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1.  Introduction

Topological materials, from the two dimensional quantum 
spin hall material to three dimensional topological insulator 
and three dimensional Weyl semimetal, have aroused great 
interest in recent years [1–7]. Interestingly, different from the 
topological insulator, the topological surface Fermi arc and 
the bulk chiral anomaly effect make the Weyl semimetal a star 
material to expand the potentiality of the novel topological 
state. Weyl semimetal was first theoretically predicted by Wan 
et al in a class of pyrochlore iridates (such as Y2Ir2O7) in the 
year 2011 [8]. To get rid of the magnetic material, another 
kind of the lattice inversion symmetry broken material has 
been independently reported by two groups in 2015 [9, 10]. 
Following that, a lot of Weyl semimetal materials have been 

revealed by the angle-resolved photoemission spectroscopy, 
such as, TaAs [11, 12], TaP [13, 14], NbAs [15], MoTe2 [16, 
17], and MoxW1−xTe2 [18, 19]. Very recently, the Weyl point 
as well as the exotic Fermi arc has also been confirmed both 
by experimental measurement and theoretical calculation in 
the magnetic material YbMnBi2 [20]. Moreover, although 
the spinful topological nodal line has been proposed by the 
first-principles calculation in HgCr2Se4 [21] and TlTaSe2 
[22], the detailed angle-resolved photoemission spectroscopy 
measurement shows that the Weyl nodal line which sur-
rounds the Γ point can be realized in a single layer GdAg2 
[23]. Those experimental results suggest that the Weyl semi-
metal can be made implemented in specific materials. Based 
on the crossing of the conduction and the valence band in the 
Brillouin zone, three dimensional Weyl semimetals can be 
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into the Weyl-point semimetal and the nodal-line Weyl semi-
metal [7, 24]. In the former case, there are type-I Weyl semi-
metal and type-II Weyl semimetal in which low energy band 
shows linear characteristic in three-dimensional Brillouin 
zone through a node termed a Weyl point. In the latter case, 
the energy band crossing across the Brillouin zone winds into 
a closed loop called a nodal line. Note that we term the plane 
of the closed nodal line as the basal plane, as shown (the x − y 
plane) in figures 1 and 2. In the reciprocal space, the energies 
of the quasiparticles exhibit a distinctive anisotropy and hold 
a torus-like isoenergy surface.

Although lots of angle-resolved photoemission spectr
oscopy experiments have been launched in the past years, 
the transport properties also play a key role in understanding 
and applying the topological Weyl semimetals. Therefore, the 
special property has induced a series of intriguing features 
from both fundamental research and electronic applications 
aspect [25–34]. In this respect, there have been a number of 
studies which focus on the three dimensional Klein tunneling 
in the topological Weyl semimetals addressed, such as, Klein 
tunneling and magnetoresistance in p-n junctions [25], Klein 
tunneling of Weyl fermions through a barrier potential with 
and without the influence of magnetic fields [26, 27], and 
chiral tunneling in the electrostatic potential gates [28–30]. 
Moreover, fundamental phenomena and promising applica-
tions in the Weyl semimetal based superconducting hetero-
junction have also been revealed, such as the specular Andreev 
reflection (SAR) and the chirality blockade of Andreev 
reflection (AR) in type-I Weyl semimetal [31, 32], and most 
recently, the double ARs in type-II Weyl semimetal [31, 32]. 

In general, AR process denotes that an incident electron-like 
quasipariticle is reflected back as a hole-like quasipariticle at 
the superconducting interface, and a Cooper pair jumps into 
the superconductor [35]. If the reflected hole-like quasipari-
ticle comes back with a same angle of the incident angle, we 
term it as retro-Andreev reflection (RAR). In fact, the SAR 
has been predicted in several setups, such as graphene based 
superconducting heterojunction with and without the spin 
orbit interaction and the conventional superconducting het-
erojunction [36–41]. Nonetheless, due to the charge carrier 
scattering and the strong potential fluctuations in grapheme 
and the negligible signal value in conventional semiconductor, 
it is an extremely difficult work to experimentally detect the 
SAR in graphene and in conventional semiconductor [41, 42]. 
Recently, a hallmark for the transition between the usual RAR 
and the special SAR has been found in an unprecedentedly 
clean bilayer graphene-based superconducting heterojunction 
[43].

In general, the energy band structure near the Fermi energy 
plays a key role on its transport properties of a material. 
Therefore, we except that the nodal-line Weyl semimetal with 
exotic energy band structure should provide a great opportu-
nity to reveal novel scattering features and detect the SAR. 
This work is devoted to revealing those issues. Indeed, for 

the superconducting interface parallel to the basal plane, it is 

found that AR is perfect at k// =
√

m/B due to Klein-like 
scattering. Deviating from the critical value, AR is suppressed 
and normal reflection (NR) is enhanced. In contrast to gra-
phene, conventional semiconductor material, and Weyl-point 

semimetal, there is an allowed angle interval around the limit 

Figure 1.  Interface parallel to the basal plane. Panel (a): schematic 
diagram of scattering processes in the nodal-line Weyl semimetal 
based NM/S heterojunction. Incident, reflected (NR and AR), and 
transmitted waves near the interface are shown schematically by 
the lines with arrows. Superconducting gap potential in S lead is 
given as ∆. (b) Relative orientations of the interface and the iso-
energy surface of the NM lead. The iso-energy surface is defined 
by(µ+ ε)

2
= (m − Bk//)

2
+ (ke

zN)
2. It is shown by torus in the 

reciprocal space. The S lead is shown as a yellow parallelepiped. 
Thus the basal plane (the x − y plane) in the NM lead parallels to 
the NM/S interface.

Figure 2.  Interface perpendicular to the basal plane. Panel (a): 
Schematic diagram of scattering processes in the present NM/S 
heterojunction. Incident, reflected (AR and NR), and transmitted 
waves near the interface are shown schematically by the lines with 
arrows. Superconducting gap potential in S lead is given as ∆. (b) 
Relative orientations of the interface and the iso-energy surface of 
the NM  lead. It is shown that the basal plane (the x − y plane) of 
the torus-like iso-energy surface in NM  lead is perpendicular to the 
NM/S interface. We fix y axis to be normal to the interface.
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value k// =
√

m/B. Beyond that, all incident electron-like 
quasipariticles are reflected back completely. While for the 
case of the superconducting interface perpendicular to the 
basal plane, only one kind of the intra-mode RAR and the 
inter-mode SAR is manifested at the normal incident. This is 
dissimilar to the case of graphene and Weyl-point semimetal, 
where the ARs are perfect [33, 34, 36]. Different from the 
small incident mode, the scattering coeffcients exhibit non-
monotonic behavior as a function of the Fermi energy. In par
ticular, they exist a perfect intra-mode RAR and a chirality 
blockade of the intra-mode RAR [32]. For the oblique inci-
dence, an incident forbidden zone can be clearly seen from 
the both modes. Note that the chirality blockade of the intra-
mode RAR has been destroyed by the nonzero z component 
of the incident mode. The existence of those novel scattering 
features can be elucidated by the complicated torus-like iso-
energy surface of the nodal-line semimetal. Moreover, the 
characteristic features of the reflection coefficients can be 
manifested in the corresponding tunneling conductances, so it 
would offer the experimental measurable signals to diagnose 
those novel scattering processes.

The rest of this paper is organized as follows. In the next 
section, the model structures, the calculation methods and 
the analytical derivative results of the scattering processes in 
limit cases are introduced. The numerical results of the novel 
intra-mode RAR and inter-mode SAR scattering processes in 
the typical nodal-line Weyl semimetal based NM/S supercon-
ducting heterojunction are discussed in section 3. In section 4, 
we give a short summary.

2. Theory and model

2.1.  Interface parallel to basal plane

First a typical nodal-line Weyl semimetal based NM/S super-
conducting heterojunction with the interface paralleling to 
the basal plane is assumed, as shown in figure 1. The growth 
direction is taken along the z axis. The NM and the S occupy 
z < 0 and z > 0, respectively. The superconducting poten-
tial is assumed as a s-wave pairing and taken in the form 
∆(z) = ∆Θ(z), where Θ(z) is the Heaviside step function 
[36–41]. Since the electrical potential can be modulated 
independently by the gate voltage or doping, we also set the 
potential through the NM/S superconducting heterojunction 

as U (z) =
ß

0, z � 0,
VS, z � 0.

 [36]. Since we assume that the trans-

versal width (in the x and y  directions) extends to a big enough 
value and the interface is a prefect flat, thus the momentum 
components kx and ky are conserved in the quantum scattering 
processes.

In a single particle picture, overlooking the disorder and 
impurity, we employ the following Bogoliubov-de Gennes 
equation to describe the quantum scattering processes through 
the present NM/S superconducting heterojunction [36–41].

Å
H0 − µ ∆(z)
∆∗(z) µ− H0

ã
Ψ = εΨ� (1)

where H0(�k) = (m − Bk2
//)σx + kzσz + U (z), the four-comp

onents spinor Ψ =
Ä

u�k↑, u�k↓, v−�k↓,−v−�k↑

äT
 contains the 

electron-like quasiparticles (
Ä

u�k↑, u�k↓
äT

) and the hole-like 

quasiparticles (
Ä

v−�k↓,−v−�k↑

äT
), ε is the excitation energy 

with respect to µ, σx,z are the Pauli matrices, �k = (kx, ky, kz) is 

the three dimension single-particle momentum, k2
// = k2

x + k2
y  

is parallel component of momentum, m can be regarded as the 
rest mass, and 1/(2B) can be analogous to an inertial mass in 
the x − y plane.

In NM lead (where ∆ = 0 and U = 0), overlooking the 
parallel momentum component k//, the wavefunctions can be 
expressed in general form as

Ψe±
N (z) =

Å
1 ε+µ∓ke

zN
m−Bk2

//

0 0
ã

e±ike
zN z

Ψh±
N (z) =

Å
0 0 1 µ−ε∓kh

zN
m−Bk2

//

ã
e±ikh

zN z
�

(2)

where ke
zN =

√
(µ+ ε)

2 − (m − Bk2
//)

2
 and kh

zN =√
(µ− ε)

2 − (m − Bk2
//)

2
 are the z direction momentums 

of the electron-like quasiparticles and the hole-like quasi-
particles, respectively. Note that, to describe a quasiparticle 
impinging freely on the NM/S interface, the electron-like 
quasiparticles’ wavefunctions must have purely real ke

zN , i.e. 
(m − µ− ε)/B < (ke

zN)
2
< (m + µ+ ε)/B.

Similarly, the spinor wavefunctions in S  can be given by

Ψe±
S (z) =

(
1 w±

e Γe −m−Bk2
//∓w±

e (ke
zS∓(VS−ε−µ))

∆

)
e±ike

zSz

Ψh±
S (z) =

(
1 w±

h Γh −m−Bk2
//∓w±

h (kh
zS∓(VS−ε−µ))

∆

)
e±ikh

zSz

� (3)

where ke
zS =

…
(VS − µ)

2 − (m − Bk2
//)

2 −∆2 + ε2 + 2
»
(ε2 −∆2)(VS − µ)

2   

and kh
zS =

…
(VS − µ)

2 − (m − Bk2
//)

2 −∆2 + ε2 − 2
»
(ε2 −∆2)(VS − µ)

2  

are the z direction momentums of the electron-like quasipar-
ticles and the hole-like quasiparticles in S . The factors in the 

wavefunctions are given as, w±
e =

(m−Bk2
//)

2
+∆2−ε2+(ke

zN±(VS+µ))2

2(Bk2
//

−m)(VS−µ)
,   

Γe =
ε(VS−µ)+

√
(ε2−∆2)(VS−µ)2

∆(VS−µ)
, w±

h =
(m−Bk2

//)
2
+∆2−ε2+(kh

zN±(VS+µ))
2

2(Bk2
//

−m)(VS−µ)
,   

and Γh =
ε(VS−µ)−

√
(ε2−∆2)(VS−µ)2

∆(VS−µ) . Since the momentum 

components kxN  and kyN  are conserved, the factor eikxN x+ikyN y 
in the wavefunctions in NM  lead and S  lead is omitted for 
brevity.

To solve the scattering properties in the nodal-line Weyl 
semimetal based NM/S (shown as figure 1), we suppose an 
electron-like quasiparticle with energy ε is incident from the 
left NM  lead. Thus the wavefunctions in the present hetero-
junction are

ß
ΨN = Ψe+

zN + rΨe−
zN + rAΨ

h+
zN , z < 0

ΨS = teΨe+
zS + thΨh−

zS , z > 0� (4)

where r  and rA are the amplitudes of normal reflection (NR) 
and AR in NM  lead, respectively, and te and th are the trans-
mission amplitudes of the electron-like quasiparticle and hole-
like quasiparticle in S  lead. Note that, the evanescent wave 
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functions of the AR hole in NM  lead should be taken into 
account to guarantee the conservation of probabilistic current.

To obtain the amplitudes in equation  (4), we match the 
wavefunctions in NM  lead and S  lead at the interface by the 
continuity boundary condition ΨN (0) = ΨS (0). By solving 
the boundary condition, the expression for r  and rA can be 
obtained.

Based on the reflection amplitudes and the Blonder–
Tinkham–Klapwijk theory, the zero temperature differential 
conductance of the nodal-line Weyl semimetal based NM/S 
can be given by the following formula [36–41, 44],

G(ε) = G0

ˆ
(1 − |r|2 + |rA|2)dk//� (5)

where G0 = e2S/(�(2π)3
) is the ballistic conductance of 

metallic nodal-line Weyl semimetal, S  is the area of the junc-
tion in the x − y plane. Combining equations (4) and (5), the 
zero temperature tunneling conductances in the nodal-line 
Weyl semimetal based NM/S can be investigated extensively 
and easily by the numerical calculations.

2.2.  Interface perpendicular to basal plane

Next a nodal-line Weyl semimetal based NM/S supercon-
ducting heterojunction with the interface perpendicular to the 
basal plane is assumed, as shown in figure 2. The growth direc-
tion is taken along the y  axis. The NM and the S occupy y   <  0 
and y   >  0, respectively. A s-wave pairing superconducting 
potential is assumed and given as ∆(y) = ∆Θ(y) [36–41]. 
The electrical potential energy through the NM/S supercon-

ducting heterojunction is set as U(y) =
ß

0, y � 0,
VS y � 0.

 [36]. 

Since we assume that the transversal width is (in the x and 

z directions) big enough and the interface is ideally flat, the 
momentum components kx and kz are conserved in the present 
quantum scattering processes.

Similar to the above part A, the wavefunctions in the pre-
sent heterojunction can also be given by solving the equation. 
Similar to the equation  (1). In NM lead (where ∆ = 0 and 
U = 0), overlooking the conserved momentum kxN and kzN , 
the wavefunctions can be expressed in general form as

Ψe±
N1(2)(y) =

Å
1

m−Bk2
//

ke1(2)
yN −VS+ε+µ

0 0
ã

e±ike1(2)
yN y

Ψh±
N1(2)(y) =

Å
0 0 1

m−Bk2
//

kh1(2)
zN −VS−ε+µ

ã
e±ikh1(2)

yN y
�

(6)

where ke1(2)
yN =

…
1
B

(
m − Bk2

xN − (+)
»
(µ+ ε− VS)

2 − k2
zN

)
 and 

kh1(2)
yN =

…
1
B

(
m − Bk2

xN − (+)
»
(µ− ε− VS)

2 − k2
zN

)
 are 

the y direction momentum of the electron-like quasiparti-

cles and the hole-like quasiparticles, respectively. Note that, 

there are two different modes ke,h1(2)
yN  corresponding to a set 

of constant parameters (kxN , kzN , µ, ε and VS). Indeed, for a 
certain energy ε, which lies above or below the nodal-line, 
there are two allowed bands for the electrons, corresponding 
respectively to two different modes. The iso-energy surface 

of the electron-like quasiparticle gives rise to two concentric 
Fermi discs. The radii of Fermi discs are given as ke1

yN  (the 
small one) and ke2

yN  (the big one). Meanwhile, the iso-energy 
surface of the hole-like quasiparticle leads to two concentric 
radius kh1

yN  (the small one) and kh2
yN  (the big one). Therefore, 

an incident electron-like quasiparticle can be scattered by the 

superconducting potential into four possible modes (two NR 

modes ke1(2)
yN  and two AR modes kh1(2)

yN ), as shown in figure 2. 

Following a standard procedure [19], the probability cur
rent of those reflection modes can be calculated directly. 
Specially, the modes ke1

yN , −ke2
yN , −kh1

yN , and kh2
yN  correspond to 

the probability current, jy > 0, while the modes −ke1
yN , ke2

yN , 
kh1

yN , and −kh2
yN  correspond to the probability current, jy < 0. 

Note that, for an incident electron-like quasiparticle with ke2
yN  

(−ke1
yN ), the reflected hole-like quasiparticle with kh2

yN  (−kh1
yN ) 

and −kh1
yN  (kh2

yN) corresponds to the intra-mode RAR and the 
inter-mode SAR, respectively. To achieve a purely real mode 

ke1(2)
yN  of the incident electron-like quasiparticle, we must 

set(m − Bk2
xN) �

»
(µ+ ε− VS)

2 − k2
zN . Otherwise, the 

value of ke1
yN  is imaginary, and the incident mode corresponds 

to a disappearing ke1
yN .

Similarly, the spinor wavefunctions in S  lead can be given 
by

Ψe±
S1(2)(y) =

Å
1 w1(2)

e ΓSe
B(Υ1(2)−(+)q(ke1(2)

yS +VS+ε−µ))

∆Xe(VS−µ)

ã
e±ike1(2)

yS y

Ψh±
S1(2)(y) =

Å
1 w1(2)

h ΓSh
B(Υ1(2)−(+)q(kh1(2)

yS +VS+ε−µ))

∆Xh(VS−µ)

ã
e±ikh1(2)

yS y

� (7)

where ke1(2)
yS =

 
−k2

xN + m
B − (+)

»
−k2

zN+(
√

(ε2−∆2)+
√

(VS−µ)2)
2

B
 and 

kh1(2)
yS =

 
−k2

xN + m
B − (+)

»
−k2

zN+(
√

(ε2−∆2)−
√

(VS−µ)2)
2

B

 

are the y direction momentum of the electron-like quasipar-

ticles and the hole-like quasiparticles in S . The factors in the 

wavefunctions are given as, w1(2)
e = −(+)

B(q+B(VS+µ)(ke
zN+VS−µ))

Xe(VS−µ)
, 

Γe =
ε(VS−µ)+

√
(ε2−∆2)(VS−µ)2

∆(VS−µ)
 , w

1(2)
h = −(+)

B(B(VS+µ)(ke
zN+VS−µ)−q)

Xe(VS−µ) , 

Γh =
ε(VS−µ)−

√
(ε2−∆2)(VS−µ)2

∆(VS−µ)
,  Xe = B2

…
−k2

zN + (
√

(ε2 −∆2) +
»
(VS − µ)

2
)

2
 ,  

Xh = B2

…
−k2

zN + (
√
(ε2 −∆2)−

»
(VS − µ)

2
)

2,  Υ1(2) = −(+)B(−∆2 +  
Υ1(2) = −(+)B(−∆2 + ε(kzN + VS + ε− µ))(VS − µ), and 

q = B
»
(ε2 −∆2)(VS − µ)

2 . Since the momentum comp

onents kxN  and kzN  are conserved, the factor eikxN x+ikzN z in 
the wavefunctions in NM  lead and S  lead is also omitted for 
brevity.

For solving the scattering properties in the present NM/S 
(shown as figure 2), we suppose an electron-like quasiparticle 
with energy ε is incident from the left NM  lead. Thus the 
wavefunctions in the different leads are
ß
ΨN = Ψe+

N2(Ψ
e−
N1 ) + r1(r̄1)Ψ

e+
N1 + r2(r̄2)Ψ

e−
N2 + rA1(r̄A1)Ψ

h−
N1 + rA2(r̄A2)Ψ

h+
N2 , y < 0

ΨS = te
S1(̄t

e
S1)Ψ

e+
S1 + te

S2(̄t
e
S2)Ψ

e+
S2 + th

S1(̄t
h
S1)Ψ

h−
S1 + th

S2(̄t
h
S2)Ψ

h−
S2 , y > 0

� (8)
where r1 (r̄1) and r2 (r̄2) are the amplitudes of the NRs in NM , 
respectively, rA1 (r̄A2) and rA2 (r̄A2) are the amplitudes of the 
ARs in NM , respectively, and te

S1 ( t̄e
S1), te

S2 ( t̄e
S2), th

S1 ( t̄h
S1), and 
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th
S2 ( t̄h

S2) are the amplitudes in S , respectively. Note that, the 
evanescent wavefunctions of the AR hole and NR electron in 
NM  lead should be taken into account to guarantee the con-
servation of probabilistic current.

To obtain the amplitudes in equation (8), we require the con-
tinuity of the wavefunctions and its y-derivative at the inter-
face by the continuity boundary condition ΨN (0) = ΨS (0) 
and Ψ′

N (0) = Ψ′
S (0). By solving the boundary condition, 

we can obtain the expressions for r1(r̄1), r2 (r̄2), rA1 (r̄A2) and 
rA2 (r̄A2). By the tedious calculation and deduction, we can 
obtain those general expressions in a very complicated form. 
However, in some limit cases, we can achieve some simple 
expressions.

Specially, specific formulas for the AR and the NR coef-
ficients can be given in the limit kxN = 0 and kzN = 0, when 
the incident electron momentum lies in y  axis. Note that, in 
this manner, Hamiltonian H0 in equation (1) decouples into 
two copies of a scalar non-relativistic Hamiltonian. Thus a 
ke2

yN  mode electron can not be scattered into a ke1
yN  mode since 

ke2
yN  and ke1

yN  belong to different sectors in H0. It means that 
these two modes decouple with each other. Similarly, for the 
hole-like quaiparticles with the modes kh2

yN  and kh1
yN , they also 

decouple with each other. However, the modes kh2
yN  and kh1

yN  can 
be coupled to the modes ke2

yN  or ke1
yN  by the superconducting 

pair potential ∆(x). That is to say, a ke2
yN(ke1

yN) mode incident 
electron can only convert into the two allowed kh2

yN  or kh1
yN  mode 

hole in the Andreev reflection process at the superconducting 
interface. In fact, at kzN = 0, a RAR hole can be only allowed 
in the same mode as its incident wave mode, so the mode 
remains unchanged and undisturbed. A SAR hole, in contrast, 
does allow the mode opposite to its incident wave mode. Note 
that, the modes ke2

yN , ke1
yN , kh2

yN , and kh1
yN  would couple with each 

other by a nonzero kzN . Consequently, the inter-mode scat-
tering processes in the AR and the NR can take place at the 
present superconducting junction.

Note that we only focus on the ke
N2 =

»
m+(ε+µ)

B  

incident in the limit kxN = 0 and kzN = 0 at here. By 

the calculation in Appendix, we first obtain the expres-
sions for the RAR (µ > ε) and the NR. Specifically, for 

a ke2
yN =

»
m+(ε+µ)

B  incident, we can get r1 = 0, rA1 = 0, 

rA2 = −∆δ(η + κ)/(2Ωλδ + ε(δ + λ)(η + κ) + Ω(2ηκ− (λ− δ)(η − κ))),  

and r2 =
»

1 − (rA2)
2  , whereη =

√
m + |µ− VS| − Ω , 

κ =
√

m + |µ− VS|+Ω, λ =
√

m + ε− µ, δ =
√

m + ε+ µ, 

and Ω =
√
ε2 −∆2. While for a ke1

yN =
»

m−(ε+µ)
B  incident, 

the results can be given in a similar manner and in the converse 

order. As a result, the values of r2 (r1) and rA2 (rA1) equate 
to zero for the ke1

yN  (ke2
yN) mode incident, while r1 (r2) and rA1 

(rA2) are allowed as a function of ε, µ, ∆, and VS. In the limit 
µ = VS/2 with ε,∆ � m, VS, we can obtain that rA2 = −i 
and r2 = 0 for the ke2

yN  mode incident. Moreover, rA2 has a first 
order pole at µ =VS . Clearly, the RAR is perfect (rA2 = 1 and 

r2 = 0) at µ = VS/2 and reaches its singularity (rA2 reaches to 
a minimum value and r2 inversely) at µ = VS.

While for the SAR case (µ < ε), the things become much  

intriguing. For a ke2
yN =

»
m+(ε+µ)

B  incident, we can get r1 = 0,   

rA2 = 0, rA1 = −∆δ′(η′ + κ′)/(mΩ+ ε(Ω + δ′(η′ + κ′)) + Ωη′κ′), and 

r2 =
»

1 − (r−A )
2,  where η′ =

√
m + VS − Ω, κ′ =

√
m + VS +Ω ,  

δ′ =
√

m + ε , and Ω =
√
ε2 −∆2. In the case of 

ke1
yN =

»
m−(ε+µ)

B , the results can be given in a converse order 

similar to the case of the RAR. It is clear to see that the SAR is 
an inter-mode exchanging process, a ke1

yN  (ke2
yN) mode electron 

converts into a kh2
yN  (kh1

yN) mode hole). In the limit µ = 0 with 

ε,∆ � m, VS, we can obtain that rA1 = − i2
√

m(m+VS)

2m+VS
 and 

r2 = VS
2m+VS

 for the ke2
yN  mode incident. Note that the perfect SAR 

can be obtained (rA1 = 1 and r2 = 0) at VS = 0. The results 
are plotted in figure 3 for the two opposite regimes µ > ε and 
µ < ε. Physically, the inter-mode exchanging feature can be 
elucidated by the mode in the normal metal lead. In general, the 

AR mode iskh2,1
yN =

»
m±(µ−ε)sign(µ−ε)

B . For the RAR, µ > ε, 

thus kh2
yN =

»
m+(µ−ε)

B  and kh1
yN =

»
m−(µ−ε)

B . On the other 

hand, µ < ε, the SAR mode can be given as kh1
yN =

»
m+(µ−ε)

B  
and kh2

yN =
»

m−(µ−ε)
B . It is clearly shown that the AR hole 

exhibits an inter-mode exchanging. Therefore, in contrast to 

the intra-mode RAR, the SAR is an inter-mode scattering 
process.

In the case where kzN  is finite, the AR and the NR coef-
ficients exhibit a richer structure at both those limit cases. 
We focus again on the case of the incidence of ke1

yN  and ke2
yN  

modes. The dependence of the AR and the NR coefficients on 
the Fermi energy and the incident energy can be calculated by 
using equation (1). Note that Hamiltonian H0 in equation (1) 
couples the two modes with each other with a nonzero kzN . 
Thus those two modes can scatter into each other, no matter 
which type of quasiparticles, the NR electron and the AR hole. 
It means that the inter-mode and intra-mode scattering pro-
cesses in the AR and the NR are allowed at the present case. 
The results of the calculations are shown in figure 6, where the 
AR and the NR coefficients are plotted as functions of ε for 
different parameter values.

By using the reflection amplitudes, the zero temperature 
differential conductance of the present NM/S heterojunction 
can also be given by the following formula [36–41, 44],

G(ε) = G0

ïˆ
(1 − |r1|2 − |r2|2 + |rA1|2 + |rA2|2)dkxNdkzN

+

ˆ
(1 − |̄r1|2 − |̄r2|2 + |̄rA1|2 + |̄rA2|2)dkxNdkzN

ò
.

� (9)
Combining equations  (8) and (9), the zero temperature tun-
neling conductance in the present NM/S heterojunction can 
also be investigated extensively and easily by the numerical 
calculations.
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3.  Results and discussion

3.1.  Interface parallel to basal plane

We first give the numerical results of the reflection coefficients 
for the NR electron and the AR hole, as shown in figure 3. 
The dependence of the reflection coefficients on the transverse 
momentum k// is calculated by equation (4). The results for 
several Fermi energies µ are shown in figure 3(a). The same 
dependence for different incident energies ε is presented in 
figure 3(b). The parameters used in the calculation throughout 
the study are VS/m = 2.5, Bm = 1, and ∆/m = 10−3.

It is shown that, in contrast to conventional materials and 
the other topological materials [32, 33, 36–41, 44], the reflec-
tion coefficients for the AR hole only have a nonzero value for 
a special interval of the transverse momentum k//. Intuitively, 
we can get a first glance from figure 1(b) that there is only 
the special incident angle allowed for impending on the inter-
face. In fact, the allowed interval for NR can be obtained 
in (m − µ− ε)/B < (ke

zN)
2
< (m + µ+ ε)/B. Since the 

momentum ke
zN  of an incident electron-like quasiparticle is outside 

the constraint (m − µ− ε)/B < (ke
zN)

2
< (m + µ+ ε)/B, the 

incident wavefunction becomes an evanescent wave, thereby, it 
can not transmit through the heterojunction, (i.e. it is reflected 
back completely r = 1). Since the difference of the momentum 
of NR and AR, the allowed interval of the transverse momentum 
k// is also different. While for AR, the allowed interval for NR 
can be obtained in (m − µ+ ε)/B < (ke

zN)
2
< (m + µ− ε)/B. 

Beyond this interval, the AR vanishes (rA = 0) and then a total 
NR (r = 1) appears. Clearly, from the constraint, we can 
see that the allowed interval at a fixed incident energy ε 
shrinks with the decrease of the Fermi energy µ, as shown in 
figure 3(a). Note that, the allowed interval shrinks from both 

sides to the value k// = 1. It is particularly important to point 
that the allowed interval around k// = 1 always survives no 
matter how small the Fermi energy µ is. Although the general 
expression is very complicated, we can give some expressions 
under some special conditions. For ε = ∆, the amplitude rA 
for AR (the electron-like quasiparticle converts into the hole-
like quasiparticle) is

rA =

√
(µ+∆)

2 − (m − Bk2
//)

2

2∆− sign(µ− ε)
√

(µ−∆)
2 − (m − Bk2

//)
2
+

√
(µ+∆)

2 − (m − Bk2
//)

2
,

while the amplitude r for NR (the electron-like quasiparticle 
reflects back as the electron-like quasiparticle) is

r =
sign(µ− ε)

√
(µ−∆)

2 − (m − Bk2
//)

2
+

√
(µ+∆)

2 − (m − Bk2
//)

2 − 2∆

2∆− sign(µ− ε)
√

(µ−∆)
2 − (m − Bk2

//)
2
+

√
(µ+∆)

2 − (m − Bk2
//)

2
.

Note that the two regimes of large Fermi energy µ > ε and 

small Fermi energy µ < ε correspond to the RAR and the 

SAR, respectively. At k// =
√

m/B, we readily find rA = 1 
for r = 0 (no matter the RAR or the SAR), so the conver-
sion between the electron-like quasiparticle and the hole-like 
quasiparticle occurs with unit probability, as shown in figure 3. 
This feature is completely different from conventional super-
conducting heterojunctions, where AR is suppressed if the 
Fermi wave modes are different across the interface [44]. The 
perfect AR is a consequence of the Klein-like scattering [30]. 
Similar phenomenon has also been reported in graphene: the 
electron-like quasiparticle normally incident on a supercon-
ducting interface can convert into the electron-like quasipar-
ticle perfectly without reflection [45].

Another intriguing thing is the perfect AR (rA = 1) at 
k// = 1. This is completely different from that in conversion 

Figure 3.  NR and AR coefficients as a function of the transverse momentum k// for different values of Fermi energy µ (a) and incident 
energy ε (b). In (a) and (b), the constant parameters are ε/∆ = 10−2 and µ/m = 0.5, respectively. The dashed lines and the solid lines 
correspond to NR and AR, respectively. The different parameters are shown in the figure.
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materials, where AR is always suppressed at any angle of inci-
dence if the Fermi surface mismatch is present [44]. Meanwhile, 
the feature is also different from that in graphene and Weyl-
point semimetals, where the perfect AR happens only at 
normal incidence [32, 33, 36–41]. This indicates that the AR 
in the material can be served as a characteristic feature to 
detect the unique torus-like energy dispersion. Essentially, the 
perfect AR has a close relationship with the Klein tunneling 
effect as stated above.

Similar to figure  3(a), the transverse momentum k// 
dependence of the reflection coefficients for different incident 
energy ε with µ/m = 0.5 is shown in figure 3(b). It can be 
seen that the AR coefficients increase with the increase of ε 
at the allowed interval. For certain parameter value ε = ∆ the 
AR is perfect for all allowed angle of incidence. Consequently, 
it will give a tunneling conductance maximum at ε = ∆, as is 
also well known in the existing junctions [31–40]. The novel 
aspect of the present heterojunction comes from the fact 
that the regime of the Fermi energy µ is comparable to ∆: 
µ ∼ ∆. In theory, the width of the allowed interval of trans-
verse momentum k// will change with each variety of incident 
energy ε. In general, the change is not significant when the 
value of the Fermi energy µ is large. However, at the special 
case of µ = ε, the allowed interval shuts down which means 
that there is no mode allowed. Thus there is no AR for the 
special case of µ = ε and the tunneling conductance van-
ishes identically. Therefore, for µ > ε, the allowed interval 
increases with the increase of ε, while the situation is on the 
contrary for µ < ε. In particular, in contrast to conventional 
RAR in µ > ε, the AR in µ < ε is SAR as reported earlier in 
[36, 39, 40].

The property of the reflection coefficients directly leads 
to the fact that angularly averaged tunneling conductances 
are related to the structure parameters of the NM/S het-
erojunction. Thereby, the subgap incident energy and the 
Fermi energy play an important role in the subgap angularly 

averaged tunneling conductances. In figures 4(a) and (b), we 
plot the angularly averaged conductances of the NM/S het-
erojunction as a function of the subgap incident energy with 
large Fermi energy µ � ∆ and small Fermi energy µ < ∆, 
respectively. Solid lines, dashed lines, and dashed-dotted lines 
correspond to the cases with various Fermi energies of the 
heterojunction. From figure 4, we can find three noteworthy 
features. First, the subgap tunneling conductance for the 
large Fermi energy decreases with the decrease of the Fermi 
energy, as shown in figure  4(a). The tunneling conductance 
reaches a maximum value 2G0 at the gap edge ε = ∆, which 
is similar to the usual case of a NM/S heterojunction (It has a 
singularity at ε = ∆ independent of Fermi surface mismatch.)  
[32–34, 36, 37, 44]. Second, the subgap tunneling conduct-
ance for a small Fermi energy vanishes at ε = µ, as similar 
as the case in the graphene NM/S heterojunction [36]. Below 
the singularity ε < µ, the subgap tunneling conductance 
stems from the RAR. While above the singularity ε > µ, the 
subgap tunneling conductance mainly comes from the SAR. 
Therefore, the characteristic suppression of the subgap tun-
neling conductance curves in figure  4(b) can be regarded 
as a unique observable signature for the transition from the 
intra-band RAR to the inter-band SAR. Third, the zero bias 
tunneling conductance decreases with the increase of Fermi 
energy. In the limit EF → 0, one has G/G0 → 3/2. It is 
sharply different from the case of a graphene NM/S hetero-
junction where the zero bias tunneling conductance is close to 
4/3 independent of the Fermi energy [36]. It is also dissimilar 
to the case of the Weyl-point semimetal where the zero bias 
tunneling conductance always equates to 2 [33, 34]. Due to 
the charge carrier scattering and the strong potential fluctua-
tions in two dimensional graphene [41, 42], it is difficult to 
experimentally detect the SAR around the charge neutrality 
point. With the experimental technology advancement in three 
dimensional nodal-line Weyl semimetals, it maybe gives a 
new route to detect the SAR in the coming years.

Figure 4.  Angularly averaged tunneling conductances for the NM/S heterojunction as a function of the incident energy ε for different 
values of Fermi energy µ. (a) and (b) denote the cases of µ >> ∆ and µ < ∆, respectively. The Fermi energies are shown in the figure.
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Figure 5.  NR and AR coefficients for the present NM/S heterojunction as a function of the Fermi energy µ with kxN = 0 and kzN = 0.  
(a) and (b) denote the reflection coefficients for an incident electron with −ke,1

yN  and ke,2
yN , respectively. The NR and AR coefficients are 

marked in the figure.

Figure 6.  NR and AR coefficients for the present NM/S heterojunction as a function of the Fermi energy µ with kxN = 0 and kzN �= 0.  
(a) and (b) Denote the reflection coefficients with a large kzN  for an incident electron with −ke,1

yN  and ke,2
yN , respectively. (c) and (d) Denote the 

reflection coefficients with a small kzN  for the modes −ke,1
yN  and ke,2

yN , respectively. The NR and AR coefficients are marked in the figure.
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3.2.  Interface perpendicular to basal plane

In contrast to the case parallel to the basal plane (transport along 
the z axis), an incident electron (transporting along the y axis) 
can be scattered by the superconducting interface (perpend

icularing to the basal plane) into four allowed modes, such 

as, ke,1
yN , ke,2

yN , kh,2
yN , and kh,2

yN , as shown in figure 2(a). Figures 5 
and 6 show the reflection coefficients for the nodal-line Weyl 
semimetal based NM/S superconducting heterojunction with 
the interface perpendicularing to the basal plane. Note that, 
non-zero kxN  can be regarded as the renormalization of param
eter m. Therefore, only the case in the limit kxN = 0 will be 
discussed in this study. First, the AR and the NR coefficients 
are given in the limit kxN = 0 and kzN = 0 in figure 5. It is 

evident that, the inter-mode NR of ke,2
yN  always equates to zero 

for the ke,1
yN  mode incident case, as shown in figure 5(a). When 

the Fermi energy µ is beyond m , the quantities ke,1
yN  become 

imaginary. Consequently, all four scattering modes shut down. 

Below the critical value µ/m = 1, the scattering of the inci-

dent wave with ke,1
yN  to the intra-mode NR wave with ke,1

yN , the 
intra-mode RAR wave kh,2

yN , and the inter-mode SAR wave kh,1
yN  

may be significant. For µ < ε, the conversion from the inci-
dent electron-like quasiparticle into the hole-like quasiparticle 

is purely by the inter-mode SAR with kh,1
yN . Nevertheless, for 

kh,2
yN , it only comes form the intra-mode RAR. This feature is 

similar to type-II Weyl semimetal, but the perfect AR pro-
cess at the normal incident [33, 34]. As the Fermi energy µ 
increases, the intra-mode RAR falls down and the intra-mode 
NR goes up. At allowed interval edge µ/m = 1, they reaches 
zero and one, respectively.

In figure 5(b), we plot the results for the ke,2
yN  mode incident 

case. Essentially, with the increase of the Fermi energy, both 

the intra-mode RAR with kh,2
yN  and the inter-mode SAR with 

kh,1
yN  all occur. To see it more clearly, we plot the NR and the 

AR coefficients as a function of ratio µ/ε, as shown in the 
inset of figure 5(b). It clearly reveals the evolution of inter-
mode and intra-mode AR scattering processes. Except the 
similarities as the results in figure 5(a), they also exhibit some 
remarkable different features. First, unlike the incident mode 
ke,1

yN , the incident mode ke,2
yN  has no confinement on the Fermi 

energy. Second, the intra-mode RAR gets a great suppres-
sion at µ = VS, i.e. R2 = |r2|2 = 1 and RA2 = |rA2|2 = 0. The 
reduced Hamiltonian with kxN = 0 and kzN = 0, is essentially 
the one studied in [32] without a Zeeman field and a pseudos-
calar pair potential. This elucidates why the chirality blockade 
is exhibited in the limit case in a nodal-line Weyl semimetal. 
Therefore, it can be found that the intra-mode RAR exhibits 
a reentrant feature with the Fermi energy. However, it gives 
a perfect asymptotic scattering value RA2 = |rA2|2 = 1 as a 
function of the Fermi energy. Those results indicate that the 
inter-mode and the intra-mode scattering process are essen-
tial in SAR and RAR, respectively. Essentially speaking, 
those scattering processes are novel and purely relative to AR 
process. Those results are identical to the analytical solution 
given in the part B of section 2.

For a finite kzN , the NR and AR coefficients as a function 
of the Fermi energy µ are shown in figure 6. Clearly, due to 
the coupling of the modes ke2

yN , ke1
yN , kh2

yN , and kh1
yN  by a nonzero 

kzN , all modes scattering processes (the inter-mode and the 
intra-mode) in AR and NR can take place. We first focus 
on the large kzN  case. In the high Fermi energy regime, the 
results exhibit few changes. While in the low Fermi energy 
regime, the results change a lot. First, there is a scattering gap 
δµ = kzN  for both incident modes (ke2

yN  and ke1
yN). To see this 

effect more clearly, we give an enlarged figure in figure 6(b). 
Second, under this regime, the inter-mode NR scattering 
becomes significant, which is similar to the case of a potential 
barrier [44]. It rules out of the intra-mode NR scattering, if 
µ+ ε is close to kzN : in this limit R2 = |r2|2 = 1 for ke1

yN  and 
R1 = |r1|2 = 1 for ke2

yN  when µ+ ε → kzN , as shown in fig-
ures 6(a) and (b). Furthermore, note that, unlike the kzN = 0 
case, the intra-mode AR scattering process for the ke2

yN  incident 
mode gives rise to a sharp dip structure and completely shuts 
down at µ = VS/2 − kzN. While the perfect intra-mode NR 
scattering process at µ = VS in the limit kzN = 0 case has been 
removed by the finite kzN . In fact, the pole of the reentrant 
structure also exhibits an energy shift (about kzN ) to the lower 
energy direction.

Next we turn to the small kzN  case. Figures 6(c) and (d) 
are, in some respects, similar to the case of kzN = 0, such as, 
the inter-mode SAR dominating for µ < ε and the intra-mode 
RAR dominating for µ > ε as shown in the inset of figure 5(b). 
However, there are some important differences. In such a situ-
ation a AR gap about 2kzN  occurs. In the gap, the ARs with 
the imaginary modes are prohibited and the intra-mode NR 
scattering process dominates. To fulfill the probability current 
conservation, there is also a slight inter-mode NR scattering 
process. Besides, the ARs and NRs coefficients have a notable 
change with the increase of the Fermi energy µ. Therefore, the 
novel features will also give definitive signatures for detecting 
the inter-mode SAR and the intra-mode RAR in the tunneling 
conductance.

The property of the reflection coefficients directly leads to 
the fact that the tunneling conductances are closely related to 
the incident energy ε and the Fermi energy µ. In figures 7(a)–
(d) we plot the tunneling conductances of the present NM/S 
heterojunction as a function of the incident energy ε with dif-
ferent Fermi energy µ. For a large Fermi energy µ, it can be 

seen that the tunneling conductance of the mode −ke,1
yN  exhibits 

a clear nonmonotonic effect with the Fermi energy. The reason 
is that the allowed the intra-mode NR and the intra-mode 
RAR show nonmonotonic features with the Fermi energy µ, 
as shown in figure 6(a). Beyond the limit case µ/m = 1, the 
incident wave almost vanishes (except some special incident 

angles) and gives rise to a nearly zero tunneling conductance. 

While for the mode ke,2
yN , the tunneling conductance becomes 

more intriguing. Clearly, the reflection coefficients have two 
reentrant structures (around µ = VS/2 and µ = VS) as a func-
tion of the Fermi energy µ. Therefore, the tunneling conduct-
ance will exhibit different features as a function of the incident 

energy ε at different energy intervals. For example, comparing 
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to the case of the mode −ke,1
yN , the reflection coefficients have 

a larger change between the case of normal incident and 
oblique incident. Therefore, the tunneling conductance shows 
a complex feature in the energy regime [0, VS/2], as shown in 
figure 7(c). However, in [VS/2,VS], the reflection coefficients 
all monotonically vary with the Fermi energy (no matter 
normal incident or oblique incident), as shown in figures 5(b) 
and 6(b). As a result, the tunneling conductance shows a clear 
reentrant behavior with the fixed Fermi energy µ in the super-
conducting gap regime (ε < ∆). Those features can be under-
stood by the reflection coefficients revealed in figures 5 and 6.

For a small Fermi energy µ, the mode −ke,1
yN  is comparable 

to the mode ke,2
yN . Therefore, the tunneling conductances of the 

modes −ke,1
yN  and ke,2

yN  exhibit the similar features with the dif-
ferent Fermi energies. The results of the modes −ke,1

yN  and ke,2
yN  

have been given in figures 7(b) and (d), respectively. Similar 
to the case in graphene and the part A in Sec. III, the tun-
neling conductances give a clear conversion effect from the 
SAR to the RAR [36, 45]. Essentially, with the increase of 
the incident energy ε, the RAR occurs and suppresses. As a 
result, the tunneling conductance steming from the RAR can 
be suppressed by the incident energy ε. The hallmark of the 

zero tunneling conductance is a characteristic behavior for 
the conversion of the RAR and the SAR. When the incident 
energy ε is bigger than the Fermi energy µ, the tunneling con-
ductance steming from the SAR grows up again. Overall, by 
tuning the strength of the incident energy ε, the tunneling con-
ductances with a small Fermi energy µ are dramatically tuned. 
Therefore it would give an indisputable experimental signa-

ture for detecting the SAR. Besides, the zero bias tunneling 

conductance of −ke,1
yN  mode has a larger damping slope with 

the decrease of Fermi energy µ than that of the ke,2
yN  mode. In 

the limit µ → 0, one has G/G0 → 0 and G/G0 → 1.0 for the 
cases of the modes −ke,1

yN  and ke,2
yN , respectively. Those are also 

sharply distinct from the case of the graphene and the other 
Weyl semimetal NM/S heterojunction [33, 34, 36].

4.  Conclusions

In summary, we have theoretically investigated the scattering 
processes of the nodal-line semimetals based NM/S spercon-
ducting heterojunction based on the BDG equation. For the 

case of the interface parallel to the basal plane, it is shown that 

AR is perfect at k// =
√

m/B due to the Klein-like scattering. 

Figure 7.  Tunneling conductances of the present NM/S heterojunction as a function of the incident energy ε with kxN = 0 and kzN �= 0. (a) 
and (c) Correspond to the tunneling conductances with a large µ for an incident electron with −ke,1

yN  and ke,2
yN , respectively. (b) an (d) Denotes 

the tunneling conductances with a small µ for the mode −ke,1
yN  and ke,2

yN , respectively. The different parameters are shown in the figure.
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Such perfect AR is different from the case of graphene and 
Weyl-point semimetals, where it occurs only at the normal 
incidence. It is also different from the case in the convertional 
materials, where no perfect AR exists as long as the Fermi 
surface mismatch is present. While at other incident angle, 
the AR is suppressed by the Fermi energy µ. However, it is 
strengthened by the incident energy ε and achieves the perfect 
AR for all the allowed angles at the sperconducting gap edge.

In the case of the interface perpendicular to the basal plane, 
the pure intra-mode RAR and inter-mode SAR have been 
revealed at the normal incident. For different incident modes, 
the reflection coefficients exhibit the different features with 
the Fermi energy. For one mode, an allowed energy interval 
exists. Beyond the critical energy, this mode is completely 
reflected back by the intra-mode NR. While for the other 
mode, the reflection coefficient exhibits the reentrant behavior 
with the Fermi energy and saturates at a perfect intra-mode 
RAR. For an oblique incidence, the reflection coefficient adds 
another reentrant structure and the whole reentrant structures 
shift toward the low energy. Basically, those features stem 
from the torus-like isoenergy surfaces of the nodal-line semi-
metal, which is in sharp contrast to the case of conventional 
material, graphene, and Weyl-point semimetals. Those novel 
scattering processes also give rise to a distinctive tunneling 
conductance, which can be served as the definitive signature to 
distinguish the mode-resolved scattering processes in experi-
ments. In particular, a characteristic suppression feature of the 
tunneling conductance is observed by modulating the incident 
energy ε with a small Fermi energy µ. Such robust feature can 
be served as a hallmark for the transition between the RAR 

and the SAR. With the advance in experimental technology 
in the nodal-line semimetal, we thus expect that the revealed 
features should be observable in the near future.

In addition, we would like to point out that an ideal 
interface of the superconducting heterojunction is mainly 
focused in the present study. From the experimental point 
of view, the interface barrier does exist at the interface. For 
the case of an interface parallel to the basal plane, the results 
are slightly affected by the interface barrier because of the 
Klein tunneling and the magic angles tunneling. When the 
interface is perpendicular to the basal plane, the Klein tun-
neling is forbidden [30]. It thus is very amusing to extend the 
present ideal interface to the real interface cases where an 
interface barrier is formed. A study in this direction is now 
in progress.
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Appendix. The amplitudes for perpendicular case 
at the limit case

Solving equation (1) in the limit kx = 0 and kz = 0, we can 
obtain the wavefunctions in the normal lead and supercon-
ducting lead as following,

Ψe−
N (y) =

á
1
1
0
0

ë

e±ike−
y y, Ψe+

N (y) =

á
1
−1
0
0

ë

e±ike+
y y, Ψh−

N (y) =

á
0
0
1
1

ë

e±ikh−
y y, Ψh+

N (y) =

á
0
0
1
−1

ë

e±ikh+
y y,

Ψe−
S (y) =

à
1
1

ε−
√

ε2−∆2

∆

ε−
√

ε2−∆2

∆

í

e±ike−
Sy y, Ψe+

S (y) =

à
1
−1

ε−
√

ε2−∆2

∆

− ε−
√

ε2−∆2

∆

í

e±ike+
Sy y,

Ψh−
S (y) =

à
1
1

ε+
√

ε2−∆2

∆

ε+
√

ε2−∆2

∆

í

e±ikh−
Sy y, and Ψh+

S (y) =

à
1
−1

ε+
√

ε2−∆2

∆

− ε+
√

ε2−∆2

∆

í

e±ikh+
Sy y.
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In the above wavefunction, the wavevectors can be 

given as ke±
Ny =

»
m±(ε+µ)

B , kh±
Ny =

»
m±(µ−ε)sign(µ−ε)

B ,  

 ke±
Sy =

√
m±(

√
ε2−∆2+|µ−VS|)

B , and kh±
Sy =

√
m±(|µ−VS|−

√
ε2−∆2)

B .

Similar to the above boundary conditions in the text, we 
match the wavefunctions and its y-derivative at y = 0, i.e. 
ΨL (0) = ΨR (0) and Ψ′

L (0) = Ψ′
R (0). Solving the boundary 

conditions one obtains the expression for the AR of a 

ke+
Ny =

»
m+(ε+µ)

B  incident.
For the RAR case (µ > ε), we can get r− = 0, r−A = 0,  

r+A = −∆δ(η + κ)/(2Ωλδ + ε(δ + λ)(η + κ) + Ω(2ηκ− (λ− δ)(η − κ))),  

and r+ =
»

1 − (r+A )
2
, where η =

√
m + |µ− VS| − Ω , 

κ =
√

m + |µ− VS|+Ω,  λ =
√

m + ε− µ, δ =
√

m + ε+ µ, 
and Ω =

√
ε2 −∆2.

For the SAR case (µ < ε), we can get r− = 0, r+A = 0,  

r−A = −∆δ′(η′ + κ′)/(mΩ+ ε(Ω + δ′(η′ + κ′)) + Ωη′κ′), and 

r+ =
»

1 − (r−A )
2, whereη′ =

√
m + VS − Ω, κ′ =

√
m + VS +Ω , 

δ′ =
√

m + ε , and Ω =
√
ε2 −∆2.
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