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Abstract

CrossMark

Based on the Bogoliubov-de Gennes equation, the quantum scattering problem through a
nodal-line Weyl semimetal based normal metal/superconductor heterojunction has been
theoretically studied. Since the crystallographic anisotropy in the material, two different
orientations between the crystalline axis and the superconducting interface have been
revealed. Considering a heterojunction with the interface paralleling to the basal plane, it is

found that Andreev reflection with k;, = \/m/B due to Klein-like scattering gives rise to a
perfect scattering. Deviation from the critical value, Andreev reflection falls down and normal
reflection goes up. While the interface is perpendicular to the basal plane, the pure intra-

mode retro-Andreev reflection (RAR) and inter-mode specular Andreev reflection (SAR) are
manifested at the normal incident. Moreover, the reflection coefficient exhibits the reentrant
behavior with the Fermi energy. Fundamentally, such features are a consequence of the torus-
like iso-energy surfaces of the nodal-line Weyl semimetals, which is in sharp contrast to the
case of conventional materials, graphene, and Weyl-point semimetals. Those novel scattering
processes also result in a distinctive tunneling conductance, such as the sub-gap nonmonotonic
features, the interface directional dependent zero bias conductances and the reentrant behavior,
which can be served as a smoking gun to distinguish the mode-resolved Andreev reflections in

experiments.
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1. Introduction

Topological materials, from the two dimensional quantum
spin hall material to three dimensional topological insulator
and three dimensional Weyl semimetal, have aroused great
interest in recent years [1-7]. Interestingly, different from the
topological insulator, the topological surface Fermi arc and
the bulk chiral anomaly effect make the Weyl semimetal a star
material to expand the potentiality of the novel topological
state. Weyl semimetal was first theoretically predicted by Wan
et al in a class of pyrochlore iridates (such as Y,Ir,O7) in the
year 2011 [8]. To get rid of the magnetic material, another
kind of the lattice inversion symmetry broken material has
been independently reported by two groups in 2015 [9, 10].
Following that, a lot of Weyl semimetal materials have been

1361-648X/20/185001+12$33.00

revealed by the angle-resolved photoemission spectroscopy,
such as, TaAs [11, 12], TaP [13, 14], NbAs [15], MoTe; [16,
17], and MosW,_,Te; [18, 19]. Very recently, the Weyl point
as well as the exotic Fermi arc has also been confirmed both
by experimental measurement and theoretical calculation in
the magnetic material YbMnBi, [20]. Moreover, although
the spinful topological nodal line has been proposed by the
first-principles calculation in HgCr,Ses [21] and TITaSe,
[22], the detailed angle-resolved photoemission spectroscopy
measurement shows that the Weyl nodal line which sur-
rounds the I" point can be realized in a single layer GdAg,
[23]. Those experimental results suggest that the Weyl semi-
metal can be made implemented in specific materials. Based
on the crossing of the conduction and the valence band in the
Brillouin zone, three dimensional Weyl semimetals can be

© 2020 IOP Publishing Ltd  Printed in the UK
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Figure 1. Interface parallel to the basal plane. Panel (a): schematic
diagram of scattering processes in the nodal-line Weyl semimetal
based NM/S heterojunction. Incident, reflected (NR and AR), and
transmitted waves near the interface are shown schematically by
the lines with arrows. Superconducting gap potential in S lead is
given as A. (b) Relative orientations of the interface and the iso-

energy surface of the NM lead. The iso-energy surface is defined
by(u+¢)* = (m— Bk//)2 + (ij)z. It is shown by torus in the
reciprocal space. The S lead is shown as a yellow parallelepiped.

Thus the basal plane (the x — y plane) in the NM lead parallels to
the NM /S interface.

into the Weyl-point semimetal and the nodal-line Weyl semi-
metal [7, 24]. In the former case, there are type-1 Weyl semi-
metal and type-II Weyl semimetal in which low energy band
shows linear characteristic in three-dimensional Brillouin
zone through a node termed a Weyl point. In the latter case,
the energy band crossing across the Brillouin zone winds into
a closed loop called a nodal line. Note that we term the plane
of the closed nodal line as the basal plane, as shown (the x —y
plane) in figures 1 and 2. In the reciprocal space, the energies
of the quasiparticles exhibit a distinctive anisotropy and hold
a torus-like isoenergy surface.

Although lots of angle-resolved photoemission spectr-
oscopy experiments have been launched in the past years,
the transport properties also play a key role in understanding
and applying the topological Weyl semimetals. Therefore, the
special property has induced a series of intriguing features
from both fundamental research and electronic applications
aspect [25-34]. In this respect, there have been a number of
studies which focus on the three dimensional Klein tunneling
in the topological Weyl semimetals addressed, such as, Klein
tunneling and magnetoresistance in p-n junctions [25], Klein
tunneling of Weyl fermions through a barrier potential with
and without the influence of magnetic fields [26, 27], and
chiral tunneling in the electrostatic potential gates [28-30].
Moreover, fundamental phenomena and promising applica-
tions in the Weyl semimetal based superconducting hetero-
junction have also been revealed, such as the specular Andreev
reflection (SAR) and the chirality blockade of Andreev
reflection (AR) in type-1 Weyl semimetal [31, 32], and most
recently, the double ARs in type-II Weyl semimetal [31, 32].

(a)

(b)

Figure 2. Interface perpendicular to the basal plane. Panel (a):
Schematic diagram of scattering processes in the present NM /S
heterojunction. Incident, reflected (AR and NR), and transmitted
waves near the interface are shown schematically by the lines with
arrows. Superconducting gap potential in S lead is given as A. (b)
Relative orientations of the interface and the iso-energy surface of
the NM lead. It is shown that the basal plane (the x — y plane) of
the torus-like iso-energy surface in NM lead is perpendicular to the
NM /S interface. We fix y axis to be normal to the interface.

In general, AR process denotes that an incident electron-like
quasipariticle is reflected back as a hole-like quasipariticle at
the superconducting interface, and a Cooper pair jumps into
the superconductor [35]. If the reflected hole-like quasipari-
ticle comes back with a same angle of the incident angle, we
term it as retro-Andreev reflection (RAR). In fact, the SAR
has been predicted in several setups, such as graphene based
superconducting heterojunction with and without the spin
orbit interaction and the conventional superconducting het-
erojunction [36—41]. Nonetheless, due to the charge carrier
scattering and the strong potential fluctuations in grapheme
and the negligible signal value in conventional semiconductor,
it is an extremely difficult work to experimentally detect the
SAR in graphene and in conventional semiconductor [41, 42].
Recently, a hallmark for the transition between the usual RAR
and the special SAR has been found in an unprecedentedly
clean bilayer graphene-based superconducting heterojunction
[43].

In general, the energy band structure near the Fermi energy
plays a key role on its transport properties of a material.
Therefore, we except that the nodal-line Weyl semimetal with
exotic energy band structure should provide a great opportu-
nity to reveal novel scattering features and detect the SAR.
This work is devoted to revealing those issues. Indeed, for
the superconducting interface parallel to the basal plane, it is
found that AR is perfect at k;; = \/m/B due to Klein-like
scattering. Deviating from the critical value, AR is suppressed
and normal reflection (NR) is enhanced. In contrast to gra-
phene, conventional semiconductor material, and Weyl-point

semimetal, there is an allowed angle interval around the limit
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value k;; = \/m/B. Beyond that, all incident electron-like
quasipariticles are reflected back completely. While for the
case of the superconducting interface perpendicular to the
basal plane, only one kind of the intra-mode RAR and the
inter-mode SAR is manifested at the normal incident. This is
dissimilar to the case of graphene and Weyl-point semimetal,
where the ARs are perfect [33, 34, 36]. Different from the
small incident mode, the scattering coeffcients exhibit non-
monotonic behavior as a function of the Fermi energy. In par-
ticular, they exist a perfect intra-mode RAR and a chirality
blockade of the intra-mode RAR [32]. For the oblique inci-
dence, an incident forbidden zone can be clearly seen from
the both modes. Note that the chirality blockade of the intra-
mode RAR has been destroyed by the nonzero z component
of the incident mode. The existence of those novel scattering
features can be elucidated by the complicated torus-like iso-
energy surface of the nodal-line semimetal. Moreover, the
characteristic features of the reflection coefficients can be
manifested in the corresponding tunneling conductances, so it
would offer the experimental measurable signals to diagnose
those novel scattering processes.

The rest of this paper is organized as follows. In the next
section, the model structures, the calculation methods and
the analytical derivative results of the scattering processes in
limit cases are introduced. The numerical results of the novel
intra-mode RAR and inter-mode SAR scattering processes in
the typical nodal-line Weyl semimetal based NM /S supercon-
ducting heterojunction are discussed in section 3. In section 4,
we give a short summary.

2. Theory and model

2.1. Interface parallel to basal plane

First a typical nodal-line Weyl semimetal based NM /S super-
conducting heterojunction with the interface paralleling to
the basal plane is assumed, as shown in figure 1. The growth
direction is taken along the z axis. The NM and the S occupy
z< 0 and z > 0, respectively. The superconducting poten-
tial is assumed as a s-wave pairing and taken in the form
A(z) = AB(z), where © (z) is the Heaviside step function
[36-41]. Since the electrical potential can be modulated
independently by the gate voltage or doping, we also set the
potential through the NM/S superconducting heterojunction

as U (7) = { 0, z<0, [36]. Since we assume that the trans-
Vs, 72 0.
versal width (in the x and y directions) extends to a big enough

value and the interface is a prefect flat, thus the momentum
components k, and k, are conserved in the quantum scattering
processes.

In a single particle picture, overlooking the disorder and
impurity, we employ the following Bogoliubov-de Gennes
equation to describe the quantum scattering processes through
the present NM /S superconducting heterojunction [36-41].

AlD) )\1/25\1/ (1)

(HO*N
p—Ho

A*(2)

where Hy(k) = (m — Bk} )ox + k.o, + U (2
onents spinor ¥ = Ugps

)r’ the four-comp-

”ki’vfl?i’_vfl?r) contains the

electron-like quasiparticles ((ru,;,r,ua) ) and the hole-like
quasiparticles ((v B Vot
with respect to i, oy, are the Pauli matrices, k= (ky, ky, k7) is

), € is the excitation energy

the three dimension single-particle momentum, k% ;= =k + kf
is parallel component of momentum, m can be regarded as the
rest mass, and 1/(2B) can be analogous to an inertial mass in
the x — y plane.

In NM lead (where A =0 and U = 0), overlooking the
parallel momentum component k //5 the wavefunctions can be
expressed in general form as

q;;i(z):<1 Enj_“;;/‘jv 0 0> eFikne
WhE () — (o 01 f;ai%)eﬂkzxz @)
//

where k¢ = \/(,u +e)’ —(m— Bk;/) and

Ve —(m—8&))
of the electron-like quasiparticles and the hole-like quasi-
particles, respectively. Note that, to describe a quasiparticle
impinging freely on the NM/S interface, the electron-like

h
kzN_

are the z direction momentums

quasiparticles’ wavefunctions must have purely real k¢, i.e.
(m—p—e)/B< (ky) < (m+pu+e)/B.
Similarly, the spinor wavefunctions in S can be given by

o) = B FwE (K F(Vs—e—m)) ) ik
U5 (2) = (1 wE T, T Ete CaTIRTeR )eikﬂ
Ui (g) = (1 wE T, - B, Fwi (kAhs:Fws e H)))e:tikf_‘sz

3

A?)(Vs = p)’

where kesf\/(st — (m— B3 )27A2+52+2 (2 —

and kg:\/(vrp) —(m— B — A2+ 22 = 2y/(2 - A)(Vs — )’

are the z direction momentums of the electron-like quasipar-
ticles and the hole-like quasiparticles in S. The factors in the

(m—BK, )+Ats +(key £ (Vs+p))?
2(Bk ,—m) (Vs—p) ’

wavefunctions are glven as, wi

L= Wt/ @AW
. =

(m—BI, ) +Ata + (K (V)

AWVs—n) Wh = 208K, —m) (Vs—p1) i
e(Vs—p) \/(52 A?)(Vs—p)?

and I, = A=) Since the momentum

components kyy and k,y are conserved, the factor efkwx+ikwy
in the wavefunctions in NM lead and S lead is omitted for
brevity.

To solve the scattering properties in the nodal-line Weyl
semimetal based NM/S (shown as figure 1), we suppose an
electron-like quasiparticle with energy ¢ is incident from the
left NM lead. Thus the wavefunctions in the present hetero-
junction are

{\IJN:‘IJZ;—Fr\I/*—i—rA\I’?;{, <0 @)
U = 108 + 1V, z>0

where r and rp are the amplitudes of normal reflection (NR)
and AR in NM lead, respectively, and ¢, and ¢#, are the trans-
mission amplitudes of the electron-like quasiparticle and hole-
like quasiparticle in S lead. Note that, the evanescent wave



J. Phys.: Condens. Matter 32 (2020) 185001

C BaiandY Yang

functions of the AR hole in NM lead should be taken into
account to guarantee the conservation of probabilistic current.

To obtain the amplitudes in equation (4), we match the
wavefunctions in NM lead and S lead at the interface by the
continuity boundary condition Wy (0) = ¥ (0). By solving
the boundary condition, the expression for » and ra can be
obtained.

Based on the reflection amplitudes and the Blonder—
Tinkham—Klapwijk theory, the zero temperature differential
conductance of the nodal-line Weyl semimetal based NM /S
can be given by the following formula [36—41, 44],

G(e) = Go/(1 — [P+ |ral?)dky, (5)

where Go = €28/(h(2n)’) is the ballistic conductance of
metallic nodal-line Weyl semimetal, S is the area of the junc-
tion in the x — y plane. Combining equations (4) and (5), the
zero temperature tunneling conductances in the nodal-line
Weyl semimetal based NM/S can be investigated extensively
and easily by the numerical calculations.

2.2. Interface perpendicular to basal plane

Next a nodal-line Weyl semimetal based NM/S supercon-
ducting heterojunction with the interface perpendicular to the
basal plane is assumed, as shown in figure 2. The growth direc-
tion is taken along the y axis. The NM and the S occupy y < 0
and y > 0, respectively. A s-wave pairing superconducting
potential is assumed and given as A (y) = AO(y) [36-41].
The electrical potential energy through the NM/S supercon—
. T 0,
ducting heterojunction is set as [(y) = {Vs > 0 > [36].
Since we assume that the transversal width is (1n the x and

z directions) big enough and the interface is ideally flat, the
momentum components k, and k, are conserved in the present
quantum scattering processes.

Similar to the above part A, the wavefunctions in the pre-
sent heterojunction can also be given by solving the equation.
Similar to the equation (1). In NM lead (where A =0 and
U = 0), overlooking the conserved momentum k,y and k,y,
the wavefunctions can be expressed in general form as

ot m—Bk), +ikey?
Wk, () = (1 T O o) Ay
ht m—BK, £k Py
Ui () = (0 01 kZ‘V“)—vS—sw) ©®)

where kel(2) \/B (m BkﬁN () (p+e— Vs)2 ,kZZN) and

ki = \/ 3 (m— Bl — (1) (=== Vs — Ry
the y direction momentum of the electron-like quasiparti-

are

cles and the hole-like quasiparticles, respectively. Note that,

e,h1(2)

there are two different modes kyy " corresponding to a set

of constant parameters (kyy, kv, i, € and V). Indeed, for a
certain energy €, which lies above or below the nodal-line,
there are two allowed bands for the electrons, corresponding
respectively to two different modes. The iso-energy surface

of the electron-like quasiparticle gives rise to two concentric
Fermi discs. The radii of Fermi discs are given as kf}\, (the
small one) and k (the big one). Meanwhile, the iso-energy
surface of the hole like quasiparticle leads to two concentric
radius k;’,{, (the small one) and k;’,%, (the big one). Therefore,
an incident electron-like quasiparticle can be scattered by the
superconducting potential into four possible modes (two NR
modes k ® and two AR modes k
Followmg a standard procedure [19], the probability cur-
rent of those reflection modes can be calculated directly.
Specially, the modes ky‘f}v, —k;fv, —kﬁ'},, and k;’,%, correspond to
the probability current, j, > 0, while the modes —k;}v, k§12v’
k;‘]{, and —kff,%, correspond to the probability current, j, < 0.

)) as shown in figure 2.

Note that, for an incident electron-like quasiparticle with kflz\,
(—ksy), the reflected hole-like quasiparticle with k% (—kJi\)
and —kly (k!%) corresponds to the intra-mode RAR and the
inter-mode SAR, respectively. To achieve a purely real mode

k;}vm of the incident electron-like quasiparticle, we must

set(m — Bk2y) > \/(u +e—Vs)’ — k4. Otherwise, the
value of kf}\, is imaginary, and the incident mode corresponds
to a disappearing k%y,.

Similarly, the spinor wavefunctions in S lead can be given
by

B(m)—<+>q<k;;“>+vs+afm>) Sy

et 1(2)
lI151(2)( ) (1 We FSe AX, (Vs—)
\Ijhj:

sip)0) = <1 w,? Ty,

B(T(2) *(Jr)q(k:;(z) +Vste—p)) e:tik;';(z)y
AXh(Vs—p)
(7

—K2 4+ 2_A2)4+ Vs— 7\’
_kaJr%_(Jr)\/ WHVEEI T g

2 m \/*kaJr(\/ (e2=A2)—y/ Vs—?)
—kiy+ 5 — (+) 5

are the y direction momentum of the electron-like quasipar-

where k;;@) -

n(2)
kyS =

ticles and the hole-like quasiparticles in S. The factors in the

wavefunctions are given as, wl(z) = —(+)B(‘I+B(VS+“ My +Vs—p))

Xe(Vs—p)
I, — W= u)ﬂ/W = ()Mt Vo)
Iy = Ly, X, —BZV Ryt (SEE + Vs )
Xy = BZ\/ 2y + (VT =) - (Vs — ) Tiy = —(+)B(=A>+
Tip) = ( ) (=A% + ¢ zN+Vs+6— 1)) (Vs — p), and
q :B\/( — A?)(Vs — p)*. Since the momentum comp-

onents kg and kpy are conserved, the factor e®wtikaz jp
the wavefunctions in NM lead and S lead is also omitted for
brevity.

For solving the scattering properties in the present NM /S
(shown as figure 2), we suppose an electron-like quasiparticle
with energy € is incident from the left NM lead. Thus the
wavefunctions in the different leads are

{‘I’N = U (W) +n (’I)‘I’ffl " r(r) ¥y, + ’Al(’Al)‘I’thr ()N, y <0
T = 15, (55) V5T + 16:(1) VT + 14, (1) Ty + o () T, Y>(§)

where r (7)) and r, (7,) are the amplitudes of the NRs in NM,
respectively, 741 (Fa2) and rap (742) are the amplitudes of the
ARs in NM, respectively, and #5; (7)), 5, (#5,), %, (74)), and
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th, (#i,) are the amplitudes in S, respectively. Note that, the
evanescent wavefunctions of the AR hole and NR electron in
NM lead should be taken into account to guarantee the con-
servation of probabilistic current.

To obtain the amplitudes in equation (8), we require the con-
tinuity of the wavefunctions and its y-derivative at the inter-
face by the continuity boundary condition ¥y (0) = ¥ (0)
and ¥} (0) = ¥% (0). By solving the boundary condition,
we can obtain the expressions for r((7y), r; (72), ra1 (F42) and
ra2 (Fa2). By the tedious calculation and deduction, we can
obtain those general expressions in a very complicated form.
However, in some limit cases, we can achieve some simple
expressions.

Specially, specific formulas for the AR and the NR coef-
ficients can be given in the limit kv = O and k,y = 0, when
the incident electron momentum lies in y axis. Note that, in
this manner, Hamiltonian H, in equation (1) decouples into
two copies of a scalar non-relativistic Hamiltonian. Thus a
k;lzv mode electron can not be scattered into a k;}v mode since
ke and k¢ belong to different sectors in Ho. It means that
these two modes decouple with each other. Similarly, for the
hole-like quaiparticles with the modes k3, and Ky, they also
decouple with each other. However, the modes k%, and k/jy, can
be coupled to the modes k;’}z\, or k;}\, by the superconducting
pair potential A(x). That is to say, a k% (k) mode incident
electron can only convert into the two allowed k!, or k!, mode
hole in the Andreev reflection process at the superconducting
interface. In fact, at k,y = 0, a RAR hole can be only allowed
in the same mode as its incident wave mode, so the mode
remains unchanged and undisturbed. A SAR hole, in contrast,
does allow the mode opposite to its incident wave mode. Note
that, the modes kjjzv kj}v, kf,%, and kfv‘]{, would couple with each
other by a nonzero k,y. Consequently, the inter-mode scat-
tering processes in the AR and the NR can take place at the
present superconducting junction.

Note that we only focus on the kg, = \/"HEtm
incident in the limit ko =0 and ky =0 at here. By

the calculation in Appendix, we first obtain the expres-
sions for the RAR (i > ¢€) and the NR. Specifically, for

a k;}zv = \/W incident, we can get r; =0, r4 =0,
raa =—A6(n+K)/2QN + (6 + N)(n+ &) + Q20K — (A = 0)(n — K)))
and r, =\/1—(rp)*> . wheren = +/m+ | — Vs[ - Q,
K=y/m+|p—Vs| + QA= /m+e—p,d=/m+e+pu,

and Q = V/eZ — AZ While for a k¢ = /=5t
the results can be given in a similar manner and in the converse

incident,

order. As a result, the values of r, (r;) and ra» (ra)) equate
to zero for the k;}v (k;lzv) mode incident, while r (r2) and r4;
(ra2) are allowed as a function of €, u, A, and V. In the limit
uw=Vs/2 with £, A < m, Vs, we can obtain that rap = —i
and r, = O for the k;,zv mode incident. Moreover, r4, has a first
order pole at u =Vj. Clearly, the RAR is perfect (r4» = 1 and

r, = 0) at u = Vs/2 and reaches its singularity (r4, reaches to
a minimum value and r, inversely) at p = V.

While for the SAR case (1 < ¢€), the things become much
intriguing. For a kf}v =/ W incident, we can getr; = 0,
140 =0, 1y = A8 (0 + K)/(mQ+ (2 + 8 (f + &) + Q's'), and

rmn=1v1- (r;)z, wheren = vVm+ Vs —Q, k' = Vm+ Vs +Q,

O =+vm+e, and Q=+e2—-A2 In the case of
kf}v = w, the results can be given in a converse order

similar to the case of the RAR. It is clear to see that the SAR is
an inter-mode exchanging process, a kf}v (k;,z\,) mode electron

converts into a k"2 (k1) mode hole). In the limit 1 = 0 with
NN i24/m(m+Vy)

e,A <m, Vs, we can obtain that ryy = — =% s and
= 2mVTSVSf0rthe k;lz\, modeincident. Note that the perfect SAR

can be obtained (r4; = 1 and r, = 0) at Vg = 0. The results
are plotted in figure 3 for the two opposite regimes 1 > € and
1 < €. Physically, the inter-mode exchanging feature can be
elucidated by the mode in the normal metal lead. In general, the

AR mode isk;’f,’l =/ w. For the RAR, p > ¢,

thus K2 = /™% 429 and ki = m—(=5) " On the other
hand, i < &, the SAR mode can be given as kfj{, =4/ W
and kI = 4/ m==e) Yt is clearly shown that the AR hole
exhibits an inter-mode exchanging. Therefore, in contrast to

the intra-mode RAR, the SAR is an inter-mode scattering
process.

In the case where k,y is finite, the AR and the NR coef-
ficients exhibit a richer structure at both those limit cases.
We focus again on the case of the incidence of k;’}v and k;’,z\,
modes. The dependence of the AR and the NR coefficients on
the Fermi energy and the incident energy can be calculated by
using equation (1). Note that Hamiltonian Hj in equation (1)
couples the two modes with each other with a nonzero k..
Thus those two modes can scatter into each other, no matter
which type of quasiparticles, the NR electron and the AR hole.
It means that the inter-mode and intra-mode scattering pro-
cesses in the AR and the NR are allowed at the present case.
The results of the calculations are shown in figure 6, where the
AR and the NR coefficients are plotted as functions of ¢ for
different parameter values.

By using the reflection amplitudes, the zero temperature
differential conductance of the present NM /S heterojunction
can also be given by the following formula [36—41, 44],

G(e) = Gy {/ (1= |r > = + [ra| + [rae]?) dkeydkey

+ / (1= R = 2P + o P+ [Pl o |
©)

Combining equations (8) and (9), the zero temperature tun-
neling conductance in the present NM/S heterojunction can
also be investigated extensively and easily by the numerical
calculations.
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Figure 3. NR and AR coefficients as a function of the transverse momentum &, for different values of Fermi energy 1 (a) and incident
energy € (b). In (a) and (b), the constant parameters are /A = 1072 and p /m = 0.5, respectively. The dashed lines and the solid lines
correspond to NR and AR, respectively. The different parameters are shown in the figure.

3. Results and discussion

3.1 Interface parallel to basal plane

We first give the numerical results of the reflection coefficients
for the NR electron and the AR hole, as shown in figure 3.
The dependence of the reflection coefficients on the transverse
momentum k,, is calculated by equation (4). The results for
several Fermi energies p are shown in figure 3(a). The same
dependence for different incident energies € is presented in
figure 3(b). The parameters used in the calculation throughout
the study are Vs/m = 2.5, Bm = 1,and A/m = 1073,

It is shown that, in contrast to conventional materials and
the other topological materials [32, 33, 3641, 44], the reflec-
tion coefficients for the AR hole only have a nonzero value for
a special interval of the transverse momentum k. Intuitively,
we can get a first glance from figure 1(b) that there is only
the special incident angle allowed for impending on the inter-
face. In fact, the allowed interval for NR can be obtained
in (Im—p—e)/B< (/’cg\,)2 < (m+p+e)/B. Since the
momentumk?y ofanincidentelectron-likequasiparticleisoutside
the constraint (m — pt — €)/B < (kg,\,)2 < (m+ p+¢€)/B, the
incident wavefunction becomes an evanescent wave, thereby, it
can not transmit through the heterojunction, (i.e. it is reflected
back completely r = 1). Since the difference of the momentum
of NR and AR, the allowed interval of the transverse momentum
k;, is also different. While for AR, the allowed interval for NR
canbe obtainedin (m — u +¢)/B < (ij)2 <(m+p—e)/B.
Beyond this interval, the AR vanishes (ra = 0) and then a total
NR (r = 1) appears. Clearly, from the constraint, we can
see that the allowed interval at a fixed incident energy ¢
shrinks with the decrease of the Fermi energy u, as shown in
figure 3(a). Note that, the allowed interval shrinks from both

sides to the value k,, = 1. It is particularly important to point
that the allowed interval around k,, = 1 always survives no
matter how small the Fermi energy p is. Although the general
expression is very complicated, we can give some expressions
under some special conditions. For € = A, the amplitude ra
for AR (the electron-like quasiparticle converts into the hole-
like quasiparticle) is
(n+A) = (m—BK))’
A =
2A — sign(p — 6)\/(/1 — AP —(m— Bk;/)2 + \/(,U. + AP = (m— Bki/)

i

while the amplitude » for NR (the electron-like quasiparticle
reflects back as the electron-like quasiparticle) is

sign(p — 5)\/(,u — A —(m— Bki/)2 + \/(/L + A — (m— Bk;/)2 —2A

22— sign(p — )/ (1 — &) — (m — B2 )’ + [ + A — (m— BR3 )

Note that the two regimes of large Fermi energy ;o > ¢ and
small Fermi energy p < € correspond to the RAR and the
SAR, respectively. At k;; = \/m/B, we readily find ry = 1
for r = 0 (no matter the RAR or the SAR), so the conver-
sion between the electron-like quasiparticle and the hole-like
quasiparticle occurs with unit probability, as shown in figure 3.
This feature is completely different from conventional super-
conducting heterojunctions, where AR is suppressed if the
Fermi wave modes are different across the interface [44]. The
perfect AR is a consequence of the Klein-like scattering [30].
Similar phenomenon has also been reported in graphene: the
electron-like quasiparticle normally incident on a supercon-
ducting interface can convert into the electron-like quasipar-
ticle perfectly without reflection [45].

Another intriguing thing is the perfect AR (rp = 1) at
k;, = 1. This is completely different from that in conversion
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Figure 4. Angularly averaged tunneling conductances for the NM /S heterojunction as a function of the incident energy ¢ for different
values of Fermi energy p. (a) and (b) denote the cases of y >> A and y < A, respectively. The Fermi energies are shown in the figure.

materials, where AR is always suppressed at any angle of inci-
dence if the Fermi surface mismatchis present [44]. Meanwhile,
the feature is also different from that in graphene and Weyl-
point semimetals, where the perfect AR happens only at
normal incidence [32, 33, 36—41]. This indicates that the AR
in the material can be served as a characteristic feature to
detect the unique torus-like energy dispersion. Essentially, the
perfect AR has a close relationship with the Klein tunneling
effect as stated above.

Similar to figure 3(a), the transverse momentum k;,
dependence of the reflection coefficients for different incident
energy € with u/m = 0.5 is shown in figure 3(b). It can be
seen that the AR coefficients increase with the increase of €
at the allowed interval. For certain parameter value € = A the
AR is perfect for all allowed angle of incidence. Consequently,
it will give a tunneling conductance maximum at € = A, as is
also well known in the existing junctions [31-40]. The novel
aspect of the present heterojunction comes from the fact
that the regime of the Fermi energy u is comparable to A:
1 ~ A. In theory, the width of the allowed interval of trans-
verse momentum k,, will change with each variety of incident
energy €. In general, the change is not significant when the
value of the Fermi energy p is large. However, at the special
case of 1 = ¢, the allowed interval shuts down which means
that there is no mode allowed. Thus there is no AR for the
special case of y = ¢ and the tunneling conductance van-
ishes identically. Therefore, for p > €, the allowed interval
increases with the increase of ¢, while the situation is on the
contrary for g < €. In particular, in contrast to conventional
RAR in pz > ¢, the AR in i1 < € is SAR as reported earlier in
[36, 39, 40].

The property of the reflection coefficients directly leads
to the fact that angularly averaged tunneling conductances
are related to the structure parameters of the NM/S het-
erojunction. Thereby, the subgap incident energy and the
Fermi energy play an important role in the subgap angularly

averaged tunneling conductances. In figures 4(a) and (b), we
plot the angularly averaged conductances of the NM/S het-
erojunction as a function of the subgap incident energy with
large Fermi energy p > A and small Fermi energy u < A,
respectively. Solid lines, dashed lines, and dashed-dotted lines
correspond to the cases with various Fermi energies of the
heterojunction. From figure 4, we can find three noteworthy
features. First, the subgap tunneling conductance for the
large Fermi energy decreases with the decrease of the Fermi
energy, as shown in figure 4(a). The tunneling conductance
reaches a maximum value 2G at the gap edge ¢ = A, which
is similar to the usual case of a NM /S heterojunction (It has a
singularity at ¢ = A independent of Fermi surface mismatch.)
[32-34, 36, 37, 44]. Second, the subgap tunneling conduct-
ance for a small Fermi energy vanishes at € = p, as similar
as the case in the graphene NM /S heterojunction [36]. Below
the singularity € < p, the subgap tunneling conductance
stems from the RAR. While above the singularity € > p, the
subgap tunneling conductance mainly comes from the SAR.
Therefore, the characteristic suppression of the subgap tun-
neling conductance curves in figure 4(b) can be regarded
as a unique observable signature for the transition from the
intra-band RAR to the inter-band SAR. Third, the zero bias
tunneling conductance decreases with the increase of Fermi
energy. In the limit Er — 0, one has G/Gy — 3/2. It is
sharply different from the case of a graphene NM /S hetero-
junction where the zero bias tunneling conductance is close to
4/3 independent of the Fermi energy [36]. It is also dissimilar
to the case of the Weyl-point semimetal where the zero bias
tunneling conductance always equates to 2 [33, 34]. Due to
the charge carrier scattering and the strong potential fluctua-
tions in two dimensional graphene [41, 42], it is difficult to
experimentally detect the SAR around the charge neutrality
point. With the experimental technology advancement in three
dimensional nodal-line Weyl semimetals, it maybe gives a
new route to detect the SAR in the coming years.
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Figure 5. NR and AR coefficients for the present NM /S heterojunction as a function of the Fermi energy p with kyy = 0 and kv = 0.
(a) and (b) denote the reflection coefficients for an incident electron with fk;;\l, and k;}\z,, respectively. The NR and AR coefficients are
marked in the figure.
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Figure 6. NR and AR coefficients for the present NM /S heterojunction as a function of the Fermi energy u with kyy = 0 and k_y # 0.
(a) and (b) Denote the reflection coefficients with a large k,y for an incident electron with —k;}é and k;}g, respectively. (c) and (d) Denote the
reflection coefficients with a small &,y for the modes —k;;\} and k;ﬁ, respectively. The NR and AR coefficients are marked in the figure.
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3.2. Interface perpendicular to basal plane

In contrast to the case parallel to the basal plane (transport along
the z axis), an incident electron (transporting along the y axis)
can be scattered by the superconducting interface (perpend-
icularing to the basal plane) into four allowed modes, such
as, k;;&, k;;%, k;f;\%, and k;l,’\%, as shown in figure 2(a). Figures 5
and 6 show the reflection coefficients for the nodal-line Weyl
semimetal based NM /S superconducting heterojunction with
the interface perpendicularing to the basal plane. Note that,
non-zero kyy can be regarded as the renormalization of param-
eter m. Therefore, only the case in the limit kv = 0 will be
discussed in this study. First, the AR and the NR coefficients
are given in the limit kv = 0 and k,y = 0 in figure 5. It is
evident that, the inter-mode NR of k;]\% always equates to zero
for the kf,\} mode incident case, as shown in figure 5(a). When
the Fermi energy p is beyond m, the quantities kal, become
imaginary. Consequently, all four scattering modes shut down.
Below the critical value u/m = 1, the scattering of the inci-
dent wave with k;,\} to the intra-mode NR wave with k;;\}, the
intra-mode RAR wave k;’;\%, and the inter-mode SAR wave k;‘,\}
may be significant. For p1 < €, the conversion from the inci-
dent electron-like quasiparticle into the hole-like quasiparticle
is purely by the inter-mode SAR with k;’,\} Nevertheless, for
kfﬁ , it only comes form the intra-mode RAR. This feature is
similar to type-II Weyl semimetal, but the perfect AR pro-
cess at the normal incident [33, 34]. As the Fermi energy p
increases, the intra-mode RAR falls down and the intra-mode
NR goes up. At allowed interval edge 11/m = 1, they reaches
zero and one, respectively.

In figure 5(b), we plot the results for the k;,é mode incident
case. Essentially, with the increase of the Fermi energy, both
the intra-mode RAR with kfﬁ and the inter-mode SAR with
kj’]\} all occur. To see it more clearly, we plot the NR and the
AR coefficients as a function of ratio p/e, as shown in the
inset of figure 5(b). It clearly reveals the evolution of inter-
mode and intra-mode AR scattering processes. Except the
similarities as the results in figure 5(a), they also exhibit some
remarkable different features. First, unlike the incident mode
k;;\}, the incident mode k;]\z, has no confinement on the Fermi
energy. Second, the intra-mode RAR gets a great suppres-
sion at u = Vg, i.e. Ry = |r2|2 =1land Ry = \rA2\2 = 0. The
reduced Hamiltonian with kv = 0 and k,y = 0, is essentially
the one studied in [32] without a Zeeman field and a pseudos-
calar pair potential. This elucidates why the chirality blockade
is exhibited in the limit case in a nodal-line Weyl semimetal.
Therefore, it can be found that the intra-mode RAR exhibits
a reentrant feature with the Fermi energy. However, it gives
a perfect asymptotic scattering value Rpy = |rA2|2 =1lasa
function of the Fermi energy. Those results indicate that the
inter-mode and the intra-mode scattering process are essen-
tial in SAR and RAR, respectively. Essentially speaking,
those scattering processes are novel and purely relative to AR
process. Those results are identical to the analytical solution
given in the part B of section 2.

For a finite k,y, the NR and AR coefficients as a function
of the Fermi energy p are shown in figure 6. Clearly, due to
the coupling of the modes k&, k%y, ki3, and k!, by a nonzero
k.y, all modes scattering processes (the inter-mode and the
intra-mode) in AR and NR can take place. We first focus
on the large kv case. In the high Fermi energy regime, the
results exhibit few changes. While in the low Fermi energy
regime, the results change a lot. First, there is a scattering gap
oyt = kgy for both incident modes (k& and k¢y). To see this
effect more clearly, we give an enlarged figure in figure 6(b).
Second, under this regime, the inter-mode NR scattering
becomes significant, which is similar to the case of a potential
barrier [44]. It rules out of the intra-mode NR scattering, if
[+ € is close to ky: in this limit Ry = |r,|* = 1 for k;}v and
R, = |r1|2 =1 for k;lzv when p + & — kg, as shown in fig-
ures 6(a) and (b). Furthermore, note that, unlike the k,y = 0
case, the intra-mode AR scattering process for the kye,z\, incident
mode gives rise to a sharp dip structure and completely shuts
down at p = Vs/2 — k,y. While the perfect intra-mode NR
scattering process at i = Vg in the limit k,y = 0 case has been
removed by the finite k,y. In fact, the pole of the reentrant
structure also exhibits an energy shift (about k,y) to the lower
energy direction.

Next we turn to the small k,y case. Figures 6(c) and (d)
are, in some respects, similar to the case of k,y = 0, such as,
the inter-mode SAR dominating for 1 < € and the intra-mode
RAR dominating for i > € as shown in the inset of figure 5(b).
However, there are some important differences. In such a situ-
ation a AR gap about 2k,y occurs. In the gap, the ARs with
the imaginary modes are prohibited and the intra-mode NR
scattering process dominates. To fulfill the probability current
conservation, there is also a slight inter-mode NR scattering
process. Besides, the ARs and NRs coefficients have a notable
change with the increase of the Fermi energy u. Therefore, the
novel features will also give definitive signatures for detecting
the inter-mode SAR and the intra-mode RAR in the tunneling
conductance.

The property of the reflection coefficients directly leads to
the fact that the tunneling conductances are closely related to
the incident energy € and the Fermi energy p. In figures 7(a)—
(d) we plot the tunneling conductances of the present NM /S
heterojunction as a function of the incident energy € with dif-
ferent Fermi energy . For a large Fermi energy p, it can be
seen that the tunneling conductance of the mode —k;;\} exhibits
a clear nonmonotonic effect with the Fermi energy. The reason
is that the allowed the intra-mode NR and the intra-mode
RAR show nonmonotonic features with the Fermi energy p,
as shown in figure 6(a). Beyond the limit case u/m = 1, the
incident wave almost vanishes (except some special incident
angles) and gives rise to a nearly zero tunneling conductance.
While for the mode kf]\z, the tunneling conductance becomes
more intriguing. Clearly, the reflection coefficients have two
reentrant structures (around p = Vs/2 and p = V) as a func-
tion of the Fermi energy p. Therefore, the tunneling conduct-
ance will exhibit different features as a function of the incident

energy ¢ at different energy intervals. For example, comparing
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Figure 7. Tunneling conductances of the present NM /S heterojunction as a function of the incident energy € with kv = 0 and kv # 0. (a)

and (c) Correspond to the tunneling conductances with a large 1 for an incident electron with fk;}\i and k;;&, respectively. (b) an (d) Denotes

the tunneling conductances with a small y for the mode —ki}\l,

to the case of the mode —k;;\l,, the reflection coefficients have
a larger change between the case of normal incident and
oblique incident. Therefore, the tunneling conductance shows
a complex feature in the energy regime [0, Vs/2], as shown in
figure 7(c). However, in [Vs/2,Vg], the reflection coefficients
all monotonically vary with the Fermi energy (no matter
normal incident or oblique incident), as shown in figures 5(b)
and 6(b). As a result, the tunneling conductance shows a clear
reentrant behavior with the fixed Fermi energy p in the super-
conducting gap regime (¢ < A). Those features can be under-
stood by the reflection coefficients revealed in figures 5 and 6.

For a small Fermi energy p, the mode —k;}\l, is comparable
to the mode k;Az, Therefore, the tunneling conductances of the
modes —k;;\l, and k;,& exhibit the similar features with the dif-
ferent Fermi energies. The results of the modes —k;,\], and kf,%
have been given in figures 7(b) and (d), respectively. Similar
to the case in graphene and the part A in Sec. III, the tun-
neling conductances give a clear conversion effect from the
SAR to the RAR [36, 45]. Essentially, with the increase of
the incident energy €, the RAR occurs and suppresses. As a
result, the tunneling conductance steming from the RAR can
be suppressed by the incident energy . The hallmark of the

10

and k;ﬁ, respectively. The different parameters are shown in the figure.

zero tunneling conductance is a characteristic behavior for
the conversion of the RAR and the SAR. When the incident
energy ¢ is bigger than the Fermi energy p, the tunneling con-
ductance steming from the SAR grows up again. Overall, by
tuning the strength of the incident energy ¢, the tunneling con-
ductances with a small Fermi energy p are dramatically tuned.
Therefore it would give an indisputable experimental signa-
ture for detecting the SAR. Besides, the zero bias tunneling
conductance of —k;;\l, mode has a larger damping slope with
the decrease of Fermi energy p than that of the k;]\z, mode. In
the limit © — 0, one has G/Gy — 0 and G/Gy — 1.0 for the
cases of the modes —k;;& and k;;a, respectively. Those are also
sharply distinct from the case of the graphene and the other
Weyl semimetal NM /S heterojunction [33, 34, 36].

4. Conclusions

In summary, we have theoretically investigated the scattering
processes of the nodal-line semimetals based NM /S spercon-
ducting heterojunction based on the BDG equation. For the
case of the interface parallel to the basal plane, it is shown that
AR s perfect at k;, = y/m/B due to the Klein-like scattering.
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Such perfect AR is different from the case of graphene and
Weyl-point semimetals, where it occurs only at the normal
incidence. It is also different from the case in the convertional
materials, where no perfect AR exists as long as the Fermi
surface mismatch is present. While at other incident angle,
the AR is suppressed by the Fermi energy p. However, it is
strengthened by the incident energy € and achieves the perfect
AR for all the allowed angles at the sperconducting gap edge.

In the case of the interface perpendicular to the basal plane,
the pure intra-mode RAR and inter-mode SAR have been
revealed at the normal incident. For different incident modes,
the reflection coefficients exhibit the different features with
the Fermi energy. For one mode, an allowed energy interval
exists. Beyond the critical energy, this mode is completely
reflected back by the intra-mode NR. While for the other
mode, the reflection coefficient exhibits the reentrant behavior
with the Fermi energy and saturates at a perfect intra-mode
RAR. For an oblique incidence, the reflection coefficient adds
another reentrant structure and the whole reentrant structures
shift toward the low energy. Basically, those features stem
from the torus-like isoenergy surfaces of the nodal-line semi-
metal, which is in sharp contrast to the case of conventional
material, graphene, and Weyl-point semimetals. Those novel
scattering processes also give rise to a distinctive tunneling
conductance, which can be served as the definitive signature to
distinguish the mode-resolved scattering processes in experi-
ments. In particular, a characteristic suppression feature of the
tunneling conductance is observed by modulating the incident
energy € with a small Fermi energy p. Such robust feature can
be served as a hallmark for the transition between the RAR

and the SAR. With the advance in experimental technology
in the nodal-line semimetal, we thus expect that the revealed
features should be observable in the near future.

In addition, we would like to point out that an ideal
interface of the superconducting heterojunction is mainly
focused in the present study. From the experimental point
of view, the interface barrier does exist at the interface. For
the case of an interface parallel to the basal plane, the results
are slightly affected by the interface barrier because of the
Klein tunneling and the magic angles tunneling. When the
interface is perpendicular to the basal plane, the Klein tun-
neling is forbidden [30]. It thus is very amusing to extend the
present ideal interface to the real interface cases where an
interface barrier is formed. A study in this direction is now
in progress.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grant No. 11504005, 61675175, and
11874317). CB also acknowledges partial support by Nanhu
Scholars Program for Young Scholars of XYNU.

Appendix. The amplitudes for perpendicular case
at the limit case

Solving equation (1) in the limit k&, = 0 and k, = 0, we can
obtain the wavefunctions in the normal lead and supercon-
ducting lead as following,
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0 0 1 -1
1 1
1 o -1 .
V) = | eovemar | Y W) = | cear | e,
A A
e\/oa e\Jo_A?
A - a
1 1
h ! +ik!~ h - ikt
\IJS_(y) = e++/e2—A? e Wy Y and \IIS+( ): et+4/e2—A2 e ISvy_
A - A
etyvel-A? e+4/e2— A2
A -

1



J. Phys.: Condens. Matter 32 (2020) 185001

C BaiandY Yang

In the above wavefunction, the wavevectors can be

; ex _[mE(et+p) ht _ | [mE(p—e)sign(p—e¢)
given as ky =g, ky =\ —r—p—r—,

B
K = \/mi(\/fz—fﬂu—Vsl)’ and K = \/mi(m—vs\—\/é—m

Similar to the above boundary conditions in the text, we
match the wavefunctions and its y-derivative at y = 0, i.e.
U (0) = TR (0) and ¥| (0) = P (0). Solving the boundary
conditions one obtains the expression for the AR of a

ket = /™R incident.

y
For the RAR case (1 > ¢€), we can get r~ =0, ry, =0,

ri = —As(n+ K)/(2QM + (8 + N (n + k) + Q20K — (X = 8)(n — K)))
and 7T =14/1— (r+)2, where 7= /m+ |u—Vs| —Q,
K=+/m+|u—Vs|+ QA= m+¥te—pd=+m+tetpu,
and Q = ve2 — A2,

For the SAR case (i <€), we can get r— =0, rgL =0,
ry = =AY + &)/ (mQU+e(Q+ 8 (0 +£")) + Qn'k’), and
rt =1 - ()’ Wherer/ = Vim+ Vs — 0, &' = Vm+ Vs + 0,
) =+/m+e,and Q = Ve2 — A2,
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