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Abstract
Existing intelligent gearbox fault diagnosis approaches have two shortcomings: (a) their 
performance is mostly confined to manual handcrafted features, and (b) they follow a general 
assumption that the distribution of the data in the source domain (labeled data on which 
the model is trained) is similar to the target domain (unlabeled data on which the model is 
tested), which might not be the case in real-world applications. Substantial human expertise 
and domain knowledge is required for manual feature extraction, and moreover, deploying 
the same model for a target domain whose distribution is different from the source domain 
would lead to poor generalization. Since deep learning methods can automatically learn 
high dimensional feature representations from raw measurement data, this paper proposes 
a novel deep learning-based domain adaptation (DA) method for gearbox fault diagnosis 
under significant speed variations. A deep convolutional neural network is used as the main 
architecture. The paper proposes to minimize the summation of cross-entropy loss (between 
the labeled source domain data) and maximum mean discrepancy loss (between the labeled 
source and unlabeled target datasets) simultaneously to adapt the source domain model to 
be applied in the target domain. The proposed deep learning DA approach is evaluated using 
experimental data from a gearbox under variable speeds and multiple health conditions. An 
appropriate benchmarking with both traditional machine learning methods and other DA 
methods demonstrate the superiority of the proposed method.
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1.  Introduction

The gearbox is a key mechanical component in any modern 
rotating machinery and its performance is closely related to the 
operation safety. To guarantee continuous operation without 
service interruption, real-time monitoring methods for gearbox 
fault diagnosis have received considerable attention [1, 2]. The 
Industry 4.0 initiative has enabled increased industrial assets 
[3–6]. Various intelligent algorithms have been proposed for 
fault diagnosis in the past decade, such as K-nearest neighbor 
[7], self-organizing maps (SOMs) [8], artificial neural networks 
[9], support vector machines [10], etc. Since these methods 
require pre-research expertise to extract meaningful fault fea-
tures from raw time domain vibration data, effective machinery 
fault detection and diagnosis is quite challenging under consid-
erably complex working environments [11, 12]. Hence, auto-
matic extraction of fault features from gearbox measurement 
signals without human interference is a necessary requirement 
[13]. For this reason, in recent years, deep learning methods 
have attracted greater attention from academia and industry, 
since they can automatically learn features from raw measure-
ment data without relying on the identification of features by 
resorting to expert knowledge. However, evolving conditions in 
industrial environments such as variable operating conditions of 
a machine, maintenance interventions, upgrading technological 
and operational plans, etc. may deteriorate the fault detection 
performance of the trained algorithms [14, 15].

Considering the gearbox fault detection and diagnosis, for 
instance, the training samples (source domain) for developing 
the classifier model might be collected under one shaft speed/
motor load. Nevertheless, the data in the actual testing con-
ditions (target domain) might be from a gearbox operating 
under a different motor load/shaft speed. In this case, even 
though the system (gearbox) remains unchanged and so do the 
categories of possible fault types, the application environment 
(operating conditions) has changed. This simply implies that 
the feature distributions of both datasets are now dissimilar. 
Such a scenario, where the distribution of training data always 
differs from that of testing data, is very likely to be observed 
in practical industrial applications [16]. As a result, the 
intelligent diagnosis model built using the training samples 
(source domain data) will lead to poor generalization effects 
when applied directly to the target domain data. The difficulty 
faced by the source domain classifier model to correctly clas-
sify target domain samples happens due to the domain-shift 
problem [17]. This domain-shift problem is illustratively 
explained in figure 1. It can be observed from figure 1 that 
the source domain classifier model will have a tendency to 
misclassify the unlabeled data from a new operating condition 
(target domain) as it has not observed similar patterns in the 
training period. The fundamental reason for the observation of 
the domain-shift phenomenon in figure 1 is that the training 
and testing data are not following the same distribution or are 
not a part of the same feature space.

An intuitive solution to the above problem is to retrain the 
data-driven model by adding data under the new operating 
condition to the training set. Doing so implies that intelligent 
algorithms require periodic retraining of the tuned model. 

However, this solution is infeasible in real-world applica-
tions, since limited data might be available under new oper-
ating conditions, and often the fault data may be unlabeled. 
Since industrial machines are rarely run to failure to avoid 
catastrophic accidents, it is difficult to obtain labeled fault 
data from industrial machines. Hence, domain adaptation 
(DA) methods are implemented to tackle this problem of dif-
ferent feature distributions (domain shift). DA methods aim 
to adapt a classifier built using source domain data (labeled 
information) for use on a different but related target domain 
(unlabeled information). The fundamental working principle 
in most of the DA methods is to align both the distributions 
(source and target) in intermediate feature space.

Recently, many studies have been conducted in the devel-
opment of DA algorithms, particularly in the area of object 
recognition, image classification, feature learning and natural 
language processing [18]. Zhang et  al [19] implemented 
adaptive batch normalization (AdaBN) coupled with CNN to 
improve the DA ability on raw vibration signals for REB fault 
diagnosis. Zhang et  al [20] proposed training a CNN using 
the concept of batch normalization with a very small batch 
size value, almost equal to the number of health classes. The 
authors validated the DA technique on the bearing dataset and 
observed that the generalization ability of the model trained 
with small batch size is higher. Guo et  al [21] proposed a 
transfer learning method that consists of a 1D-CNN module 
for automatic feature learning and a DA part that maximizes 
domain recognition error and minimizes the probability dis-
tribution distance. The performance of their method was 
validated on transfer tasks between three different bearing 
datasets: CWRU [22], IMS [23], and Railway Locomotive 
[24]. Lu et  al [25] used a deep neural network for feature 
learning and designed a DA framework that only uses the 
source domain data and normal category data from the target 
domain to accomplish DA tasks. In order to avoid loss of 
information from faulty samples, a weight regularization term 
was incorporated in the model. In the final stage, a SVM clas-
sifier was trained on transferable features from only source 
data and used for classification tasks on data from the target 
domain. Wen et al [26] proposed a DA architecture based on a 
three-layer sparse auto-encoder for automatic feature learning 
from raw vibration signal and minimizing the maximum mean 
discrepancy (MMD) term between the features from training 
and testing domains. The proposed DA approach was evalu-
ated on a CWRU bearing dataset and reported a higher predic-
tion accuracy compared to other methods. In [27], an acoustic 
spectral imaging technique was used to convert time-domain 
acoustic emission signals to representative images for dif-
ferent health conditions in low-speed bearings. The images 
are used in a CNN-based transfer learning model for pre-
dicting labels of target domain dataset. Cao et al [28] devel-
oped a deep CNN-based transfer learning method for gearbox 
fault diagnosis. In their approach, raw time domain vibration 
signal is converted to gray scaled images and used as an input 
to the CNN model. In their approach the first ‘n’ layers of the 
CNN network are trained on the source dataset and fine-tuned 
on the target transfer tasks. Meanwhile the last (m-n) layers 
are trained using data from the new task. To the best of the 
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authors’ knowledge there is no study on the effectiveness of 
CNN-based transfer learning methods for gearbox fault diag-
nosis under significant variations in operating speed using 
vibration measurement signals.

Although some studies have been conducted investigating 
the use of DA algorithms for fault detection and diagnosis 
of rotating machinery components in industrial applications 
in recent years, most of the conducted studies have been 
developed particularly for rolling element bearings. Further, 
the majority of these studies have validated their proposed 
approach on a CWRU bearing dataset considering motor load 
for the transfer tasks. Studies considering significant vari-
ation in operating speeds for transfer tasks are very scarce. 
To the best of the authors’ knowledge, there is no research 
exploring the effectiveness of transfer learning/DA techniques 
for gearbox fault detection and diagnosis. Therefore, this 
study explores the use of a deep learning-based cross-domain 
adaptation method for gearbox fault diagnosis under signifi-
cant variations in operating speed using vibration measure-
ment signals.

This study proposes a CNN based cross-domain adapta-
tion method (CNN-CDA) for gearbox fault diagnosis to solve 
the above challenges. The core idea is to first use CNN as 
a feature extractor to obtain high-level feature representa-
tions from the raw time domain vibration data and then 

subsequently minimize the distribution discrepancy between 
labeled source domain and unlabeled target domain data for 
the cross-domain adaptation task. This paper proposes to use 
raw time-domain vibration data as an input to the CNN model 
for automatic feature extraction. A unified domain adaptation 
approach is proposed to accurately classify unlabeled target 
domain data by minimizing the summation of cross-entropy 
loss (between labeled source domain data) and MMD between 
labeled source domain and unlabeled target domain samples. 
Network architecture and tuning parameters are investigated 
to provide high classification accuracy in gearbox fault diag-
nosis under significant speed variations.

The rest of the paper is organized as follows. Section  2 
gives details of some preliminaries. The domain adaptive 
CNN-MMD model is detailed in section  3. Section  4 dis-
cusses the details of the experimental set-up. In section 5, the 
developed model is evaluated on data from a gearbox test rig. 
Section 6 presents conclusions and future work.

2.  Preliminaries

2.1.  Domain-shift problem

To better understand the domain-shift problem, let us introduce 
a basic mathematical notation for the cross-domain adaptation 

Figure 1.  Illustrative example of domain shift and the DA technique.
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task. Let χ be a feature space, X be a particular sample, and P(X) 
be a marginal probability distribution. Let D = {χ, P (X)}∞ 
be a domain, where X = {x1, x2 . . . . . . xn} εχand xi is the 
ith feature term. The source classifier in figure 1 represents 
a conventional fault identification problem which focusses 
on determining the occurring fault types when data from the 
source and target domains are assumed to follow the same dis-
tribution. However, in practical real-world industrial applica-
tions, the performance of the source domain classifier is poor 
as the training samples (source domain) used for building the 
model cannot be generalized well to the testing samples (target 
domain). Therefore, we focus on studying situations where the 
source and target domains follow different data distributions. 
In such a case the classifier trained on the source domain data 
would not be directly applied to the target domain.

DS = {xSi, ySi} represents the source domain with labeled 
training data; xSi ∈ χS represents a data sample and ySi ∈ YS 
represents the corresponding label of xsi. DT = {xTi} repre-
sents the target domain with unlabeled testing data; where 
xTi represents a data sample in χT. It must be noted that in 
this study χS �= χT and P (Xs) �= P (XT) and thus the central 
idea is on adapting a deep learning model trained on DS (with 
labeled fault information) to a data belonging to DT (with 
unlabeled fault information). After the DA, we expect that the 
model trained on DS would be able to recognize health condi-
tions from data samples belonging to DT. This study follows 
some basic assumptions:

	 i.	�The number and type of health labels are the same in both 
the source domain and target domain, i.e. YS = YT.

	 ii.	�While model training phase, labeled samples are avail-
able from the source domain, only unlabeled samples are 
available from the target domain.

	 iii.	�The source and target domains are related to each other 
and only differ in their respective data probability distri-
butions.

2.2.  Convolutional neural network

The architectural framework of CNN is depicted in figure 2. In 
general, the architecture majorly consists of three layers: (1) 
convolutional layer; (2) pooling layer; and (3) fully-connected 
(FC) layer. The convolutional layer contains a number of fil-
ters which are convolved with the raw data. The main function 
of the convolutional layer is to identify important features or 
feature maps (set of weights) from the given set of input data. 
The idea behind using a number of filters is that different fil-
ters would detect/identify a different set of features when con-
volved with the input data. Assuming x = {x1, x2 . . . . . . xN}, 
where N denotes the length of sequential signal input, the con-
volution operation can be interpreted as a multiplication oper-
ation between a filter kernel w, w ∈ RN, and a concatenation 
vector representation xi:i+D−1, which is given as

xi:i+D−1 = xi ⊕ xi+1 ⊕ . . . . ⊕ xi+D−1� (1)

where xi:i+D−1 represents the window of D length sequential 
signal starting from index i to index i + D − 1 and ⊕ con-
catenates each data sample into longer embedding. The final 
convolution operation becomes

zi = φ
(
wTxi:i+D−1 + b

)
� (2)

where φ is the activation function, b is the bias term and zi 
is the learned feature of the filter kernelw. Hence, the feature 
map of the jth filter can be denoted as

zj =
î
z1

j , z2
j , . . . ., zN−D+1

j

ó
� (3)

with corresponding lengths of x1:D, x2:D+1, . . . .xN−D+1:N.
The extracted features are then passed on to the next layer. 

i.e. the pooling layer (usually follows a convolution layer), 
which attempts to reduce the spatial size of the representation 
from the first layer. It can be seen as a down-sampling layer 
(lower resolution representation), which reduces the feature 

Figure 2.  Proposed CNN-CDA model framework.
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dimensions of the input. The max-pooling function is applied 
with pooling length g as

hj =
[
h1

j , h2
j , . . . .hs

j

]
� (4)

ht
j = max

Ä
z(t−1)g+1

j , z(t−1)g21
j . . . .ztg

j

ä
� (5)

where hj is a s-dimensional vector, which is the output of the 
pooling layer applied to the jth feature map. Several alter-
nating convolutional and pooling layers are followed by one 
or several FC layers. Finally, the result of FC layers is input to 
a Softmax or sigmoid function classifier.

2.3.  Maximum mean discrepancy (MMD)

In general, MMD represents the distance between two prob-
ability distributions as a distance between mean embeddings 
of features in a reproducing kernel Hilbert space. In this paper, 
MMD is used to evaluate the domain discrepancy between 
labeled source domain samples and unlabeled target domain 
samples. Given two probability distributions P  and Q on χ, 
MMD is defined as [29]

MMD (F , P, Q) = supf∈F (Ex1∼P [ f (x1)])− Ex2∼Q [ f (x2)]
� (6)
where F  is a class function f : χ → H.H denote repro-

ducing Kernel Hilbert space (RKHS). X1 =
¶

x(1)
i

©n1

i=1
 and 

X2 =
¶

x(2)
i

©n2

i=1
are data vectors drawn from data space D1 and 

D2, respectively. Based on the fact that f  is in the unit ball in 

a universal RKHS, equation (1) can be rewritten as

D
(
X1, X2) =

∥∥∥∥∥
1
n1

n1∑
i=1

ϕ
Ä

x(1)
i

ä
− 1

n2

n2∑
i=1

ϕ
Ä

x(2)
j

ä∥∥∥∥∥
H

� (7)

where ϕ (·)χ → H is referred to the feature space map. 
Practical evaluation of MMD is done by employing the kernel 
method, which aids in evaluating the distance between the 
distributions of high-level learned features between different 
domains via

Dk
(
X1, X2) =

ñ
1
n2

1

n1∑
i=1

n1∑
j=1

¨
ϕ
Ä

x(1)
i

ä
,ϕ
Ä

x(1)
j

ä∂

+ 1
n2

2

n2∑
i=1

n2∑
j=1

¨
ϕ
Ä

x(2)
i

ä
,ϕ
Ä

x(2)
j

ä∂
+ 2

n1n2

n1∑
i=1

n2∑
j=1

¨
ϕ
Ä

x(1)
i

ä
,ϕ
Ä

x(2)
j

ä∂ô 1
2

=

ñ
1
n2

1

n1∑
i=1

n1∑
j=1

k
Ä

x(1)
i , x(1)

j

ä
+ 1

n2
2

n2∑
i=1

n2∑
j=1

k
Ä

x(2)
i , x(2)

j

ä
+ 2

n1n2

n1∑
i=1

n2∑
j=1

kk
Ä

x(1)
i , x(2)

j

äô 1
2

� (8)

where Dk
(
X1, X2) is the unbiased estimation of D

(
X1, X2). 

k (·, ·) is a kernel function to compute the inner product in a 
higher dimensional space, i.e. k (x, y) = ϕ (x) ,ϕ (y).

3.  Proposed method

The flowchart detailing the deep learning-based cross-domain 
adaptation methodology is depicted in figure  3. Raw time-
domain vibration data is acquired from a gearbox at different 
operating speeds and for different health conditions. The 
acquired data is partitioned to prepare training samples which 

consist of labeled source domain training samples and unla-
beled target domain training samples. A CNN is constructed 
and the weights and biases are initialized. Labeled source 
domain training samples are given as an input to the CNN 
model and the classification error is minimized in order to 
train the network. Next, in order to draw the unlabeled target 
domain data distribution closer to the labeled source domain 
data distribution, the distribution discrepancy between both 

Figure 3.  Flow chart of the proposed CNN-CDA method.

Figure 4.  Schematic of the test rig.
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these sets of data is minimized using the multi-kernel MMD. 
The multi-kernel MMD function detailed in the previous sec-
tion will be evaluated using the training samples. The sum-
mation of the MMD distance and classification loss between 
the source and target distributions will be minimized to effec-
tively generalize the classifier trained from source domain to 
target domain. The two losses are explained in detail below:

3.1.  Categorical cross-entropy loss (classification loss)

The basic expectation of a CNN architecture is to ensure pre-
cise classification. Hence, it uses an objective function to mini-
mize the classification error on the source domain labeled data 
during the training phase. In general, a source dataset would 
consist of ns pairs: {(x1s, t1s) , (x2s, t2s) , . . . .. (xns , tns) , }, 
where xis ∈ Rγ  denotes the γ-dimensional network target, and 
yis ∈ RC its output. In other words, the objective is to classify 
γ-dimensional input xis to one of the K health condition cat-
egories; the standard Softmax regression loss can be described 
as follows:

Lclassfication (θ, xs, ys) =
1
ns

ns∑
i=1

K∑
k=1

1 {ysi = k} log (ysik)� (9)

where, 1 {·} is a binary indicator function that detects whether 
the ith training pattern returns 1 if the condition is true, and 0 
if the condition if false; indicating whether it belongs to the kth 
category. K is the number of categories, θ = [θ1, θ1, . . . θK ]

T  
denotes the SoftMax model parameters, and ysik  is the pre-
dicted output probability distribution for ith observation 
belonging to class k.

3.2.  Distribution discrepancy loss (MMD loss)

As stated in [30], variability in kernels may embed different 
probability distributions in different RKHSs; hence, an appro-
priate kernel choice would ensure low testing error of MMD. 
Therefore, in this study, a mixture of RBF kernels (implying 
multi-kernel MMD) is utilized:

k
(
xS, xT) =

Nk∑
i=1

kσi
(
xS, xT) .� (10)

kσi represents Gaussian kernel with bandwidth param
eters σi. Based on trial and error from various experiments, 
it was found that a mixture of three kernels at simple default 
bandwidth values of 2, 4, and 8 provided good results. For 
simplicity purposes, the weights were kept equal. The optim
ization function to minimize the distribution discrepancy is 
formulated as follows:

LMMD = MMDk

Ä
Xf(FC)

S , Xf(FC)
T

ä
� (11)

where Xf(FC)
S and Xf(FC)

T  denotes the FC layer representation 
for the source and target samples respectively and MMDk  rep-
resents the multi-kernel MMD between the source and target 
domain data evaluated on the FC layer representations.

3.3.  Overall objective function

By integration the categorical cross entropy loss (equation (9)) 
with distribution discrepancy loss (equation (11)), the overall 
objective function becomes

min L = αLMMD + βLClassification� (12)

where α and β are the regularization parameters. The default 
value ofα is ‘1’ and the value of and β is ‘0’ for the without 
DA case and is ‘1’ for the DA case in this paper.

4.  Experimental test set-up

4.1. Test bench

Experimental data are acquired using a Spectra Quest gearbox 
prognostic simulator (GPS) [31], which is displayed in fig-
ures 4 and 5.

GPS is composed of two gearboxes and two electrical 
motors. Both the drive and load motors are three-phase induc-
tion motors having two pair of poles. The rated power output of 
both motors is 10 Hp. The monitored gearbox is composed of 
four spur gears (figure 5(b)). Two PCB accelerometers (Model 
60811A11 Industrial ICP) were installed to capture vibration 
in X and Y direction (figure 5(a)). The data was recorded using 
a computer with a National Instruments acquisition card (NI 
4472 series) at a sampling rate of 50 kS s−1.

Figure 5.  (a) Position of accelerometers; (b) description of gears in the monitored gearbox.
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4.2.  Dataset description

The focus is set on analyzing different speeds especially in 
the no-load condition. The maximum speed that the GPS test 
bench can reach is 1500 rpm. The minimum selected speed 
is 500 rpm. One more intermediary speed, 1000 rpm, was 
selected for the DA task. During the experiments, for each test 
a different fault type gear was inserted at the place of gear 1 
of the first gearbox (the 32 teeth gear in figure 5). Apart from 
a healthy gear, four different types of faults were considered: 
eccentric tooth, chipped tooth, missing tooth, and pitting on 
tooth. The representative fault conditions of the considered 
gears are depicted in figure 6.

Table 1 represents the details of the transfer tasks consid-
ered for analysis. Nsource and Ntarget represent the respective 
source and target domain samples for each health condition 
under one speed. For simplicity, Nsource = Ntarget  is consid-
ered in this study. The raw data sequence is divided into Ninput  
sequential points.

For conducting an effective and robust analysis, ten trials 
are carried out for each algorithm for diagnosing the gearbox 
data. The average testing accuracy is reported for all reported 
experimental results. Our implementation is carried out in the 

Tensorflow platform in Windows operating system on Intel® 
Xeon® W-2145 CPU @ 3.7 GHz processor running at 32 GB 
RAM and GPU parallel computing (NIVIDIA GeFoce TX 
2080 Ti).

5.  Results and discussion

This section presents the results of the proposed CNN-CDA 
method on the gearbox dataset. To validate the reliability, 
effectiveness and robustness of the proposed method a com-
parison with three state of the art techniques is carried out. The 
three approaches are as follows: (a) machine learning methods 
(SVM, kNN and LDA) based on manually extracted vibra-
tion features, (b) transfer learning methods (JDA [32], BDA 
[33], EasyTL [34], GFK [35]) based on manually extracted 

Figure 6.  Representative health conditions on the tested gear. (a) Healthy gear. (b) Gear with pitting. (c) Gear with eccentricity. (d) Missing 
tooth. (e) Chipped tooth.

Table 1.  Transfer tasks conducted in this study.

Transfer task Source domain (speed)
Target domain 
(speed)

T500–1000 500 1000
T500–1500 500 1500
T1000–500 1000 500
T1000–1500 1000 1500
T1500–500 1500 500
T1500–1000 1500 1000

Figure 7.  Analysis of the six transfer tasks using different DA 
methods. NSource  =  400 is used.

Meas. Sci. Technol. 31 (2020) 055601
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vibration features, (c) CNN-based feature extraction without 
cross-domain adaptation (only the classification loss in equa-
tion (12) is considered). In (c), the model trained on source 
domain data is directly used for testing (without DA).

5.1.  DA results

Results from all six transfer tasks, i.e. T500–1000, T1000–500, T1000–

1500, T1500–1000, T500–1500 and T1500–500, are presented in figure 7. 
By default, Ninput = 2000 is used in this particular study. The 
results from figure 6 indicate that the proposed CNN-based 
cross-domain adaptation methodology achieves the highest 
testing diagnosis performance among all techniques in dif-
ferent tasks. It must be noted that the high testing diagnosis 
performance in the tasks T500–1000 and T1000–500, T1000–1500 and 
T1500–1000, T500–1500 and T1500–500 indicates the bidirectional 
effectiveness of the proposed approach. Higher testing accu-
racies in certain specific tasks relative to other tasks, such 
as T1000–1500, T1500–1000, indicates the inherent closeness by 
nature of the respective source and target domains. Overall, 
high cross-domain adaptation testing diagnosis performance 
confirms the effectiveness of the proposed CNN-CDA model.

As discussed in section 1, since the feature distributions of 
both datasets (source and target) are dissimilar, the traditional 
machine learning models (SVM, kNN, LDA) built using the 
training samples (source domain data) lead to poor gener-
alization when applied directly to the target domain data. In 
contrast, all representative methods for DA techniques per-
form significantly better than the traditional machine learning 
algorithms. GFK has the best performance among them all, 
followed closely by the BDA method in general. The results 
from the EasyTL approach are competitive but the results from 
tasks T500–1500 and T1500–500 indicate that the approach does not 
perform well bidirectional between domains. Furthermore, 
the without DA method achieves reasonably good testing 
diagnosis results, which are better than the EasyTL approach 
in most transfer tasks.

5.2.  Low amount of labeled source domain data

Figure 8 depicts the results from all transfer tasks for a lower 
amount of the labeled source domain data used for training 
(60, respectively).

The results from figure  8 validate the effectiveness 
and robustness of the proposed CNN-CDA approach by 

Figure 8.  Analysis of the six transfer tasks using different DA 
methods. NSource  =  60 is used.

Figure 9.  Cross domain testing accuracy for task T1500–1000 using 
different amounts of labeled source domain data.

Figure 10.  Feature visualization in the FC layer for the T1500–1000 
task.
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demonstrating larger cross-domain diagnosis improvements 
in comparison with other methods when a lower amount 
of labeled source domain data is presented to the proposed 
CNN-CDA model. The results from figure  8 indicate the 
ability of the proposed CNN-CDA method to deal with the 
overfitting problem, which in general is a common issue 
encountered while implementing intelligent algorithms in 
situations of insufficient training data. Hence, the proposed 
method depicts high potential to be extended to other real-
world industrial applications that have low availability of 
labeled data in practice. To further illustrate the performance 
of the proposed CNN-CDA, figure 9 depicts the results from 
Transfer task T1500–1000 with increasing amount of the labeled 
source domain data (NSource). The results are compared with 
the without DA method and clearly indicate that increasing 
the amount of labeled source domain data increases the cross-
domain testing diagnosis performance. The findings are 
consistent with the general notion about deep learning method-
ologies that a higher amount of samples used in training phase 
typically leads to improvement in the network performance.

5.3.  Visualization of learned representation

In general, the FC layer captures the most important fault 
features and thus these features are passed on to the Softmax 
layer for fault classification. Therefore, visualization of high-
dimensional features in the FC layer are presented in this 
section. The t-SNE algorithm was used for visualizing the 
high-dimensional data representation. Samples are mapped 
from the original feature space into a 2D space map. Figure 10 
depicts the 2D plots of learned representations in the FC layer 

using the proposed method and the without DA approach for 
both domain (source and target) for task T1500–1000.

It can be observed that for the without DA method, though 
the learned feature representations with the same health con-
ditions cluster together, they do so independently in both 
domains. Either (a) separation between respective health 
labels of both domains is high and learned feature representa-
tions from the same health class of two domains are projected 
into the far-off regions (e.g. missing tooth health condition), 
or (b) in the target domain, certain class label samples overlap 
into the regions of other classes (healthy eccentric and pit-
ting condition). This scenario necessitates the proposed idea 
of DA. In contrast, the features after cross-domain adaptation 
are very well separated for three health conditions (healthy, 
missing tooth and chipped tooth) and samples from both 
domains practically overlap each other. For these three con-
ditions (healthy, missing tooth and chipped tooth), the data 
samples in both domains that belong to the same health class 
group and overlap in the region of the feature space. However, 
the data samples from both of the remaining two health condi-
tions (eccentric gear and pitting) seem to overlap. In conclu-
sion, for the given gearbox dataset, the proposed methodology 
is able to detect a fault precisely, but with a lower level of fault 
diagnosis performance.

5.4.  Effects of parameters

The section discusses the effect of input sample length (Ninput), 
the convolutional filter number and the convolutional filter size 
on the testing diagnosis accuracy of the proposed CNN-CDA 
model. The transfer task T1500–1000 is used for illustration and 

Figure 11.  Effects of (a) sample length, (b) the convolutional filter number, and (c) the convolutional filter size on the testing diagnosis 
accuracy in task T1500–1000.
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the results are depicted in figure 11. In general, larger Ninput is 
generally expected to provide higher diagnosis performance 
and the same is validated by the results of figure 11(a). Since 
larger filter size and a large number of convolutional filters in 
each layer improve the learning capability of CNN, increasing 
these parameters provides significant improvements in testing 
accuracies. Furthermore, increasing filter number has a more 
remarkable effect on testing accuracy in comparison to filter 
size. Overall, higher values of the above listed parameters 
provide better results, but at the same time the computational 
burden increases exponentially (average computational time). 
Hence, a reasonable tradeoff between the computational 
burden and the diagnosis accuracy needs to be made while 
choosing these parameters.

6.  Conclusions

A novel deep learning-based cross-domain adaptation meth-
odology for gearbox fault detection and diagnosis is proposed 
in this paper. The summation of cross-entropy loss (between 
labeled source domain data) and MMD loss (between labeled 
source and unlabeled target datasets) is minimized simultane-
ously to adapt the source domain model to be directly applied 
on the target domain data samples. Performance of the pro-
posed approach is evaluated on experimental data from a 
gearbox test rig. The influence of network architecture and 
tuning parameters of the CNN model are comprehensively 
investigated to evaluate the performance of gearbox fault 
diagnosis under significant speed variations.

By comparing the testing diagnosis performance of the 
proposed CNN-CDA method with other state-of-the-art 
intelligent machine learning algorithms, DA algorithms and 
deep learning algorithms, the superiority of the proposed 
technique is validated and verified. Conventional intelligent 
algorithms fail to accurately predict the gearbox health condi-
tion when tested directly on data from a new domain. It was 
observed that the conventional DA methods were somewhat 
able to learn domain-invariant features under different oper-
ating speeds, and for this reason, perform better relative to 
traditional machine learning algorithms in the new domain. 
However, the proposed method achieves the highest testing 
accuracy in all reported experimental results. In particular, the 
proposed method reported highest accuracies with a smaller 
labeled training dataset relative to other techniques. Moreover, 
the results demonstrate the ability of the proposed method to 
deal with the overfitting problem, which is a common issue 
encountered while implementing intelligent algorithms in 
situations of insufficient training data.

Even though the proposed method achieves a satisfactory 
performance, there is a minor drawback that exists in the 
assumption of having a balanced training dataset over dif-
ferent gearbox health conditions. In industrial applications, 
though it is a straightforward task to acquire healthy data, 
it can be quite challenging to obtain data for different fault 
classes. Therefore, future studies will focus on extending the 
use of the proposed methodology to an imbalanced training 
dataset. Further, the current research would be extended to 

explore the use of a new loss function and to further improve 
the fault diagnosis performance.
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