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Abstract
The present work analyzes the optical solitons with M-truncated and conservation laws (Cls) of
the nonlinear Schrodinger equation that explain pseudospherical surfaces. The well-known
integration scheme which is generalized Bernoulli sub-ODE method is utilized to construct such
optical soliton solutions. For the successful existence of the solutions, the constraints conditions
have been presented. The discussion for the physical features of the obtained solutions is
reported. Moreover, we establish Cls for the equation under consideration by means of multiplier
approach.
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1. Introduction

In both theoretical and applied sciences, the research of
physical events through mathematical models is an important
component. Such models often lead to nonlinear systems and
some prototypical equations in amazingly big numbers of
instances. Solitons are an intrinsically nonlinear phenomenon
and their history is closely linked to the growth of nonlinear
wave equations theory. In latest decades there has been a
steady increase in interest in optical solitons. The field has
significant potential for technological applications and poses
many interesting study issues from both a basic and an
applied perspective. Many fields of science and engineering
employ a nonlinear partial differential equations (PDEs) to
determine the characteristic of these phenomena. In the
scrutiny of PDEs, a lot of authors give a priority in con-
structing soliton and exact solutions.

NLSEs are a PDEs with exciting performances for many
years. This is because of its expansive spectrum of applic-
ability. There are a types of NLSEs that can be employed to
interpret real phenomena in various domains among which is

Bose–Einstein, deliquescence [1, 2], nonlinear optics [3–5],
fluid dynamics [6] to mention a few. In the present time,
many studies can be found in this regard [7–13]. Optical
solitons are localized electromagnetic waves that spread in
nonlinear dispersive media with the unchanged intensity as a
result of the effects of the stability for the dispersion and
nonlinearity [14–23].

Furthermore, Cls generate numerous ideas on the systems of
equations that are modelled by PDEs. The Cls have been very
important aspects in the investigation of system of PDEs, because
the integrability, internal properties, existence and uniqueness of
equations can be reached through their Cls. Several schemes have
been suggested in the literature for the constructions of Cls of a
system of a particular equations [24–29].

Pseudospherical surfaces is described by a differential
system for a 2-vector-valued function U x t,( ) if it possesses
some certain conditions with regard to the existence of
smooth real functions Î ÎF i j, 1, 3 , 1, 2ij [ ] [ ], depending on
U only and a finite number of derivatives, thus we have

s = + ÎF x F t id d , 1, 3 , 1i i i1 2 [ ] ( )

hold for the following

s s s s s s s s s=  =  = d , d , d . 21 3 2 2 1 3 3 1 2 ( )
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A differential equation for a real valued function U x t,( ) is
said to be integrable kinematically if it has the integrability
property of a family of one-parameter for linear situations
[30–36]

g g= =V P V V Q V, , 3x t( ) ( ) ( )

with gP ( ) and gQ( ) depicting the SL R2,( )-valued functions
for x t, ,. Therefore, an equation is said to be integrable
kinematically if it has the same property with the zero cur-
vature property

g g
g g

¶
¶

-
¶
¶

+ =
P

t

Q

x
P Q, 0, 4

( ) ( ) [ ( ) ( )] ( )

in which g g= =trP trQ 0( ) ( ) , for every γ. Additionally, a
differential equation is said to be strictly integrable kinema-
tically if its integrable kinematically and diagonal entries of
the matrix gP ( ) presented above are γ and g- .

Many renowned physicists and applied mathematicians
have been contributing to some or all of the aforementioned
fields over the past decades. The involved-engineers, physi-
cists, and mathematicians-are still operating within their own
limits to a big extent. One of the aims of this article is to
establish some optical soliton solutions and Cls, hoping to
stimulate future communication with distinct backgrounds
among scientists. The optical solitons are computed via a
well-known analytical technique with m-truncated derivative,
while the Cls are constructed by means of multiplier technque

The rest of the paper is organized in the following
direction: In section two we state the description of
m-trucated derivative and the form of the governing equation,
in section three we establish some optical solitons solutions
for the governing equation. Section four provides the Cls for
the governing equation by means of multiplier approach and
finally the paper is concluded in section five.

2. Truncated M-fractional derivative

We define the truncated Mittag–Leffler function of one
parameter by

å b
=

G +
b

=

E z
z

k 1
. 5i

k

i k

0

( )
( )

( )

Truncated M-fractional derivative (TMD) is a fractional
derivative that has been introduced in [37]. This derivative
has expunged the obstacles with the existing derivatives. It is
defined in the following definition.

Definition 2.1. Assume that ¥  f : 0,( ) , the TMD of f
with order γ exhibited g bTi M

, is given by

t
t t t

=
+ -g b b

g



-


T f
f E f

lim , 6i M
i,

0( )
( ( )) ( )

( )

for t > 0, and g ÎbE 0, 1i ( ), b > 0 is a truncated Mittag–
Leffler function of one parameter, as defined in (5). Note that,
if f is γ-differentiable in some open interval >a a0, , 0( ) , and

tt
g b

 + T flim i M0
,( ( )). Then we attain

t=g b
t

g b
 +T f T f0 lim . 7i M i M

,
0

,( ) ( ( )) ( )

Theorem 2.2. Surmise that ¥  f : 0,( ) is g- differenti-
able for t > 00 , with g bÎ >0, 1 , 0( ] , then f is continuous
at t0.

Theorem 2.3. Let g b< > Î a b0 1, 0, , , f g, , g-dif-
ferentiable, at a point t > 0. Then

• + = +g b g b g bT af bg a T f b T fi M i M i M
, , ,( ) ( ) ( ), Î a b,

• mt=g b m m g-T ti M
, ( ) , m Î 

• = +g b g b g bT fg f T g g T fi M i M i M
, , ,( ) ( ) ( ),

• =g b -g b g b

Ti M
f

g

g T f f T g

g
, i M i M

, ,

2( ) ( ) ( )
,

• If f is differentiable, then t =g b t
b tG +

g-
T fi M

f,
1

d

d

1

( )( )
( )

,

• t t t= ¢g b g bT fog f g T gi M i M
, ,( )( ) ( ( )) ( ), for f differentiable

at g.

2.1. Governing equation

Assume that M2 is a differentiable surface [38], para-
meterized by x t, . Let also, the following

s s gs
s g s g
s g s

= + - +
= + + -
=- + +

x V t

x V t
V x V t

2 d 4 2 d ,

2 d 2 4 d ,
2 d 4 2 d . 8

x

x

1

2
2 2 2

3

( )
( ( ) )

( ) ( )

Then M2 is a PSS if and only if U satisfies the NLSE

+ + =g b g b i U U U2 0, 9E
M t

E
M x0 ,

,
0 ,

2 , 2∣ ∣ ( )

where g bM ,.
2 , denotes the m-truncated derivative. To obtain a

travelling wave solutions for equation (9), we substitute
s= +U x t V, i( ) in equation (9) to obtain

s s s

s s

+ + + =

- + + + =

g b g b

g b g b

 

 

V V

V V V

2 0,

2 0, 10
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E
M x

E
M t

E
M x

0 ,
,

0 ,
2 , 2 2

0 ,
,

0 ,
2 , 2 2

( )

( ) ( )

where g bM ,.
2 , denotes the m-truncated derivative. Plugging the

transformation x s=V x t u x t, , ,( ) ( ) ( ) = x xv ,( ) = l b
g

G + 1( )

- +g gx kt c( ), where l k c, , are real constants and will be
found later, into equation (10), we have

l x x x x l x
l x l x x x x

- ¢ + + + ¢¢ =
¢ + ¢¢ + + =

k u v u v v

k v u u u v

2 0,

2 0. 11

2 2 2

2 2 2

( ) ( )( ( ) ( ) ) ( )
( ) ( ) ( )( ( ) ( ) ) ( )

3. Application

According to Bernoulli sub-ODE method [39], equation (11)
has possessed the solution as comes next

x x= + F = + Fu a a v b b, , 120 1 0 1( ) ( ) ( )

where xF( ) satisfies

m lF¢ = F - F. 132 ( )

2
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where μ is a nonzero constant. Plugging equation (13) along
with equation (12) into equation (11), we get

x x x
l x l m x l x l m x

l m x
x x x
l x l m x l m x

l x m x l

F + F + + F +
+ F - F + F - F
´ - F =
F + F + + F +

+ F - F - F

+ F F - =

b b a a b b
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a a a a b b

a

b k

2

2 0,

2

2

0.

14

1 0 1 0
2
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2
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2

1 0
2

1
2
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( ( ) )(( ( ) ) ( ( ) ) )
( )( ( )) ( )( ( ))

( ( ))
( ( ) )(( ( ) ) ( ( ) ) )

( )( ( ))( ( ))
( )( ( ) )

( )

Collecting the terms in F =i 0, 1, 2, 3, 4, 5, 6, 7i( ), one
reaches

l l
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+ + + + =
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Solving (15), we obtain

=a a0 0, k=k, l l= , m m= , = m m
l

- -a a k
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4

4
0
2 2

0
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( ) Using the obtained results, we
reach the following dark and singular optical solitons
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4. Results and discussion

The novel GBM and multiplier scheme have been employed
to establish soliton solutions and Cls for the equation under
consideration, respectively. We computed Cls because of its
importance in determining the integrability of differential
equation and in providing partial information on the existence
of a particular movement, even if the equations are too
complicated to require a complete solution. The governing
equation has possessed conserved vectors and internal prop-
erties which are presented in the section 5. These results has
affirmed its integrability. We established soliton solutions
because such solutions tend to play a significant role in
explaining various phenomena and processes throughout the
natural sciences. This is due to their capability to check the
accuracy or estimate errors in statistical, asymptotic and
estimated analytical solutions. To this aim, we get motivated
and computed these results which will be of great benefit to
the literature.

The physical and outlook views of the solutions
obtained by GBM are portrayed by means of graphical
representations. The types of solutions attained are the dark
optical soliton reported in (16), the singular optical soliton
reported in (17).

Dark optical soliton describes the solitary waves
with less strength than the context, the different soliton
solutions represent a solitary wave with discontinuous
derivatives; an example of such solitary waves are com-
pactions with finite (compact) support, and peaks with
discontinuous first derivative peaks. Due to their efficiency
and, of course, versatility in long distance optical com-
munication, these types of solitary waves are extremely
important.

It should be remembered that optical fibers are thin long
strings of ultra-pure glass or plastic so that light can be
transmitted from one end to the next without any attenuation
or loss. In order to have a clear vision on the effect of para-
meters to the transmission of solitons, suitable values of
parameters have been considered in the following graphs: In
figure 1, we choose =a 0.20 , l = 1.2, =k 0.7, =c 0.1,

=a 0.51 , =b 0.90 , m = 0.55. And in figure 2, we choose
=a 0.20 , l = 1.2, =k 0.9, =c 0.1, =a 0.551 , =b0

0.19, m = 0.5.

5. Conservation laws via multiplier approach

Following the multipliers approach as depicted in [40], we
construct the first-order multipliers s s sL x t V V, , , , , , ,x x t

1(
s s sLV x t V V V, , , , , , , , ,t x x t t

2) ( ) for the equation under con-
sideration and they are given by

s s

s

L = + - + -

L = + + + -
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2
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Figure 1. Physical features with suitable values of the parameters.

Figure 2. Physical features with suitable values of the parameters.
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where c c,1 2 are some arbitrary constants. Subsequently, one
attains the following fluxes:
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By situations disconnected without a constants, one
reaches the following fluxes:

Case 1.

s sL = - L = +V V
1

2
,
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2
. 20x xt xt x

1 2 ( )

Subsequently, we obtain the following fluxes
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Case 2.

sL = L = V, . 221 2 ( )

Subsequently, we obtain the following fluxes
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Case 3.

sL = - L = V, . 24x x
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Subsequently, we obtain the following fluxes
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sL = - L = V, . 26t t
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Subsequently, we obtain the following fluxes
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6. Conclusion

In this work we have studied the optical solitons with
M-truncated derivative and Cls for the NLSE which describe
Pseudospherical Surfaces. The novel GBM have been utilized
to extract such novel solutions. For the successful existence of
the solutions, the constraints conditions have been reported.
The discussion for the physical features of the obtained
solutions have been presented. Moreover, the construction for
the conservation laws have been done by means of multiplier
approach.
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