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Abstract
From human–machine interfaces to human–computer/robot interaction, the prevailing 
pattern has gradually become one of people remaining in a sitting posture while working. 
However, unhealthy sitting behavior seriously affects human health. This paper presents a 
novel tracking and analysis method of real-time sitting behavior. It is designed using a series 
of flexible wearable data bands, based on flexible stretchable sensors and pressure sensors 
(PSNRs). A flexible PSNR is fabricated using composites of carbon black, carbon nanotubes 
and silicon rubber, by a mixed solution method; it possesses a good property of pressure 
perception, for tracking sitting behavior. The sensors are accurately attached to human joints 
for accurate measurement of joint movement at the shoulders, elbows, wrists, knees, and 
waist. In this work, a new idea of real-time sitting behavior recognition is introduced and 
developed, based on a radial basis function neural network. Dynamic time warping is used to 
select candidates for dynamic sitting behavior and also to recognize postures by comparing 
the observed records with a series of pre-recorded reference data patterns. The solution deals 
simultaneously with real-time sitting behaviors as well as with multiple joints within the 
area of interest, to monitor the health level of the sitting behavior and to remind humans of 
sitting habits. The experimental results of the real-time sitting behavior tracking and analysis 
verify the effectiveness of the proposed methods. Additionally, undesirable sitting behaviors 
were gradually rectified and the sitting habit health levels of the participants were gradually 
increased.
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1.  Introduction

From human–machine interfaces (HMIs) to human–computer/
robot interaction (HCI/HRI), the working pattern of a human 
in a sitting posture has gradually become a prevailing pattern 
of human work and life. However, unhealthy sitting behaviors 
seriously affect people’s health [1–3], producing problems 
such as myopia [4], cervical spondylopathy [5], poor circula-
tion [6], humpback [7], spondylitis [8], and protrusion of the 
lumbar intervertebral disc [9]. This justifies the interest of the 
research community in the development and advancement of 
sitting behavior tracking and analysis technologies. However, 
this is a daunting task. As it is very hard to accurately detect sit-
ting behavior in an unpredictable environment, the problem is 
both complex and limited. Various posture tracking and recog-
nition approaches have been proposed. The existing research 
can be divided into two categories: vision-based or wearable 
sensors-based [10–12]. Vision-based technologies use image 
processing to extract useful information. Technologies based 
on wearable sensors depend on physical interaction with the 
users. The vision-based methods are always easily affected 
by environmental factors such as occlusion, illumination, and 
the positioning of the equipment [13]. In contrast, wearable 
sensor-based technologies are easy to implement and can 
usually provide more reliable behavior information [14–16]. 
Accurate and real-time posture acquisition and recognition 
algorithms occupy a very important position in major research 
areas [17, 18]. In the analysis of sitting behavior, there are 
generally two challenges. One challenge is in the choice of 
appropriate features to represent the behavior. This problem 
is very difficult due to the specific flexibility and randomness 
of human limbs [19]. The other challenge concerns the adop-
tion of proper analysis procedures to correctly recognize the 
postures [20].

With the rapid development of artificial intelligence tech-
nologies, the fusion of smart data feature information has 
gradually become a mature technology. Flexible sensors 
have acquired the advantages of low power consumption, 
good extension, small size, and good wearability [21, 22]. 
Additionally, flexible strain sensors have been proven to be a 
good method of measuring human motion performance [23, 24].  
Compared to research using a visual system, flexible strain 
sensors show a higher dexterity and correlation. A textile-
based sensing system has been presented [25] which analyzes 
the sitting posture accurately and non-invasively. Several 
effective techniques have been proposed to improve the rec-
ognition rate of sitting postures, including sensor calibration 
and dynamic time warping (DTW)-based classification. One 
study developed models to detect proper and improper sit-
ting postures [26], using gyroscope readings through mobile 
devices. The models were developed by training classifiers 
of the k-nearest neighbor, a support vector machine (SVM), 
and multi-layer perception. An approach using an accelerom-
eter sensor [27] was presented for activity recognition. The 
resulting feature vector is further processed using linear-dis-
criminant analysis and artificial neural networks to recognize 
a particular human activity. A method was proposed to recog-
nize complex daily activities which consist of simultaneous 

body activities in an indoor environment [28]. Three motion 
sensor nodes are attached to the right thigh, the waist, and the 
right hand. A method [29] of recognizing muscular activities 
was proposed, using air pressure sensors and air bladders. The 
muscular activity is detected by measuring the change of air 
pressure in an air bladder that contacts the muscles of interest. 
Another study [30] addressed natural HRI in a smart assisted 
living system for the elderly and the disabled. For gesture rec-
ognition, they implemented a neural network for gesture spot-
ting and hierarchical hidden Markov models for context-based 
recognition. For daily activity recognition, a multi-sensor 
fusion scheme was developed to process motion data col-
lected from the foot and the waist. A wearable, gesture-based 
controller was fabricated [31], using the sensing capabilities 
of flexible thin-film piezoelectric polymer polyvinylidene 
fluoride (PVDF). Forearm muscle movements were detected 
by the PVDF, which sent its voltage signals to a developed 
microcontroller-based board. They were then processed by an 
artificial neural network that was trained to recognize the gen-
erated voltage profile of gestures. The principal component 
analysis method and a generalized regression neural network 
were used to construct a gesture recognition system [32], so 
as to reduce the redundant information of electromyography 
signals, improve the recognition accuracy, and enhance the 
feasibility of real-time recognition. It was found that due to 
the high coupling of electromyography signals, accurate ges-
ture recognition was difficult to achieve. A novel multi-sensor 
system [33] was proposed for accurate dynamic hand gesture 
recognition. It employed convolutional deep neural networks 
to fuse data from multiple sensors and to classify the gestures.

The research shows that there are still some challenges [34, 
36] in the study of real-time human behavior tracking and anal-
ysis, including sitting behaviors based on wearable equipment 
[37]. These problems are as follows: (i) the development of 
reliable properties of wearability and sensitivity in devices that 
minimize the discomfort or embarrassment of the patient; (ii) 
the problem of inconsistency in time series of dynamic behav-
iors; and (iii) the lack of accurate and appropriate methods 
of posture recognition. This work addresses these problems 
and develops a novel, flexible wearable data band based on 
stretchable sensors and pressure sensors that offers reliable 
wearability and sensitivity and minimizes the discomfort or 
embarrassment of users [38–40] (Extended Data table 1, sup-
plementary video (stacks.iop.org/MST/31/055102/mmedia)). 
Since technologies based on wearable data bands depend on 
physical interaction with the users, the data bands developed 
have body sensor networks to ensure that the sensors are accu-
rately attached to the human joints for accurate measurement 
of joints movement at the shoulders, elbows, wrists, knees, 
and waist. As such, they can provide more reliable behavior 

Table 1.  Static sitting posture recognition accuracy of different 
approaches.

Approaches RBFNN SVM
RBFNN-
Kernel

SVM-
Kernel

Accuracy (%) 90.92 89.85 94.25 90.20
Training time (s) 6.25 35.97 16.33 89.55
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information on static and dynamic sitting postures. Finally, 
appropriate sitting behavior recognition methods with good 
generalization ability are proposed.

Various classification methods have been applied to pattern 
recognition, such as the k-nearest neighbor, an artificial neural 
network, and the SVM [41, 42]. Nonetheless, it is known that 
all of them face some challenging issues, such as slow training 
speed, trivial human intervention, large computational require-
ments, and poor generalization ability. Compared with those 
methods, RBFNN always handles the hard-to-analyze regularity 
in the system. In addition, it has good performance in generali-
zation ability and has been successfully applied to time series 
analysis, pattern recognition, and system construction [43]. 
Furthermore, the DTW algorithm is used to select behavior can-
didates and to recognize postures when combined with RBFNN 
by comparing an observed posture with a series of pre-recorded 
reference patterns, and to solve the problem of inconsistency in 
time series in real-time dynamic sitting behavior recognition.

The remainder of this paper is organized as follows. The 
real-time sitting behavior tracking and acquisition methods 
are introduced in section 2. Section 3 presents the theories of 
real-time sitting behavior recognition and analysis algorithms 
built on methods based on RBFNN-DTW. Section 4 gives the 
experimental results, and section 5 presents the conclusion of 
this work.

2. The architecture of the proposed system

In this section, the real-time sitting posture tracking method 
is presented. First, the flexible wearable data band design 
methods are presented, followed by the development of the 
sitting behavior tracking and analysis algorithms.

2.1.  Design of pressure sensor

2.1.1.  Materials.  The carbon black (CB) used in this study was 
CB-3100, which exhibits an average particle size of 30 nm, 
and is produced by the Swiss SPC chemical company. The 
single-walled carbon nanotubes (SWCNTs) powder was pur-
chased from Chengdu Organic Chemicals Co. Ltd. The mean 
length and diameter of the SWCNTs are 20 mm and 2 nm, 
respectively. The polystyrene sulfonate (PSS) was purchased 
from Shanghai Mackin Biochemical Co., Ltd. The samples’ 
matrix silicon rubber (SR) (SR-GD401) was provided by 

Sichuan Zigong Chenguang Chemical Institute. Conductive 
silver (YC-02) paste was purchased from Nanjing Hang Shuo 
Electronic Technology Co., Ltd.

2.1.2.  Fabrication of pressure sensor.  For pressure sensors 
used in human wearable equipment, flexibility is especially 
necessary. In the first step in the preparation of the sensitive 
materials, 0.20 g of CB and 0.14 g of SWCNTs were homo-
geneously dispersed in a naphtha solution. This was followed 
with sonication for 1 h and magnetic stirring for 6 h. Next, 
2.6 g of SR was homogeneously dispersed in the CB/SWCNTs 
composite solution with magnetic stirring for 3 h. After that, 
the resulting composite solution was spin-coated to form a 
film and places in a thermostatic drying oven foaming at 60 °C 
for 30 min. Subsequently, the solid composites were left to dry 
completely at room temperature for 24 h. Finally, the mixture 
was precisely tailored and cut into a unit and the electrodes of 
conductive silver paste were covered on the sensor array for 
2 d to complete the curing process and bring them into close 
contact, as shown in the Extended Data, figure 1.

2.2.  Wearable data bands design, and posture acquisition

The proposed fully flexible data bands have two types of strain 
sensors: pressure sensors and stretchable sensors. The stretch-
able sensors used here were proposed in the authors’ previous 
studies [44], in which a highly stretchable fiber-based sensor 
was fabricated. The stretchable sensors have the capacity to 
detect and monitor motions in human joints and skin, and are 
more flexible, more comfortable and more dexterous than tra-
ditional sensors. Additionally, the stretchable sensors exhib-
ited good sensibility and rapid response.

The wireless transmission modules of the CC-2530 were 
used to process the basic data and evaluate results, encapsu-
lating them into packets and sending the packets to the compu-
tation center. The baud rate of data transmission is 115 200 bps,  
and the frequency reaches 50 Hz. The architecture of the pro-
posed wearable data bands is shown in figure 1. The archi-
tecture of the proposed sitting behavior tracking and analysis 
system is shown in figure 2. Two assumptions are made about 
the participants in the experiments: (i) the body structures 
of the participants are symmetrical; and (ii) the sitting pos-
tures of the participants are homologous to those of the broad 
masses of the people. Therefore, based on the wearable data 
bands, sitting behavior can be conveniently estimated.

Figure 1.  The proposed wearable data bands system.

Meas. Sci. Technol. 31 (2020) 055102
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3.  Human real-time sitting posture recognition

In this section, the real-time static and dynamic sitting pos-
tures recognition methods are proposed. The framework of the 
system is presented, and the real-time sitting behavior analysis 
method based on RBFNN-DTW is described.

3.1.  Architecture of sitting posture recognition

The recognition of sitting behavior by using the proposed 
wearable data bands is divided into three stages. The first stage 
is to establish databases of sitting postures. First, the data of 
various sitting postures are collected through the proposed 
wearable data bands. The datasets which include static sitting 
postures and dynamic sitting postures are then established. 
The second stage is to train the classifiers. On the basis of 
the datasets, the features of each sitting posture are extracted 
and expressed. The final stage is experiment and analysis. The 
sitting posture data of various sitting behaviors from various 

participants are collected, and the trained classifiers are used 
for real-time posture recognition. The architecture of the pro-
posed system is shown in the Extended Data, figure 2.

3.2.  Static sitting posture recognition

RBF was first proposed by Broomhead and Lowe in 1988, 
and stemmed from Powell’s seminal research from 1977 
[45]. RBF is a real-valued function whose value depends on 
the distance from the origin; it can also be interpreted as a 
simple kind of neural network. RBF is also used as a kernel 
in classification and is sufficiently ready to have the RBFNNs 
exploited in various applications. The model of the RBFNN is 
shown in the Extended Data, figure 3.

Suppose the input data X, Y is the classification results of 
the output. We can then obtain the output framework of the 
model as

Y = F (X) .� (1)

Figure 2.  The architecture of the proposed sitting behavior tracking and analysis system.

Figure 3.  (a) The pressure test platform. (b) Relative resistance changes under applied pressure of loading and unloading. (c) Relaxation 
times of the pressure sensor. (d) Current–voltage curves of the pressure sensor under different pressures. (e) Durability test during 12 000 
loading/unloading cycles. Insets: magnified diagram of the selected areas. (f) The pressure sensor response to dynamic loading/unloading 
cycles at various pressures.

Meas. Sci. Technol. 31 (2020) 055102
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The input data is X  =  (x1, x1, …, xL), and ϕi(X) denotes the 
hidden nodes’ nonlinear, piecewise and continuous activation 
functions. The output functions of N hidden layer nodes can 
then be described as

F (X) = ω0 +
N∑

i=1

ωiϕi(xi − xc).� (2)

Here, N is the dimension of input data, ωi  denotes the output 
weight vectors of the node from the ith hidden layer, and xc is 
the activation function center.

According to the theory of Bartlett [46], the method due to 
the least weight is used to calculate the output weights, and 
the minimum error solution through the minimum norm can 
be obtained by RBFNN, which achieves good general prop-
erties. For specified training samples (xi, ti), the output of N 
hidden layer nodes can be described using

f (x) = ω0 +
N∑

i=1

ωnϕn(‖x − ci‖) = ω ·Φ(x)� (3)

Φ · ω = T� (4)

Φ =

Ö
ϕ1(ε1, x1) · · · ϕN(εL, x1)

... · · ·
...

ϕ1(ε1, xL) · · · ϕN(εL, x1)

è

� (5)

ω = [ω0,ω1, . . . ,ωL]� (6)

T =




tT
1
...
tT
L




L×d

.� (7)

According to the input xi, the network matrix Φ denotes the 
outputs of hidden layers, and the ith row represents the output 
vector of the hidden layer. According to all input (x1, ..., xL), 
the ith column represents the output of the ith hidden layer 
neuron. The minimum norm of the least-square solution of the 
linear system can be described using one of the two following 
expressions:

|Φ · ω̂ − T| = min
ω

|Φ · ω − T|� (8)

ω̂ = Φ†T .� (9)

In (9), Φ† denotes the Moore–Penrose generalized inverse of 
the network matrix. In order to improve the generalization 
ability of RBF as compared to the RBFNN based on the least 
square solution, it was necessary to generate the input weights 
randomly. Kernel methods were used in designing the RBF, 
and a positive value parameter C−1, defined by the users, is 
proposed for the calculation of the output weights in (10):

ω = ΦT(C−1 +ΦΦT)T .� (10)

The kernel-based RBF can then be expressed as

KRBF(xi, xj) = Φ(xi)Φ(xj) = [ f (ω1,σ, xi), . . . , f (ωN ,σ, xi)]
T

· [ f (ω1,σ, xj), . . . , f (ωN ,σ, xj)]
T .

� (11)
Due to the parameters of (w, σ) being randomly assigned, an 
optimization model of the dual kernel optimization function is 
formed as follows. Minimize

LD = 1
2

N∑
i=1

N∑
j

titjKRBF(xi, xj)αiαj −
N∑

i=1
αi

0 � αi � C, i = 1, . . . , N.
�

(12)

Referring to ‘(13)–(16)’, the regularized RBFNN is selected, 
and when the Gaussian function is chosen as the basis func-
tion of the neural network, the connection weights of neurons 
between the hidden layers and the output layers are calculated 
by the least squares method:

ϕ(x) = e−
1

2σ2 x2
� (13)

F(x) =
N∑

i=1

ωie
− 1

2σ2 ||x−xi||2� (14)

σi =
cmax�√

2h� (15)

ω = exp(hc−2
max||xp − ci||2).� (16)

The RBF kernel is the result of a combination of nuclear 
learning optimization and standard methods to find the 
optimal solution. As the optimization constraints are slight, 
the RBF kernel achieves better generalization performance.

3.3.  Real-time dynamic sitting behavior recognition

Real-time sitting behaviors involve inconsistent action 
sequences, so the time series characteristics of the collected 
samples are not consistent. A dynamic programming algo-
rithm is used to search for optimal matching between the two 
sequences, defining the distance measure of the two sequences, 
which is used to solve the inconsistency. The DTW technique 
is used to address the problems of human real-time sitting 
postures. The DTW algorithm establishes a scientific time 
alignment, matching the path between the features of the test 
patterns and the reference patterns. In time series, the features 
of two time series which must be comparatively similar are 
always inconsistent. In the matter of real-time sitting posture 
recognition, the frequency of actions and the random charac-
teristics of people differ; even if the same person repeats the 
same behavior, it is impossible to reproduce the coincident 
time series. The traditional Euclidean distance methods are 
not very effective in calculating the distance between two time 
series in these complex cases (Extended Data, figures 4(a) and 
(d)). The solid line and the dashed line are two waveforms 

Meas. Sci. Technol. 31 (2020) 055102
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Figure 4.  Typical response curves of strain sensors induced by sitting behaviors. (a) Relative resistance changes of the SSNR under 100% 
strain level. The typical relative resistance changes due to (b) wrist joint actions (SSNRs), (c) elbow joint action-1 (SSNRs), (d) elbow joint 
action-2, (e) knee joint action-1 (PSNRs), (f) knee joint action-2 (SSNRs), (g) shoulder joint action-1 (SSNRs), (h) shoulder joint action-2 
(SSNRs), (i) shoulder joint action-3 (SSNRs), (j) waist action-1 (SSNRs), (k) waist action-2 (PSNRs), and (l) various cases of typical 
human joint actions.

Meas. Sci. Technol. 31 (2020) 055102
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of the same behavior. It can be seen that the overall wave-
forms are very similar but inconsistent on the time axis. The 
point ‘a’ of the real line waveform corresponds to point ‘b’ of 
the dashed line waveform. The traditional method calculates 
the similarity by comparing the distance, which is obviously 
unreliable because it is evident that point ‘a’ of the solid line 
corresponds to point ‘b’ of the dashed line (Extended Data, 
figure 4(e)).

Suppose we have two experimental time series, Ri and Rj . 
Suppose that Ri = (r1, r2, . . . , ri) are the test pattern features 
vector sequences, and Rj = (r1, r2, . . . , rj) are the reference 
pattern features vector sequences, and i, j represent the time 
serial number. Then

P(RT) = [P1(R1)...P1(RT), ..., PN(R1)...PN(RT)].� (17)

The time feature space is formed by splicing outputs with the 
time window under a unified time thread P in time T quantum, 
and N is the serial number of the sensors, as shown in (17).

A warping path W is used to define a mapping 
between Ri and Rj , where W = (w1, w2, . . . , wk, . . . , wK), 
max(i, j) � K � i + j − 1. The variable K represents the final 
warping path, and wk  =  (i, j )k is the kth mapping gain between 
the ith test experimental pattern feature vector and the j th ref-
erence pattern feature vector. The warping path searching pro-
cess of the time series, between the test pattern and reference 

pattern features vector sequences, is shown in the Extended 
Data, figure 4(f).

This limits the point of W to be monotonous over time. 
Therefore, the minimizing warping function can be described 
as

DTW(Ri, Rj) = min(K−1

Ã
N∑

n=1

wn),� (18)

and the path can be found using the dynamic programming 
method to evaluate the recurrence that defines the accumula-
tive distance L(Ri, Rj ) and the present kernel distance N(Ri, 
Rj ):

L(Ri, Rj) = N(Ri, Rj) + min {L(Ri − 1,
Rj − 1), L(Ri − 1, Rj), L(Ri, Rj − 1)} .

� (19)
Therefore, the functions of the RBFNN kernel can be 

described as

K(x, xi)= exp(−λ||x, xi||2).� (20)

Currently, the methods of combining DTW and the RBF 
kernel to achieve the purpose of real-time sitting posture 
recognition according to the analyzed time series can be 
described as

Figure 5.  Typical sitting behaviors.

Meas. Sci. Technol. 31 (2020) 055102
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K(Ri, Ri) = exp[−λDTW(Ri, Ri)
2
],� (21)

where λ denotes the prescribed adjustment parameter.
In order to monitor the health level of the sitting habit, the 

health level parameter HL is defined. Assuming that the total 
time in the ith monitoring period is T, and the time window 
of the single sitting behavior is t, the total number of sitting 
postures of the ith monitoring period is Ti/ti. The sitting habit 
health level of the ith monitoring period is defined by

HL(Ti, ti) = n(ti)/N(Ti),� (22)
where n is the number of healthy sitting behaviors, and N is 
the total number for the ith monitoring period. Therefore, the 
health level HL of the sitting habit of all of the participants is 
defined as

HL(T , t) = (
N∑

i=1

ti)/(
N∑

i=1

Ti).
� (23)
The sitting postures used here are representative of the typical 
sitting postures that can be found in life and at work [47, 48].

4.  Experiments and results

The experiments in the following sections focus on the contrib
utions of this paper, the sitting behavior tracking method, and 
the sitting behavior analysis method based on RBFNN-DTW.

4.1.  Pressure sensor performance

The piezoresistive properties testing platform is illustrated in 
figure 3(a). The response curve and typical hysteresis response 
curve during loading and unloading pressure of the sensor are 
shown in figure  3(b). The stretchable sensors and pressure 
sensors used here both have hysteresis characteristics. As the 
monitoring process of sitting behavior is dynamic, the training 
pattern sets characteristics and the testing pattern sets all con-
tain the hysteresis information of the sensors. In the procedure 
of sitting behavior classification and analysis, the hysteresis 

characteristics of the sensors are firmly transformed into 
available features information. Therefore, the DTW-based 
dynamic information processing methods exclude the influ-
ence of the hysteresis characteristics on the accuracy of the 
sitting behavior tracking and analysis.

In addition, the system displayed rapid response and 
recovery properties, defined as the time taken to achieve 90% 
of the total voltage change, of 110 ms and 120 ms respectively 
(figure 3(c)). Next, the device stability was investigated by 
a periodic loading and releasing process. Depending on the 
static mechanical pressure, the sensor registered an increase in 
electrical current based on current–voltage curves, indicating 
successful detection of static mechanical pressures (figure 
3(d)). The stability and repeatability of the sensor was further 
tested by periodic loading and unloading cycles, as demon-
strated in figure 3(e). It can be seen that after 12 000 cycles, 
it still exhibited good stability with around a 20% change 
(based on the highest resistance), together with mechanical 
reliability and long-term durability. The resistance change of 
the sensor under different strains was monitored in the process 
of cyclic loading and releasing, demonstrating the dynamic 
characteristic of the device. Figure 3(f) records the dynamic 
relative resistance change (R/R0) during several loading and 
releasing cycles, and no disparate change tendency or evident 
drift was found, showing the prominent flexibility and repeat-
ability under various strains, where R and R0 are the resist
ances before and after applying strain, respectively.

4.2.  Sitting behavior tracking experiments

With the purpose of making the developed data bands truly 
useful in a real-world environment, we investigated their 
thermal and humidity stability by showing the response of the 
materials as a function of temperature and humidity (Extended 
Data, figure 5) [49–53].

As shown in figure 4, the normalized initial resistance of 
the stretchable sensors was set to be the resistance values 
of the sensors in a non-strain state. The movements of the 
shoulder joints, elbow joints, wrist joints, knees, and the waist 

Figure 6.  Typical static sitting posture recognition accuracy for the RBFNN approach.

Meas. Sci. Technol. 31 (2020) 055102
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can easily be captured and distinguished. Furthermore, the 
recognition accuracy of the results can be evaluated using  
statistical techniques.

4.3.  Sitting behavior recognition and analysis experiments

4.3.1.  Static sitting behavior recognition experiments.  The 
sitting behavior recognition was verified based on a series of 
experiments which verify the validity of RBFNN-based rec-
ognition methods. As a basis for the experiments, a dataset 
was recorded containing 12 categories of sitting postures. 
The postures contained in the database are as follows: upright 
(UT), leaning forward (LF), leaning left (LL), leaning right 
(LR), right leg crossed (RLC), left leg crossed (LLC), leaning 
left with right leg crossed (LLRLC), leaning right with left leg 

crossed (LRLLC), leaning back (LB), slouching (SG), shak-
ing legs (SL). and standing (SD). These are representative of 
the typical sitting postures that can be found in life and work. 
Detailed descriptions of the typical sitting postures are shown 
in figure 5.

The preliminary work focused on the construction of the 
static posture classification system. A static posture database 
was established. The database contains multifarious static sit-
ting behaviors from 10 individuals who contributed. There 
were 100 posture samples for each of the 12 preselected pos-
tures of the 10 participants, and each posture group of 100 
samples was obtained. There was a total of 800 training sets 
samples, and 400 testing sets samples. The confusion matrix 
across all 12 classes is shown in figure 6. A static sitting pos-
ture recognition accuracy of 90.92% was achieved.

Figure 7.  The confusion matrix across 12 sitting behaviors using (a) RBF, (b) SVM-Kernel-DTW, and (c) RBF-Kernel-DTW.
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4.3.2.  Real-time sitting behavior recognition and rectifica-
tion.  Real-time feedback and reminders to humans of sitting 
behavior information can improve the healthy sitting level 
[54–56]. Therefore, real-time sitting behavior recognition 
experiments were designed and implemented to test and prove 
the effectiveness of the RBFNN-Kernel recognition methods. 
The dataset containing 12 typical classes of sitting behaviors 
described in the preliminary work are recorded and shown in 
figure 6. The sitting behaviors have been recorded for three 
participants with similar body structures. Each wrist and 
shoulder joint contains three directional features, each elbow 
and knee joint contains four directional features, and the waist 
contains two directional features. Here, the 36-dimension 
sensor expansion directions from the data bands are used to 
express the sitting behaviors. Hence, the 36-dimension fea-
tures were used here for sitting behavior recognition, and the 
training methods of the recognition models are consistent with 
the static sitting posture recognition models.

By looking at the analysis results in table 1, it can be seen 
that when compared with other methods, RBFNN-Kernel 
methods can achieve higher recognition accuracy for the pro-
posed sitting behaviors. We can also see from table 1 that the 
RBFNN time consumed is less than that of the SVM, while 
the average sitting behavior recognition accuracy of RBFNN-
Kernel is superior to that of the SVM. The confusion matrix 
of 12 sitting behaviors is shown in figure 7. We can draw the 
conclusion that the sitting behavior can be easily recognized 
according to the confusion matrices of the classifiers. Table 1 
summarizes the results of the recognition accuracy for the 
static sitting postures, which was 94.25% for the RBFNN-
Kernel methods. The RBFNN-Kernel methods achieved 
better recognition accuracy than the RBFNN and SVM due to 
the model confusion matrices.

Meanwhile, the Extended Data table  2 shows that when 
each data band was composed of a different number of sen-
sors (Nos), the overall performance of the whole model was 
different, and reached the best level at the location of mark-
ings. In this table, Nos1 is the number of stretchable sensors 
on each band. Nos2, Nos3 and Nos4 are the number of pres
sure sensors of the elbow, knee, and waist bands, respectively. 
The conclusion can be drawn by analysis from Extended 
Data table 2 that when Nos1  =  3, Nos2  =  2, Nos3  =  4, and 
Nos4  =  16, the recognition accuracy of the sitting posture 

reaches the optimal level. The important physical parameters 
of the sensors used here are shown in Extended Data table 3.

The various age, gender, and race groups differ in height 
and weight [57–59]. Ten subjects (Extended Data, table  4) 
with different genders, ages, and weights were selected to 
verify the effectiveness of the proposed method, and each par-
ticipant repeated the experiment three times. The leave-one-
subject-out cross-validation method was adopted to estimate 
the generalization ability of the proposed method. Since only 
marked events were analyzed, there remained unlabeled sam-
ples between consecutive events. The performance values can 
be calculated with a timing tolerance of  ±  5 samples between 
the labeled and estimated gait events. The conclusion can be 
drawn from table  2 that the performances of the proposed 
method do not vary with the weights and heights of the sub-
jects. The values for each subject were obtained by averaging 
over all trials that the subject conducted.

The RBFNN-Kernel-DTW based method and SVM-
Kernel-DTW based method are implemented to contrast 
their real-time sitting behavior recognition abilities using the 
same testing sets. The RBFNN-Kernel-DTW based technique 
achieved the better performance (table 3). From the confu-
sion matrices of the classifiers in figure  7, it is concluded 
that the real-time sitting behavior can be easily recognized. 
Meanwhile, most model confusion matrices show that the 
RBFNN-Kernel-DTW method achieved a better recogni-
tion ability and accuracy than the SVM-Kernel-DTW based 
method.

Based on the proposed real-time sitting behavior tracking 
and recognition system, sitting habits rectification experi-
ments were carried out. The participant in the experiment 
was a college student aged 22 years and weighing 60 kg and 
of height 170 cm, with a mild hyperactivity disorder. The 
experiment lasted for 5 d over a time period of 60 h, and the 
health levels of the sitting habits were calculated per one-hour 
period. The monitoring time window for each sitting behavior 
was set at 2 min. The statistical results of sitting habits are 
shown in Extended Data figure 6. The health level of the sit-
ting posture was monitored in real time, and this information 
was given to the subject to remind the subject to maintain a 

Table 2.  Individual and overall performance values (%).

Participant Accuracy Sensitivity Specificity

1 94.25 96.46 98.24
2 94.23 96.87 97.43
3 94.24 96.15 97.32
4 94.25 96.08 98.16
5 94.23 96.87 98.28
6 94.22 96.05 98.52
7 94.25 96.50 98.42
8 94.25 95.54 99.57
9 94.24 95.21 98.37
10 94.19 96.05 98.31
Mean 94.24 96.28 98.26

Table 3.  Real-time dynamic sitting behavior recognition accuracy 
of different approaches.

Approaches RBFNN-DTW SVM-DTW

Accuracy (%) 90.23 88.62

Figure 8.  The sitting behavior health level statistics of 10 
participants over 10 days.
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healthy and standard sitting posture, which will gradually 
improve the health level of the sitting habit. It can be con-
cluded that from the first day to the fifth day, the health level of 
the sitting habit gradually increased from 33.67% to 92.50%, 
and the undesirable sitting behaviors were gradually rectified 
[60–62]. Meanwhile, the database contains multifarious sit-
ting habits from the 10 individuals who contributed, and the 
sitting behavior health level statistics of 10 participants over 
10 d are shown in figure 8. The experimental results of the 
real-time sitting behavior tracking and rectification also verify 
the effectiveness of the proposed methods.

5.  Conclusion

This work involved the design of novel methods of real-time 
human sitting behavior tracking and recognition by means of 
flexible wearable data bands to ensure that the sensors were 
accurately attached to the joints for accurate measurement of 
joint movements of the shoulders, elbows, wrists, knees, and 
waist. The proposed fully flexible data bands are designed 
based on two types of flexible strain sensors. Additionally, the 
RBFNN-DTW-based method was used to recognize the sitting 
behaviors captured by the flexible wearable data bands. The 
proposed data bands have advantages of superior wearability 
and correlation of dynamic sitting behavior characteristics, 
compared to other wearable posture data acquisition devices. 
Performance evaluations verified that the proposed wearable 
data bands can accurately capture real-time static and dynamic 
sitting behaviors. Furthermore, dynamic time warping is used 
to select the sitting behavior candidates, with recognition being 
achieved by comparing an observed posture with a series of 
pre-recorded reference patterns, and to monitor the sitting 
behavior habits over a period of 10 days. Over the course of 
the study, through feedback reminders, the sitting habits health 
levels of the participants gradually increased, and the undesir-
able sitting behaviors were gradually rectified.
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