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Abstract

CrossMark

Through developing constructive nonlocal models, both in- and out-of-plane free dynamic
analyses of single-layered of double-walled carbon nanotubes (DWCNTSs) are going to be
investigated carefully. By exploiting the nonlocal Rayleigh and Timoshenko beams, the rigorous
governing equations of the nanosystem that explicitly express its transverse vibrations are
extracted by continuum-based simulating the van der Waals forces. The abilities of the nonlocal
continuous-based models in estimating the results of the nonlocal discrete-based models are
proved. Afterward, the nonlocal transverse frequencies are evaluated and the roles of influential
factors plus to the shear effect on the free dynamical response are elucidated and discussed
methodically. The obtained results from this scrutiny provide a reasonably smooth path for
inspecting mechanical behavior of more complex systems composed of vertically aligned

DWCNTs.
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1. Introduction

To prepare two-dimensional surface regions via carbon nano-
tubes (CNTs), in which would have great applications in
supercapacitors [1-3], fuel cells [4-6], and field emis-
sion [7, 8], it is required to synthesize or relocate CNTs onto a
suitable surface appropriately until shaping the paper-like
building with preferred thickness. As a genius solution, double-
walled carbon nanotubes (DWCNTSs) could be exploited for
such purposes. In recent years, these tiny nanostructures have
attracted numerous research interests owing to their brilliant
mechanical, electrical, and thermal properties as well as unique
coaxial architecture compared to single-walled or even multi-
walled carbon nanotubes (SWCNTs or MWCNTSs) [9-13]. On
the other hand, the experimentally observed data confirms this
fact that the mechanical behavior of the resulting assembly is
generally enhanced by aligning the nanotubes [14, 15]. In these
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views, herein, the authors are encouraged to explore free
vibrations of single-layered membranes consisting of vertically
aligned DWCNTs.

The classical continuum theory could not be used for
modeling of nanostructures since the interatomic bonds do not
incorporated into the constitutive relations as well as equations
of motion. For elasticity-based modeling of each CNT, we
employ the nonlocal theory of continuum mechanics (NTC) of
Eringen [16-19]. According to the NTC, the stress state of
each point depends on the stress states of that point as well as
those of adjacent points. This critical concept is called non-
locality and the nonlocal stresses are defined by the integral of
product of an appropriate kernel function by the corresponding
classical stresses over the space domain of the structure. The
aforementioned kernel functions have compact support con-
trolled by the small-scale factor. This parameter has been
calibrated for both SWCNTs [20, 21] and DWCNTs [22]
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through performing appropriate atomic simulations. The
above-mentioned integro-differential version of the NTC has
been of focus of attention of investigators during recent
years [23, 24]; however, we employ the differential version of
this theory in this paper, and application of the integro-differ-
ential type of this theory to the present problem can be con-
sidered as a complementary scrutiny for future works. It is
noticed that the differential-based formulations of the Eringen’s
NTC have been broadly exploited for mechanical modeling of
nanorods [25, 26], nanobeams [27, 28] and nanoplates
[29-31].

Up to now, various mechanical aspects of SWCNTs and
their composites have been investigated [32—40]. Concerning
mechanical behavior of DWCNTSs, mostly in the context of
the NTC, their free dynamics [41-45], free vibrations under
action of magnetic field [46—49], elastic buckling [50-52],
nonlinear buckling [53, 54], forced vibrations [55], and
nonlinear vibrations [56, 57] have been broadly studied.
Additionally, buckling and free vibrations of membranes and
three-dimensional ensembles from SWCNTs have been
examined using nonlocal beam theories [58—61]. However,
free transverse vibrational behavior of elastically embedded
membranes from DWCNTs has not been explored yet.

Herein, we exploit the nonlocal Rayleigh and Timoshenko
beam models (NRBM and NTBM) for mechanical modeling of
constitutive vertically aligned DWCNTSs of the nanosystem. To
take into account the van der Waals (vdW) forces between the
consisting atoms of the inside tube and those of the outside tube
as well as the vdW forces between the atoms of doubly near
DWCNTs, these are simulated by linearly continuous elastic
springs. To consider the lateral interactions of the nanosystem
with its neighboring medium, Pasternak-type foundation model
is implemented. For an arbitrary number of DWCNTs, the
nonlocal transverse motion equations are derived via both
NRBM and NTBM. These are commonly called discrete models
since the governing equations should be constructed for each
tube individually accounting for the vdW forces. To get rid of
the number of DWCNTSs in dynamic analysis of the problem, we
also develop several useful continuous models. It will be shown
that these models can effectively describe overall dynamic
behavior of the nanosystem, irrespective of vibration of every
particular DWCNT. Several constructive numerical studies are
carried out, and the influences of the important factors including
the nonlocal and shear effects on the free dynamic response in
both lateral directions are studied carefully. The proposed
models as well as the methodologies in their vibrational analyses
would be very beneficial in scrutinizing vibrations of more
complicated configurations such as multi-layered and orthogo-
nal-layered membranes from vertically aligned DWCNTSs. The
dynamic analyses of these of our interest structural forms can be
followed by curious investigators in the near future.

2. Vibrational scrutiny using nonlocal discrete
models

In figure 1(a), the vertically aligned DWCNTSs of a single-
layered membrane confined by an elastic matrix have been

demonstrated schematically. The length of consisting tubes is
denoted by [, the thickness of the wall of the continuum-
based tubes is represented by th while the intertube distance
of two neighboring DWCNTs is denoted by d. For each
DWCNTs, the mean radius of the inner nanotube is repre-
sented by 7, while that of the outer nanotube is r,, + th. For
continuum-based modeling of the interactive vdW pressures
between the consisting atoms of the neighboring tubes, we
utilize linear virtual springs of constants S,, = and S,
according to the given formulations in the next part. Addi-
tionally, the dynamic interactions of the outermost tubes with
the nearby matrix are allowed by the Pasternak foundation
model, in which the stiffness of the lateral is K, while the
rotational spring’s stiffness is represented by K, (see
figure 1(b)).

In the present work, we are extremely interested in
developing elasticity-based models to examine free vibrations
of such nanosystems. For this purpose, appropriate nonlocal
models are constructed and explained. More specifically, in
the upcoming discrete models, the bidirectional deflections of
any tube would be coupled with those of other ones due to the
rigorous vdW forces. Hence, for a membrane with a high
number of DWCNTs, the needed computations as well as the
labor expenditures would be high enough. To resolve this
major fault of the discrete models, we will establish several
nonlocal continuous models as well. In such models, all the
lateral deformation fields of all nanotubes are expressed by
just two continuous deflection fields. Therefore, it is expected
that the number of consisting nanotubes of the nanosystem
would have a trivial influence on the aforementioned costs.
With regard to this fact that only transverse vibrations of
vertically aligned membranes are of particular concern, we
implement the NRBM and NTBM for capturing the free
dynamic response of such nanosystems.

2.1. On the continuum-based modeling of vdW forces between
two DWCNTs

The Lennard-Jones potential function could appropriately
explain the interactional forces between two neutral atoms,

given by: &(r) = 46[(%)12 - (%)6], where € denotes the
depth of the well, o is displayed by 6%, in which r, is the
inter-particle distance associated with the equilibrium state,
and r represents the inter-particle distance. By taking the first
derivative of the potential function, the vdW force between
the ith and jth atoms is provided by:

do
e,
dr

_2462014 o\ =
=) -G

in which TJ,) denotes the relative position vector, and e, is the
corresponding unit vector. According to the provided figure 2,
the position vector of an atom from a tube of the lhs
DWCNTs and that of the rhs one is written as in the

N
fj“i = F;)jiey + FL’jieZ =

ey
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Figure 1. A membrane made from multiple neighboring DWCNTs embedded in an matrix: (a) side view of the nanosystem, (b) cross-

sectional view of the continuum-based structure.

cylindrical coordinate system:
=(xj — x)ex + (ry cos(cZ)j) — I'm; cos(¢;)
— AVp)e, + (1 sin(¢;) — 1, sin(¢;)
+d — AWp)e,, 2

—
Tji

where r,,, and r,,,, are the mean radius of the constitutive tubes
of DWCNTs such that (j, i) = (3, 1), 3, 2), 4, 1), (4, 2).
On the other hand, for each DWCNTs, by denoting the
location of the kth atom of the outermost tube by
(Xg, T, cOS(@y), Ty, Sin(¢;,)) and the location of the /th atom of
the innermost tube by (x;, 1, c0s(@)), 1y, sin(¢;)), the relative
position vector is expressed by:

T = (g — X1)€x + (i, cOS(dy)
— rm,cos(¢) — AVi)e,
+ (1, sin(@y) — 1y, sin(g) — AWp)e,, 3)

in which (k, ) = (2, 1), (4, 3), 1, and r,, in order are the
mean radius of the innermost and outermost tubes,
AV AW,) = VU — VELWEH W where VI =
Vi (x, £) and Wi = WH(x, £); [.] =R or T in order are

Figure 2. A representation of doubly adjacent DWCNTSs for
evaluating the rigorous vdW forces.

the dynamic transverse displacements associated with the y
and z directions (see figure 2). Using equations (1)—(3), the
components of existing vdW forces between innermost—
innermost, outermost—outermost, and innermost—outermost
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tubes are stated by:
2A€TENT Ty (b (b 27
oMb |
i I,o? o Jo Jo
SRS -6
0 A A

X (rn€08(¢;) — rmcos(¢;) —
X dqud(bidxjdxi,

E“:24€U%NTY’miji flb flb f27f
! I,o? o Jo Jo
ST G
0 A A

X (rmsin(g;) — rysin(e,) + d — AWj)
x d¢;d¢,;dx;dx;,

2460%NTrmkrm, bl 27
f, - 2erbuar ¢
O o Jo Jo
o 14 8
SR -G
0 A A

X (i €08(¢y) — Fnc0s(d) — AVy)
x de, dep,dxgdx;,

24 €0t TmTm [ b 27
F, = =0 [ [ [
lyo o Jo Jo
2 14 8
L) ()
0 A A

X (Fsin(@)) — rusin(g;) — AWy
x d¢,d¢,dxydx,

AVy)
(4a)

(4D)

(40)

(4d)

where ocnt = 49—‘/23 and a denotes the C—C bond’s length. In
order to estimate the rigorous vdW forces, the Taylor series of
such statements up to the first-order are provided by:

FY(mn) )(mn)(AVm” - O) + AFY(mn);

AFy"m = Svy(mm Aans (Sa)
F,, ~F, (AWuw=0) + AFE,;

AE»»x/x = SVZ(m.n) AWmVH (Sb)

in these relations, K, )(Aan =0) and E, (AW, = 0) in
order are the components of the static vdW forces pertinent to
the y-axis and the z-axis, AF, and AF, represent the change
in the vdW forces due to the relative deflection of the mth
tube wrt the nth one associated with the y and z directions,
respectively. In view of equations (5a) and (5b), we can
employ linear-continuous springs for simulating the rigorous
vdW forces between consisting atoms of two nearby tubes.
The coefficients associated with the change of the vdW
interactional forces because of the relative lateral motions of
the adjacent walls are then computed by:

—256¢ 1y Tim; fl,, fl,, fzw
9a4lb

Wi
2
12| 37— 1y [
fZ?T ! ! rm,- COS(¢[)
X
0 _0_6 -4 8 -5 Fn,jCOS(¢j)— ’
2 [ X\ 4, cos(6)
x dd;dg,dy;da,
(6a)
=256€ 1y, b b p2T
)
. 2
0.12 X77 o 14X78 rmi Sln(¢j)_
fzﬂ : U\ sin() + d
X
" g s i@ ’
2 | TN, singey + d
X d(bjd(ﬁidxjdx,»,
(6b)
_ —256€ 1w, bph p2m
b - Bt
o2l ;7 - 14y Ty COS()—
fZﬂ' Vmy COS(QS[)
X
0 0'6 4 _5 Vg COS(¢k)_ :
A Xz - 8X2
2 Ty €OS(@))
X dqbkdd),dxkdxz,
(6¢)
—256€ I, Tm; bl 2
SVZ(k.I) 9a4lb f f f
. o[ 7w sin(dp—Y’
12 7 14 8rksu.l N
fzﬁ [XZ X2\ s, sin(é)
X
0 7_6 N 5(% sin(¢>k)—)2
2 2\ 1 sin(e)
X qukquldxkdxl,

(6d)
where Xi = Xi (G, Xis @js O3 Fgs Tonpp ) and
X2 = X2 Xis s D5 Ty T,) ATC aS:

Xl = (xj - xi) + (rm,- COS(¢j) — Tm; COS(¢[))2

+ (rm/ Sin(¢j) - rm,- Sin(¢i) + d)2 s (761)
Xo = (X — x)* + (1, €OS(B) — 1im, cOS(9)))?

+ (rmk Sin((bk) - rm/ Sin(¢]))2 . (7b)
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2.2. Application of the NRBM for discrete modeling of membranes of DWCNTs

2.2.1. Nonlocal-discrete equations of motion. To derive the nonlocal governing equations pertinent to transverse vibrations,
the principle of Hamilton is planned to be implemented. For this purpose, the kinetic energy of the single-layered multiple
DWCNTs as well as its strain energy should be carefully expressed.

By exploitation of the NRBM, the kinetic energy of the nanosystem is given by:

R(p\ lp oVE ’ owf ’ oV i PW 2
= Zf pb{ (( a ) P\ ) P aer ) T e ) ) ®

where p,, is the density, j, is the cross-sectional moment inertia, and Ay, is the cross-sectional area of the equivalent continuum
structure (ECS) associated with the ith tube. Furthermore, by considering the rigorous vdW pressures as well as the transverse
dynamical interactions of the nanosystem with the adjoining matrix based on the NRBM, the whole nonlocal strain energy of
the single-layered membrane made from DWCNTSs can be formulated by:

a2VR O?WER
R _ R nl
Uk = Zf[ (Mj ) — = )]dx

Svy(“ 1 (VR - sz 1)2 +

Sv\'(: ,+2)(VR - 1+2) (1 = bam@)

+ l 5 flb V)(Il+])(VR l+1)2(1 B 6(2N)(1)) + SVy(H 2)(VR VlRfZ)z(l - 62i) dx
2,53..70 R P . oVF 2
+SV}’(i.i—3)(vi - Vi—3) (1 - 621‘) + K;(Vi) + K,- o
-1 Suvisony Vi = VED? + Sy V7 = VEDX = v i)+
I
+ 2 fob Vyu+3>(VR l+3)2(1 — dan-1)@) + Swy,, L OVF = V2 = 61y [dx
i=35...
Sue s V= VED(A — é1)
SLZ“’ “(W WlR 1)2 + SV’(::+2> (WR ;+2) a - 5(2N)(1))
|2 8050 VE = WE DA = Sami)+
I
T3 S S OVE = WERP( = 820 + Sucyy OV = WE (1 = 63 fax
i=24,... .
OWR
+K,OWVH? + K,( Wi )
X

| S"Z(i,i+l)(WlR z+1)2 + SVZ(,:+2)(WR z+2) (1 - 6(21\/ 1)(1))
l}
+ E Z J(‘)h +SVZ(1’,5+3)(WzR 1+3)2(1 - 6(21\’ 1)(1)) + SV"(u 2)(WR i—2)2 dx, 9
3,5
(1 = 81) + Suzg OVF = WE D = 61)

where 0, (M, M 2K, and (M, )R denote Kronecker delta tensor, flexural moments in the nonlocal form using the Rayleigh beam

theory. Fur[her, Ey, is the elastic modulus, and N denotes the total number of constitutive DWCNTs of the membrane. The
bidirectional flexural moments can be linked to their corresponding local expressions by [62, 63]:

0>Myy )" 2WE
MR — P —— = —E) I, ——", 10
(Myy.) o nloi—55 (10a)
, O2(MYHR R
MpIR — 12— = I, —, 10b
My,)" — e nloi— 5 (10b)

in which [ is the small-scale factor. By utilizing the principle of Hamilton and exploiting equations (9) and (8) the nonlocal-
dimensionless governing equations that display lateral motion of vertically aligned single-layered membranes of DWCNTs
confined by an elastic medium according to the NRBM are gained:
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e The first DWCNTSs:

(0165 + 831)
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+ (0360 + 6,1)?4’ =0, (11a)
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¢ The intermediate DWCNTSs:
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e The Nth DWCNTs:

-
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(g] j2 Jj1 8’7'2 A% 87’2852 VZ(ON-24]2N+1—))
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S W T — O Why_si
. X R TRYDR = IN-2+
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RYYAN
+ (036 + ) N2 o, (13b)

aet

In these dimens%onless equations, j =1 and j =2 stand for the innermost and outermost tubes, respectively,
Al[l=1]- uzg—{z[-] represents the dimensionless nonlocal operator, and other dimensionless quantities are as:

e_x o _Epe Vi WE i Bl L
I, L Iy ' I, L\ Py, A, I,
gt o ple o Enln gx _ Kl gx_ Kl
= > &2 s &3 — > - 5 - 5
pblAb] pb|1b| Ep I, t Ep, Iy, ' Ep Iy,
_ AR I I
N =l FR =l o= (N - Dd = — (14)
o Ehllbl ' Ehllbl

oy
Abl

Equations (11)—(13) display 4N coupled partial differential equations of fourth-order with respect to the spatial parameter.
For lowly dense membranes made from DWCNTs, these equations could be easily used for examining their lateral vibrations.
Nevertheless, the number of governing equations drastically increases as the number of the constitutive DWCNTs grows. This
crucial issue motivates the authors to seek for more appropriate models whose equations can be presented in a more compact
form. The details of these calculations will be presented in section 3.

2.2.2. Determination of the natural frequencies. In this section, the assumed mode method (AMM) is implemented for
analyzing of the free dynamic response of the vertically aligned confined single-layered membranes of DWCNTs. For this
purpose, the ended supports of all consisting tubes are assumed to be simple such that the outside nanotubes of both 1st and Nth
DWCNTs are laterally fixed. By exploiting the AMM, the deflections of the consisting nanotubes can be displayed by:

M,,,).
>

m=1

M”Z P
WkeE 7, Wi, m) = < R ()sin(mm§),> Wff,,(r)sin(mw{)>, (15)
m=1

where \7;; (1) and W;(T) are the coefficients of the mth mode of the ith tube, M,,, and M,,. are the total number of vibrational
modes exploited for discretization of the deflections 17?(5, 7) and )/_vf(g, T), respectively. By substituting equation (15) into
equations (11)—(13),

xR

5 + TR = 0,
—

(16)
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in which X¥ is the vector of the dimensionless time-dependent factors such that:

Xk = {[]lm’ []Sms []4m’ []Sm [_']ngz)m’ [_']éNfl)m }T’
[.[I=VorWw, a7

and the non-vanishing elements of the square matrix T'X are provided in the supplementary material available online at stacks.
iop.org/PS/95/035221 /mmedia, part A. Now by substituting X% = XX exp(icw”r) into equation (16), the flexural frequencies
in the dimensionless manner can be computed through finding the roots of the following characteristic relation:
| —(®)? 0 + f§| =0, where ig and w?® in order represent the dimensionless amplitude vector and the dimensionless

frequency of the NRBM-based nanosystem, respectively. Finally, the ith natural frequency can be evaluated
Enly

from: wf =
lb pb]Ab|

2.3. Application of the NTBM for discrete modeling of membranes of DWCNTs

2.3.1. Nonlocal-discrete equations of motion. For an elastically embedded nanosystem consists of N vertically aligned
DWCNTs, its whole kinetic energy according to the Timoshenko beam model is written as:

. Ty (owTy
ro- S0 o5 (55
pol ¥ (oY
, i 1
+Ib’[3t]+[6t) . (%)

where V! and W! in order are the y- and z-directional components of the deflection vector field of the ith tube, @T and O
denote their corresponding deflections’ angles.

Additionally, the whole nonlocal strain energy of the elastically confined single-layered DWCNTSs whose tubes have been
modeled based on the Timoshenko beam model can be evaluated as follows:

ox
8@T T

S + (aw —@T)(Q i
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Sovry (Vi = VED? + Suy 0 VT = V)20 = Semyi)
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00 ol Vi
PO gy (aax —@T](Q 7
dx

UT([) _ lZZN « fl])
23 0

! V)<u+1)(VT Vt’il)2 + Svy(i.i+2>(ViT - Viﬁz)z(l - (5(2N—l)(i))+

1 b
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2. 0 Gi+3) (i,i—2)
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Svzaiy W = WD 4 Sy W — W2 = Sawya)
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K,(W')? + K.(8) )

1 IN—1 SVZ(iTiJrl)(VViT - Vviﬂ—l)2 + SVZ(i.i+2)(W/iT - u/if-z)z(l - 6(21\’*1)(1‘))
b
+ 5 Z j(; +SVZ(:‘.1+3)(VViT - ‘/Vifﬁ)z(l - 6(21\/*1)(1')) + SVZ(i.ifz)(VViT - VVi7;2)2 dx
i=3,5,...
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where (Qp, )T and (Qp, )T in order represent the components of the resultant shear force of the ith continuum-based tube,
(M,,"Z’I, )7 and M, byi YT denote the components of the flexural moment in the context of the NTBM. On the basis of the Eringen’s

nonlocal continuum mechanics, these nonlocal forces can be linked to their associated local values by the following
constitutive relations [64, 65]:

(Qp)" — % - kS,Gb,yAb,(‘?;;"T Z) (20a)

Q) 1 2(Qb“ L ks,Gb,.Ab,.[aW"T - @C), (20)
ox o

WM, )T I ;Tb;ﬂ —Ep I, 82} , (20c)

M)~ 7 82(35‘ L, a; - (20d)

where G}, and k;, in order are the shear elastic modulus of the ECS and the shear correction factor of the ith continuum-based
nanotube.

By adopting the principle of Hamilton, in view of equations (18), (19), (20a)—(204d), the nonlocal-dimensionless equations
that display bidirectional lateral motions of the elastically confined nanoscaled system via the NTBM are resulted in as:

e The first DWCNTSs:

7 25T
(z_02 j2 + 5]1) 2 an —T 2 0 2
{ )\2 or > + K @ (1 - 6]1) - (94612 + 6jl) 8_5 - GZ/ — (Q3612 + 611)778—62 = O, (2161)
Jcoton+ 6,-0”5—‘? eSOV es o v wv ol
A ’ — (@38 + 5| G — 5| =0 21b)
vy( (V V4) + Kt Vj(l - 5j1)
297 T 25T
N @36+ 8090, ) oW, g s 0°0,
A )\12 87'2 + Kr Gy/_(l - (Sjl) - (£74(Sj2 + 5j1) ) - ®yj - (g3§j2 + (51'1)778—52 = 0, (21C)
Nron+ o022 5T oW W+ 5L oW — W -
A T J e — (@38 + 6| 5" — e | =0 (21d)
+ SVZM(Wj ~ Wy + KV - 8
¢ The intermediate DWCNTSs:
(Q +6 )62 n—2+j T 1
{ : ’12 E— S KB, (0= G0 — (66 + o)
Vonnsn 2
X [% - GZHZH] - (056 + 6,-1)77# =0, (22a)
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0? VZn 2+] ol 7 T )
(Ql 'j2 + 6/1) + Von-2+4), 2,,+1,j)(V2n*2+j - V2n+lfj)+
—T 7 7
A< SV}V(2n72+/»2n72) (VZ”*ZH Vz” 2) + Svy(z/x 24j,2n— %>(V2"*2+j B V2"73)+ 9

a2l 7 T 7
Vy(zn72+‘,’,2n+1>(V2”72+/ V2n+1) + V\(Zn 2+!.'2"+2)( 2n—24j V2n+2)+

KV, 5.0 — &

W . 8(:)17"7 )
_ (gié‘]z + (5]1)( 2m-24j 2 2+/) — 0,

= = (22b)
= (£72 2 + 5]1) ‘2n 2 —7=T 2
A v s KO, (=8 — (0ddp + 6
aW{ZrﬁZJrj) =T 2 82@{2'1 24
“|™ae O, ., | = (@382 + 5;1)n6—£2 =0, (22¢)
W 5T 5T
(0160 + 5]1)M + sz@n vy Wanaj = Wanpr )+
T 5 =T =T
A< SVZ(2n72+f,2n72)(W2n72+j - W(2"*2)) + SVZ(2n72+/,2n73)(W2”72+j B W2”*3)+ .
T Sveid Eveid T tveld s
sz(zn,zﬂ-'z”“)(W2n—2+j - W2n+l) + sz(z,l,2+j'2”+2>(WZn—2+j - W2n+2)+
L I?zTW;n—Prj(l - 6./'1) J
W Bé}T. 2
— (048p + 6,0( i f] =0. (22d)
e The Nth DWCNTs:
(056 5 + 65) 0°0., B l 2
{ I)\2 j 872_/\; 2oy KrTGZZN,H/(l — 5j1) — (g4(‘5j2 + 5j1)
— =T
aV(TZN,QJrj) —T 2 2@ZZN 2+4j
x {a—g | - @ s =0, (23a)
2V}, 4 =T S T
(Ql 'j2 + 611) 2N : + SVV(zN 24j,2N+1—)) (VZN72H N VzNH*j) BlcH
_ o2y! SHI
rad T =T 2N-— 2+, _ DN-2+j |
A +SVy(2N—2+j.2—2) (V2N72+j VZN 2) + SVy(ZN i 3)( IN-2+j — VZN*?)) (x_04 j2 + 611)( o€ ) = 0;
s (23)
+K; Von_o (1 = 61
| 036 + 8;) 97Oy,
A= . 8;2 L4+ KO, , (=80t — (036 + &)
1
— T
8W{2N72+j) —T 0 YaN-2+)
e Bl | - @ b =0, (230)
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9* W(”N 2+j) s
(076 + b)—— + szm, 2N Wi 245 — Wang1-))

A T soT
A TS0y 250 (Wszzﬂ Win_o) + SVZ(ZN v 3)(W2N72+j = Win_3)
+I?t W2N—2+j(1 - jl)

W oo, )
_ (‘_042;5/'2 + 5j1)[ 822/2 2 szg 2/] =0, (23d)
where the newly used dimensionless parameters are as follows:
T T 2 2
=T Vi —r W; t |kgGp =T Sovn b o1 Svzmm b
Vi - Wi =T = — ! . 5 Svy(m'”) = #7 sz(l”ﬂ) == #’
lb lb lh pb1 kslelAbl kJIGb]Ah]
2 = ko GroAp o —o’ & —or B Ep, I, 7 K.} (24)
- s ) i i - s By — >
kaGpidp = : kg, Gy, Ap, I} ks, GpAp,
7T _ Kr £

—_— Y= .
ks, Gy Ap, A

Equations (21)—(23) display 8N coupled second-order linear homogeneous partial differential equations in both time and
space domains.
2.3.2. Determination of the natural frequencies. For frequency analysis of the problem at hand, it is assumed that the first and
the Nth nanotubes have been tightly attached to rigid supports. Therefore, no elastic field would be generated within such tubes
during the course of free vibration. Now by implementing AMM for simply supported nanotubes, the dimensionless
deformation fields of the ith nanotube using NTBM could be expressed by:

<V & ), W, (5 7)) Z V,m(T)sm(mwﬁ) Z W,m(7)51n(m7r§)> (25a)
m=1
M,
<® (& 1), @ (& 7)) Z ZT (1)cos(mm§), Z @ (T)COS(mWf)} (25b)
by substituting equations (25a) and (25b) into equations (23a)—(23d), it is derived:
2T
SRS (SO, (26)
dr?
in which X7 (i.e. the dimensionless time-dependent vector) is defined by:
XT = {[_]{m, [—H{m, ngm’ [—*]gmv mzm’ mzt"m [_']’(TZN—I)m, [—*]Z-ZN—I)m}’ (27)
where [.] = Vor W,[ x | = ©, or ©,, and the matrix T is given in the supplementary material, part B. Let us to consider:

%7 (1) = %} exp (icw’7) where X is the amplitude vector (i.e. eigenvectors) and w’ denotes the dimensionless natural

frequencies of the nanosystem modeled according to the NTBM. By introducing such a harmonic form of the deformation field
to equation (26), the dimensionless frequencies could be calculated from the characteristic relation: |—(w7)26,-j + T§| =0.

Subsequently, in view of equation (24), the natural frequencies of the nanosystem can be stated as a function of their

. . . w! [kyG
corresponding dimensionless values as follows: w! = . wOLd
b Py

3. Vibrational scrutiny using nonlocal continuous models

In this part we are interested in examining free transverse vibrations of elastically confined membranes from vertically aligned
DWCNTs by developing nonlocal continuous models. As it was explained in the previous parts, the proposed discrete models
are not capable in capturing natural frequencies of highly populated nanosystems (for a nanosystem with N DWCNTs, we
confront to 4N and 8N set of equations based on the NRBM and NTBM). Hence, if we could express the deformation fields of
the nanosystem by constructing appropriate continuous functions, the number of equations would be independent of the
number of consisting tubes (i.e. we confront to 2 and 4 equations of motion in terms of the continuous deformations of the
nanosystem modeled according to the NRBM and NTBM, respectively). The spatial domain of such continuous fields has been
schematically illustrated in figure 3.

11
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v
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0 (N=1)d

Figure 3. The side view of the spatial domain used for the continuous models.

For developing equations of motion for continuous models, we use the developed governing equations for discrete models
such that the continuous displacements and the continuous deflection angles satisfy the following relations:

vj[-'](x, LDn—24j> 1) & V'z'll_zﬂ(x, 1), vj[f](x, Ln—4+j — d, 1) = V'z'lll_4+j(x, 1), (28a)
VG 2ongy +do ) RV (0[] =Ror T, (28b)

WJ[-'](x, n—24j> 1) = WEL72+J-()C, 1), WJ[»'](x, Dn-4yj —d, D) R W[('2],174+j)(x, 1), (28¢)
WG, 2oy + d, 1) = WEL (3, 1), (284)

05 (0, 22n-24j, ) R O, (0, 1), 07 (x, 22024, ) = O, | (x, D). (28e¢)

Thereafter, the deflections of the neighboring tubes of the mth nanotube are approximated by the following Taylor series:

6 i 9ireT.
[0, zm £d, )= (£d) 0'[o];

— (X, Zm» 1), 29
D RREOL (29)

where [o]; = vl or wH and m =2n +j — 4 or 2n +j.

3.1. Application of the NRBM for continuous modeling of membranes of DWCNTs

3.1.1. Nonlocal-continuous equations of motion. By substituting equation (29) into equations (11a) and (115) in view of
equations (14), (28a)—(28d), after some manipulations, the dimensionless continuous equations of motion associated with the
transverse vibrations of elastically embedded membranes made from DWCNTSs according to the NRBM are derived:

038+ 8) 9*Ff R - -
2jz = 2j2+Sv (VR_V%R—')
Af OT20E Yij+2.5-j ~ J 5

2(17R B \7R - 3282\73’{/ B 7 34‘7312 B 76 86531:],
J 3- y? 12 0yt 360 9°

ok
(0160 + 654 —

— SR

A< +S

VYii+2.2)

= — %R gt otk 76 %k — —p 0%k
—SR (dZ 4 d 9 + d J ) + (KtRVR _ RIS )(1 _ 6]'1)

V2.1 ov? 12 oy* 360 079 J rog

+ (036p + 1)

ot

3—54 _ O, (30a)
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(eié 2+ 5}1)00“’2 (ggéj;j = da:(_;j; + _Vliuu,sfj) (WJR - W) \
N R L I
_EV’;MI)(gz@;ZR 4 %aﬁ %ar;) + (I?IRW]R — KR 0;? )(1 8i1)
\ )
=+ (03 2 + 511) =0. (30b)

054

In extracting equations (30a) and (300), it is noticed that the coefficients of the vdW forces between the innermost tubes of each
pair of adjacent DWCNTSs are the same. The same story holds true for coefficients of vdW forces between outermost tubes and
innermost—outermost tubes of doubly neighboring DWCNTs. In other words,

S[°](2n72+j,21172) = S[°](2n72+/',2n72) = S[°](j+2,2)’ S[O](ZH72+j.2n73) = S[O](zn 24j,2n+1) S[°](,+7 1) (31)

where [o] = vy or vz.
Equations (30a) and (30b) display dimensionless-continuous equations of motion of elastically confined membranes of
DWCNTs on the basis of the NRBM.

3.1.2. Determination of natural frequencies. For a membrane with simply supported nanotubes whose exterior nanotubes are
fixed transversely, the deflections of the continuous model are expressed in terms of the admissible mode shapes as follows:

(&7 7, Wi 7 ) = P, €°47) sinnr)sin(n), ¢

ok
V(mn())j e,

Pl

HM8

where V(RmnO), and W(Rmno)j denote the dimensionless amplitudes, chR and JJZR represent the dimensionless flexural frequencies of
the y- and z-directional vibrations of vertically aligned membranes of DWCNTs, respectively. By substituting equation (32)
into equations (30a) and (30b), the natural frequencies of the nanosystem could be readily computed. The procedure of
assessing the dimensionless flexural frequencies for the suggested model have been explicitly explained in the supplementary
material, part C.

3.2. Application of the NTBM for continuous modeling of membranes of DWCNTs

3.2.1. Nonlocal-continuous equations of motion. By substituting equation (29) into equations (21)—-(23) in view of
equations (24), (28a)—(28e), the dimensionless governing equations of the elastically embedded nanosystem that display its
transverse vibrations based on the continuous version of the NTBM take the following form:

=T
|« +8,) 0%0, ol 9%,
A @ﬂzfl ;+Mﬂn—%> (m%+@o———9—4£@+@m—%=a (33a)
e or / 0§ 0¢
r 2 T , I
(gl j2 + 6]1) ; + SVVV(jJrz,S—) VJT - V3 j)+
_ oWl . g4 oYl 6 9% T 2= T T
_ T _ =2 3—j 3—j 0°v 00 )
Sy, |20] -7 ) —d - — (036 + 8 - —~[=0. @3
"W )[ =J 872 12 6’}/4 360 8’7 g (@4 2 + Il) 652 85 ( )
VY2 2 4 6 tVj J1
oy 12 Oy 360 Oy
T _ 2—T
| (036 + 5/1) y, —T AT 2 8WJ'T AT o 0
A 2 572 + K, 0, (1 =) ¢ — (0302 + &j1) ¢ -0, — (0382 + &) 852 =0, (33¢)
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-

*wh
(gl j2 + 6]1) 2J + SVTZ(,‘+2<5—/) (WJT - W3T*.i)+
_ LMW, qtotw, 30 0w orw! 00,
AISE ew!l —wly) - aP—L - S - = | At/ B
A4 ~(j+2<2)[ ( J 3 /) (9'}/2 12 a,y 360 3'}/ g (04 j2 + 6]1) 852 85 = 0. (33d)

_ Lol grorwl 7o otw!
5T 20w A0 4 + K/ wl (1= &)
(+20) o2 12 o~* 360 87

L J

3.2.2. Determination of natural frequencies. By taking into account the given boundary conditions in section 3.1.2, the
deflections and their angles for the proposed continuous-based model using NTBM could be written in terms of admissible
modes as follows:

P&y, 1), W (& 1)) = Z Z(V(z;mo)j el T w(m,,o) %7 sin(mm€)sin(nmy), (34a)
m=1n=1
00 00 r .
(O (67, 7, By (67, 1) = Z Z (o, €7+ Oyuny, €% 7) cos(mmg)sin(nmy), (34b)
in which V(mnO)’ W(mn(])’ 97(,,,"0), and 8, ) (mn0y, Tepresent the unknown coefficients of vibrational modes, @! and @ are the

dimensionless natural frequencies of the vertically aligned membrane, respectively. Finally, by substltutmg equations (34a)-
(34b) into equations (33a)-(33d), the fundamental frequencies for each direction are calculated. The details of the carried out
calculations are provided in the supplementary material, part D.

4. Results and discussion the number of tubes, the fundamental frequencies reduce. The
results of the Timoshenko’s theory for both NCMs and
In this section, the results of parametric studies of free NDMs are less than those of the Rayleigh beam theory. The
vibration of elastically embedded membranes made of main reason for such a behavior is related to the consideration
DWCNTs are presented according to the proposed NRBM  of the shear strain energy by the Timoshenko beam theory.
and NTBM. The influences of important factors including the In table 3, the effect of transverse and rotational stiffness
small-scale parameter, the number of constitutive double- of the surrounding environment on the fundamental fre-
walled nanotubes, the radius, the intertube distance, the quencies of the nanosystem is presented for different lengths.
§lendemess raFlo of the nanotl'lbes, anq their elastodynamic To this end, the parameters K% = (1,7) KR KR = ( I )212 &
interactions with the surrounding matrix on the natural fre- I
quencies are going to be studied. For this purpose, the geo- and /; = 12 nm are used. These factors are defined such that

metrical and mechanical properties of the nanosystem are the length dependency of the transverse and rotational stiff-
considered as in the following form: 7,, = 1 nm, [, = 2 nm, Dess is removed. The results of the NCMs represent a very
1 9

vp =02, Ty =rm +th, d=2r, +th, E,=1TPa, good approximation of the NDMs’ results for different
th =034 nm, and p, = 2300 kgm=3. In the provided lengths and stiffness. Through growing of the elastic stiffness
numerical examinations, the interactions of the nanosystem of the surrounding environment, the fundamental frequency
with the elastic bed have been ignored (i.e. K, = K, = 0), of the nanoscaled system increases. Such a fact is more
except the cases that the values of such factors have been obvious in nanosystems with higher lengths. Also, the pre-
explicitly stated. sented results indicate that increasing the length of DWCNTSs
In tables 1 and 2, the results of the nonlocal continuous Yyields reducing fundamental frequencies. Given the relatively
and discrete models (NCMs and NDMs) according to the good results of the NCMs in compare to the results of the
NRBM and NTBM are presented. The results of these models NDMs, we use continuous models for conducting parametric
are compared with each other for membranes with various studies in the remainder of this work.
populations and three values of the nonlocal parameter. The Given the crucial role of the nonlocal factor in the
obtained results show that the NCMs can predict those of the nanosystem vibrations, the plots of the fundamental fre-
NDMs with a small relative error. In the continuous modeling  quencies of lateral vibrations as a function of the nonlocal
of the problem, increasing the number of nanotubes does not parameter are provided in figure 4. The results are plotted for
influence on the computational costs seriously. This implies a membrane consists of 200 DWCNTSs and three slenderness
that the NCMs can be efficiently employed for estimating the ratios. It is observed that the frequencies of the vibrations in
overall vibration behavior of the nanoscaled systems with lateral directions would reduce by increasing the nonlocal
high populations. Further examination of the results also parameter. The reason for such behavior can be related to the
reveals that by increasing the nonlocal factor or by growing reduction of the ratio of lateral stiffness to the mass due to an

14
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Table 1. The estimated fundamental frequencies of the nanoscaled system vibrating in the y direction by employing the NDMs and NCMs

O\ = 16).
I,(hnm) N=5 N=38 N=10 N=15 N=20 N=230

DMs*

NRBM 0 1.583724 1408726 1370890 1.335468 1.323758 1.315730
1 1.545686 1.365720 1326636 1.289981 1.277847 1.269525
2 1.454075 1.260844 1.218347 1.178278 1.164965 1.155818

NTBM 0 1.478201 1.284440 1241877 1201766 1.188445 1.179293
1 1.445540 1246642 1202726 1.161249 1.147452 1.137 968
2 1.367 168 1.154671 1.107075 1.061831 1.046712 1.036298

CMs?

NRBM 0 1.583751 1.408732 1370892 1.335469 1.323759 1.315730
1 1.545714 1365726 1326639 1289982 1.277848 1.269 525
2 1.454 105 1.260851 1.218351 1.178279 1.164965 1.155818

NTBM 0 1.478230 1.284447 1241881 1.201767 1.188445 1.179294
1 1.445570 1246648 1202730 1.161250 1.147453 1.137968
2 1.367199 1.154678 1.107078 1.061832 1.046713 1.036298

DMs and CMs stand for discrete models and continuous models, respectively.

Table 2. The estimated fundamental frequencies of the nanoscaled system vibrating in the z direction by

employing the NDMs and NCMs

(A = 16).

I, (nm) N=5 N=38 N =10 N=15 N =20 N =30

DMs
NRBM 0 1316675 1.312028 1.311097 1.310250 1.309975 1.309 788
1 1270503 1.265684 1264719 1.263841 1.263555 1.263361
2 1.156 890 1.151591 1.150530 1.149563 1.149250 1.149036
NTBM 0 1.180363 1.175064 1.174002 1.173036 1.172722 1.172 508
1 1.139075 1.133582 1.132481 1.131479 1.131153 1.130932
2 1.037512 1.031474 1.030264 1.029161 1.028803 1.028 563

CMs
NRBM 0 1.316 675 1.312028 1.311097 1.310250 1.309975 1.309 788
1 1270503 1.265684 1264719 1.263841 1.263555 1.263361
2 1.156 890 1.151591 1.150530 1.149563 1.149250 1.149036
NTBM 0 1.180363 1.175064 1.174002 1.173036 1.172722 1.172508
1 1.139076  1.133582 1.132481 1.131479 1.131153 1.130932
2 1.037512 1.031474 1.030264 1.029 161 1.028 80  1.028 560

increase of the nonlocal parameter. As it can be seen, the
effect of this parameter on nanosystems with higher slen-
derness ratio is more apparent. In other words, by growing of
the slenderness ratio, variation of the nonlocal factor would
have less influence on the variation of the fundamental fre-
quencies. As shown in figure 4, the estimated results by the
NRBM are higher than those estimated by the NTBM. For
A1 = 8 and 18, the relative error between the results of the
NRBM and those of the NTBM are about 34% and 10%,
respectively. Actually, the NRBM-based plotted results
approach to those obtained on the basis of the NTBM as the
slenderness ratio magnifies.

In figure 5, the fundamental frequencies of the vertically
aligned DWCNTs for both lateral vibrations are depicted in
terms of the number of nanotubes. The results of the con-
tinuous models based on the NRBM and NTBM for isolated
nanosystems from the surrounding elastic medium are given
for the three values of the slenderness ratio (i.e. A = 8, 16 and
24). The demonstrated results show that the z-directional
fundamental frequency, especially for a nanosystem with a
lower number of nanotubes, is greater than the y-directional
frequency. The reason for this is the stronger vdW force is in
the z direction with respect to that in the y direction, which
results in more in-plane stiffness. Additionally, by an increase
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Figure 4. Effect of the nonlocal parameter on the bilateral fundamental frequencies for different values of the slenderness ratio: (...) NRBM,

(—) NTBM; (o) A\, = 8, () A\ = 12, (A) A\, = 18; N = 200.

Table 3. The estimated fundamental frequencies of the elastically confined nanoscaled system vibrating in the z direction using NDMs and
NCMs for different levels of the nanotube’s length and various values of the transverse and rotational stiffness of the nearby medium

N4 N2
(N = 30, K% = (%) KR KR = (%) KR, I = 12 nm).

I, K =0 K =0
(mm) K =0 K;=50 K'=100 K ' =0 K'=50 K'=100
L, K®=0 K*®=0
(m)  KF=0 K*=50 K*=100 K*F=0 KF=50 K*=100
DMs
NRBM 8 2.064 9440 2.1135242 2.1608745 2.0649440 2.9376515 3.562 8723
10 14536491 1.5250220 1.5930030 1.4536491 2.2527953 2.812 0608
12 1.071 2313 1.168 5448 1.2580970 1.0712313 1.8083677 2.308 4278
NTBM 8 1.708 3565 1.7708211 1.8309642 1.708 3565 2.018 6769 2.142 7654
10 1.268 4307 1.3523444 1.4311027 1.2684307 1.6136828 1.746 3209
12 0.968 0621 1.076 6377 1.1749278 0.968 0621 1.3300893  1.463 5568
CMs
NRBM 8 2.0649440 2.1135243 2.1608745 2.0649440 2.9376515 3.562 8723
10 1.4536492 1.5250221 1.5930031 1.4536492 2.2527953 2.812 0609
12 1.0712315 1.168 5449 1.2580971 1.0712315 1.8083678 2.308 4279
NTBM 8 1.708 3565 1.7708212 1.8309643 1.708 3565 2.0186770 2.142 7655
10 1.268 4308 1.3523445 1.4311028 1.2684308 1.6136829 1.746 3210
12 0.968 0622 1.0766378 1.1749280 0.968 0622 1.3300894 1.463 5569

of the number of nanotubes, the difference between the fun-
damental frequencies decreases. As it is observed in the
plotted graphs, the in-plane frequency reduces by magnifying
the number of nanotubes, which is more visible for mem-
branes with a higher slenderness ratio. For out-of-plate
vibrations, the fundamental frequency is less affected by the
number of nanotubes. Further, the relative difference between
two proposed models varies slightly with increasing of the
number of nanotubes. Considering the effect of shear defor-
mation in the NTBM, as the graphs show, NTBM’s plots are

16

lower than those of the NRBM. According to the plotted
results, the NRBM can generate the NTBM’s results for the
slenderness ratios of 8 and 24 with relative errors of less than
34% and 6%, respectively.

In this part, the role of the slenderness ratio in the
nanosystem’s free dynamic response are systematically
examined. In figure 6, the frequencies associated with the
lateral directions are plotted for membranes with 7, 10, and 30
DWCNTs using proposed nonlocal continuous models. It is
revealed from the demonstrated graphs that growing of the
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slenderness ratio leads to the decreasing of the fundamental
frequencies. In contrast to the results of the out-of-plane
vibrations, the in-plane fundamental frequency of nanosys-
tems follows a decreasing trend for A < 45. By magnifying
the slenderness ratio in the range of A > 45, the estimated
frequencies by both NRBM and NTBM grow with a moderate
slope. This issue becomes more pronounced for vertically
aligned membranes of DWCNTs with lower numbers of
nanotubes. Such a vibrational behavior is related to the
strengthening of the in-plane vdW forces by increasing of
the slenderness ratio. Actually for the increasing branches of
the plots, the reduction effect of frequencies by a growth
of the slenderness ratio is lesser than the increasing effect of
the natural frequencies due to the growth of the vdW forces.
According to the presented results, for low slenderness ratios,
the NRBM’s frequencies are higher than those of the NTBM.
As this ratio increases, the differences between the results of
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the NRBM and those of the NTBM would reduce. Such a
trend action is mainly related to the greater impact of the
shear deformation on the fundamental frequencies in the
lower slenderness ratios. On the other hand, in vertically
aligned membranes of DWCNTs with low slenderness ratios,
the effect of the number of nanotubes on their free vibration is
fairly negligible.

One of the parameters affecting nanosystem vibrations is
the distance between nanotubes. In figures 7(a)—(c), the
influence of the nanotubes spacing on the fundamental fre-
quencies for three small-scale factors (i.e. ega = 0, 1 and
2 nm), and membranes consisting of 5, 10, and 20 DWCNTs
have been investigated. The intertube distance varies from
2ty + 3th to 2, + Sth. By examining the results, it is found
that the fundamental frequency pertinent to vibration in z
direction decreases by increasing of the intertube distance up
to 21, + 3.2th. The reason for such a complex behavior can
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be attributed to the reduction of the coefficient of vdW forces
by enlarging the intertube distance up to 2r,, + 3.2th. Sub-
sequently, as such a distance grows more, the vdW force
would also develop gradually, resulting in an increase in the
fundamental frequency. As the intertube distance becomes
greater than 2r,, + 4th, the vdW force and the frequency vary
slightly due to the variation of the intertube distance. In fact,
for relatively large intertube distances, the dynamic interac-
tions of nanotubes would lessen, and each nanotube vibrates
almost independently from its neighboring nanotubes. Unlike
the z-directional results, the vdW force along the y direction
would vary slightly by growing the intertube distance, so its
corresponding fundamental frequency first increases slightly
and then goes on steady. As the graphs in figures 7(b) and (c)
display, with increasing the number of nanotubes, both lat-
erally fundamental frequencies as well as their variations in
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terms of the intertube distance would reduce. This fact is so
obvious in figure 7(c).

Another parameter whose influence on the free transverse
dynamic response of the vertically aligned single-layered
DWCNTs is going to be discussed is the mean radius of the
consisting nanotubes. In figure 8, the graphs of such fre-
quency are plotted for vibrations in two directions, y and z.
The obtained results are for membranes consist of DWCNTs
with three lengths of 10, 15 and 25 nm. According to the
plotted results, the frequencies of both lateral directions rise
by growing of the mean radius of the consisting nanotubes,
which is clearly seen in short-length nanotubes. Due to
the fact that the coefficient of the in-plane vdW forces and the
flexural stiffness of the consisting nanostructures increase
with the increase of the nanotube radius, the increase in
the fundamental frequencies due to the increase in the nanotube’s



Phys. Scr. 95 (2020) 035221

K Kiani and H Pakdaman

2.7
L o
24 o
(0] ul
D o
S =
= ; ;
v>.:2.1 _—“G’_‘—_‘O_——::_—é
S JYS g Ot e
L - S
ALl B
AcoollEe
1.8 7 oA
,"'A”—‘
,—"A’——
,—’A—“
AT
L5 ‘ ‘
0 15 35 50
I?R
t

2.7
o
o
o 0
247 o o
m]
u -
_-o-77T
< e R}
T .o BT
) 2.13 é—”’—_—e"
R A
——‘A’_‘—
_—"A‘—‘
,—’A“’
1.8k--
15 : :
0 15 35 50
I?R

Figure 9. Effect of the matrix’s transverse stiffness on the bilateral fundamental frequencies for different nonlocal parameters: (...) NRBM,
() NTBM; (0) [,=0,(0) =1, (A) ,=2mm; K, =0, N=5, \; = 12.

3.8
.
3.3f o A
o
o A
~ o
= ;
2.77 . B
b_ o A
= g
38 T P
D - -
A o llge-C il
2 Lo-Tll-er ]
‘,;"”,»Ei"/ A --mTT @
/’A—
o
1.4 : :
0 15 35 50
ER

3.8
i
o N
3.3F o’ q
o A
o
N : .
s ©) A
= 27 o
. A“ —e’_‘__—g:::::_[j
m ol la-mm T
T~ e a
21970 - ]
4’—&——‘
s
1.5 : !
0 15 35 50
R

Figure 10. Effect of the matrix’s rotational stiffness on the bilateral fundamental frequencies for different nonlocal parameters: (...) NRBM,
(—)NTBM; () I, =0,(0) L, =1, (A) L, =2nm; K, =0, N =5, \; = 12.

radius is interpreted. On the other hand, by enlarging the length
of the nanotubes, the growth rate of the fundamental frequencies
decreases, and the relative difference between the results of
the suggested models lessens (for example, in the case of
I, = 25 nm, these differences are lesser than 4%).

In this part, only the effect of the transverse stiffness of
the matrix (K, = 0) on the fundamental frequencies of the
vertically aligned membranes of DWCNTS is of interest. As
shown in figure 9, the increase in the lateral stiffness yields an
increase of the total stiffness of the elastically embedded
nanosystem, which increases the fundamental frequencies of
the nanostructure. Further investigations reveal that due to the
presence of stronger vdW force in the z direction, the in-plane
frequencies are commonly greater than the out-of-plate fre-
quencies. Increasing of the small-scale parameter also reduces
the fundamental frequencies, irrespective of the transverse
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stiffness of the surrounding matrix. Generally, the NTBM’s
results are lower than the NRBM’s results. The in-plane
vibrational analyses of the nanosystem show that in the case
of K, = 0 and for three levels of the small-scale parameter
(epa = 0, 1, and 2 nm), the NRBM can reproduce the results
of the NTBM with relative error lower than 15.5%, 15% and
14% respectively. While in the case of KX = 50, such relative
errors approach 19%, 18.5% and 16.5%, respectively.
Herein, the effect of rotational stiffness of the matrix on free
vibration behavior of the nanosystem is examined. In figure 10,
the fundamental frequencies as a function of rotational stiffness
of the surrounding medium have been demonstrated when the
transverse stiffness of the matrix is set equal to zero. As it can be
seen, the fundamental frequencies of the nanostructure would
grow as the rotational stiffness increases. It means that increas-
ing of the rotational stiffness of the matrix leads to an increase of
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the whole lateral stiffness of the elastically embedded nanosys-
tem. The rate of variation of the predicted frequencies by the
NRBM, in contrast to the other model, is more rapid. Further,
the role of stiffness of the nanoscale system on the free vibration
on the basis of the NRBM is more noticeable than that of the
NTBM. In this section, as with previous results, the results of the
NRBM model are higher than the NTBM model. In addition, the
increase in the small-scale parameter leads to the reduction of the
fundamental frequencies for all considered values of the rota-
tional stiffness. The obtained results of the in-plane vibrational
analysis indicate that for K, = 0, and at each considered level of
the small-scale parameter (i.e. epa = 0, 1 and 2), the NRBM
model could generate the results of the NTBM with relative
errors lower than 16%, 15% and 14%, respectively, while in the
case of K, = 50, these relative errors in order are about 43%,
46% and 58% for the above-mentioned small-scale parameters.

The major advantages of the proposed models are as: (i)
the high computational efforts of the atomistic-based approa-
ches for mechanical analysis of the understudy nanosystem are
extremely reduced by using nonlocal continuum-based models;
(ii) the influences of both nonlocality and shear effects on the
free vibration of the nanosystem are revealed and explained,;
(iii) the proposed nonlocal continuous models would be very
useful for highly populated nanosystems in which the nonlocal
discrete models suffer from high computational costs; (iv) the
suggested models would be beneficial for optimal design of
vertically membranes of DWCNTs since the presented graphs
for the influences of various factors on its vibrational behavior
are now clearly available. The main limitations of the presented
models are as: (i) only linear and transverse vibrations of the
nanosystem are addressed by the suggested models; (ii) the
nonlinear terms of the dynamical part of the resultant van der
Waals forces have been excluded; (iii) the inter-tube friction has
not been taken into account in the lateral vibrations of the
nanosystem. To fill these gaps, more sophisticated models
should be developed by researchers in the field of applied
physical /mechanical sciences.

5. Concluding remarks

The transverse free dynamic response of vertically aligned
single-layered DWCNTs embedded in an elastic matrix were
investigated in some detail. In the context of the nonlocal
elasticity theory of Eringen, the vibrational behavior of the
nanosystem was modeled using both discrete and continuous
models. The results show that the continuous models can
appropriately reproduce the natural frequencies of the discrete
models. The efficiency of the suggested continuous models in
estimating fundamental frequencies of nanosystems with a high
number of DWCNTs is proved numerically and explained. The
influences of crucial geometry parameters, nonlocality, and
matrix’s stiffness on the natural frequencies were displayed in
some detail. The importance of the shear deformation effect on
the free dynamic response was also highlighted and explained.

The suggested models can be also exploited for the
nonlocal vibrational analysis of more complex configurations,
including orthogonal membranes as well as three-dimensional
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jungles of vertically aligned DWCNTs. The work on these hot
topics can be followed by interested scholars and investiga-
tors in the near future.
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