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Abstract

®

CrossMark

TmFeOs, a canted antiferromagnet, has two intrinsic spin resonance modes in the terahertz
(THz) frequency regime: quasi-ferromagnetic (q-FM) mode and quasi-antiferromagnetic
(q-AFM) mode. Both the g-FM and q-AFM modes show strong magnetic field and temperature
dependence. Hereby, by employing THz time-domain spectroscopy combined with external
magnetic field and low temperature system, we systematically investigated the magnetic field
induced frequency shift of g-FM and g-AFM modes as well as the temperature driven spin
reorientation phase transition in TmFeOj single crystal. In contrast to the isotropic temperature
dependent two-mode, the magnetic field dependence of two-mode is strongly anisotropic: the
magnetic field applied along c-axis (a-axis) can harden (soften) the spin resonance frequency
of g-FM mode for I'y phase of TmFeOs, and the field applied along b-axis shows negligible

frequency shift for the g-FM mode, with the q-AFM mode relatively stable. The present study
provides solid evidence that the magnetic anisotropy in rare earth orthoferrite plays a dominant
role in the g-FM mode and the occurrence of spin reorientation phase transition. With the
magnetic anisotropic energy obtained from the temperature dependent g-FM and q-AFM mode
frequencies, we can predict both magnetic field and temperature dependence of spin resonance

in TmFeOs single crystal via phenomenological analysis.

Keywords: spin resonance, orthoferrite, terahertz spectroscopy, magnetic anisotropic,

spin reorientation phase transition

(Some figures may appear in colour only in the online journal)

1. Introduction

Ultrafast control of spin has attracted significant attention
from researchers because of its importance in spintronics
and spin-based information processing [1, 2]. Recently,
rare earth orthoferrites (RFeOs, with R denoting Y and rare
earth elements) have been gained intensive interest thanks
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to their exotic magnetic properties, multiferroics and prom-
ising applications in ultrafast spin switching and photomagn-
etic recording, etc [3—7]. The RFeO3 family has the distorted
perovskite structure with the space group D, '6-Pbnm and
possess two magnetic ions, rare earth R>* and iron Fe** ions
[8-10]. Due to the antisymmetric Dzyaloshinsky—Moriya
(DM) interaction, the iron spin directions are not completely
collinear but are slightly canted with respect to one another
and then induce a weak macroscopic magnetization [11, 12].
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The magnetic response of the RFeO3 can be well described by
two-spin-sublattice model, in which two Fe3t spins, Sy and S,
are anti-parallel but canted along c-(a-) axis for I'4 (I';) phase
[13]. Usually, two vectors F =S, + S, and G =S, — S, are
introduced to describe the magnetic response upon external
stimuli. Previous researches also proved that the properties of
orthoferrites are sensitive to temperature, pressure, and mag-
netic field, and evoke a series of intriguing order—disorder
transitions [14-22]. The underlying mechanism and possible
modulation of these transitions will provide deeper insights
into design of novel spintronic devices [15].

Terahertz time-domain spectroscopy (THz-TDS) has
emerged as an alternative to optical spectroscopy for stud-
ying magnetic excitation without unavoidable excessive
thermal energy due to the very low photon energy (1 THz—
4.1 meV) [23-25]. The magnetic interaction between THz
pulse and RFeOj3 can be described with the Zeeman torque
T =~S x Hry,, where v is the gyromagnetic ratio, S and
Hryy, are the electron’s spin moment and the impulsive magn-
etic field of the incident THz pulse, respectively [26, 27]. After
the magnetic moment being tipped out of easy direction by T,
the spins start to precess around the effective magnetic field.
The induced precession is expected to radiate free induction
decay (FID) signal. The amplitude of the FID signal is pro-
portional to magnetic torque T, and the resonant frequency
of polarized electromagnetic wave is equal to the precession
frequency of the spins [28]. Below Néel temperature and
above spin reorientation phase transition temperature without
external fields, the magnetic structure of RFeOj; corresponds
to the I'y phase (G, F,) with a weak ferromagnetic moment F
along the c-axis and the antiferromagnetic vector G along the
a-axis [29]. Usually, with variations of temperature or (and)
magnetic field, the sample system is transferred into another
configuration I'; (F,, G,) with F//a-axis and G//c-axis.

In this paper, we focus our investigation on the frequency
shift of quasi-ferromagnetic (q-FM) and quasi-antiferromag-
netic (q-AFM) modes induced by the external magnetic field
in TmFeOs single crystal by using THz-TDS. We discuss the
strongly anisotropic of the magnetic field dependent spin reso-
nance with the applied magnetic field along different crystal
axis. Furthermore, on the basis of the magnetic anisotropy
energies estimated according to the temperature dependent
resonant frequencies, we can predict both magnetic field and
temperature dependence of spin resonance in TmFeOs. These
results can be generally applicable for other RFeO3; members.

2. Sample details and experimental setup

Our TmFeOs single crystal was grown by the optical-floating-
zone method (Crystal System Inc., type FZ-T-10000-H-VI-
P-SH, Crystal System Corp). The samples with a-, b- and
c-cut plane parallel plates, having thickness of 1.16, 0.89 and
1.31 mm respectively, were polished on both sides for THz
measurements. The directions of the crystal axis were deter-
mined by the x-ray Laue diffraction analysis. The THz-TDS
integrated with the strong-magnetic field and a low-temper-
ature system was used for the TDS measurement. The second

harmonic output of Erbium-doped femtosecond fiber laser
(C-Fiber-780-High-Power, Menlo Systems) with a centered
wavelength of 780nm, pulse duration of 90 fs and repetition
rate of 100 MHz was used to generate and detect the THz
transients. The emitter and detector of the THz pulses were
achieved by photoconductive antennas. The sample was
mounted in the Oxford Instruments Spectromag He-bath
cryostat (SHC) placed in a collimated terahertz beam. The
temperature ranges from 40 to 300K, and the magnetic field
is up to the maximum value of 7.0 T. The effective spectral
range of the THz pulse covers the range from 0.1 to 1.5 THz.

Considering the low signal to noise ratio in the THz-TDS
system loaded with high magnetic field system, we also
studied the spin resonance of TmFeOj; crystal in a home-made
THz-TDS system without magnetic field. Briefly, the output
of a mode-locked Ti: Sapphire laser, with pulse duration of
100 fs, centered wavelength of 800nm, and repetition rate of
80 MHz (Mai Tai HP-1020, Spectra-Physics), is used to gen-
erate and detect the THz transient. The emitter and detector
of the THz wave were photoconductive antennas fabricated
on low-temperature-grown GaAs substrate, and the effective
THz spectral range covers the range from 0.1 to 3.0 THz. The
sample is installed in a cold finger cryostat with two THz
transparent windows, of which the temperature is tunable in a
range from 40 to 300K with best resolution of 1K. The THz
spectrometer was purged with nitrogen to avoid THz absorp-
tion of atmospheric water vapor. The THz-TDS allows us to
measure the temperature dependence of FID signals with the
S/N ratio better than 5000:1, from which we can obtain the
temperature induced spin reorientation transition (SRT), as
well as analyze the polarization state of the FID.

3. Results and discussions

The Fe*" spins in TmFeO; order antiferromagnetically below
Néel Temperature (Ty = 650K for TmFeO3). At temperatures
above 93K and below Néel temperature, the crystal is in the
I'; phase, in which the spins of the two Fe®" sublattice are
antiparallel along the a-axis but canted towards the c-axis by
a small angle (~8 mrad). The crystal is transformed in the I',
phase when the temperature is below 83 K, in which the weak
ferromagnetic moment F is pointed along a-axis. During 93
and 83 K, the crystal is in the I"y4 phase, in which the weak fer-
romagnetic moment F lies in (ac) plane of the crystal. There
are two spin resonance modes in THz frequency, q-FM mode
and q-AFM mode, which modes can be selectively excited
with magnetic component (Hryy,) of incident THz pulse
perpendicular or parallel to the ferromagnetic moment, F, of
the crystal, respectively.

3.1 The assignment of the resonance modes

Figures 1(a) and (b) plot the 3D trajectories of electric field
for g-FM (a) and g-AFM (b) modes of TmFeOs5 single crystal
at room temperature, respectively. It is clearly seen that the
FID signal for g-FM mode shows a nearly circular polariza-
tion, while that of g-AFM mode shows a linear polarization.
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Figure 1. (a) The 3D plots of the horizontal and the vertical THz electric field component of the g-FM mode. (b) The 3D plots of the
horizontal and the vertical THz electric field component of the g-AFM mode. (c) The horizontal (black) and vertical (red) polarizations of
g-FM mode. (d) The FID signals of the vertical components for the THz pulse propagating parallel (red) and antiparallel to the magnetic

moment vector F.

The polarization of the FID signal is evaluated by inserting a
THz polarizer at the polarization angles of +45° with respect
to the horizontal direction. The sum and difference of these
two spectra at +45° give the horizontal and vertical electric
field components, respectively. The g-FM mode with circular
polarization is due to the precession of macro magnetization
around equilibrium position, while the linear polarization of
g-AFM is understood as the in-plane vibration of the macro
magnetization. The derivation of circular polarization for
g-FM mode may come from the anisotropy of the crystal in
orthogonal direction, i.e. the THz refractive indices are dif-
ferent for horizontal and vertical directions, and the same
reason is applicable for the deviation of perfectly linear polar-
ization for g-AFM mode. Figure 1(c) plots the horizontal and
vertical polarizations together for direct comparison, from
which we can see more clearly that the horizontal and vertical
polarizations have 7/2 phase shift with comparable amplitude.
Figure 1(d) shows the vertical polarization of q-FM mode,
in which THz is propagating parallel (red) and antiparallel
(black) to the magnetic moment vector F. It can be found that
the FID signals of vertical components show out-of-phase for
the two opposite propagation directions of THz pulse. This

incident THz direction dependence of FID signals manifests
the resonance mode is magnetic in nature.

3.2. Temperature dependent spin resonance

Before studying the magnetic field dependence of spin reso-
nance, we would like to discuss the temperature dependent
spin resonance. As reported previously in [30], the g-AFM
mode frequency changes slightly with temperature, in con-
trast, the q-FM mode frequency alters significantly near the
SRT temperature. The spin resonance frequency is related to
the magnetic anisotropy constant in the ac-plane, which can
be described by [31, 32]

4FE
(hwem)? = W [(Axe — Az) cos20 — 4K, cos40] (1)
., [4E 11
(thFM) = (2S)2 {5 (Axx +Azz)
1
+3 (Aye — Ay) cos20 — Ky cos 40} , )
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Figure 2. The calculated magnetic anisotropy constants A, and
A_; in the ac-plane as a function of temperature according to
equations (1) and (2). A,, and A,; denote the magnetocrystalline
anisotropic constant along x(a) and z(c) axis, respectively. The red
scale on the right indicates the estimated magnetic anisotropy fields
H,, and H_, according to A,, and A_,. The shadow area shows the
SRT temperature range.

where wpyv and wapy denote the angular frequency of q-FM
and g-AFM modes, respectively. 7 is the reduced Planck con-
stant, and 6 is the angle between the c-axis and the weak fer-
romagnetic moment F, E = 373 meV is the exchange constant
[31], S = 5/2 is spin quantum number in the Fe** ion sublat-
tice, A, and A, are the magnetic anisotropy constants along
x(a) and z(c) axis of the crystal, and the higher-order aniso-
tropy constant K4 is much smaller than those of A, and A_,
which can be neglected during calculations of the magnetic
anisotropy energy for simplicity. With the q-FM and q-AFM
frequencies in TmFeOs5 single crystal under various temper-
atures [30], the temperature-dependent magnetic anisotropy
constants are obtained according to equations (1) and (2),
which is presented in figure 2. It is seen that the magnetic
anisotropy constants, Ay, and A,,, are strongly temperature
dependent. The estimated magnetic anisotropy fields H,, and
H_, according to the anisotropy constants, A, and A_, are also
given in figure 2 with red scale. We will use the measured
temperature dependent anisotropic energy to fit the magnetic
field dependence of spin resonance in the following part.

3.3. Magnetic field dependent spin resonance

Figure 3(a) shows the THz transmission spectra of c-cut
TmFeO; crystal under various magnetic fields applied along
c-axis at 150K, i.e. the magnetic field up to 7 T is applied
c-axis, the propagation direction of probing THz pulse. The
polarization of probing THz pulse is set along b-axis of the
crystal (magnetic component of THz pulse, Hry,, is along
a-axis). At 150K, the TmFeO; crystal is in the I'4 phase, and
the magnetic moment is pointed along c-axis of the crystal, as
a result only the g-FM mode can be excited with the magn-
etic component, Hry,, of THz wave. Figure 3(b) plots the
extracted q-FM resonance frequency as a function of the
applied magnetic field; it is seen that the resonance frequency
increases linearly with the magnitude of applied magnetic

field. We would like to mention that the g-AFM mode is inac-
tive to incident THz pulse for the c-cut TmFeOs3 at 150K, and
figure 3 only presents the experimental data of q-FM mode.
According to Herrmann [33], the magnetic field dependent
g-FM mode frequency can be estimated:

win/V = wim(0)/7? + (5Hy. + Hp)H + H*  (3)

wapm/V* = wapm(0)/7* + (Hy: + Hp)H. 4)

Here, Hp = 185 kOe is the antisymmetric exchange field [34],
H,, is the effective anisotropy fields, H is the applied magnetic
field along c-axis in the I's phase (or along a-axis in the I',
phase [35]), wrwm (0) and wapm (0) are the angular frequency
of g-FM and q-AFM modes without external magnetic field,
and v = 1.86 x 107 s~! Oe~! is the gyromagnetic ratio [36].
The magnitude of magnetic anisotropy field H,. is in the order
of a few kOe, which is two-order smaller than that of Hp. The
solid green line in figure 3(b) shows the fitting results based
on equations (3) and (4) with H,; = 0. The red line is the
best fitting with an adjustable constant H,,, which produces
H,, = 1.85 kOe. We assume that all anisotropic energies, Ay,
A, Ay and A,,, are only temperature dependent, and indepen-
dent on the external magnetic field.

Figures 4(a) and (c) show the THz transmission spectra of
b-cut TmFeO3; under various magnetic fields applied along
b-axis of the crystal at 150K. In figure 4(a) the Hryy, of inci-
dent THz pulse is set along a-axis, so that g-FM mode is
excited under this configuration. In figure 4(c) the Hyy, of
incident THz pulse is set along c-axis, so that ¢-AFM mode
is excited under this configuration. Figures 4(b) and (d) plot
the g-FM mode and q-AFM mode frequency respectively
versus applied magnetic field. It is seen that the magnetic field
along the crystal b-axis does not alter the q-FM mode fre-
quency apparently up to 7 T, and the g-AFM mode frequency
slightly increases with the magnitude of applied magnetic
field. According to [33], when the external magnetic field is
applied along b-axis of the crystal for both I'y and I'; phases,
the magnetic field dependent q-FM mode and q-AFM mode
frequency can be described by:

4H?2,

_ H?
4H  Hg + (HD + sz)(HD — Ssz)

)

win /7’ = wi(0) /9

4HZZHE + (HD - sz)2
4H_Hg + (Hp + H,.)(Hp — 3H,,)

wirm/7" = wir(0)/7 + H
here, Hg = 6400 kOe is the effective symmetric exchange
field [34]. It is noted that the H,, and H,, have the similar order
of magnitude, and both of them are two-order smaller than
that of Hp and Hg, and the applied magnetic field, H, is one-
order of magnitude smaller than that of Hp and Hg, therefore
the second terms on the right hand of equation (5) are close to
zero for our case H < 7 T. It should be noted that the second
term on the right hand of equation (6) can not be ignored, and
consider much smaller magnitude of H_, than that of Hp and
Hpg, the frequency of g-AFM mode is approximately propor-
tional to the square of the magnetic field applied along b-axis
of the crystal.
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Figure 3. (a) THz transmission spectra of c-cut TmFeOj; under various magnetic field at 150 K. The incident THz magnetic component,
Hry,, is aligned along a-axis of the crystal, and the external magnetic field H up to 7 T is applied along c-axis of the crystal. The offset of
adjacent lines is incremented by 0.6 for clarity. (b) The q-FM mode frequency is plotted as a function of applied magnetic field. The solid
lines are fitting lines with H,, = 1.85 4 0.25 kOe (red) and H,, = 0 (green) based on the equation (3) in the text. The inset in (b) shows the
schematics of the simplified magnetic configuration in TmFeO3 with Iy phase.
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adjacent lines is incremented by 0.4. (b) The g-FM mode frequency extracted from (a) is plotted as a function of magnetic field. (c) The
incident THz magnetic component, Hryy,, is aligned along c-axis of the crystal, and the external magnetic field H up to 7 T is applied along
b-axis of the crystal. The offset of adjacent lines is incremented by 0.4. (d) The g-AFM mode frequency extracted from (c) is plotted as a
function of magnetic field. The solid is the fitting curve with fitting parameters given in text. The inset in (b) shows the schematics of the
simplified magnetic configuration in a I'y phase TmFeOs.

Figure 5 presents both g-FM and g-AFM modes as a func- TmFeO; with magnetic field up to 7 T applied along a-axis
tion of magnetic field applied along the a-axis of the crystal. at 150K. The Hry, of THz pulse is aligned along b-axis so
Figure 5(a) shows the THz transmission spectra of c-cut that only q-FM mode can be excited with this configuration,
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spins for Fe>* sublattices.

and figure 5(c) shows the THz transmission spectra of a-cut
TmFeO; with magnetic field up to 7 T applied along a-axis at
150K. The Hry, of THz pulse is pointed along a-axis so that
the g-AFM mode can be excited with this configuration. It
is clearly seen that the g-FM mode frequency decreases with
the magnitude of applied magnetic field, while the q-AFM
mode frequency shows negligible shift. Figures 5(b) and (d)
show the extracted q-FM mode frequency and g-AFM mode
frequency with respect to the applied magnetic field, respec-
tively. When the magnetic field is applied perpendicularly to
the magnetic moment F, it is possible that the applied field can
rotate the magnetic moment F in the ac plane of the crystal.
As a result, this situation is much more complex than the two
cases mentioned before (magnetic field is applied along c-axis
(figure 3) and b-axis (figure 4), respectively).

In order to reproduce the magnetic field dependence of
g-FM mode for this situation, the inset in figure 5(b) sche-
matically shows the rotation of magnetic moment induced
by external magnetic field. Here, ¢ describes the angle
between the vector F and c-axis, which becomes larger with
the increase of the magnetic field applied along a-axis of the

crystal. ¢ denotes the angle between the two spin sublat-
tices S| and S,, which becomes smaller as the increase of the
applied magnetic field. If the applied magnetic field is lower
than a critical field, H, i.e. H < H,,, the angle ¢ of the canted
phase is governed by [37]

HgHposin o + (HgH,, — nH*) sing — HHp =0 (7)

where Hy; is the effective biquadratic anisotropy field in ac-
plane, and n = (. — x»)/x1, x. and x are the longitudinal
and transverse antiferromagnetic susceptibilities, respectively.
It should be noticed that the H,, in equation (7) can not be
ignored at this condition. The dynamical spin response can be
obtained by solving a Landau-Lifshitz—Gilbert equation [38,
39], and the relationship between the frequencies of q-FM
and q-AFM modes and the applied magnetic field H can be
written as [39]

zwl%MAFM 2 1/2
772’:19+Q+R:F[(P—Q+R) +40R] " (8)

where
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P = HgH,, + H} — nH>

0 = Hg (sz + 3HAzsin2<p) coszgo + H? (sin2<p — 77)

R = H*(1 +7)’cos’p

©))

The solid lines in figures 5(b) and (d) show the best fit-
ting of the q-FM mode and the q-AFM mode with respect
to the applied magnetic field along the g-axis at 150K based
on equation (8). The fitting parameters used here are n = 0.7,
H,; = 1.85 kOe, H,, = 6.1 kOe, Hx> = 0.4 kOe, respectively.
It can be seen from figure 5(b) that the simulation based on
equation (8) can reproduce the experimental data well as the
magnetic field H is smaller than 5 T; when the magnitude of
H is higher than 5 T, the fitting curve deviates from the exper-
imental data significantly. As we can find in figure 5(c) that the
g-FM mode appears with H is up to 5 T, from which we can
estimate the H,; ~ 5 T. The critical magnetic field H, denotes
the critical point, in which the SRT starts to appear. Higher
magnetic fields with larger deviation means the crystal has
entered into the SRT regime, i.e. the crystal lies in I'24 phase.

3.4. Both temperature and magnetic field dependent spin
resonance

From the experimental results and discussions above, it is
clear that the q-FM mode frequency is dominated by magnetic
anisotropic energies that are strongly related to the temper-
ature. The magnetic anisotropic energies A, and A_. can be
evaluated from the temperature dependent q-FM and q-AFM
modes with the equations (1) and (2). Combined with mag-
netic field dependent experimental data provided in figure 3,
figure 6 presents the resonance frequencies of q-FM (a) and
g-AFM (b) modes in TmFeOs3 single crystal as functions of
both temperature and the external magnetic field. It should be
noticed that the magnetic field is applied along c-axis above
83K, while the field is applied along a-axis below 83 K. The
soften of q-FM resonance frequencies is seen as the temper-
ature is approaching the SRT temperature range (83-93 K),
while the resonance frequency of q-AFM mode is seen to

increase slightly with decreasing temperature. As the increase
of the applied magnetic field, the frequencies of both q-FM
and q-AFM modes are seen to increase. It is known that the
TmFeO; lies in the I'y4 phase in the temperature interval
between 93K and 83K without applied magnetic field. It is
noted from figure 6(b) that, during the temperature interval
between 93 and 83K, the crystal could be transformed from
I'»4 phase into I'y phase when the magnetic field is applied
along c-axis. It suggests that magnetic field applied along
c-axis of the crystal can suppress the occurrence of SRT
in TmFeOs. In another word, the SRT takes place at lower
temperature with a magnetic field applied along c-axis of the
crystal.

Figure 7 shows frequency mapping of the q-FM (a) and
g-AFM (b) modes with respect to the temperatures as well
as the magnetic field applied along b-axis. As shown in
figure 7(a), there is a broad absorption band with the temper-
ature below 120K, which are assigned to the electronic trans-
itions inside the ground multiplets of the Tm** (°H3) at low
temperature regime [30]. For a G-type antiferromagnet like
TmFeOs, during the occurrence of SRT (i.e. I'y — I’y — I'y),
the vectors F and G rotates in the ac-plane of the crystal, in
which the angles ¢ and ¢ remains unchanged. Under this situ-
ation, the crystal in I'y phase or in I'; phase is the same for the
case of the magnetic field applied along b-axis of the crystal,
i.e. H//b-axis. The frequencies of both q-FM and q-AFM
modes are almost insensitive to the applied magnetic field
along b-axis of the crystal.

Figure 8 presents the resonance frequencies of q-FM (a)
and q-AFM (b) modes in TmFeOj3 single crystal are plotted
as functions of both temperature and the external magnetic
field along a-axis (c-axis) above (under) 83 K. It is seen from
figure 8(a) that the frequency of q-FM mode decreases with
applied magnetic field, and the mode frequency is also seen to
decrease when the temperature approaches the SRT temper-
ature interval (83-93K). Figure 8(b) shows that the g-AFM
frequency remains almost unchanged with magnetic field
applied along a-axis(c-axis) of the crystal above (under) 83K,
but when the magnetic field is higher than the critical magnetic
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field H.; (H.; = 5 T in this case), the mode frequency is seen
to decrease with the increase of the applied magnetic field,
which indicates the occurrence of the magnetic field induced
SRT in TmFeOj3. The results obtained in TmFeOj3 is similar
to our previous experimental results in NdFeO; [20]: when
the temperature is approaching the SRT temperature range,
the critical magnetic field H, is reduced significantly, which
suggests an acceleration of SRT process in TmFeO; with an
applied magnetic field along a-axis of the crystal.

As done in H,,, H,,, we assume that the magnetic aniso-
tropic fields H,, and H,; are only temperature dependent, and
independent on the applied magnetic field. When the applied
magnetic field is zero, i.e. H= 0, and ¢ ~ 0 (7/2) for I'y (I'»)
phase, then the equations (8) and (9) are reduced to:

win ~ Y HeH,. (10)

wirm ~ 7 (HeHyy + Hp). (11)

Combined with the temperature dependent q-FM and q-AFM
modes, the temperature dependent magnetic anisotropic fields,

=
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Figure 9. The estimated magnetic anisotropy fields H,, and H,; as
a function of temperature according to equation (8). H,, and H,;
denote the magnetic anisotropic field in ab-plane and ac-plane,
respectively. The black scale on the right indicates the estimated
magnetocrystalline anisotropy constants A,, and A, according to
H,, and H... The shadow area shows the SRT temperature range.
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H,, and H,, can be calculated with the equations (10) and
(11), which are shown in figure 9, and the estimated magnetic
anisotropy constants A,, and A, are given by the black scale
in figure 9. The absence of the A,, in the SRT temperature
interval is due to the fact that there is no observed q-FM mode
frequency during this temperature range. In contrast, we can
obtain the A,, in the all measured temperature window. By
comparing with the magnetic anisotropic constants along x-
axis (Ayy) and z-axis (A;;), as shown in figure 2, the magnetic
anisotropic energies of A,, is one order of magnitude larger
than those in Ay, A, and A,..

4. Conclusions

In summary, we have studied the temperature and magnetic
field dependence of spin resonance in TmFeO; single crystal
by using THz time-domain spectroscopy. The spin resonance
frequency, particular for the case of q-FM mode, is dominated
by the magnetic anisotropic energy. Our experimental results
demonstrate that when the magnetic field is applied parallel
to c-axis for I'y phase and parallel to a-axis for I'; phase, the
both q-FM and q-AFM mode frequencies increases with the
external magnetic field. On the other hand, when the magn-
etic field is applied along b-axis of the crystal, the magnetic
field shows almost negligible influence on the q-FM mode
frequency. When the magnetic field is applied along c-axis for
I'y phase and along c-axis for I'; phase, the field can lead to
softening of the q-FM mode. In addition, the magnetic field
along a-axis can induce the rotation of magnetic moment F in
ac plane of the crystal, which could result in the occurrence of
the SRT under sufficiently large magnetic field. By consulting
the temperature dependent magnetic anisotropic constants,
Ay, Az, Ay and Ay, the mapping of both temperature and
magnetic field dependent spin resonance can be obtained with
phenomenal analysis. Our studies lead to a more systematic
and in-depth understanding of the external field dependent
spin resonance as well as the SRT in rare earth orthoferrites.
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