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Abstract
The present investigation involves explorations on the chromo-dielectric
properties of the hot QCD medium produced in relativistic heavy-ion colli-
sions in terms of refractive index. The isotropic/equilibrium modelling is done
within an effective quasi-particle model of hot QCD medium. The possibilities
of negative refraction in the medium are also explored in terms of the Depine–
Lakhtakia index. The anisotropic aspects of the hot QCD medium are incor-
porated by introducing the anisotropy in a particular direction. That makes the
medium quite similar to uniaxial crystals, and hence we observe the
phenomenon of birefringence (two distinct refractive indices in the anisotropic
case). Interestingly, both anisotropy and medium effects play significant roles
in deciding the optical properties of the hot QCD/quark–gluon-plasma
medium.

Keywords: quark–gluon-plasma, gluon self-energy, anisotropic QGP, birefrin-
gence, negative refraction

(Some figures may appear in colour only in the online journal)

1. Introduction

The hot and dense nuclear matter, quark–gluon-plasma (QGP), in relativistic heavy-ion
collisions (HIC) behaves more like a near perfect fluid rather than a non-interacting ultra-
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relativistic gas of quarks (antiquarks) and gluons [1–3]. The liquidity of the QGP is quantified
in terms of the collective flow coefficients such as elliptic flow, v2 and others. The nature of
these coefficients in HIC as a function of transverse momentum requires the QGP to be a near
perfect fluid with a very small value for the shear viscosity to entropy (η/S) (smallest among
almost all the known fluids in nature). Apart from the collective behaviour, quarkonia sup-
pression and strong jet quenching [4, 5] are other interesting phenomena associated with the
QGP that highlight its plasma aspects (reminiscence of colour screening and energy loss).

The goal of the present investigations is to understand plasma aspects of the QGP
medium while considering it as a dielectric one and capturing the related interesting physics
aspects such as collective plasma excitations and the optical properties such as refractive
index of the medium. To understand any medium (say dielectric), the medium must be
exposed to the external fields, i.e. electric and magnetic fields. Depending upon its response to
the fields, we call it isotropic, anisotropic, linear or non-linear. Once the response of the
medium is known in terms of the permittivity and the permeability, the propagation of the
electromagnetic/chromo-electromagnetic waves could be explored in terms of refractive/
chromo-refractive indices of the medium.

In the present manuscript, the chromo-refractive index for the hot QCD/QGP (isotropic
as well as anisotropic) medium has been investigated in terms of the chromo-electric
permittivity and the chromo-magnetic permeability within semi-classical transport theory.
While setting up the linear transport theory, one must have an adequate modelling of the
isotropic/equilibrium (global/local) state of the medium. The isotropic/equilibrium state
could be described in terms of the interacting QGP equation of state (EoS) (either computed
from the lattice QCD or the improved hard thermal loop (HTL) resummed perturbation
theory). These EoSs are described in terms of non-interacting system of quasi-gluons and
quasi-quarks/antiquarks. The starting point is the computation of gluon polarization tensor in
the hot QCD/QGP medium either within transport theory with the above-mentioned dis-
tribution functions or within finite temperature field theory and then extract the responses. As
the momentum anisotropy is present in all the stages of the HIC, its inclusion is highly desired
while studying any aspects of the QGP. Keeping this very crucial aspect in mind, we study
the response of the anisotropic QGP in the presence of classical chromo-electromagnetic
fields, thereby determine optical properties such as dielectric constant and refractive index. In
our approach, the anisotropy could be included at the level of distribution functions by
extending the isotropic distribution functions, obtained from the quasi-particle model [6, 7], in
one of the directions (for simplicity one can introduce the anisotropy in the direction of beam
propagation). The collective plasma modes within this approach have already been studied
extensively with ideal EoS/leading order HTL in [8–12] and for the interacting EoS within a
quasi-particle model in our previous work [13, 14], for both isotropic and anisotropic QGP.
The hot QCD/QGP medium effects were seen to induce significant modifications to the
collective modes.

The prime goal here is to define a chromo-refractive index for the hot QCD medium and
search for possibilities of negative refraction (NR) and opacity region (vanishing refractive
index) therein for both isotropic and anisotropic cases. There are a few studies in which the
refractive index of weakly as well as strongly coupled plasma has been investigated. Earlier, it
was proposed by Veselago [15], that the refractive index may be negative in some of the
materials. Later on, it was shown [16] that there is a certain probability of the QGP to have a
negative refractive index (NRI) for some frequency range. Afterwards, there have been
various attempts to study the refractive index using a holographic model for strongly coupled
plasma [17–21]. Liu et al [22], have studied the refractive index for weakly coupled plasma
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within HTL perturbation theory. There are several other branches of physics where the
researchers have studied the NR and published a lot of informative articles [23–28].

In the QCD/QGP, the basic mathematical quantity, which is needed to understand the
response functions, is the gluon polarization tensor. Considering the fact that in the Abelian
limit QCD possess the similar features as QED [29], Jiang et al [30] studied for the first time
the refractive index of gluon (chromo-refractive index) in the case of the viscous QGP. They
further extended their study of the chromo-refractive index using kinetic theory with a
Bhatnagar–Gross–Krook collisional kernel [31]. It is important to note that, in all the above-
mentioned approaches regarding the QGP, the interactions among quarks and gluons in the
QGP medium have not been included. Their analysis assumes the QGP as an ideal gas of
gluons, quark and antiquarks (non-interacting, ultra-relativistic). Here, we have incorporated
two important aspects while investigating the chromo-refractive index of the QGP medium,
viz., the EoS effects (via quasi-particle description) and the momentum anisotropy. In the
context of the refractive index of the QGP, the former is not yet included, and the latter is not
extensively studied. As the response of the medium to electric/chromo-electric and magn-
etic/chromo-magnetic part is not similar, based on this asymmetry in the electric and
magnetic sector, the plasma can be classified as magnetizable and non-magnetizable. Here,
the main interest is to explore the magnetizable case and search for the possibility of the
refractive index to be negative. As we are working in the Abelian limit (that could be
justifiable at higher temperatures where weak coupling results make sense), for the sake of
convenience, we will omit the ‘chromo’ word from now onwards to avoid the repetition.

The paper is organized as follows. In section 2, the basic formalism for finding the optical
responses and the refractive index has been presented along with the modelling of the iso-
tropic as well as the anisotropic hot QCD medium. In the case of anisotropy, the system
shows a quite similar behaviour as uniaxial crystals. We tried to map up some of our
observations in the anisotropic medium with the uniaxial crystals. Here, we also discussed the
basic formalism of studying NR. Section 3 deals with results and discussions. The conclu-
sions and the possible future extensions of the present work are offered in section 4.

2. QGP as an optical medium

The propagation of electromagnetic waves in the QGP medium, treating it as a dielectric one,
can be studied in terms of the responses, i.e. the permittivity and the permeability of the
medium (these can be used to define the refractive index of the medium). Before, we compute
the refractive index of the medium, let us first recall, in brief, the refractive index and its
general aspects. For a wave propagating in a continuous dielectric medium, its electric field
vector (E) connects the displacement vector (D) through the electric permittivity tensor(òij)
and the magnetic field vector (B) can be expressed in terms of the magnetic field induction
(H) through magnetic permeability tensor (μij) as

w m w= =D k E B k H, , , , 1i ij j i ij j( ) ( ) ( )

here i, j=1, 2, 3 are spatial indices, ω is the frequency and ºk k∣ ∣ is the propagation vector.
In the context of QGP, a covariant treatment of these quantities is required. Therefore, one
uses the fluid four-velocity uα to define the four- fields mẼ and mB̃ in the Fourier space as,

= =m
a

ma m mrab
r abE u F B u F,

1

2
, 2˜ ˜ ( )

where mrab is the four-dimensional Levi-Civita symbols and μ, ρ, α and β are here Lorentz
four-indices (not to confuse with structure functions and magnetic permeability). Using the
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above equation, one can write the field tensor Fμν as,

= - -mn m n n m mnab
a bF E u E u B u . 3˜ ˜ ˜ ( )

While including the medium effects, the effective action can be expressed as

ò p
= - P - +m

mn
nS S

K
A K K A K

1

2

d

2
...., 4eff 0

4

4( )
( ) ( ) ( ) ( )

where Aμ(K ) is the soft gauge field in momentum space and K≡Kμ=(ω, k). The medium
effect is characterized by the polarization tensor Πμν(K ). Where the free action(S0), i.e. the
action at zero temperature, T=0 reads,

ò p m
= - - -

-m
m

m
mS

K
E K E K

B K B K1

2

d

2
. 50

4

4 0
0

⎡
⎣⎢

⎤
⎦⎥( )

˜ ( ) ˜ ( )
˜ ( ) ˜ ( )

( )

Here, ò0 and μ0 are the permittivity and permeability of the free space, respectively. In terms
of òμν and μ, the effective action can be written as,

ò m
= - - - -mn

m n
m

mS K E K E K B K B K
1

2
d

1
. 6eff

4
⎡
⎣⎢

⎤
⎦⎥

˜ ( ) ˜ ( ) ˜ ( ) ˜ ( ) ( )

One can extract the permittivity and the permeability from the effective action Seff in terms of
polarization tensor Πμν, which include all the medium effects (comparing equation (6) to (4)).
Let us now proceed to the computation of refractive index for the QGP using the response
functions(ò(ω, k), μ(ω, k)).

2.1. The refractive index for the hot QCD medium

As stated earlier, the gluon polarization tensor, Πμν is required to define the responses. The
formalism of Πμν for interacting EoSs within the quasi-particle description has been presented
in details in our previous work [13], and a brief account of that is presented below. To obtain
the Πμν in the QCD plasma, we start with an arbitrary particle distribution function, denoting
with fi(p, X) where the index i, refers to the particle species (quark, antiquark and gluon).

Before one proceeds, a particular energy scale is needed to choose in order to study the
collective behaviour (plasma behaviour) of hot QCD medium. We preferred to work on the
scale where the collective motion in the hot QCD medium first appears. At this scale, the soft
momentum ~p gT T , the magnitude of the field fluctuations is of the order of ~A g T
and derivatives are ∂x∼gT. This is the scale where one can think of Abelianizing the hot
QCD formulations. Note that there have been several attempts to understand the collective
behaviour of hot QCD medium either within the semi-classical theory or HTL effective theory
[32–40].

In the Abelian limit (omitting the colour indices), the space time evolution of the dis-
tribution function in the medium is understood from the Boltzmann–Vlasov [41] transport
equation below

d q¶ + ¶ =m
m m

mn
n u f p X g u F X f p Xp, , , 7i

i
p i i( ) ( ) ( ) ( ) ( )( )

where xμ=(t, x)=X is the four space-time coordinate and uμ=(1, u), are the velocity of
the plasma particle, respectively, with =u p p∣ ∣. q q q qÎ , ,i g q q{ }¯ having values θg=θq=1
and q = -1q̄ . ∂μ, ¶n

p( ) are the partial four derivatives corresponding to space and momentum,
respectively.  p X,a

i ( ), is the collision term that describes the effects of collisions between
hard particles in a hot QCD medium. We are focusing on the very near equilibrium case
which allows us to neglect the effects from collisions and so = p X, 0i( ) . The second rank
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tensor, Fμν is the Abelianised chromo-electromagnetic strength tensor which either represents
an external field applied to the system, or/and is generated self-consistently by the four-
currents present in the plasma, as follows,

¶ =n
mn mF x J X , 8( ) ( ) ( )

where

ò p
= G G ºm mJ X g p f X

p

E
pd , , d

d

2
. 9

3

3
( ) ( )

( )
( )

Equation (7), can be solved in the linear response approximation i.e. the equation can be
linearized around the stationary and homogeneous state described by the distribution f pi

0 ( )
which is assumed to be neutral when there is no current. The distribution function is then
decomposed as:

d d= +f X f f X f f Xp p p p p, , , , . 10i i i i i
0 0( ) ( ) ( ) ( ) ( ) ( )

Next, the current, Jμ, induced by a soft gauge field, Aμ can be obtained in terms of the
δfi(p, X) as,

ò d= Gm mJ X g p f Xpd , , 11ind( ) ( ) ( )

where δf (p, X), contains the fluctuating part and given as

d d d d= + -f X N f X N f X f Xp p p p, 2 , , , . 12c g f q q( ) ( ) ( ( ) ( )) ( )¯

Here, δfg(p, X), δfq(p, X) and df Xp,q ( )¯ are the fluctuating parts of the gluon, the quark
and antiquark densities, respectively. After solving the transport equations for the fluctuations
δfg and dfq q̄, we get the induced current in the Fourier space as

ò p
¢ = ¶ -

+
¢m m b

ab
a b a


J K g

p
u f g

u K

K u
A Kp

d

2 i
, 13pind

2
3

3

⎡
⎣⎢

⎤
⎦⎥( )

( )
( )

·
( ) ( )( )

where ò is a very small parameter needed to avoid unwanted infinities and will be sent to zero
in the end. The distribution function, f (p) in terms of isotropic/equilibrium quark/antiquark
(at zero baryon density, ºf fq q̄) and gluon distribution functions is given as,

= + +f N f N f fp p p p2 . 14c g f q q( ) ( ) ( ( ) ( )) ( )¯

In the linear approximation, the equation of motion for the gauge field can be obtained in
Fourier space as,

¢ = P ¢m mn
nJ K K A K . 15ind( ) ( ) ( ) ( )

The gluon self-energy tensor is symmetric and transverse in nature, i.e. Πμν(K )=Πνμ(K )
and follows the Ward’s identity, P =m

mnK K 0( ) . From equations (13) and (15) we can obtain
Πμν(K ) as,

ò p
P =

¶
¶

-
+

mn m
b

nb
b n


K g

p
u

f p

p
g

K u

K u

d

2 i
. 162

3

3

⎡
⎣⎢

⎤
⎦⎥( )

( )
( )

·
( )

Next, we shall discuss in brief the effective fugacity quasi particle model (EQPM) that has
been employed here to incorporate the medium interaction effects.
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2.2. The EQPM

As we mentioned earlier, the isotropic modelling of the medium is done within a quasi-
particle description of hot QCD medium. To that end, we employed EQPM where the
medium effects have been encoded in the effective gluon and effective quark fugacities [6, 7].
These fugacity parameters define effective gluon and quark/antiquark momentum distribution
functions for the isotropic/equilibrated medium. There are several other quasi-particle models
where the medium modifications are captured in terms of effective mass for gluons and
quarks [42–44]. Others are NJL and PNJL based effective models [45] and recent quasi-
particle models based on the Gribov–Zwanziger quantization results leading to non-trivial IR-
improved dispersion relation in terms of Gribov parameter [46]. These quasi-particle models
have shown their utility while studying the transport properties of the QGP [47–52]. In [53],
the ratio of electrical conductivity to shear viscosity has been explored within the framework
of the effective mass model. As mentioned above, the present analysis considers the EQPM
for the investigations on the optical properties of the hot and dense medium produced in HIC
experiments. Mitra and Chandra [54] computed the electrical conductivity and charge dif-
fusion coefficients within EQPM. In the context of quarkonia physics [55, 56] and thermal
particle production [57, 58] and heavy quark transport [59, 60] too, the EQPM played an
important role. There are issues with the above mentioned other approaches while comparing
the transport coefficients with their phenomenological estimates [61, 62] from experimental
observables at RHIC. Nevertheless, these quasi-particle approaches serve the purpose of
modelling the equilibrated/isotropic state of the QGP which is crucial for the transport theory
computations. The hot QCD EoSs described here in terms of EQPM are the very recent (2
+1)-lattice EoS from hot QCD collaboration [63] (LEoS), and the 3-loop HTL perturbative
EoS that has recently been computed by Haque et al [64, 65] which agrees reasonably well
with the recent lattice results [63, 66].

The EQPM serves as the input in terms of the effective quasi-particle distribution
functions, ºf f f,eq g q{ } (describing the strong interaction effects in terms of effective
fugacities zg,q) as [6, 7],

b
b

=
-

-
f

z E

z E

exp

1 exp
, 17g q

g q p

g q p

[ ]
( [ ])

( )


where β=1/T, T is the temperature in energy units. =E pp ∣ ∣ for the gluons and + mp q
2 2∣ ∣

for the quark degrees of freedom (mq denotes the mass of the quarks). This leads to the
following dispersion relation,

w = + ¶E T zln . 18g q p T g q
2 ( ) ( )

The effective fugacities, zg q, are obtained from the above mentioned EoS by realizing the
hot QCD medium as Grand canonical system of quasi-gluons and quasi-quarks/antiquarks
with momentum distributions given in equation (17) as follows. We denote the effective
partition function for the hot QCD medium by Z=(Zg × Zq), Zg for gluon and Zq for
quarks. The corresponding expressions in terms of zg and zq are as follows,
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ò

ò

n
p

b

n
p

b

=- - -

= + -

= +

Z V
p

z p

Z V
p

z p

Z Z Z

ln
d

8
ln 1 exp ,

ln
d

8
ln 1 exp ,

ln ln ln , 19

g g g

q q q

g q

3

3

3

3

( ) ( ( ))

( ) ( ( ))

( ) ( ) ( ) ( )

where the gluonic degrees of freedom, n = -N2 1g c
2( ) and the quark degrees of freedom,

νq=2×2×Nc×Nf for SU(Nc). Now using the thermodynamic relation, b =P V Zln( ),
we can match the right-hand side of equation (19), with the lattice data for the pressure for
(2+1)-flavour QCD. Here, P denotes the pressure and V denotes the volume. From this
relation, we can numerically obtain the temperature dependence of zg and zq (for more details
please see [7]). Considering the pure gluonic case, the temperature dependence of fugacity
parameters, zg has been determined using the relation

ò
b n
p

= - - -
- ¥

P w z w w
2

ln 1 exp d , 20g
g

g

4

2 0

2 ( ( )) ( )

and the temperature dependence of zq is obtained using the following relation

ò
b n
p

- = - -
- ¥

P P w z w w
2

ln 1 exp d , 21g
g

q

4

2 0

2( ) ( ( )) ( )

where w(w=βp) is a dimensionless quantity.
One further requires, Debye mass (mD) computed within EQPM and effective QCD

coupling (depicting charge renormalization) in the medium. To compute these quantities, we
follow our previous works [13, 54] and references therein. Based on that one can obtain the
mD
2 as,

ò òpa
p p

= - ¶ + ¶m T N
p

f N
p

fp p4 2
d

2
2

d

2
, 22s c p g f p qD

2
3

3

3

3

⎛
⎝⎜

⎞
⎠⎟( )

( )
( )

( )
( ) ( )

where a Ts ( ) is the QCD running coupling constant at finite temperature [67] and described in
detail in the context of EQPM in [54].

2.3. Response functions for anisotropic hot QCD medium

To describe the anisotropic hot QCD medium, we follow the approach employed in
[8, 9, 13, 14, 68]. In this approach, the anisotropic momentum distribution functions for the
gluons and quark/antiquarks are obtained by rescaling (stretching and squeezing) of one
direction in momentum space distribution function as,

x= +x xf p C f p p n . 232 2( ˜ ) ( ( · ˆ ) ) ( )

This introduces one more degree of freedom, viz., the direction of anisotropy, n̂ with
=n 12ˆ . The anisotropy parameter ξ can be adjusted to reflect either squeezing (ξ>0) or

stretching (−1< ξ<0) of the distribution in the n̂ direction. As mentioned earlier, this
makes the system resembles with the uniaxial crystals where there is one preferred direction
(one optic axis). Choosing, ξ=0 will bring us to the case of the isotropic QCD medium
which shows quite similar results as the isotropic crystals in the context of optical properties.
The normalization, Cξ is fixed by demanding the expression for the mD(T) to be the same in
both isotropic and anisotropic medium. This leads to

x
x= + +x C 1

3
. 242( ) ( )
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Next, performing the change of variables xº +p p p n.2 2(∣ ˜ ∣ ( ˆ ) ) in equation (16) and
considering the temporal axial gauge, we get

ò p
x
x

d
w

P =
W +

+
+

+ -
xK m C u

u n u ku n
u n k u

d

4 1
, 25ij i

l l
jl

j l

D
2

2 2

⎡
⎣⎢

⎤
⎦⎥( ) ( · ˆ )

( ( · ˆ ) ) ·
( )

where mD from equation (22) is obtained by employing EQPM as,

pa
p p

= - -m T T
N

z
N

z4
2

PolyLog 2,
2

PolyLog 2, , 26s
c

g
f

qD
2 EoS 2

2
EoS

2
EoS

⎛
⎝⎜

⎞
⎠⎟( ) [ ] [ ] ( )( ) ( ) ( )

and contains effects from various EoSs where z 1g q , corresponds to LO or ideal EoS.
To solve (25) a tensor decomposition of Πij(ω, k) one needs to construct an analytic form

using available symmetric tensor and then perform a suitable contraction. For isotropic case,
we need only two, the transverse, d= -P k k kT

ij ij i j 2 and the longitudinal, =P k k kL
ij i j 2

tensor projectors to decompose, Πij. While considering the anisotropy into account with
anisotropy vector n̂, we have to consider two more projectors =P n n nn

ij i j 2˜ ˜ ˜ and

= +P k n k nkn
ij i j j i˜ ˜ , where d= -n ni ij k k

k
j

i j

2˜ ( ) ˆ is a vector orthogonal to, k i, i.e. =n k 0˜ · .
Thus, we can decompose the gluon self-energy given in equation (27) into following four
basis as follows

a b g dP = + + +P P P P , 27ij
T
ij

L
ij

n
ij

kn
ij ( )

where α, β, γ and δ, are called as structure functions and can be determined by taking the
appropriate contractions of Πij as,

a b g d= - P = P = - P = PP P P P P
k n

P, 2 ,
1

2
. 28T

ij
n
ij ij

L
ij ij

n
ij

T
ij ij

kn
ij ij

2 2
( ) ( )

˜
( )

Applying these contractions in equations (25) and (27) and comparing them, one can
obtain the structure functions in the limit of small anisotropy as,

a
x

q

q

= + - - + - - +

+ - - - - + -

- - ´
+
-

xC
m z m

k
k z z k z z

k z z z k z z k z z

m z z
z

z

2 48
2 15 19 4 cos 2 2 9 9 4

3 1 5 3 cos 2 3 1 9 1

1

4
1 log

1

1
, 29

n

n

D
2 2

D
2

4 2 4 2

2 2 2 2 3

D
2 2 ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

{( ( ) ( ) ( ))

(( ( )( ) ( ) ( ) ( ) )

( )) }] ( )

b x q
x

x q

x q x

= - - - +

+
+
-

- + - +

xC m z z

z
z

z
z z

cos
2

3

1

2
3cos 2 1

1

4
log

1

1
3 2 cos 2 2 1 30

n n

n

D
2 2 2 2

2 2⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )( ( ) ( ( ) )

( ( ) ( ) ) ) ( )

and

g x q= - - - -
+
-

xC
m

z z z z
z

z12
1 sin 6 4 3 1 log

1

1
, 31n

D
2

2 2 2 2 ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟( ) ( ) ( ) ( )

with = wz
k
.

Using wP k,ij( ) in equation (6) for the anisotropic hot QCD/QGP medium, we obtained
two eigenvalues of permittivity,
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b
= -

¢
K

1 32L 2
( )

and

b g
w

= -
¢
-

K
1 . 33R 2 2

( )

The permeability from the same is obtained as,

m w
a w b

= +
- ¢

k

K

k K

1

,
1 , 34

2 2

2 2( )
( )

where b¢ is defined as,

b b x x q w

w
w

x q w xw xw

¢ = - - - -

-
-

+ - - + +

xC
m

k
k k k

k

k
k k k

12
2 6 6 cos 2 3

3 log
2

1 cos 2 3 2 2 6 . 35

n

n

D
2

3
3 2 2

2 2 2 2 2⎜ ⎟⎛
⎝

⎞
⎠

( ( ) ( )( )

( ( )( ) ) ) ( )

For real values ω the structure functions are real for all ω>k and complex for ω<k.
For imaginary values of ω, all four structure functions are real. Since all the structure con-
stants depend on the Debye mass (mD), any modification in Debye mass will modify all
of them.

It is important to note that òL and òR overlap in the case when anisotropy is not considered
as, γ=0 when ξ=0. Now, having permittivity and permeability, one can analyse the
refractive index n as,

w w m w= n k k k, , , . 36( ) ( ) ( ) ( )

The QGP as a dissipative medium, is expected to have a complex refractive index,
w = +n k n n, i( ) ( ) ( )R I . In the other branches of physics also, it has been observed that a

medium can have a complex refractive index [69–71]. The real part leads to the phase
velocity, ( = kvp n

1 ˆ
( )R

). For <n 1( )R , the phase velocity is greater than the speed of light in

the medium, and if <n 0( )R , the direction of propagation will be opposite to the direction of
phase velocity. On the other hand, the n( )I corresponds to the attenuation, whenever an
electromagnetic wave traverses through the medium. In general, one has >n 0( )I , which
corresponds to the absorption of the wave and =n 0( )I shows no loss in the medium
whereas <n 0( )I , indicates the amplification of the wave in the medium. As we shall see
later, all these three cases for the n( )I could be realized in the case of the anisotropic QGP.
Notably, in the case of anisotropic medium, one can define two polarization states of the
medium that could be realized in terms of òL and òR, leading two different refractive indices
denoted as nL and nR, respectively, and defined as,

w w m w= n k k k, , , . 37L R L R( ) ( ) ( ) ( )

Here, nL has found to have a similar behaviour whereas nR behaves slightly differently as
that of the isotropic case (discussed in details in the results section). Below is a brief dis-
cussion on how one can relate this scenario from the optics (optical crystals) point of view.
The mediums can also be classified as being either isotropic or anisotropic based on their
optical behaviour. Isotropic mediums have equivalent axes that interact with the electro-
magnetic wave in the same manner, regardless of their orientation with respect to the incident
wave. Whereas, the anisotropic mediums have a non-uniform spatial/momentum distribution,
which results in different values being obtained when they are probed from different
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directions. The wave entering the isotropic medium is refracted at a constant angle and passes
through the medium with a single velocity without being polarized. While the wave enters the
anisotropic medium having one preferred direction (optic axis of the crystals and in our case
the beam axis or the direction of anisotropy n̂), it gets polarized and is refracted into two
ways, each travels at different velocities and experience different refractive indices,
depending upon the direction of propagation. This phenomenon is known as birefringence or
double refraction. This has been extensively studied from the optics point of view and several
excellent published articles are present in the literature [23–28]. One among the two waves,
passing through the anisotropic medium, obeys the laws of normal refraction, and travels with
the same velocity in every direction through the medium, i.e. it behaves similarly as that of
the isotropic case. Generally, in optical physics, this wave is called the ordinary wave/ray.
The other wave travels with a velocity that is dependent upon the propagation direction within
the medium termed as the extraordinary wave/ray. If the incident chromo-electromagnetic
wave impact the medium in a direction which is parallel to the preferred direction, both
behave as an ordinary wave and do not separate into two. In the present case, this is same if
one takes θn=0 i.e. the propagation of the particle in the direction of anisotropy. The optical
path lengths of the waves emerging from the medium are identical, and hence, there is no
relative phase shift. One can observe this by calculating the birefringence (B) of the waves
travelling through the anisotropic medium as

= - = -B n n n n , 38o e L R∣ ∣ ∣ ∣ ( )

which is expected to be zero when considering in or parallel to the preferred direction of the
medium (or the optic axis). Here, no and ne are ordinary and extraordinary refractive indices,
respectively. As the values for each component of refractive index can vary, the absolute
value in equation (38) can determine the total amount of birefringence. Fixing the other
parameters one can get birefringence number for a wave of a particular frequency, ω. Let us
now proceed to discuss the NR that has been studied in several branches of physics with
various observables [72–75].

2.4. Description of NRI

The quadratic nature of definition of refractive index, i.e. n2=ò(ω, k) μ(ω, k), implies that it
is not sensitive to the sign of ò(ω, k) and μ(ω, k). It was proposed by Veselago [15] that the
simultaneous change of sign of permittivity (ò(ω, k)) and permeability (μ(ω, k)) corresponds to
a crossover between different branches of the square root, i.e. from w m w= n k k, ,( ) ( ) to

w m w= - n k k, ,( ) ( ) , or from the positive refractive index to the negative one. Next, if
the medium is dissipative, the ò and μ, and the n, are complex quantities. The condition for the
NRI both in isotropic and anisotropic QGP is as follows. Whenever m( )I and ( )I vanish and
both Re(μ) and Re(ò) are negative simultaneously, in a particular frequency range, in this case,
NRI can be realized in the medium. In the following discussion, we shall see that for the
isotropic medium the sign of ò(ω, k) and μ(ω, k) have a significant physical implication.

Note that the phase velocity is defined by

= =
n

vv k k
1

, 39p p( )
ˆ ˆ ( )

R

whose sign is the same as that of nRe( ). But the direction of the energy flow or the Poynting
vector is not affected by the sign of ò and μ. In a medium with small dissipation, the direction
of the energy flow coincides with that of the group velocity
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= v US k, 40g
ˆ ( )

where U is a positive time-averaged energy density and vg=dω/dk. If we have a negative
phase velocity, the direction of the phase velocity can be opposite to the energy flow or the
group velocity, (i.e. the direction of phase velocity can be radially inward and the direction of
energy flow can be radially outward or vice-versa)

< >v v0, 0. 41p g ( )

Employing this a better criterion for the NRI in the isotropic medium has been derived, called
the Depine–Lakhtakia index (nDL) [76],

m m= + n . 42DL ∣ ∣ ( ) ∣ ∣ ( ) ( )R R

Whenever nDL<0, we have NRI region, and also the directions of the phase velocity and the
energy flow are opposite. This is a better indicator for the NRI in the medium that one can use
to investigate the isotropic medium and has been widely used in various branches of physics
[77–81]. This condition works well for the isotropic expansion of the medium as there is a
spherical symmetry but perhaps does not holds good for the anisotropic case because of the
asymmetry in the medium. For the case of anisotropy in the medium, this method can be
employed at extremes, i.e. for the parallel, θn=0 and perpendicular, θn=π/2 cases.
Therefore, in the anisotropic case, we shall employ the former criterion once it is checked for
the isotropic case with nDL.

3. Results and discussions

The expressions obtained in the previous sections have been plotted and shown in different
figures to observe their variation with respect to the frequency (ω) and their angular
dependence. In this section, we shall discuss the important features of these plots. All the
figures have been accommodated with the results coming from all three EoSs, viz, recent
(2+1)-lattice, 3-loop HTL perturbative and non-interacting ideal EoSs and denoted,
respectively, as LB, HTLpt and LO at the temperature T=2Tc.

In the isotropic case, the real and the imaginary part of the refractive index, (n) as well as
the Depine–Lakhtakia index, nDL have been obtained considering, ξ=0 and shown,
respectively, in figures 1–3. It has been found that in the frequency range ω<k, both the

n( )R and the nDL are positive and so the refractive index is positive whereas, in this region,
n( )I is negative which corresponds to the amplification of the wave. For the frequencies,
w w¢ k mp (where w¢mp is the frequency at which μ, given in equation (34), is having a

pole), the nDL and the n( )R are negative while n( )I is zero and hence, this is the region of NR
while there is no dissipation in this range of frequency. In the range from w¢mp to w¢ (to avoid
the bulk, w¢mp is only shown for LO case in the plots), the nDL and the n( )R vanish while

>n 0( )I , and hence, the medium is highly dissipative and opaque for the chromo-electro-
magnetic waves. For w w= ¢ and onwards, =n 0( )I , whereas nDL and the n( )R are positive
and approaching to unity. That shows there is a normal refractive index, but the phase
velocity is greater than the speed of light.

It is important to note that the frequency ranges where the refractive index is negative, i.e.
w wÎ ¢k, mp( ) and where the medium is opaque, i.e. w w wÎ ¢ ¢,mp( ) for the chromo-electro-
magnetic wave are proportional to mD(T), which has different values for different EoSs at
constant temperature. Therefore, the interaction effects that entered through the Debye mass
modified the results which are observed in the ideal case. In fact, the medium interaction
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effects, through mD(T), have been observed to reduce the frequency range of opacity and
the NR.

Next, to understand the same properties in the presence of anisotropy in the hot QCD/
QGP medium, we considered the anisotropy in a particular direction, n̂. The results are
plotted for the real and imaginary parts of nL/R with the anisotropic strength, ξ=0.3 using
equation (37), in figures 4 and 5, respectively. Here, we observed two distinct refractive
indices, which is quite similar to the case of birefringence in uniaxial crystals. Note that, in the
uniaxial crystals, there is one preferred direction, i.e. the optical axis which in our case can be
thought of as the beam axis or the direction of anisotropy n̂. If one considers the propagation
of a particle in the direction of anisotropy i.e. θn=0, both the refractive indices turns out to
be the same. This can be seen in the left panel of figure 6, where we have plotted birefrin-
gence for various angular dependence using equation (38). While in the middle and right
panel of the same figure, we observe a finite degree of birefringence that indicates the
presence of the two distinct refractive indices.

Figure 1. n( )R is plotted for isotropic case (ξ=0) considering various EoSs.

Figure 2. n( )I is plotted for isotropic case (ξ=0) considering various EoSs.
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For different angles (θn=0, π/6 and π/3) as shown in first row of figures 4 and 5, it has
been observed that the nL( )R and the nL( )I follow a similar pattern as we found in the
isotropic case while the nR( )R and the nR( )I while with a slightly different pattern at the
smaller frequencies. In this context, if one relates this phenomenon with the birefringence of
crystals, one can say that nL behaves as the ordinary refractive index while nR as the extra-
ordinary refractive index (depends on the direction of propagation of the particle in the
medium). For smaller range of frequency both nR( )R and nR( )I are positive. As the frequency
is slightly higher, the nR( )I becomes negative while nR( )R remains positive and at ω=k,
both vanish. Afterwards, they follow a similar pattern as for the isotropic case with some

Figure 3. nDL is plotted for isotropic case (ξ=0) considering various EoSs.

Figure 4. Real part of nL and nR for various EoSs at k=0.2GeV, Tc=0.17 GeV and
T=2Tc at different angles.
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quantitative differences in the numbers. Finally, the medium effects incorporated by
employing the EQPM (using both Lattice and HTLpt) showed a similar behaviour as it was in
the ideal case (LO) but modified the observed ranges, in each case considered here.

4. Summary and conclusions

In conclusion, the chromo-electromagnetic response functions of the anisotropic hot QGP/
QCD, in the Abelian limit, have been investigated and their implication in understanding the
dielectric properties of the hot QCD/QGP medium have been studied. In the current
approach, the hot QCD medium interactions are incorporated exploiting the quasi-particle
description of the hot QCD EoS either computed within recent lattice QCD methods or 3-loop
HTL perturbation theory.

Figure 5. Imaginary part of nL and nR for various EoSs at k=0.2GeV, Tc=0.17 GeV
and T=2Tc at different angles.

Figure 6. Birefringence for various EoSs at k=0.2 GeV Tc=0.17 GeV and T=2Tc
at different angles.
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Realizing the hot QGP as an optical medium with the refractive index, we observe a
frequency region where the refractive index could be negative and also an opacity region
where the real part of the refractive index vanishes. In this context, we analysed the Depine–
Lakhtakia index for the isotropic medium and studied its behaviour in detail to probe the
directions of energy flow there. On the other hand, for the anisotropic case depending on the
direction of the anisotropy i.e. for q ¹ 0n , the presence of momentum anisotropy in the
medium causes the split of the eigenstate of the dielectric tensor. Hence, we obtained two
different eigenvalues as òL and òR and two independent refractive indices. Although, in the
case when θn=0, these two eigenvalues overlap even in the presence of anisotropy. These
conditions mimic the response of the uniaxial crystal to the electromagnetic waves. Therefore,
we discuss in details the birefringence which a widely adopted phenomenon studied in optics.
The possibility of NR in the anisotropic case turned out to be quite tricky. Defining the
Depine–Lakhtakia index is perhaps not a very viable way to understand this very crucial
phenomenon. Nevertheless, we looked at the regions where the conditions for the NR based
on the nature of ò and μ, discussed in section 2.4, are satisfied. In both the cases (isotropic or
anisotropic medium), the refractive indices, get significant contributions from the hot QCD
medium effects as compared to the case when QGP is approximated as the ideal system (non-
interacting ultra-relativistic gas of quarks, antiquarks and gluons). Furthermore, the results
after incorporating the hot QCD medium effects through different EoSs followed the similar
pattern but shifted the frequency ranges and modified observed regions of the opacity and the
NR. These effects basically narrowed these ranges as compared to the non-interacting
ideal case.

An important question that may arise regards the significance of the present work to the
experimental observables for the QGP at HIC. To that end, we can utilize the analysis to
compute the polarization energy loss in the hot QCD/QGP medium and finally relate it with
the jet quenching (nuclear modification factor, RAA). Apart from that, the NRI and the opacity
aspects could perhaps be related to the photon production phenomenon in HIC. This is the
matter of immediate future extension of the work. Another interesting future extension of the
work would be to look at the contributions from the collisions and collectivity and near
perfect fluidity of the hot QCD medium/QGP and study its impact on collective plasma
properties and refractive index. Equally importantly, obtaining an expression for the inter-
quark potential in this medium and its phenomenological aspects in terms of understanding
the quarkonia dissociation in the hot QCD medium will be another exciting direction where
our future investigations will focus on.
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