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1.  Introduction

The surface free energy (energy per unit surface area) or 
surface energy represents the energy required for the forma-
tion of a new surface, e.g. in the process of breaking chem-
ical bonds, and is thus of fundamental importance in crystal 
growth. The surface energy of crystalline solids depends on 
the orientation of the crystal facets at the surface. Indirect 

measurements of the surface energy exist using surface wet-
tability and the Young equation [1]. The relative surface ener-
gies of different crystal facets can also be obtained from a 
Wulff construction [2–5]. However, direct measurements of 
the surface energy of crystals [6] are fraught with problems 
and are usually obtained from quantum-mechanical simula-
tions [7–19]. The standard approach is to simulate a slab of 
the material of interest with corresponding orientation and 
to evaluate the surface energy from the expression ES   =   
(Eslab(n)  −  n · Ebulk)/(2A), where A is the area of the primitive 
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Abstract
Three different methods for the calculation of the surface energy, namely the standard 
approach, the Boettger relation and the linear-fit method, are applied to the (0 0 1), (0 1 2) 
and (1 0 0) hematite surfaces. The standard approach was previously shown to suffer from 
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surface unit cell, Eslab(n) is the energy of a n-unit layer slab, 
and Ebulk is the energy of a unit layer of the bulk. Since this 
approach was shown [20, 21] to have divergence problems 
arising from small discrepancies in the numerical conditions 
for the bulk and slab simulations, other methods were put for-
ward that avoid the use of bulk simulation results. One of these 
methods, described by Boettger [20], approximates the bulk 
energy by the energy difference between two consecutive slab 
simulations, i.e. Ebulk   ≈  Eslab(n) −  Eslab(n  −  1). However, this 
method was shown to exhibit quantum size effects [22, 23], 
i.e. an oscillating behavior in the surface energy values with 
increasing n due to fluctuations in the numerical derivative. 
Another method, described by Gay et al [24], uses a linear fit 
of the Eslab versus n data set to obtain the bulk energy from the 
gradient of the straight-line fit via the expression Eslab(n)   ≈   
2A · ES  +  n · Ebulk. This method was shown to give rise to a 
good convergence behavior of the surface energy for metal 
surfaces [21]. However, with regard to the computational cost, 
the linear-fit method is the least efficient of the three methods 
described due to the large number of data points required for 
the straight-line fit, while the standard method is the most effi-
cient due to the few data points required.

Very recently [25] we investigated these three methods 
also for the convergence behavior of the surface energy in the 
metal oxide hematite (α-Fe2O3) with an Fe-terminated (0 0 1) 
surface. Previous findings for metal surfaces were corrobo-
rated for the metal oxide (0 0 1) hematite surface, namely a 
divergence of the standard approach and the occurrence of 
quantum size effects in the Boettger relation. It was also found 
that under certain circumstances the Boettger relation leads 
to a good convergence of the surface energy. The linear-fit 
method, however, is ultimately the most accurate and reliable 
method to extract convergent surface energy values from slab 
simulations [21, 25].

In the absence of experimental data it is usually the rela-
tive magnitude of the surface energies, and hence the order of 
the different facets in terms of increasing surface energy, that 
is of interest in the simulations. The question that now arises 
is whether this order is affected by the employed method to 
determine the surface energy, e.g. standard approach, Boettger 
relation or linear-fit method. A further question is whether 
there is any merit at all in using the standard approach, con-
sidering its divergence problems. We will address these ques-
tions in the present work. For this purpose we will compare 
the various surface energy calculations for the scientifically 
and technologically important (0 0 1), (0 1 2) and (1 0 0) sur-
faces of hematite.

2.  Computational details

All of the present calculations are performed with the computer 
code CRYSTAL14 [26, 27], which is an ab initio LCAO (linear 
combination of atomic orbitals) Hartree–Fock program for the 
treatment of periodic systems. The surfaces are described by 
a slab model with 2D periodicity and the unrestricted open-
shell Hamiltonian is used for Fe2O3 [28, 29]. Since there 
are unpaired 3d electrons in isolated Fe3+ ions, the use of 

the unrestricted treatment of the spin-dependent part of the 
wavefunction in the open-shell systems is necessary to obtain 
spin-polarized eigenfunctions of the Fock Hamiltonian [30]. 
α-Fe2O3 (hematite) has the corundum-type structure (space 
group R3c). We study here the (0 0 1), (0 1 2) and (1 0 0) sur-
faces. The repeat units are selected as Fe–3O–Fe… for (0 0 1), 
2O–2Fe–2O–2Fe–2O… for (0 1 2) and 2O–4Fe2O–2O… for 
(1 0 0), with surface terminations giving rise to a minimal 
dipole moment [31] (see e.g. figure 1 of [3, 25] for a sche-
matic illustration of the stoichiometric hematite surfaces). We 
found that the magnetic phase has no significant influence on 
the surface energy and its convergence behavior (we estimate 
its influence to be less than 0.2% for all cases). Consequently, 
we consider here the computationally less demanding ferro-
magnetic structure of hematite. We also found previously [15] 
that the order of the surface energies for the three surfaces 
(0 0 1), (0 1 2) and (1 0 0) is unaffected both by the relaxation 
of the slabs and a posteriori corrections of the exchange and 
correlation energy. Therefore, we consider here the unrelaxed 
slabs under the pure Hartree–Fock approach. The all-electron 
level basis sets, structural parameters, the tolerances for the 
level of numerical approximation and shrinking factors are the 
same as in our earlier investigations [15, 32].

3.  Results and discussion

Figure 1 shows the convergence behavior of the surface energy 
calculated for the (0 0 1) hematite surface. At first sight, the 
standard approach and the Boettger relation seem to converge 
well overall. However, the inset shows a different picture. 
Here it can be seen that the standard approach diverges for an 
increasing number of layers n. The latter is due to the fact that 
the small numerical discrepancies between the bulk and the 
slab simulations are multiplied by n. Also the Boettger rela-
tion does not converge very well for this surface, because the 
bulk energy is calculated from two slabs of similar thickness 

Figure 1.  Calculated surface energies for the (0 0 1) hematite 
surface using the standard approach, the Boettger relation and the 
linear-fit method (for different values of the starting point no). The 
shaded area is shown magnified in the inset.
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[21]. The linear-fit method is shown for different values of 
the starting point no, i.e. the straight-line fit is carried out 
for all data points between no and the maximum number 
of layers nmax = n. Clearly, a starting point of no = 3 is  
too small for a good convergence of the linear-fit method since 
the influence of the inaccurate 3-layer-slab data point on the 
least-squares fit is too large. However, the linear-fit method 
converges reasonably well as long as the chosen starting point 
no is not too small. Interestingly, intermediate starting points 
(e.g.no = 6) lead to a slightly better convergence than large 
starting points (e.g. no = 15), since more data points overall 
give rise to an improved averaging out of numerical fluctua-
tions. A striking feature of the inset to this graph is the fact that 
for intermediate values of n (i.e. approximately in the range 
12–21) all three methods give rise to very similar results, i.e. 
a surface energy of 4.8789 J m−2  ±  0.0004 J m−2, which also 
corresponds to the converged value of the linear-fit method of 
4.879 J m−2.

The convergence behavior of the surface energy for the 
(0 1 2) hematite surface is shown in figure 2. Again, the linear-
fit method displays the best overall convergence behavior as 
long as the starting point no is not too small, i.e. no  >  10 seems 
to give the best results. However, it has to be noted that here 
even for no = 15 and no = 20 the linear-fit method exhibits a 
small divergence, probably due to the small number of total 
data points. The standard approach is once more divergent for 
large n, while the Boettger relation exhibits a quantum size 
effect for small n and a divergent behavior for large n. Also, 
as before, for intermediate values of n (i.e. approximately in 
the range 25–35) all three methods lead to a surface energy of 
3.1210 J m−2  ±  0.0011 J m−2.

Figure 3 finally shows the convergence behavior of the sur-
face energy calculated for the (1 0 0) hematite surface. Here, 
the Boettger relation displays a pronounced quantum size 
effect for small n and a reasonably good convergence for large 

n, while the standard approach shows virtually no divergence. 
The linear-fit method converges again very well for no  >  12, 
albeit relatively slowly. For this surface, for a large range of 
values of n (i.e. from about 30 to 45) all three methods lead 
to a surface energy of 5.0827 J m−2  ±  0.0016 J m−2. The 
converged surface energy obtained from the linear-fit method 
(no  =  15) is 5.083 J m−2. From the inset to this figure it can 
also be seen how quickly the standard approach converges for 
this surface compared to the other two methods.

The obtained order of the surface energies for the three 
investigated surfaces is (0 1 2)  <  (0 0 1)  <  (1 0 0). The corre
sponding surface energy values are 3.12 J m−2 for (0 1 2), 4.88 
J m−2 for (0 0 1) and 5.08 J m−2 for (1 0 0). The present simu-
lation results show that, in the range of n-values investigated 
here, this order is unaffected by the method of calculation, i.e. 
standard approach, Boettger relation or linear-fit method, as 
long as the initial fluctuations have subsided. Details of this 
behavior are provided as supplementary material (stacks.iop.
org/JPhysCM/32/185002/mmedia). In fact, for these three 
surfaces this order is also retained after a full relaxation of 
the slabs [15]. In addition, for these three surfaces there is a 
range of values of n for which all three surface energy calcu-
lation methods give approximately the same value, and this 
value agrees very well with the converged linear-fit result. In 
general, the standard approach converges initially very rapidly 
after only a few data points, but exhibits a small divergence 
for an increasing number of layers in the slab. Since the initial 
convergence of the standard approach is so fast, there is usu-
ally a range of intermediate values for n where the small diver-
gence for large n can be neglected, and the standard approach 
gives results in good agreement with the other methods. 
Without being identified as such, this behavior was also found 
for the (0 0 1) Pt surface (see figure 1 of [21]) and for the fully 
relaxed (0 0 1) hematite surface (see figure 7 of [25]).

Consequently, from the present data and the available 
data in the literature [21, 25] we can now put forward the 

Figure 2.  Calculated surface energies for the (0 1 2) hematite 
surface using the standard approach, the Boettger relation and the 
linear-fit method (for different values of the starting point no). The 
shaded area is shown magnified in the inset.

Figure 3.  Calculated surface energies for the (1 0 0) hematite 
surface using the standard approach, the Boettger relation and the 
linear-fit method (for different values of the starting point no). The 
shaded area is shown magnified in the inset.
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following procedure for obtaining meaningful surface energy 
values from the standard approach. First, the surface energy 
is calculated for an increasing number of layers until the sur-
face energy has converged to approximately 1% between two 
consecutive simulations. This accuracy is sufficient for most 
determinations of the surface energy. Second, an additional 
increment in the number of layers should be avoided as this 
leads to a small divergence of the surface energy. The standard 
approach has the advantage that the initial convergence in the 
first few data points is very rapid, i.e. in general much faster 
than the convergence of the Boettger relation or the linear-fit 
method. Also, the standard approach requires overall signifi-
cantly fewer data points to reach this initial convergence than 
the linear-fit method. The agreement in the obtained surface 
energy values between the three methods and using the above 
described procedure is better than 0.4% for the three hematite 
surfaces investigated here.

4.  Conclusions

Three different methods for the calculation of the surface 
energy, namely the standard approach, the Boettger relation 
and the linear-fit method, were applied to the (0 0 1), (0 1 2) 
and (1 0 0) hematite surfaces. While the linear-fit method, in 
general, leads to the best overall convergence behavior of 
the surface energy, it requires a large number of data points 
for different slab sizes as its convergence is relatively slow. 
In contrast, the standard approach converges initially very 
quickly after only a few data points, but suffers from a small 
divergence for increasing slab thicknesses. The present simu-
lation results show that there is an intermediate regime of slab 
sizes where the standard approach has already sufficiently 
converged for most purposes, whilst the divergence is still 
small enough to be neglected. Consequently, we would argue 
that the standard approach is viable for a first, and in many 
cases very good, estimate of the surface energy. For a more 
accurate calculation of surface energy values the linear-fit 
method should be employed. We note that we have found a 
similar behavior for alumina and chromia, and hence believe 
the present conclusions to be applicable to a wider family of 
metal-oxide surfaces. Finally, the results indicate that the rela-
tive stability of the investigated surfaces is unaffected by the 
calculation method.
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