10P Publishing

Journal of Physics: Condensed Matter

J. Phys.: Condens. Matter 32 (2020) 184005 (7pp)

https://doi.org/10.1088/1361-648X/ab6d 10

Initial correlation dependence of aging
In phase separating solid binary mixtures
and ordering ferromagnets

Subir K Das'®, Koyel Das', Nalina Vadakkayil', Saikat Chakraborty'->

and Subhaijit Paul'?

! Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced

Scientific Research, Jakkur PO, Bangalore 560064, India

2 Tnstitut fiir Physik, Johannes-Gutenberg Universitit Mainz, Staudinger Weg 7-9, 55128 Mainz, Germany
3 Tnstitut fiir Theoretische Physik, Universitit Leipzig, Postfach 100920, D-04009 Leipzig, Germany

E-mail: das@jncasr.ac.in

Received 25 September 2019, revised 19 December 2019
Accepted for publication 17 January 2020
Published 6 February 2020

Abstract

®

CrossMark

Following quenches of initial configurations having long range spatial correlations, prepared
at the demixing critical point, to points inside the miscibility gap, we study aging phenomena
in solid binary mixtures. Results on the decay of the two-time order-parameter autocorrelation
functions, obtained from Monte Carlo simulations of the two-dimensional Ising model,

with Kawasaki exchange kinetics, are analyzed via state-of-the art methods. The outcome is
compared with that obtained for the ordering in uniaxial ferromagnets. For the latter, we have
performed Monte Carlo simulations of the same model using the Glauber mechanism. For
both types of systems we provide comparative discussion of our results with reference to those
concerning quenches with configurations having no spatial correlation. We also discuss the

role of structure on the decay of these correlations.

Keywords: aging phenomena, Monte Carlo simulations, phase transitions,

growth in solid binary mixtures

(Some figures may appear in colour only in the online journal)

1. Introduction

Having been prepared at a high starting temperature (75), when
a homogeneous mixture is quenched to a final temperature (7}),
that falls inside the miscibility gap, it renders unstable to fluc-
tuation and separates into regions or domains rich in particles
of similar type [1-5]. Kinetics of such phase separation is of
immense interest from both scientific and technological view-
points. To probe the aging during such evolution, often one
studies the decay of the two-time auto-correlation function [6]

Cag(t, 1) =(0 (7, 1)¢ (7, 1))
— (D 0)) (7 1))

Here v, chosen scalar by keeping the content of the paper
in mind, is a space () and time dependent order parameter,

ey
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while 7 and 7,, (< 1) are referred, respectively, to as the obser-
vation and waiting times.

Due to the violation of time-translation invariance in non-
equilibrium systems, Cyg(1, 1) for different 7, are not equiva-
lent to each other. In other words, if this correlation function is
plotted versus ¢ — f,,, there will be no collapse of data for dif-
ferent values of 7,,. However, it is found that in many systems
Cag (1, 1,,) exhibits the scaling behavior [6-22]

Cag(t’ IW) ~ (E/EW)i/\’ (2)

where ¢ and /,, are the average sizes of domains at times ¢ and
t,,, respectively. Note that ¢ typically has a power-law time
dependence [1-4, 6]

{~ 1, 3)
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in phase ordering systems. Here A and n are referred to as the
aging and growth exponents. Values of these exponents, along
with few other properties [2, 23], define the nonequilibrium
universality classes [2, 19].

It has been argued that for same model, depending upon
the spatial correlation in the initial configurations there can
be different universality classes [19-21]—one for Ty = oo
and the other for Ty = T, the latter being the critical temper-
ature. Note here that at Ty = oo a system, in standard picture,
has a correlation length ¢ = 0 and at Ty = T¢, £ = oo, when
the system is of thermodynamically large size [2, 3, 24]. For
ordering in uniaxial ferromagnets [2, 24], this fact of uni-
versality has been demonstrated [19, 20]. There the under-
standing is that even though n remains the same [19], A and
other dynamic and structural quantities are different in the two
classes [19, 20, 25-27].

In contrast to the magnetic case, for which there is no
constraint on the conservation of system integrated order
parameter during evolution [2], the task of understanding of
coarsening phenomena is known to be significantly more dif-
ficult, at least theoretically and computationally, for conserved
order parameter dynamics that applies to kinetics of phase
separation in multi-component mixtures [2]. Computational
difficulty [28-30], to a certain extent, arises from the signifi-
cantly slower dynamics in the latter case. Note that for the
nonconserved case [2,31] n = 1/2, whereas for the conserved
case [2, 32,33] n = 1/3, in usual situation. Furthermore, irre-
spective of the type of dynamics, conserved or nonconserved,
quantitative understanding of aging behavior, even for simple
models, still remains difficult, convergence in the settlement
of issues being rather slow [7-20, 23, 34-37], despite the
availability of huge computational resources.

Nevertheless, significant progress has recently been made,
following adoption of methods of analysis that are analogous
to the popular techniques used for extracting information
about equilibrium systems. In a recent work [14] we have
quantified the values of A for phase separating binary mix-
tures (A + B) in different space dimensions d, via formulation
and application of finite-size scaling technique [13, 38] to
Monte Carlo (MC) simulation results, for quenches with ini-
tial £ = 0. For this and a number of other situations, including
the ferromagnetic case, we have demonstrated [13—-17] that A
satisfies certain bounds. Here note that Fisher and Huse (FH)
argued [7]:

Az 4)

Later, Yeung, Rao and Desai (YRD) [9] provided a more accu-
rate and generic bound:
d+b
A 2 77
2

where b is an exponent related to the short wave number (k)
behaviour of the structure factor [39], viz.,

(&)

Sk — 0,1,) ~ k. (6)

For random initial configurations (£ = 0), » = 0 and so, the
YRD bound coincides with that of FH. For nonconserved

order parameter, when Ty = oo, b = 0 even in the long time
limit. The latter, however, is not true for the conserved case
[39—-41]. This is one of the reasons for our observation of
vastly different A values in the two cases, irrespective of space
dimension, for quenches with £ = 0.

When started from Ty = T, it is expected that one will have
different structural scaling [19, 20]. If so, the bounds for both
conserved and nonconserved order-parameter may be dif-
ferent from that when quenched from 75 = co. This provides
an intuitive understanding that A for both conserved and non-
conserved classes will be different for Ty, = oo and T, = T,
giving rise to different universalities. This is demonstrated, as
already stated, theoretically and computationally, for the non-
conserved case [19, 20].

In this paper we focus on the conserved case, i.e. we take
up the task of estimating A for binary (A + B) mixtures with
T, = T.. Note that nonequilibrium universality classes are
also decided [2] by the space dimension, order-parameter
symmetry and presence of hydrodynamics. In this paper we
focus on d =2 and scalar order parameter, in absence of
hydrodynamics, i.e. in our model system coarsening occurs
due to simple diffusive transport, as expected in solid alloys.
To validate our method, and thus, the result, we also estimate
A for the nonconserved case that can be readily compared with
the existing results from other approaches [19, 20].

We show that the obtained values of A are consistent with
the YRD bound. These numbers are discussed with refer-
ence to the corresponding numbers [14] for T, = oc. It tran-
spires that for conserved order parameter also A for Ty = T, is
hugely different from that for 7y = co. Another recent study
of ours [42] suggest that in both the cases the growth expo-
nent remains same, like in the nonconserved case. Thus, there
exists qualitative similarity between conserved and noncon-
served cases, with respect to relaxation following quenches to
the ordered region.

2. Models and methods

We study nonequilibrium dynamics in solid binary mixtures and
uniaxial ferromagnets, via Kawasaki exchange [43] and Glauber
spin flip [44] Monte Carlo methods [45-47], respectively,
using the nearest neighbor Ising model [24] on a 2D square lat-
tice, with periodic boundary conditions [46] in both the direc-
tions. The Hamiltonian of the model is given by [24, 46]

H=-]Y 888 =+1;J]>0,
(i)

where the values +1 and —1 correspond to particles of types A
and B, respectively, in the case of binary mixture, and up and
down spins in the case of ferromagnet. The value of critical
temperature of this model [24, 46] in d = 2 is ~ 2.269J /kg,
where J is the interaction strength and kg is the Boltzmann
constant.

A trial move in the Kawasaki exchange Ising model (KIM)
is the interchange of particles between randomly selected
nearest neighbor sites, whereas in the Glauber Ising model
(GIM) a move is performed by flipping a randomly selected

(N
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spin. In both the cases the probability of acceptance of trial
moves is given by [45-47] (T; being the final temperature)

P(i = j) = min(1, exp(—(E; — E})/ksTy)),  (8)

where Ej;) is the energy of the state i(j). Time in our simula-
tion is estimated in units of MC steps (MCS), where one MCS
is equivalent to L? trial moves, L being the linear dimension
of a square box, in units of the lattice constant a. In the rest of
the paper, we set J, kg and a to unity.

We mostly quench the systems from Ty = TL, TL being
the system-size dependent critical temperature [38, 48],
except for a few cases for which we performed quenches from
T; = oo, only for the purpose of comparison. For both the
starting temperatures the final temperature was Ty = 0.67.
Here note that for quenches to 7y < T the asymptotic values
of n are same [20] for both T, = oo and Ty = T.. On the other
hand, following a quench to T, from other temperatures relax-
ation of a system is dictated by different value of the exponent.

In order to obtain the equilibrium configurations at 7L,
we have performed simulations using Wolff algorithm [49],
that, to a good degree, helps avoiding the critical slowing
down [50]. Here, instead of a single spin, a randomly selected
cluster of similar particles or spins is flipped.

The average domain lengths of a system during evolution
have been calculated via [29, 30]

o) = / P(C4,1)0adl,, ©)

where P(¢4,1) is a domain-size distribution function, and ¢4
is the distance between two successive interfaces in a specific
direction. In the calculation of the autocorrelation functions
(see equation (1)), the order parameter v at a space point cor-
responds to the value of spin in equation (7) at a lattice site.
All the presented results, for both KIM and GIM, are averaged
over a large number of independent initial configurations,
ranging between 100 and 500, depending upon the system
size.

3. Results

We start by presenting results from the KIM. In figure 1
snapshots during the evolutions for different 7 values are
presented. The upper frames are for 7y = oo and the lower
ones are for Ty = TE. All the pictures are for L = 128. The
difference in structure in the two cases is recognizable, even
though there exist strong finite-size effects in the initial con-
figurations [38, 46] for Ty = TCL. The latter is in addition to
the standard finite-size effects [29, 30, 51] that is observed for
Ts = oo, when ¢ approaches L. As is well known [24],

Ts_Tc

~ E_V' € =
£ ; T.

) (10)

v being a static critical exponent. For a true phase transition,
achievable in thermodynamically large systems, of course,
& = oo at the critical point. However for L < oo, which is
always the case for computer simulations, £ is finite, the max-
imum attainable value being £ = L. Because of that, for finite

L, when T, = TE, following quenches the systems quickly
deviate from the desired [19, 20] scaling form, different from
that for quenches with 7y = oo, of the nonequilibrium struc-
ture. This can be realized by taking a closer look at the snap-
shots for Ty = T in figure 1—the fractality is changing with
time. This additional finite-size effect must be taken care of
via appropriate extrapolation of the size-affected quantitative
data in the L = oo limit. This requires knowledge of T* for
various values of L. Related results we present next before
showing data for the autocorrelation functions.

Phase behavior for a model can be obtained via computer
simulations by calculating the temperature dependent, appropri-
ately defined, order-parameter distribution functions [46, 48].
Such a phase diagram or coexistence curve will always suffer
from finite-size effects due to the fact that, as mentioned
above, in simulations we always have L < co. Nevertheless,
via the applications of well-established scaling principles
phase behavior, including the critical point, in the thermody-
namic limit, can be satisfactorily obtained [48, 52, 53].

In the two-phase or coexistence region the order-parameter
distribution will have a double peak structure, locations of the
peaks representing points along the coexistence curve. On
the other hand, in the homogeneous (one-phase) region these
distributions will have single peak shape (with temperature
dependent width). The temperature at which the crossover
from double peak to single peak structure occurs is identified
as the value of TE.

A plot of TL versus 1/L is shown in figure 2. These results
were obtained from GIM by discarding snapshots from early
time non-equilibrium regime. Given that static critical univer-
sality is very robust, we will use the same data for the study
of nonequilibrium phenomena in KIM as well. For the same
reason we could have used the Wolff algorithm as well for
the estimation of TX. However, the range of system sizes over
which we have calculated TE the absolute gain in time as well
as that in any error due to large deviation would not have been
big. Note that the results for TX are expected to satisfy the
scaling form [46, 48, 52, 53]

T~ T~ LY, (11)

validity of which can be checked from its consistency with
equation (10). For the Ising model (universality class) v = 1lin
d = 2. The data set in figure 2, thus, is in agreement with this
expected critical point behavior. Note that the continuous line
in figure 2 is a fit of the simulation data set to the scaling form
in equation (11), by fixing v and T to the 2D Ising values.
Following the discussion and presentation of results rel-
evant for the scaling analysis of the aging data for the crit-
ical starting point, we now focus on the primary objective.
In figure 3 we present results for Cyg(1,1,), versus £/¢,, for
the KIM. In part (a) we fix the system size and include data
from few different #,, values. On the other hand, in part (b) t,,
is fixed and L is varied. In none of the cases collapse of data
is observed. This should be contrasted with the available lit-
erature [13, 14] for quenches from Ty = co. Such non-scaling
behavior for quenches from the critical point is because of the
fact that for L < oo, the structure, during evolution, quickly
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Figure 1. Snapshots for the Kawasaki Ising model during evolutions following quenches from Ty = oo (upper frames) and Ty = T% (lower
frames), with L = 128. In each of the cases pictures from three different times are shown. The dots represent A particles and the rest of the
space is occupied by B particles. Here and in other places all results are from quenches to Ty = 0.67.

starts deviating from the desired scaling, as already men-
tioned. To overcome this problem we will perform extrapola-
tion exercise to obtain the value of A in the L = oo limit.

Note that very early-time structural change brings artifi-
cial non-monotonicity in the length. This is reflected in the
plots of figure 3 for smaller values of t,. During this period,
we believe, the system is trying to arrive at the scaling
structure, giving rise to an unavoidable inconsistency in the
measurement of domain length, but only for a brief early
time regime. Thus, this non-monotonicity in the domain
length should not be taken seriously. With the increase of
time departure from this scaling structure occurs, earlier for
smaller systems.

In both figures 3(a) and (b), a common feature is the fol-
lowing. Each of the data sets tend to stabilize to a power-law
decay over a certain range of ¢/¢,,, but deviates from it when
¢ approaches L, i.e. . These stabilized exponent values are,
however, different from each other in part (a) as well as in part
(b). In part (a), this is because of the fact that the structure for
each 1, is different. Recall, we have already mentioned above
that this is a nonequilibrium feature related to finite system
of any particular size. On the other hand, even though in the
case of part (b) 7, is fixed, here one has different finite-size
effects for different L to start with, owing to different initial £
for different L.

Nevertheless, for a fixed #,, with the increase of system
size the exponents keep staying stable for longer ranges. Also,
the rate of change of the exponent with the increase of L keeps
decreasing. That way one may like to consider a very large
system to obtain X\ value that will be very close to that for
L = oco. We, however, would like to rely on an extrapola-
tion method using relatively smaller systems. Note that faster

2.45 T T T T I T T T T I T T T T I T T T T
o4l
A
235k
23l

T, =TI~ :
1 L 1 1 I L 1 L L L 1 L 1 I 1 L L 1
225, 001 0. 003 004

|
0
1/L

Figure 2. Plot of finite-size critical temperatures T* as a function
of the inverse system size 1/L. These results were obtained for GIM.
The continuous line is a fit of the data set to the scaling form in
equation (11), by fixing 7. and v to their 2D Ising values. Unless

otherwise mentioned, all the results below will correspond to
T, =Tk

decay of the autocorrelation for large ¢/¢,, is unavoidable,
because of the finite value of & when L < co. Only in the
L = oo limit, Cy(1,1,) will decay indefinitely with unique
exponent. We mention here: an advantage of using smaller
systems is that one can get better statistics by running simula-
tions with many independent initial configurations, using the
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Figure 3. (a) Log—log plots of autocorrelation function, Cag(t, t,), for the KIM, versus £//,,. Data for a few different #, are shown. All
results are for L = 256. (b) Same as (a) but here we have fixed 7, to 5 and presented results for a few values of L. Inside both the frames the
solid lines represent power laws. The values of the exponents are mentioned next to the lines.

same computational power that is needed to run single large
system. Here note that reduction of error is not directly pro-
portional to the size of a system [29, 51].

For the purpose of extrapolation, we need to obtain the
exponent values in the stabilized regions accurately. For this
we take help of the instantaneous exponent [14, 28, 33]

dIn Gy (2, 1) Y4
—_— X = —.
dlnx £

In figure 4, as illustration, we plot this quantity as a function of x,
for the KIM, for two values of L, by fixing t,, to 5. The L depen-
dent exponent, \;, we obtain from the flat regions of the plots,
that also correspond to the minima. One can justify this by taking
a closer look at the behavior of Cyg(2, 1,,) in figure 3. We expect
that Az in the limit L = oo will have same convergence for all
values of #,,, beyond a critical age, because of the following rea-
sons. For the meaningful scaling evolution, in the L = oo limit
the structure should obey certain self-similarity all along [19,
20]. If so, the value of A should not be affected by the choice of
t,,. Note that in such a situation the bound of equation (5) does
not change. For finite L, of course, the situation is different, as
discussed and being observed. However, the intended extrapola-
tion is expected to lead us to the thermodynamic A, same for all
t. If this is the case and the corresponding A is different from
that for Ty = oo, like in the ferromagnetic case, it should give
indirect evidence that there exist different structural scalings in
the conserved case also for 7y, = oo and Ty = T..

Finally, to obtain the thermodynamic limit value, in figure 5
we have plotted )z, as a function of 1/L, for a few values of
t,,, again from the KIM. These multiple plots provide a good
sense of convergence. From this exercise we quote

A = A—oo = 0.155 £ 0.025. (13)

Since all the data sets appear linear, we have obtained the
above quoted number from linear fittings. This number we
compare with [14] A for KIM when Ty = co in d = 2, viz.,

A~ 3.6. (14)

Ai = 12)

2 LI

i
1.5

0.5

2/,

—_
o

Figure 4. Instantaneous exponent J\; is plotted versus £/¢,, for the
KIM, for two values of L. In each of the cases we have 7, = 5. We
extract L-dependent value, A, from the flat regions of these plots.

There exists huge difference between the quoted values in
equations (13) and (14).

To validate our result of equation (13), we have applied the
same method to the simulation data for the GIM. For this case,
plots of Ay versus 1/L, for different #, values, are shown in
figure 6. Here also one can appreciate nice convergence of the
data sets for different values of 7,,. The corresponding value is

A =0.13+0.01. (15)

This is certainly in extremely good agreement with the
theoretical prediction [19, 20], viz., A = 0.125. We mention
here that in the previous simulation studies [18-20] no such
attempts have been made to estimate A for Ty = T, even for
the GIM. Only checks for the consistency with the analytical
theory were performed. The outcome of this exercise here cer-
tainly puts confidence in the number quoted in equation (13).
The number in equation (15), for GIM in d = 2, should be
compared with the corresponding value for 75 = oo, which
is ~ 1.3. Thus, for both KIM and GIM, the values of A for
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Figure 5. We have plotted A, as a function of 1/L, for the KIM.
Results for a few values of 7, are included. The solid lines are linear
fits for extracting A = A=, value of which is marked by an arrow-
headed line.
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Figure 6. Same as figure 5 but here we have presented results from
the GIM.

T, = oo and Ty = T, universality classes are vastly different.
For better readability of these numbers see table 1.

Next we aim at checking whether these numbers satisty
the YRD bound. For that purpose, in figure 7 we have plotted
S(k,0) as a function of k, on a log—log scale. We have included
data from both Ty = oo and Ty = T, with L = 128. In the case
of Ty = oo, flat behavior for the whole range of k is observed.
So, we have b = 0. Naturally, A ~ 3.6 (for KIM) and A ~ 1.3
(for GIM) satisfy the corresponding bounds: A > 1. However,
for the conserved case, when scaling (overlap of data from
different ¢, is observed, starting from large ¢,, for Ty = oo,
value of b by then changes [39, 54] to approximately 4. In that
case the bound becomes A > 3. So, the estimate A ~ 3.6 still
satisfies the modified bound in the scaling regime of 7,,. In the
nonconserved case, however, as already stated, b remains zero
for the whole evolution.

It appears that the bounds are satisfied for 75 = T also. In
this case b assumes a negative value, viz., b ~ —1.8. Thus, the

Table 1. List of values of A.

A (GIM) A (KIM)
T, = 1.30 3.60
T, =T, 0.13 0.155
10000E| T T T TTTTT T T T TTTTT T
o O0Ts = o0
~ Eé i o =Tk g
=] E X [m] 3
-~ = ~ =
Z oo o Dchu -
wn Eth L =512
DD
E O E|
2 U 3
1 OO0 00000000 [o)oXS
b=0
E L 1l L1l L
0'001.01 0.1 k 1 3

Figure 7. Plots of equal time structure factor S(k,t,, = 0) as a
function of wave number k. We have shown results from 7y = oo
and Ty = TE. In each of the cases, we have used L = 512. The solid
lines represent the values of b.

corresponding lower bound is below both the above quoted
values, i.e. A >~ 0.16 (for KIM) and A ~ 0.13 (for GIM). We
have verified that no violation occurs even with the progress
of time. It is worth mentioning here that the value of b for
a thermodynamically large critical system is only slightly
higher than the above quoted number. For L = oo, at criti-
cality b = —7/4 in d = 2. (This can be appreciated from the
fact that the exponent for the power-law decay of C(r) at criti-
cality is p =d — 2+ nor 23/v, where n, 8 and v are various
critical exponents [3].) Our system size is large enough to
almost realize this value. In any case, even for b = —7/4, the
obtained values of A satisfy the YRD bound.

4. Conclusion

We have presented results for aging phenomena in the two-
dimensional Ising model [24]. These were obtained from
Mote Carlo simulations [45-47] with implementation of two
different mechanisms. Our primary focus was on kinetics of
phase separation in solid binary mixtures. For this we have
used the Kawasaki exchange kinetics [43]. For the purpose
of verification of the adopted scaling method and thus, the
outcome for the binary mixture, we have presented results
for ordering in uniaxial ferromagnets as well, for which there
exists theoretical prediction for comparison. In this case the
results were obtained via the implementation of Glauber
kinetics [44]. Our objective was to estimate the aging expo-
nent A, related to the power-law decay of the order-parameter
autocorrelation function [7] Cag(t, tw), corresponding to the
universality class [19, 20] decided by quenches from Ty = T,
for which one has infinitely correlated configurations [24].
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For quenches from the critical point, simulation results
suffer significantly from finite-size effects. This problem was
appropriately taken care of by implementing finite-size scaling
technique of equilibrium critical phenomena and devising an
extrapolation method for analysis of the out-of-equilibrium
data. We believe that our final results are quite accurate for
thermodynamically large systems.

It appears that for both types of systems, viz., phase
separating binary mixtures and ordering ferromagnets, the
values of X\ for Ty = T, are drastically smaller than those for
the universality class corresponding [8, 13, 14] to T = oo.
Nevertheless the obtained values for T, = T, satisfy the lower
bounds predicted by Yeung, Rao and Desai [9]. To the best of
our knowledge, these are the first results for solid mixtures, as
far as quenches from T is concerned.

In the case of ferromagnets already it was shown that the
growth exponent remains same for the two above mentioned
universality classes [19, 20]. Our recent work [42] on growth for
the KIM also points towards the same possibility. Overall, thus,
it appears that there exists strong qualitative similarity between
the cases with conserved and non-conserved dynamics, as far
as the universalities with respect to quenches from correlated
and uncorrelated initial configurations are concerned.

Other important exponent that can be calculated for the
binary mixture with both 73 = oo and Ty, = T, is the one
related to the decay of persistence probability [23]. For this
exponent, however, due to certain technical reasons [55]
quenches to very low temperature becomes necessary. In that
case, for conserved dynamics, there exists severe problem
with metastability. This makes the problem rather challenging,
which, nevertheless, we intend to pursue in future.
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