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Abstract

®
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Transport properties of hexagonal transition metals Co, Ru, and Os at finite temperatures are
studied by means of ab initio electronic structure techniques and the Kubo linear response
theory. An alloy analogy model for a quantitative treatment of the electrical conductivities
due to temperature-induced lattice vibrations (phonons) and spin fluctuations is applied with
focus on anisotropy induced by the hexagonal structure. The resistivity anisotropy in Co is
found opposite to that in Ru and Os, in agreement with existing experimental data. This result
is ascribed to the strong itinerant ferromagnetism of Co which leads to profound differences
in the electronic structure and conductivities in the majority and minority spin channels. A
similar sensitivity to spin polarization is predicted for the anisotropy of residual resistivity in

random hexagonal Co-rich Co-Ni and Co-Ni-Fe alloys.
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1. Introduction

Anisotropy of physical properties represents a general
feature of crystalline solids. Examples are given by the
well-known elastic behavior of materials or the magneto-
crystalline anisotropy of ferromagnets. A notable excep-
tion to this rule are, e.g. transport properties of cubic
systems without spontaneous magnetic order, where the
corresponding transport coefficients (comprised in the con-
ductivity tensor) exhibit the same symmetry as in a homo-
geneous isotropic continuum.

The anisotropy of transport properties of transition-metal
based systems attracted lots of attention during the last several
decades especially for magnetically ordered alloys and com-
pounds. This interest is due to relevance of the accompanying
phenomena for magnetic memory devices. The anisotropic
magnetoresistance reflects primarily sensitivity of longitu-
dinal electric resistivities to the mutual orientation of the elec-
tric current and magnetization. In single crystals, however,
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also the direction of magnetization with respect to crystallo-
graphic axes plays an important role [1]. Similar sensitivity
has also been reported for the transverse transport quantities,
such as the anisotropic anomalous Hall effect in ferromagn-
etic hep cobalt [2]. The most recent development in this area
includes investigation of these phenomena in antiferromag-
nets, both collinear [3] and non-collinear [4].

Since materials prospective for spintronic applications are
often multicomponent, with several sublattices and layered
structures [5, 6], the anisotropy of their transport properties
can originate not only in their magnetic structure, but also in
their crystalline structure. Assessment of a separate effect of
magnetism and geometry on the resulting anisotropy of trans-
port properties is a difficult problem, partly due to the fact
that spin polarization can strongly influence the stability of
crystal structures. The ground-state crystal structure of ferro-
magnetic 3d transition elements Fe (bcc) and Co (hep) dif-
fers from that of their nonmagnetic 4d and 5d isoelectronic
counterparts which form hcp (Ru, Os) and fcc (Rh, Ir) lattices;
this difference is a consequence of ferromagnetism of Fe and
Co [7]. Similarly, the presence or absence of spin polarization

© 2020 IOP Publishing Ltd  Printed in the UK
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in binary transition-metal alloys is often responsible for the
observed atomic ordering phenomena [8].

The late transition metals Co, Ru, and Os belong all to the
same group VIII of the periodic system of elements and they
crystallize in the same hcp structure. However, their longitudinal
resistivities px, = py, for currents in the basal ab plane and p_, for
currents along the three-fold c axis exhibit different anisotropies,
namely, py < p, for Co [9], whereas p,, > p,; for Ru and Os
[10]. This fact can be ascribed to a number of potential sources,
such as a different number of valence electrons, a slightly dif-
ferent hexagonal c/a ratio (c/a = 1.62 for Co, c¢/a = 1.58 for Ru
and Os), the ferromagnetism of Co, or the increasing strength of
spin—orbit interaction in sequence Co, Ru, and Os. The simple
crystal structure and the chemical similarity of these three pure
metals call for detailed explanation of their transport properties.

The purpose of this paper is to identify the mechanism
responsible for the observed resistivity anisotropy in hcp Co,
Ru, and Os by means of up-to-date first-principles techniques.
Moreover, anisotropy of residual resistivities in random hcp
alloys based on these elements is studied as well. This allows
us to treat all basic origins of electron scattering in transition-
metal systems, namely, the scattering on phonons and mag-
nons at finite temperatures, which is relevant for pure metals,
and the scattering on impurities, which dominates for substi-
tutionally disordered alloys.

2. Methods and models

The calculated results were obtained by means of the fully
relativistic tight-binding linear muffin-tin orbital (TB-LMTO)
method in the atomic sphere approximation [11]. Both non-mag-
netic and spin-polarized versions were used in combination with
the coherent potential approximation (CPA) for an efficient treat-
ment of substitutionally disordered systems [12]. Selfconsistency
of the effective one-electron potentials was achieved in the
local spin-density approximation (LSDA) with the exchange-
correlation potential parametrized according to [13]. The valence
basis comprised s-, p-, d-, and f-type orbitals; other numer-
ical details for the studied hexagonal systems were similar to
those employed in a previous study of tetragonal alloys [14].
Optionally, the scalar-relativistic version of the TB-LMTO tech-
nique (neglecting spin—orbit interaction) was applied as well.

The electronic transport properties were studied in the
framework of the static Kubo linear response theory. The
central quantity, namely, the electrical conductivity tensor
o (U, v = x,y,z) was formulated with a systematic neglect
of intraatomic electron motion; the interatomic electron hop-
pings were then described in the TB-LMTO technique [15, 16].
This formalism was worked out in detail for electron scattering
on random static fluctuations of the one-electron potential in
substitutional solid solutions; the configuration averaging is
done in the CPA including the vertex corrections to o, [17].
The so-called Fermi-sea contribution to o, [18], relevant
only for the antisymmetric part of the conductivity tensor, i.e.
for the anomalous Hall effect, has been omitted in this work
focused on the longitudinal transport properties.

For the numerical implementation, a tiny imaginary part
of magnitude £ = 107> Ry has been added to the real Fermi

energy Ep, so that the CPA-selfconsistency condition and all
Green’s functions are evaluated at complex energies Ep = ie.
The averages over the first Brillouin zone (BZ) were performed
on a uniform mesh of reciprocal-space vectors equivalent to
128 x 10° sampling points in the full BZ.

The above-described techniques are directly applicable to
residual resistivities of random crystalline alloys. The study of
phonon-induced finite-temperature electronic transport prop-
erties of pure metals was done within the alloy analogy model
[19]. In this approach, the displacements of atoms from their
equilibrium positions induce random shifts of the frozen one-
electron atomic potentials obtained from the selfconsistent
LSDA calculations at zero temperature. The displaced atom
represents an analogy to a particular chemical component in
a multicomponent substitutionally disordered alloy with the
ideal (undistorted) crystal structure. The system is then treated
in the CPA as an effective N-component random alloy where
N denotes the finite number of quasi-random displacement
vectors u; of a single atom and their probabilities (concen-
trations) ¢;, i = 1,2,...,N, see [19] for more details. In this
work, the root-mean-square (r.m.s.) displacement u (average
magnitude of the single-atom displacements), defined by
i? =YW cu?, was related to a finite temperature T by
means of the simple Debye theory employing experimental
values of the Debye temperature p.

The alloy analogy model was originally formulated in
the Korringa—Kohn—-Rostoker (KKR) multiple-scattering
theory [19]; the present work employs its recently developed
TB-LMTO version [20, 21]. The alloy analogy model was
used to a number of cubic systems while its application to hex-
agonal Gd [22] represents rather an exception. In this study,
the experimental low-temperature lattice parameters of Co
(a =0.25030 nm, ¢ = 0.40574 nm) [23], Ru (a = 0.27028
nm, ¢= 042742 nm) [24], and Os (a =0.27315 nm,
¢ =0.43148 nm) [25] were used. The random atomic dis-
placements were represented by N = 8 quasi-random vectors
of the same magnitude # with directions and probabilities
respecting hexagonal symmetry of the lattice. The Debye
temperatures 0 were chosen as 445 K for Co [26], 550 K for
Ru, and 467 K for Os [27].

The effect of spin polarization of ferromagnetic Co was
included by means of the one-electron Kohn—Sham-Dirac
Hamiltonian incorporating an effective (exchange-correlation)
magnetic field coupled to electron spin [28, 29]. The direction
of Co magnetization was chosen along ¢ axis (the magnetic
easy axis); tilting the magnetization direction into the basal
ab plane induces relative changes in electrical resistivities less
than 0.5% which is at least an order of magnitude smaller than
the resistivity anisotropies owing to different directions of the
electric current [9]. For this reason, the present work was con-
fined to the bulk Co magnetization parallel to ¢ axis.

In ferromagnetic systems at finite temperatures, fluc-
tuating directions of local magnetic moments can be con-
sidered as another source of electron scattering besides the
atomic displacements [19]. In this study, we employed for
ferromagnetic Co a simple model of tilted moments [30, 31]
with M directions n; = (sin ¥ cos p;, sin ¥ sin ¢;, cos ),
j=1,2,...,M, given by a fixed angle ¥ and quasi-random
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angles ; uniformly distributed over interval [0, 27r]. We chose
M =12 and ¢; = jm/6, which results in MN =96 comp-
onents occupying all sites of the hcp lattice. The temperature-
dependent values of ¥ were estimated from identification of
cos ¥ with reduced magnetization and from an existing para-
metrization of the experimental temperature dependence of
Co magnetization [32].

3. Results and discussion

In this study, we considered four hcp systems: Co, Ru, and
Os, whereby Co was treated both in a ferromagnetic (FM)
and a nonmagnetic (NM) state. The calculated resistivities
pre and p,. in the fully relativistic theory as functions of the
r.m.s. displacement u are displayed in figure 1 together with
available experimental data [9, 10]. The displacements u are
given in units of the Bohr radius ag = 52.92 pm. One can see
that the calculated results for Ru (figure 1(c)) and Os (figure
1(d)) reproduce semiquantitatively the experimental trends
including the resistivity anisotropy, pxx > p;. The results for
Co depend strongly on its magnetic state: the calculated and
measured resistivities for FM Co (figure 1(a)) exhibit the same
anisotropy, pxx < pz, which is opposite to that encountered
in Ru and Os. However, the calculated anisotropy for NM
Co (figure 1(b)) is in line with that for other NM metals (Ru
and Os), which contradicts the room-temperature experiment
performed with FM Co [9]. These facts indicate that the dif-
ference of resistivity anisotropy between Co and Ru or Os is
due to the spontaneous FM order of Co, whereas the role of
different number of valence electrons is of minor importance.

In order to estimate the effect of spin—orbit interaction,
we studied the resistivities of Co (FM and NM), Ru, and Os
in the scalar-relativistic approximation. The obtained values
and trends of dependences on u (not shown here) are close to
those in the fully relativistic theory (figure 1). Table 1 sum-
marizes all resistivities (both in the scalar-relativistic and the
fully relativistic approach) for a particular r.m.s. displacement
# = 0.2 ag. One can clearly see that spin—orbit interaction has
a small effect on the resistivities (<10%) and on their aniso-
tropy in all four cases studied.

The scalar-relativistic approximation applied to electron
transport in FM Co with perfectly collinear spin structure is
equivalent to the well-known two-current model [33] in which
the total conductivity equals a sum of conductivities in the
majority (spin 1) and minority (spin J) channels. These spin-
resolved conductivities are given in table 1 in terms of the
corresponding resistivities (reciprocal values of the conduc-
tivities). Two facts should be mentioned. First, the majority-
channel conductivities are an order of magnitude larger than
their minority-channel counterparts, so that the electrical cur-
rent is carried mainly by the spin-1 electrons. Second, the
anisotropy of the spin-|, resistivities is qualitatively the same
as that in all NM cases, whereas the anisotropy of the spin-{
resistivities resembles that of the total resistivities in the Co
FM case. One can thus conclude that the sensitivity of the
anisotropy to the spin polarization of hcp Co is due to the
strong spin dependence of transport in FM Co. This feature

can be explained by the well-known difference between the
majority and minority electronic structures in FM Co [34].
The exchange splitting in this strong itinerant ferromagnet
shifts the majority valence d-band below the Fermi energy, so
that EF lies in a region of sp-like states, whereas the minority
d-band is only partially occupied, containing holes above the
Fermi level. The broad sp-band corresponds to high electron
velicities, in contrast to the narrow d-band related to small
velocities. This results in much higher majority conductivi-
ties as compared to the little conductive minority channel
(table 1).

The calculated resistivities p,, and p,, for FM Co agree
with available experimental data only semiquantitatively, see
figure 1. However, the observed relation p,, < p,; is repro-
duced correctly and one should thus examine the robustness
of the resistivity anisotropy with respect to spin fluctuations
neglected in the results displayed in figure 1(a). We have
chosen particular values of u# = 0.175ap for the displace-
ments and ¥ = 0.0457 for the tilted moments; these values
seem realistic (see section 2) for temperatures around room
temperature of the resistivity measurement [9]. The resulting
resistivities due to a separate effect of phonons (p,%) and spin
fluctuations (p ) and due to the simultaneous effect of both
scattering mechanlsrns (p,m ) are summarized in table 2. One
can see that the net effect of spin fluctuations yields oppo-
s1te amsotropy (P > pif) than that of the displacements
(pxx < pzz) The same anisotropy due to the spin fluctuations
(PS> pl) has also been obtained in a recent theoretical study
of hep Gd [22]. Nevertheless, the combination of both mech-
anisms yields the Co anisotropy in line with experiment, i.e.
PPt P This can be explanied by significantly smaller
values of pifﬂ as compared to pﬂ}i. Note, however, that the
effects of phonons and spin fluctuations on the resistivity are
not simply additive, as can be documented by non- negligible
difference between the sum of both resistivities (p,w + p )
and the resulting pW This non-additivity is equivalent to a
violation of the Matthiessen’s rule, which in the present case
underestimates the values of pﬂll‘ff by about 29% for p,, and
27% for p... A similar non-additive behavior of resistivities
due to both scattering mechanisms has been observed in recent
theoretical studies of Fe and Gd [22, 35, 36], which contrasts
the results for Ni where the Matthiessen’s rule is practically
satisfied [20].

The calculated resistivities differ from the measured values
(figure 1) for several reasons. First, the correlations between
displacements of neighboring atoms are completely neglected
in the alloy analogy model. For FM systems, similar cor-
relations between fluctuating directions of local magnetic
moments (magnetic short-range order) are neglected as well.
Second, the relaxation of one-electron potentials accompa-
nying the displacements should also be taken into account in
a true adiabatic approach going beyond the frozen-potential
approximation adopted here. Third, the harmonic approx-
imation and the simple Debye model for phonon spectra
represent further points to be improved in the future. Finally,
the CPA neglects certain correlations between the random
single-site t-matrices describing scattering with respect to the
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Figure 1. Calculated resistivities p,, (full circles) and p., (full triangles) in the fully relativistic alloy analogy model as functions of the
r.m.s. displacement #: (a) for FM Co, (b) for NM Co, (c¢) for Ru, and (d) for Os. The approximate temperature scale according to the Debye
theory is marked on the upper horizontal axis. The experimental values of p,, (open circles) and p.. (open triangles) are taken from [9] for

Co and from [10] for Ru and Os.

Table 1. Calculated resistivities p,, and p,; for the r.m.s.
displacement # = 0.2 ag. The results refer to the scalar-relativistic
approximation; the values in parentheses are obtained in the fully
relativistic approach. The data shown for Co FM 1 and Co FM |
correspond respectively to majority and minority spin channel in the
two-current model.

System Prx (€2 cm) Pz () cm)
Co FM 5.33 (5.46) 6.02 (6.77)
Co FM 1 5.71 (—) 6.87 (—)
CoFM | 80.1 (—) 49.0 (—)
Co NM 24.2 (24.8) 15.9 (16.5)
Ru 19.8 (20.2) 14.8 (15.1)
Os 30.5 (34.6) 20.5 (22.8)

effective medium. Removal of some of these approximations
can be done, e.g. within a supercell TB-LMTO technique [30].
However, application of real-space supercell techniques goes
beyond the scope of this work. Let us note that the relative
difference between the present calculated resistivities and the
experimental resistivities is comparable to that obtained in a
recent KKR study of hcp Gd [22].

Table 2. Calculated resistivities in hep Co due to a separate effect
of phonons, pﬁhu (for = 0.175 ap), and of spin fluctuations,

pjf# (for ¥ = 0.0457), and due to the simultaneous effect of

both scattering mechanisms, pﬁliff. The sum of both separate
contributions is shown by pff}; + pffu.

Pax (S cm) Pzz (€2 cm)
pPh 4.19 5.19
Ly
pSf 0.948 0.721
Lt
pPh~5f 7.20 8.06
i
5.14 591

h
Ph + P51,

Electron transport in random alloys (substitutional solid
solutions) is often dominated by scattering on impurities,
which raises a question about the anisotropy of the residual
resistivities in hep alloys and its possible relation to the spin
polarization. In this work, we chose three random hcp sys-
tems as case studies, namely, a binary CogsNi;s alloy, a ter-
nary CogsFegNig alloy, and a binary OssgRusq alloy. The first
one represents a stable phase of the binary Co—Ni system for
temperatures around room temperature [37], the second one
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Table 3. Calculated residual resistivities of random hcp alloys.
Alloy pex (€2 cm) pzz (u€ cm)
COgsNi]S FM 0.668 0.851
CogsNijs NM 12.0 9.53
C084F68Ni3 FM 1.91 2.18
C084F68Ni8 NM 11.6 8.95
085()RU5() 3.98 2.86

is a hypothetical alloy isoelectronic with pure Co, and the last
one is a stable phase at high temperatures [37]. The calculated
residual resistivities of these alloys, including the FM and NM
states of both Co-based systems, are presented in table 3. The
results witness that the resistivity anisotropy is qualitatively
the same as in pure elements Co, Ru, and Os (figure 1). This
finding proves that the particular scattering mechanism is less
relevant for the anisotropy of resistivities in hcp systems based
on late transition metals and that the most important factor is
the presence or absence of a spontaneous FM order.

4. Conclusions

Employing ab initio electronic structure calculations, we
have investigated electrical resistivities of hcp systems con-
taining Co, Ru, and Os, with particular attention paid to
the resistivity anisotropy. We have simulated electron scat-
tering on phonons, magnons, and impurities on equal footing
within the alloy analogy model and the coherent potential
approximation. The optional inclusion of spin polarization
and of spin—orbit interaction allows us to conclude that the
observed resistivity anisotropies in pure elements reflect the
strong itinerant ferromagnetism of Co and the absence of spin
polarization in Ru and Os, whereas other differences between
these elements (number of valence electrons, hexagonal c/a
ratio, strength of spin—orbit interaction) play only a minor
role. This conclusion is not confined to pure metals; the same
behavior can also be expected in random hcp alloys based on
late transition metals.
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