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Abstract

The spectrum of a particle confined in Hulthén plus ring-shaped potential is obtained by solving
the time-independent Schrodinger equation numerically. The effect of potential parameters on
various properties of the particle have been investigated in detail. The energy levels, radial
matrix elements, oscillator strengths and polarizabilities of the particle have been found to show
strong dependence on the confining potential parameters. The presence of the ring potential is
found to appreciably alter the angular part of dipole matrix elements. Also, it is shown that the
comparison theorem of Quantum Mechanics for energy eigenvalues for four different potentials,
viz., Coulomb, Hulthén, Yukawa and Hulthén2 is independent of the presence of ring potential.

Keywords: Hulthén potential, ring-shaped potential, comparison theorem, oscillator strength,
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1. Introduction

The Hulthén potential [1, 2] is one of the most important short-
range potentials in physics and is extensively used to describe
the bound and continuum states of the atomic interaction sys-
tems. It belongs to the class of screened Coulomb potentials
[3—6] and has applications in a number of branches of Physics
such as nuclear and particle physics, atomic physics, con-
densed matter physics, chemical physics and high energy
physics ([7, 8] and references therein). This potential is very
similar to Yukawa potential [9] as it assumes the form of
Coulomb potential for small r and decays exponentially to zero
for large r. The quantum mechanical equations with the Hul-
thén potential have been dealt with by a number of authors
either analytically or numerically [7, 10-16].

The representative potentials for realistic physical sys-
tems may often deviate from the conventional spherical
models like Coulomb, Yukava or Hulthén potentials [17-21].
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Thus, angle-dependent potentials which refine such potentials
serve as a new class of potentials. Such potentials are
employed in the study of non-spherically symmetric problems
that often occur in chemistry. A number of articles have been
devoted to the study of non-central potentials [22-37].

Chen and Dong [31] introduced a new ring-shaped
potential and solved the Schrodinger equation for the Cou-
lomb plus the new ring-shaped potential analytically. This
potential was further combined with Kratzer potential by
Cheng and Dai [38] to propose a new potential. Also,
approximate bound-state solutions with Hulthén plus ring
potential for non-zero orbital angular momentum have been
obtained by the conventional Nikiforov-Uvarov method
[39]. The energy eigenvalues and the corresponding wave
functions have been obtained by solving non-relativistic
Schrodinger equation for Hulthén—Yukawa plus angle
dependent potential using the generalized parametric form of
Nikiforov-Uvarov method [32]. Analytical solutions of
Schrodinger equation with the generalized Hulthén potential
plus a new ring shaped potential have been obtained by Ikot
et al [40].

© 2020 IOP Publishing Ltd  Printed in the UK
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The study of such non-central potentials has gained
significance due to their wide range of applications in various
fields like nuclear physics and quantum chemistry as they
could be used to discuss the interactions between pair of
nuclei and ring-shaped organic molecules such as cyclic
polyenes and benzene [32]. The harmonic oscillator potential
plus a novel angle-dependent potential has been employed to
study the problem of the relativistic motion of a 1/2-spin
particle [34]. This potential suggested for the first time by
Berkdemir [35] in the Schrodinger picture might be useful in
studying the relativistic energy spectra and wave functions of
ring-shaped molecules.

The various ring-shaped potentials have recently been
used and explored in different contexts. For example, Amir-
fakhrian and Hamzavi [41] have studied solutions of Schro-
dinger equation with the Morse plus ring-shaped potential.
They have detailed bound state energies of many diatomic
molecules. Chen et al [42] have reported spin—orbit splitting
of single and double ring-shaped potentials along with har-
monic oscillator potential. They have reported accidental
degeneracy in some special cases. The angle-dependent ring-
shaped potential along with many radial coordinate dependent
potentials have found new attraction in low-dimensional
semiconductor systems [43—46]. A solution of the radial and
angular parts of the Klein—Gordon equation for Poschl-Teller
double-ring-shaped Coulomb potential has been found by
Hassanabadi et al [47]. Liu et al [48] have studied optical
properties of 3D ring-shaped pseudoharmonic potential. They
have solved the equation of motion of the system with
separation of variables method. Khordad [49] has recently
reported the analytical results to show the effects of spin—orbit
and magnetic field on the energy levels of quantum dots [50]
confined in ring-shaped potential. Chabab et al [51] have used
this type of potential to study the spectra of triaxial nuclei.
This type of ring-shaped potential has been further used along
with other radial potentials to explore many physical aspects
of confined quantum systems. Pure (unscreened) ring-shaped
potentials have applications in many organic molecules. In
molecular physics, this potential has attracted a lot of theor-
etical investigations. For example, the study of molecular
diamagnetic susceptibility and other properties have been
investigated [52].

The aim of the present work is to numerically solve the
Schrodinger equation, equation (6), for a screened Coulomb
Hulthén plus ring-shaped potential. It may be mentioned that
the Schrodinger equation has been solved analytically for
such potentials [32, 39, 40] but these solutions are worked out
within the framework of approximation schemes to deal with
the centrifugal term. In the present work a particle confined in
Hulthén plus ring-shaped potential is considered and the
corresponding Schrddinger equation has been directly solved
with no approximation to the centrifugal term to obtain the
energy eigenvalues and wavefunctions with a focus on
studying its oscillator strengths and static polarizabilities. To
the best of our knowledge, the present study has not been
reported earlier in the literature. In this respect, this work
presents novel results and complements the earlier interesting
studies involving the useful model potentials [32, 39-41]. The

presentation of our work is organized as follows. The related
theoretical details are described in section 2 The results are
discussed in section 3 This is followed by conclusions in
section 4.

2. Theory

The Schrodinger equation for a particle confined in Hulthén
plus ring-shaped potential in spherical polar coordinates is
written as

I v
5

Atomic units are used throughout this paper, i.e. h = m, =
e = 1. The potential V(r, 6) is given by

+ V(r, 9))\111111}"("9 0, ¢) = Elpnl’m(ra 9, ¢) (1)

e~or cos2d

V(r, 0) =— 2)

—e o rsin?@’
where « is the screening parameter, (3 is a real constant and Z
is the atomic number [39]. The second term in equation (2) is
the ring shaped potential introduced by Chen and Dong [31].
Since this is the case of a non-spherically symmetric potential,
subscript /' has been used for the wavefunction in equation (1)
instead of [ which is the usual angular momentum quantum
number.

The usual separation of variables technique is applied for
radial and angular parts by taking

Wrm(r, 0, @) = R (r)yim (6, ¢), 3)
where
Ry (r) = Uu(r)/r “)
and
Vim0, @) = O (0) P (). &)

Since this is the case of non-spherically symmetric potential,
the usual notation for the spherical harmonics Y(6, ¢) has
been avoided. The Schrodinger equation reduces to a set of
second-order differential equations given by

ur.(r) e~ 1)
o~ —ZU, EU,(r), (6
T U ) = U, (©)
—Li(sme )@ 0) + <O (0)
s1n9 d9 0 I'm 0 I'm
+ 282 Qey (0) = A\Oun(6) ™
and
&®,,(0)
T& + mzq)m(¢) =0, ¢))

where )\ and m are the separation constants. The boundary
conditions for equation (7) require that both ©(0) and O(m)
must take finite values. In the general solution of spherically
symmetric potentials, A is /(I + 1). The nomenclature of the
energy states is retained as in the spherically symmetric
potential in order to make a clear representation. As there is
azimuthal symmetry in the present problem, the azimuth part
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of the wave function W in equation (8) has the general solu-
tion

(@) = exp(Lime), (€))

1
Var
where m is the usual magnetic quantum number. In the pre-
sent case we take m = 0 and solve equations (6) and (7) by
finite difference method to get the energy spectrum as well as
the corresponding wave functions. The 2'-pole radial matrix
elements can easily be calculated using these wave functions.

The exact analytical solution of equations (6) and (7) for
coulomb-type potential —Z/r combined with the ring-potential
has been given by Chen and Dong [31] for bound states as well
as continuous states. The solution for bound states is given as

z? 72

2, 4+ L+ 1?2 2w

(10)
where

n’:n,—l—L—Q—l:%[Zn,

+\/1 + 4[4+ 28 + mA)k + 28+ m? + 1) — 28] + 1]
(11)

and |m|, k, n, = 0, 1, 2, .... n, is the number of nodes of the
corresponding radial wave functions. For details, please see
[31]. This expression has been quoted here as the results cal-
culated in the present case for some of the bound states have
been matched with the analytical solution for energy levels
given by equation (10) and a good agreement has been found.

The dimensionless physical quantity called oscillator
strength which signifies the strength of transitions due to
interaction of confined particle with electromagnetic radiation
represents the intensity of spectral lines, thus playing a very
important role in the study of the optical properties related to
the electronic transitions [53, 54]. The 2’-pole oscillator
strengths for transitions from an initial state n to a final state
n, corresponding to absorption or emission of photons, is
given by the standard formula [55-57]

O = 21 (B[ cos' 010, () P(Ey — En),  (12)

where [ = 1, 2, 3 for dipole, quadrupole and octupole cases,
respectively.

Another important microscopic quantity that can be
determined using the data of oscillator strengths is the
polarizability [58, 59], the knowledge of which has applica-
tions in many areas of chemistry and physics like optics,
chemical structure and interaction of molecules with light.
The polarizabilities are also helpful in understanding the
physical, electronic, and optical properties of particles. For
example, it is related to another experimentally significant
macroscopic property called refractive index [60]. The static
2'-pole polarizability in terms of oscillator strengths for dif-
ferent energy state combinations is given by the relation
[55-57, 61]

fn(]ln’
Q) = § =5
En/ - En)2

n'=n (

13)

where the summation is over all intermediate states including
the continuum.

One of the interesting physical properties which can be
deduced from the present results is the diamagnetic screening
constant. The electrons near the nucleus affect the value of
applied magnetic field. This causes screening effect which is
described by the screening constant and is responsible for a
slight change in Larmor frequency resulting in chemical shift.
The position and number of chemical shifts are useful tools
for determining the structure of a molecule. An average value
of the screening constant for a molecule can be determined in
high-resolution solution NMR. The diamagnetic and para-
magnetic components of this constant are related to the orbital
motion of the electrons and other significant properties of the
molecule, respectively. For hydrogen atom, the diamagnetic
component dominates and has a relatively smaller chemical
shift range in comparison to heavier atoms [62]. This constant
is defined as [63]

eZ

14
3m,c? 14

g =

(sl L.
r

3. Results and discussions

A particle confined in Hulthén plus ring-shaped potential given
by equation (2) has been considered. In order to get the energy
spectrum for particular values of confinement parameters o and
0, equation (7) is first solved which gives the angular part of
the solution A which is then used in equation (6) to get the
complete solution. Both these equations have been solved in
MATLAB by employing the finite difference approach. The
energy spectra consists of both negative and positive-energy
states. The negative-energy states are considered to be bound
states while positive-energy states are taken as unbound
ionized states forming a pseudocontinuum. The wave function
corresponding to each energy level is also obtained which
makes the calculation of radial matrix elements for different
combinations of energy states possible. A which has a value /
(I + 1) for spherically symmetric potentials, is significantly
altered by 3, as mentioned in section 2 This effect on the first
eight values of the parameter A\, which correspond to the first
eight values of orbital angular momentum, has been shown in
figure 1. On the basis of the observed increase in A with 3, it
can be easily predicted that the ring potential would strongly
affect all the properties to be studied in the present problem.
Hulthén potential has been studied vastly in the literature
due to its importance in a number of subjects of interest. The
main aim of the present paper is to investigate the role of ring
potential on various properties of the system. 3 = 0 refers to
the case of pure spherically symmetric Hulthén potential.
Therefore, the results corresponding to 3 = 0 have been
calculated and included for all the properties that have been
considered. These results can serve as a ready reference for
analyzing the effect of 3. Figure 2 shows the variation of first
ten energy levels with respect to «, i.e. the confinement
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Figure 1. Variation of first eight values of A with [3.
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Figure 2. Variation of first ten energy levels with « for 8 = 0 a.u.

parameter related to the Hulthén potential, with o ranging
from 0.01 to 0.1 for 3 = 0. The break in degeneracy as well
as the increase in the energy value due to increase in « as
observed in the present case is a well-known feature of con-
finement related to spherically symmetric Hulthén potentials
[64—67] or radial confinement, in general [68]. It can be seen
from figure 2 that for higher values of «, 4d and 4f states
become positive or unbound and hence form a part of the
pseudocontinuum. The number of bound states are hence
found to decrease as an effect of confinement, as expected. In
figure 3, the variation of first ten energy levels with respect to
a for 8= 0.4 is shown. Due to the presence of the ring
potential, i.e. finite 3, degeneracy has been lifted for smaller
values of « too.

Figures 4 and 5 show the variation of first ten energy
levels with 3 for a = 0.01 and 0.1, respectively. Effects of
confinement similar to those interpreted from figures 2 and 3
for « are true for 8 also with the maximum effects seen for
high o and 3 in figure 5 for the states with principal quantum
number n =4. Since « represents screening which is
expected to be more for states which are higher in energy and
also maximum effect of confinement is expected on states
which are at large distances from the nuclei, the observed
variation of energy levels with « and (3 is obvious.

As a check on our results some of the energy levels for
pure Hulthén case, i.e. for § = 0, have been compared with
the results presented by Varshni [7] and many others in
table 1 and quite a good agreement has been found. As the
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Figure 4. Variation of first ten energy levels with 3 for « = 0.01 a.u.

Hulthén potential reduces to Coulomb form for small values
of «, the potential in equation (2) is then similar to that
considered by Chen and Dong [31]. Also, in the limiting
case of very small « and (3, the present problem reduces to
the case of a particle in inverse square potential which is
another interesting case. In order to check the calculations
for angular part of Schrédinger equation, the first ten energy
levels for a particular value of (= 0.2) have been compared

with those calculated using the analytical expression for
exact solutions of the bound states given by Chen and Dong
[31] as given by equation (10) by taking very small value of
a, viz., 0.0001. Also the energy levels have been calculated
by taking Coulomb potential instead of Hulthén in the
Schrodinger equation. For both these cases the results have
been presented in table 2 which authenticates our
calculations.
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Table 1. Comparison of energy levels for pure Hulthén potential (5 = 0) with ([7] and references therein). Atomic units are used.

E2p E3p E3d

e Present Reference [7] Present Reference [7] Present Reference [7]
0.025 —-0.11276 —0.11276 —0.04371 —0.043 71 —0.043 60 —0.043 60
0.05 —0.101 05 —0.101 04 —0.033 17 —-0.033 16 —-0.03275 —0.03275
0.075 —0.089 85 —0.089 84 —0.023 94 —0.023 94 —-0.023 03 —0.023 03
0.1 —0.079 18 —0.079 18 —0.016 05 —0.016 05 —0.014 48 —0.014 48
0.150 —0.059 44 —0.059 44 —0.004 47 —0.004 47 —0.001 39 —0.001 40
0.2 —0.041 89 —0.041 89 0.00091 0.003 04

0.250 —0.02661 —0.026 61 0.001 86 0.003 30

0.3 —0.01379 —-0.01379 0.002 06 0.003 36

0.350 —0.00379 —0.00379 0.002 20 0.003 38

The validity of comparison theorem of Quantum
Mechanics [69] for four different potentials, viz., Coulomb,
Hulthén, Yukawa and Hulthén2 where Hulthén2 is of the
same form as Hulthén but with o taken to be twice of a for
Hulthén, has been investigated. This theorem predicts that if
the potentials V,, and V), are ordered such that V, < V,,, then
the corresponding energy eigenvalues are also ordered, that is,
E, < E,,. Since the four central potentials are ordered such
that VCoulomb < VHulthen < VYukawa < VHulthenZ’ the energy
spectra is similarly ordered. This ordering is not expected to
depend on the sphericity or ring potential. This fact has been
shown to be valid by comparing energy eigenvalues for dif-
ferent values of o and 3 in table 3.

The 2l—pole radial matrix elements for / = 1, 2, 3 have
been calculated for different values of o and 3. The data has
been plotted in figures 6-9 for some particular combinations of
energy states, viz., (1s|r!|2s), (1s|r!|2p), (1s|r!|3s), (1s]r!|3p),
(1s|13d), (2s|r'12p), (3p|r!|3d) and (4d|r'|4f). The variation of

Table 2. Comparison of energy levels for & = 0.0001 and 3 = 0.2
and Coulomb potential with [31]. Atomic units are used.

Energy Present Present (Cou- Reference
level (a = 0.0001) lomb potential) [31]

s —0.24141 —0.241 46 —0.241 33
2s —0.084 00 —0.084 05 —0.084 02
2p —0.077 67 —-0.077 72 —0.077 71
3s —0.042 23 —0.042 28 —0.042 27
3p —0.039 93 —0.039 98 —0.039 98
3d —0.03923 —0.03928 —0.039 28
4s —0.02532 —0.025 37 —0.025 37
4p —0.024 24 —0.024 29 —0.024 30
4d —0.02391 —0.023 96 —0.023 96
af —0.023 75 —0.023 80 —0.023 80

the dipole (I = 1), quadrupole (I = 2) and octupole (I = 3)
matrix elements with o has been shown in figure 6 for 5 =0
and in figure 7 for § = 0.4. Their variation with respect to (3



Table 3. Validity of comparison theorem in presence of 5. Atomic units are used.

Potential 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f
a=0.01 8=0

Coulomb  —0.49987 —0.12499 —0.12500 —0.05555 —0.05556 —0.05556 —0.03125 —0.03125 —0.03125 —0.03125
Hulthén —0.49489 —-0.12004 —-0.12004 —0.05067 —-0.05066 —0.05064 —0.02645 —0.02644 —0.02643 —0.02640
Yukawa —048995 —0.11529 —0.11525 —0.04620 —0.04615 —0.04606 —0.02236 —0.02231 —0.02223 —0.022 10
Hulthén2 —-0.48992 —-0.11519 —0.11517 —0.04600 —0.04597 —0.04591 —0.02205 —0.02202 —0.02195 —0.02185
a = 0.01 6=04

Coulomb —-0.20294 —-0.07572 —-0.06753 —0.03924 —-0.03611 —0.03510 —0.02394 —-0.02243 —-0.02193 —0.02168
Hulthén —0.19797 —-0.07080 —0.06260 —0.03440 —0.03126 —0.03023 —0.01920 -0.01768 —0.01717 —0.01689
Yukawa —0.19310 —-0.06618 —0.05795 —0.03012 —-0.02697 —0.02586 —0.01533 —0.01383 —0.01325 —0.01286
Hulthén2  —0.19305 —-0.06604 —0.05782 —0.02986 —0.02673 —0.02564 —0.01497 —-0.01346 —0.01290 —0.01253
a=0.1 8=0

Coulomb  —0.49987 —0.12499 —0.12500 —0.05555 —0.05556 —0.05556 —0.03125 —0.03125 —0.03125 —0.03125
Hulthén —-045112 -0.07999 —-0.07918 —-0.01680 —0.01605 —0.01448 —0.00114 —0.00063  0.000 45 0.002 25
Yukawa —0.40693 —0.04992 —0.04654 —0.00320 —0.00158  0.00162 0.002 10 0.002 69 0.004 05 0.004 58
Hulthén2 —0.40487 —0.04499 —0.04189 —0.00049  0.000 91 0.003 04 0.002 95 0.003 75 0.006 14 0.004 90
a=0.1 6=04

Coulomb —-0.20294 —-0.07572 —-0.06753 —0.03924 —-0.03611 —0.03510 —0.02394 —-0.02243 —-0.02193 —0.02168
Hulthén —0.15565 —0.03363 —0.02493 —0.00488 —0.00195  0.000 50 0.001 79 0.003 05 0.004 15 0.005 10
Yukawa —-0.11749 -0.01226 —-0.00334  0.001 05 0.002 65 0.004 13 0.005 21 0.007 22 0.008 68 0.006 17
Hulthén2 —-0.11381 —-0.00762  0.000 91 0.001 80 0.003 36 0.004 50 0.006 33 0.008 46 0.009 78 0.006 40
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Figure 7. Same as figure 6 for 8 = 0.4 a.u.

has been shown in figures 8 and 9 for a = 0.001 and 0.1,
respectively. Semilog scale has been employed to plot
figures 6-9 to make the variation more apparent. This study
of radial matrix elements is important as it is the starting point
of obtaining many properties of great significance, e.g.
oscillator strengths and polarizabilities which are a part of the
problem under study. The radial matrix elements, in general,
are more for octupole than quadrupole which, in turn, are
greater than those for dipole interactions.

The radial matrix elements along with the angular con-
tributions calculated using the wave functions given by the
solution of equation (7) are employed to calculate important

optical properties, viz., oscillator strengths and static polar-
izabilities. In order to provide a glimpse of the effect of the
parameter (3, characterizing the ring potential, on the angular
part of dipole matrix elements, (7| cos 0]7), the variation of
these matrix elements with 3 for some combinations of / and
I' has been shown in table 4. The magnetic quantum number
m has been taken to be zero. These matrix elements provide a
measure of the non-sphericity of the system. A significant
decrease in these matrix elements with increase in 3 evident
from table 4 indicates the effect of the ring potential. An
interesting observation is that as we switch to the dipole
elements between higher energy levels the decrease in the
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Figure 9. Same as figure 8 for a = 0.1 a.u.

matrix elements with increase in 3 reduces. Also, for § = 0
and 0.1 the matrix elements corresponding to higher states
decrease but the trend is opposite for 3 = 0.2-0.4. This may
be an indication of very strong non- sphericity introduced in
the system by the ring potential. Since the matrix elements
play a crucial role in determination of oscillator strengths and
polarizabilities, the presence of ring potential is expected to
alter the dynamics of the system to a great extent.

The dipole, quadrupole and octupole oscillator strengths
have been evaluated using equation (12) for various values of
« and (. The validity of f~sum rule has been ensured for
dipole oscillator strengths both for low as well as high o and
0, which again verifies our calculations. The variation of
dipole, quadrupole and octupole oscillator strengths with o
have been shown in figures 10 and 11 for 3= 0 and 0.4,
respectively. In figures 12 and 13, the variation has been
shown with respect to 8 for a = 0.01 and 0.1, respectively.
Semilog scale has been used in part (c) of figures 10—13 for
octupole oscillator strengths and also in figures 10 and 12 for
dipole oscillator strengths to make the variation more
apparent.

Table 4. Variation of angular part of dipole matrix elements with (3
for some combinations of A and ). The corresponding values of [
and { for the spherically symmetric case as mentioned in columns 1
and 2 serve as reference index for rest of the 3 values. Atomic units
are used.

(] cos Olyy)

I I' B=0 B=01 (=02 (=03 (=04
0 1 057735 050699 048425 046885 0.45697
1 2 051640 050236 049438 048812 0.48279
2 3 050709 050124 049712 049371 049070
3 4 050395 050079 049825 049611 049417
4 5 050252 050057 049883 049735 0.496 00
5 6 050175 050045 049917 049809 0.49709

In order to check our results, the dipole oscillator

strengths calculated for pure Hulthén case, i.e. for g =0,
have been matched with those given by Varshni [7] and Bahar
et al [10] and the values have been found to be in close
agreement. The comparison has been shown in table 5. It may
be mentioned that although the solution of the angular part of
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Figure 11. Same as figure 10 for § = 0.4 a.u.

the Schrodinger equation for the present problem does not
give an integral value for orbital angular momentum /, the
oscillator strengths that have been calculated are found to
follow the selection rules as is valid for dipole, quadrupole or
octupole allowed transitions. Out of the set of combinations
of energy levels for which matrix elements have been plotted
in figures 6-9, only the oscillator strengths which have finite
values have been plotted in figures 10-13.

10

Oscillator strengths being product of matrix elements and
the difference of corresponding energy levels, are found to
either increase or decrease depending on the variation of these
quantities. For example, in figure 10 dipole oscillator strength
for 1s — 2p is found to decrease very slightly with « but for
4d — 4f it increases prominently. This can be easily inferred
from the variation of corresponding energy difference in
figure 2 and radial matrix elements in figure 6. Since the finite
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Figure 13. Same as figure 12 for a = 0.1 a.u.

value of (3 in figure 11 changes only the angular part of the
matrix elements, which is not affected by a change in «, the
patterns of variation of oscillator strengths in figure 11 can,
therefore, be explained on the basis of variation of corresp-
onding energy difference and radial matrix elements. The
dependence of oscillator strengths on 3 in figures 12 and 13
can be interpreted in an analogous manner by taking into
account the angular contribution to matrix elements. In
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general, since oscillator strength expresses the probability of
absorption or emission of electromagnetic radiation for
quantum transitions between energy levels of the system, the
data analysis presented for oscillator strengths would be
useful for studying atomic interaction with such radiation.
Static dipole, quadrupole and octupole polarizabilities,
taking 1s ground state as the initial state, have been evaluated
for various values of a and [ using equation (13). The
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Table 5. Comparison of dipole oscillator strengths for pure Hulthén potential (G = 0). Atomic units are used.

o Is — 2p s — 3p
Present  Reference [7] Reference [10]  Present  Reference [7] Reference [10]

0.025 0.41564 0.415 50 0.41540 0.078 34 0.078 34 0.078 30
0.05 0.41352 0.413 40 0.413 10 0.076 00 0.076 00 0.075 90
0.075 0.409 96 0.409 80 0.409 30 0.071 96 0.071 96 0.071 90
0.1 0.404 89 0.404 70 0.403 90 0.065 98 0.066 00 0.066 00
0.15 0.389 87 0.389 70 0.388 20 0.046 26 0.046 33 0.047 80
0.2 0.367 36 0.367 10 0.365 50 0.013 20

0.25 0.33530 0.334 80 0.334 90 0.002 78

0.3 0.289 62 0.288 60 0.295 40 0.002 23

0.35 0.218 61 0.216 90 0.245 10 0.005 94

polarizabilities have been plotted with respect to « in
figure 14(a) for # = 0 and 0.4 and in figure 14(b) with respect
to 3 for @ = 0.01 and 0.1, respectively. The figure has been
plotted in semilog scale in order to make a comprehensible
comparative presentation. A comparison of dipole polariz-
ability calculated for pure Hulthén potential, i.e. 8 = 0, with
the values calculated by Bahar et al [10] has been presented in
table 6. The values are found to follow an increasing trend
with increase in « in consonance with the data of [10] pre-
sented in the table.

Figure 14 shows that the polarizabilities rapidly increase
with 3 as compared to that with « and this change is fast for
lower values of 3. The dipole and quadrupole polarizabilities
have been found to increase only slightly with increase in «
for 5 = 0 as seen from figure 14(a). On the other hand, the
octupole polarizability increases appreciably. The trend is
same for 3 = 0.4 but is comparatively more prominent. It can
be observed from figure 14(b) that the increase is more for
quadrupole polarizability than for the dipole polarizability
and much more for octupole polarizability. For o = 0.1, the
polarizabilites increase to a value greater than that for
a = 0.01. The increase in the value of polarizabilites with
increase in the screening parameter ov means that the stronger

12

Table 6. Comparison of dipole polarizability for pure Hulthén
potential (6 = 0). Atomic units are used.

« Present  Reference [10]
0.01 4.503 65 4.500 37
0.015 450411 4.500 84
0.02 4.504 77 4.501 49
0.025 4.50561 4.502 33
0.03 4.506 64 4.503 36
0.04 4.509 25 4.50597
0.05 4.51262 4.509 34
0.06 451674 4.513 45
0.07 4.521 62 451833
0.09 4.533 66 4.530 35
0.1 4.540 84 4.53752
0.2 4.656 31 4.652 84

screening effect of the Hulthén potential leads to easier
polarization of the atoms. The much larger increase with g
depicts very strong dependence on the ring potential.

The diamagnetic screening constant defined by
equation (14) has also been calculated and its variation with 3
for three different values of a has been represented in
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Figure 15. Variation of diamagnetic screening constant with 3 for
a = 0.01, a = 0.05 and 0.1 a.u.

figure 15. As can be seen from the figure, the parameter o
hardly influences the screening constant but change in 3 has a
much greater effect on it. The reason for this kind of variation
is that the ground state wavefunction does not change much
with « in the range considered but a slight change in 3 sig-
nificantly alters it.

4. Conclusions

The energy spectrum and wave functions of a particle con-
fined in Hulthén plus ring-shaped potential have been eval-
uated numerically by employing finite difference method to
solve the corresponding Schrodinger equation. The effect of
the confinement parameters of both these potentials has been
studied on the energy spectrum, 2"-pole radial matrix elements
for I = 1, 2, 3 as well as on important optical properties, viz.,
dipole, quadrupole and octupole oscillator strengths and static
polarizabilities. The non-sphericity introduced due to the
presence of ring potential has been found to significantly
change the angular part of matrix elements which in turn
would have a considerable impact on dynamics of the system
subjected to external fields. Also, the validity of the com-
parison theorem of Quantum Mechanics for energy eigenva-
lues for four different potentials, viz., Coulomb, Hulthén,
Yukawa and Hulthén2 is found to be independent of the
presence of ring potential.

Acknowledgments

One of us (VP) is thankful to UAM Iztapalapa for hospitality
during the course of this work and also KDS is thankful to
Indian National Science Academy, New Delhi, for support
under its senior scientist program.

13

Contribution of authors

All authors contributed equally to the paper.

Declarations of interest

None.

ORCID iDs

Sonia Lumb @ https: //orcid.org /0000-0001-6715-407X
Vinod Prasad © https: //orcid.org/0000-0002-0154-3221

References

(1]
(2]

(3]
(4]
(]
(6]
(7]
(8]
(9]

[10]

Hulthén L 1942 Ark. Mat. Astron. Fys. A 28A 5

Fliigge S 1974 Practical Quantum Mechanics (Berlin:
Springer) 0387070508

Ikhdair S M and Sever R 2007 J. Math. Chem. 41 343

Bahar M K and Soylu A 2018 Phys. Plasmas 25 022106

Bahar M K and Soylu A 2018 Phys. Plasmas 25 062113

Munjal D and Prasad V 2017 Contrib. Plasma Phys. 57 76

Varshni Y P 1990 Phys. Rev. A 41 4682

Arda A, Aydogdu O and Sever R 2011 Phys. Scr. 84 025004

Bahlouli H, Abdelmonem M S and Al-Marzoug S M 2012
Chem. Phys. 393 153

Bahar M K, Soylu A and Poszwa A [EEE Trans. Plasma Sci.
44 2297

Bahar M K and Soylu A 2018 J. Phys. B: At. Mol. Opt. Phys.
51 105701

Ikhdair S M and Sever R 2007 J. Math. Chem. 42 461

Aktas M and Sever R 2004 J. Mol. Struct. (Theochem) 710 223

Gu X-Y, Zhang M and Sun J-Q 2010 Chin. J. Phys. 48 222
(https:/ /ps-taiwan.org/cjp/issues.php?vol=48&num=2)

Setare M R and Karimi E 2007 Int. J. Theor. Phys. 46 1381

Sever R, Tezcan C, Yesiltas O and Bucurgat M 2008 Int. J.
Theor. Phys. 47 2243

Mercero J M, Fowler J E, Sarasola C and Ugalde J M 1998
Phys. Rev. A 57 2550

Bertini L, Mella M, Bressanini D and Morosi G 2004 Phys.
Rev. A 69 042504

Nufiez M A 1993 Phys. Rev. A 47 3620

Stubbins C 1993 Phys. Rev. A 48 220

Ugalde J M, Sarasola C and Lopez X 1997 Phys. Rev. A
56 1642

Dong S-H, Sun G-H and L-Cassou M 2004 Phys. Lett. A
328 299

Dong S-H, Chen C-Y and L-Cassou M 2005 Int. J. Quant.
Chem. 105 453

Ikhdair S M 2008 Int. J. Mod. Phys. C 19 1425

Ikhdair S M and Sever R 2008 Cent. Eur. J. Phys. 6 685

Ikhdair S M 2008 Int. J. Mod. Phys. C 19 221

Rajabi A A and Hamzavi M 2013 J. Theor. Appl. Phys. 7 17

Zhang M-C, Sun G-H and Dong S-H 2010 Phys. Lett. A
374 704

Sadeghi J, Rostami M and Hojabri A R 2009 Int. J. Theor.
Phys. 48 2961

Zhang M-C 2009 Int. J. Theor. Phys. 48 2625

Chen C-Y and Dong S-H 2005 Phys. Lett. A 335 374

Antia A D, Umo E E A and Umoren C C 2015 J. Theor. Phys.
Cryptogr. 10 1 (http://ijtpc.ir/volume10/JTPC2114.pdf)

Aktag M and Sever R 2005 J. Math. Chem. 37 139

[11]
[12]
[13]
[14]

[15]
[16]

[17]
(18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
(31]
[32]

(33]


https://orcid.org/0000-0001-6715-407X
https://orcid.org/0000-0001-6715-407X
https://orcid.org/0000-0001-6715-407X
https://orcid.org/0000-0001-6715-407X
https://orcid.org/0000-0002-0154-3221
https://orcid.org/0000-0002-0154-3221
https://orcid.org/0000-0002-0154-3221
https://orcid.org/0000-0002-0154-3221
https://doi.org/10.1007/s10910-007-9226-x
https://doi.org/10.1063/1.5011943
https://doi.org/10.1063/1.5011943
https://doi.org/10.1002/ctpp.201600087
https://doi.org/10.1103/PhysRevA.41.4682
https://doi.org/10.1088/0031-8949/84/02/025004
https://doi.org/10.1016/j.chemphys.2011.12.002
https://doi.org/10.1109/TPS.2016.2604421
https://doi.org/10.1088/1361-6455/aabc93
https://doi.org/10.1007/s10910-006-9115-8
https://doi.org/10.1016/j.theochem.2004.09.011
https://www.ps-taiwan.org/cjp/issues.php?vol=48&num=2
https://doi.org/10.1007/s10773-006-9276-z
https://doi.org/10.1007/s10773-008-9656-7
https://doi.org/10.1103/PhysRevA.57.2550
https://doi.org/10.1103/PhysRevA.69.042504
https://doi.org/10.1103/PhysRevA.47.3620
https://doi.org/10.1103/PhysRevA.48.220
https://doi.org/10.1103/PhysRevA.56.1642
https://doi.org/10.1016/j.physleta.2004.06.037
https://doi.org/10.1002/qua.20729
https://doi.org/10.1142/S0129183108012923
https://doi.org/10.2478/s11534-008-0024-2
https://doi.org/10.1142/S0129183108012030
https://doi.org/10.1186/2251-7235-7-17
https://doi.org/10.1016/j.physleta.2009.11.072
https://doi.org/10.1007/s10773-009-0012-3
https://doi.org/10.1007/s10773-009-0050-x
https://doi.org/10.1016/j.physleta.2004.12.062
http://www.ijtpc.ir/volume10/JTPC2114.pdf
https://doi.org/10.1007/s10910-004-1446-8

Phys.

Scr. 95 (2020) 035404

S Lumb Talwar et al

[34]
[35]
[36]
(371

[38]
[39]
[40]

[41]
[42]

[43]
[44]

[45]
[46]

[47]
(48]
[49]

(50]
[51]

Berkdemir C and Cheng Y-F 2009 Phys. Scr. 79 035003

Berkdemir C 2009 J. Math. Chem. 46 139

Parmar R H 2019 Eur. Phys. J. Plus 134 86

Mbadjoun B T, Ema’a J M E, Yomi J, Abiama P E,
B-Bolie G H and Ateba P O 2019 Mod. Phys. Lett. A 34
1950072

Cheng Y F and Dai T Q 2007 Phys. Scr. 75 274

Agboola D 2011 Commun. Theor. Phys. 55 972

Ikot A N, Olgar E and Hassanabadi H 2016 Gazi Univ. J. Sci.
29 937 (http://ijtpe.ir/volume10/ITPC2114.pdf)

Amirfakhrian M and Hamzavi M 2012 Mol. Phys. 110 2173

Chen C-Y, Lu F-L, Sun D-S, You Y and Dong S-H 2016 Ann.
Phys. 371 183

Liu G and Guo K 2012 Superlattices Microstruct. 52 997

Chen C-Y, You Y, Wang X-H and Dong S-H 2013 Phys. Lett.
A 377 1521

Khordad R 2017 Opt. Commun. 391 121

Wang Z, Long Z-W, Long C-Y and Teng J 2015 Phys. Scr. 90
055201

Hassanabadi H, Ikot A N and Zarrinkamar S 2014 Acta Phys.
Pol. A 126 647

Liu G, Guo K, Hassanabadi H, Lu L and Yazarloo B H 2013
Physica B 415 92

Khordad R 2017 Superlattices Microstruct. 110 146

Nautiyal V V and Silotia P 2018 Phys. Lett. A 382 2061

Chabab M, Lahbas A and Oulne M 2015 Eur. Phys. J. A
51 131

14

[52]
[53]
[54]
[55]

[56]
(571
[58]
[59]
[60]
[61]

[62]

[63]

[64]
[65]

[66]
[67]
[68]
[69]

Chen C-Y, Sun D-S and Lu F-L 2006 Phys. Lett. A 348 153

Stevanovi¢ L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 165002

Kumar A, Kumar M and Meath W J 2003 Chem. Phys. 286 227

Zhang Y-H, Tang L-Y, Zhang X-Z, Shi T-Y and Mitroy J 2012
Chin. Phys. Lett. 29 063101

Mitroy J, Safronova M S and Clark C W 2010 J. Phys. B: At.
Mol. Opt. Phys. 43 202001

Lumb S, Lumb S and Prasad V 2015 Eur. Phys. J. Plus
130 149

Borschevsky A, Zelovich T, Eliav E and Kaldor U 2012 Chem.
Phys. 395 104

Ganguly J and Ghosh M 2015 Chem. Phys. 447 54

Cakir B, Yakar Y and Ozmen A 2013 Opt. Commun. 311 222

Kang S, He J, Xu N and Chen C-Y 2014 Commun. Theor.
Phys. 62 881

Scott R A and Lukehart C M (ed) 2007 Applications of
Physical Methods to Inorganic and Bioinorganic Chemistry
(New York: Wiley) p 361 978-0-470-032176

Flores C M and C-Trujillo R 2018 J. Phys. B: At. Mol. Opt.
Phys. 51 055203

Lumb S, Lumb S and Prasad V 2015 Eur. Phys. J. D 69 176

Lumb S, Lumb S, Munjal D and Prasad V 2015 Phys. Scr. 90
095603

Lumb S, Lumb S and Prasad V 2015 Phys. Lett. A 379 1263

Lumb S, Lumb S and Prasad V 2014 Phys. Rev. A 90 032505

Lumb S, Lumb S and Prasad V 2015 Indian J. Phys. 89 13

Hall R L 1992 J. Phys. A: Math. Gen. 25 4459


https://doi.org/10.1088/0031-8949/79/03/035003
https://doi.org/10.1007/s10910-008-9447-7
https://doi.org/10.1140/epjp/i2019-12513-6
https://doi.org/10.1142/S021773231950072X
https://doi.org/10.1142/S021773231950072X
https://doi.org/10.1088/0031-8949/75/3/008
https://doi.org/10.1088/0253-6102/55/6/06
http://www.ijtpc.ir/volume10/JTPC2114.pdf
https://doi.org/10.1080/00268976.2012.668227
https://doi.org/10.1016/j.aop.2016.04.012
https://doi.org/10.1016/j.spmi.2012.07.015
https://doi.org/10.1016/j.physleta.2013.04.026
https://doi.org/10.1016/j.optcom.2017.01.017
https://doi.org/10.1088/0031-8949/90/5/055201
https://doi.org/10.1088/0031-8949/90/5/055201
https://doi.org/10.12693/APhysPolA.126.647
https://doi.org/10.1016/j.physb.2013.02.001
https://doi.org/10.1016/j.spmi.2017.08.050
https://doi.org/10.1016/j.physleta.2018.05.017
https://doi.org/10.1140/epja/i2015-15131-y
https://doi.org/10.1016/j.physleta.2005.08.070
https://doi.org/10.1088/0953-4075/43/16/165002
https://doi.org/10.1016/S0301-0104(02)00926-6
https://doi.org/10.1088/0256-307X/29/6/063101
https://doi.org/10.1088/0953-4075/43/20/202001
https://doi.org/10.1140/epjp/i2015-15149-6
https://doi.org/10.1016/j.chemphys.2011.05.011
https://doi.org/10.1016/j.chemphys.2014.12.002
https://doi.org/10.1016/j.optcom.2013.08.015
https://doi.org/10.1088/0253-6102/62/6/17
https://doi.org/10.1088/1361-6455/aaa662
https://doi.org/10.1140/epjd/e2015-60136-2
https://doi.org/10.1088/0031-8949/90/9/095603
https://doi.org/10.1088/0031-8949/90/9/095603
https://doi.org/10.1016/j.physleta.2015.02.041
https://doi.org/10.1103/PhysRevA.90.032505
https://doi.org/10.1007/s12648-014-0519-1
https://doi.org/10.1088/0305-4470/25/16/021

	1. Introduction
	2. Theory
	3. Results and discussions
	4. Conclusions
	Acknowledgments
	Contribution of authors
	Declarations of interest
	References



