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Abstract

Based on the mean-field determination of the single-particle energy in nuclear
matter that contains naturally a rearrangement term (RT) implied by the
Hugenholtz—van Hove theorem, the folding model of the nucleon optical
potential (OP) is extended to take into account the RT using the effective,
density dependent CDM3Yn interaction. With the exchange part of the
nucleon folded OP treated exactly in the Hartree—Fock manner, a compact
nonlocal version of the folding model is suggested in the present work to
determine explicitly the isospin-dependent, nonlocal central term of the
nucleon OP. To solve the optical model (OM) equation with a complex
nonlocal OP, the calculable R-matrix method is used to analyse the elastic
neutron and proton scattering on 40’48Ca, QOZr, and 2°®Pb targets at low
energies. The inclusion of the RT into the folding model calculation of the
nonlocal nucleon OP was shown to be essential for the overall good OM
description of elastic nucleon scattering. To validate the nonlocal version of
the folding model, the OM results given by the nonlocal folded nucleon OP are
also compared with those given by the global parametrization of the nonlocal
OP using the analytical nonlocal form factor suggested by Perey and Buck.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Over a wide range of the single-particle (SP) energies, the nucleon motion in medium is
overwhelmingly governed by the nuclear mean field, known as the shell-model potential for
bound states and the optical potential (OP) for scattering states. The mean-field, SP potential
is also the key quantity in the many-body studies of the equation of state of nuclear matter
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(NM) as well as the structure of finite nuclei [1, 2]. The nucleon OP in the NM limit has been
well studied in the Brueckner—Hartree—Fock (BHF) calculations of NM using the free
nucleon—nucleon (NN) interaction [2-5], or the mean-field calculation of NM on the Hartree—
Fock (HF) level using different choices of the effective NN interaction [6—10]. The mean-field
prediction for the nucleon OP in the NM limit provides a vital input for the microscopic
models of the nucleon OP of finite nuclei. In particular, the widely-used folding model of the
nucleon OP (see, e.g. [10—13]).

The microscopic many-body studies of NM have shown the important role by the Pauli
blocking effects, and the increasing strength of the three-body interaction as well as other
higher-order NN correlations at high densities of NM [2]. These in-medium effects are
effectively taken into account by the density dependence explicitly embedded in different
versions of the effective NN interaction used in the nuclear structure and nuclear reactions
studies. In the present work, we focus on the CDM3Yn density dependent versions [14] of the
M3Y-Paris interaction [15] which have been successfully used in the HF studies of NM [6, 7,
16-18] as well as in the folding model calculation of the nucleon and nucleus—nucleus OP
[11, 12, 14, 19-21]. In general, the folding model calculation of the nucleon OP is done on
the HF level, and the folded OP lacks, therefore, the higher-order rearrangement term that
arises naturally in the Landau theory of infinite Fermi systems [22]. Such a rearrangement
term (RT) also presents in the SP potential when it is determined from the total energy of NM
using the Hugenholtz—van Hove (HvH) theorem [23, 24], which is exact for all the interacting
Fermi systems, independent of the interaction between fermions. In our recent HF study of
NM [10], the density dependence of the CDM3Yn interaction (with n = 3, 6) was modified to
reproduce on the HF level the SP potential obtained from the total NM energy using the HVH
theorem. A strong impact of the RT on the strength and shape of the folded nucleon OP
was found [10] essential for a good optical model (OM) description of the elastic
n+2°®Pb scattering at energies of 30.4 and 40 MeV.

Because the standard local approximation [11] was used in [10] to localize the (Fock-
type) exchange term of the folded OP, it remains uncertain how the RT affects the OM results
of elastic nucleon scattering when the antisymmetrization of the nucleon—nucleus system is
exactly taken into account, and the folded nucleon OP becomes nonlocal. Although some
versions of the nonlocal folding model with the exact treatment of the exchange term
are already available in the literature (see, e.g. [13]), none of them has included the RT into
the HF-type folding model calculation. Therefore, the main goal of the present study is to
explore the impact of the rearrangement contribution to the OM description of nucleon elastic
scattering by the nonlocal folded nucleon OP that treats the exchange kernel exactly. For this
purpose, a compact nonlocal version of the folding model of the nucleon OP is suggested,
where the RT is taken into account using the modified density dependence of the CDM3Yn
interaction suggested in [10]. As an important mean-field aspect of the SP potential, the RT is
always explicitly taken into account in numerous variational HF calculations of nuclear
structure using the effective density-dependent NN interaction. However, the RT has been so
far neglected in most of the HF-type folding model calculations of the nucleon OP, i.e. the
single-nucleon potential at positive energies. Our present research is expected to shed light on
the important role of the RT in the OM description of elastic nucleon scattering using the
nonlocal folded OP. Furthermore, a consistent folding model for the nonlocal nucleon mean-
field potential including the RT should also be of interest for the studies of nuclear reactions at
low energies, in particular, those relevant for the nuclear astrophysics, where the effect of the
nonlocality of the nucleon—nucleus potential has been shown to be quite significant [25, 26].

In general, solving the Schrédinger equation with a nonlocal potential readily leads to an
integro-differential equation that is more complicated to solve than a standard differential
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equation with a local potential. For the elastic nucleon scattering, the use of the nonlocal OP
leads to an explicit angular-momentum dependence of the integral equation. At variance with
the traditional methods for the solution of the integro-differential equation, we have chosen in
the present work the calculable R-matrix method [27] to solve the OM equation with the
nonlocal folded nucleon OP. This R-matrix method was recently extended [27, 28] to include
the Lagrange mesh and Gauss—-Legendre quadrature integration that significantly simplify the
numerical calculation. This method was tested in our recent OM analysis [29] of elastic
nucleon scattering on different targets at energies up to 40 MeV, using the phenomenological
nonlocal nucleon OP [30-33]. To validate the present nonlocal folding model of the nucleon
OP, the OM results given by the nonlocal folded OP are also compared with those given by
the global parametrization of the nonlocal nucleon OP suggested recently [31-33] using the
analytical form of the Perey—Buck nonlocal form factor [30].

2. Single-particle potential in nuclear matter

Because an effective, density dependent NN interaction is the key input for the folding model
calculation of the nucleon OP, we discuss first the density dependent CDM3Yn interaction
which is based on the mean-field description of the SP potential in NM. Originally, para-
meters of the density dependence of the CDM3Yn interaction were parametrized [14] to
reproduce the saturation properties of symmetric NM in the HF calculation. Later on, these
parameters were updated to include a realistic isovector part [10, 12]. On the HF level, the
CDM3Yn interaction is proven to give a good description of the EOS of NM [18]. As an
illustration, we show in figure 1 the HF results for the NM energy per nucleon obtained with
the CDM3Yn interaction in comparison with the results of the ab initio variational calculation
of NM using the Argonne V18 interaction [34]. One can see a nice agreement of the HF
results with those of the ab initio calculation, especially, at low densities up to the saturation
density po ~ 0.16 fm > which is known to be accessible by elastic nucleon-nucleus scat-
tering. In the present work, we focus particularly on the impact of the RT in the folding model
description of the nonlocal nucleon OP, given a significant contribution by the RT to the local
folded nucleon OP shown in [10].

In general, according to Landau theory for an infinite system of interacting fermions [22],
the single-nucleon energy is determined [10] as the derivative of the energy per nucleon
e = E/A of NM with respect to the nucleon momentum distribution 7n,(k) as

242
0e ﬁ—k + U, (p, k), where 7 = n or p. (D)

E-(p. k) = _
>R =50 "

E.(p, k) is, thus, the change of the energy of NM at the nucleon density p caused by the
removal or addition of a nucleon with the momentum k. The SP potential U,(p, k) consists of
both the HF and rearrangement terms

U (p, k) = U (p, k) + UKD (p, k). )

The explicit expressions of U.(k) obtained in the HF calculation of NM using a density
dependent NN interaction have been given in [10]. At the Fermi momentum (k — k), E (kr)
determined from equations (1) and (2) is exactly the Fermi energy given by the Hugenholtz—
van Hove (HvH) theorem [23]. We note that the HvH theorem is satisfied on the HF level
only when the effective NN interaction is density independent, with the RT equal zero
[10, 35]. In the mean-field calculation (1)—(2) of the SP potential, the RT originates naturally
from the density dependence of the effective NN interaction that presumably accounts for the
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Figure 1. Energy per nucleon of the symmetric NM and pure neutron matter given by
the HF calculation using the density dependent CDM3Yn interaction. K is the nuclear
incompressibility obtained at the saturation density py &~ 0.16 fm~>. The circles are
results of the ab initio variational calculation by Akmal, Pandharipande and Ravenhall
(APR) [34].

higher-order NN correlations as well as the three-body force. Indeed, the RT was shown in the
BHF studies of the SP potential in NM [1, 4, 5] to be due to the higher-order terms like the
second-order diagram in the perturbative expansion of the mass operator or contribution from
the three-body forces.

For the spin-saturated NM, the direct (D) and exchange (EX) terms of the central part of
the CDM3Yn interaction [12, 14] are used explicitly in the HF calculation of the SP potential
in NM

vpEx) (s ) = B (p)vg X (s) + F(p)ve)F0(s) 1 - 7o A3)

The radial parts of the isoscalar (IS) and isovector (IV) two-body force vg)(pi(s) are kept

unchanged as determined from the original M3Y-Paris interaction [15], in terms of three
Yukawas. The parameters of the IS density dependence Fy(p) were determined in the HF
calculation [14] to reproduce the empirical saturation point of symmetric NM, with the
nuclear incompressibility K around 230 MeV (see figure 1). The parameters of the IV density
dependence F(p) were determined and fine tuned [10] by the isospin dependence of nucleon
OP in asymmetric NM given by the BHF calculation by Jeukenne, Lejeune and Mahaux
(JLM) [36] and folding model description of the charge exchange (p, n) scattering to the
isobar analog states in medium-mass nuclei [21]. Based on the exact expression of the RT of
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the SP potential given by the HvH theorem at different densities of NM, a compact method
was suggested [10] to account for the RT on the HF level. Namely, the density dependence of
the CDM3Yn interaction is added by a correction term originated from the RT,
Foay(p) — Foay(p) + AFyuy(p), so that the total SP potential can be calculated on the
standard HF level

U (p, k) = Z (koT, k'c'T'|vplkoT, k'a'T"y + (koT, k'c'T'|vex|k'oT, ka't"y, (4)
k/a/_[.l
where |koT) are the ordinary plane waves. Treating explicitly the isospin dependence, the SP
potential (4) can be expressed [10] in terms of the IS and IV components as

U.(p, k) = [Fo(p) + ARMIUMY (p, k) + [F(p) £ ARMITMY (p, k),  (5)

where (—) sign pertains to 7 = p and (+) sign to 7 = n. UM*Y) and UMY are the IS and TV
parts of the SP potential, respectively, given by the HF calculation of NM using the original
density independent M3Y interaction. More details on the density dependent functions
Foay(p), AFoy(p), and U(%I;Y)(p, k) are given in [10]. Because the original M3Y interaction
is momentum independent, the momentum- or energy dependence of the SP potential (5) is
entirely determined by the exchange terms of U§}{;™. It is obvious from equation (1) that the
in-medium nucleon momentum k is determined self-consistently from the SP energy E. as

k= \/ ZEE . ) = Ui, ). ©)

With the density dependence of the CDM3Yn interaction fine tuned to reproduce the
saturation properties of NM as shown in figure 1, the present HF approach provides a
continuous description of both the SP potential for nucleons bound in NM, U.(p, k) with
k < kg, and the nucleon optical potential, U.(p, k) with k > kz. This is the well-known
continuous approximation for the SP potential [1, 37], where the nucleon OP in NM is
determined as the mean-field potential felt by a nucleon incident on NM at the energy E > 0.
Complying with the Landau theory for a system of interacting fermions [22], the nucleon OP
(or the SP potential at positive energies) is also determined by the relations (1) and (2), so that
the nucleon OP consists again of both the HF term and RT. The IS part of the nucleon OP, i.e.
the nucleon OP in symmetric NM is determined as

Uo(E, p) = [Folp) + AFRy(pIUMY (p, k(E, p)
[Fo(p) + AF@I|I + [5Gy ®E prviForde| @)

where JP = f VR dr, Ji(x) = 3j,(x) /x = 3(sinx — xcosx)/x%  (8)

k(E, p) is the in-medium momentum of the incident nucleon propagating in the mean field of
bound nucleons in NM, and is determined by the same relation (6) but with E. replaced by the
incident energy E. Within the time-independent HF formalism, the energy- and momentum
dependences of the nucleon OP are treated on the same footing via the relation (6) as
illustrated in figure 2. Therefore, an important constraint for the present study is that at E > 0
the energy dependence of the potential (7) should agree reasonably with the observed energy
dependence of the nucleon OP. The total SP potential in symmetric NM (7) evaluated at py
using the CDM3Y6 interaction is compared with the empirical data [38—40] in figure 2. One
can see that the inclusion of the RT significantly improves the agreement with the empirical
data at low energies (E < 50 MeV). The HF results shown in figure 1 also confirms that at
low energies the energy dependence of the nucleon OP is mainly determined by the Fock-type
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Figure 2. Single-nucleon potential in symmetric NM (7) determined at p ~ p, with and
without the RT using the CDM3Y6 interaction, in comparison with the empirical data
for the nucleon OP taken from [38] (circles), [39] (squares), and [40] (triangles). The
momentum dependent factor g(k) was obtained [10] by the X2 fit of the calculated
potential (7) at E > 0 to the empirical data (solid line).

exchange term of the nucleon OP, i.e. by the antisymmetrization effect. At higher energies,
the agreement worsens, and this is a well expected effect, because the energy dependence of
the nucleon OP in NM was shown in the microscopic BHF calculation [37] to originate not
only from the exchange part, but also from the direct part of the Brueckner G-matrix. To have
a realistic momentum dependence of the nucleon OP at higher energies or momenta, the
nucleon OP given by the HF calculation was scaled [10] by a momentum dependent function
g(k) determined from the XZ fit to the empirical data, U(p, E) = g(k(E, p))Uy(p, E) (see
figure 2). In the present work, we focus on the folding model analysis of elastic nucleon
scattering at low energies (E < 45 MeV), and assume g(k) ~ 1 in the folding calculation of
the nucleon OP.

3. Folding model of the nucleon optical potential

3.1. Nucleon folded OP with a nonlocal exchange kernel

The folding model of the nucleon OP is known to generate the first-order term of the
microscopic nucleon OP within the Feshbach’s formalism of nuclear reactions [41]. The
success of the folding approach in the description of elastic nucleon—nucleus scattering at low
and medium energies confirms that the first-order term of the Feshbach’s microscopic OP is
indeed the dominant part of the nucleon OP. Applying the local density approximation
(LDA), commonly adopted in the HF calculations of nuclear structure, the plane waves
|k'a’7") in the SP potential (4) can be replaced by the SP wave functions |j) of the target
nucleons. Then, the central OP of the elastic nucleon scattering on the target A can be
evaluated as
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jeA

The antisymmetrization of the nucleon—nucleus system is done in the HF manner, taking into
account explicitly the knock-on exchange. As a result, the exchange term of the nucleon—
nucleus potential (9) becomes nonlocal, and the OM equation for the elastic nucleon
scattering at the energy E is an integro-differential equation

2
[—ﬁ—w + Up(R) + Vc(R) + Vs.o.(R)(L-U)]X(R)
2u (10)

+ [K. R nx&r = Ex®),

where V;, (R) is the spin—orbit potential, and the Coulomb potential V(R) is included only
for elastic proton scattering. The scattering wave function x (R) is obtained from the solution
of the OM equation (10) at each nucleon—nucleus distance R. The energy dependent mean-
field part consists of the local direct potential Up(R) and the exchange integral with a
nonlocal, density dependent kernel K (p, R, r). The mean-field part of the nucleon OP can be
expressed, in a manner consistent with the Lane representation, in terms of the isoscalar and
isovector parts as

Up(R) = UR(R) £ UR(R),
K(P’ R? r):KIS(p7 R? r) iKIV(P’ R? r)7 (11)

where (—) sign pertains to proton OP and (+) sign to neutron OP. The IS and IV terms in
equation (11) are determined using, respectively, the IS and IV parts of the nucleon density
matrices as

URavy®) = [ 10,(1) = 0,183 0n) (01 ),
Kisav)(p, R, 1) =[p,R, 1) £ p,R, P)veoor (05 9), (12)

where s = |R — r|. The nucleon density matrix is determined from the SP wave functions of
target nucleons as

p(r,r') = Z <p(j.7)*(r)gp(j”(r’), with p (r) = p.(r,r), and 7 = n, p. (13)
j€A

Within the adopted LDA, the parameters of the density dependence of the CDM3Yn
interaction determined in the HF calculation of NM are readily used in the HF-type folding
model calculation of the nucleon OP of finite nuclei (9), where the density dependent
functional Fyq)(p) + AFoq)(p) is given consistently by the local target density p(r)
appearing in equations (11) and (12). The direct potential Up(R) is obtained simply by folding
the local nucleon density matrices with the direct part v(%(m) (p, s) of the density dependent
CDM3Yn interaction (see more details in [11]), including the contribution of the
rearrangement term. We show here the explicit expression of the IV part of the direct
folded potential

UR® = [10,0) = p,OIF @) + ARGEIEEr, (14)

where the (£) signs are used in the same way as in equation (11). One can see that the
contribution of the RT to the IV part of the direct potential Uiy via AF,(p) is the same for both
the proton and neutron OP.
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Note that the energy dependence of the folded nucleon OP is implicitly embedded in the
exchange integral of equation (10) when the nonlocal exchange term is treated exactly. This
procedure is cumbersome and involves the explicit angular-momentum dependence of the
exchange kernel. Using the multipole decomposition of the radial Yukawa function in the
exchange component of the CDM3Yn interaction (3)

4
V(E))((on(s) = Z

R, Y R)Y, (7 15
v A1 00(01)( r) /\H( ) A;() (15)

we obtain, after integrating out the angular dependence, the following radial OM equation for
each partial wave L

2 d L+
2u drR? R?

+ A Voo (R)] X, (R) + fooo Kiy(p, R, r)xp,(r)dr = Ex;;(R),  (16)

]XU(R) + [Up(R) + Ve(R)

where the s.0. coupling coefficient A;; = LifJ=L + 1/2,andA;; = —L—-1ifJ=L — 1/2.
One can see that the use of the nonlocal OP leads to an explicit angular-momentum dependence
of the integral equation for the scattering wave function. The nonlocal exchange kernel is
determined explicitly as

Kiy(p, R, ) = [Kf5(p, R, 1) £ K[ (p, R, D], (17)

u R ) + up Ru )

KE (o, R, 1) =Fo(p(r) + AFRo(p)IE, ot )

2
x (2 + DX R, )(’6 (’) é) , (18)

(”)(R)u(”)(r) (p)(R)u(p)(r)

K (o, R, 1) = [Fi(p(r) £ AR(p(r)]5, L0 Rr"” dl

2
x (2 + DX (R, r)(é’ (l) 6\) . (19)

Here u)(r) is the radial part of the SP wave function <p(T) (r) of the target nucleon. Note that
in equations (17) and (19), the (—) sign is used with the proton OP and (4) sign with the
neutron OP. Thus, the contribution of the RT to the IV part of the exchange kernel is also the
same for both the proton and neutron OP as found for the IV part of the direct potential (14).
The explicit representation of the nucleon OP in terms of the IS and IV parts is helpful for the
investigation of the contribution of valence neutrons to the OP. Furthermore, the form factor
(FF) of the charge exchange (p, n) reaction to the isobar analog state (IAS) is determined, in
the Lane isospin coupling scheme, entirely by the IV part of the nucleon OP [21, 42].
Therefore, the present nonlocal folding model can be used to calculate the nonlocal charge
exchange FF in the future folding model studies of the (p, n) reaction to IAS.
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3.2. Local approximation for the folded nucleon OP

Although it is established that the nucleon OP is nonlocal in the coordinate space due to the
Pauli blocking (as shown above) and the multichannel coupling, over the years the nucleon
OP is mainly assumed in the local form for the OM analysis of elastic nucleon scattering. The
local OP that describes properly the nucleon elastic scattering is the key input for the distorted
wave Born approximation (DWBA) or coupled channel (CC) analyses of different direct
reaction processes induced by the incident nucleon. Here the (bare) real OP accounts for the
purely elastic scattering and imaginary OP accounts for the absorption of flux by those
nonelastic reaction channels that are not explicitly taken into account in the CC calculation. It
is of interest, therefore, to assess the accuracy of the local version [11, 12] of the nonlocal
folding model suggested in the present work.

Applying a local WKB approximation [43, 44] for the change in the scattering wave
function in the OM equation (10) induced by the exchange of spatial coordinates of the
incident nucleon and that bound in the target

xXr) = xR + 5) = x(R)exp (ik(E, R).s), (20)

the exchange integral in equation (10) can be evaluated independently using the nonlocal
nucleon density matrix. This gives rise to a local exchange term of the folded nucleon—
nucleus potential (9) that depends explicitly on energy via the local momentum of the
incident nucleon k(E, R)

Uex(E, R) = URX(E, R) + UKN(E. B),
Utsiv) (E. R) = f [p,R. 1) & p, R, P)jy (k(E, R)S)vioon (o> A, 21)

where the (4) signs are used in the same way as in equation (11). The local momentum k(E,
R) of the incident nucleon propagating in the target mean field is determined from the real part
of the total folded potential U(E, R) = Up(R) + Ugx(E, R) as

k*(E, R) = %[E — Re U(E, R) — Vc(R)]. (22)

The method used to evaluate the direct (12) and exchange (21) folded potentials has been
discussed earlier (see, e.g. [11]). Using a realistic local approximation for the nonlocal density
matrix in the exchange potential (21), the nuclear density p () obtained in any structure model
or directly deduced from the electron scattering data can be used in the folding calculation of
the nucleon OP. A preliminary folding model study of elastic n+>°*Pb scattering using the
neutron OP obtained with the local approximation (21) for the exchange term has shown a
significant contribution of the RT to the nucleon folded OP [10]. It should be noted that the
RT is commonly taken into account in the variational HF calculation of nuclear structure
using some density dependent NN interaction. However, the RT has not been included so far
in most of the HF-type folding model calculations of the nucleon OP, and the main goal of the
present work is to show the impact of the RT on both the local and nonlocal folded
nucleon OP.
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4. Elastic nucleon scattering on “%*8Ca, °°Zr, and 2°®Pb targets

The new version of the folding model for the nonlocal and local nucleon OP discussed above
in sections 3.1 and 3.2 has been used in the present work to calculate the nucleon OP for the
OM study of the elastic neutron and proton scattering on ***3Ca, *°Zr, and 2°*Pb targets. One
can see from equations (12)—(13) that the folding calculation of the nonlocal OP requires
explicitly the single-particle wave functions of all nucleons bound in the target. We have used
here the SP wave functions given by the HF calculation of finite nuclei, using a complete
basis of spherical Bessel functions [45] and the finite-range D1S Gogny interaction [46].

In the context of a complex folded OP, it is necessary to have a realistic complex
parametrization of the density dependent CDM3Yn interaction. For this purpose, the ima-
ginary density dependence of the CDM3Yn interaction was determined using the same
density dependent functionals Fy)(p) as those used in equation (3) for the real interaction,
with the parameters determined at each energy to reproduce on the HF level [12] the energy
dependent imaginary nucleon OP given by the JLM parametrization of the BHF results for
NM [36]. The folded complex nonlocal nucleon OP as well as its local version were further
used as the input for the OM calculation of elastic nucleon scattering using the extended R-
matrix method [27]. In the present OM calculation, the nonlocal mean-field part of the
nucleon OP is supplemented by the local Coulomb and spin—orbit potentials taken from the
global systematics CH89 of the nucleon OP [39].

The reliability of the folded OP in the OM study of elastic nucleon scattering is best to be
probed in the analysis of elastic neutron scattering from a heavy target at low energies, where
the Coulomb interaction is absent and the mean-field dynamics is well established. The elastic
n+2*Pb scattering data accurately measured over a wide angular range at energies of 26,
30.4, and 40 MeV [47-49] turned out to be a very good test ground for this purpose. Because
the parameters of the (real) CDM3Yn interaction were adjusted by the realistic HF description
of NM as shown in figure 1, no renormalization of the strength of the real folded potential
(12) was allowed in the present OM analysis to test its proximity to the real nucleon OP as
well as the impact of the RT to the real folded OP. While the imaginary folded nucleon OP
based on the JLM parametrization of the G-matrix interaction delivers a good OM description
of elastic proton scattering, it gives consistently a stronger absorption in the neutron OP, and
an overall renormalization of the imaginary neutron folded potential by a factor ~0.8 is
needed for a good OM description of elastic neutron scattering data at the considered ener-
gies. From the OM results obtained with the CDM3Y6 interaction shown in figure 3 for
elastic n+2°*Pb scattering one can see that the inclusion of the RT into the folding model
calculation is essential for a good OM description of the data over the whole angular range.
We note that the results obtained with the complex CDM3Y3 and CDM3Y4 interactions are
almost the same as those shown in figure 3, with a minor difference that is hardly noticeable
on the logarithmic scale. In the absence of the Coulomb interaction, the oscillation pattern of
the elastic neutron cross section over the whole angular range can be reproduced only with the
inclusion of the RT. It can also be seen in figure 3 that the local approximation (21)—(22) for
the exchange term of the folded nucleon OP is quite reasonable, and the local folded OP with
the RT included also gives a reasonable OM description of the data. About the same impact
by the RT and good accuracy of the local folding approach can be seen in the OM results for
elastic neutron scattering on the medium-mass ****Ca and *°Zr targets (see figure 4).

The elastic p—|—208Pb scattering data measured at 30.4, 35, and 45MeV [53, 54] are
compared in figure 5 with the OM results given by the same three versions of the folded OP
as those discussed in figure 3. The inclusion of the RT into the folding model calculation was
found to be also vital for a good OM description of the elastic proton scattering data over the

10



J. Phys. G: Nucl. Part. Phys. 47 (2020) 035106 D T Loan et al

10°

do/dQ (mb/sr)
6\0

4
10 Nonlocal without RT
—— Nonlocal with RT
- Local with RT

0 20 40 60 80 100 120 140 160 180
G)C_m_(deg)

Figure 3. OM description of the elastic n+2%pb scattering data measured at 26, 30, and
40 MeV [47-49] given by the complex nonlocal folded OP obtained with the
CDM3Y6 interaction with or without the inclusion of the RT, in comparison with that
given by the local folded OP with the RT included.

Neutron elastic scattering

------------ Nonlocal without RT
“ Nonlocal with RT
Ca - Local with RT

16.9 MeV

......

.......

do/dQ (mb/sr)

0 20 40 60 80 100 120 140 160 180
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Figure 4. The same as figure 3 but for the data of the elastic neutron scattering on
4048Ca and *°Zr target measured [50-52] at 17 and 24 MeV, respectively.
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Figure 5. The same as figure 3 but for the elastic p+>°*Pb scattering data measured at
30, 35, and 45 MeV [53, 54]. The calculated elastic scattering cross sections and data
points are plotted in ratio to the Rutherford cross section at the corresponding angles.

whole angular range as is seen in figure 5. At the forward angles, the effect of the RT in the
elastic p+2°Pb scattering is slightly weaker than that found in the elastic n+>°*Pb scattering
because the elastic cross section there has a significant contribution from the Coulomb
scattering which is not affected by the inclusion of the RT in the folding calculation. The
same impact by the RT, but with a more pronounced difference between the results given by
three versions of the folded OP can be seen in the OM results for the elastic
p+*Ca scattering shown in figure 6. For this double magic target, the results of our folding
model analysis show unambiguously the importance of taking into account both the RT and
nonlocality of the folded nucleon OP. Although, the nonlocal and local folded OP’s give
about the same OM results for the elastic proton scattering at the forward- and medium
angles, the data at the backward angles can be properly reproduced only by the nonlocal
folded OP, especially at the proton energy of 45 MeV. The effect of the RT found here in the
folding model description of elastic nucleon-nucleus scattering at low energies should be
complementary to the rearrangement of the SP configurations established in the single-
nucleon removal reactions [55].

5. Microscopic nonlocal folded OP versus the global parametrization

Although the practical OM calculations of elastic nucleon scattering are usually done using
some global parameters of the local nucleon OP (see, e.g. [39, 57]), some OM studies have
been aimed to explore the use of an explicit nonlocal nucleon OP and deduce the global
parameters for that purpose. We note here the early work by Perey and Buck (PB) [30] and
the recent revision of the PB parametrization by Tian, Pang, and Ma (TPM) [31], where the
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Figure 6. The same as figure 5 but for the elastic p+*°Ca scattering data measured at
30, 35, and 45 MeV [56].

nonlocal nucleon OP is built up from a Woods—Saxon form factor multiplied by a nonlocal
Gaussian. While the PB parameters were adjusted to the best OM fit of the two data sets
(elastic n+2%8pp scattering at 7.0 and 14.5 MeV), those of the TPM potential were fitted to
reproduce the data of elastic nucleon scattering on >2S, °Fe, '*°Sn, and 2°*Pb targets at
energies of 8 to 30 MeV. More recently, an energy dependence has been introduced explicitly
into the imaginary parts of the PB and TPM potentials, dubbed as PBE and TPME potentials,
with the parameters adjusted to achieve the overall good OM description of nucleon elastic
scattering on “°Ca, °°Zr, and ***Pb targets at energies E of 5-45MeV [32, 33]. Given the
microscopic nucleon folded OP constructed from the realistic SP wave functions of the target
nucleons using the mean-field based density dependent CDM3Yn interaction, it is of interest
to compare its predicting power with that of the global parametrization. The OM results for
the elastic n-+2°®Pb scattering at 26, 30.4, and 40 MeV given by the nonlocal folded OP
obtained with the CDM3Y6 interaction are compared with the OM results given by the PB
parametrization of the nonlocal neutron OP [30] and the recent energy dependent version PBE
[32] in figure 7. One can see that the nonlocal folded OP performs quite well, with the
predicted elastic cross section agreeing closely with the data like that given by the global PBE
potential. As expected, the original (energy independent) PB parametrization fails to account
for these data that were measured at energies higher than those considered by Perey and Buck
[30]. It can be seen in figure 8 that the elastic n+>°®Pb cross section predicted by the nonlocal
folded OP agrees with the data slightly better than that predicted by the global TPM and
TPME parametrizations of the nonlocal OP. Thus, these results confirm nicely the reliability
of the present nonlocal version of the folding model in the calculation of the nucleon OP for
medium and heavy targets. The model can be used, therefore, to predict the complex nucleon
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Figure 7. OM description of the elastic n+2%pb scattering data measured at 26, 30, and
40 MeV [47-49] given by the nonlocal folded OP obtained with the CDM3Y6
interaction including the RT, in comparison with the OM results given by the original
PB parametrization of the nonlocal neutron OP [30] and its recent energy dependent
version PBE [32].

OP of the short-lived, unstable nuclei (when no elastic scattering data are available) for further
use in the direct reaction analysis, provided the realistic SP wave functions are available for
these radioactive nuclei, which are not an easy task for the nuclear structure models.

6. Summary

The folding model of the nonlocal nucleon OP, with the exchange potential calculated exactly
in the HF manner, is generalized to include the rearrangement term using the CDM3Yn
interaction with a complex density dependence. The obtained OM results for the elastic
neutron and proton scattering on ****Ca, *°Zr, and *°®Pb targets at different energies have
shown that the inclusion of the RT into the folding model calculation of the nucleon OP is
essential for a good OM description of the considered elastic data. Although the RT is widely
taken into account in numerous variational HF calculations of nuclear structure using the
effective density-dependent NN interaction, the results of the present work have confirmed,
for the first time, the important role of the RT in the (local and nonlocal) HF-type folding
model of the nucleon OP.

The OM results given by the complex nonlocal folded OP with the RT included are
further compared with those given by the global parametrization of the nonlocal nucleon OP
suggested recently [31, 32], based on the analytical nonlocal form factor suggested many
years ago by Perey and Buck [30]. This comparison has confirmed the reliability of the
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Figure 8. The same as figure 7 but in comparison with the OM results given by the
TPM parametrization of the nonlocal neutron OP [31] and its energy dependent version
TPME [32].

present nonlocal folding model for the medium and heavy targets, and the model can be used,
therefore, to predict the nucleon OP of the short-lived unstable nuclei (for which no elastic
scattering data are available) using the realistic SP wave functions given by the nuclear
structure studies.
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