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Abstract

®

CrossMark

In classical electromagnetic theory, the Lorentz—Abraham-Dirac (LAD) equation describes the

dynamics of a charged particle, including radiation reaction. Though the LAD equation is derived
from Maxwell’s equations, consistent with the conservation of energy and momentum, it admits
unphysical solutions for point-like charged particles. By assuming small radiative effects, Landau
and Lifshitz (LL) develop an approximation of the LAD equation that has no pathological solutions.
Though the LL approximation is dynamically sound, it is the LAD equation that has firm theoretical
underpinning. As such, the difficulties encountered in LAD dynamics suggest, in part, that an
electrodynamic treatment of point-like particles lies outside the classical domain. Herein, we
compute the cross section of a charged particle scattered by an attractive Coulombic potential using
classical LAD and LL dynamics. We then compare this with the analogous cross section in quantum
field theory (QFT). In particular, we compute the cross section for a charged scalar particle incident
upon another extremely massive charged scalar with a single photon in the final state. We include
the following O(a?)-radiative corrections: scalar-photon vertex correction, infrared photon
emission, vacuum polarization, and two-photon exchange. We find that the classical and quantum
frameworks do not produce similar cross sections. Relative to the elastic cross section, the classical
bremsstrahlung cross section vastly overestimates the relative QFT cross section; this is, in part, due
to the fact that the additional radiative corrections in QFT do not have a classical analog in either the
LAD or LL framework.

Keywords: Lorentz—Abraham-Dirac equation, bremsstrahlung cross section, radiation reaction,
quantum field theory

(Some figures may appear in colour only in the online journal)

Introduction

For more than a century, a self-consistent classical electro-
magnetic theory of a charged point particle has proved elu-
sive. The primary sticking point is the inability to develop a
physically sensible dynamical equation for the particle
because of the complications that arise from a point particle’s
self force. Because an accelerated charge radiates, the ensuing
energy loss effectively exerts a damping force on the parti-
cle’s motion; thus, one phenomenon that a dynamical

0031-8949,/20,/035302+-13$33.00

equation must accommodate is radiation reaction. Noting
Larmor’s formula for the radiated power [1], Lorentz was able
to account for radiation damping in a nonrelativistic dyna-
mical equation for a point particle [2]. Around the same time,
Abraham took a different tack by developing a dynamical
equation first for a uniformly charged shell with finite radius
and then considering the limit of a vanishingly small radius
[3]. Abraham’s self force was derived from Maxwell’s
equations and, thus, was relativistically covariant even though
it was developed in advance of the special theory of relativity.
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A few decades later, Dirac was able to provide a covariant
description of a particle’s dynamics by applying the principles
of conservation of energy and momentum through a small
tube surrounding a point charge, where all fields are finite [4].
The result has come to be known as the Lorentz—Abraham—
Dirac (LAD) equation. For a particle of charge e and mass m
subject to external fields given by the field tensor F**, the
LAD equation is

ey

2(d
ma* = eF"u, + e—(—a“ + azw‘),
6w \dr

where we work in natural units, in particular ¢ = 1, and
employ a metric with signature (4,—,—,—). Here, 7 repre-
sents proper time and is related to coordinate time via t = Y7
with ~ := (1 — v2)~2. For particle coordinate x*, we define
d

—xt and

ull =
dr

the four-velocity and acceleration as

at = %u“, respectively. A more complete history of the
development of the LAD equation can be found in [5].
Upon inspection, the most notable break from either regular
Newtonian or relativistic dynamics is the fact that the LAD
differential equation is third order in time. That is, to uniquely
specify a particle’s trajectory three initial data are required, as
opposed to the usual two initial conditions. To highlight the
pathological features of the solutions to the LAD equation, it is
sufficient to consider a one-dimensional, nonrelativistic scenario
[6]. In this case, the LAD equation reduces to Lorentz’s original
dynamical equation for a point charge
2
ma =F + e—ia.

2
6m dt @

Let us suppose that the particle is subject to a constant force Fj
for a time 0 < ¢t < T. Solving equation (2), the acceleration is

(A 1 %Fo)e’/T, 1 <0

a(t) = 4 ~F + A/, 0<r<T 3)

(%FOG*T/T 4 A)e’/T, t>T

2
where we define 7 := 627 and A is to be set by initial conditions.
If we suppose the particle’s acceleration is initially zero, for all
t < 0 then we require A = —iF&), but this choice leads to a

runaway solution for t > T, a(t) = iFo(e*T/T — De/7. Tt is
unphysical to imagine that a particle’s acceleration would
increase unchecked for all time when no force is acting on it.
The runaway solution can be remedied by an alternate choice of
initial condition. If we wish to have a(f) — 0 ast — oo, then we
must set A = —%Foe*T/ 7. But, this leads to a problematic
scenario for time < 0; the acceleration here is
a(t) = %Fo(l — e T/7)e!/T. Despite the absence of a force, the
acceleration of the particle is nonzero. This preacceleration
anticipates the force’s arrival on a time scale characterized by 7.
This acausal behavior, while unpalatable, occurs over a short
time scale for fundamental particles; for instance, for electrons,
we find 7 = 6.3 x 1072*s. These pathologies are not only a
symptom of the nonrelativistic limit of the LAD equation.
Indeed they persist for trajectories found from the fully

relativistic LAD equation, aside from the fact that the particle’s
speed asymptotically approaches the speed of light for runaway
solutions.

Shortly after Dirac’s final covariant version of the LAD
equation, Eliezer attempted to use the equation in a classical
model of hydrogen with an infinitely massive nucleus, but an
application to the simple one-dimensional radial infall pro-
blem resulted in an absurd solution [7]. The LAD equation
yields an electron trajectory that initially does fall into the
proton, but eventually, the electron reverses course, as if
repelled by the proton, in a runaway solution. This behavior is
not confined to the Coulomb potential. In fact, trajectories for
both the attractive and repulsive 1-d central potentials can
exhibit similar ‘opposite’ acceleration (opacceleration) [8].
These results are a consequence of integrating the LAD
equation forward in time, using only initial data (namely,
initial position, velocity, and acceleration) to specify the tra-
jectory. To avoid runaways, one can drop the initial accel-
eration datum in favor of the requirement that the particle’s
acceleration vanish at sufficiently large times. To implement
these boundary values, one must use backward-in-time inte-
gration [9]. With this technique, charged particles in repulsive
trajectories exhibit sensible trajectories (without opaccelera-
tion) [10]. But this technique is not applicable to the case of a
general attractive central potential because the value of the
potential can be ill-defined at the scattering center; in this
case, forward-in-time integration seems necessary [11]. If one
is able to smear out the charge distribution of the scattering
center, then 1-d scattering from the attractive potential does
admit a solution because backward-in-time integration is
possible [12], but this is not applicable for the interaction
between two point charges.

Moving away from the radial infall problem, two-dimen-
sional scattering trajectories of charged particles in the presence
of a central potential can exhibit runaway trajectories with
opacceleration if forward-in-time integration is used. But, so
long as the impact parameter is not too small, both attractive and
repulsive scattering potentials can result in sensible particle tra-
jectories if one uses backward-in-time integration [9, 13, 14].
Considering an electron incident upon an attractive Coulombic
potential, there is a minimum (nonzero) impact parameter that
results in what Huschilt and Baylis term classical electron cap-
ture; that is, at this impact parameter, the scattered particle’s final
kinetic energy tends to zero because any initial kinetic energy
has been lost due to radiation. In labeling as ‘sensible’ the
particle trajectories derived from backward-in-time integration,
we merely mean that the solutions do not exhibit runaway or
opacceleration behavior. However, the lesson above still holds:
eliminating runaway solutions requires solutions with pre-
acceleration. That is, in using backward-in-time integration, the
acceleration of a particle at some time is actually consistent with
the force applied at some later time, though the time scale
associated with this acausality is, again, small.

Given these deficiencies in the LAD equation, there have
been many attempts to develop alternate dynamical equations
for point particles by reducing the order of the differential
equation. A discussion of such early attempts is contained in
[5]. One such formulation developed by Landau and Lifshitz
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(LL) has gained popularity because it approximates the Lor-
entz equation, (2), while sidestepping the problems of acausal
and runaway solutions [15, 16]. The LL equation assumes
that radiative effects are small, and thus changes in accel-
eration can be attributed solely to external fields. Imple-
menting this assumption results in a physically sound
dynamical equation. In the fully relativistic formulation of the
LL equation, the radiation reaction term takes the same form
as in the LAD equation, (1),
e (d
= 5(56‘“ + az””); )
however, the acceleration four-vector in equation (4) is
determined via the Lorentz force law

e
a" = L, 5)
m

where F" depends exclusively on fields external to the
particle. With this assumption, the (proper) time derivative in
the LL formulation, equation (4), no longer results in a
dynamical equation that is third order in time

d e (8F#”

Lo £
Ox“

u®u, + F‘“’al,). (6)
dr m
As a consequence, LL dynamics are devoid of the acausal or
preaccelerative solutions encountered in LAD dynamics.
Because of these nice features, the LL equation is often
viewed as the correct classical description of radiation reac-
tion. Though the LL equation is physically sound, we stress
that it is, in essence, an approximation of the LAD equation.

Perhaps, a fundamental classical theory of a point-like
charge is unattainable because distance scales smaller than the
Compton wavelength fall within the purview of quantum
mechanics. Certainly, the dynamics of extended charge dis-
tributions, like spherical shells, do not present the problems of
preacceleration or runaway solutions so long as the size of the
charge is greater than the classical charge radius
ro = €2/(4wm) [16, 17]. For theories of extended distribu-
tions, the dynamical equations become delay differential
equations. Somewhat recently, Rohrlich has developed a
relativistic delay differential equation for a finife-sized
charged particle without regard for its point-like limit
[18-20]. The solutions are free of runaways and pre-
acceleration, but some trajectories may suffer from a different
pathology—post acceleration [21, 22].

If point-like charges do lie outside the classical domain,
then we must turn to quantum theory for an understanding of
the electrodynamics of charged particles at smaller distance
scales. Regardless of whether the classical theory is attain-
able, there should exist a domain in which the classical and
quantum theories of electrodynamics have relative agreement.
Moniz and Sharp make the first attempt at bridging classical
and quantum theories [23-25]. Working within the frame-
work of nonrelativistic quantum mechanics, these authors
develop a dynamical equation for the position operator of an
extended charge distribution in the Heisenberg picture.
Focusing on the leading order behavior, they find, in the point
like limit, an expression that corresponds to the LAD

equation, but their result is free from preaccelerative or run-
away behavior. More recently a series of papers made con-
nections between quantum field theory (QFT) and the LAD
equation by considering the semi-classical limit (via the WKB
method) of the interaction between a scalar particle and an
external, accelerating potential [26—30]. These results showed
that single-photon emission could effectively account for the
position shift of a classical particle undergoing radiation
reaction. Others have similarly shown that the change in
momentum for a particle undergoing single-photon emission
is consistent with that which occurs in classical radiation
reaction [31]. Agreement between quantum and classical
theories has also been shown in the strong-field limit [32].

Following this recent work, we wish to also compare, in
this paper, the predictions of classical and quantum electro-
dynamics for a scattering process. Our work differs from
previous groups because we are not focusing upon the
radiation reaction resulting from a localized impulse, but
rather upon a long-range interaction—the Coulomb interac-
tion. In particular, we compute the differential scattering cross
section for a relativistic particle of mass m and charge —e that
is scattered by a static Coulomb potential, consistent with a
positive charge, +e.

In the classical framework, we use both the LAD and LL
equations to determine particle trajectories. For LAD
dynamics, we avoid runaway solutions by requiring the
acceleration to vanish at large distances from the scattering
center. Due to our choice of boundary conditions, pre-
acceleration is present; that is, the acceleration experienced by
the particle is attributable to the force experienced in the near
future. Though unpalatable, preacceleration is unavoidable if
we wish to exclude runaways. Rutherford scattering with
radiation reaction using the LAD equation has previously
been considered in [13, 14]; this work can serve as a check on
our calculations. In using the LL equation, we encounter no
aphysical pathologies, so the computation of particle trajec-
tories can be formulated in the usual way as an initial value
problem.

For the quantum mechanical version of our calculation,
we work within the framework of QFT because the projectile
particle is relativistic. The emission of bremsstrahlung
radiation in electron scattering processes has been studied
extensively in the literature. A survey of the outcomes is
contained in [33]. In order to most closely mirror the classical
scenario, we take the projectile and target particles to be
scalar particles, rather than fermions. This avoids any
potentially confounding effects due to magnetic dipole
interactions. We assume the scattering center in the QFT case
is a positively charged particle (charge +¢) with a mass M. To
mimic the static scattering potential in the classical scenario,
we only consider contributions to the cross section which
survive as M is taken to infinity; that is, we neglect any recoil
of the scattering center. To incorporate radiation, we include a
photon in the final state whose total energies range from sub-
infrared values all the way up to the initial kinetic energy of
the projectile. In the end, we compute the differential scat-
tering cross section for the projectile particle, integrating over
the final state photon phase space. This is comparable to the
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classical differential cross section calculated using the LAD
equation.

Classical cross section

We use the LAD equation, (1), to compute the classical tra-
jectory for a particle of mass m and charge —e subject to a
static Coulombic potential, V = ﬁ; The particle has initial
velocity v; and impact parameter b;; its initial energy is
E;=~m= \/l'"__v Without loss of generality, we assume

the particle’s motion lies in the x—y plane. For the numerics, it
is simplest to work with dimensionless coordinates. Recalling
our definition of the classical electron radius, ry = ¢ /(dmm),
we set ¥ = %, y= r%, andf = rio, again assuming ¢ = 1. We
let a dot indicate differentiation with respect to 7; e.g.

b _ W P Y T :
==y and x := = Toge Wlth the Coulomplc
scattering center, the non-dimensionalised LAD equation
becomes [13]

w3 9 X 3 _pe:y
¥=270+ 72)’2); - 37 2)5}’%

— 372G + 9E + 37K, (7)
- 3 e YV 3 .. X
V=271 + vzxz)fy—3 S

= 392 + T + 377V, 8)

where 7 = (&2 + 72)> and v = (1 — ¥2 — §2) 2.

To solve these equations, we numerically integrate
backward-in-time using methods based on backward differ-
entiation formulas from the ODEPACK FORTRAN library
[34-36]. In backward-in-time integration, our ‘intial’ bound-
ary data is, in fact, the trajectory’s final position, velocity, and
acceleration. In particular, we use the data

T = 40000, & =y F = —% ©)
;
i} . " Yy
Yr = bf’ Yr = 0, = *;a (10)
f

where vrand by are the final speed and post-impact parameter.
A few remarks are in order. First, we require the particle’s
initial energy to be E; = 10m; that is, ;=10 or
v; = 0.994 987 437. This energy is sufficiently relativistic to
yield significant radiation, but it is not so extreme as to make
likely multiple hard-photon bremsstrahlung radiation in the
QFT calculation [37, 38]. To achieve the desired v; for a
trajectory, we fix the post-impact parameter b, and then vary
the final speed v, in a binary search until backward-in-time
integration yields the desired v; to a precision of 107 '°. We
choose the final position of the particle to be large enough that
we may suppose the final acceleration is merely Coulombic;
that is, this far from the scattering center, df is so small that no
radiation is produced. To test dependence on Xy, we increased
its value by 10 000 and found its impact on the outcome was
negligible (though it substantially increased computation
time). Finally, we ran the computation for a sufficiently long

time, #; = # — 27 /vy, so that the particle’s initial position is
far from the scattering center resulting in a; ~ 0. As an
additional check on our computations, we computed the
energy radiated by the particle by integrating the Larmor
power formula over the particle’s trajectory and found that
this radiated energy was equal to the change in energy of the
projectile particle.

By varying the post-impact factor b, we are able to
determine the impact parameter b; as a function of scattering
angle 6. From this, we determine the differential cross section

do o bi db,

dQ  sinf | d6
We anticipate for small scattering angle, or large b;, the cross
section should approach the elastic limit for scattering without
radiation. For larger scattering angles, the two cross sections
should differ significantly. As the impact parameter decreases,
the projectile particle accordingly loses more kinetic energy
due to radiation. There is a minimum impact parameter at
which the projectile particle loses all of its initial kinetic
energy, coming to rest; this effectively results in the capture
of the charged projectile. Capture occurs at some scattering
angle 0, less than . For the initial energy we consider, E;,
we find numerically the capture scattering angle to be
Ocap = 79°; this is consistent with the results of [13]. Given
this behavior, the differential cross section approaches zero as
0 approaches 0,p.

We wish to compare the bremsstrahlung cross section to
the elastic cross section in which no radiation is produced.
Enforcing conservation of energy and angular momentum,
relativistic dynamics yields a transcendental relationship
between impact parameter and scattering angle. From these,
we determine the cross section. At low energies, this repro-
duces the Rutherford cross section.

In figure 1, we plot in panel (a) the differential cross
section for both elastic Coulombic scattering and scattering
incoporating radiation reaction, as computed per the LAD
equation. To highlight the differences between the two, we
also include in panel (b) a plot of the ratio of the brems-
strahlung process to the elastic process. As expected, in the
limit in which the scattering angle goes to zero, the brems-
strahlung cross section approaches the elastic limit. Beyond
this limit, we can understand the relative differences by noting
that generally, for a given impact parameter, a particle
undergoing bremsstrahlung will scatter at a larger angle than
that for elastic scattering. Moving away from 6 = 0, the
bremsstrahlung cross section is actually smaller than the
elastic cross section for this very reason—because the parti-
cles are scattered to larger angles. Eventually, the brems-
strahlung cross section is more than double that of the elastic
process, but in the end, because scattering with radiative loss
results in particle capture, the bremsstrahlung cross section
drops precipitously while the elastic cross section is nonzero
through full backward scattering at § = .

As noted above, the LAD equation has aphysical con-
sequences that cannot be avoided, but the LL equation has
neither runaway nor preaccelerative solutions and is second
order in time [15]. Given this, we also include in figure 1 a

(11
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Figure 1. (a) Cross section for a charged particle scattered by an
attractive Coulomb potential. The solid (blue) curve is for elastic
scattering; the dashed (black) curve includes bremsstrahlung
radiation, computed via the LAD equation; the dotted (red) curve
includes bremsstrahlung radiation, computed via the relativistic LL
equation. The cross section is expressed in units of 7. (b) The ratio
of the bremsstrahlung cross section relative to the elastic cross
section derived from panel (a) with the dashed (black) curve
computed using the LAD equation and the dotted (red) curve
computed using the LL equation.

plot of the bremsstrahlung cross section computed using the
relativistic LL equation. Exact analytic solutions for this
problem exist in the non-relativistic limit [39], but to solve
our relativistic problem, we again use the ODEPACK library to
perform the numerical integration [34-36]. We use the same
non-dimensionalized coordinates, x(7), y(f), developed
above for the LAD equation. With the Coulombic scattering
center, the non-dimensionalized LL equations become

¥ =910 - E — iE], (12)
V=7""-%E + (1 - yHE], (13)
where we define
- x | 24 (. ,x*.
F,. = 7_—3[1 — —f—3(xx + yy)] — EF(X — 3F—2x
L) 2 5 L G4y
B T I P | , 14
=y 21 .. 29(- Xy .
V= _F_3[1 - 57—3(305 + )’Y)] - g;()’ - 3§x
2 2L G
= 2_
-3= ) -3 y[F_4 - s (15)

We can formulate the solution of these equations as an initial
value problem, integrating forward in time, with initial data

X = —40000, )é,' =V, (16)

Vi=bi, 3=0, 7)

where b; and v; are the initial impact parameter and speed.
After evolving the particle position forward in time, we are
able to numerically determine the scattering angle and then

the differential scattering cross section. Referring to figure 1,
the resulting cross section is qualitatively similar to that
determined by LAD dynamics. Quantitatively, the cross
section is enhanced by at most a factor of 1.7 relative to the
elastic cross section at a scattering angle of 29°, whereas the
LAD cross section is at most 2.6 times greater than the elastic
cross section at a scattering angle of 35°.

Quantum cross section

We now turn to the quantum realm to compute the cross
section for scattering of a charged particle via an attractive
Coulombic potential with radiation. Because we consider
relativistic energies, we use the framework of QFT. To best
mirror the classical computation, we consider charged scalar
particles to avoid confounding effects from a particle’s
magnetic dipole moment. Working in the rest frame of the
scatterer of mass M, we take M large, neglecting recoil effects
S0 as to approximate a static potential. In the elastic limit, this
produces the Rutherford cross section at nonrelativistic
energies. To model bremsstrahlung, we include one real
photon in the final state.

From the outset, there are some important differences
between the classical and quantum computations. Classically,
the emission of radiation is a continuous process, but photon
emission, in the quantum realm, is markedly discrete. In QFT,
one could model a continuous process through the emission
of many soft photons. Each additional photon would bring
with it to the cross section a factor of the fine structure con-
stant, o« = :—;. For N final state photons, a full calculation of

the cross section to order O(a¥*2) would be intractable.
Below, we will focus upon the leading contribution to the
bremsstrahlung cross section coming from one-photon emis-
sion at O(a?). To fully compute the cross section at this order
in perturbation theory, one must not only include hard photon
emission representing the bremsstrahlung radiation, but also a
scalar-photon vertex correction, vacuum polarization, infra-
red-photon emission, and two-photon exchange with the tar-
get particle. To estimate multiple hard-photon processes,
approximations must be made.

Another substantive difference between the classical and
quantum formalisms is that in computing a field theoretic
scattering amplitude one assumes asymptotic free states. In
particular, the outgoing states are free plane waves. This can
create some difficulties even for elastic scattering. At tree
level, the QFT elastic cross section reproduces exactly the
Rutherford cross section of classical mechanics at non-
relativistic energies; however, relativistic corrections in QFT
require higher order Feynman diagrams. To correctly incor-
porate the second Born contribution to scattering requires the
use of modified propagators which encode the long range
effects of the Coulomb potential [33, 40, 41]. The success of
the tree-level calculation is deceptive because the phases in
the modified propagators cancel, but in moving beyond this
approximation, the latent issues arise.
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In this work, we will focus upon single-photon emission
but relegate the details of the computation to the appendix. In
short, the projectile charged scalar particle interacts via the
exchange of a virtual photon with the target particle emitting a
real photon in the process. Because we are only interested in
the final state of the projectile (and not of the emitted photon)
in our computation of the cross section, we integrate over the
entirety of the photon’s phase space, considering all photon
states with energies ranging from zero, wp, = 0, to a max-
imum value set by the incoming kinetic energy of the pro-
jectile, wmax = 9m, in this case. The lower limit of the
photon energy integral is problematic because the integral is
logarithmically divergent, behaving as log(wy,) for small
photon energies. This is the well-known infrared divergence
problem, and it is a signal that more processes must be con-
sidered to fully compute the cross section at this order in
perturbation theory [42].

To rid ourselves of the infrared divergence, we include in
our computation of the cross section a radiative correction to
the scalar-photon vertex. When integrating over the loop
momentum in the Feynman diagram, the amplitude will
diverge logarithmically if the photon is allowed to be mass-
less. To remedy this, we give the photon a small fictitious
mass p, rendering the amplitude finite with a term dependent
upon the photon mass, ~log . To be consistent, we must
return to the bremsstrahlung computation to give the emitted
photon the same finite mass. For large photon energies, this
photon mass is negligible. Given this, we introduce a small,
arbitrary scale A > p which defines the threshold for infrared
photons. Neglecting the mass p, the bremsstrahlung cross
section is finite for photon energies between A and wy,,x. For
the infrared energies, we find that in the limit of small y there
is a logarithmic term, ~log(A /), that exactly cancels the y-
dependent logarithm from the vertex correction.

Aside from the infrared divergence that arises from the
vertex correction, there is also an ultraviolet divergence for
this diagram. We use dimensional regularization to compute
the UV divergent diagrams and an on-shell renormalization
scheme to generate the appropriate counterterms In addition
to the vertex correction, we also consider the leading order
correction to the vacuum polarization diagram. It too is UV
divergent, and we renormalise with the on-shell scheme.
Finally, the two-photon exchange diagrams are also UV
divergent; again, we renormalise these with the on-shell
scheme.

In figure 2(a), we plot the bremsstrahlung cross section
for a projectile particle of energy 10 m. To reiterate, this cross
section includes single hard photon emission, infrared emis-
sion, radiative vertex correction, vacuum polarization and
elastic two-photon exchange. We note, as well, that the total
cross section is well approximated by a similar calculation for
fermions [43]. When we compute the contribution from
infrared photon emission, we make the approximation that the
photon momentum cutoff A is small enough that the scat-
tering process can be considered elastic. As such, if A is
sufficiently small the total bremsstrahlung cross section is
insensitive to its particular value. In figure 2(a), we set
A=10"m.

T T T T T T T 1

log(do/dQ) (log(r,?))

deQ
(V)
e
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Figure 2. (a) QFT bremsstrahlung cross section for a charged particle
scattered by a very massive charged particle of opposite sign.
Beyond tree level, we include single (hard) photon emission,
infrared photon emission, a radiative vertex correction, vacuum
polarization, and two-photon exchange. The cross section is
expressed in units of 72. In brown, we include the classical cross
sections computed using the LAD equation (dashed curve) and the
Landau-Lifshitz equation (dotted curve). (b) The ratio of the
bremsstrahlung cross section relative to the elastic cross section for
various values of A. The dashed (blue) curve employs A = 1072 m;
the dotted (red) curve employs A = 10~* m; the dot-dashed (green)
curve employs A = 10™° m. For reference, the solid (black) curve
plots the ratio of the bremsstrahlung cross section to the tree-level
cross section (without the O(a?) elastic corrections). In brown, we
include the classical ratio of cross sections computed using the LAD
equation (dashed curve) and the Landau-Lifshitz equation (dotted
curve).

We do not plot, in figure 2(a), the cross section resulting
from the tree-level process because the bremsstrahlung and
tree-level curves are nearly indistinguishable. Certainly, for
small scattering angles, this should be the case, and our results
confirm the two cross sections are identical for @ ~ 0°. But, as
we move to larger scattering angles, the bremsstrahlung cross
section increases monotonically relative to the tree-level cross
section, and it is roughly 3% larger than tree-level at a scat-
tering angle of 70°. This is to be contrasted with the scattering
cross section for a classical particle using LAD dynamics
which differs significantly from the elastic cross section. Per
figure 1(a), we find the cross section with radiation reaction is
at most 2.6 times greater than the elastic cross section at a
scattering angle of 35°. Another stark difference between the
two frameworks is the phenomena of particle capture admit-
ted by LAD dynamics. That is, there exists a maximum
scattering angle at which the scattered particle radiates away
all of its initial kinetic energy. In the QFT framework, it is
certainly possible that a single photon is emitted with energy
equal to the particle’s initial kinetic energy. We include this
possibility when we integrate over the allowed phase space
for the emitted photon. But, in including all allowed final
photon states, we also admit the possibility that the particle-
target collision is elastic. This elastic process includes both
the tree-level process and the additional radiative corrections.
As a result, for any scattering angle, the elastic contribution to
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the cross-section dominates so that scattering is possible up to
and including 6 = 7.

The total QFT bremsstrahlung cross section is the
quantity that should be analogous to the classical cross section
derived from LAD dynamics, but at the same time, the
comparison could be viewed as problematic. In particular, in
the QFT scenario, the elastic scattering cross section incor-
porates processes beyond tree level and, thus, beyond the
analogous classical elastic cross section. Together the radia-
tive vertex correction and infrared-photon QFT corrections
lower the elastic cross section relative to tree level in a A-
dependent manner. Specifically, the impact of these radiative
corrections depends logarithmically on our choice of the
artificial cutoff that we use to define what is meant by infrared
photons. Experimentally, the cut off would be analogous to a
detector energy resolution so that scattering would be con-
sidered elastic within some tolerance determined by A.
Hence, elastic scattering in QFT becomes a concept depen-
dent on the experimental design, unlike the classical scenario.

Given this, it is perhaps more sensible to compute the
bremsstrahlung cross section relative to the elastic cross
section. We plot this ratio in figure 2(b) for values of A
ranging from 1072 to 10~° m. This quantity gives one a sense
of the impact of single (hard) photon emission upon scattering
without observable radiation. As we have stated, the quantity
is cut-off dependent and, to a good approximation, it is given
by the cross section for hard (i.e. non-infrared) single-photon
emission integrated over the photon’s phase space for ener-
gies from A to wy.x = E — m; that is, we have

dUbrem dUelas ~ dghard |wmax

dQ / dQ aQ =N

Referring to figure 2(b), we do see that the bremsstrahlung
cross section is significantly enhanced, relative to the elastic
process. For A = 107 m, the smallest value we consider, the
cross section with hard photon emission is more than 30%
greater than the elastic one around a scattering angle of 70°.
But, again, this is A-dependent and thus not obviously rela-
table to the classical scenario.

(18)

Discussion

In this work, we have only considered the emission of a single
hard photon as the leading approximation to a classical pro-
cess that involves the continuous emission of electromagnetic
radiation. In QFT, moving beyond single-photon emission
involves a proliferation of diagrams to be considered. This is
beyond the scope of this work; however, we did estimate the
contribution to the cross section of the emission of two hard
photons. We found that for a scattering angle around 70° the
two-photon emission contribution to the cross section was a
few percent the size of the one-photon contribution; thus, the
overall effect is small. Others have developed approximate
expressions for the emission of multiple photons in brems-
strahlung scattering [37, 38]. In both of these papers, the
authors are primarily interested in the scattering of ultra-
relativistic projectiles by a Coulomb field which allows them

to neglect the impact of photon emission upon the projectile
trajectories (or propagators). Reference [38] is the more
refined treatment of the problem. In this paper, photon ener-
gies are divided into three categories: infrared, soft, and hard.
Hard photons are those that have energies on par with the
energy of the projectile particle while infrared photons are
those involved involved in radiative corrections below the
threshold for detection. Soft photons are in between these two
classes. It is these soft photons which are assumed to have
minimal impact on the particle kinematics (aside from the
reduction of the particle’s energy). Given this assumption, the
cross section for the emission of n soft photons along with a
single hard photon is computed. Relative to the tree-level
cross section, each additional soft photon entails an additional
factor of the fine structure constant and an energy-dependent
logarithm. Though our work herein does not deal with
ultrarelativistic particles, it is likely multiple photon emission
modifies our cross section in a similar way. As such, it seems
unlikely that including multiple photon emission in a detailed
calculation will bridge the difference between the classical
and QFT cross sections.

Overall, we see that the QFT and classical cross sections
fail to agree, except in the no-radiation limit (i.e. 6 ~ 0). In
order to faithfully make a comparison between the QFT and
classical frameworks, we focused upon the cross section
because it is a physically measurable quantity. However, in
the QFT case, this involves a choice of what sort of cross
section to compute. To mirror the classical situation, we opted
to consider only the final state of the charged projectile,
integrating over the allowed photon phase space. As a con-
sequence, the bremsstrahlung cross section was independent
of the arbitrary cutoff for infrared photons (assuming this
cutoff is sufficiently small), but this leads to only a few
percent correction of the cross section relative to tree level, in
part, because radiative corrections to the elastic cross section
are, overall, negative. This cut-off independent quantity
should be comparable to the classical cross section, but the
presence of radiative corrections to the elastic cross section
move beyond the classical scenario even in the no-radiation
regime. This suggests that it is, perhaps, more sensible to use
the elastic cross section (with radiative corrections) as the
baseline to compare the bremsstrahlung cross section in the
QFT framework. As we have seen, this is dependent upon the
artificial infrared cutoff, making a comparison to the classical
result impossible. Because of these difficulties, we find the
QFT and classical descriptions of bremsstrahlung scattering
from a Coulomb potential incommensurable at the energy
scale under consideration.

In this paper, we have opted to use the standard inter-
action picture to compute scattering cross sections in QFT.
Because we wish the projectile particle to be scattered by a
static field, we require the target projectile to be extremely
massive. One advantage of this approach is that we can easily
relax the assumption of the massive scatterer and consider
(more realistic) recoil effects in the future. However, to solve
the problem at hand, it is also possible to work in the Furry
picture [44] as applied to scalar quantum electrodynamics so
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that the projectile can scatter from a static background
external field.

Appendix. QFT cross section

In this appendix, we discuss some of the details of the QFT
calculations. First, we begin with the Lagrangian for the
theory under consideration before discussing the contribu-
tions to the O(a?) scattering cross section.

The Lagrangian for scalar electrodynamics is

L = (D, 6)5(DV$) — mi¢*é — %FWFW - iw*w,
(19)

where the covariant derivative is D, = 0§, + igA, with
g = —e for the projectile particle and F,, = 9,A, — J,A,,.
The ¢* term is needed to render finite higher order cross
sections [45], though the interactions mediated by this term
are irrelevant for our calculations at present order in pertur-
bation theory. The target scalar particle, ®, has an identical
Lagrangian modulo the changes: m — M, g — +e, and A —
A. The two scalar particles are effectively coupled via elec-
tromagnetism, but one could also introduce a direct coupling
term to the Lagrangian ~g¢*¢®*®. For a dimensionless
coupling g, this term has mass dimension four, and thus, itis a
possible interaction that we might consider. But, we find it is
in fact necessary to include this interaction. Below, we show
that the two-photon exchange diagrams between the projectile
and target particles are UV divergent. In order to render the
theory finite, we must renormalise the direct coupling g; this
is analogous to the need for the ¢* term for a single sca-
lar field.

A.1. Tree-level elastic scattering

We include details regarding the radiative corrections to the
scattering cross section in which the scalar particle ¢ of mass
m scatters off another scalar particle ® of mass M through
single photon exchange. We use FORM [46] to aid our alge-
braic manipulations.

We first examine the tree-level contribution, figure Al, to
the amplitude. Let p and P be the incoming momenta for ¢
and P, respectively; outgoing momenta for these particles
carry primes. The momentum transfer to ¢ is
qg=p —p =P — P'. We will work in the rest frame of ®
so that P = (M, 0). We also assume that ® is very massive,
M > m, so that its recoil is minimal. With this assumption
the energy transfer to ¢ is negligible so that the collision is
elastic; that is, we assume ¢° ~ —laP . Keeping only
leading order terms, we find the tree-level contribution to the
amplitude is

16maME
Mtree N >

lql?

where p° = E ~ p’% and ¢> ~ —|q> = —2|p/*(1 — cos6)
with the scattering angle given by cosf = p’ - p. The

(20)
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Figure A1. Tree level contribution to elastic scattering. The
projectile, ¢, is indicated by a single dashed line, and the massive
scalar, ®, is indicated by a double dashed line.

resulting cross section is
a’E?

_ . Q1)
4 ;a0
dQ 4pl* sin* 2

d0iree

A.2. Hard photon emission

We now consider single photon emission that can occur when
¢ scatters. The relevant diagrams are in figure A2. Because
we consider the mass of & to be large, M > m, photon
emission from ® is negligible, so we do not consider it. As
before the incoming momenta of the scalars are p and P, and
we work in the very massive scalar particle’s rest frame,
P = (M, 0). Also, the momentum transferred to the scalar ¢
remains ¢ = P — P’ ~ (0, q). A transverse, real photon of
momentum k = w(1, K) and polarization e is in the final state;
we require k> = 0 and € - k = 0. The final momentum of the
scattered scalar, ¢, is p” = p + ¢ — k; in our approximation
(M > m), the time-like component of this equation is con-
sistent with E” = E — w. In these limits, the amplitude
simplifies to

p//u ME pu
p// . k p . k

Mhparg & 4e3ize;‘;(ME — P/’). (22)
q

In computing the cross section, we will sum over the final
photon polarization states

6 2.2 12,2
S Mgl = — 1 M2( B, B 4y
u q " -k (p-k)
" n . /A "
_2(E”E(k’;( p]){) -~ +2EEk).
p p p Pk 0

The final state contains three particles with a total of nine
momentum components subject to four constraints from
energy-momentum conservation; thus, the final state has five
independent degrees of freedom. In computing the differential
cross section, we choose as our independent degrees of
freedom the scalar particle’s polar and azimuthal angles, 6 and
, along with the photon’s energy w and scattering angles 6,
and . After including appropriate phase space factors and
integrating over the constrained momenta, we find the
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Figure A2. Feynman diagrams contributing to single hard photon emission.

differential cross section

3 Z |./\/l|2 "
dahard = a = |p | wdw ko dQ (24)
4m)? eM?  |p|
with the proviso that q=p’+k —p and [p"|=

\/|p|2 - 2Ew + w?.

Because we are only interested in the scattering solid
angle d€) of the projectile, we numerically integrate over all
photon emission angles d€%. Finally, we wish to integrate
over photon energies (or momenta, more precisely) up to the
kinetic energy of the incoming projectile, wy.x = E — m;
however, setting the lower limit of photon energy to zero is
problematic because the cross section for emitting an infrared
photon w ~ 0 is logarithmically divergent. We rectify this by
introducing an infrared cutoff w,;, = A so that the denomi-
nators in equation (23) do not vanish. The cutoff should be on
par with or less than the experimental detector resolution. In a
scattering experiment, if a photon is emitted with energy less
than this cutoff, then the process is experimentally indis-
tinguishable from elastic scattering. Theoretically, such a
process must be considered in conjunction with other radia-
tive corrections to the elastic tree-level scattering.

A.3. Infrared photon emission

We now describe our treatment of infrared-photon emission.
In order to regulate the logarithmic dependence, we suppose
the photon has a small fictitious mass (, assumed to be much
smaller than A. Because we now assume a massive photon,
we must be more precise in the meaning of this cutoff; A
represents the maximum momentum of the emitted photon so
that the maximum energy of the emitted photon is
Wmax = /42 + A2. The emitted photon’s momentum four
vector, k = (w, K), now satisfies K= ,u2 and k| < A.

For infrared photon emission, we consider the scattering
approximately elastic, |p”| ~ |p|, or using the notation from
the tree-level process, we set p” ~ p’ and thus E” ~ E. In
this limit, the squared amplitude, equation (23), simplifies a
bit

2

6 2
Z'Mlzzfléj EZMZ( /m > T = 2
__2p 2
@ -k p-

2
, 25
k+p.k) (25)

keeping only the logarithmically divergent terms. To get the
cross section, we supply the usual phase space factors but
note that the tree-level differential cross-section can be fac-
tored out of the infrared-photon emission cross-section

) Bk 1 m? m?
dO—infr ~ *do'tree e f - +
@m? 2w\ (P - k)*  (p-k)?
 plp 2 2 )
v -bp-k pk p-k)

(26)

All but one of the integrals in equation (26) can be easily
evaluated in spherical coordinates. First, we introduce the
notation p = E(1, v) and p’ = E(1, V') with scattering angle
defined as before v - ¥/ = cos #. As an example, we have

e 1 m 11 1 — vl e
f — = —|—Ilog + log — |,
@) 2w (p-k)? 87| |v| 1+ |v| 12

@7

to leading order in p. Swapping p’ for p in the above integral
yields the same result. Similarly, the last two terms in
equation (26) cancel each other.

For the remaining integral in equation (26), we use
Feynman’s trick to combine the two factors in the denomi-
nators [42]

1 1 dx
— =2 . 28
AB fq [(1 +x)A + (1 — x)BP 8

Using this identity, we can rewrite the remaining integral as

1 3 /.
[
0 2m)} 2w (5 - k)?

(29)

f ¢k 1 2 p
@m)* 2w (p' - k) (p - k)

where 5 = (E, B) = 5[p'(1 + %) + p(1 = 0] = p + (15)q.
The integral over d° is the same, mutatis mutandis, as in

equation (27)

fd3k 1 2p" - p pp 1
— = dr—
@27 2w (p’ - k) (p - k) 8r* J-1 E*— |pI
2 1A
logﬂ + £log E — Ipl .
bl E + |pl
(30)

We solve the second integral in equation (30) numerically
though closed form expressions do exist [47]. The integral
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Figure A3. Diagrams contributing to the vertex correction of the light scalar, ¢.

involving the logarithmically divergent term is easily eval-
1

uated in closed form
4
— = ——27lo ,
el g( )

1
[
~1
where we define 3 := \/¢%/(q* — 4m?).
Putting all these terms together, the infrared-photon

emission cross section is doj,, = d0yee Oiner With

1+8

5 &1V

2

a1 1+ |v| I
Ointr =~ —32 — 1o + log —
nit ﬂ{lvl g(1|v|) &an
m? 1-4 w
=2 |g1og| ——2 |og £
( q2]ﬁ Og(l+ﬂ)0g4[\2
1 E— 1%
+%(2m2_q2)f dx_Ez 1|~|2% Og(EJr:lj:)}
—1 —
PI” IP P (32)

assuming small ;4 and A. We note that the cross section is
logarithmically divergent as the fictitious photon mass goes to
zero, and it also depends explicitly on the momentum cutoff
A. By combining the infrared-photon emission with the
radiative vertex correction, we will find an overall cross
section independent of .

We examine the extreme cases with —g? < m? and
—q% > m?, keeping only the logarithmically divergent terms

a ¢ 12
e ~ = log L5 (NR), (33)
2 12
Ointr ~ [l—log(—m—)]log i (ER). (34)

A.4. Vertex correction

In order to compute the scattering cross section to O(a?3), we
must include O(o?) correction to the tree-level elastic scat-
tering amplitude. This involves a vertex correction along with
a correction to the photon propagator. We begin with the
vertex correction by introducing the form factor F(g) so that
the Feynman rule for the photon-scalar vertex is
—i.e.F(g®)(p" + p"). We compute only the O(«) correction
to the form factor F(g?) ~ 1 + F®(g?). The nonzero
diagrams are contained in figure A3. The correction is

10

ultraviolet divergent so we renormalise with the on-shell
renormalization scheme. It is also infrared divergent, so we
will introduce a fictitious photon mass p for the loop photons
which will cancel the photon mass that appeared in the
infrared-photon emission process. Then vertex correction is

FO(g) = 4&{(242 iy + 210g ™ (39)
™ [
2 148
a1 = 2" |g10g| —/—Z | — 4L
(R L () R S

The integral Ir is divergent in the limit of vanishing photon
mass, U,

1 1-z 1
I :f dzf dy .
B 0 (A —22m> —y(l —y —2)q* + z?
37

For small p, one can use standard tricks [48] to get a more
tractable expression which can then be evaluated in closed

form
2 2
log (m )

S 1 £ - &g
gy (1 - 6¢?
2

12

1 1 -8 — W
)
2 2
q 1+p q (38)
L L= B ) 1| -1 42
i 2q2ﬁ{10g(1 +B)log( q (1 q )]
+ 2Li2(%(1 + ﬁ)) - 2Li2(%(1 - ﬂ))}, 39)
where the dilogarithm is given by
o log(l = 2)
L) = [ &z e (40)

In the two limiting cases, we find the vertex correction is

2

q
1+ —lo
3 g

2 2
%)ﬁ (NR), (41)

FO(?) ~ 2| =
) 47r(
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Figure A4. Leading diagrams which contribute to vacuum
polarization.

A.5. Vacuum polarization

The photon propagator has an O(a) correction due to the
vacuum polarization diagrams in figure A4. To this order, the
%(1 + II(¢?)) with the correction
evaluated in the on-shell renormalization scheme

propagator is given by

1 2
(g% = gf dz(2z — 1)? log(q—2(22 —27) + 1). (43)
T J0 m

This integral can be evaluated in closed form, but we only
include the nonrelativistic, —g*> < m?, and extreme relati-
vistic, —g? > m?, limits in this appendix

qz

Mgd) ~ ——~4_ (NR), 44
@)~ —5—1 (NR) (44)
o q° 8
I(g?) ~ g[log(ﬁ) - 5] (ER). 45)

A.6. Two-photon exchange

To complete the O(a?) correction to the elastic cross section,
we include the two-photon exchange diagrams in figure AS.
Counting powers of loop momentum k in the integrand shows
that all diagrams have logarithmic UV divergences, and this
divergence persists when we sum the diagrams. Because we
are working with scalar particles, there is an additional term
with mass dimension four in the Lagrangian that can be
present, directly coupling the two scalars, Liy ~ g¢p*¢pP*®.
Given the divergence of the diagrams in figure A5, we must
include this term so that the renormalization of the coupling g
can render finite the scattering amplitude; this is akin to the
need for a ¢* term in a field theory for a single scalar field
[45]. This direct interaction between the scalar particles
requires the introduction of new interactions beyond the
classical paradigm, so we only consider the coupling g insofar
as it permits us to render finite the contribution from two-
photon exchange. As an aside, we note that if we were

11

considering the electromagnetic scattering of two fermions,
this UV divergence would not be present [49, 50].

To this end, we work in the static limit M — oo and
require the two-photon exchange contribution to yield the
tree-level amplitude as the momentum transfer vanishes, q2—>
0. With these constraints, it is only the first two diagrams in
figure A5 that contribute. In addition to the UV divergence,
these two box diagrams contain IR divergences. Using a trick
from [51], we can isolate the IR divergent terms

q2

(k2 — 1k — p)* — m*1[(k + P)* + M2k + ¢)* — 1i°]
1
[k = Ak — p)? — m?l [k + P)? + M2
1
+
[(k — p)? — m?][(k + P)> + M2k + 9)* — 1i°]
_ 2k - (k + q)
K2[(k — p)? — m21[(k + P)? + M (k + ¢)*

(46)

The first two terms on the righthand side are IR divergent
whereas the last term is not. These IR divergences are can-
celed by IR divergences from infrared photon emission.
Above, we only considered infrared photon emission from the
projectile particle because the analogous process for the
massive target vanishes in the static limit; however, the
interference between the infrared photon emission from the
projectile and target particles has an IR divergence that can-
cels that from the box diagrams. The details of the infrared
photon emission from scalar particles are identical to those
from fermions [52]. After canceling the IR divergent terms,
the remaining terms in the box contributions to the amplitude
can be expressed in closed form [47]; however, we choose to
numerically integrate the parameter integrals. In the end, we
find, numerically, a correction to the elastic amplitude of the
form Mpox = Miree Sbox-

A.7. Radiative correction to elastic scattering

We now combine the radiative corrections to the tree-level
elastic scattering amplitude
Meonr & Migee(1 + F(l)(qz) + H(qz) + 6box(q2))- 47)

From this, we can compute the cross section for elastic
scattering, accurate to (%), sans infrared emission

docorr = dogee (1 + ZRe[F(l)(qz)]

+ 2Re[I(g?)] + 2Re[bpox (¢D)]). (48)

This contribution to the elastic cross section should be com-
bined (incoherently) with the infrared-photon emission cross
section given the fact that infrared-photon emission is
experimentally indistinguishable. Taken together, this cross
section will now be rid of the infrared divergence by can-
cellation of the fictitious regulator . We show this by just
focusing on the p-dependent terms as derived from
equations (32) and (36)

QFY(g?) + iR (49)



Phys. Scr. 95 (2020) 035302 A R Kaufman and D C Latimer

\\\\PA

~

W\
\
N T
Y

A\Y

Figure A5. Two-photon exchange diagrams which contribute to the elastic scattering cross section at O(a?).
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