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Abstract

®

CrossMark

We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the
presence of a uniform magnetic field. When the field is parallel to the nanotube axis, the
rotation-induced electric field brings about the spin—orbit interaction which, together with

the kinetic, inertial, and Zeeman terms, compose the Schrodinger—Pauli Hamiltonian of the
system. Full diagonalization of this Hamiltonian yields the eigenstates and eigenenergies
leading to the calculation of the charge and spin currents. Our main result is the demonstration
that, by suitably combining the applied magnetic field intensity and rotation speed, one can
tune one of the currents to zero while keeping the other one finite, giving rise to a spin current

generator.
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1. Introduction

Carbon materials are ubiquitous, ranging from living organ-
isms to contemporary high technology devices. Pure carbon
forms have fascinated humanity for ages, starting with dia-
monds and culminating in the last decades with nanoscale
structures like graphene, fullerenes and nanotubes. These
nanostructures have attracted enormous attention lately due
to their unusual physical properties which, not only provide
a thrilling laboratory for fundamental physics, but also lead
to important technological applications. In particular, carbon
nanotubes applications range from water treatment, to com-
posite materials with special thermal or mechanical proper-
ties, and to electronics, among others. For a recent review
of the latter, see [1]. Nanomechanical applications have also
been contemplated. For example nanomotors made of Carbon
nanotubes and diamond needles have been proposed, see

1361-648X/20/185301+12$33.00

e.g. [2]. The rotation frequency in these devices may reach
values as large as 1-100 GHz. Also, nano-turbines composed
of carbon nanotubes and graphene nanoblades have been
designed [3]. Other aspects and applications involving rota-
tion in nanosystems have also been investigated. Narendar and
Gopalakrishnan [4], for instance, deals with wave propagation
in a rotating nanotube and in [5], it was investigated the vibra-
tional behaviour of a rotating shaft based single-walled carbon
nanotube. Wang et al [6] proposes a nano screw pump by use
of rotating helical nanowires and [7] presents the design of a
water desalination device using rotating nanotubes.
Analogous to electronics, spintronics [8], which is based
on the spin degree of freedom of the electron instead of the
charge, is driven by spin currents which may or may not be
accompanied by charge currents. Like its sister technology,
spintronics is appearing as an important source of novel devices
[9]. It has been recently shown [10] that carbon nanotubes

© 2020 IOP Publishing Ltd  Printed in the UK
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may be excellent spin current waveguides. Additionally, as
shown in [11], carbon nanotubes can be lead to spin at GHz
frequencies by circularly polarized light. Also, rotation and
magnetic field have striking similarities (see for instance [12]
and references therein). For example, rotation couples to spin
leading to the celebrated Barnett (magnetization by rotation)
and Einstein—-de Haas (rotation by magnetization) effects.
These facts motivated us to investigate the combined effects
of electromagnetic fields and rotation on the electronic energy
eigenvalues and on the generation and control of charge and
spin currents in carbon nanotubes, which are known to be good
ballistic electron conductors [13, 14]. Since ballistic transport
occurs in high energy bands, it can be studied with the help of
the Schrodinger equation (see, for instance, section 8.1.1 on
the [15]) , while the electronic properties near the Fermi level
are well described by the massless Dirac equation [16]. The
latter has been used in previous works on rotating fullerenes
[17, 18] and carbon nanotubes [19] to study inertial effects on
their low-energy excitations.

In this paper, we solve the Schrddinger—Pauli equation for
a free electron confined to a rotating nanotube, taking into
account the influence of both electromagnetic fields and iner-
tial effects in the energy spectrum and generation of spin and
charge currents. While spin-rotation coupling, via a twisting
phonon mode, has been recently proposed [20] as means of
generating spin currents in nanotubes, we consider here a
rigid nanotube under external rotation which may be caused
by circularly polarized light [11], for instance. We study two
different configurations for a nanotube rotating around its
symmetry axis. In the first one, an external magnetic field
parallel to the tube axis induces, in the rotating frame, a
radial electric field which, by its turn, switches on the spin—
orbit coupling on the electrons. Under these circumstances,
injection of ballistic electrons in one of the extremities of the
nanotube leads to both a spin and a charge current. We show
that, by a suitable choice of magnetic field, rotation speed
and injection momentum, the charge current can be brought
down to zero, leaving a pure spin current in the system. On the
other hand, the spin current can also be tuned to zero while the
charge current is kept finite. In the second situation, the magn-
etic field is azimuthal, inducing an axial electric field which
does not lead to spin—orbit coupling. In this case, the z comp-
onent of the spin current is proportional to the corresponding
component of the charge current. Therefore both are tuned to
zero simultaneously and consequently this field configuration
is not interesting for current management. This way, we will
give a special attention to the axial case along the paper.

The paper is organized in the following way: in section 2,
we derive the Schrodinger—Pauli equation for a rotating frame
to accommodate the interactions involving the spin of the
electron. In section 3, we obtain the energy spectrum and the
eigenfunctions for a particle in a rotating nanotube in the pres-
ence of an axial magnetic field. In section 4, we obtain the
charge and spin current densities corresponding to the same
field configuration. In section 5 we present our conclusions
and in the appendix, for the sake of completeness, we present
the results concerning an azimuthal magnetic field.

2. Schrodinger—Pauli equation in a rotating frame

Following the approach described in [21], we will start from
the equation of motion
. 0¥
HV =ih 7R (1)

where U is the two-component spinor living in the Hilbert
space ) = L2(R?) ® C? where £2(R?) is the set of square-
integrable complex functions over R? and H is the generator
of the dynamics, the Hamiltonian (bold characters denote
2 x 2 matrices acting on the spinors in C?). The Hamiltonian
H contains several contributions:

H = Hx + H; + Hz + Hgo. 2)
This Hamiltonian describes the quantum behaviour of an elec-
tron of charge ¢ = —|e| and spin § = 17&. In this work, we
will consider that the electron is subject to move on the sur-
face of a nanotube of radius p = a oriented such as its sym-
metry axis coincides with the z-axis. The tube rotates around
its symmetry axis at a constant angular velocity w.

Let us now define the terms in the above Hamiltonian. The
term Hy corresponds to the kinetic energy (KE) plus diagonal
terms for convenience, electrostatic energy —lelAy and the da
Costa potential [22], which summarizes here to a constant
term —Ah? /(8ma?), but the presence of which would introduce
a z-varying potential if the tube had corrugations [23-25].
Altogether, this contribution to the Hamiltonian is propor-
tional to identity in spin space and is given by

H ! ITI)> — |e|A I’ o 3
= R —— — e _— s
K 2m O 8ma2 ) 70 3)

where II = 5 + |e|A is the mechanical momentum, defined in
terms of the canonical momentum p through minimal cou-
pling, A is the vector potential, Ay is the scalar potential and
oy is the 2 x 2 identity matrix in spin space. The second term,
Hj, contains inertial effects, i.e. the coupling between both the
orbital degrees of freedom and the spin with rotation. We will
consider here, as already mentioned, the case of a nanotube
rotating around its symmetry axis, & = wZz. Thus, in cylin-
drical coordinates (p, ©; z):

H = —& - [(7 x oo + 5. (4)

Note that the KE and the coupling of orbital degrees of
freedom with rotation can be written in a canonical manner

. 1 = 1
— & (Fx H)z—(H—mﬁxf)z—Em(ﬁx?')z.

2m
)
The term Hy corresponds to the Zeeman interaction which
couples the electron spin to the magnetic field:

1 -
—IT1/?
2m |

—

H; = ppd - B, (6)
where the Bohr magneton is pg = %, B is the magnetic field

and & = (o, oy, o) the vector of Pauli matrices. Eventually,
the spin—orbit interaction is given after proper symmetrization
by
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1 Lo L
Hw:—yﬁ(HxE—ExH» )
with
le|h
et ®)

E’ is the electric field in the rotating frame, given in terms of
E, the applied electric field in the inertial laboratory frame by

E =E+ (& x7) xB. )

The term (& x 7) x B is the electric field due to rota-
tion, our main interest in this study. Thus, we will con-
sider E=0. In the present symmetry, @ X ¥ = wa@ and,
if we only consider uniform magnetic fields, one has
(B + leA) x [(& x F) x B] = —[(@ x F) x B] x (5 + |e|A)
and it follows that

Hso = —k& - [(F + |e]A) x (wap x B)]. (10)

Note that the spin—orbit term here follows from the fact that,
due to rotation, the electron experiences an associated elec-
tric field although only a magnetic field is applied in the rest
frame.

We omit other contributions coming from the non-relativ-
istic limit of Dirac equation like the Darwin term or the cor-
rections to KE. The complete Hamiltonian finally reads as

1 - R? -
= (5l A ~ o = gz ) o0 =3[ (54 el

1 lelh o =
Zhis- %% . B
2 T om®

le|a

— s - (5 + leld) x (wap x B,

(11)
where we have written separately on purpose the purely orbital
part from the part which explicitly involves spin.

Q.

3. Energy spectrum

In this section, we diagonalize the Schrodinger—Pauli
Hamiltonian (11) for the case of an axial magnetic field. While
the axial field includes spin—orbit coupling due to the induced
radial electric field caused by the rotating frame, in the azi-
muthal case this interaction does not exist, for the induced
electric field is absent (see equation (9)). For this reason, we
will focus on the axial case here. We deal with the azimuthal
case in the appendix. In what follows we will be using the
cylindrical coordinates p, ¢ and z, with

P =—ih(p~'0,)¢ — ih(d.)z.

In the following, we specialize to the case of an axial magn-
etic field where B = BZ is uniform in which case we will use
the symmetric gauge A = 1B x 7 = 1Bag.

(12)

3.1 A comment on the choice of gauge

We first discuss the case of the purely orbital motion i.e. cancel
all terms involving & in H in (11). Then, an interesting prop-
erty arises when we look at the formulation of equation (5).

The last term in the R.H.S (interpreted as a gauge symmetry
breaking (GSB) term, see e.g. [26] and [27] for a similar dis-
cussion on the role of such a term in the case of spin—orbit
interactions) is constant in our case and the first term becomes

S+ (B mwa)g) > It immediately follows that rotation

kills the effect of the magnetic field when |e|B/2 = mw, hence
when the angular frequency equals the Larmor frequency (half

the cyclotron frequency) w = wy, = fw = |e|B/2m. An inter-
esting comment here concerns the choice of gauge. Although
gauge invariance guarantees that the above result remains
correct with another gauge choice (see e.g. [28] for extended
discussion), we see that with the Landau gauge A= Bxy, for
instance, nothing special seems to happen in equation (5) at
wr., which means that the property mentioned above is hidden
in that case. Let us mention also that motion on a more general
cylindrically symmetric system, like a cylinder with bumps
or hollows [23], would not exhibit the property that magnetic
field effects may be compensated by simple rotation, due to
the presence of the GSB term which, then, would depend
on z and would then alter the form of the wavefunctions and
energies.

3.2. Eigenenergies

Specializing to the cylindrical coordinates and p = a, the
various terms of the Hamiltonian can be explicitly written as

o et s ino e
HK*Zm[( iha 8¢,+2\e\Ba) + (—iho,) 4ha }0'(01,3)

1 1
H, = —wal-ifa”'9, + JlelBa] oy — Shwo., (14)

_ el

H
z 2m

Bo, (15)

1
Hso = —’ywa[(—ih@z)aqJ — (~iha'0, + §|€|Ba)0'z}

(16)
with the dimensionless magnetic field v = kB and

0 e
T = \ele 0 '

Let us now write explicitly the effect of these terms in the
cylindrical geometry, acting on a two-component spinor of the
form

(17)

ae P\ L
qj(@, Z) = ( Bei@/z > eeipe kZ’ (18)

with o and /3 constants and with ¢ € Z if we require the fer-
mionic property under 27 rotation, ¥(p + 2m,z) = —¥(y, z)
[28].

HxV = —
K 2m

2 2 .
([ 12 by < = g e
[(L(e+1/2) + YelBa)” + 1242 — 112 peter?

(19)
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Figure 1. Energy (in meV), top: as function of the magnetic field, for the axial magnetic field case, when w = 10" rad - s
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as function of the angular velocity, when B = 1 T. The values of ¢ and o are indicated as plot legends. The radius of the tube is fixed to
a = 50nm. At that value of the radius, the ratio ®/®, varies typically from O to 10 on the scale of the plot. The left plots show the first

levels with o = +1: { = =2,

—1,0,1,2, k = 0 (the largest energy scale being h2k?/2m, we set it to zero to enhance the role of the other

parameters), the right column shows for the level £ = 1, for the two values of ¢ = —1, +1.
[2(6=1/2) + LleBa+ 12] ae™i#/2\ (o T LN GOSN -

HU = — a il ik M= — - — hwkla + ~h(w — w.) F yhwkZa,
I ( [B(¢+1/2) + L|e|Ba+ 2a] Beiv/2 ere 2m  8ma? 2m T2 (‘54)
(20 with ®) = 27h/|e| ~ 3.93 10~ 15USI the flux quantum, and

1 e /2N in terms of which the eigenvalue equation now reads as

Hy U = 2 hwe ( w/z) elvel, (21 . .

2 —pe - ae I\ g hQ~ iyhwkae™1¢
. e e = .
Beiv/2 —iyhwkae'? Rt

Mool — e ([ (B(¢—1/2)+ YlelBa)a — 1hk5]é—1¢/2> e
[inka + (2(€+1/2) + SJelBa) B]eie/2
(22)
It is worth noticing that a cancellation of the effect of
the Zeeman term by the spin-rotation coupling requires that
w = |e|B/m = w,. The difference by a factor of 2 between
the rotation frequency needed to counterbalance orbital and
Zeeman effects is due to the Landé factor of the electron, here
approximated to g, ~ 2. In which concerns the last term in
(11), we observe on the other hand that there is no rotation to
compensate for the Pauli spin—orbit term. In the general case,
the spin—orbit interaction mixes the spinor components. We
introduce the following notations for convenience:
o 1 h
hkZ, = §|e|Ba:;(€+0/2+‘I>/<I)o),

g(e +0/2)+ (23)

aefiﬂ"/z 0o i ae*iﬂo/z . .
il ikz __ il Likz
<Bew/2)e e E(ﬁei‘Pﬂ)e e, (25)
The eigenenergies follow from
- — ivhwkae ™
‘—ithkaeiw nor g | =0 (26)

i.e.

Egpo = %fL(QJr +Q7) + %ah\/(fﬁ — Q7)) + 4y2wka?.

(27)
At w = 0, the function Ey, with fixed o is periodic in

® /P (given by a set of parabolas (see figure 1), top, which
satisfy  Epy,(®/Pg — n) = E¢(®/®Py)). The spin-orbit
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E(meV)

(e) £=+41,0=-1 (f) ¢=+1,0=+1

Figure 2. Energy (in meV) of a few |¢ko) states, in the axial magnetic field case, for k = 1/a, a = 50nm, as a function of magnetic field and
rotation speed.

interaction lifts the energies degeneracy and the value of the

_ o of Lo- _ o+
rotation parameter w breaks the perfect periodicity in ®/®,. H= Eh(Q + Qoo + Eh(ﬂ - QNo: — yhwkao,

The spin—orbit coupling also introduces a combined effect of 1, | 2ywka
. : . = ~h(Q +0F SO - QY o -

both rotation and the magnetic field in the term 4+2w?k*a®, MY+ Q7)o+ S0 Vo - —qr o
since yw = kBw. In figure 2 it is shown the energy landscape (28)
when B and w are varied for a few eigenstates. Notice the cor- ~ Where the last bracket can also be denoted as
respondence with figure 1. ) 2ywka

6, =0;—tanbo,, tanf = o —ar (29)
3.3. Eigenspinors The normalized eigenstates W 4, of 6, hence of H, are

In order to facilitate the search of the eigenspinors, it is worth - ( cos §e~iv/? ) ) g, — (i sin ge*iw/Z) o)

writing the Hamiltonian under the form —isin §ei#/? — cos §el¥/? 30)
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(e)

B(T)

(f) £=+4+1,0=+1

Figure 3. The axial component of the charge current (in units of ;—Z) of a few |¢ko) states, in the axial magnetic field case, for k = 1/a,

a = 50nm, as a function of magnetic field and rotation speed.

A word of caution is needed here. Although the trans-
formation given by equation (29) provides an elegant way
of presenting the eigenstates, it is singular at Q= = QF and
therefore not valid when this happens. As 2~ approaches QF
from below and goes above it, tan 6 jumps from —oo to +00
which, obviously, is not physical since there is no such jump
in equation (28). Further, &, is meaningless in this case. Of
course this is just an artifact of the notation which was care-
fully taken into consideration when plotting the charge and
spin currents, which explicitly depend on sin 6 and cos 6.

3.4. Orders of magnitude

Carbon nanotubes are good candidates to analyse quanti-
tatively the effect of simultaneous presence of rotation and

magnetic field. They have various electronic structures
(metallic or semiconductor along the axis) depending on their
chirality. Typical order of magnitude for a carbon nanotube
diameter is a ~ 1-500 nm. In our study we fix a = 50nm.
Typical laboratory magnetic fields are of the order 1 T which
gives a corresponding cyclotron frequency of order 100 GHz,
which is compatible with the nanomotors rotation frequency
mentioned at the introduction.

4. Charge and spin current densities

4.1. Charge currents

We will now focus on the charge currents in a pure quantum
state, and in the next section, on spin current at 7 = 0. For a
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B(T)

(e) L=+1,0=-1

Figure 4. The axial component of the spin current (in units of
a = 50nm, as a function of magnetic field and rotation speed.

hZ

ma

given energy channel, the charge current density at 7 = 0 can
be calculated using the definition
Jie = —le|Ul, ¥4, with = ~[H,7.
h (31)
Following [29], we have defined the charge current in such way
that the dimension of J is that of charge times velocity. Since
the motion is constrained to the nanotube, only two spatial
components of V are needed, v, = ¥[H, ] and v, = +[H, z].
The calculation gives

le|Ba

5 (32)

1
v, = - (—iha_lay, + )0'0 —waoy + ywao,

B(T)

{=—-1,0=+1

(d)

B(T)

(f)y ¢=4+1,0=+1

) of a few |[(ko) states, in the axial magnetic field case, for k = 1/a,

and

1

Vo= (i) ~ qwac,. G3)

The charge current density in the azimuthal direction follows,

he  |e|Ba
_ + -

—wa + a(vwa — i) COS@].
ma 2m 2ma

34
The first term o< i{ is the paramagnetic current density w(hilg
the second term, linear in B, is the diamagnetic contrib-
ution. The next term is its rotation counterpart. The last term,
depending on ~y is due to the spin—orbit interaction. As dis-
cussed in the beginning of the paper, when w = %wc, the

Jotio = ~el
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(e) L=+1,0=-1

B(T)

(f)y ¢=4+1,0=+1

Figure 5. The azimuthal component of the charge current (in units of %) of a few |¢ko) states, in the axial magnetic field case, for k = 1/a,

a = 50nm, as a function of magnetic field and rotation speed.

orbital contributions of the magnetic field and of rotation
cancel each other. In the nanotube axis direction, the charge
current density is

hk
Jotko = —le| o Towa sin 0] (35)

The term o< hk is also a paramagnetic contribution due to
the ‘initial conditions’ in the selection of the eigenstate while
the second term, with  dependence, results from SO interac-
tion. Note that w, B and the SO interaction appear on both
components.

An interesting issue here concerns the definition of the
charge current from the Lagrangian approach. The Lagrangian
can be written, in a state ¥ as [30]

L = (V|ihd,oy — H|T). (36)
Here we only deal with stationary states, which simplifies the
expression, and, using the definition of the current in terms of
L, one has [29]

-~ OL 0
= — = ——(V|H|V), 37
I=>3 6A< [H|T) (37)
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(f) £=+4+1,0=+1

Figure 6. The azimuthal component of the spin current (in units of %) of a few |¢ko) states, in the axial magnetic field case, for k = 1/a,

a = 50nm, as a function of magnetic field and rotation speed.

but there are caveats here: first the energy has to be expressed
in terms of the vector potential and not as a function of the
magnetic field (for example the Zeeman term does not couple
spin to A, but to B directly), second this approach does not
allow to define the current in the z direction (since A has no
component along z). The calculation in the eigenstates (30)
leads to

0 B neo o lelA, h
_78A Eune = —|e] <% + o wa + cr('ywa —2ma) cos 9),
(38)

which identifies to J, st according to (34). As noticed, we do
not get (35) directly. On the other hand, it is easy to choose
another gauge for the vector potential which leads to the same
magnetic field, A= %Ba@ + A,z with constant A,, which
modifies the kinetic term according to

| I, .
%(_lhaz)z _m<_1haz + |e|Az)2 (39)
and the SO term according to
Hso — Hgo + waBle|A o ,. (40)
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Figure A1. Energy (in meV), top: as function of the magnetic field, for the azimuthal magnetic field case, when w = 10'* rad - s~!, bottom:
as function of the angular velocity, when B = 1 T. The values of ¢, k, o are indicated as plot legends. The radius of the nanotube is fixed to
a = 50nm, the right plots show for the level £ = 1, (k = 0), the two values of o = —1, +1.

This would lead to reparametrization of the s, 6, etc but
would allow the calculation of the z-current through the
formula J, g, = —2tie.

Another feature of this expression of the current density is
that there is no contribution of the Zeeman current, although
the magnetic field is involved. Such a term, associated to the
spin polarization [31]

—lel & t@
—9$ « (uisw) @1)
m
indeed vanishes here due to the uniform character of the spin
density.

4.2. Spin currents
The spin current density in an eigenstate obeys a definition
similar to (31) (see e.g. [29, 30]),

. 1 . ) 1
¢ =~Ul {V,8)}0p, with s,= Shoa (42)

2

with the velocities given in (32) and (33) and where the
anticommutator is required for symmetrization. We use S to
denote the spin current density and the tensorial character is
encoded in the upperscript a which refers to the spin polariza-
tion considered. In the azimuthal (¢) direction, we have, for

the two spin labels
) h ]
—wa .

o cos b + ywa — —
(43)

5 =
2

o lko T

ne  |e|Ba
R + -

ma 2m 2ma

10

In the z direction, we have

h

2

Sieko - (44)

[ahk cos 9] .
m

Again, we note that the spin current depends on both the
magnetic field intensity and the rotation velocity. But, differ-
ently from the charge current, the SO term contributes only to
the ¢ component. Moreover, a comparison between (34) and
(43) and between (35) and (44) shows that, for a given eigen-
state, it is possible to tune either the magnetic field and/or the
rotation velocity in order to cancel the charge currents while
keeping non-vanishing spin currents. For instance, for the
z-component of the charge current this happens provided that
hk

Ywsinf = —g—.
ma

(45)

On the other hand, the cancellation of the z-component of spin
current happens at combinations of w and B such that

cosf = 0. (46)

In this case, the z-component of the spin current vanishes,
leaving a charge only current that depends both on the magnetic
field and rotation speed and, amazingly, on the spin polariza-
tion state, as can be seen in equation (35). This is due to the SO
term that couples spin polarization, magnetic field and rotation.
Inspection of equation (29) shows that this case corresponds
to having Q* = Q~, which gives a simpler relation between

B and w, that is 2x(£ + Z)Bw + |e[a®B?w + B —w =0,
besides simplification of the eigenstate energy, equation (27).
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The control over which component of either current is
tuned to zero is evident in the plots of the currents shown
in figures 3 and 4, for the axial components, and figures 5
and 6, for the azimuthal components. Furthermore, those
figures also show that the currents might have their direc-
tion inverted by choice of the appropriate sector of parameter
space (B, w). This provides an effective way of controlling the
balance between charge and spin currents and their respective
directions.

5. Conclusion

In the previous sections we studied electronic and spintronic
effects on ballistic electrons in a rotating nanotube under
an applied magnetic field. For the case of an axial magnetic
field, we found the eigenenergies and showed that spin and
charge currents are generated by ballistic charge injection
in the nanotube. The combined inertial and electromagnetic
effects allows for control of the balance between the charge
and spin currents. It is shown that, by playing with the applied
field, rotation speed and injection momentum, one can tune
the charge current to vanishing values, leaving a nonzero spin
current.

At sufficiently low temperatures, electrons in most metals
and alloys (provided they have no magnetic order) exhibit a
Fermi liquid behaviour with renormalized parameters such as
the effective mass [32]. Hence, for a conducting nanotube, the
set of weakly-interacting electrons maintained in one of the
eigenstates can in principle lead to tunable pure spin currents
along the tube axis. Moreover, another possible application
is to use the device either as an accelerometer or as a mag-
netometer: indeed, once the device is tuned such that charge
currents are canceled, any change in the magnetic field AB or
in the rotation velocity Aw will break condition (45). Thus, a
charge current is generated, the intensity of which can be used
to retrieve AB or Aw.

The great difficulty of injecting a ballistic current into a
rotating nanotube via physically contacted electrodes can be
overcome by photocurrent injection at optical frequencies
[33]. Although our results were obtained for DC currents they
can be extended to the AC domain, which is the aim of future
work.
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Appendix. Azimuthal magnetic field

For the sake of completeness, we present here the results con-
cerning an azimuthal magnetic field

B =B¢ (A.1)

1

with |§| constant. Obviously, this is a much more difficult
experimental condition but hopefully it is much less inter-
esting since there is no SO coupling.

A.1. Energy

The corresponding vector potential to (A.l) is given by
A = —Bpz. The Hamiltonian can be written as

h2
8ma?

1 L .
H=o- {(—lrm 19,)” + (—iho. — |e|Ba)® —

le| o hw
+ %BUW —wa (—iha™'0,) oy — >

Joo

(A.2)

o;

where it has been taken into account the fact that due to equa-
tion (9), the spin—orbit interaction vanishes in the case of an
azimuthal magnetic field. Acting on a spinor (18), it yields the
same form as in the case of an axial magnetic field,

R~ —iugBe T\ [ae TR\ L, g
= , . e, (A3
(iuBBe“p hQ+ >< geier2 )€ (AD)
but now with the parametrization
n? 1 n?
OF = ——(0£1/2)* + ——(hk — |e|Ba)* — hw! — —
f 2ma2(€ /2 +2m(hk le|Ba)” — hut 8maq?’
(A4)
o=
tanf = m (AS)

where a cancellation occurs between the Zeeman and part
of the orbital contributions as one can see by careful inspec-
tion. The parametrization being the same, the eigenvalues and
eigenspinors are given by

Eo %h(QJr +Q7)+ %oh\/(QJr — Q)2+ 4piB /2
(A.6)

and equation (30) with the appropriate modifications of the
’s. Note that the vector potential being now in the z direction,
the periodic repetition of parabolas in the energy spectrum
would be obtained at various k-values rather than ¢-values.

Using the same figures as in the previous section, we find
of course similar orders of magnitude for various contrib-
utions to the energy. Since there is no spin—orbit coupling in
this case, the form of the term inside the square root is dif-
ferent, without the combined term involving rotation and field,
as in the previous case. Figure A1l gives an idea of the energy
behaviour for a few states.

A.2. Charge currents

In order to obtain the charge and spin currents, we again need
to obtain v, and v,. From the Hamiltonian (A.2), we can find
that

1
Vo = P (—iha718¢) oy — waoy, (A7)

and

1
V.= (—iho, — |e|Ba) o¢ (A.8)
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and the charge currents follow. They are given by

he h
Joike = —|e| lma — wa — o= cos 9] , (A9

2ma
hk  |e|Ba
Jotke = —|e | (A.10)

where 6 depends both on w and B (see equations (A.5) and
(A.4)). Itis interesting to note that, in the case of the azimuthal
magnetic field, the contributions from the rotation appear
solely in the ¢-component of the charge current. Furthermore,
the spin polarization o appears only in the -component.

A.3. Spin currents

Now, we will write the expressions for the spin currents. In the
 direction, we have

< *E Efw costi A.11
N a 2ma | (A.1D)
In the z direction, we have
h hk  |e|Ba ho J, oo
L ko = > la(m — m)cos&] =5 (i|e\) cos 6.
(A.12)

Here, differently from the charge current, both spin current
components depend on w, B and the spin polarization . From
equations (A.10) and (A.12) it is clear that, if J7 . is tuned
to zero by adjusting B, the corresponding spin current comp-
onent S? ;. = 0.
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