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1.  Introduction

Carbon materials are ubiquitous, ranging from living organ-
isms to contemporary high technology devices. Pure carbon 
forms have fascinated humanity for ages, starting with dia-
monds and culminating in the last decades with nanoscale 
structures like graphene, fullerenes and nanotubes. These 
nanostructures have attracted enormous attention lately due 
to their unusual physical properties which, not only provide 
a thrilling laboratory for fundamental physics, but also lead 
to important technological applications. In particular, carbon 
nanotubes applications range from water treatment, to com-
posite materials with special thermal or mechanical proper-
ties, and to electronics, among others. For a recent review 
of the latter, see [1]. Nanomechanical applications have also 
been contemplated. For example nanomotors made of Carbon 
nanotubes and diamond needles have been proposed, see 

e.g. [2]. The rotation frequency in these devices may reach 
values as large as 1–100 GHz. Also, nano-turbines composed 
of carbon nanotubes and graphene nanoblades have been 
designed [3]. Other aspects and applications involving rota-
tion in nanosystems have also been investigated. Narendar and 
Gopalakrishnan [4], for instance, deals with wave propagation 
in a rotating nanotube and in [5], it was investigated the vibra-
tional behaviour of a rotating shaft based single-walled carbon 
nanotube. Wang et al [6] proposes a nano screw pump by use 
of rotating helical nanowires and [7] presents the design of a 
water desalination device using rotating nanotubes.

Analogous to electronics, spintronics [8], which is based 
on the spin degree of freedom of the electron instead of the 
charge, is driven by spin currents which may or may not be 
accompanied by charge currents. Like its sister technology, 
spintronics is appearing as an important source of novel devices 
[9]. It has been recently shown [10] that carbon nanotubes 
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may be excellent spin current waveguides. Additionally, as 
shown in [11], carbon nanotubes can be lead to spin at GHz 
frequencies by circularly polarized light. Also, rotation and 
magnetic field have striking similarities (see for instance [12] 
and references therein). For example, rotation couples to spin 
leading to the celebrated Barnett (magnetization by rotation) 
and Einstein–de Haas (rotation by magnetization) effects. 
These facts motivated us to investigate the combined effects 
of electromagnetic fields and rotation on the electronic energy 
eigenvalues and on the generation and control of charge and 
spin currents in carbon nanotubes, which are known to be good 
ballistic electron conductors [13, 14]. Since ballistic transport 
occurs in high energy bands, it can be studied with the help of 
the Schrödinger equation (see, for instance, section 8.1.1 on 
the [15]) , while the electronic properties near the Fermi level 
are well described by the massless Dirac equation [16]. The 
latter has been used in previous works on rotating fullerenes 
[17, 18] and carbon nanotubes [19] to study inertial effects on 
their low-energy excitations.

In this paper, we solve the Schrödinger–Pauli equation for 
a free electron confined to a rotating nanotube, taking into 
account the influence of both electromagnetic fields and iner-
tial effects in the energy spectrum and generation of spin and 
charge currents. While spin-rotation coupling, via a twisting 
phonon mode, has been recently proposed [20] as means of 
generating spin currents in nanotubes, we consider here a 
rigid nanotube under external rotation which may be caused 
by circularly polarized light [11], for instance. We study two 
different configurations for a nanotube rotating around its 
symmetry axis. In the first one, an external magnetic field 
parallel to the tube axis induces, in the rotating frame, a 
radial electric field which, by its turn, switches on the spin–
orbit coupling on the electrons. Under these circumstances, 
injection of ballistic electrons in one of the extremities of the 
nanotube leads to both a spin and a charge current. We show 
that, by a suitable choice of magnetic field, rotation speed 
and injection momentum, the charge current can be brought 
down to zero, leaving a pure spin current in the system. On the 
other hand, the spin current can also be tuned to zero while the 
charge current is kept finite. In the second situation, the magn
etic field is azimuthal, inducing an axial electric field which 
does not lead to spin–orbit coupling. In this case, the z comp
onent of the spin current is proportional to the corresponding 
component of the charge current. Therefore both are tuned to 
zero simultaneously and consequently this field configuration 
is not interesting for current management. This way, we will 
give a special attention to the axial case along the paper.

The paper is organized in the following way: in section 2, 
we derive the Schrödinger–Pauli equation for a rotating frame 
to accommodate the interactions involving the spin of the 
electron. In section 3, we obtain the energy spectrum and the 
eigenfunctions for a particle in a rotating nanotube in the pres-
ence of an axial magnetic field. In section 4, we obtain the 
charge and spin current densities corresponding to the same 
field configuration. In section 5 we present our conclusions 
and in the appendix, for the sake of completeness, we present 
the results concerning an azimuthal magnetic field.

2.  Schrödinger–Pauli equation in a rotating frame

Following the approach described in [21], we will start from 
the equation of motion

HΨ = i�
∂Ψ

∂t
,� (1)

where Ψ is the two-component spinor living in the Hilbert 
space H = L2(R3)⊗ C2 where L2(R3) is the set of square-
integrable complex functions over R3 and H is the generator 
of the dynamics, the Hamiltonian (bold characters denote 
2 × 2 matrices acting on the spinors in C2). The Hamiltonian 
H contains several contributions:

H = HK + HI + HZ + HSO.� (2)

This Hamiltonian describes the quantum behaviour of an elec-
tron of charge q = −|e| and spin �s = 1

2��σ. In this work, we 
will consider that the electron is subject to move on the sur-
face of a nanotube of radius ρ = a oriented such as its sym-
metry axis coincides with the z-axis. The tube rotates around 
its symmetry axis at a constant angular velocity ω .

Let us now define the terms in the above Hamiltonian. The 
term HK corresponds to the kinetic energy (KE) plus diagonal 
terms for convenience, electrostatic energy  −|e|A0 and the da 
Costa potential [22], which summarizes here to a constant 
term −�2/(8ma2), but the presence of which would introduce 
a z-varying potential if the tube had corrugations [23–25]. 
Altogether, this contribution to the Hamiltonian is propor-
tional to identity in spin space and is given by

HK =

(
1

2m
|�Π|2 − |e|A0 −

�2

8ma2

)
σ0,� (3)

where �Π = �p + |e|�A is the mechanical momentum, defined in 
terms of the canonical momentum �p  through minimal cou-
pling, �A  is the vector potential, A0 is the scalar potential and 
σ0 is the 2 × 2 identity matrix in spin space. The second term, 
HI, contains inertial effects, i.e. the coupling between both the 
orbital degrees of freedom and the spin with rotation. We will 
consider here, as already mentioned, the case of a nanotube 
rotating around its symmetry axis, �ω = ωẑ. Thus, in cylin-
drical coordinates (ρ,ϕ; z):

HI = −�ω · [(�r × �Π)σ0 +�s].� (4)

Note that the KE and the coupling of orbital degrees of 
freedom with rotation can be written in a canonical manner

1
2m

|�Π|2 − �ω · (�r × �Π) =
1

2m
(�Π− m�ω ×�r)2 − 1

2
m(�ω ×�r)2.

� (5)
The term HZ corresponds to the Zeeman interaction which 
couples the electron spin to the magnetic field:

HZ = µB�σ · �B,� (6)

where the Bohr magneton is µB = |e|�
2m , �B  is the magnetic field 

and �σ = (σx,σy,σz) the vector of Pauli matrices. Eventually, 
the spin–orbit interaction is given after proper symmetrization 
by
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HSO = −1
2
κ�σ.

(
�Π× �E′ − �E′ × �Π

)
,� (7)

with

κ =
|e|�

4m2c2 .� (8)

�E′ is the electric field in the rotating frame, given in terms of 
�E , the applied electric field in the inertial laboratory frame by

�E′ = �E + (�ω ×�r)× �B.� (9)

The term (�ω ×�r)× �B is the electric field due to rota-
tion, our main interest in this study. Thus, we will con-
sider �E = �0 . In the present symmetry, �ω ×�r = ωaϕ̂ and, 
if we only consider uniform magnetic fields, one has 
(�p + |e|�A)× [(�ω ×�r)× �B] = −[(�ω ×�r)× �B]× (�p + |e|�A) 
and it follows that

HSO = −κ�σ · [(�p + |e|�A)× (ωaϕ̂× �B)].� (10)

Note that the spin–orbit term here follows from the fact that, 
due to rotation, the electron experiences an associated elec-
tric field although only a magnetic field is applied in the rest 
frame.

We omit other contributions coming from the non-relativ-
istic limit of Dirac equation like the Darwin term or the cor-
rections to KE. The complete Hamiltonian finally reads as

H =

(
1

2m
|�p + |e|�A|2 − |e|A0 −

�2

8ma2

)
σ0 − �ω · [�r × (�p + |e|�A)]σ0

− 1
2
��ω · �σ +

|e|�
2m

�σ · �B − |e|�
4m2c2 �σ · [(�p + |e|�A)× (ωaϕ̂× �B)],

� (11)
where we have written separately on purpose the purely orbital 
part from the part which explicitly involves spin.

3.  Energy spectrum

In this section, we diagonalize the Schrödinger–Pauli 
Hamiltonian (11) for the case of an axial magnetic field. While 
the axial field includes spin–orbit coupling due to the induced 
radial electric field caused by the rotating frame, in the azi-
muthal case this interaction does not exist, for the induced 
electric field is absent (see equation (9)). For this reason, we 
will focus on the axial case here. We deal with the azimuthal 
case in the appendix. In what follows we will be using the 
cylindrical coordinates ρ , ϕ and z, with

�p = −i�(ρ−1∂ϕ)ϕ̂− i�(∂z)ẑ.� (12)

In the following, we specialize to the case of an axial magn
etic field where �B = Bẑ is uniform in which case we will use 
the symmetric gauge �A = 1

2
�B ×�r = 1

2 Baϕ̂.

3.1.  A comment on the choice of gauge

We first discuss the case of the purely orbital motion i.e. cancel 
all terms involving �σ in H in (11). Then, an interesting prop-
erty arises when we look at the formulation of equation (5). 

The last term in the R.H.S (interpreted as a gauge symmetry 
breaking (GSB) term, see e.g. [26] and [27] for a similar dis-
cussion on the role of such a term in the case of spin–orbit 
interactions) is constant in our case and the first term becomes 
1

2m

[
�p + ( |e|Ba

2 − mωa)ϕ̂
]2

. It immediately follows that rotation 

kills the effect of the magnetic field when |e|B/2 = mω, hence 
when the angular frequency equals the Larmor frequency (half 
the cyclotron frequency) ω = ωL = 1

2ωc = |e|B/2m. An inter-
esting comment here concerns the choice of gauge. Although 
gauge invariance guarantees that the above result remains 
correct with another gauge choice (see e.g. [28] for extended 
discussion), we see that with the Landau gauge �A = Bxŷ, for 
instance, nothing special seems to happen in equation (5) at 
ωL , which means that the property mentioned above is hidden 
in that case. Let us mention also that motion on a more general 
cylindrically symmetric system, like a cylinder with bumps 
or hollows [23], would not exhibit the property that magnetic 
field effects may be compensated by simple rotation, due to 
the presence of the GSB term which, then, would depend 
on z and would then alter the form of the wavefunctions and 
energies.

3.2.  Eigenenergies

Specializing to the cylindrical coordinates and ρ = a, the 
various terms of the Hamiltonian can be explicitly written as

HK =
1

2m

[(
−i�a−1∂ϕ +

1
2
|e|Ba

)2
+ (−i�∂z)

2 − 1
4
�2a−2

]
σ0,

� (13)

HI = −ωa
[
−i�a−1∂ϕ +

1
2
|e|Ba

]
σ0 −

1
2
�ωσz,� (14)

HZ =
|e|�
2m

Bσz,� (15)

HSO = −γωa
[
(−i�∂z)σϕ −

(
−i�a−1∂ϕ +

1
2
|e|Ba

)
σz

]

� (16)
with the dimensionless magnetic field γ = κB and

σϕ =

(
0 −ie−iϕ

ieiϕ 0

)
.� (17)

Let us now write explicitly the effect of these terms in the 
cylindrical geometry, acting on a two-component spinor of the 
form

Ψ(ϕ, z) =
(
αe−iϕ/2

βeiϕ/2

)
ei�ϕeikz,� (18)

with α and β constants and with � ∈ Z if we require the fer-
mionic property under 2π rotation, Ψ(ϕ+ 2π, z) = −Ψ(ϕ, z) 
[28].

HKΨ =
1

2m



[(�

a (�− 1/2) + 1
2 |e|Ba

)2
+ �2k2 − 1

4
�2

a2

]
αe−iϕ/2

[(�
a (�+ 1/2) + 1

2 |e|Ba
)2

+ �2k2 − 1
4
�2

a2

]
βeiϕ/2


 ei�ϕeikz,

� (19)
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HIΨ = −ωa

([�
a (�− 1/2) + 1

2 |e|Ba + 1
2
�
a

]
αe−iϕ/2

[�
a (�+ 1/2) + 1

2 |e|Ba + 1
2
�
a

]
βeiϕ/2

)
ei�ϕeikz,

� (20)

HZΨ =
1
2
�ωc

(
αe−iϕ/2

−βeiϕ/2

)
ei�ϕeikz,� (21)

HSOΨ = −γωa



[
−
(�

a (�− 1/2) + 1
2 |e|Ba

)
α− i�kβ

]
e−iϕ/2

[
i�kα+

(�
a (�+ 1/2) + 1

2 |e|Ba
)
β
]
eiϕ/2


 ei�ϕeikz.

� (22)
It is worth noticing that a cancellation of the effect of 

the Zeeman term by the spin-rotation coupling requires that 
ω = |e|B/m = ωc. The difference by a factor of 2 between 
the rotation frequency needed to counterbalance orbital and 
Zeeman effects is due to the Landé factor of the electron, here 
approximated to ge � 2. In which concerns the last term in 
(11), we observe on the other hand that there is no rotation to 
compensate for the Pauli spin–orbit term. In the general case, 
the spin–orbit interaction mixes the spinor components. We 
introduce the following notations for convenience:

�kσϕ =
�
a
(�+ σ/2) +

1
2
|e|Ba =

�
a
(�+ σ/2 +Φ/Φ0) ,� (23)

�Ω± =
�2k2

2m
− �2

8ma2 +
�2(kσϕ)

2

2m
− �ωkσϕa ± 1

2
�(ω − ωc)∓ γ�ωkσϕa,

� (24)
with Φ0 = 2π�/|e| � 3.93 10−15USI the flux quantum, and 
in terms of which the eigenvalue equation now reads as

H
(
αe−iϕ/2

βeiϕ/2

)
ei�ϕeikz =

(
�Ω− iγ�ωkae−iϕ

−iγ�ωkaeiϕ �Ω+

)

(
αe−iϕ/2

βeiϕ/2

)
ei�ϕeikz = E

(
αe−iϕ/2

βeiϕ/2

)
ei�ϕeikz.

�

(25)

The eigenenergies follow from
∣∣∣∣
�Ω− − E iγ�ωkae−iϕ

−iγ�ωkaeiϕ �Ω+ − E

∣∣∣∣ = 0� (26)

i.e.

E�kσ =
1
2
�(Ω+ +Ω−) +

1
2
σ�

√
(Ω+ − Ω−)2 + 4γ2ω2k2a2.

� (27)

At ω = 0, the function E�kσ with fixed σ is periodic in 
Φ/Φ0 (given by a set of parabolas (see figure 1), top, which 
satisfy E�+n(Φ/Φ0 − n) = E�(Φ/Φ0)). The spin–orbit 

Figure 1.  Energy (in meV), top: as function of the magnetic field, for the axial magnetic field case, when ω = 1010 rad · s−1, bottom: 
as function of the angular velocity, when B  =  1 T. The values of � and σ are indicated as plot legends. The radius of the tube is fixed to 
a  =  50 nm. At that value of the radius, the ratio Φ/Φ0 varies typically from 0 to 10 on the scale of the plot. The left plots show the first 
levels with σ = +1: � = −2,−1, 0, 1, 2, k  =  0 (the largest energy scale being �2k2/2m, we set it to zero to enhance the role of the other 
parameters), the right column shows for the level � = 1, for the two values of σ = −1,+1.
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interaction lifts the energies degeneracy and the value of the 
rotation parameter ω  breaks the perfect periodicity in Φ/Φ0. 
The spin–orbit coupling also introduces a combined effect of 
both rotation and the magnetic field in the term 4γ2ω2k2a2, 
since γω = κBω. In figure 2 it is shown the energy landscape 
when B and ω  are varied for a few eigenstates. Notice the cor-
respondence with figure 1.

3.3.  Eigenspinors

In order to facilitate the search of the eigenspinors, it is worth 
writing the Hamiltonian under the form

H =
1
2
�(Ω− +Ω+)σ0 +

1
2
�(Ω− − Ω+)σz − γ�ωkaσϕ

=
1
2
�(Ω− +Ω+)σ0 +

1
2
�(Ω− − Ω+)

[
σz −

2γωka
Ω− − Ω+

σϕ

]

� (28)
where the last bracket can also be denoted as

σ̃ϕ = σz − tan θσϕ, tan θ =
2γωka

Ω− − Ω+
.� (29)

The normalized eigenstates Ψ�kσ of σ̃ϕ, hence of H, are

Ψ�k+ =

(
cos θ

2 e−iϕ/2

−i sin θ
2 eiϕ/2

)
ei(�ϕ+kz), Ψ�k− =

(
i sin θ

2 e−iϕ/2

− cos θ
2 eiϕ/2

)
ei(�ϕ+kz).

� (30)

Figure 2.  Energy (in meV) of a few |�kσ〉 states, in the axial magnetic field case, for k  =  1/a, a  =  50 nm, as a function of magnetic field and 
rotation speed.

J. Phys.: Condens. Matter 32 (2020) 185301
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A word of caution is needed here. Although the trans-
formation given by equation  (29) provides an elegant way 
of presenting the eigenstates, it is singular at Ω− = Ω+ and 
therefore not valid when this happens. As Ω− approaches Ω+ 
from below and goes above it, tan θ jumps from −∞ to +∞ 
which, obviously, is not physical since there is no such jump 
in equation (28). Further, σ̃ϕ is meaningless in this case. Of 
course this is just an artifact of the notation which was care-
fully taken into consideration when plotting the charge and 
spin currents, which explicitly depend on sin θ and cos θ.

3.4.  Orders of magnitude

Carbon nanotubes are good candidates to analyse quanti-
tatively the effect of simultaneous presence of rotation and 

magnetic field. They have various electronic structures 
(metallic or semiconductor along the axis) depending on their 
chirality. Typical order of magnitude for a carbon nanotube 
diameter is a � 1–500 nm. In our study we fix a  =  50 nm. 
Typical laboratory magnetic fields are of the order 1 T which 
gives a corresponding cyclotron frequency of order 100 GHz, 
which is compatible with the nanomotors rotation frequency 
mentioned at the introduction.

4.  Charge and spin current densities

4.1.  Charge currents

We will now focus on the charge currents in a pure quantum 
state, and in the next section, on spin current at T  =  0. For a 

Figure 3.  The axial component of the charge current (in units of e�
ma) of a few |�kσ〉 states, in the axial magnetic field case, for k  =  1/a, 

a  =  50 nm, as a function of magnetic field and rotation speed.

J. Phys.: Condens. Matter 32 (2020) 185301
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given energy channel, the charge current density at T  =  0 can 
be calculated using the definition

�J�kσ = −|e|Ψ†
�kσ�vΨ�kσ with �v =

i
�
[H,�r].

� (31)

Following [29], we have defined the charge current in such way 
that the dimension of �J  is that of charge times velocity. Since 
the motion is constrained to the nanotube, only two spatial 
components of �v  are needed, vϕ = ia

� [H,ϕ] and vz =
i
� [H, z]. 

The calculation gives

vϕ =
1
m

(
−i�a−1∂ϕ +

|e|Ba
2

)
σ0 − ωaσ0 + γωaσz� (32)

and

vz =
1
m
(−i�∂z)σ0 − γωaσϕ.� (33)

The charge current density in the azimuthal direction follows,

Jϕ,�kσ = −|e|
[ ��

ma
+

|e|Ba
2m

− ωa + σ
(
γωa − �

2ma

)
cos θ

]
.

� (34)
The first term ∝ �� is the paramagnetic current density while 
the second term, linear in B, is the diamagnetic contrib
ution. The next term is its rotation counterpart. The last term, 
depending on γ  is due to the spin–orbit interaction. As dis-
cussed in the beginning of the paper, when ω = 1

2ωc, the 

Figure 4.  The axial component of the spin current (in units of �
2

ma) of a few |�kσ〉 states, in the axial magnetic field case, for k  =  1/a, 
a  =  50 nm, as a function of magnetic field and rotation speed.

J. Phys.: Condens. Matter 32 (2020) 185301



M M Cunha et al

8

orbital contributions of the magnetic field and of rotation 
cancel each other. In the nanotube axis direction, the charge 
current density is

Jz,�kσ = −|e|
[�k

m
+ σγωa sin θ

]
.� (35)

The term ∝ �k is also a paramagnetic contribution due to 
the ‘initial conditions’ in the selection of the eigenstate while 
the second term, with γ  dependence, results from SO interac-
tion. Note that ω , B and the SO interaction appear on both 
components.

An interesting issue here concerns the definition of the 
charge current from the Lagrangian approach. The Lagrangian 
can be written, in a state Ψ as [30]

L = 〈Ψ|i�∂tσ0 − H|Ψ〉.� (36)

Here we only deal with stationary states, which simplifies the 
expression, and, using the definition of the current in terms of 
L, one has [29]

�j =
∂L

∂�A
= − ∂

∂�A
〈Ψ|H|Ψ〉,� (37)

Figure 5.  The azimuthal component of the charge current (in units of e�
ma) of a few |�kσ〉 states, in the axial magnetic field case, for k  =  1/a, 

a  =  50 nm, as a function of magnetic field and rotation speed.

J. Phys.: Condens. Matter 32 (2020) 185301
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but there are caveats here: first the energy has to be expressed 
in terms of the vector potential and not as a function of the 
magnetic field (for example the Zeeman term does not couple 
spin to �A , but to �B  directly), second this approach does not 
allow to define the current in the z direction (since �A  has no 
component along z). The calculation in the eigenstates (30) 
leads to

− ∂

∂Aϕ
E�kσ = −|e|

( ��
ma

+
|e|Aϕ

m
− ωa + σ

(
γωa − �

2ma

)
cos θ

)
,

� (38)

which identifies to Jϕ,�kσ according to (34). As noticed, we do 
not get (35) directly. On the other hand, it is easy to choose 
another gauge for the vector potential which leads to the same 

magnetic field, �A = 1
2 Baϕ̂+ Azẑ  with constant Az, which 

modifies the kinetic term according to

1
2m

(−i�∂z)
2 −→ 1

2m
(−i�∂z + |e|Az)

2� (39)

and the SO term according to

HSO −→ HSO + ωaB|e|Azσϕ.� (40)

Figure 6.  The azimuthal component of the spin current (in units of �
2

ma) of a few |�kσ〉 states, in the axial magnetic field case, for k  =  1/a, 
a  =  50 nm, as a function of magnetic field and rotation speed.

J. Phys.: Condens. Matter 32 (2020) 185301



M M Cunha et al

10

This would lead to reparametrization of the Ω’s, θ, etc but 
would allow the calculation of the z-current through the 

formula Jz,�kσ = −∂E′
�kσ

∂Az
.

Another feature of this expression of the current density is 
that there is no contribution of the Zeeman current, although 
the magnetic field is involved. Such a term, associated to the 
spin polarization [31]

−|e|
m

�∇× (Ψ†�sΨ)� (41)

indeed vanishes here due to the uniform character of the spin 
density.

4.2.  Spin currents

The spin current density in an eigenstate obeys a definition 
similar to (31) (see e.g. [29, 30]),

�Sa
�kσ =

1
2
Ψ†

�kσ{�v, sa}Ψ�kσ with sa =
1
2
�σa� (42)

with the velocities given in (32) and (33) and where the 
anticommutator is required for symmetrization. We use S to 
denote the spin current density and the tensorial character is 
encoded in the upperscript a which refers to the spin polariza-
tion considered. In the azimuthal (ϕ) direction, we have, for 
the two spin labels

Sz
ϕ,�kσ =

�
2

[
σ

(
��
ma

+
|e|Ba
2m

− ωa

)
cos θ + γωa − �

2ma

]
.

�
(43)

In the z direction, we have

Sz
z,�kσ =

�
2

[
σ
�k
m

cos θ

]
.� (44)

Again, we note that the spin current depends on both the 
magnetic field intensity and the rotation velocity. But, differ-
ently from the charge current, the SO term contributes only to 
the ϕ component. Moreover, a comparison between (34) and 
(43) and between (35) and (44) shows that, for a given eigen-
state, it is possible to tune either the magnetic field and/or the 
rotation velocity in order to cancel the charge currents while 
keeping non-vanishing spin currents. For instance, for the 
z-component of the charge current this happens provided that

γω sin θ = −σ
�k
ma

.
�

(45)

On the other hand, the cancellation of the z-component of spin 
current happens at combinations of ω  and B such that

cos θ = 0.� (46)

In this case, the z-component of the spin current vanishes, 
leaving a charge only current that depends both on the magnetic 
field and rotation speed and, amazingly, on the spin polariza-
tion state, as can be seen in equation (35). This is due to the SO 
term that couples spin polarization, magnetic field and rotation. 
Inspection of equation (29) shows that this case corresponds 
to having Ω+ = Ω−, which gives a simpler relation between 

B and ω , that is 2κ(�+ σ
2 )Bω + |e|a2B2ω + |e|

m B − ω = 0, 
besides simplification of the eigenstate energy, equation (27).

Figure A1.  Energy (in meV), top: as function of the magnetic field, for the azimuthal magnetic field case, when ω = 1010 rad · s−1, bottom: 
as function of the angular velocity, when B  =  1 T. The values of �, k,σ are indicated as plot legends. The radius of the nanotube is fixed to 
a  =  50 nm, the right plots show for the level � = 1, (k  =  0), the two values of σ = −1,+1.
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The control over which component of either current is 
tuned to zero is evident in the plots of the currents shown 
in figures 3 and 4, for the axial components, and figures 5 
and 6, for the azimuthal components. Furthermore, those 
figures  also show that the currents might have their direc-
tion inverted by choice of the appropriate sector of parameter 
space (B, ω). This provides an effective way of controlling the 
balance between charge and spin currents and their respective 
directions.

5.  Conclusion

In the previous sections we studied electronic and spintronic 
effects on ballistic electrons in a rotating nanotube under 
an applied magnetic field. For the case of an axial magnetic 
field, we found the eigenenergies and showed that spin and 
charge currents are generated by ballistic charge injection 
in the nanotube. The combined inertial and electromagnetic 
effects allows for control of the balance between the charge 
and spin currents. It is shown that, by playing with the applied 
field, rotation speed and injection momentum, one can tune 
the charge current to vanishing values, leaving a nonzero spin 
current.

At sufficiently low temperatures, electrons in most metals 
and alloys (provided they have no magnetic order) exhibit a 
Fermi liquid behaviour with renormalized parameters such as 
the effective mass [32]. Hence, for a conducting nanotube, the 
set of weakly-interacting electrons maintained in one of the 
eigenstates can in principle lead to tunable pure spin currents 
along the tube axis. Moreover, another possible application 
is to use the device either as an accelerometer or as a mag-
netometer: indeed, once the device is tuned such that charge 
currents are canceled, any change in the magnetic field ∆B or 
in the rotation velocity ∆ω will break condition (45). Thus, a 
charge current is generated, the intensity of which can be used 
to retrieve ∆B or ∆ω.

The great difficulty of injecting a ballistic current into a 
rotating nanotube via physically contacted electrodes can be 
overcome by photocurrent injection at optical frequencies 
[33]. Although our results were obtained for DC currents they 
can be extended to the AC domain, which is the aim of future 
work.
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Appendix.  Azimuthal magnetic field

For the sake of completeness, we present here the results con-
cerning an azimuthal magnetic field

�B = Bϕ̂� (A.1)

with |�B| constant. Obviously, this is a much more difficult 
experimental condition but hopefully it is much less inter-
esting since there is no SO coupling.

A.1.  Energy

The corresponding vector potential to (A.1) is given by 
�A = −Bρẑ. The Hamiltonian can be written as

H =
1

2m

[(
−i�a−1∂ϕ

)2
+ (−i�∂z − |e|Ba)2 − �2

8ma2

]
σ0

+
|e|�
2m

Bσϕ − ωa
(
−i�a−1∂ϕ

)
σ0 −

�ω
2
σz

�

(A.2)

where it has been taken into account the fact that due to equa-
tion (9), the spin–orbit interaction vanishes in the case of an 
azimuthal magnetic field. Acting on a spinor (18), it yields the 
same form as in the case of an axial magnetic field,

HΨ =

(
�Ω− −iµBBe−iϕ

iµBBeiϕ �Ω+

)(
αe−iϕ/2

βeiϕ/2

)
ei�ϕeikz,� (A.3)

but now with the parametrization

�Ω± =
�2

2ma2 (�± 1/2)2 +
1

2m
(�k − |e|Ba)2 − �ω�− �2

8ma2 ,
� (A.4)

tan θ =
ωc

Ω+ − Ω−� (A.5)

where a cancellation occurs between the Zeeman and part 
of the orbital contributions as one can see by careful inspec-
tion. The parametrization being the same, the eigenvalues and 
eigenspinors are given by

E�kσ =
1
2
�(Ω+ +Ω−) +

1
2
σ�

√
(Ω+ − Ω−)2 + 4µ2

BB2/�2

� (A.6)
and equation  (30) with the appropriate modifications of the  
Ω’s. Note that the vector potential being now in the z direction, 
the periodic repetition of parabolas in the energy spectrum 
would be obtained at various k-values rather than �-values.

Using the same figures as in the previous section, we find 
of course similar orders of magnitude for various contrib
utions to the energy. Since there is no spin–orbit coupling in 
this case, the form of the term inside the square root is dif-
ferent, without the combined term involving rotation and field, 
as in the previous case. Figure A1 gives an idea of the energy 
behaviour for a few states.

A.2.  Charge currents

In order to obtain the charge and spin currents, we again need 
to obtain vϕ and vz. From the Hamiltonian (A.2), we can find 
that

vϕ =
1
m

(
−i�a−1∂φ

)
σ0 − ωaσ0,� (A.7)

and

vz =
1
m

(−i�∂z − |e|Ba)σ0� (A.8)
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and the charge currents follow. They are given by

Jϕ,�kσ = −|e|

[
��
ma

− ωa − σ
�

2ma
cos θ

]
,� (A.9)

Jz,�kσ = −|e|

[
�k
m

− |e|Ba
m

]
,� (A.10)

where θ depends both on ω  and B (see equations (A.5) and 
(A.4)). It is interesting to note that, in the case of the azimuthal 
magnetic field, the contributions from the rotation appear 
solely in the ϕ-component of the charge current. Furthermore, 
the spin polarization σ appears only in the ϕ-component.

A.3.  Spin currents

Now, we will write the expressions for the spin currents. In the 
ϕ direction, we have

Sz
ϕ,�kσ =

�
2

[
σ

(
��
ma

− ωa

)
cos θ − �

2ma

]
.� (A.11)

In the z direction, we have

Sz
z,�kσ =

�
2

[
σ

(
�k
m

− |e|Ba
m

)
cos θ

]
=

�σ
2

Jz,�kσ

(−|e|)
cos θ.

� (A.12)
Here, differently from the charge current, both spin current 
components depend on ω , B and the spin polarization σ. From 
equations (A.10) and (A.12) it is clear that, if Jz

z,�kσ is tuned 
to zero by adjusting B, the corresponding spin current comp
onent Sz

z,�kσ = 0.
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