
1 © 2020 IOP Publishing Ltd  Printed in the UK

1.  Introduction

Anisotropy of physical properties represents a general 
feature of crystalline solids. Examples are given by the 
well-known elastic behavior of materials or the magneto-
crystalline anisotropy of ferromagnets. A notable excep-
tion to this rule are, e.g. transport properties of cubic 
systems without spontaneous magnetic order, where the 
corresponding transport coefficients (comprised in the con-
ductivity tensor) exhibit the same symmetry as in a homo-
geneous isotropic continuum.

The anisotropy of transport properties of transition-metal 
based systems attracted lots of attention during the last several 
decades especially for magnetically ordered alloys and com-
pounds. This interest is due to relevance of the accompanying 
phenomena for magnetic memory devices. The anisotropic 
magnetoresistance reflects primarily sensitivity of longitu-
dinal electric resistivities to the mutual orientation of the elec-
tric current and magnetization. In single crystals, however, 

also the direction of magnetization with respect to crystallo-
graphic axes plays an important role [1]. Similar sensitivity 
has also been reported for the transverse transport quantities, 
such as the anisotropic anomalous Hall effect in ferromagn
etic hcp cobalt [2]. The most recent development in this area 
includes investigation of these phenomena in antiferromag-
nets, both collinear [3] and non-collinear [4].

Since materials prospective for spintronic applications are 
often multicomponent, with several sublattices and layered 
structures [5, 6], the anisotropy of their transport properties 
can originate not only in their magnetic structure, but also in 
their crystalline structure. Assessment of a separate effect of 
magnetism and geometry on the resulting anisotropy of trans-
port properties is a difficult problem, partly due to the fact 
that spin polarization can strongly influence the stability of 
crystal structures. The ground-state crystal structure of ferro-
magnetic 3d transition elements Fe (bcc) and Co (hcp) dif-
fers from that of their nonmagnetic 4d and 5d isoelectronic 
counterparts which form hcp (Ru, Os) and fcc (Rh, Ir) lattices; 
this difference is a consequence of ferromagnetism of Fe and 
Co [7]. Similarly, the presence or absence of spin polarization 
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in binary transition-metal alloys is often responsible for the 
observed atomic ordering phenomena [8].

The late transition metals Co, Ru, and Os belong all to the 
same group VIII of the periodic system of elements and they 
crystallize in the same hcp structure. However, their longitudinal 
resistivities ρxx = ρyy for currents in the basal ab plane and ρzz for 
currents along the three-fold c axis exhibit different anisotropies, 
namely, ρxx < ρzz for Co [9], whereas ρxx > ρzz for Ru and Os 
[10]. This fact can be ascribed to a number of potential sources, 
such as a different number of valence electrons, a slightly dif-
ferent hexagonal c/a ratio (c/a  =  1.62 for Co, c/a  =  1.58 for Ru 
and Os), the ferromagnetism of Co, or the increasing strength of 
spin–orbit interaction in sequence Co, Ru, and Os. The simple 
crystal structure and the chemical similarity of these three pure 
metals call for detailed explanation of their transport properties.

The purpose of this paper is to identify the mechanism 
responsible for the observed resistivity anisotropy in hcp Co, 
Ru, and Os by means of up-to-date first-principles techniques. 
Moreover, anisotropy of residual resistivities in random hcp 
alloys based on these elements is studied as well. This allows 
us to treat all basic origins of electron scattering in transition-
metal systems, namely, the scattering on phonons and mag-
nons at finite temperatures, which is relevant for pure metals, 
and the scattering on impurities, which dominates for substi-
tutionally disordered alloys.

2.  Methods and models

The calculated results were obtained by means of the fully 
relativistic tight-binding linear muffin-tin orbital (TB-LMTO) 
method in the atomic sphere approximation [11]. Both non-mag-
netic and spin-polarized versions were used in combination with 
the coherent potential approximation (CPA) for an efficient treat-
ment of substitutionally disordered systems [12]. Selfconsistency 
of the effective one-electron potentials was achieved in the 
local spin-density approximation (LSDA) with the exchange-  
correlation potential parametrized according to [13]. The valence 
basis comprised s-, p -, d-, and f -type orbitals; other numer-
ical details for the studied hexagonal systems were similar to 
those employed in a previous study of tetragonal alloys [14]. 
Optionally, the scalar-relativistic version of the TB-LMTO tech-
nique (neglecting spin–orbit interaction) was applied as well.

The electronic transport properties were studied in the 
framework of the static Kubo linear response theory. The 
central quantity, namely, the electrical conductivity tensor 
σµν (µ, ν = x, y, z) was formulated with a systematic neglect 
of intraatomic electron motion; the interatomic electron hop-
pings were then described in the TB-LMTO technique [15, 16].  
This formalism was worked out in detail for electron scattering 
on random static fluctuations of the one-electron potential in 
substitutional solid solutions; the configuration averaging is 
done in the CPA including the vertex corrections to σµν [17]. 
The so-called Fermi-sea contribution to σµν [18], relevant 
only for the antisymmetric part of the conductivity tensor, i.e. 
for the anomalous Hall effect, has been omitted in this work 
focused on the longitudinal transport properties.

For the numerical implementation, a tiny imaginary part 
of magnitude ε = 10−5 Ry has been added to the real Fermi 

energy EF, so that the CPA-selfconsistency condition and all 
Green’s functions are evaluated at complex energies EF ± iε. 
The averages over the first Brillouin zone (BZ) were performed 
on a uniform mesh of reciprocal-space vectors equivalent to 
128 × 106 sampling points in the full BZ.

The above-described techniques are directly applicable to 
residual resistivities of random crystalline alloys. The study of 
phonon-induced finite-temperature electronic transport prop-
erties of pure metals was done within the alloy analogy model 
[19]. In this approach, the displacements of atoms from their 
equilibrium positions induce random shifts of the frozen one-
electron atomic potentials obtained from the selfconsistent 
LSDA calculations at zero temperature. The displaced atom 
represents an analogy to a particular chemical component in 
a multicomponent substitutionally disordered alloy with the 
ideal (undistorted) crystal structure. The system is then treated 
in the CPA as an effective N-component random alloy where 
N denotes the finite number of quasi-random displacement 
vectors ui of a single atom and their probabilities (concen-
trations) ci, i = 1, 2, . . . , N, see [19] for more details. In this 
work, the root-mean-square (r.m.s.) displacement ū (average 
magnitude of the single-atom displacements), defined by 
ū2 =

∑N
i=1 ciu2

i , was related to a finite temperature T by 
means of the simple Debye theory employing experimental 
values of the Debye temperature θD.

The alloy analogy model was originally formulated in 
the Korringa–Kohn–Rostoker (KKR) multiple-scattering 
theory [19]; the present work employs its recently developed 
TB-LMTO version [20, 21]. The alloy analogy model was 
used to a number of cubic systems while its application to hex-
agonal Gd [22] represents rather an exception. In this study, 
the experimental low-temperature lattice parameters of Co 
(a = 0.250 30 nm, c = 0.405 74 nm) [23], Ru (a = 0.270 28 
nm, c = 0.427 42 nm) [24], and Os (a = 0.273 15 nm, 
c = 0.431 48 nm) [25] were used. The random atomic dis-
placements were represented by N  =  8 quasi-random vectors 
of the same magnitude ū with directions and probabilities 
respecting hexagonal symmetry of the lattice. The Debye 
temperatures θD were chosen as 445 K for Co [26], 550 K for 
Ru, and 467 K for Os [27].

The effect of spin polarization of ferromagnetic Co was 
included by means of the one-electron Kohn–Sham–Dirac 
Hamiltonian incorporating an effective (exchange-correlation) 
magnetic field coupled to electron spin [28, 29]. The direction 
of Co magnetization was chosen along c axis (the magnetic 
easy axis); tilting the magnetization direction into the basal 
ab plane induces relative changes in electrical resistivities less 
than 0.5% which is at least an order of magnitude smaller than 
the resistivity anisotropies owing to different directions of the 
electric current [9]. For this reason, the present work was con-
fined to the bulk Co magnetization parallel to c axis.

In ferromagnetic systems at finite temperatures, fluc-
tuating directions of local magnetic moments can be con-
sidered as another source of electron scattering besides the 
atomic displacements [19]. In this study, we employed for 
ferromagnetic Co a simple model of tilted moments [30, 31]  
with M directions nj = (sinϑ cosϕj, sinϑ sinϕj, cosϑ), 
j = 1, 2, . . . , M , given by a fixed angle ϑ and quasi-random 
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angles ϕj uniformly distributed over interval [0, 2π]. We chose 
M  =  12 and ϕj = jπ/6, which results in MN  =  96 comp
onents occupying all sites of the hcp lattice. The temperature-
dependent values of ϑ were estimated from identification of 
cosϑ with reduced magnetization and from an existing para-
metrization of the experimental temperature dependence of 
Co magnetization [32].

3.  Results and discussion

In this study, we considered four hcp systems: Co, Ru, and 
Os, whereby Co was treated both in a ferromagnetic (FM) 
and a nonmagnetic (NM) state. The calculated resistivities 
ρxx and ρzz in the fully relativistic theory as functions of the 
r.m.s. displacement ū are displayed in figure 1 together with 
available experimental data [9, 10]. The displacements ū are 
given in units of the Bohr radius aB = 52.92 pm. One can see 
that the calculated results for Ru (figure 1(c)) and Os (figure 
1(d)) reproduce semiquantitatively the experimental trends 
including the resistivity anisotropy, ρxx > ρzz. The results for 
Co depend strongly on its magnetic state: the calculated and 
measured resistivities for FM Co (figure 1(a)) exhibit the same 
anisotropy, ρxx < ρzz, which is opposite to that encountered 
in Ru and Os. However, the calculated anisotropy for NM 
Co (figure 1(b)) is in line with that for other NM metals (Ru 
and Os), which contradicts the room-temperature experiment 
performed with FM Co [9]. These facts indicate that the dif-
ference of resistivity anisotropy between Co and Ru or Os is 
due to the spontaneous FM order of Co, whereas the role of 
different number of valence electrons is of minor importance.

In order to estimate the effect of spin–orbit interaction, 
we studied the resistivities of Co (FM and NM), Ru, and Os 
in the scalar-relativistic approximation. The obtained values 
and trends of dependences on ū (not shown here) are close to 
those in the fully relativistic theory (figure 1). Table 1 sum-
marizes all resistivities (both in the scalar-relativistic and the 
fully relativistic approach) for a particular r.m.s. displacement 
ū = 0.2 aB. One can clearly see that spin–orbit interaction has 
a small effect on the resistivities (�10%) and on their aniso
tropy in all four cases studied.

The scalar-relativistic approximation applied to electron 
transport in FM Co with perfectly collinear spin structure is 
equivalent to the well-known two-current model [33] in which 
the total conductivity equals a sum of conductivities in the 
majority (spin ↑) and minority (spin ↓) channels. These spin-
resolved conductivities are given in table 1 in terms of the 
corresponding resistivities (reciprocal values of the conduc-
tivities). Two facts should be mentioned. First, the majority-
channel conductivities are an order of magnitude larger than 
their minority-channel counterparts, so that the electrical cur
rent is carried mainly by the spin-↑ electrons. Second, the 
anisotropy of the spin-↓ resistivities is qualitatively the same 
as that in all NM cases, whereas the anisotropy of the spin-↑ 
resistivities resembles that of the total resistivities in the Co 
FM case. One can thus conclude that the sensitivity of the 
anisotropy to the spin polarization of hcp Co is due to the 
strong spin dependence of transport in FM Co. This feature 

can be explained by the well-known difference between the 
majority and minority electronic structures in FM Co [34]. 
The exchange splitting in this strong itinerant ferromagnet 
shifts the majority valence d-band below the Fermi energy, so 
that EF lies in a region of sp-like states, whereas the minority 
d-band is only partially occupied, containing holes above the 
Fermi level. The broad sp-band corresponds to high electron 
velicities, in contrast to the narrow d-band related to small 
velocities. This results in much higher majority conductivi-
ties as compared to the little conductive minority channel 
(table 1).

The calculated resistivities ρxx and ρzz for FM Co agree 
with available experimental data only semiquantitatively, see 
figure  1. However, the observed relation ρxx < ρzz is repro-
duced correctly and one should thus examine the robustness 
of the resistivity anisotropy with respect to spin fluctuations 
neglected in the results displayed in figure  1(a). We have 
chosen particular values of ū = 0.175 aB for the displace-
ments and ϑ = 0.045π for the tilted moments; these values 
seem realistic (see section 2) for temperatures around room 
temperature of the resistivity measurement [9]. The resulting 
resistivities due to a separate effect of phonons (ρph

µµ) and spin 
fluctuations (ρsf

µµ), and due to the simultaneous effect of both 
scattering mechanisms (ρph,sf

µµ ) are summarized in table 2. One 
can see that the net effect of spin fluctuations yields oppo-
site anisotropy (ρsf

xx > ρsf
zz) than that of the displacements 

(ρph
xx < ρph

zz ). The same anisotropy due to the spin fluctuations 
(ρsf

xx > ρsf
zz) has also been obtained in a recent theoretical study 

of hcp Gd [22]. Nevertheless, the combination of both mech
anisms yields the Co anisotropy in line with experiment, i.e. 
ρph,sf

xx < ρph,sf
zz . This can be explanied by significantly smaller 

values of ρsf
µµ as compared to ρph

µµ. Note, however, that the 
effects of phonons and spin fluctuations on the resistivity are 
not simply additive, as can be documented by non-negligible 

difference between the sum of both resistivities (ρph
µµ + ρsf

µµ) 
and the resulting ρph,sf

µµ . This non-additivity is equivalent to a 
violation of the Matthiessen’s rule, which in the present case 
underestimates the values of ρph,sf

µµ  by about 29% for ρxx and 
27% for ρzz. A similar non-additive behavior of resistivities 
due to both scattering mechanisms has been observed in recent 
theoretical studies of Fe and Gd [22, 35, 36], which contrasts 
the results for Ni where the Matthiessen’s rule is practically 
satisfied [20].

The calculated resistivities differ from the measured values 
(figure 1) for several reasons. First, the correlations between 
displacements of neighboring atoms are completely neglected 
in the alloy analogy model. For FM systems, similar cor-
relations between fluctuating directions of local magnetic 
moments (magnetic short-range order) are neglected as well. 
Second, the relaxation of one-electron potentials accompa-
nying the displacements should also be taken into account in 
a true adiabatic approach going beyond the frozen-potential 
approximation adopted here. Third, the harmonic approx
imation and the simple Debye model for phonon spectra 
represent further points to be improved in the future. Finally, 
the CPA neglects certain correlations between the random 
single-site t-matrices describing scattering with respect to the 
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effective medium. Removal of some of these approximations 
can be done, e.g. within a supercell TB-LMTO technique [30]. 
However, application of real-space supercell techniques goes 
beyond the scope of this work. Let us note that the relative 
difference between the present calculated resistivities and the 
experimental resistivities is comparable to that obtained in a 
recent KKR study of hcp Gd [22].

Electron transport in random alloys (substitutional solid 
solutions) is often dominated by scattering on impurities, 
which raises a question about the anisotropy of the residual 
resistivities in hcp alloys and its possible relation to the spin 
polarization. In this work, we chose three random hcp sys-
tems as case studies, namely, a binary Co85Ni15 alloy, a ter-
nary Co84Fe8Ni8 alloy, and a binary Os50Ru50 alloy. The first 
one represents a stable phase of the binary Co–Ni system for 
temperatures around room temperature [37], the second one 

Figure 1.  Calculated resistivities ρxx (full circles) and ρzz (full triangles) in the fully relativistic alloy analogy model as functions of the 
r.m.s. displacement ū: (a) for FM Co, (b) for NM Co, (c) for Ru, and (d) for Os. The approximate temperature scale according to the Debye 
theory is marked on the upper horizontal axis. The experimental values of ρxx (open circles) and ρzz (open triangles) are taken from [9] for 
Co and from [10] for Ru and Os.

Table 1.  Calculated resistivities ρxx and ρzz for the r.m.s. 
displacement ū = 0.2 aB. The results refer to the scalar-relativistic 
approximation; the values in parentheses are obtained in the fully 
relativistic approach. The data shown for Co FM ↑ and Co FM ↓ 
correspond respectively to majority and minority spin channel in the 
two-current model.

System ρxx (µΩ cm) ρzz (µΩ cm)

Co FM 5.33 (5.46) 6.02 (6.77)
Co FM ↑ 5.71 (—) 6.87 (—)

Co FM ↓ 80.1 (—) 49.0 (—)
Co NM 24.2 (24.8) 15.9 (16.5)
Ru 19.8 (20.2) 14.8 (15.1)
Os 30.5 (34.6) 20.5 (22.8)

Table 2.  Calculated resistivities in hcp Co due to a separate effect 
of phonons, ρph

µµ (for ū = 0.175 aB), and of spin fluctuations, 
ρsf
µµ (for ϑ = 0.045π), and due to the simultaneous effect of 

both scattering mechanisms, ρph,sf
µµ . The sum of both separate 

contributions is shown by ρph
µµ + ρsf

µµ.

ρxx (µΩ cm) ρzz (µΩ cm)

ρph
µµ

4.19 5.19

ρsf
µµ

0.948 0.721

ρph,sf
µµ

7.20 8.06

ρph
µµ + ρsf

µµ
5.14 5.91
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is a hypothetical alloy isoelectronic with pure Co, and the last 
one is a stable phase at high temperatures [37]. The calculated 
residual resistivities of these alloys, including the FM and NM 
states of both Co-based systems, are presented in table 3. The 
results witness that the resistivity anisotropy is qualitatively 
the same as in pure elements Co, Ru, and Os (figure 1). This 
finding proves that the particular scattering mechanism is less 
relevant for the anisotropy of resistivities in hcp systems based 
on late transition metals and that the most important factor is 
the presence or absence of a spontaneous FM order.

4.  Conclusions

Employing ab initio electronic structure calculations, we 
have investigated electrical resistivities of hcp systems con-
taining Co, Ru, and Os, with particular attention paid to 
the resistivity anisotropy. We have simulated electron scat-
tering on phonons, magnons, and impurities on equal footing 
within the alloy analogy model and the coherent potential 
approximation. The optional inclusion of spin polarization 
and of spin–orbit interaction allows us to conclude that the 
observed resistivity anisotropies in pure elements reflect the 
strong itinerant ferromagnetism of Co and the absence of spin 
polarization in Ru and Os, whereas other differences between 
these elements (number of valence electrons, hexagonal c/a 
ratio, strength of spin–orbit interaction) play only a minor 
role. This conclusion is not confined to pure metals; the same 
behavior can also be expected in random hcp alloys based on 
late transition metals.
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