
Finite time synchronization of fractional
chaotic systems with several slaves in an
optimal manner

M Farmani Ardehaei, M H Farahi and S Effati1

Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad,
Mashhad, Iran

E-mail: s-effati@um.ac.ir

Received 14 July 2019, revised 3 September 2019
Accepted for publication 24 September 2019
Published 6 February 2020

Abstract
Optimal synchronization of chaotic fractional differential equations with one master and several
slaves in finite time is the main aim of this paper. To achieve this goal, we convert the finite time
synchronization problem to a fractional optimal control problem; then by solving it, we achieve
the active control. In this way, we use Bernstein polynomials and prove that the corresponding
minimization problem is a quadratic convex problem. Some examples using the famous Lorenz,
Chen, Lu, and Liu systems are given to show the efficiency of the method.
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1. Introduction

The applications of fractional calculus in the last few decades
have attracted the attention of many authors. Many real-world
physical systems are displayed fractional order dynamics,
such as electromagnetic waves [1], viscoelastic systems [2],
dielectric polarization [3], and so on.

Chaotic dynamical systems are deterministic and non-
linear systems, which are exponentially sensitive to initial
conditions; see [4]. Chaotic dynamical systems with two close
initial conditions have completely different trajectories in
finite time, even though trajectories remain in a finite region.
In this case, small errors in measurement of initial conditions
make it impossible to predict the trajectories of system even
with a complete and exact model of the system. Chaos has
been seen in a many type of systems such as chemical sys-
tems, electrical systems, fluid systems, and analog computers;
see [5].

Synchronization is one of the main topics in control theory,
that means to enforce two or more chaotic systems have the
same behavior. Synchronization is an interesting topic for its
applications in secure communication [6], power electronic

systems [7], laser [8], physical systems [9], neural networks[10],
stochastic complex networks [11] and so on. For example, in
physics, synchronization is observed to occur between oscilla-
tors, where a collection of oscillators are observed to synchro-
nize in a diverse variety of systems in spite of the presence of
unavoidable difference between the oscillators. For more appli-
cations of synchronization see [12–16]. Synchronization of
chaotic systems, for the first time, was proposed by Pecorra and
Carroll in 1990 [17]. Different methods are available for syn-
chronization of chaotic systems, depending on the structure of
the systems. Recently, many types of synchronization methods
have been developed by many authors, such as complete syn-
chronization [17], generalized synchronization [18], phase syn-
chronization [19], antiphase synchronization [20], and so forth.
Several approaches have been considered for synchronization of
chaotic systems such as adaptive control synchronization, syn-
chronization using active control, synchronization using sliding
mode control, and so on; see, for example, [21–24]. These
studies have guaranteed that when times goes to infinity, the
trajectories of the error system converge to zero, whereas, in
practice, it is more precious to synchronize fractional chaotic
systems in a finite time. In [25], by using finite time control
techniques, continuous state feedback control approaches to
solve the synchronization of chaotic systems was considered. In
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[26], a synchronization of Lorenz systems by the control theory
in finite time was proposed by Patrick Louodop et al. They
proposed a set of feedback controls that perform the synchro-
nization of Lorenz chaotic systems according to the Lyapunov
stability theory. Xi et al [27] proposed an approach according to
a sliding mode control for the synchronization of chaotic sys-
tems. Pang et al [28] investigated synchronization of chaotic
systems with different dimensions in a finite-time.

One of the most important approaches for the synchro-
nization of chaotic systems is optimal control; see [29, 30].
The optimal control problem is to minimize a functional
subject to a dynamic based on a set of control and state
functions. The reason that we use optimal control method, is
that it is possible to find an equivalent optimal control pro-
blem in finite time, then by using Bernstein polynomials
(BPs) one can find approximate state and control functions.
One of the advantages of this procedure is that we can find the
control function straightforward, then by using this function it
is possible to find the state function. While in other methods,
usually finding control is not directly. In [31], an optimal
control approach was used to control and synchronize chaotic
systems. Optimal synchronization of chaotic systems by
means of linear matrix inequality methods was proposed by
Tong et al [32]. Karimi et al [33] proposed a parallel syn-
chronization method to synchronize chaotic systems.

Many synchronization studies have been limited to one
master and one slave models. Recently, novel synchronization
techniques have been developed such as combination [34],
combination–combination [35], and double compound syn-
chronizations [36]. These schemes enhance the security of
information transmitted via chaotic signals; see [37].

In this article, to overcome the disadvantages of combi-
nation synchronization, which involves one slave, we consider
the optimal synchronization of dynamical chaotic systems with
one master and several slaves and we use BPs because of the
efficiency and simple applications of these polynomials. For
illustrating the effectiveness of the method, some numerical
examples, using the famous Lorenz, Chen, Liu, and Lu frac-
tional chaotic systems, are given.

The organization of this paper is as follows. Section 2
includes some requirements in fractional calculus and BPs. In
section 3, the problem statement and converting the finite
time synchronization to a fractional optimal control problem
(FOCP) are discussed. In this section, an algorithm that uti-
lizes the BPs, is given for solving the mentioned FOCP and
we prove that the minimization problem is a quadratic convex
problem. In section 4, two examples are provided to illustrate
the performance of the proposed method. Finally, we con-
clude the paper in section 5.

2. Some preliminaries in fractional calculus and BPs

In this section, some basic definitions of fractional derivative
and integral, BPs, and their properties are given.

For fractional order derivative and integral, the following
definitions are used in literature (see [38, 39] for more details).

Definition 2.1. The Riemann–Liouville fractional integral
operator of order >q 0 of a continuous function f is defined
as
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Definition 2.2. Suppose that a real function f t( ) is in the
space ¥C 0, ;n [ ) then the Riemann–Liouville derivative of
order - < <q n q n, 1 , is defined as follows:
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Definition 2.3. The fractional derivative of f (t) of order
- < <q n q n, 1 , in Caputo sense, is defined by using

Riemann–Liouville integral operator as follows:
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In this paper we use fractional derivative in Caputo sense.
Fractional derivatives and integrals have several proper-

ties that we list some of them, which will be used in this
paper.

• For q=1, fractional derivatives give the same results as
classical ordinary derivative f t td d( ) .

• Every fractional derivative is a linear operator. It means that
if f and g are two real functions, then, for all Î c c,1 2 , we
have + = +D c f c g c D f c D gq q q

1 2 1 2( ) .
• The additive law exponents (semigroup property) holds.
It means that = = +D D f t D D f t D f tq q q q q q1 2 2 1 1 2( ( )) ( ( )) ( ).

• For >q 0, we have = =-D D f t D f t f tq q 0( ( )) ( ) ( ),
which means that the fractional differentiation operator
is a left inverse of the fractional integration of the same
order q.

Definition 2.4. The definition of the BP of degree n in the
interval c d,[ ] is as follows:
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Therefore, within the interval 0, 1[ ], the BP of degree n
has the following form:
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The following two lemmas give some properties of BPs.
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Lemma 2.1 (See [40]). IfF = ¼t B t B t B t, , ,m m m m m
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Lemma 2.2 (See [41]). Let L 0, 12 [ ] be a Hilbert space

with inner product òá ñ =f g f t g t t, d
0

1
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best approximation of order m out of B as follows:
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and the entries of matrix = + +  W W i j m, 0 ,i j1, 1( ) , are
defined as:
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3. Optimal synchronization of fractional dynamical
systems using BPs

3.1. Problem statement

In this section, optimal synchronization of fractional chaotic
system with one master and several slaves by using BPs is
considered.

Remark 3.1. The main reason of using BPs is the efficiency
and simple applications of these polynomials. In fact, by BPs
we can easily convert our FOCP to optimization of a convex
performance index subject to linear constraints where the new
problem is tractable.

On the other hand the accuracy of solutions of the FOCPs
using BPs is better than the accuracy of solutions whose
achieved by using other methods, for example Legendre
polynomials method (see [38]). Also as we see in section 4.2,
the synchronization errors whose achieved using BPs method

are less than the synchronization errors where achieved when
Lagrange multipliers method is employed.

Consider the following system:

=D x f xmaster , 12q( ) ( ) ( )

and
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tinuous vector functions for = ¼i s1, 2, , .
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s

i i1 , where ciʼs, = ¼i s1, 2, , ,
are constant diagonal matrices, is as output of slave systems
that must synchronize with output of master system (12). Now
from the slave systems (13), one can easily find:
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Adding the control vector function = ¼U U x y y y, , , , s1 2( ) to
(14) and subtracting from the master system (12) yield:
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where = å -=e c y xi
s

i i1 is the error of synchronization.
For convenience, we use the notation = ¼U U U U, , , n

T
1 2[ ] ,

where = ¼U U x y y y, , , , s1 1 1 2( ), = ¼ ¼U U x y y y, , , , ,s2 2 1 2( ) , =Un

¼U x y y y, , , ,n s1 2( ).
Now we have the following lemma.

Lemma 3.1. The error system (16) can be written as follows:
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is nonlinear term.

Proof. The master system (12) and slave systems (13) can be
decomposed to linear and nonlinear parts as follows:

= +D x Mx g xmaster: 19q ( ) ( )

= + =D y A y g y i sslaves: , 1, 2, , , 20q
i i i i i( ) ( )

where M and Ai are real n×n matrices and g(x) and g yi i( ) are
nonlinear parts of master and slave systems, respectively.
Since the matrices =c i s, 1, 2, ,i  , are diagonal, the error
system (16) can be written as:
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therefore proof is complete.
,

By considering = - ¼ +U F x y y y u, , , , m1 2( ) , where =u
¼u u u, , , n

T
1 2( ) , we have the following dynamical error

system:
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Motivated by the definition of the finite time synchronization
in [26, 42, 43], we say that optimal finite time synchronization
on the interval t0, f[ ] occurs if a performance index subject to
dynamical system (27) is minimized and
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In the above FOCP, since our dynamical systems are con-
tinuous, condition (31) is equivalent to = e tlim 0t tf

( ) . Our
aim is to obtain the optimal control vector u such that the
quadratic cost functional (29) is minimized. In this case
optimal finite time synchronization occurs.

3.2. Optimal control of fractional order systems by BPs

After converting the finite time synchronization problem to
the FOCP (29)–(32), we use the BPs to solve the mentioned
FOCP. In this way, we review the main result of the
approximate method for numerically solving FOCPs by BPs
[38]. We can map the interval t0, f[ ] onto 0, 1[ ], using the
change of variable q = t

tf
, whenever we need. So without use

of generality, we solve the FOCP (29)–(32) in 0, 1[ ]. Con-
sider the following optimal control problem:
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Moreover Q and R are positive semidefinite and positive
definite, n×n symmetric matrices in the performance index,
respectively. Also, a ti j, ( ) are continuous functions which are
the coefficients of ej(t) for  j n1( ).

By using the method that we discussed in [38] to
approximate fractional derivative of BPs in the Caputo sense,
we use an operational matrix as follows:
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and P is an + ´ +m m1 1( ) ( ) matrix with zero vector in q⌈ ⌉
th column and the vector Pi in +i 1( ) th column’s for
= ¼i q m, ,⌈ ⌉ . Here = -P W Pi i
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for  i n1 , where Î +Ai j m, 1( ) are the known BP coef-
ficients of a ti j, ( ), where can be obtained by equation (9). Also
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )]

[ ( ) ( ) ] ( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

where

= ¼ ¼
¼ ¼ Î

= ¼ ¼
¼ ¼ Î

+

+





E E E m E E m

E E m
U U U m U U m

U U m

0 , , , 0 , , ,

, 0 , , ,
0 , , , 0 , , ,

, 0 , , , 49

n n
n m

n n
n m

1 1 2 2
1

1 1 2 2
1

[ ( ) ( ) ( ) ( )
( ) ( )]

[ ( ) ( ) ( ) ( )
( ) ( )] ( )

( )

( )

and the notation ⊗ is the Kronecker product [44]. In other
words, we have

=J e u J E U E U H E
U

. , . . , .
1

2
, 50T T[ ( ) ( )] [ ( ) ( )] [ ] ( )⎡

⎣⎢
⎤
⎦⎥

where the matrix Î + ´ +H n m n m2 1 2 1( ) ( ) equals

=
Ä

Ä
H

Q W
R W

0
0

. 51( )
⎡
⎣⎢

⎤
⎦⎥

From the above discussion, we can approximate FOCP (33)–
(36) by the following optimization problem:

=J E U E U H E
U

min . , .
1

2
, 52T T[ ( ) ( )] [ ] ( )⎡

⎣⎢
⎤
⎦⎥

s.t.

å- - = = ¼
=

E D E A U i n0, 1, , , 53i
T

q
j

n

j
T i j T

i
T

1

,( ˜ ) ( )

L = = ¼+E i n1 0, 1, , , 54i
T

m 1 ( )

= = ¼E e i n0 , 1, , . 55i i,0( ) ( )

Now we show that the quadratic optimization problem (52)–
(55) is a convex optimization problem.
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Lemma 3.2. The matrix Î + ´ +W m m1 1( ) ( ) in (11) is a
positive definite matrix.

Proof. By the definition of the matrix W in (11), for all
nonzero Î +z m 1( ), we have

ò

ò

ò

ò

å å

å å

åå

å å

å

=

=

=

=

=

= =

= =

= =

= =

=

z Wz z z W

z z B t B t t

z z B t B t t

z B t z B t t

z B t t

d

d

d

d . 56

T

i

m

j

m

i j ij

i

m

j

m

i j i m j m

i

m

j

m

i j i m j m

i

m

i i m
j

m

j j m

i

m

i i m

0 0

0 0 0

1

, ,

0

1

0 0
, ,

0

1

0
,

0
,

0

1

0
,

2

( ) ( )

( ) ( )

( ) ( )

( ) ( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

Since the set of BPs ¼B B B, , ,m m n m0, 1, ,{ } is linear independent
and ¹z 0, we know that å = z B ti

m
i i m0 ,

2[ ( )] is a nonzero and
non-negative polynomial. Therefore (56) shows that

>z Wz 0T . Hence W is a positive definite matrix. ,

Theorem 3.1. The quadratic optimization problem (52)–(55)
is a convex optimization problem.

Proof. We know that Q and R are, respectively, positive
semidefinite and positive definite matrices. Also lemma 3.2
shows that the matrixW is positive definite. On the other hand
[44, corollary 4.2.13], shows that the Kronecker product of
symmetric positive semidefinite matrices is a positive
semidefinite matrix. Therefore matrices ÄQ W and ÄR W
are positive semidefinite. So we conclude that the matrix

=
Ä

Ä
H

Q W
R W

0
0

57( )
⎡
⎣⎢

⎤
⎦⎥

is positive semidefinite. Thus the objective function
J E U. , .[ ( ) ( )] in (52) is convex. ,

Lemma 3.3 ([38]). Suppose that F = å =E t E B tT
m j

m
j j m0 ,( ) ( ) be

the BP of degree m that approximate the function Îe
L 0, 12 [ ]. Then FD E tq T

m{ ( )} tends to D eq , as m tends to
infinity.

Theorem 3.2. If m (the degree of BPs), tends to infinity, the
approximate solutions = Fe E. .T

m¯ ( ) ¯ ( ) and = Fu U. .T
m¯ ( ) ¯ ( )

where E U,( ¯ ¯ ) is the optimal solution of (52)–(55), converges
to exact solutions e .*( ) and u .*( ), respectively.

Proof. Consider the problem (52)–(55) and letWm is the set of
all FE U t,T T

m( ) ( ) where E U,T T( ) satisfies constraints (53)
and (54). By the convergence property of BPs, for each

F Î WE U t, m m1 1( ) ( ) , there exists a unique pair of functions
e t u t,1 1( ( ) ( )) that F E U t e t u t, ,m1 1 1 1( ) ( ) ( ( ) ( )) as  ¥m
for Ît 0, 1[ ]. By lemma 3.3, if  ¥m , then E DT

q1
F t D e tm

q
1( ) ( ), therefore if we let Ω be the set of all

e t u t,( ( ) ( )) that satisfies conditions (34)–(36), obviously we

see that Î We t u t,1 1( ( ) ( )) . Hence when m tends to infinity,
each element in Wm converges to one in Ω.

On the other hand, when  ¥m , we have:

= F F J E t U t J, , 58m T
m

T
m1 1 1 1( ( ) ( )) ( )

where J1
m is the value of performance index (33) corresp-

onding to the pair FE U t,T T
m1 1( ) ( ), and J1 is the value of

performance index (33) corresponding to the feasible pair
e t u t,1 1( ( ) ( )). Therefore we have:

W Í Í W Í W Í Í W+ , 59m m1 1 ( ) 

hence

W W W
+

W+    J J J Jinf inf inf inf . 60m m1 1
m m1 1 ( ) 

Now let x = W Jinfm
m

m
, then the sequence xm{ } is bounded

and monotone , thus it converges to a number x W Jinf . We
need to show that x = WJinf . By the definition of inf , for any
given > 0, there exists a pair e t u t,( ( ) ( )) in Ω, such that:

< +W J e t u t J, inf . 61( ( ) ( )) ( )

Since J e t u t,( ( ) ( )) is continuous, there exists a Nò, where
if <N m,

- F F < J e t u t J E t U t, , . 62T
m

T
m∣ ( ( ) ( )) ( ( ) ( ))∣ ( )

Therefore if <N m, from (61) and (62) we have:

F F < + < +W J E t U t J e t u t J, , inf 2 ,
63

T
m

T
m( ( ) ( )) ( ( ) ( ))

( )

furthermore we know:

x F FW  J J E t U tinf , , 64m
T

m
T

m( ( ) ( )) ( )

so

x < +W W J Jinf inf 2 . 65m ( )

Therefore for any > 0 we have:

x - W  J0 inf . 66m ( )

So

x x= =
¥

WJlim inf , 67
m

m ( )

hence proof is complete. ,

4. Numerical examples

Two illustrative test problems for optimal finite time synchro-
nization, are given in this section. For solving the corresponding

Table 1. The amounts ofD =i, 1, 2, 3i , for optimal control problem
(75) for =m 6, 8, 10, 12.

D1 D2 D3

m=6 0.489 867 4373 2.118 433 695 9.507 202 864
m=8 0.348 315 3800 2.039 159 612 9.507 180 182
m=10 0.313 605 4828 1.987 205 664 9.507 172 230
m=12 0.310 728 4229 1.986 039 407 9.507 168 683
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quadratic minimization problem, we use ‘QPSolve’ in Maple
(2018) environment.

4.1. Optimal synchronization between fractional systems of
Chen, Lorenz, and Liu

In the first example, we consider the finite time optimal
synchronization of the Chen system as master and the com-
bination of Lorenz and Liu systems as slave.

Consider the following Chen system as master:

a
g a g

b

= -
= - - +
= -

D x x x
D x x x x x
D x x x x

,
,

.
68

q

q

q

1 2 1

2 1 1 3 2

3 1 2 3

( )
( ) ( )

⎧
⎨⎪
⎩⎪

Here =x x x x, , T
1 2 3[ ] and initial point is =x 0( )

10, 25, 36 T[ ] . This system has chaotic behavior for a =
b g= =35, 3, 28, and >q 0.83 (see [45]).
The following two systems are Lorenz and Liu systems

as slave 1 and 2, respectively.

s

m

= -
= - -
= -

D y y y

D y ry y y y

D y y y y

,
,

.
69

q

q

q

11 12 11

12 11 12 11 13

13 11 12 13

( )
( )

⎧
⎨⎪
⎩⎪

Here =y y y y, , T
1 11 12 13[ ] and the initial point is

=y 0 10, 5, 10 T
1( ) [ ] . This system has chaotic behavior for

s m= = =r10, 28, 8

3
and >q 0.92 (see [46, 47]).

= - -
= -
= - +

D y ay ly

D y by ky y

D y cy my y

,

,
.

70

q

q

q

21 21
2

22

22 22 21 23

23 23 21 22

( )
⎧
⎨⎪
⎩⎪

Here =y y y y, , T
2 21 22 23[ ] and the initial point is =y 02 ( )

0.2, 0, 0.5 T[ ] . This system has chaotic behavior for =a
= = = = =b c k l m1, 2.5, 5, 4, 1, 4, and >q 0.92 (see

[48]).
We put =c diag , ,1

1

2

1

2

1

2
( ) and =c diag , ,2

1

2

1

2

1

2
( ), so we

must find the control term =U U U U, , T
1 2 3[ ] such that if we

add the control function U to +c y c y1 1 2 2, then this new
system synchronizes with Chen system. We have

+ - =

+ -

+ -

+ -

D c y c y x

D y D y D x

D y D y D x

D y D y D x

. 71q

q q q

q q q

q q q

1 1 2 2

1

2 11
1

2 21 1

1

2 12
1

2 22 2

1

2 13
1

2 23 3

( ) ( )

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

Adding the control =U U U U, , T
1 2 3[ ] to the system (71) and

defining = + -e c y c y x1 1 2 2 as the error, we have

Figure 1. Error trajectories ei and controls =u i, 1, 2, 3i , for optimal control problem (75) for m=6 and q=0.98.

s a

g a g

m b

=

- - - - - +

- - + - - - + - +

- - + - + +

D e

y y ay ly x x U

ry y y y by ky y x x x x U

y y y cy my y x x x U

. 72q

1

2 12 11
1

2 21
1

2 22
2

2 1 1

1

2 11
1

2 12
1

2 11 13
1

2 22
1

3 21 23 1 1 3 2 2

1

2 11 12
1

2 13
1

2 23
1

2 21 22 1 2 3 3

( )

( ) ( )

( ) ( )

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
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Here =e t e t e t e t, , T
1 2 3( ) [ ( ) ( ) ( )] is the error of the system.

Consequently, we have the following dynamical error system:

s s

m

= - + + +
= + + +
= - + +

D e e e F U
D e re be F U
D e e F U

,
,

,
73

q

q

q

1 1 2 1 1

2 1 2 2 2

3 3 3 3

( )
⎧
⎨⎪
⎩⎪

where

By considering = - +U F x y y y u, , ,1 2 3( ) , where
=u u u u, , T

1 2 3[ ] , we have the following optimal control

problem:

ò= + +

+ + +

J e u e t e t e t

u t u t u t t

min . , .
1

2
d

0

1
1
2

2
2

3
2

1
2

2
2

3
2

[ ( ) ( )] [ ( ) ( ) ( )

( ) ( ) ( )]

s.t.

s s

m

= - + +
= + +
= - +

D e e e u
D e re be u
D e e u

,
,

,
75

q

q

q

1 1 2 1

2 1 2 2

3 3 3

( )
⎧
⎨⎪
⎩⎪

s s a s s a

a s a s

m b m

= - - - + - + -

= - - + - - + - + - +

= - + + - + -

F a y y ly x x

F ry b y y y ky y x x x x

F c y y y my y x x x

,

1 ,

.

74

1
1

2 21
1

2 22
1

2 22
2

1 2

2
1

2 21
1

2 12
1

2 11 13
1

2 21 23 1 2 1 3

3
1

2 23
1

2 11 12
1

2 21 22
1

2 1 2
1

2 3( )

( ) ( ) ( )

( ) ( ) ( )

( )

( )

⎧
⎨
⎪⎪

⎩
⎪⎪

Figure 2. Synchronization between the chaotic system (68) and the linear combination of (69) and (70) for m=6 and q=0.98.
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=

= + -

e

e y y x

1 0,

0
1

2
0

1

2
0 0 .1 2

( )

( ) ( ) ( ) ( )

We use BPs of degree =m 6, 8, 10, 12 to solve the problem
(75), and we define the following criteria for comparing the
effect of m on the error trajectories:

òD = =e t t id , 1, 2, 3. 76i i
0

1
∣ ( )∣ ( )

For =m 6, 8, 10, 12, the amounts ofDi are shown in table 5.
The approximated state e .( ) and control u .( ) for

m=6 are found as follows:

- + -
+ - + -

- +
+ - + -
- + -

+ - + -







e t t t t

t t t

e t t t t

t t t

e t t t t

t t t

1167.975 3946.925 5171.689

3289.847 1032.385 140.176 4.9,

341.729 759.042 266.587

537.663 555.849 191.412 22.5,

39.756 153.243 247.410

238.942 169.575 95.306 30.75,

77

1
6 5 4

3 2

2
6 5 4

3 2

3
6 5 4

3 2

( )

( )

( )

( )

and

- + -
+ + -
+

- +
- +
- +
- + -
+ -

+ +







u t t t t

t t t

u t t t t

t t
t

u t t t t

t t

t

16 469.761 44 949.535 41 454.817

11 465.049 3526.089 2335.634
305.194,

30 703.739 102 763.284 135 275.944

88 917.381 30 616.924
5271.738 368.893,

671.188 2069.803 2406.108

1310.164 318.089

21.542 5.280.

78

1
6 5 4

3 2

2
6 5 4

3 2

3
6 5 4

3 2

( )

( )

( )

( )

Figure 1 shows error trajectories ei and controls
=u i, 1, 2, 3i , of the optimal control problem (75), and

figure 2 shows the synchronization for m=6 and q=0.98.

4.2. Finite time optimal synchronization between fractional
systems of Lorenz, Chen, Lu, and Liu

As the second example, we consider optimal synchronization
of the fractional Lorenz system as master and the combination
of three fractional systems as slave.

Consider the following Lorenz system as master:

Figure 3. Error trajectories ei and controls =u i, 1, 2, 3i , for the optimal control problem (87) for m=6 and q=0.98.

s

m s m

= -
= - -

= - = =

D x x x
D x rx x x x

D x x x x x r

,
,

, 0 10, 5, 10 , and , , 10, 28,
8

3
.

79

q

q

q T

1 2 1

2 1 2 1 3

3 1 2 3

( )

( ) [ ] [ ]
( )

⎧
⎨
⎪⎪

⎩
⎪⎪

⎡
⎣⎢

⎤
⎦⎥
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The following three systems are Chen, Lu, and Liu
systems as slave 1, 2, and 3, respectively

The system (81) has the chaotic behavior for >q 0.3
(see [49])

We put = =c cdiag , , , diag , ,1
1

3

1

3

1

3 2
1

3

1

3

1

3( ) ( ), and

=c diag , ,3
1

3

1

3

1

3( ), so one needs to find the control term

=U U U U, , T
1 2 3[ ] such that if we add the control function U

to + +c y c y c y1 1 2 2 3 3, then this new system synchronizes

Figure 4. Synchronization between the chaotic system (79) and the linear combination of (80)–(82) for m=6 and q=0.98.

a
g a g

b a b g

= -
= - - +

= - = =

D y y y

D y y y y y

D y y y y y

,

,

, 0 10, 25, 36 , and , , 35, 3, 28 .

80

q

q

q T

11 12 11

12 11 11 13 12

13 11 12 13 1

( )
( )

( ) [ ] [ ] [ ]
( )

⎧
⎨⎪
⎩⎪

r

r

= -
= - +

= - = =

D y y y

D y y y sy

D y y y dy y s d

,
,

, 0 10, 23, 35 , and , , 35, 3, 28 .

81

q

q

q T

21 22 21

22 21 23 22

23 21 22 23 2

( )

( ) [ ] [ ] [ ]
( )

⎧
⎨⎪
⎩⎪

= - -
= -

= - + = =

D y ay ly

D y by ky y

D y cy my y y a b c k l m

,

,

, 0 0.2, 0, 0.5 , and , , , , , 1, 2.5, 5, 4, 1, 4 .

82

q

q

q T

31 31
2

32

32 32 31 33

33 33 31 32 3( ) [ ] [ ] [ ]
( )

⎧
⎨⎪

⎩⎪
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with the Lorenz system. We have

+ + -

=

+ + -

+ + -

+ + -

D c y c y c y x

D y D y D y D x

D y D y D y D x

D y D y D y D x

. 83

q

q q q q

q q q q

q q q q

1 1 2 2 3 3

1

3 11
1

3 21
1

3 31 1

1

3 12
1

3 22
1

3 32 2

1

3 13
1

3 23
1

3 33 3

( )

( )

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

Adding the control =U U U U, , T
1 2 3[ ] to the system (83)

and defining = + + -e c y c y c y x1 1 2 2 3 3 as the error,
we have

Here =e t e t e t e t, , T
1 2 3( ) [ ( ) ( ) ( )] is the error of the system.

Consequently, we have the following error system:

a r
g
b

= - + + +
= + + +
= - + +

D e e e F U
D e e be F U
D e e F U

,
,

,
85

q

q

q

1 1 2 1 1

2 1 2 2 2

3 3 3 3

( )
⎧
⎨⎪
⎩⎪

where

By considering = - +U F x y y y u, , ,1 2 3( ) , where
=u u u u, , T

1 2 3( ) , we have the following optimal control
problem:

ò= +

+ + + +

J e u e t e t

e t u t u t u t t

min . , .
1

2
d

0

1
1
2

2
2

3
2

1
2

2
2

3
2

[ ( ) ( )] [ ( ) ( )

( ) ( ) ( ) ( )]

s.t.

a r
g
b

= - + +
= + +
= - +

D e e e u
D e e be u
D e e u

,
,

,
87

q

q

q

1 1 2 1

2 1 2 2

3 3 3

( )
⎧
⎨⎪
⎩⎪

=

= + + -

e

e y y y x

1 0,

0
1

3
0

1

3
0

1

3
0 0 .1 2 3

( )

( ) ( ) ( ) ( ) ( )

We used BPs of degree m=6 to solve the problem (87).
The approximated state e .( ) and control u .( ) are found as
follows:

- + -
+ - + -

- +
- + - +

- +

- + - +







e t t t t

t t t

e t t t t

t t t

e t t t t

t t t

1 135.862 3702.051 4639.111

2789.061 813.154 100.281 3.267,

1401.223 4756.921 6294.860

4088.983 1344.621 205.801 11,

42.870 159.627 242.563

205.680 117.178 51.137 13.833,

88

1
6 5 4

3 2

2
6 5 4

3 2

3
6 5 4

3 2

( )

( )

( )

( )

and

- + -
+ -
+ -

- +
- +
- -

- +
- + - -






89

u t t t t

t t
t

u t t t t

t t
t

u t t t t

t t t

90 791.509 296 471.020 374 287.226

229 036.481 69 462.960
9430.300 414.024,

31 803.295 95 814.588 107 672.974

54 501.116 11 213.813
247.082 110.396,

714.417 2206.093 2577.153

1414.946 358.641 32.563 1.405.

1
6 5 4

3 2

2
6 5 4

3 2

3
6 5 4

3 2 ( )

( )

( )

( )

Figure 3 shows error trajectories ei and controls
=u i, 1, 2, 3i , of the optimal control problem (87), and

figure 4 shows the synchronization for m=6 and q=0.98.

Note that for = ´c I1 3 3 and = = ´c c 02 3 3 3, and the
performance index

ò + + + + +e t e t e t u t u t u t
1

2
5

90
0

1
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and initial condition =x 0 2, 3, 5 T( ) [ ] and =y 0 0, 0, 91( ) [ ],
the above optimal synchronization problem has been con-
sidered using Lagrange multipliers in [50]. As we see in
table 2, the synchronization errors (76), that we achieved are
less than what has been obtained in [50]. Figure 5, compares
the error trajectories of the proposed method and the
Lagrange multipliers method indicated in [50].
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5. Conclusion

In this paper, BPs method for finite time synchronization of
fractional chaotic systems (one master and combination of
several slaves) have been suggested. The method approx-
imates the difficult problem of optimal synchronization of
fractional chaotic dynamical systems in finite time, by using a
quadratic programming problem, where the new mathema-
tical programming problem is intuitive and easy to solve. The
proposed method is applied for the synchronization the of
some well-known chaotic systems as case studies to show the
high performance of the method.
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