladen
turbulent flow when the volume fraction is increased from
0 to 9 × 10−4 (blue). There is a distinct change in the ve-
locity profile when the volume fraction is increased from
9 × 10−4 to 10−3. The velocity profile has a higher cur-
vature near the center and smaller gradient at the walls,
and the velocity profile is closer to the parabolic profile
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Fig. 2: In sub-figure (a), the fluid mean velocity (left half)
and the stream-wise mean square fluctuating velocity (right
half), and in sub-figure (b), the cross-stream mean square ve-
locity (left half) and the correlation u′

xu′
y (right half), all suit-

ably scaled by the powers of the average flow velocity ū, as a
function of the scaled co-ordinate (y/h), for channel Reynolds
number 3300 and for average particle volume fraction 0 (◦),
5 × 10−4 (�), 9 × 10−4 (∇), 10−3 (�), 1.1 × 10−3 (�), and
1.4 × 10−3 (�). The particle Stokes number is 32.45.

for a laminar flow. When the volume fraction is further
increased to 1.4 × 10−3 (red), there is little change in the
velocity profile.

The change in the mean velocity profile is accompanied
by a drastic reduction in the mean square velocities in
all three directions. The stream-wise mean square veloc-
ity in the right half of fig. 2(a) exhibits the characteristic
near-wall maximum for a turbulent flow when the volume
fraction is 9 × 10−4 or less (blue lines). When the vol-
ume fraction is increased from 9 × 10−4 to 10−3, there is
a dramatic collapse in the mean square of the stream-wise
fluctuations by one order of magnitude. Upon further in-
crease in the volume fraction (shown in red color), there is
very little change in the mean square of the fluctuating ve-
locities. A dramatic decrease is also observed in the mean
square velocities in the wall-normal direction, as shown
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Fig. 3: The measures of the fluid fluctuating velocity
(〈u′2

x 〉/ū2) (a), (〈|u′
xu′

y |〉/ū2) (b) as a function of the aver-
age particle volume fraction φ for Stokes number 16.22 (•),
64.89 (∇) and 97.34 (�) for Reynolds number Reb = 3300
and for Stokes number 25.11 (◦), 50.22 (�) and 75.33 (∇), for
Reynolds Number Reb = 5600.

in the left half of fig. 2(b). More importantly, there is
also a virtual collapse in the Reynolds stress, (momentum
flux due to turbulent velocity fluctuations) as shown in
the right half of fig. 2(b). This implies that the suspen-
sion stress is primarily due to momentum transport by the
particles for volume fraction 10−3 and above.

The width-averaged measures 〈
〉 = 2
h

∫ h/2
0 dy(
), in

stream-wise velocity fluctuations and Reynolds stress,
scaled by the square of the average velocity, is shown as
a function of particle average volume fraction in fig. 3.
The stream-wise mean square velocity fluctuation and
Reynolds stress term decreases by 1–2 orders of magni-
tude at critical volume fraction of the particle for both
the Reynolds number and all the Stokes numbers exam-
ined here. A similar discontinuous decrease is observed in
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Fig. 4: The critical volume fraction for the turbulence collapse
transition as a function of particle Stokes number (St) at chan-
nel Reynolds number 3300 (�) and 5600 (�).

all the other components of the mean square fluctuating
velocities. The discontinuous transition is also observed
if the Stokes drag law is used instead of the inertia cor-
rected drag law equation (1). As explained earlier, we
have incorporated the corrections due to undisturbed ve-
locity field following [18] and also wall corrected drag and
lift forces [22] to verify the effect of drag models on the
prediction of turbulence collapse. It has been observed
that the mean square velocities decrease by approximately
10% when the correction to the undisturbed velocity pro-
file is added, and there is virtually no change in the mean
square velocities when the drag and lift corrections are
added. The turbulence intensities decrease by 1–2 orders
of magnitude at a critical volume fraction even with all the
above mentioned corrections, and the change in the critical
volume fraction is at most 10−4. This indicates that the
discontinuous transition is a robust process independent
of the channel Reynolds number, particle Reynolds and
Stokes number and the details of the drag models used.

The critical volume fraction (φcr), shown as a function
of the particle Stokes number in fig. 4, is independent of
the Stokes number when the Stokes number is greater than
about 40, and it appears to increase as the Stokes number
decreases below 40 for inertia corrected drag law. When
the Stokes drag law is used φcr is independent of the Stokes
number when the Stokes number is greater than about
100. For Reynolds number 5600, the variation of critical
volume fraction is not as prominent as the lower Reynolds
number. The number of particles corresponding to the
critical volume fractions varies between 8000 to 10000 for
Reynolds number 3300 and between 20000 to 24000 for
Reynolds number 5600 for different Stokes numbers.

In order to examine the mechanism of turbulence at-
tenuation, we have calculated separately the total rates of
dissipation of fluid kinetic energy, dissipation due to the

0 1 2 3
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1
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P,
D,

D p
,D

f
×

10
2

Fig. 5: The scaled total rate of dissipation of energy per unit
mass D (�), the rate of transfer of energy per unit mass from
the mean flow to the fluctuations P (◦), the rate of dissipation
of energy due to the drag force exerted on the particles Dp (�),
and the rate of dissipation of energy due to the mean shear in
the fluid Df (∇) as a function of volume fraction for channel
Reynolds number 3300 and particle Stokes number 6.49 (· · ·),
32.45 (- - -), and for channel Reynolds number 5600 and particle
Stokes number 50.22 (—).

particle drag Dp, and the rate of turbulent production of
energy P , all are calculated per unit mass of the fluid.
The scaled rate of production of kinetic energy across the
channel, which is also the rate of mean energy dissipation
due to the turbulent velocity fluctuations at steady state is

P = − h

ū3

〈
u′

xu′
y

dūx

dy

〉
s

, (2)

where 〈 〉s is the spatial average across the channel. The
scaled rate of dissipation of energy due to the mean shear is

Df =
μ

(ρū3/h)

〈(
dūx

dy

)2
〉

s

. (3)

The scaled rate of dissipation of energy due to the drag
force exerted by the particles is

Dp =
h

ρū3V

∑
I

u · FI , (4)

where FI is the force exerted by particle I on the fluid,
V is the total volume of the entire simulation cell, and the
overbar is a time average. The total rate of dissipation of
energy per unit mass of gas D = P + Dp + Df .

The rates of total energy dissipation, turbulent produc-
tion and dissipation due to the particle drag are shown as
a function of the volume fraction for two different values
of the channel Reynolds number and three different values
of the particle Stokes number in fig. 5. It is observed that
there is a significant decrease even in the total rate of dis-
sipation of energy at the critical volume fraction. There
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is a dramatic collapse in the rate of turbulent production.
There is an increase in the rate of dissipation due to the
particles, but this increase is only about one half of the
decrease in the turbulent production. Thus, turbulence
collapse is not accompanied by a compensatory increase
in the energy dissipation due to the particle drag, but
instead there is a decrease in the total energy dissipation
rate. This indicates that the turbulence attenuation is due
to a disruption of the turbulence production mechanism,
rather than an increase in dissipation due to the particles.

Conclusion. – The present study has been carried out
at two Reynolds numbers, 3300 and 5600 based on the
channel half-width and maximum velocity. The other
parameters have been varied over relatively wide ranges.
Two different drag laws have been used, for Reynolds num-
ber 3300, the Stokes drag law and a modification of the
Stokes law with inertial correction (eq. (1)), and 4–6 differ-
ent values of the particle Stokes number have been studied
for each drag. Simulations have been carried out incorpo-
rating corrections for the undisturbed velocity at the par-
ticle center, the lift force due to inertial effects, and the
effect of the wall on the drag and lift forces. The turbu-
lence collapse phenomena is also investigated at a higher
Reynolds number of 5600. About 5–6 particle loadings
have been considered for each Stokes number to detect tur-
bulence collapse, and each simulation has been repeated
at least 3 times resulting in a comprehensive study involv-
ing more than 500 simulations. This study has uncovered
a heretofore unknown phenomenon, which is the discon-
tinuous decrease in the turbulence intensity at a critical
volume loading in a particle-gas suspension. This is in
contrast to the conventional wisdom that there is a grad-
ual decrease in the turbulence intensities as the particle
loading is increased. The mechanism for turbulence mod-
ification, the disruption of the turbulent energy produc-
tion in the gas phase, is different from the mechanism of
increased particle dissipation which was previously con-
sidered responsible for turbulence attenuation.

The present study necessitates a re-examination of the
current modeling approaches for particle-gas suspensions.
The turbulence collapse at the critical volume fraction re-
sults in a decrease of about 30% in the pressure drop and
energy dissipation in the simulations; this has significant
implications for the design of fluidised beds and pneumatic
transport processes. The decrease in the turbulent inten-
sities by an order of magnitude will also significantly alter
the particle dispersion and redistribution, coalescence and
break-up processes essential for natural processes such as
aerosol transport, the formation of rain-drops and particle
pick-up in sand and dust storms.
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