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1.  Introduction

Having been prepared at a high starting temperature (Ts), when 
a homogeneous mixture is quenched to a final temperature (Tf ), 
that falls inside the miscibility gap, it renders unstable to fluc-
tuation and separates into regions or domains rich in particles 
of similar type [1–5]. Kinetics of such phase separation is of 
immense interest from both scientific and technological view-
points. To probe the aging during such evolution, often one 
studies the decay of the two-time auto-correlation function [6]

Cag(t, tw) =〈ψ(�r, t)ψ(�r, tw)〉
− 〈ψ(�r, t)〉〈ψ(�r, tw)〉.

� (1)

Here ψ, chosen scalar by keeping the content of the paper 
in mind, is a space (�r ) and time dependent order parameter, 

while t and tw (� t) are referred, respectively, to as the obser-
vation and waiting times.

Due to the violation of time-translation invariance in non-
equilibrium systems, Cag(t, tw) for different tw are not equiva-
lent to each other. In other words, if this correlation function is 
plotted versus t  −  tw, there will be no collapse of data for dif-
ferent values of tw. However, it is found that in many systems 
Cag(t, tw) exhibits the scaling behavior [6–22]

Cag(t, tw) ∼ (�/�w)
−λ,� (2)

where � and �w are the average sizes of domains at times t and 
tw, respectively. Note that � typically has a power-law time 
dependence [1–4, 6]

� ∼ tn,� (3)
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in phase ordering systems. Here λ and n are referred to as the 
aging and growth exponents. Values of these exponents, along 
with few other properties [2, 23], define the nonequilibrium 
universality classes [2, 19].

It has been argued that for same model, depending upon 
the spatial correlation in the initial configurations there can 
be different universality classes [19–21]—one for Ts = ∞ 
and the other for Ts = Tc, the latter being the critical temper
ature. Note here that at Ts = ∞ a system, in standard picture, 
has a correlation length ξ = 0 and at Ts = Tc, ξ = ∞, when 
the system is of thermodynamically large size [2, 3, 24]. For 
ordering in uniaxial ferromagnets [2, 24], this fact of uni-
versality has been demonstrated [19, 20]. There the under-
standing is that even though n remains the same [19], λ and 
other dynamic and structural quantities are different in the two 
classes [19, 20, 25–27].

In contrast to the magnetic case, for which there is no 
constraint on the conservation of system integrated order 
parameter during evolution [2], the task of understanding of 
coarsening phenomena is known to be significantly more dif-
ficult, at least theoretically and computationally, for conserved 
order parameter dynamics that applies to kinetics of phase 
separation in multi-component mixtures [2]. Computational 
difficulty [28–30], to a certain extent, arises from the signifi-
cantly slower dynamics in the latter case. Note that for the 
nonconserved case [2, 31] n = 1/2, whereas for the conserved 
case [2, 32, 33] n = 1/3, in usual situation. Furthermore, irre-
spective of the type of dynamics, conserved or nonconserved, 
quantitative understanding of aging behavior, even for simple 
models, still remains difficult, convergence in the settlement 
of issues being rather slow [7–20, 23, 34–37], despite the 
availability of huge computational resources.

Nevertheless, significant progress has recently been made, 
following adoption of methods of analysis that are analogous 
to the popular techniques used for extracting information 
about equilibrium systems. In a recent work [14] we have 
quantified the values of λ for phase separating binary mix-
tures (A  +  B) in different space dimensions d, via formulation 
and application of finite-size scaling technique [13, 38] to 
Monte Carlo (MC) simulation results, for quenches with ini-
tial ξ = 0. For this and a number of other situations, including 
the ferromagnetic case, we have demonstrated [13–17] that λ 
satisfies certain bounds. Here note that Fisher and Huse (FH) 
argued [7]:

λ �
d
2

.� (4)

Later, Yeung, Rao and Desai (YRD) [9] provided a more accu-
rate and generic bound:

λ �
d + b

2
,� (5)

where b is an exponent related to the short wave number (k) 
behaviour of the structure factor [39], viz.,

S(k → 0, tw) ∼ kb.� (6)

For random initial configurations (ξ = 0), b = 0 and so, the 
YRD bound coincides with that of FH. For nonconserved 

order parameter, when Ts = ∞, b = 0 even in the long time 
limit. The latter, however, is not true for the conserved case 
[39–41]. This is one of the reasons for our observation of 
vastly different λ values in the two cases, irrespective of space 
dimension, for quenches with ξ = 0.

When started from Ts = Tc, it is expected that one will have 
different structural scaling [19, 20]. If so, the bounds for both 
conserved and nonconserved order-parameter may be dif-
ferent from that when quenched from Ts = ∞. This provides 
an intuitive understanding that λ for both conserved and non-
conserved classes will be different for Ts = ∞ and Ts = Tc, 
giving rise to different universalities. This is demonstrated, as 
already stated, theoretically and computationally, for the non-
conserved case [19, 20].

In this paper we focus on the conserved case, i.e. we take 
up the task of estimating λ for binary (A  +  B) mixtures with 
Ts = Tc. Note that nonequilibrium universality classes are 
also decided [2] by the space dimension, order-parameter 
symmetry and presence of hydrodynamics. In this paper we 
focus on d  =  2 and scalar order parameter, in absence of 
hydrodynamics, i.e. in our model system coarsening occurs 
due to simple diffusive transport, as expected in solid alloys. 
To validate our method, and thus, the result, we also estimate 
λ for the nonconserved case that can be readily compared with 
the existing results from other approaches [19, 20].

We show that the obtained values of λ are consistent with 
the YRD bound. These numbers are discussed with refer-
ence to the corresponding numbers [14] for Ts = ∞. It tran-
spires that for conserved order parameter also λ for Ts = Tc is 
hugely different from that for Ts = ∞. Another recent study 
of ours [42] suggest that in both the cases the growth expo-
nent remains same, like in the nonconserved case. Thus, there 
exists qualitative similarity between conserved and noncon-
served cases, with respect to relaxation following quenches to 
the ordered region.

2.  Models and methods

We study nonequilibrium dynamics in solid binary mixtures and 
uniaxial ferromagnets, via Kawasaki exchange [43] and Glauber 
spin flip [44] Monte Carlo methods [45–47], respectively,  
using the nearest neighbor Ising model [24] on a 2D square lat-
tice, with periodic boundary conditions [46] in both the direc-
tions. The Hamiltonian of the model is given by [24, 46]

H = −J
∑
〈ij〉

SiSj; Si = ±1; J > 0,
� (7)

where the values  +1 and  −1 correspond to particles of types A 
and B, respectively, in the case of binary mixture, and up and 
down spins in the case of ferromagnet. The value of critical 
temperature of this model [24, 46] in d  =  2 is � 2.269J/kB, 
where J is the interaction strength and kB is the Boltzmann 
constant.

A trial move in the Kawasaki exchange Ising model (KIM) 
is the interchange of particles between randomly selected 
nearest neighbor sites, whereas in the Glauber Ising model 
(GIM) a move is performed by flipping a randomly selected 
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spin. In both the cases the probability of acceptance of trial 
moves is given by [45–47] (Tf being the final temperature)

P(i → j) = min(1, exp(−(Ei − Ej)/kBTf )),� (8)

where Ei(j ) is the energy of the state i( j). Time in our simula-
tion is estimated in units of MC steps (MCS), where one MCS 
is equivalent to L2 trial moves, L being the linear dimension 
of a square box, in units of the lattice constant a. In the rest of 
the paper, we set J, kB and a to unity.

We mostly quench the systems from Ts = TL
c , TL

c  being 
the system-size dependent critical temperature [38, 48], 
except for a few cases for which we performed quenches from 
Ts = ∞, only for the purpose of comparison. For both the 
starting temperatures the final temperature was Tf = 0.6Tc. 
Here note that for quenches to Tf < Tc the asymptotic values 
of n are same [20] for both Ts = ∞ and Ts = Tc. On the other 
hand, following a quench to Tc from other temperatures relax-
ation of a system is dictated by different value of the exponent.

In order to obtain the equilibrium configurations at TL
c , 

we have performed simulations using Wolff algorithm [49], 
that, to a good degree, helps avoiding the critical slowing 
down [50]. Here, instead of a single spin, a randomly selected 
cluster of similar particles or spins is flipped.

The average domain lengths of a system during evolution 
have been calculated via [29, 30]

�(t) =
∫

P(�d, t)�dd�d,� (9)

where P(�d, t) is a domain-size distribution function, and �d 
is the distance between two successive interfaces in a specific 
direction. In the calculation of the autocorrelation functions 
(see equation (1)), the order parameter ψ at a space point cor-
responds to the value of spin in equation (7) at a lattice site. 
All the presented results, for both KIM and GIM, are averaged 
over a large number of independent initial configurations, 
ranging between 100 and 500, depending upon the system 
size.

3.  Results

We start by presenting results from the KIM. In figure  1 
snapshots during the evolutions for different Ts values are 
presented. The upper frames are for Ts = ∞ and the lower 
ones are for Ts = TL

c . All the pictures are for L  =  128. The 
difference in structure in the two cases is recognizable, even 
though there exist strong finite-size effects in the initial con-
figurations [38, 46] for Ts = TL

c . The latter is in addition to 
the standard finite-size effects [29, 30, 51] that is observed for 
Ts = ∞, when � approaches L. As is well known [24],

ξ ∼ ε−ν ; ε =
Ts − Tc

Tc
,� (10)

ν  being a static critical exponent. For a true phase transition, 
achievable in thermodynamically large systems, of course, 
ξ = ∞ at the critical point. However for L < ∞, which is 
always the case for computer simulations, ξ is finite, the max-
imum attainable value being ξ = L. Because of that, for finite 

L, when Ts = TL
c , following quenches the systems quickly 

deviate from the desired [19, 20] scaling form, different from 
that for quenches with Ts = ∞, of the nonequilibrium struc-
ture. This can be realized by taking a closer look at the snap-
shots for Ts = TL

c  in figure 1—the fractality is changing with 
time. This additional finite-size effect must be taken care of 
via appropriate extrapolation of the size-affected quantitative 
data in the L = ∞ limit. This requires knowledge of TL

c  for 
various values of L. Related results we present next before 
showing data for the autocorrelation functions.

Phase behavior for a model can be obtained via computer 
simulations by calculating the temperature dependent, appropri-
ately defined, order-parameter distribution functions [46, 48].  
Such a phase diagram or coexistence curve will always suffer 
from finite-size effects due to the fact that, as mentioned 
above, in simulations we always have L < ∞. Nevertheless, 
via the applications of well-established scaling principles 
phase behavior, including the critical point, in the thermody-
namic limit, can be satisfactorily obtained [48, 52, 53].

In the two-phase or coexistence region the order-parameter 
distribution will have a double peak structure, locations of the 
peaks representing points along the coexistence curve. On 
the other hand, in the homogeneous (one-phase) region these 
distributions will have single peak shape (with temperature 
dependent width). The temperature at which the crossover 
from double peak to single peak structure occurs is identified 
as the value of TL

c .
A plot of TL

c  versus 1/L is shown in figure 2. These results 
were obtained from GIM by discarding snapshots from early 
time non-equilibrium regime. Given that static critical univer-
sality is very robust, we will use the same data for the study 
of nonequilibrium phenomena in KIM as well. For the same 
reason we could have used the Wolff algorithm as well for 
the estimation of TL

c . However, the range of system sizes over 
which we have calculated TL

c  the absolute gain in time as well 
as that in any error due to large deviation would not have been 
big. Note that the results for TL

c  are expected to satisfy the 
scaling form [46, 48, 52, 53]

TL
c − Tc ∼ L−1/ν ,� (11)

validity of which can be checked from its consistency with 
equation (10). For the Ising model (universality class) ν = 1 in 
d  =  2. The data set in figure 2, thus, is in agreement with this 
expected critical point behavior. Note that the continuous line 
in figure 2 is a fit of the simulation data set to the scaling form 
in equation (11), by fixing ν  and Tc to the 2D Ising values.

Following the discussion and presentation of results rel-
evant for the scaling analysis of the aging data for the crit-
ical starting point, we now focus on the primary objective. 
In figure 3 we present results for Cag(t, tw), versus �/�w, for 
the KIM. In part (a) we fix the system size and include data 
from few different tw values. On the other hand, in part (b) tw 
is fixed and L is varied. In none of the cases collapse of data 
is observed. This should be contrasted with the available lit-
erature [13, 14] for quenches from Ts = ∞. Such non-scaling 
behavior for quenches from the critical point is because of the 
fact that for L < ∞, the structure, during evolution, quickly 
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starts deviating from the desired scaling, as already men-
tioned. To overcome this problem we will perform extrapola-
tion exercise to obtain the value of λ in the L = ∞ limit.

Note that very early-time structural change brings artifi-
cial non-monotonicity in the length. This is reflected in the 
plots of figure 3 for smaller values of tw. During this period, 
we believe, the system is trying to arrive at the scaling 
structure, giving rise to an unavoidable inconsistency in the 
measurement of domain length, but only for a brief early 
time regime. Thus, this non-monotonicity in the domain 
length should not be taken seriously. With the increase of 
time departure from this scaling structure occurs, earlier for 
smaller systems.

In both figures 3(a) and (b), a common feature is the fol-
lowing. Each of the data sets tend to stabilize to a power-law 
decay over a certain range of �/�w, but deviates from it when 
� approaches L, i.e. ξ. These stabilized exponent values are, 
however, different from each other in part (a) as well as in part 
(b). In part (a), this is because of the fact that the structure for 
each tw is different. Recall, we have already mentioned above 
that this is a nonequilibrium feature related to finite system 
of any particular size. On the other hand, even though in the 
case of part (b) tw is fixed, here one has different finite-size 
effects for different L to start with, owing to different initial ξ 
for different L.

Nevertheless, for a fixed tw, with the increase of system 
size the exponents keep staying stable for longer ranges. Also, 
the rate of change of the exponent with the increase of L keeps 
decreasing. That way one may like to consider a very large 
system to obtain λ value that will be very close to that for 
L = ∞. We, however, would like to rely on an extrapola-
tion method using relatively smaller systems. Note that faster 

decay of the autocorrelation for large �/�w is unavoidable, 
because of the finite value of ξ when L < ∞. Only in the 
L = ∞ limit, Cag(t, tw) will decay indefinitely with unique 
exponent. We mention here: an advantage of using smaller 
systems is that one can get better statistics by running simula-
tions with many independent initial configurations, using the 

Figure 1.  Snapshots for the Kawasaki Ising model during evolutions following quenches from Ts = ∞ (upper frames) and Ts = TL
c  (lower 

frames), with L  =  128. In each of the cases pictures from three different times are shown. The dots represent A particles and the rest of the 
space is occupied by B particles. Here and in other places all results are from quenches to Tf = 0.6Tc.

Figure 2.  Plot of finite-size critical temperatures TL
c  as a function 

of the inverse system size 1/L. These results were obtained for GIM. 
The continuous line is a fit of the data set to the scaling form in 
equation (11), by fixing Tc and ν  to their 2D Ising values. Unless 
otherwise mentioned, all the results below will correspond to 
Ts = TL

c .
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same computational power that is needed to run single large 
system. Here note that reduction of error is not directly pro-
portional to the size of a system [29, 51].

For the purpose of extrapolation, we need to obtain the 
exponent values in the stabilized regions accurately. For this 
we take help of the instantaneous exponent [14, 28, 33]

λi = −
d lnCag(t, tw)

d ln x
; x =

�

�w
.� (12)

In figure 4, as illustration, we plot this quantity as a function of x, 
for the KIM, for two values of L, by fixing tw to 5. The L depen-
dent exponent, λL, we obtain from the flat regions of the plots, 
that also correspond to the minima. One can justify this by taking 
a closer look at the behavior of Cag(t, tw) in figure 3. We expect 
that λL in the limit L = ∞ will have same convergence for all 
values of tw, beyond a critical age, because of the following rea-
sons. For the meaningful scaling evolution, in the L = ∞ limit 
the structure should obey certain self-similarity all along [19, 
20]. If so, the value of λ should not be affected by the choice of 
tw. Note that in such a situation the bound of equation (5) does 
not change. For finite L, of course, the situation is different, as 
discussed and being observed. However, the intended extrapola-
tion is expected to lead us to the thermodynamic λ, same for all 
tw. If this is the case and the corresponding λ is different from 
that for Ts = ∞, like in the ferromagnetic case, it should give 
indirect evidence that there exist different structural scalings in 
the conserved case also for Ts = ∞ and Ts = Tc.

Finally, to obtain the thermodynamic limit value, in figure 5 
we have plotted λL, as a function of 1/L, for a few values of 
tw, again from the KIM. These multiple plots provide a good 
sense of convergence. From this exercise we quote

λ = λL=∞ = 0.155 ± 0.025.� (13)

Since all the data sets appear linear, we have obtained the 
above quoted number from linear fittings. This number we 
compare with [14] λ for KIM when Ts = ∞ in d  =  2, viz.,

λ � 3.6.� (14)

There exists huge difference between the quoted values in 
equations (13) and (14).

To validate our result of equation (13), we have applied the 
same method to the simulation data for the GIM. For this case, 
plots of λL versus 1/L, for different tw values, are shown in 
figure 6. Here also one can appreciate nice convergence of the 
data sets for different values of tw. The corresponding value is

λ = 0.13 ± 0.01.� (15)

This is certainly in extremely good agreement with the 
theoretical prediction [19, 20], viz., λ = 0.125. We mention 
here that in the previous simulation studies [18–20] no such 
attempts have been made to estimate λ for Ts = Tc even for 
the GIM. Only checks for the consistency with the analytical 
theory were performed. The outcome of this exercise here cer-
tainly puts confidence in the number quoted in equation (13). 
The number in equation  (15), for GIM in d  =  2, should be 
compared with the corresponding value for Ts = ∞, which 
is � 1.3. Thus, for both KIM and GIM, the values of λ for 

Figure 3.  (a) Log–log plots of autocorrelation function, Cag(t, tw), for the KIM, versus �/�w. Data for a few different tw are shown. All 
results are for L  =  256. (b) Same as (a) but here we have fixed tw to 5 and presented results for a few values of L. Inside both the frames the 
solid lines represent power laws. The values of the exponents are mentioned next to the lines.

Figure 4.  Instantaneous exponent λi is plotted versus �/�w, for the 
KIM, for two values of L. In each of the cases we have tw  =  5. We 
extract L-dependent value, λL, from the flat regions of these plots.
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Ts = ∞ and Ts = Tc universality classes are vastly different. 
For better readability of these numbers see table 1.

Next we aim at checking whether these numbers satisfy 
the YRD bound. For that purpose, in figure 7 we have plotted 
S(k, 0) as a function of k, on a log–log scale. We have included 
data from both Ts = ∞ and Ts = TL

c , with L  =  128. In the case 
of Ts = ∞, flat behavior for the whole range of k is observed. 
So, we have b = 0. Naturally, λ � 3.6 (for KIM) and λ � 1.3 
(for GIM) satisfy the corresponding bounds: λ � 1. However, 
for the conserved case, when scaling (overlap of data from 
different tw) is observed, starting from large tw, for Ts = ∞, 
value of b by then changes [39, 54] to approximately 4. In that 
case the bound becomes λ � 3. So, the estimate λ � 3.6 still 
satisfies the modified bound in the scaling regime of tw. In the 
nonconserved case, however, as already stated, b remains zero 
for the whole evolution.

It appears that the bounds are satisfied for Ts = TL
c  also. In 

this case b assumes a negative value, viz., b � −1.8. Thus, the 

corresponding lower bound is below both the above quoted 
values, i.e. λ � 0.16 (for KIM) and λ � 0.13 (for GIM). We 
have verified that no violation occurs even with the progress 
of time. It is worth mentioning here that the value of b for 
a thermodynamically large critical system is only slightly 
higher than the above quoted number. For L = ∞, at criti-
cality b = −7/4 in d  =  2. (This can be appreciated from the 
fact that the exponent for the power-law decay of C(r) at criti-
cality is p = d − 2 + η or 2β/ν , where η, β and ν  are various 
critical exponents [3].) Our system size is large enough to 
almost realize this value. In any case, even for b = −7/4, the 
obtained values of λ satisfy the YRD bound.

4.  Conclusion

We have presented results for aging phenomena in the two-
dimensional Ising model [24]. These were obtained from 
Mote Carlo simulations [45–47] with implementation of two 
different mechanisms. Our primary focus was on kinetics of 
phase separation in solid binary mixtures. For this we have 
used the Kawasaki exchange kinetics [43]. For the purpose 
of verification of the adopted scaling method and thus, the 
outcome for the binary mixture, we have presented results 
for ordering in uniaxial ferromagnets as well, for which there 
exists theoretical prediction for comparison. In this case the 
results were obtained via the implementation of Glauber 
kinetics [44]. Our objective was to estimate the aging expo-
nent λ, related to the power-law decay of the order-parameter 
autocorrelation function [7] Cag(t, tw), corresponding to the 
universality class [19, 20] decided by quenches from Ts = Tc, 
for which one has infinitely correlated configurations [24].

Figure 5.  We have plotted λL as a function of 1/L, for the KIM. 
Results for a few values of tw are included. The solid lines are linear 
fits for extracting λ = λL=∞, value of which is marked by an arrow-
headed line.

Figure 6.  Same as figure 5 but here we have presented results from 
the GIM.

Table 1.  List of values of λ.

λ (GIM) λ (KIM)

Ts = ∞ 1.30 3.60
Ts = Tc 0.13 0.155

Figure 7.  Plots of equal time structure factor S(k,tw  =  0) as a 
function of wave number k. We have shown results from Ts = ∞ 
and Ts = TL

c . In each of the cases, we have used L  =  512. The solid 
lines represent the values of b.
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For quenches from the critical point, simulation results 
suffer significantly from finite-size effects. This problem was 
appropriately taken care of by implementing finite-size scaling 
technique of equilibrium critical phenomena and devising an 
extrapolation method for analysis of the out-of-equilibrium 
data. We believe that our final results are quite accurate for 
thermodynamically large systems.

It appears that for both types of systems, viz., phase 
separating binary mixtures and ordering ferromagnets, the 
values of λ for Ts = Tc are drastically smaller than those for 
the universality class corresponding [8, 13, 14] to Ts = ∞. 
Nevertheless the obtained values for Ts = Tc satisfy the lower 
bounds predicted by Yeung, Rao and Desai [9]. To the best of 
our knowledge, these are the first results for solid mixtures, as 
far as quenches from Tc is concerned.

In the case of ferromagnets already it was shown that the 
growth exponent remains same for the two above mentioned 
universality classes [19, 20]. Our recent work [42] on growth for 
the KIM also points towards the same possibility. Overall, thus, 
it appears that there exists strong qualitative similarity between 
the cases with conserved and non-conserved dynamics, as far 
as the universalities with respect to quenches from correlated 
and uncorrelated initial configurations are concerned.

Other important exponent that can be calculated for the 
binary mixture with both Ts = ∞ and Ts = Tc is the one 
related to the decay of persistence probability [23]. For this 
exponent, however, due to certain technical reasons [55] 
quenches to very low temperature becomes necessary. In that 
case, for conserved dynamics, there exists severe problem 
with metastability. This makes the problem rather challenging, 
which, nevertheless, we intend to pursue in future.
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