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Abstract

CrossMark

A local geometric error correction method is developed for a metrological scanning probe
microscope. The method corrects geometric errors in stage displacements using the
interferometric measurements of angular position and known geometric offsets. Local and
global error correction methods are considered and general scaling dependences on the number
of measured steps or points are derived and compared. For the local method, the total
uncertainty scales the same or decreases with a sufficient number of measurement steps
compared with the global method. Implementation of the local geometric error correction
method is demonstrated on measurements of a three-dimensional height standard artefact. The
applied error correction method reduces the contribution of geometric errors to the uncertainty
budget by two orders of magnitude. The presented approach can be extended to any scanning
technique where a measurement translation mechanism can be identified and accurately

quantified by relating the measured values with a measurand.
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1. Introduction

Error correction plays a critical role in fundamental science
such as quantum computing [1], all the way to trajectory
corrections for spectacular interplanetary journey [2]. In met-
rology, correcting for errors is useful step in improving accur-
acy when further minimisation of error contributions is not
feasible due to practical or economical limitations. Dimen-
sional nanometrology often faces the formidable challenge of
achieving subnanometre accuracy of displacement measure-
ments in a measurement volume of hundreds of cubic micro-
metres, which would be unattainable without error corrections.

At the National Measurement Institute Australia (NMIA)
a metrological scanning probe microscope (mSPM) is
developed as the primary standard for dimensional measure-
ments at the nanoscale [3]. The instrument achieves traceabil-
ity to the International System of Units (SI) by interferometric
measurement, using a frequency stabilised laser, of the dis-
placement of a sample translation stage, relative to a fixed tip
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mounted on a quartz tuning fork. The three-dimensional (3D)
motion of the nano-positioning stage is measured by five inter-
ferometers, one for each of the three translational axes and two
for monitoring stage rotations [4]. Geometric errors, such as
Abbé errors, cosine errors and other alignment errors con-
tribute to the uncertainty of the displacement measurements.
These errors are reduced through the system design and with
appropriate alignment procedures. The alignment procedure
for estimating and minimising the Abbé off-sets of a mul-
tiple beam interferometer is a complex task [5] and will be
described elsewhere. A simple estimate taking into account the
sample stage’s parasitic rotations with known Abbé off-sets
shows that the Abbé errors are the largest cumulative contribu-
tions to the uncertainty budget of the instrument for displace-
ments above 1 um. For the mSPM’s total in-plane scan range
of 100 pm x 100 pm in x and y directions, the Abbé errors com-
prise == 77% of the uncertainty budget in the z direction. It is
therefore desirable to consider application of error correction
methods to reduce the geometric errors in the mSPM.

© 2020 IOP Publishing Ltd  Printed in the UK
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Figure 1. Layout of the measurement set-up in the mSPM. RM—reference mirror, MM—movable mirror, QTF—quartz tuning fork. The
TRS origin is located at the QTF’s apex whereas the MRS origin is located at the virtual intersection of the extrapolated geometric mean

of the interferometric beams.

Here, we present a local geometrical error correction (GEC)
method with its implementation demonstrated on a typical
dimensional measurement taken with the mSPM. We assume
an ideally rigid mirror where, for example, thermal and other
contributions to the geometric errors, such as dynamic or soft-
ware corrections [6] are not considered as they are found to
lead to an order of magnitude smaller contributions to the geo-
metric errors for a typical mSPM measurement, compared to
the alignment error contributions.

2. Geometric errors

The displacement and change of orientation of a 3D-body,
such as a scanning stage with respect to a fixed probe tip, can
be specified by measurements of three translations and three
rotations. For the mSPM, we consider two distinct reference
systems: the true reference system (TRS) relates to the true dis-
placement of the stage with respect to the tip, and the meas-
urement reference system (MRS) whose origin is defined as
the interferometric beam intersection!. In figure 1, a portion
of the mSPM measurement system is graphically represented
showing the complexity of measurement translation mechan-
ism between the TRS and MRS. A displacement between these
two reference systems represents the Abbé offset between the
tip and the interferometer (TIO). In addition, the measurement
position in the MRS is offset from the TRS by Iy, Iy and I,
in the x,y and z directions, respectively. These offsets com-
bined with unwanted rotations of the stage, introduce geomet-
ric errors result in measurement errors. For small (< 10 urad)

! n the rest of the text we will assume that each interferometer contains a
single beam although in practice each interferometer contains at least four
beams. Nevertheless, the applied analysis is valid since the single beam can
be considered as the geometric mean of the multiple interferometric beams.

stage rotations, the geometric errors are well approximated
by simply multiplying the offsets and the parasitic rotations.
If all the offsets are known and the parasitic rotations are meas-
ured, the geometric errors can be determined and corrected for.
After a correction is applied, the contribution of the geometric
errors to the uncertainty budget is estimated from the stand-
ard error propagation calculation [7] for individual geometric
error components Xx;:

where Ag represents the uncertainty of the geometric error g,
Ax; represents the uncertainty of x;, and gi_‘ is the sensitivity

coefficient for the ith independent geometrilc error variable.

2.1 2D geometric errors

Let us consider an exaggerated two-dimensional (2D)
movement of a mirror as in figure 2 and identify a geometric
relation amongst the parameters of interest. Here, yaw and roll
rotation?, as well as z-axis movement, are set to 0. Only pitch
rotations and x and y translations are considered. The initial
mirror position is parallel to the x and y translation axes, with
no rotation of the mirror. Here, the movement in x direction is
Cx, the movement in y direction is Cy, the rotation of the mir-
ror is /3, and the Abbé offsets are Ax and Ay. The initial mirror
orientation and position define the reference coordinate sys-
tem (x,y). The corner of the mirror defines the origin O. This
simplifies the relationships between the geometric paramet-
ers. From figure 2, relationships can be established between

2 In the article yaw, pitch and roll angles are defined with respect to the x—axis
displacement.



Meas. Sci. Technol. 31 (2020) 054006

B Babic et al

Figure 2. Exaggerated displacement of the mirror in x and y directions while rotating by angle 5. The interferometric distance
measurements are Mx, My, the probe offsets Ax,Ay, the mirror’s origin movement Cx, Cy in the x and y directions, respectively. The
interferometer beams are incident to the mirror at an angle « for x, and ~ for y directions.

the interferometric displacement measurements Mx, My, and
the mirror displacements Cx,Cy. The following equations
are found for the mirror displacement in x and y directions
expressed via the measurable quantities My, My,Ax,Ay, 3:

Cx = cos*(f) [MX +tan(8)[Ay — My +Axtan(ﬁ)]]

2 @)
Cy = cos’(B) [My + tan(B)[—Ax + Mx + Ay tan(3)]].

If the mirror is not aligned perpendicular to the
interferometer beams, cosine errors are introduced determ-
ined by the angles between mirror normals and beams. These
angles are labeled « and «y in figure 2 and lead to additional
corrections in equation 2. Also, when the initial mirror orient-
ation has a non-zero rotation 6, with respect to the translation
axes, the true displacements Tx, Ty are obtained by multiplic-
ation with the 2D rotation matrix:

(R)- (o m).(): o

This angle just adds to the incident angles of the
interferometer beams. Since the cosine error is of second order
for small angles and to capture the notation in more trans-
parent way, in the rest of the paper the beams are assumed
incident perpendicular to the mirror which is rotated by an ini-
tial angle 6. The initial mirror rotation together with accumu-
lated mirror, i.e. o = v = 0, displacements lead to the corrected
offsets:

L+ TIOx 4+ Y. Tx
Ax = )
cos(6)
“
Iy +TIOy + > Ty
Y= .
cos(6)

Now that the movement of the mirror corner is obtained,
we can derive the movement of a general point on the mir-
ror. This is necessary due to the fact that the pivot point for the
mirror rotation, as experimentally deduced, is not at the mirror
corners or surfaces, but rather at the fixed tip position. A gen-
eral approach requires transformations of a point on the mirror
by a translation and a rotation about an arbitrary pivot point
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Figure 3. (a) Local correction vectors (black) and their corresponding uncertainties visualised as spheres (red) with the norm of x,y, z
uncertainties as their diameters. The mean of the correction vector norms is 0.65 nm and the maximum local uncertainty is 0.22 nm. Every
364th point is shown from the acquired data set. (b) 3D plot of the zoomed in region indicated by the red cube in (a). The local correction
vectors are enlarged 40, 40, 2 times while corresponding uncertainties 80, 80, 4 times in the x, y, z directions, respectively. Every 50th point

is shown from the acquired data set.

between different coordinate systems. These affine transform- If (Vx,Vy) are the coordinates of the pivot point, the
ations expressed in homogeneous coordinates [8] enable the movement written explicitly in the matrix form has the
translations and rotation to be concatenated when written in  following form:

matrix form. To rotate a displacement about the pivot point, the

existing displacement is translated to the pivot point, rotated 10 Tx L0 Vx

around the pivot point, and then translated back by the negat- M=10 1 Ty 01 W

ive of the initial translation to the pivot point. The complete 0 0 1 00 1

movement can be expressed: cos(f) —sin(d) O 1 0 —Vx
X ( sin(f) cos(f) O 0 1 —Vy

Movement = Displacement - ToPivot - Rotation - FromPivot. 0 0 1 0 0 1

&)
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Each point on the mirror is transformed via P’ =M - P,

where the 2D points P and P’ are written in homogeneous
X Xy

coordinates, P= | Y | and P’ = | Yx |. Substituting Vx —
1 1

Ax and Vy — Ay, Tx and Ty as previously described, and

noting that the initial probe positionis X =I,Y =1, and Z=

I,, a cross-coupled motion for each direction in the x—y plane

can be obtained by solving for Xy and Yx.

2.2. 3D geometric errors

Similar to the 2D case where a movement along a translation
axis also generates a displacement along the perpendicular
axis, three plane coupled equations are generated to obtain
generic 3D transformations:

Xy+XZ+YX+ZX—2XT—YT—ZT=O,
Yz4+Yx+Zy+ Xy — X7t —2Yr —Z7r =0, (6)
ZX—f'Zy"f‘XZ'i‘YZ—XT—YT—ZZT:O7

where, for example, Xy is translation in the x direction with a
cross displacement in the y direction, and similarly for other
directions. Combining the movement in each plane, the true
mirror displacements are obtained self consistently by solv-
ing equation 6 for Xt,YT and Zr. The obtained expressions
describe corrected displacements in 3D, expressed via meas-
ured quantities similar to those in equation 2 but in a much
more complex form. As a check, the 3D case reduces to the 2D
case for a single plane motion where the solutions are known
for a particular set of parameters such as if all the angles are
zero (rotation and alignment). In that case, the corrected dis-
placements, i.e. i, reduce to the interferometric measurement
values, M;, where i=X,Y, Z.

3. Application of local geometric error corrections

Experimentally measuring variables which contribute to
measurement errors makes error corrections possible [9].
These additional channels of information together with an
appropriate model, can be utilised at each measurement point
to correct errors and estimate realistic uncertainties [10]. In
the particular case of geometric errors, measurements of para-
sitic stage rotations by the angular interferometers carry the
necessary information about the errors. Combining this with
an appropriate model which relates the stage motion and
the interferometric measurement configuration through known
geometric parameters such as the dimensions of the movable
mirror, is sufficient to determine and correct for the local geo-
metric errors. The local character of the method ensures that
the error at each subsequent measurement step can be evalu-
ated and that the coordinates of the measurement points can
be corrected and complemented by calculation of the corres-
ponding local uncertainties arising from the geometric errors.
Applying the derived model from the previous section, to
express the true displacement of the mirror via measurable
quantities, a stepwise error correction of the measurement data

Table 1. Measured values and estimated uncertainties used as
input parameters in the local geometrical model for a typical
measurement. f-angle between the movable and reference mirrors.

Measurement constants Value Uncertainty
I [mm] 38.0 0.08

Iy [mm] 38.0 0.08
I,[mm] 29.2 0.08
Ox,y,z[prad] 133 5

a, B,y[prad] 75 5
TIOx.y,,[pm] 0 30

can be performed. The corresponding uncertainties are calcu-
lated through standard error propagation methods (equation 1).
Typical input values with corresponding uncertainties for para-
meters used in the local correction model determined prior to
a measurement are listed in table 1.

Figure 3(a) illustrates an application of the local GEC
method for a typical mSPM scan of a height calibration arte-
fact’. The local GECs are visualised with black vectors and
corresponding uncertainties with red spheres. Both thebreak
vector and uncertainty components are calculated for each
measurement step of the mSPM. The 3D features of the meas-
ured structure are clearly recognizable. With this sequential
approach, the steps are determined by the scan speed and res-
olution of the angular interferometers. A zoom into one of the
artifact’s step feature is shown in figure 3(b). The local cor-
rection vectors do not show a clear orientation trends while
the uncertainties tend to be slightly larger at the valley and on
the plateau of the step compared with other measuring loc-
ations. For quantifiable results it is helpful to visualise both
local error correction and corresponding uncertainty distri-
butions for all the three displacement axes as in figure 4(a)
and (b). The correction errors follow the normal distribution
for each of the directions with 95% of the correction vector
components ranging between +1 nm. The local uncertainty
distribution follows a log-normal distribution reasonably well,
with a mean value of 0.04 nm. The local GEC uncertainties
are dominated by the uncertainty of the Abbé error offsets,
+110 ym.

4. Local versus global geometric error correction
methods

The common approach for complex dimensional measuring
instruments such as a coordinate measuring machine (CMM)
is to globally evaluate 21 geometric errors [6]. These errors
are determined by measuring various geometric parameters
over the dynamic range of the instrument. The approach
of using a global GEC method where specific experimental

3 The artefact is TGQI calibration grating from the NT-MDT. The
grating specification are described in AFM Probes & Accessories
Catalogue—NT-MDT www.ntmdt-tips.com/data/media/images/nt_mdt_afm_
probes_2012.pdf (Accessed: 17 December 2019).
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Figure 4. Distributions of (a) the local error correction vector components, and (b) the local uncertainty components. On both histograms

every 364th point is shown from the acquired data set.

procedures are developed to separate each type of error, can be
cumbersome, impractical and ineffective due to high require-
ments on repeatability. For example, measuring nine parasitic
rotations due to three translational displacements on one hand
requires regular calibrations for each set of measurements, and
on the other hand overestimates uncertainties by inherently
demanding that the largest global uncertainty value represents
the overall uncertainty. A simple estimate based on the stage’s
specified parasitic rotations with known Abbé offsets shows
that the Abbé errors are the largest cumulative contribution
to the uncertainty budget of the instrument for large displace-
ments. While some manufacturers of scanning stages provide
global values for the parasitic rotations A¢ in the linear form
A¢ = ¢, - Ax, where ¢, is the sensitivity coefficient and Ax
is the displacement, these values can be misleading and may
not provide an accurate estimate of the stage motion. This is

illustrated in figure 5, where the roll angle is measured for x
axis motion in the mSPM. From the measurement data, it is
evident that the assumed linearity of the stage rotation versus
the displacement is merely a convenient approximation. In
addition, the spread of the angle values varies dramatic-
ally with the displacement where the ratio of measured data
variations at the scan limits is ~6, as can be deduced
from differential roll angle values shown in the inset of
figure 5.

A qualitative comparison between local and global GEC
methods can be obtained from scaling of the corresponding
uncertainties on a step parameter, n. Let us consider a simple
case where the functional form of a dependent variable (meas-
urand), m, is given by a single polynomial term with a power
law dependence on a measurement variable, d. For example,
it can be the dependence of a parasitic rotation angle, m, on a
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Figure 5. Position dependence of the roll angle, ¢, for x—axis displacement. Measurements (symbols) and fits using 1st (red), 2nd (green),
3rd (blue) order polynomials. Inset: Plot of the subsequent angle differences.

displacement d, m=kxd", where k is the constant of
proportionality, r is the exponent. The comparison criteria
between the local and global methods will be the total
measurand’s uncertainty for a given displacement.

For the local method, substituting d — (¢) models the local
character of the method where the displacement is subdivided
into n steps, for a total of n + 1 measurement points. The uncer-
tainty of the measurand can be found using equation 1, where
the sensitivity coefficient has the form ¢ = r x k/n" x d"—1,
followed by summation of n local error terms, €, within a
step d/n. For the step error ¢ we consider two possibilities of
interpolation in each segment d/n:

€ =€y, for zero order interpolation(L0)

d/n @)
e=c. / de = c.d/n, for linear interpolation(L1),
0

where c., is the step error proportionality constant. The total

\/ > iy (ceo)? = cegy/n o
€0 x d"=1 /w"=1/2 for the zero order interpolation, and as
u xd/ n"t1/2 for the first order interpolation.

The global uncertainty is strictly speaking deduced from a
fit to the measured points assuming a functional dependence
between m and d. For a generic power law, coefficients are
varied to obtain a best fit, where the uncertainty of the coeffi-
cients scales as 1/4/n. Since we are interested only in scaling,
the global cumulative uncertainty has a scaling dependence of

local uncertainty scales as upg =

ug x 1/ /n x d". Hence, the scaling ratios of the local versus
global cumulative uncertainties are

1

————, zero order interpolation,
d \/ﬁ(r 1)

ML()/MG [0¢
(®)

1 . . .
ury Jug 0 for linear interpolation.

For the first three polynomial exponents, r=0, 1,2, the
total uncertainty ratios of the linear error interpolation are dis-
placement independent and have step number dependences
{1,151} as shown in figure 6(a). The local vs. global uncer-
tainty ratio is constant for r =0, while for >0 scaling of the
ratio decreases with the step number. For the zero order error
interpolation, the ratio is inversely proportional to displace-
ment d, indicating again the superiority of the local method.
The step dependence is weaker than for the linear error inter-
polation, and if the displacement d is constant, the total uncer-
tainty ratio is independent of the step numbers for the linear
step accumulation (r = 1), and as the exponent increases the
local uncertainty decreases for the same number of steps. Also,
the errors are diminishing as the number of steps increases
while for a single step (n = 1) the uncertainties for both meth-
ods are the same as expected. Interestingly, for the linear
interpolation case when the power dependence is not exist-
ent (r=0), the global approach tends to have a smaller total
uncertainty with scaling /n for the ratio between local and
global methods. In this case, a segmentation makes little sense
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Figure 6. Scaling dependence of the local and global GEC method uncertainty ratio as a function of the number of measurement steps.
(a) The uncertainty ratio versus step number for linear interpolation of the step error (equation 8). (b) The cumulative uncertainty ratio for
measurement data (symbols) taken by the mSPM, with a line of best fit, (ur; /uc = 0.012 + 1.44 /n), for the linear interpolation as per

equation 8. Inset: The measurement points for a linear mSPM scan.

since it unnecessarily exaggerates displacement errors by data
oversampling, leading to an overestimate of the corresponding
total local uncertainty.

In a realistic case, a functional form of all the interrelation-
ships between variables contributing to uncertainties may not
be known or may be extremely complex. Take as an example
a linear mSPM trace as in the inset of figure 6(b). The trace
contains a large displacement in the x direction with cross dis-
placement in y and a sample feature displacement in the z dir-
ection in the MRS. To make the analysis more transparent let
us look at the one-dimensional case of comparing the local
and global uncertainty ratio for an x direction displacement,
where the probe shape uncertainty was not included in the
analysis. After applying the local GECs, the corresponding

uncertainties can be calculated from the general displacement
expressions for Xt, Y1 and Z7 obtained by solving equation 6.
A total uncertainty is obtained by summing the local uncer-
tainty contributions in quadrature for a given step range. The
global GEC method will lead to a cumulative uncertainty
which scales with distance, ug = d X €max/+/n. The ratio of
the uncertainties (symbols) is plotted versus the number of
steps in figure 6(b). The ratio drops quickly after 10 steps, hav-
ing a pseudo-oscillatory nature for larger numbers of meas-
urement steps, progressively settling with a further increase
in step numbers. These variations are due to the contributions
from the other two axes of motion, which are small but not neg-
ligible, and can have a dramatic influence on the continuity of
data, visible in figure 6(b) as a sharp drop around n = 900.
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The ratio data can be fitted to the step scaling functions as in
equation 8. The line in figure 6(b) shows a best fit to the first
two terms of the linear error interpolation.

5. Conclusion

The GEC method applied to measurement data obtained with
the NMIA mSPM leads to a reduction of positional errors up to
10 nm. The local GEC method can achieve a significant reduc-
tion in the uncertainty of displacement measurements bringing
it well into the subnanometre range. This method generally
outperforms the global GEC method, as demonstrated through
a derived scaling dependence of the cumulative uncertainty
on the number of measurement steps. For a typical data set,
the local method reduces the total displacement uncertainty
by at least 60% compared to the global method. A further
advantage of the local GEC method is its application when
a localised feature of a sample has to be accurately measured.
Even in the case of an ensemble measurement, such as measur-
ing a group of nanoparticles, the local method is more accur-
ate due to the common practice of determining nanoparticle
height [11] from the relative height of the highest pixel relat-
ive to a reference plane, which is a single measurement point.
Universally, the local GEC method does not rely on repeat-
ability, hence it is an in situ method where dynamic proper-
ties of a scan, such as the direction and speed, are reflected
merely in different correction vectors and uncertainties. The
local method is highly suitable for application in conjunction
with our laser interferometry system. Since our interferometric
system bandwidth (1 kHz) is substantially higher than a typ-
ical stage scanning line speed (<10 Hz), the potential num-
ber of acquired points is always sufficiently large to justify
application of the local GEC method, while at the same time
maintaining sufficiently small step size between subsequent
points such that linear error interpolation is appropriate. The
above considerations suggest that the local GEC method
should be applied whenever possible, due to its character-
istic ability to exploit the knowledge of both the measurement
process and the measurement system, without influencing
and hence, compromising performance and integrity of the
measurements.
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