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Abstract
Complexity analysis of fractional-order chaotic systems is an interesting topic of recent years. In
this paper, the fractional symbolic network entropy measure algorithm is designed in which the
symbol networks are built and fractional generalized information is introduced. Complexity of
the fractional-order chaotic systems is analyzed. It shows that the proposed algorithm is effective
for measure complexity of different pseudo random sequences. Complexity decreases with the
decrease of derivative order in the fractional-order discrete chaotic system while changes with
the derivative order in the fractional-order continuous chaotic system. Moreover, basin of
attraction is also determined by the derivative order. It provides a basis for parameter choice of

the fractional-order chaotic systems in the real applications.
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(Some figures may appear in colour only in the online journal)

1. Introduction

To observe complexity of non-natural and natural systems,
the most direct way is to find some ways to analyze their
nonlinear time series. There are many methods fulfill this
target such as phase diagram, bifurcation diagram, 0-1 test
[1], and complexity measure algorithms. Among those
methods, measure complexity is a handy way since a reliable
result can be obtained if a segment of time series is given.
Until now, complexity of many different nonlinear time series
has been investigated, such as EEG signal [2, 3], ECG signal
[4-6], EMG signal [7], HRV signal [8], traffic signal [9],
electricity signal [10], stock signal [11] and fault detection
signal [12].

Currently, there are many different entropy and com-
plexity measure algorithms for nonlinear time series, and they
are designed from different point of view. Generally, those
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methods can be divided as time domain (TD) methods and
frequency domain (FD) methods. TD methods measure
complexity using the time series directly. In fact, most of the
complexity measure algorithms belong to the TD method. FD
methods are designed based on the frequency transformation.
There are mainly three FD methods including C, complexity
measure algorithm [13], the spectral entropy (SE) algorithm
[14] and the Wavelet entropy (WE) algorithm [15]. Specifi-
cally, Cy algorithm and SE algorithm estimate complexity
based on the discrete Fourier transformation, while WE
algorithm is proposed based on the Wavelet transformation.
Moreover, according to different information theory, those
complexity measure algorithms are divided as entropy mea-
sure algorithms [14-19], complexity estimation algorithms
[20-22] and fractal dimension [23]. Generally, entropy
methods are designed based on the Shannon entropy [24].
Currently, there are many different entropy estimation algo-
rithms such as permutation entropy algorithm [17], SE [14],
WE [15], Symbolic entropy [18] and network entropy [19].

© 2020 IOP Publishing Ltd  Printed in the UK
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Komologrov et al [25] discussed the concept of complexity in
nonlinear time series. Later, Lempel and Ziv [20] proposed
the famous Limpel-Ziv algorithm based on the concept.
Strictly speaking, the exhaustive entropy [26], ApEn [27],
SampEn [28] and FuzzyEn [29] are designed by combing the
Komologrov complexity and Shannon information theory.

It is still an interesting topic to design new complexity
measure algorithms for nonlinear time series. At present,
designing network entropy algorithms has become a new
research hotspot and some works have been reported. For
instance, the horizontal visibility graphs [30-32] take into
account the visibility of elements in a time series. But the size of
the build network increase with the length of the time series.
How to build a network from the chaotic time series and to
design a related network entropy algorithm is still a task of great
challenge. Meanwhile, Machado [33] proposed the concept of
fractional generalized information theory which is the modifica-
tion of the Shannon entropy. He et al [34] designed the fractional
FuzzyEn algorithm and applied it to measure complexity of EEG
signals from normal health persons and epileptic patients. Xu
et al [35] proposed the weighted fractional permutation entropy
and fractional sample entropy and analyzed nonlinear Potts
financial dynamics. In this work, we focus on the designing a
fractional network entropy method with limited size of network.

Until now, complexity in the chaotic systems has aroused
the concern of scholars. Grassberger et al [22] estimated the
Kolmogorov entropy of a chaotic signal, Liu et al [36] analyzed
complexity chaotic binary sequences, Li et al [37] calculated
information flow between two chaotic semiconductor lasers be
employing the symbolic transfer entropy, He ef al [38] estimated
complexity of chaotic systems based on different algorithms,
Rondoni et al [39] investigated the optical complexity in the
external cavity semiconductor laser chaotic system, and Natiq
et al [40] analyzed dynamics and complexity of a new 4D
chaotic Laser system. Meanwhile, designing more complex
chaotic systems and its stability analysis aroused interests of
researchers [41, 42]. For example, Stenflo [43] proposed a

{CA?Ox(i) =asin(wy(i +qg— D)sin(b/x(i+qg—1) —x@+qg—1)

dynamics of fractional-order Lorenz-Stenflo system. There
are two kinds of fractional-order chaotic systems. One kind
is the fractional-order discrete time chaotic system and the
other is the fractional-order discrete time chaotic system.
Complexity in the fractional-order chaotic systems deserves
further research, especially to investigate how complexity
changes with the derivative order.

The rest of this paper is organized as follows. In section 2,
two fractional-order chaotic systems are presented and some
questions regarding this study are introduced briefly. In section 3,
the symbolic networks of chaotic systems are built, and the
fractional symbolic network entropy (FSNE) algorithm is pro-
posed. In section 4, complexity of different fractional-order
chaotic systems is analyzed. Finally, the results are summarized.

2. Systems and the existing questions

At present, dynamics in the fractional-order discrete chaotic
map and multistability in the fractional-order continuous chaotic
system aroused interests of researchers [47]. In this section, the
fractional 2D Sine ICMIC modulation map [48] and the frac-
tional-order Li’s system [49] with multistability are chosen as
the representatives of the fractional-order systems. Moreover,
we state the main targets of this paper briefly.

2.1. Fractional-order chaotic systems

Recently, Liu et al [48] proposed a 2D Sine ICMIC mod-
ulation map (2D-SIMM), which is defined by

x1(Q) = asin(wxy (i — 1))sin(b/x (i — 1)) 0
x2(i) = asin(wx (i) sin(b/x,(i — 1))

where a, b and w are the system parameters, and a, b,
w € (0, +00). By introducing the fractional difference of
Caputo sense [50] to the system, the fractional-order
2D-SIMM

2

CALy(i) = asin(wx(i + ¢)sin(b/y(i +q— 1) —y(i+qg—1)

generalized Lorenz equations for acoustic-gravity waves. In real
applications, we call this system as the Lorenz—Stenflo system.

n

N TG—j+q)
x(@0) =x(O) + ; T@)TG—j+q)
TG—j+q)

YO =yO0) + oG s

Then complexity in the Lorenz-Stenflo system and the
fractional-order Lorenz—Stenflo system is investigated
[44-46]. For instance, Wang et al [46] investigated complex

where g € (0, 1] is the fractional derivative order. The
numerical solution of this system is given by

[a sin(wy(j — 1)) Sin(x(jb, 1)) —x(j — 1)]

, 3

[a sin (wx (j)) sin(y(j!i 1)) -yU — 1)]

here, I'(-) is the gamma function. Let a =2, b =3 and
w = m, and phase diagrams with different order g are shown
in figure 1. It shows that the phase diagrams become fuzzier
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Figure 1. Phase diagrams of the fractional 2D-SIMM with different
derivative order ¢ (a) ¢ = 1; (b) ¢ = 0.9; (¢c) ¢ = 0.8; (d) ¢ = 0.5.

with the decrease of derivative order g due to increase of
memory effect.

Li et al [49] investigated a new three dimensional system
of first-order autonomous, ordinary differential equations,
which is defined as

X=y+yz
y=—xz+yz , “4)
i=—ez—xy+ 0

where ¢ and ( are the system parameters. Coexisting point
attractors and limit cycles are observed in this system in a
relatively large region of parameter space with different initial
conditions. In this study, the Caputo fractional derivative is
introduced and its corresponding fractional-order counterpart is

Dix=y+yz
Dy = —xz +yz : (5)

0

Diz=—ez—xy+ 0

fo

Here g € (0, 1] . The system is solved by employing the pre-
dictor-corrector algorithm. Specifically, the fdel2.m function by
Garrappa®, which is a Matlab realization of the predictor-
corrector algorithm, is used in this paper.

Let £ = 0.9, 8 =4 and step size of time be 0.01. The
coexisting phase projections of the system are sown in
figure 2. It shows the three coexisting attractors for ¢ = 0.99
and 0.98. Then two coexisting attractors are observed for
g = 0.97 and g = 0.95 since attractor with initial condition
given by [xo, Yo, z0] = [—5.4, —7.4, —1] overlaps with other
attractors. Moreover, basins of attraction of system (5) with
different derivative ¢ are illustrated in figure 3, where
Z0 = —1, xg and y, vary from —10 to 10 with step size of 0.2.
It shows that the two basin of attraction plots are different.
When g = 0.98, different states are mixed, while the basin of
attraction for g = 0.99 has clearer boundaries. Thus it

* https://mathworks.com/matlabcentral /fileexchange/32918-predictor-
corrector-pece-method-for-fractional-differential-equations.
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Figure 2. Coexisting attractors in the fractional-order Li system with
different derivative order ¢ (a) ¢ = 0.99; (b) ¢ = 0.98; (c) ¢ = 0.97;
(d) g = 0.95.

indicates that the derivative order changes the dynamics of the
system and affects the coexisting attractors as well.

Here, suppose that the obtained nonlinear time series is
defined as {x(n), n = 0, 1, 2,---, N — 1}, and it is discretized
quantitative time series of 6 bits, and it is denoted as
{s(n),n=0,1,2,--,N — 1}. Thus s(n) has 2’ possible
symbols. For instance, when 6 = 8, there are 256 possible
symbols in the series of s(n). In this paper, two different
quantization methods are considered to discrete the time
series to 6 bits.

Method one: The time series is divided as 27 parts by
employing the following method

0, if min(x) < x(n) < Ax

1, if Ax < x(n) < 2Ax

s(n) = (6)

20— 1, if 27 — DAx < x(n) < max (x)

Method two: It is designed by performing the following
steps.

Firstly, convert the original time series {x(n), n = 0, 1,
2,---,N — 1} to an integer number sequence as

@ (n) = round(x(n) x 10v), (7)
in whichn = 0, 1, 2,..., N — 1 and w is the control parameter.
Here, in this paper, w = 10.

Secondly, express each ¢ (n) as a binary number by
©(n) = DBs3DBg; -+ DB DBy, ®)
Thirdly, the pseudo-random sequence s(n) is obtained by
s(n) = DBy --- DB1DBy, 9)

where the first 6 bits number are chosen to form a new
number.

Fix 6 = 8, two segments of time series from system (2)
and system (5) are converted to the pseudo-random sequen-
ces. The two quantization algorithms are used and results are
illustrated in figure 4. Figures 4(a) and (d) show the original
time series, while figures 4(b) and (e) present the pseudo-
random sequences using method one and figures 4(c) and (f)
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Figure 4. Time series of the fractional-order chaotic systems (a) original time series, (b) pseudo-random sequences using method one and
(c) pseudo-random sequences using method two of the fractional 2D Sine ICMIC modulation map; (d) original time series, (¢) pseudo-random
sequences using method one and (f) pseudo-random sequences using method two of the fractional-order Li system.

present the pseudo-random sequences using method two. It
shows that the fluctuation of pseudo-random sequences using
method one is similar to the original time series, but pseudo-
random sequences using method two is not. The main reason
is that those pseudo-random sequences using method one
keep more features of the original system.

2.2. Proposition of the questions

As mentioned above, it is an interesting topic to analyze com-
plexity of factional-order chaotic systems, especially those sys-
tems with coexisting attractors. Meanwhile, there are still many
issues should be discussed, which we expand as follows:

(1) The obtained chaotic pseudo-random sequence is a kind
of stochastic signal. What is the relationship between
complexity and randomness? Can pseudo-random
sequence only be generated by the high complexity
chaotic time series?

(2) Obviously, for a given chaotic time series, different
quantization algorithms generate different pseudo-random

sequences. How do the quantization algorithms affect the
complexity measure results?

(3) There are some coexisting attractors in the fractional-order
continuous chaotic systems which can be detected using
the basins of attraction plots. Since the system has different
kinds of basin of attraction and even different kinds of
attractors, is it possible to identify coexisting attractors by
employing the complexity measure algorithms?

(4) As it is well known that the fractional derivative order
can be treated as a bifurcation parameter. How does
complexity of such systems change with the decrease of
derivative order?

3. Complexity analysis methods

3.1. Building the symbol networks

For a given 6#-bit pseudo-random sequence s(n), n =
1,2,---,N, we construct the following adjacent matrix



Phys. Scr. 95 (2020) 035220

S He et al

Figure 5. Networks of fractional-order chaotic systems using method one (a) fractional-order discrete chaotic map; (b) fractional-order

continuous chaotic system.

(2)

Figure 6. Networks of fractional-order continuous chaotic system (a) method one, § = 5; (b) method one, § = 6; (c) method one, § = 7; (d)

method two, 6 = 5; (e) method two, 6 = 6; (f) method two, 6 = 7.

M= oy i,j=0,1,"--, 29 — 1) and the steps are given as
follows.

Step 1: Letk =1, ¢, =0 G, j =0, 1,-, 20 — ).

Step 2: Check the change between s(k — 1) and s(k). If s
(k — 1) =m and sk) = n, (0 < m, n < 29, then set values
of ¢, , and ¢, , as one. After this, let k = k + 1.

Step 3: Repeat the Step 2 until k = N — 1. Thus we get a
directed adjacent matrix which holds relationship between
different symbols.

Two symbol i — 1 and j — 1are connected if ¢, ; = 0,
where the weight between the two nodes is the value of ¢; ;.

Let @ = 8, and time series as shown in figures 4(a) and (d) are
used to build the symbolic networks. Figure 5 illustrates the
symbolic networks of fractional-order chaotic systems, where
the quantization method is method one. It shows that two
networks are different due to the difference of system
dynamics. The built network from the discrete map is more
complex than that from the continuous system. Moreover,
networks of fractional-order continuous chaotic system are
drawn in figure 6, where two methods are used and 6 = 3, 4
and 5, respectively. Compared with method one, method two
generates more complex networks as shown in figure 6. It
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Figure 7. Probability distribution of the fractional-order discrete map (a) 2-bit case using method one; (b) 3-bit case using method one;
(c) 4-bit case using method one; (d) 2-bit case using method two; (e) 3-bit case using method two; (f) 4-bit case using method two.

Figure 8. Probability distribution of the fractional-order continuous chaotic system (a) 2-bit case using method one; (b) 3-bit case using
method one; (c) 4-bit case using method one; (d) 2-bit case using method two; (e) 3-bit case using method two; (f) 4-bit case using
method two.

should be noted that those built networks are weighted and Let the weights matrix be defined as M = ¢;;
directed, and drawn by the Pajek software. i,j=0,1,"--, 2¢ — 1). Check the two symbols s(k — 1) and
s(k). If stk — 1) =m and stk) = n, (0 < m, n < 29, then
value of ¢,,, increase one. Based on the weight matrix, the
probability distribution is obtained. For the given 6-bit
To obtain the probability distributions from the network, pseudo-random sequence {s(n), n = 1, 2,---, N}, there are
we need to calculate the weights between each symbol. N — 1 times for counting the number of ¢;; Thus the

3.2. Extracting the probability distributions
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two-dimensional probability distribution is denoted as
oy
N-1
Obviously, if P;; = 0 , there is no connection between the
symbol i — 1 and the symbol j — 1. However, since the
symbolical visibility graph is bidirectional, the next symbol of
symbol j — 1 could be the symbol i — 1 if P;; = 0, and the
possibility depends on the value of P;;. Moreover, the idea
situation is F; = % (i,j=0,1,---,2? — 1), which means
that the targeting time series is totally random in this case.
Probability distribution plots for two segments of time
series as given in figures 4(a) and (d) are shown in figures 7
and 8, respectively. Here, the original time series are quan-
tized as 5-bit, 6-bit and 7-bit pseudo-random sequences using
the two methods. It shows in figures 7 and 8 that probability
distribution plots are different for different systems when the
method one is used. Those probability distribution plots based
on method one carry characteristics of the original systems.
The main reason is that the pseudo-random sequences have
the similar fluctuation as the original time series, which are
verified in figures 4, 5 and 6. Moreover, a comparison
between figures 7(d)—(f) and 8(d)—(f) is carried out. The
uniform probability distributions are observed for different
time series, thus the characteristics of the original systems are
lost. Therefore, how to choose a proper quantization algo-
rithm should be discussed further, which will be carried out in
the next section.

P ;= (10)

3.3. The FSNE algorithm

Recently a generalized expression of Shannon entropy is
proposed by considering the fractional calculus, and it is
defined by [33]

Zp’{ )

where « is the fractional order, and I'(-) and ¢/(-) represent the
gamma and digamma functions, respectively. Moreover, the
fractional-order information of is denoted as [20]

*Ot

(Inp; + (1) — (1 - a)]} (1)

p'—(}’
I, = ———[Inp, + (1) — Y1 — a)l,
Tt D) pi + (1) — ¥( )
where I, = 0 if p; = 0. Since we have the probability dis-
tribution of time series, the entropy can be calculated. By
introducing the fractional Shannon entropy, the FSNE is
defined by

FSNE(s o) =
D — v — '
X Zp {F( n 1)[ og(p;;) + (1) — ¥( a)]} (13)

i,j=1
In the real estimation, « takes values between —0.4 and
0.5 [33, 34].

In this study, the coarse-grain process is introduced for
complexity estimation of the continuous chaotic system. Thus
FSNE for continuous chaotic systems is calculated based on
the following two steps.

12)

—log(2%)

v

Chaotic system

Fractional-order chaotic systems

Adjacency matrix

\Quantify.
Time series
Floating numbers Weights Connections
4 Probabilit
o robabiity Network
Quantization distribution
Method one and two ¢ ¢
Emropy Figures
\ 4 | Fractional sense

Pseudorandom sequence

|

Figure 9. The schematic for complexity analysis of fractional-order
chaotic systems.

Step 1: The coarse-grain process. For a given continuous
time series {x(i): i = 1, 2,---, N}, the coarse-graining time
series is obtained by [51]

JT

1 .
(== x@, (14)
T i=@G-1)r+1
where 1 < j < |[N/7], 7is the scale factor, and || is the floor
function.

Step 2: Estimation of entropy. FSNE for the fractional-
order continuous chaotic system is defined by

10
> 0.IFTDE(y", a).

=1

FSNE(s, o) = (15)

Figure 9 shows the schematic for complexity analysis of
fractional-order chaotic systems. Firstly, we need to solve the
chosen fractional-order chaotic system and to quantize the
obtained time series as pseudorandom sequence. Secondly,
the adjacency matrix is obtained. Then, the probability dis-
tribution is extracted and its network is built. Finally, the
FSNE can be estimated based on the probability distribution.
Obviously, to estimate FSNE of the fractional-order chaotic
system, we just need to capture a segment of time series from
the system. Thus the proposed method can be employed to
analyze complexity of different chaotic systems even with a
higher dimension.

4, Complexity analysis of fractional-order chaotic
systems

4.1. Effectiveness of FSNE

In this section, complexity of different chaotic systems versus
system parameters is analyzed to verify the effectiveness of
the proposed complexity measure algorithm.

For the discrete chaotic systems, 2D-SIMM and Logistic
map are chosen, where 2D-SIMM is defined in equation (1)
and the Logistic map is denoted as

x(n+ 1) = px(m)(l — x(n)),

where p is the bifurcation parameter.

(16)
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Figure 10. Dynamics and complexity of the discrete chaotic systems (a) LCEs of 2D-SIMM; (b) FSNE of 2D-SIMM based on method one;
(c) FSNE of 2D-SIMM based on method two; (d) LCEs of Logistic map; (b) FSNE of Logistic map based on method one; (c) FSNE of
Logistic map based on method two.

b) ‘ — 5/ (c) l‘ —

5
_______ £ oty deg g A o plogeaies
0 v '+ﬂw ] placa

|
A1

N W

C
FSNE

1
[3e]
[

2 4 6 8§ 1 & 6 § 10
— 02 — (-3 — 4 — =5 =6 —— 6=7 0=8

Figure 11. Dynamics and complexity of the fractional-order continuous chaotic system (a) LCEs; (b) FSNE based on method one; (c) FSNE
based on method two.

Parameter b in the 2D-SIMM varies from 0.1 to 10 with
step size of 0.0198 and parameter p increases from 3.5 to 4 8 I i ! i
with an increment of 0.0001. Dynamics and complexity
analyses results of these two discrete chaotic systems are
illustrated in figure 10. Moreover, figure 11 shows the ana-
lysis results of the fractional-order continuous chaotic sys-
tems, where parameter 3 varies from O to 10 with step size of
0.02. Here, the conclusions are put forward in two aspects.

(1) The effectiveness of designed FSNE measure algo-
rithm is verified. It shows in figures 10 and 11 that the FSNE
analysis results based on method one agree well with LCEs
analysis results, while that based on method two indicate that
chaotic state has high complexity and non-chaotic state has
low complexity. Meanwhile, complexity analysis result based

on 8-bit pseudo-random sequence is the most satisfying as  Figure 12. Bifurcation diagram of the fractional-order 2D-SIMM
shown in figures 10 and 11. with the variation of derivative order gq.
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Figure 14. Dynamics analysis results of the fractional-order continuous chaotic system (a) bifurcation diagram; (b) LCEs.

(2) How to choose a proper quantization algorithm for
different situation is confirmed. Since FSNE analysis results
based on method one match the LCEs well, it can be used as
an effective tool for dynamical analysis. However, FSNE
analysis results based on method two indicate that pseudo-
random sequences have the same high complexity if the
original chaotic system is chaotic, and there are no difference
between chaotic state and periodic state in the continuous
chaotic systems as shown in figure 11. In fact, the method two
has already been used to design the chaotic pseudo-random
sequence generator for real applications [18, 52].

In conclusion, pseudo-random sequences based on
method one can be used for complexity and dynamics

analysis, but pseudo-random sequences based on method two
can be used in the practical applications.

4.2. Complexity versus fractional order q

In this section, complexity versus fractional order ¢ is ana-
lyzed, where the pseudo-random sequences based on the
quantization method one are used.

Bifurcation diagram of the fractional-order 2D-SIMM
with derivative order g varying is shown in figure 12, where
the step size of g is 0.001. It shows that the system is chaotic
for ¢ € [0.1, 1]. Meanwhile, the complexity analysis results
are shown in figure 13, where the fractional order o in FSNE
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is given by —0.1, 0, 0.1 and 0.2. When « = 0, the fractional Complexity of the fractional-order continuous chaotic
generalized entropy is Shannon entropy, thus it shows that the ~ system is analyzed by means of bifurcation diagram, LCEs
Shannon entropy based analysis result cannot distinguish and FSNE with different orders. As shown in figure 14, the
different cases. However, when « takes other values, different system is periodic when ¢ equals to one and near to one.
states are identified. Especially when o = —0.1, complexity Chaos is observed when ¢ is smaller than 0.99. Rich
of different bits pseudo-random sequences are distinguished dynamics are found in the fractional-order continuous chaotic
very well. Compared with Shannon entropy, fractional gen- systems. As shown in figure 15, FSNE has better measure
eralized entropy based entropy measure can obtain better result when the fractional order « takes values like —0.1, 0.1
analysis results. Moreover, it shows that complexity of the and 0.2. For the fractional-order continuous chaotic system,
fractional-order 2D-SIMM increases with the increase of FSNE with @ = —0.1 does not decrease when the system is
derivative order gq. periodic and the analysis results with a = 0.2 agree with the
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Figure 17. FSNE contour plots in the xo—Y, plane under different derivative order ¢ (a) ¢ = 1; (b) ¢ = 0.99; (¢) ¢ = 0.98; (d) ¢ = 0.97.

dynamical analysis results better. Obviously, the fractional-
order system has higher complexity than its integer-order
counterpart. Moreover, when g < 0.98, a higher complexity
interval is observed. Thus in the fractional-order continuous
chaotic system, complexity increases with the decrease of the
derivative order g.

4.3. Complexity versus coexisting attractors

The fractional-order chaotic system has coexisting attractors,
which means the system has different kinds of attractors with
different initial conditions. The parameters of the system are
a = 0.9 and b = 4. Pseudo-random sequences based on the
quantization method one with eight bits for each symbol
are used.

Letzo = —1, yo = —7.4, 0 and 7, and vary xo from —10
to 10 with step size of 0.025, complexity analysis results are
shown in figure 16(a). When we fix xo = —5, 0 and 5 and
vary yo with same step size, we obtain the complexity analysis
results as shown in figure 16(b). It shows that complexity of
the fractional-order continuous chaotic system changes with
the initial conditions which means different coexisting
attractors are detected by the FSNE measure algorithm.

Vary xo and y, between —10 and 10 with step size of
0.02, FSNE based contour plots in the initial condition xy—yq

11

plane are obtained as shown in figure 17, where g = 1, 0.99,
0.98 and 0.97. When g = 1, the system is solved by the 4th
order Runge—Kutta algorithm. It also shows in figure 17
that complexity is different when the initial condition is
different, which means the attractors of the system are dif-
ferent and coexisting attractors are observed. Comparing with
figures 3(a) and (b), figures 17(b) and (c) have similar var-
iation trends, respectively. Therefore, FSNE is an effective
tool for analyzing coexisting in the fractional-order multi-
stability chaotic systems. In addition, with the decrease of
fractional derivative order ¢, the basin of attraction changes
since FSNE complexity contour plots are different. When
q = 0.97, there are significant changes in figure 17(d) com-
paring with other cases. The main reason is that the system
with g = 0.97 is convergent according to figures 14 and 15,
while the other cases are chaotic. Thus there are significant
changes between figures 17(d) and (a)—(c). In brief, the basin
of attraction changes with the derivative order q.

5. Discussion and conclusions
The FSNE measure algorithm is designed based on the

fractional generalized entropy and the adjacent matrix.
Complexity of fractional-order chaotic systems is analyzed
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based on the proposed method. We answered the questions
raised in section 2 in the manuscript, and the following dis-
cussion and conclusions which are also the answers of the
questions are expanded as below.

(1) The proposed entropy measure algorithm is effective for
complexity analysis of nonlinear time series. Compared
with the normal Shannon entropy (a = 0), fractional
entropy (« takes other values) make the measure results
better. Especially, when 6§ = 8 and the method one are
used, the analysis results agree well with the LCEs
analysis results.

(2) Complexity measure results are affected by the
quantization methods. Pseudorandom sequences based
on method two have higher complexity than that based
on the method one. When method one is used,
complexity measure results have the similar trend as
LCEs when the system parameters and the derivative
order vary. However, complexity of the pseudorandom
sequences based on method two does not change with
the parameters and derivative order. It means that FSNE
does not depend on the system parameters and
derivative orders for those generated high complexity
pseudorandom sequences. In other words, a pseudo-
random sequence generator can be designed based on
those chaotic systems with small complexity if the
quantization method is effective.

(3) It shows that complexity of the fractional-order discrete
chaotic system decrease with the decrease of derivative
order, while complexity of the fractional-order contin-
uous chaotic system changes with orders due to the
different states. For the complexity of fractional-order
continuous chaotic system, there are also other work to
show this result although the solution algorithm is
different. For instance, He et al [18, 52] show that
complexity of fractional-order continuous chaotic
systems increase with the decrease of derivative order
when the system is solved by ADM and DTM.

(4) Complexity of the fractional-order continuous chaotic
system is affected by the initial conditions. It means that
dynamics of the system changes with the initial
conditions. Therefore, coexisting attractors can be
observed with different conditions. In fact, extreme
multistability chaotic systems can have high complexity
for real applications [53]. For these systems, the states
could be different for different initial conditions.Thus
we think that those extreme multistability chaotic
systems provide better models for the pseudorandom
number generations.

(5) Basin of attraction in both basin attraction plots and
complexity contour plots of the fractional-order con-
tinuous chaotic system are different when the derivative
order decreases. In fact, it is the first time we observe
this phenomenon in the fractional-order chaotic system.
It shows again that the dynamics of the fractional-order
continuous chaotic system depends on the fractional
derivative order gq.
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