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Abstract
Wedescribe and analyze in detail the shapes of Fe islands encapsulated under the top graphene layers in
graphite. Shapes are interrogatedusing scanning tunnelingmicroscopy.Themainoutputs of the shape
analysis are the slope of the graphenemembrane around theperimeter of the island, and the aspect ratio
of the centralmetal cluster.Modelingprimarily uses a continuumelasticity (CE)model. As input to the
CEmodel, weuse density functional theory to calculate the surface energy of Fe, and the adhesion
energies between Fe and grapheneor graphite.Weuse the shaft-loadedblister test (SLBT)model to
provide independent stretching andbending strain energies in the graphenemembrane.Wealso
introduce amodel for the elastic strain inwhich stretching and bending are treated simultaneously.
Measured side slopes agree verywell with theCEmodel, both qualitatively andquantitatively. Thefit is
optimal for a graphenemembrane consisting of 2–3 graphenemonolayers, in agreementwith
experiment. Analysis of contributions to total energy shows that the side slope depends only on the
properties of graphene/graphite. This reflects delamination of the graphenemembrane from the
underlying graphite, caused byupwardpressure from the growingmetal cluster. This insight leads us to
evaluate the delamination geometry in the context of two related, classicmodels that give analytic results
for the slope of a delaminatedmembrane.One of these, the point-loaded circular blister testmodel,
reasonably predicts the delamination geometry at the edge of an Fe island. The aspect ratio also agrees
wellwith theCEmodel in the limit of large island size, but not for small islands. Previously,wehad
speculated that this discrepancywas due to lackof coupling betweenbending and stretching in the SLBT
model, but thenewmodeling shows that this explanation is not viable.

1. Introduction

There are numerous situations where it is important to understand or utilize the interaction between ametal,
and a two-dimensional (2D)material (or by extension a heterostructure of 2Dmaterials, or a three-dimensional
(3D) van derWaalsmaterial). One example is electrical connections or heat sinks for device applications, where
metal architectures with stable and high-area contacts to the 2Dmaterial are needed [1, 2]. Another example is
tuning the electronic properties of the 2Dmaterial, where dopants and intercalants canmodify the Fermi level
via charge transfer [3, 4]. A third example is the area ofmagnetism, where there aremany possible applications
[5]. A particularly exciting one is the creation of springmagnets using a 2Dmaterial such as graphene as a sharp
and stable interface between atomically-thin films ofmagneticmetals [6]. In almost all of these applications, it is
desirable tomaximize the contact area between themetal and the 2Dmaterial, i.e. to achieve ‘flat’ growth of the
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metal. This is challenging, since 2Dmaterials have intrinsically low surface energies, sometals tend to growon
top of them as 3D clusters [7]. It is therefore attractive to consider synthesis strategies whereinmetal
morphologies are kinetically-limited [8], or themetalmorphology is constrained (and stabilized) by
intercalation, to promote the 2Dmorphology.

Elsewhere,wehave reported thatmetal nanoclusters can be synthesized at the surface of the 3DvanderWaals
material, graphite, in an intercalated form if two conditions aremet [9–12]. First, the graphite surfacemust be ion
bombarded to introduce defects that can act as entry portals for themetal atoms. Second, the graphitemust beheld
at relatively high temperaturewhile themetal is deposited, so that portals donot becomeblockedby growingmetal
clusters. Under these twoconditions, weobserve stablemetal nanoclusters that are encapsulated beneath the
graphite surface.Depending on themetal, they are a fewatomic layers to hundreds of atomic layers tall, and about
ten to hundreds of nmwide.Wehave reported the growth conditions and characteristics of such clusters indetail
forDy [9], Cu [10], Ru [11], and Fe [12], including evidence that the clusters aremetallic. In the case of Ru, the
graphenemembrane behaves like that on a (0001) surface of bulkRu, even forming a quantitatively-comparable
moiré [11]. Themetal clusters are sandwiched between amembrane consisting of one ormore graphene
monolayer (GMLs)on top, and a graphite substrate onbottom.Going forward,we shall use the term island to
mean the compositeof ametal cluster plus deformed graphenemembrane and local graphite support, and cluster to
denote only the centralmetallic portion. Seefigure 1.Wealso use the term graphenemembrane to denote a
graphitic layer thatmay consist ofmore than one graphene layer.

Previously, we have explored the shapes of Cu islands in detail [13].We found that these islands are verywide
andflat, with the central Cu clusters having height-to-width aspect ratios ranging from about 7–40. Clearly, this
is highly desirable in light of the considerationsmentioned above for optimal contacts.We also found that the
graphenemembrane forms a sloping edge around the perimeter (an annulus)with constant slope, independent
of island size.We used a continuum elasticity (CE)model to evaluate the shapes. Input to thismodel came from
two sources. First, the strain energy of the graphenemembranewas derived from a continuum-mechanical
model called the shaft-loaded blister test (SLBT)model [14, 15]. Second, adhesion and surface energies were
calculated fromdensity functional theory (DFT) [16].We found that theCEmodel reproduced the experimental
side slope verywell for all island sizes, and that it reproduced the experimental aspect ratio well for large islands.
We reported a preliminary analysis of the side slope of encapsulated Fe islands that showed the side slope to be
very comparable to that of Cu.We also speculated that the discrepancy between theoretical and experimental
values of aspect ratio for small Cu islands was due to limited treatment of bending strain, in the SLBTmodel.

In the present paper, we describe and analyze the shapes of Fe islands comprehensively. AswithCu, we use
theCEmodel. As input, we use the SLBTmodel to derive (independent) stretching and bending strain energies
in the graphenemembrane.We also consider a differentmodel for the elastic strain inwhich stretching and
bending are treatedmore correctly—they are treated simultaneously—and compare it with the experimental
data within theCE framework. DFT calculations also provide input to theCEmodel, in the formof surface and
adhesion energies.

Figure 1.Representative STM images of encapsulated Fe clusters formed at (a), (b) 900 K and (c) 888 K. (a)–(c) are topographic images
and (a′)–(c′) are derivative images. (d)–(f) are corresponding line profiles of the islands. (g) is a schematic that presents the key
dimensions of an encapsulated Fe cluster. Tunneling conditions are: (a)+2.7 V, 0.26 nA; (b)+2.0 V, 0.26 nA; (c)+4.8 V, 0.26 nA.
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Weanalyze not only the side slope of the sides of the islands, but also their aspect ratio and a related
dimensional ratio, whichwe term the lateral ratio, as a function of island height. All results for Fe are compared
with those of Cu. The similarities and differences provide insights into the factors controlling shapes of these
encapsulated islands.

In the following, section 2 provides some details of the experimental and computationalmethods. Section 3
presents results from experiment, fromDFT, and fromCE. In applying CE, we compare input fromSLBT and a
relatedmodel, which allows us to assess the bending contribution. Section 4 discusses these results. Auxiliary
information is available in the supplemental information (SI) is available online at stacks.iop.org/NJP/22/
023016/mmedia, as noted in the text. Also, because the paper containsmany variables, we define them in table 1
for easy reference.

2. Experimental and computationalmethods

2.1. Experimentalmethods
Wehave described the experimentalmethods fully elsewhere [12]. In brief, all of the experiments were
conducted in anUHVchamber. Encapsulated Fe clusters were grownbeneath the surface of commercially
available graphite (HOPG, ZYA grade). Necessary conditions for Fe encapsulation include (i) activating the
graphite surfacewith atomic-scale defects via Ar+ ion bombardment, and (ii) depositing Fe on the activated
graphite surface that is held at elevated temperature (Tdep). Our group has demonstrated that these conditions
are effective for encapsulating a variety ofmetals, includingCu [10], Ru [11], andDy [9]. Fe encapsulation is
operational in a narrowTdep windowof 875–900 K,with 900 K being the optimal temperature where the extent
of encapsulation is highwithminimal bare Fe on top of graphite [12].We have extensively characterized the
encapsulated Fe clusters via scanning tunnelingmicroscopy (STM) andX-ray photoelectron spectroscopy.
FromSTM images we obtain key dimensions of encapsulated Fe clusters, including island height (h), island top
width (d), and annular width (a). See figure 1. Specifically, h is determined from topographic STM images, while
d and a aremeasured fromderivative STM images. Derivative images offer vivid contrast of the islands and thus
enable accurate lateralmeasurements. Additional experimental details are described in the SI.

Table 1.Main variables and related terms used in this paper.

Main variables and related terms Definition

γ Surface energy per unit area

β Adhesion energy per unit area

h Island height, including top graphenemembrane

d Topwidth of the Fe cluster

a Width of the island annulus

FeGn Iron+graphene system (used as a subscript to delimit variables)
FeGt Iron+graphite system (used as a subscript to delimit variables)
FeG Iron+(graphite or graphene) system (used as a subscript to delimit variables)
Π Total energy

U Component of total energy

Ue Elastic strain energy

b Bending (used as an additional subscript onUe)
s Stretching (used as an additional subscript onUe)
s+b Stretching and bending (used as an additional subscript onUe)
fr Free (used as an additional subscript onUe)
UFeG Adhesion energy of Fe on (graphene and graphite)
UFe Surface energy of Fe

UGnGt Adhesion energy of graphene on graphite

UIS Interfacial and surface energy (sumof 3 above terms)
E2D In-plane stiffness of amembrane

Y Young’smodulus

ν Poisson ratio

D Flexural rigidity

t Thickness of the total graphenemembrane in units of nm

tGML Thickness of a single graphenemonolayer in units of nm

LY Thickness of Y=Cor Fe in units ofmonolayers

EX Energy of a slab supercell corresponding to configurationX

NL Number of atoms in a supercell of a slabwith thickness L

sbulk Energy of a single atom in the slab (cohesive energy)
A Area of the bottomor top face of a slab supercell, or the area of the interface between two slabs
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2.2. Computational techniques:DFTmethod
First-principles DFT analysis was performed utilizing theViennaAb Initio Simulation Package (VASP) code [17]
for the Fe-graphite and Fe-graphene systems. The projector-augmented-wave pseudopotentials [18] generated
and released in 2013 by theVASP groupwere used for the electron-core interactions. TheΓ-centered kmesh
depended on the supercell size andwill be listed for each specific system. The convergence tolerance for the force
on each relaxed atomwas set to be 0.1 eV nm−1. For a surface system,whichwasmodeled as a periodic slabwith
a specified lateral supercell size, the thickness of vacuum space between two adjacent slabswas not less than
1.5 nm.We also considered spin-polarization effects and dipole corrections unless noted otherwise. During the
energyminimizationwith structure optimization for a Fe–C surface systemusing the optB88-vdW functional
[19], we found that a large number of stepswere needed for the relaxation of electronic degrees of freedom as
well as all-band simultaneous update of orbitals.

Our goal was to obtain values for two distinct quantities for use in CEmodeling: Surface energies per unit
area (γ) of pure Fe, and adhesion energies per unit area (βFeG) formixed Fe–C systems. (Thesemixed systems
are denoted FeGt for Fe-graphite and FeGn for Fe-graphene, or FeG for both together.) For γ of pure Fe, we
considered both the Perdew–Burke–Ernzerhof (PBE) generalized-gradient approximation (GGA) [20] and
the optB88-vdW functional, where the exchange functional is optimized for the correlation part [19], to
approximately account for dispersion interactions. Based on comparisonwith an experimental value, wewill
conclude in section 3.2 that PBE ismore appropriate than optB88-vdW for purpose of calculating γ of Fe.On the
other hand,βFeG is a parameter ofmixed Fe–C systems, where the functionalmust dowell at describing both a
metal and a van derWaalsmaterial. Fromour previousDFT calculations [16], the optB88-vdW functional can
reproduce verywell the experimental lattice constants, cohesive energy, and exfoliation energy of graphite (the
AB-stacked hexagonal structure [21]) aswell as experimental lattice constant of theGML. Furthermore, we have
performed benchmark calculations for the bulk properties (lattice constants and cohesive energies) ofα-Fe (bcc
phase), γ-Fe (fcc phase), and ε-Fe (hcp phase), obtaining good agreementwith experiment using optB88-vdW.
The calculated bulk cohesive energies indicate a hierarchy of stabilities, wherein bcc-Fe ismost stable and fcc-Fe
is least stable. The bcc, hcp, and fcc structures of Fe are ferromagnetic, nonmagnetic, and antiferromagnetic,
respectively. This result is consistent withHerper et al’sDFT calculations [22]. The ability of the optB88-vdW
functional to simultaneously give good results for bulk Fe, and for graphite and graphene, justifies its choice for
obtainingβFeG in section 3.2.

2.3. Computational techniques: CEmodel
Weadopt the same approach toCEmodeling as in a previous paper [13]. In brief, we approximate the shape of
the Fe cluster as a cylinder, with its top and bottom circular faces (corresponding to hcp(0001) facets) contacting
a graphenemembrane and a rigid graphite substrate, respectively. The graphenemembrane undergoes elastic
stretching and bending deformations to accommodate the cluster, causing a strain energyUe to be induced. An
analytic expression forUe (treating the bending and stretching components independently) is obtained from the
cylindrical SLBTmodel, which provides an excellent analog for the situation described here [14]. In section 3.3,
wewillfirst consider the case whereUe has only a stretching component, derived from the SLBTmodel
(equation (5)).Wewill then consider the effect of bending separately (equation (6)). Finally, wewill present a
differentmodel forUe inwhich stretching and bending are incorporated simultaneously (equation (7)) but the
real island shape is not approximated as closely as in the SLBTmodel.

It should be noted, here, that all of the expressions forUe treat the graphenewith a Young’smodulus,Y. In
this approach, the in-plane stiffness of themembrane, E2D, is related to the three-dimensional (3D)Young’s
modulusY by

( ) ( )/ n= -E Y t 1 , 12D
2

where t is totalmembrane thickness and ν is Poisson’s ratio.
Theflexural rigidity,D, is related to the Young’smodulusY by

( ) ( )/ n= -D Y t 12 1 . 23 2

Many studies [23–26] experimentally characterizingY obtain it bymeasuring E2D, then back-calculatingY
using equation (1). One group [27] experimentallymeasuredD ofmulti-layered graphene ( L 8c ), and found
that it obeys equation (2), whenY is obtained as above. However, other groups have computedD of single-layer
graphene from eitherDFT [28–30] or an empirical potential approach [31–33] and found it to be an order of
magnitude lower than that predicted by equation (2). In this case, graphene cannot be considered as an isotropic
material with a singleY value, andE2D andDmust be treated as separate properties that cannot be characterized
by equations (1) and (2). In light of the above findings, it is quite possible thatmultilayered graphene thinner
than eightmonolayers ( <L 8c ) behaves intermediate between the two above limits. In the absence of a

4

New J. Phys. 22 (2020) 023016 A Lii-Rosales et al



well-defined experimentally-measured flexural rigidity in this range, we choose, in this work, to treat the
graphene as a transverse isotropicmaterial.

As shown in equation (3), the total energy of the system,Π, is defined asUe plus a set of energy terms that
represent the interfacial and surface (IS) components ofΠ:

( )P = + = + + -U U U U U U . 3e IS e Fe GnGt FeG

Here,UFe>0 is the total surface energy of the clean Fe cluster;UGnGt>0 denotes the total energy cost due to
reduced adhesion at the graphene-graphite interface; andUFeG>0 is the total adhesion energy of the Fe-
graphene and Fe-graphite interfaces combined. (Each of these terms involves γ orβ as defined in section 3.2.)
The expressions for individualU terms, and relevantmaterials parameters, are given in table 2.

The equilibrium shape is obtained byminimizingΠ forfixed Fe cluster volumeV.We then characterize
cluster geometry for various sizes, repeating this analysis over a range ofV (althoughwe note that cluster shape is
size-independent if one ignores the energy cost ofmembrane bending). However, rather than usingV as a
variable in the presentation of results, we use island height h, because this allows amore accurate and direct
comparisonwith experiment. Calculations are carried out usingMathematica©.Details for the SLBTmodels are
given in [13] and its associated SI. Details for themixed bending and stretchingmodel are given in the SI of the
present paper.

For the SLBTmodel, one can in principle consider two variants which differ in the distribution of strain in
the graphenemembrane: Either the graphene in contact with the top face of the Fe cylinder is allowed to stretch
(free), and strain is distributed over the entire island; or the graphenemembrane is restricted from stretching
(clamped) on top of the cylinder due to strong interaction, and strain is confined to the annulus [14]. Elsewhere,
we have shown that there isminimal difference in the results from the twomodels for Cu clusters [13], andwe
find that to be true also for Fe clusters. Therefore, we focus on the free SLBT in this text. Results for Fe clusters in
the clamped SLBTmodel are given in the SI.

3. Results

3.1. Results fromexperiment
Figure 1 shows representative STM images and profiles of three Fe islands. It also includes a schematic that
defines the key dimensions of an iron cluster encapsulated by a graphene layer: h is the island height; d is the
diameter of the island top; a is thewidth of the sloping perimeter (annulus) of the graphenemembrane; and t is
the thickness of the graphenemembrane, given by =t L t .C GML Here tGML is the thickness of a single GML in
nm, and LC ismembrane thickness in units of GMLs. In the schematic, the sides of the cluster are drawn vertical
to be consistent with the cylindrical shape of the SLBTmodel. In reality, we believe that the sides are composed
of various facets, and are only vertical on average.

It should be noted that the profiles infigure 1 are plotted using different scales on the y- and x-axes, tomake
the representations compact. If scales were equal, it would become obvious that these islands are verywide and
low. This is reflected in their aspect ratios (d/h), which range from about 5–40.

Dimensions are shown infigure 2, for a dataset of 235 Fe islands. This is a significant expansion of the 140-
island dataset presented in an earlier report [13] of h versus a and h/a versus h for Fe. Island height h shows a
strong linear correlationwith annular width a (figure 2(a)). By extension, the ratio h/a (slope of annulus) is
constant (figure 2(b)), at 0.27±0.04 for 235 Fe islands. This corresponds to an angle of 11.1°with respect to the
surface plane. By contrast, the island top diameter d does not vary linearly with h (figure 2(c)). However, a
different trend is revealedwhen the ratio d/h is plotted against h: d/h decays from large values at small h to an
asymptotic plateau at large h (figure 2(d)). There is large scatter at small h. A similar trend is observed for the
lateral ratio d/a, versus h (figure 2(f)). (We show and discuss d/a for completeness, even though it can be derived
from the other two ratios.)

The dimensional trends shown in figure 2 for encapsulated Fe clusters are very similar to those reported
previously for encapsulated Cu clusters [13]. This reinforces a conclusion drawn elsewhere: encapsulation of Fe
is very similar to that of Cu in general. However, there are two noteworthy differences. First, the heights of the Fe
islands fall in amore limited range than those of Cu. Specifically, for Fe, hmax=9 nm,whereas for Cu,
hmax=43 nm, so the Fe islands do not grow as tall. Second, for Cu, some islands have round tops rather thanflat
tops [10]whereas for Fe, only flat tops are observed. ForCu, the largest islands tend to have round tops, so these
two differencesmay be related, e.g. perhaps taller growth requires adoption of the round top shape. At present
the reasons for these differences between Fe andCu are not understood andwarrant further investigation.

Elsewhere, analysis of STM images of carbon atoms in the annulus region has shown that the graphene
membrane consists of at least 2GMLs, i.e. LC� 2. Also, analysis of the footprints of themetal clusters has shown
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Table 2.Expressions forU-terms, and corresponding values of input parameters used inCEmodeling.Here a, d, and h are dimensions of the islands as defined in figure 1. γ andβ are
surface and adhesion energies per unit area.Y and ν are Young’smodulus and Poisson ratio, respectively. tGML is the thickness of a single graphenemonolayer (GML) in nm, and LC is
the thickness of the graphenemembrane in units of GMLs. Subscripts FeTp and FeSd signify the top and side of the cylindrical Fe cluster, respectively. The components of the total
strain energy,Ui, are derived formodels described and used in section 3.3. Additional subscripts onUe stand for stretching (s), bending (b), combined stretching+bending (s+b), and
free (fr).

U-Term Parameters

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( )( )g
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that themajority of clusters (62%) have hcp (hexagonally-close-packed) structure, with their basal plane parallel
to the graphite interface.We therefore emphasize the hcp-Fe(0001) surface in theDFT calculations that follow.

3.2. Results fromDFT
3.2.1. Surface energies, γ, of hcp-Fe(0001), bcc-Fe(100), and bcc-Fe(110)
For reasons described in section 3.1, it ismost relevant to consider the surface energy of hcp-Fe(0001). However,
we include some results for bcc-Fe since bcc-Fe is themost stable phase under ambient conditions [36, 37].

The surface energy gL of a slab (or an unsupportedfilm)with two equivalent surfaces on both sides andwith
thickness L is calculated as

Figure 2.Plots of key dimensions of Fe islands. (a) h versus a; (b) h/a versus h; (c) d versus h; (d) d/h versus h; and (e) d/a versus h. The
plots are generated from a total of 235 encapsulated Fe clusters grown atTdep=875–900 K.
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( )g
s

=
-E N

A2
, 10L

L L bulk

where EL is the total energy of the slab in a supercell, NL is the total number of atoms in the slab, A is the area of
the bottomor top face of the slab, and sbulk is the energy per atom in the bulk crystal. The slab thickness L is in
units of atomic layers ormonolayers.We note that tomaximize accuracy in extracting surface energies for
 ¥L , weuse our ‘adjusting+observing’method [38–40] inwhich behavior of gL for a range of L are

considered (see SI). This is different from the approach used by other groups, where the oscillatory behavior of
gL with increasing L is not generally considered [41–43]. For a specificmetalM, calculations over a range of the
slab thickness LMare useful to eliminate quantum size effects, where the electronic properties of ametal slab
oscillate as a function of the slab thickness [40, 44, 45]. Such oscillations are especially notable for hcp Fe(0001)
slabs (see SI).

Table 3 summarizes surface energies calculated in this work. Details of the calculations are given in the SI. An
early experiment assessing the Fe surface energy gave a value of 2.417 J m−2 (near themelting point) [46], though
the experiment did not yield values for specific surface planes. It appears that the surface energies fromour PBE
calculations are closer to the experimental value, and thuswewill use the PBE values for surface energies of Fe.
This conclusion is consistent with an analysis of the effect of van derWaals corrections on calculations of
metallic surface properties [48]. Recently, Tran et al [43] generated an extensive database for variousmetals from
DFT calculations using PBEGGA. Relevant values are also listed in table 3, showing good agreement between
our PBE calculations and theirs. In addition, from table 3, the surface energy of bcc Fe(110) is lower than that of
bcc Fe(100). This order is consistent with the result fromTran et al’s database[43] but is opposite to early full
charge density results fromVitos et al [47]. The value ( )g =Fe 0001 2.664 J m−2 for hcp Fe(0001) is used as input to
theCEmodel, as described in section 3.3 and table 2.

3.2.2. FeGt and FeGn adhesion energies, β
The adhesion energy between two slabs (s1 and s2) bonded at an interface is a thermodynamic quantity defined
as the energy required (per unit area) to separate the slabs and create two free surfaces. It can be calculated as [16]

( )b =
+ -E E E

A
, 11s1s2

s1 s2 s1s2

where E ,s1 E ,s2 and Es1s2 are the energies of slab s1, slab s2, and the s1s2 system, respectively; A is the s1s2
interface area.

For Fe(0001)-graphite (FeGt) or Fe(0001)-graphene (FeGn) systems, we use a ´1 1 supercell (in units of the
graphitic lattice constant). For this configuration strain is very small, only 0.244% fromoptB88-vdW,which
corresponds to a negligible tensile strain for the Fefilm along the lateral direction. Our recent calculations for
Cu(111)-graphite [16]have shown that the adhesion energy is not sensitive to themismatch strain at the
interface evenwhen the strain is significantly large, and therefore we believe that the ´1 1 supercell calculations
for the FeGt systemswill be reliable. The kmesh is taken to be ´ ´51 51 1, and the energy cutoff is 600 eV.
During relaxation for energyminimization, the bottommost GMLof the graphite slab is alwaysfixed. To cancel
errors, we always use the same supercell and kmeshwhen separately calculating E ,s1 E ,s2 and Es1s2 for a specific
hcp-Fe(0001)film thickness LFe. For FeGt systems, the Fe(0001) slab s1 has variable thickness LFe and the
graphite substrate s2 always has LC=6. Also, we always choose the energeticallymost favorable adsorption site
match between the Fe slab and the graphene/graphite slab for a given LFe, as discussed in the SI.

From equation (5), we obtain the adhesion energies per unit area, bFeGn and b ,FeGt with increasing Fe(0001)
slab thickness LFe, shown by the green and red curves with triangles and squares infigure 3, respectively. For

 ¥L ,Fe one can take the values b = 0.424FeGn J m−2 and b = 0.464FeGt J m−2 at =L 10,Fe where the curves
already convergewell. These values are used as input parameters to theCEmodel in the following section, and
they are shown in table 2. The above values of adhesion energies are slightly higher than the values
b = 0.394CuGn J m−2 and b = 0.405CuGt J m−2 for Cu(111) interactingwith the graphenemembrane and
graphite, respectively [16]. This is reasonable, since Fe is generally found to have a stronger (more favorable)
interactionwith carbon than does Cu [49–52]. Theβ and γ values for Cu and Fe are compared directly in the SI.

Table 3. Surface energies (in unit of J m−2) of bcc Fe(100), bcc Fe(110), and hcp Fe(0001) surfaces fromdifferent theories. For
comparison, the experimental value sampling over various surface orientations is g =2.417 J m−2 near themelting point of Fe [46].

Method Reference ( )gFe 0001 ( )gFe 100 ( )gFe 110

PAW, PBEGGA Thiswork 2.664 2.495 2.432

Tran et al [43] 2.89 2.50 2.45

PAW, optB88-vdW Thiswork 3.025 2.810 2.669

FCD Vitos et al [47] 2.222 2.430
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In the above calculations for adhesion energies, we do not consider spin polarization, because the hcp
Fe(0001) slab is veryweaklymagnetic relative to bcc. (In fact, themagnetism per atomgoes to zerowith
increasing LFe, consistent with the nonmagnetic nature of bulk hcp Fementioned in section 2.2.) Furthermore,
equation (5) shows that calculatingβ involves taking the difference between the energies of an hcp-Fe(0001) slab
that is part of a FeGt or FeGn interface, and the energy of a free hcp-Fe(0001) slab, at given LFe.We expect that the
smallmagnetismof the hcp-Fe(0001) slab in both configurations, at given LFe, will be nearly the same andwill
thus cancel out. This expectation has been verified for select values of LFe.

3.3. Results from theCEmodel
3.3.1. Results using the SLBTmodel for Ue with stretching only
With values for surface and adhesion energies fromDFT in hand, theCEmodel can be implemented as
described in section 2.3. Herewefirst consider a situationwhere the strain energyUe is due entirely to stretching,
with negligible bending; this is described by equation (7) of table 2. For thismodel, the equilibrium shape is
independent of island size as will be discussed in section 4.

The solid lines infigure 4 showCEmodel results in comparison to the experimental data. It can be seen that
for afixed value of LC, the CEmodel predicts constant values of slope h/a, aspect ratio d/h, and lateral ratio d/a,
overmost of the range of experimental heights, h. This agrees with the experimental trend for h/a, and it also
agrees with the asymptotic trends for d/h and d/a in the limit of large h. (We take h� 7 nmas representative of
the asymptote; this cutoff is shownby the vertical red line infigures 4(b), (c).)

Not only trends, but also absolute values of the ratios predicted by theCEmodel agreewell with the
experimental data. If the thickness of the top graphenemembrane, LC, is treated as an independent variable, the
range 1<LC<4 encompasses almost all the experimental values of h/a, and best agreement with the
experimental average h/a is obtainedwith LC=2–3 in the free SLBTmodel, or with LC=2 in the clamped
model (shown in the SI). This is the only significant difference between free and clamped SLBT. These values of
LC agreewith the experimental constraint, LC� 2. As shown infigures 4(b), (c), for aspect ratio d/h or lateral
ratio d/a, there is negligible variation in theCE results for different values of LC, comparedwith the scatter in the
experimental data at large h. For both these ratios, CE values agree favorablywith experimental data at large h.

3.3.2. Results using the SLBTmodel forUe with bending only
Previously, we speculated that the large values of d/h and d/a at small h (for Cu)were due to the contribution of
bending toUe [13]. Qualitatively, bending should play amore important role for smaller islands, and this is
exactly where the experimental data for d/h and d/a deviate from theCE results with SLBT-derived stretching
only.While amixed bending and stretching SLBTmodel can be derived for the SLBTmodel, it is analytically
complex, and its application requires the use of numericalmethods that are not straightforward to implement.
The pure-bending and pure-stretchingmodels are limiting cases of themixedmodel. As such, if they do notfit
the experimental data in the domains of island sizes inwhich they are valid (short islands for pure bending, tall
islands for pure stretching), neither will themixedmodel throughout the full domain of all island sizes. Based

Figure 3. FeGn and FeGt adhesion energies versus hcp-Fe(0001) slab thickness LFe fromoptB88-vdWcalculations. The different
systems are indicated by the schematics as insets.
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upon this rationale, we first consider the effect of bending as an independent contribution in the SLBTmodel
(equation (8) in table 2). For the sake of clarity, we consider only LC=2. Conclusions would be qualitatively
unaffected for any LC in the range 1�LC�4, as shown in the SI.

Figure 4.Experimental and theoretical (CE) dimension ratios. (a) h/a. The experimental average. d/hav=0.27±0.04, is indicated
by the heavy ticmark on the ordinate, and is obtained by averaging over all h/a values. (b) d/h. The experimental average, d/hav=
5.3±1.2, is shown by the heavy ticmark on the y-axis, and is obtained by averaging over islands with h>7 nm, as indicated by the
vertical dashed red line. (c) d/a. The experimental average, d/aav=1.4±0.4, is indicated by the heavy ticmark on the ordinate, and
is obtained by averaging over islands with h>7 nm, as indicated by the vertical dashed red line. In every panel, the solid horizontal
line shows the results of SLBT if stretching (S) strain only contributes toUe with LC=2. In every panel, the long-dashed line shows the
results of SLBT if bending (B) strain only contributes toUe with LC=2. In every panel, the short-dashed line shows the results of the
SBmodel, with LC=2.
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The long-dashed lines infigure 4 show the results of SLBTat smallh, withbending strain only.Withdecreasingh,
thismodel predicts that the ratioh/adrops steeply,d/h rises steeply, andd/a approaches afinite ordinate
intersection.These trends canbe rationalized as follows.Ashdecreases andbendingbecomes important, the
graphenemembrane stiffens and starts to actmore like a solid ‘plate’. This has twoeffects: (i) atop the island, the
membrane exerts a greater downward force, increasing d/h; and (ii) at the outer edgeof the overhanging annulus, the
membranehas a greater tendency to pull upoff the graphite, expanding the annuluswidtha anddecreasingh/a.
These trends are illustrated qualitatively infigure 5. Ford/a, on theother hand, bothd and a increasewithdecreasing
h, and their ratiodoesnot necessarily have a vanishingor asymptotic behavior, ash/a andd/hdo, respectively. Based
upon the result infigure 4(c), it appears that they increase almost proportionately.

There is little, if any, agreement between these results and the experimental data. In experiment, the ratio h/a
does not dive downward at small h, though one could argue that clusters are not observedwith sufficiently small
h for this trend to be visible. The experimental ratio d/h does rise steeply with decreasing h, as predicted, but at
much larger values of h than predicted. Quantitative agreement is thus lacking, even though the trend is
reproduced. And for d/a, the experimental ratio rises steeply at small h, in complete disagreement with the
predicted trend, both quantitatively and qualitatively. The SLBTmodel with bending strain only is thus
inconsistent with the experimental data at small h.

3.3.3. Results using amodel with coupled stretching and bending (s±b) to giveUe

In order to treat both stretching and bending simultaneously, we have formulated amodel inwhich a general
shape is assumed for the graphenemembrane. Details are given in the SI. This stands in contrast to the SLBT

Figure 5.Qualitative schematic showing the change in island dimensions as bending strain increases. The views are drawn such that a
is constant. The cluster height h decreases fromA toC,meaning that h/a also decreases. Thicker arrows at the edges of themetal
cluster indicate stronger force.
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model, where the starting point was the governing differential equations, and the shape of the graphene
membranewas derived. The SLBTmodel provides a superior analog to the real physical island, but as noted in
section 2.2, it is not solvable simultaneously for bending and stretching. Results of CEmodeling, usingUe from
the s+bmodel, are shown by the short-dashed lines infigure 4.One key observation is that for small h, these
results fall very close to those of SLBTwith bending only, both in terms of qualitative trends and quantitative
values. This is reasonable, since bending should dominate at small h. The s+bmodel does not produce better
agreementwith the experimental data at small h. At large h, it agrees with the SLBT-stretchingmodel, for d/h and
d/a. For h/a, it shows an asymptote at large h (as observed) but the asymptotic value is in quantitative
disagreement with the SLBT-stretching result. This is likely due to the fact that the s+bmodel requires the
profile of the graphenemembrane to be assumed, while the SLBTmodel derives the profile, ab initio.

We have considered the possibility that increasingD in the bending strain energy termmight shift the upturn
in d/h toward the right and toward better agreementwith experiment. Increasing bending stiffness can be
achieved by, for example, doubling the Young’smodulus,Y, to 2.2 TPa in equation (8), or by adding a factor of
two to the bending term in equation (9). Unfortunately, these have only aminor effect on d/h, and they enhance
the downward dive in h/awith decreasing h. Neither of these changes improves agreement with experiment.We
have also considered that perhaps smaller islands (smaller h) are associatedwith larger LC and increased bending
stiffness. However, wefind that increasing LC does not improve agreementwith experiment significantly, as
shown in the SI.

We conclude that the behavior of the graphenemembrane is dominated by stretching, over the range of
experimental observation. Bending strain cannot account for the deviations of d/h and d/a at small h.

4.Discussion

Insight into the above results is given by analyzing the energy terms in theCEmodel. Here, we return to the
version of theCEmodel whereUe is derived from the free SLBTwith stretching only (equation (7)). Figure 6
shows the energy terms for a single choice ofV, corresponding to 1.0×104 nm3. The choice of V does not
matter, however, because results are independent ofV, as will be discussed below. Figures 6(a), (b) show total
energy ( )P a h, .Theminimum inΠ defines the equilibrium state. Figures 6(c), (d) represent two 2D cuts across
the 3D ( )P a h, space, each passing through theminimum in P.One cut parallels the a-axis and the other
parallels the h-axis. Each cut shows the variation inΠ, as well as individualUIS andUe terms.

Figure 6. (a), (b)Two views of the total potential energy surface, ( )P a h, , for a cluster with = ´V 1.0 10 nm4 3 and LC=2, where
Ue is obtained from the free SLBTmodel without stretching. The grid of lines shows contours of constant h and a. (c)A cut through

( )P a h, parallel to the a-axis, at h=heq. (d)Acut through ( )P a h, parallel to the h-axis, at a=aeq.
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The position of theminimum inΠ is determined by those energy termswith highest curvature in the vicinity
of theminimum.Hence inspection offigure 6(c) shows thatUe andUGnGt determine aeq, whileUFe andUFeG

have no effect since they are invariant with a. The former two terms are the elastic energy of the distorted
graphenemembrane and the adhesion energy between graphene and graphite, while the latter two are the
surface and adhesion energies of themetal cluster. Therefore, the equilibrium value of a, aeq, depends solely on
properties of graphene and graphite, and has nothing to dowith themetal cluster except for the fact that the
metal cluster displaces the graphenemembrane to a height h. Thus, the ratio h/a is predicted to be independent
of the nature of themetal or the lateral dimensions of themetal cluster, and to depend only on the nature of the
membrane and substrate.

In accordwith this prediction, we have previously presented a comparison of h/a for encapsulatedCu and Fe
clusters on graphite, wherewe have shown that h/a is the same for the two systemswithin experimental error:
0.24±0.03 and 0.27±0.04, respectively [13]. If the slight difference between the average values is real, it can be
attributed to different values of LC in the two systems, LC being slightly higher for Cu than for Fe. Thosewhich
provide the bestfit to the data are LC=3–4 for Cu and LC=2–3 for Fe (seefigure 4(a)).

The above perspective on h/a—that it is simply due to delamination of the topmembrane by themetal
cluster—leads us to consider the possibility that h/amay be predicted using a simpler framework than that of
the full CEmodel. To this endwe examine two establishedmodels for delamination offlexiblemembranes that
yield analytic results for h/a. Thefirst assumes a geometry inwhich amembrane originally lies on aflat substrate
in the xy plane. At x=0, the height of themembrane is increased along zup to z=h and themembrane
unbinds from the substrate up to a distance x=a from the origin. Essentially, in thismodel the shaft in the
SLBT (which is equivalent to the Fe cluster infigure 1(g)) is replaced by a thin vertical plate parallel to the yz
plane, exerting an upward line load on themembrane. This situation has been analyzed byWilliams [53], and it
can be called the rectangular strip peel testmodel. If h/a is substantially less than 1, which is true in our situation,
h/a is given by

⎛
⎝⎜

⎞
⎠⎟ ( )
/b

=
¢

h

a Y L t

8

3
, 12GnGt

C GML

1 4

whereY′=Y/(1−ν2). Using equation (12) and the values of variables listed in table 2, h/a is calculated for
different LC and results are shown in table 4. The best agreement from thismodel (h/a=0.235 for LC=1) is
14%below the experimental value (h/a=0.272) and 13%below the best value calculated for the clamped SLBT
(h/a=0.270 for LC=2). (Clamped ismore appropriate than free SLBT for this comparison since, like the
rectangular strip peel testmodel, all strain in themembrane is confined to the annulus.)The second established
model for delamination is that of the point-loaded circular blister test, wherein a point force is exerted on the
membrane along z, inducing a circular delamination annulus [54, 55]. Conceptually, this is equivalent to
shrinking the diameter, d, of the shaft or cluster infigure 1(g) to zero.Here, h/a is given by [56]
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i.e. h/a is larger by a factor of 1.456 than the value predicted by equation (12). The assumption of a point source
is expected to lead to an overestimation of h/a relative to the real geometry. This is due to non-linearity (i.e.
apparent ‘droop’) in the delaminated graphenemembrane, which is highly exaggeratedwhen a point load is
applied. Thismodel yields h/a=0.287 or 0.259 for LC=2 or 3, respectively. Given the expected
overestimation, LC=2 provides the bestmatch to experiment, with an h/a that is only 6%higher than
experiment andwith a value of LC in agreement with the clamped SLBTmodel. In short, the point-loaded
circular blister testmodel does a reasonable job of predicting delamination geometry at the edge of an Fe island.

Returning to the analysis ofΠ, we can similarly identify the energy terms that influence heq. Here, figure 6(d)
shows that all terms contribute, but the only term that increases strongly with increasing hnear theminimum in
Π isUe. Therefore,Ue places the upper limit on island height, even though the value ofUe is small at the
minimum. Thismeans that the resistance of the graphenemembrane to strain strongly inhibits upward growth

Table 4. h/a values fromdifferentmodels, and from experiment.

LC

Rectangular strip peel testmodel:

equation (12)
Point-loaded circular blister testmodel:

equation (13) Clamped SLBT Experiment

1 0.235 0.342 0.320

2 0.197 0.287 0.270 0.272±0.039
3 0.178 0.259 0.244

4 0.166 0.242 0.228
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of the Fe clusters, leading toflat islandswith high aspect ratio, d/h. TheUFe andUFeG terms also contribute, with
the former having stronger curvature near theminimum. The involvement of these two terms leads to an
expectation that the value of heq predicted by themodel will bemetal-dependent.We can test this by comparing
the limiting (asymptotic) value of d/h in the experimental data for Cu and Fe, wherewe find values of 7.3±2.8
and 5.3±1.2, respectively.Within experimental error these two values are equal, which is surprising. The slight
difference between them, if real, is consistent with a higher value of surface energy γ for Fe than for Cu, driving
the Fe clusters to bemore compact. The similarity between the two asymptotic values is probably due to a partial
cancellation between the increasing total adhesion energy (UFeG) and the decreasing total surface energy (UFe) at
theminimumofΠ. Both adhesion energyβ and surface energy γ are larger for Fe than for Cu, as shown in the SI,
but it appears that the correspondingU-terms counteract each other to about the same degree for the two
metals, leading toweak or negligiblemetal-dependence.

The interpretation that strain energy in themembrane accounts for the high aspect ratios in the clusters, is
borne out by comparisonwith equilibrium shapes of Fe clusters, whichwe have analyzed elsewhere. For an
unsupported hcp-Fe cluster, d/h=0.70–0.81, depending uponwhich (0001) facets are chosen in defining h.
For an hcp-Fe cluster supported on graphite, d/h=0.75–0.87. For an hcp-Fe cluster sandwiched between
graphite and an unstrained graphenemembrane, it is 0.96–1.1. Even the largest of these values is a factor of 5
lower than theCE result of d/h=5.3, or (equivalently) than the high-h asymptote in the experimental data.
Hence the resistance to strain in the top graphenemembraneflattens the Fe cluster by at least a factor of 5.

Aswe have discussed previously for Cu, CEmodeling predicts that all three ratios h/a, d/h, and d/a are size-
independent [13]. This is because the relative sizes and shapes of the energy graphs infigure 6 are invariant with
volume. This, in turn, is rationalized by analysis of the relevant energetics, given by equations (3)–(7) in table 2,
which show that eachU-term scales as the square of linear dimension. The result is that the predicted profile of a
shape-equilibrated encapsulated Fe island is size-invariant, just as the equilibrium crystal shape of a free (or
supported) solid crystalline particle is size-invariant above the atomistic limit.

This prediction is borne out in the experimental data for large clusters, but not for small clusters, which show
strong variation in d/h and d/a at small h. In experiment, similar trends in d/h and d/a are observed at small h
also for encapsulated Cu clusters [13]. In this paper, we have shown that the contribution of bending strain at
small h is not a viable explanation for the trends observed in d/h and d/a at small h. A different explanationmust
be found.We have previously considered that the continuum analysismay break down due to atomistic effects
for smallmetal clusters, but we rejected this possibility because even the ‘small’metal clusters in experiment are
very large [13]. Two other explanations are currently being explored. One is that deformation of the graphite
substrate plays a role. The other is that diffusion-mediated coalescence of smallmetal islands affects island
shapes strongly at small h. There is evidence that such coalescence occurs. These two possibilities are being
investigated in our group. For now, explaining the trends in d/h and d/a at small h remains an open challenge.

5. Conclusions

This paper gives a detailed presentation and analysis of the profiles of encapsulated Fe islands, asmeasuredwith
STM.This complements a prior presentation and analysis of the shapes of encapsulated Cu islands. Comparison
revealsmany similarities between the two systems, which indicates that trends observed for the twometals have
broad significance. Themain trends are that the slope of the annulus h/a is constant, while the aspect ratio d/h of
the central cluster falls sharply and then plateaus, as a function of increasing island height h. Quantitative
agreementwith CE theory is obtained for h/a over the entire range of h, and for d/h in the limit of large h, using
values of LC=2–3 for Fe. Input for adhesion and surface energies is provided byDFT. Input for the elastic strain
energy comes both fromSLBT (which treats stretching and bending independently) and, in this paper, from a
differentmodel with coupled stretching+bending. Perhaps themost important conclusions, both for Fe and
Cu, are that: (1) the side slope h/a is determined solely by delamination of the graphenemembrane from the
graphite substrate, and is independent of themetal cluster except in the sense that the cluster displaces the
membrane upward by an amount h; (2) themetal clusters are extremely low and flat (they have high aspect ratio
d/h), because they are squeezed by the graphenemembrane; and (3) the profile of the islands is independent of
size, in the limit of large islands.

An important result in this paper is that bending cannot account for the strong deviation of d/h (and d/a)
from theCE prediction at low h, as had been suggested previously. In fact, the explanation remains an open
challenge. Another interesting result is that the geometry of the annulus—the value of h/a—can be predicted
well from an analytic expression derived from a simpler, classicmodel for debonding of aflexiblemembrane
(the point-loaded circular blister testmodel), hence circumventing the full CE treatment.
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