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Abstract
Local symmetry transformations play an important role for establishing the existence and form of
a conserved (Noether) current in systems with a global continuous symmetry. We explain how
this fact leads to the existence of linear relations between Noether currents of distinct global
symmetries that coincide on the local level, thus generalizing the well-known relationship

= ´L r p between momentum p and angular momentum L. As a byproduct, we find a natural
interpretation for the discrepancy between the canonical and metric energy–momentum (EM)
tensors in theories of particles with spin. A symmetric EM tensor can thus be obtained from the
Noether procedure without adding any ad hoc corrections or imposing additional constraints
such as gauge invariance in Maxwell’s electrodynamics.
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1. Introduction

The link between symmetry and conservation laws, dis-
covered by Noether [1], underpins much of our understanding
of the fundamental laws of nature. An excellent historical
overview of the subject was given by [2], to which we refer
the reader for more details; see also [3] for a gentle
introduction.

In this note, we revisit the application of Noether’s ideas
to classical field theory. Our starting point is a simplified
derivation of the Noether current associated with a given
global symmetry of the action, in which one identifies the
current with the help of a local, coordinate-dependent trans-
formation. This approach, sometimes attributed to Gell-Mann
and Lévy [4], is well established in standard textbooks on
quantum field theory [5].

We consider the general class of theories whose action S
is expressed as a spacetime integral of a Lagrangian density
L that itself is a local function of a set of fields fA and their
derivatives. Suppose that the action is invariant under some
global transformation of both the fields and spacetime coor-
dinates, denoted collectively as x. Now perform an infinite-
simal transformation whose parameter ( ) x is allowed to
depend on the coordinates, only assuming that for constant

( ) = x the transformation reduces to the assumed global

symmetry. The variation of the action under such a trans-
formation then necessarily depends on ( ) x only through its
derivatives, and by integration by parts can be brought to the
form1

( ) ( ) ( )òd = ¶m
mS x J x xd . 1

Here Jμ(x) is the Noether current associated with the assumed
global symmetry. The Hamilton principle dictates that for
fields satisfying the equation of motion (‘on-shell’ fields),
δS=0 for any infinitesimal variation of the fields, in part-
icular for the one induced by the performed local transfor-
mation. This implies that the Noether current is conserved on-
shell, ¶ =m

mJ 02.
The master equation (1) constitutes the starting point for

the rest of the paper. In section 2 we discuss ambiguities in
the definition of the Noether current, and list several explicit
expressions for the current under increasingly relaxed
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1 For the sake of simplicity, we will ignore boundary terms arising from
integration by parts. This can be justified for instance by assuming that the
integration is performed over the whole spacetime and all the fields drop to
zero sufficiently fast at infinity.
2 We use relativistic index notation along with Einstein’s summation
convention, but we make no a priori assumptions about the spacetime
symmetry: all the general results presented below are valid for relativistic and
nonrelativistic systems alike.
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assumptions. This section does not contain any new material,
yet it offers a more general treatment than many introductory
texts on the subject. The core of the paper consists of
sections 3 and 4, which approach the relations between
Noether currents of locally identical symmetries [6] following
two similar but complementary methodologies. A collection
of examples is worked out in section 5.

The important case of the energy–momentum (EM)
tensor is covered separately in section 6. It is a common lore
that in theories of particles with spin, the canonical EM tensor
is generally not symmetric and needs to be ‘improved’ in
order to match the ‘metric’ EM, obtained by coupling the
system to a background geometry in a generally covariant
fashion. Here we show that the discrepancy between the two
EM tensors arises from a mismatch between the respective
local translations underlying their derivation. With some care,
a symmetric EM tensor can be obtained from the canonical
Noether procedure without further ‘improvements.’

2. Some explicit expressions

It is clear from equation (1) that the Noether current is only
defined up to addition of terms whose divergence vanishes for
all field configurations (‘off-shell’). Moreover, adding a term
to Jμ that vanishes identically on-shell has no effect on the
ensuing conservation law. The same conservation law there-
fore corresponds to a whole equivalence class of currents,

¯ ¯+ +m m mJ J J1 2 , where ¯¶ =m
mJ 01 off-shell and ¯ =mJ 02 on-

shell [7]. We will demonstrate below that the ambiguity of the
Noether current with respect to ¯mJ2 can be traced to the
ambiguity in the choice of the local transformation, employed
to produce the variation(1). This requires, however, a suffi-
ciently general notion of a local symmetry transformation.
The ambiguity with respect to ¯mJ1 , on the other hand, is
inevitable when equation (1) is used to define the Noether
current.

To start, let us at first for the sake of simplicity assume
that the Lagrangian density L depends only on the fields
fAand their first derivatives f¶m A,L L( )f f= ¶m x, , , where
the argument x indicates possible explicit coordinate
dependence. Now perform the following infinitesimal local
transformation of the fields and coordinates,

( ) ( ) ( ) ( )
( ) ( ) ( )

f f x
w

¢ ¢ = +

¢ = +m m m





x x x x

x x x x

,

. 2
A A A

Under this transformation, the action varies by3

L L
L

L

⎧⎨⎩
⎫⎬⎭

( )

( )
[ ( ) ( ) ] ( )

òd w w
f

x

f
x w f

= ¶ + ¶ +
¶
¶

+
¶

¶ ¶
¶ - ¶ ¶

m
m m

m

m
m m

n
n

  

 

S xd

. 3

A
A

A
A A

The first term comes from the Jacobian of the coordinate
transformation, the second from the explicit coordinate

dependence of the Lagrangian, the third from variation of
fA, and the last from variation of f¶m A. Upon collecting
terms proportional to ( ) x and ( )¶m x , we readily extract
both the condition for the existence of global symmetry of
the action and the corresponding Noether current. The
former reads

L L
L

L

( )
( )

( )
( ) ( )

f
x

f
x w

f
f w

¶
¶

+
¶

¶ ¶
¶ + ¶

-
¶

¶ ¶
¶ ¶ = ¶

m
m m

m

m
n m

n
m

mK , 4

A
A

A
A

A
A

where K μ(x) is some vector function. This expresses
invariance of the Lagrangian up to a divergence, a concept
that was first clearly formulated by Bessel-Hagen [8], but
apparently goes back to Noether herself [2]. In the follow-
ing, we will refer to equation (4) as the ‘invariance condi-
tion.’ The Noether current then takes the form

L
L

L⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )
f

x d
f

f w=
¶

¶ ¶
+ -

¶
¶ ¶

¶ -m

m
n
m

m
n

n mJ K . 5
A

A
A

A

Note that despite the limitation on the number of derivatives
acting on the fields in the Lagrangian, this result is already
pretty general. First, it allows for explicit coordinate
dependence of the Lagrangian. Second, we did not
require that the functions ξA(x) depend only on the fields
and ωμ(x) only on the coordinates. Both of these can depend
on the coordinates, on the fields as well as on their
derivatives.

It is now easy to check that both the invariance condi-
tion(4) and the Noether current(5) remain unchanged under
the following simultaneous replacements

L

¯ ¯
¯ ( )

w w w x x w f
w

 +  + ¶
 +

m m m m
m

m m mK K

, ,

, 6
A A A

where w̄m is an arbitrary function of the coordinates, fields and
their derivatives. This indicates a redundancy in the descrip-
tion of the same physical symmetry: formally a whole family
of transformations gives the same Noether current [9]. The
reason for this is that the spacetime coordinate xμ is merely a
dummy variable that is integrated over. The action should
rather be thought of as a functional of the fields only; rede-
finitions of the coordinate cannot have any physical content
[10]. In particular, one can always eliminate ωμ by setting
w̄ w= -m m, and thereby arrive at an equivalent description of
the same physical symmetry in terms of a transformation of
fA alone,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f f x w f¢ = + - ¶m
m x x x x x x x . 7A A A A

This underlines the importance of symmetry transformations
that depend on the derivatives of the fields. Note that such
‘generalized symmetries’ were introduced already by Noether
[1]; equation (7) is now known as the ‘evolutionary form’ of
the symmetry transformation [11].

We will now generalize the discussion by allowing for
Lagrangians containing arbitrarily high derivatives of the
fields. To simplify the result, we will set ωμ=0, as this can
always be absorbed into a redefinition of ξA as we just argued.

3 In L¶m , the partial derivative is understood to act just on the explicit
coordinate dependence of the Lagrangian.
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The invariance condition on the Lagrangian then takes a very
simple form, generalizing equation (4),

L

( )
( )


å f

x
¶

¶ ¶ ¶
¶ ¶ = ¶

m m
m m m

m

=

¥

K . 8
n A

A
0 n

n

1

1

By inspecting the variation of the action under a local sym-
metry transformation, we then get the corresponding expres-
sion for the Noether current. After some manipulation, one
thus finds

L⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( )

( )
( )

( )





å å

f
x

=- + -

´ ¶ ¶
¶

¶ ¶ ¶ ¶
¶ ¶

m m

m m
m m m

m m

=

¥

=

+

+

J K 1

.

9

n k

n
k

A
A

1 1

1

k

n

k n2

2

1

This result dates back at least to 1966 [9, 12], even though
higher-order derivatives of fields were implicitly allowed
already in the original work of Noether [1].

For yet another line of generalization, note that a general
local symmetry transformation can be cast as a series in the
derivatives of the parameter ( ) x . The leading term with no
derivatives, displayed in equations (2) or(7), defines the
corresponding global symmetry. Higher-order contributions,
which by construction do not affect the global symmetry, may
however be present. To see what this implies for the Noether
current, let us replace the first line of equation (2) with

( ) ( ) ( ) ( )

( ) ( ) ( )å

f f x

s

¢ ¢ = +

+ ¶ ¶m m
m m

=

¥





x x x x

x x , 10

A A A

n
A

1

n
n

1
1

where ( )sm m xA
n1 is a set of tensor functions of the coordi-

nates, fields and their derivatives. Since the added terms only
depend on the derivatives of ( ) x , they do not affect the
invariance condition on the action. Upon some integration by
parts, one can directly extract the corresponding contribution
to the Noether current,

⎛
⎝⎜

⎞
⎠⎟∣ ( ) ( ) å s

d
df

= + - ¶ ¶m m
s m m

mm m
=

=

¥
+J J

S
1 , 11

n

n
A

A
0

1

1
n

n
2

2

where δS/δfA is the variation of the action with respect to fA.
As the latter defines the equation of motion, it is obvious that
the new contributions to the current vanish on-shell for any
choice of sm m

A
n1 .

This finishes our discussion of ambiguities in Noether
currents and the associated local symmetry transformations.
Equations (5), (9) and(11) will serve as a reference in
sections 5 and 6 where we work out concrete examples.

3. Relations among currents

Some (typically spacetime) symmetries, albeit distinct glob-
ally, may not be distinguishable locally [13]. The simplest
example is that of spatial rotations and translations, which
locally both correspond to a coordinate shift. Since the
Noether current of a global symmetry is essentially

determined by its localized version, as we saw in the previous
section, we expect that relations between local symmetries
will be reflected in relations between the corresponding
Noether currents.

To see how this comes about, consider two sets of
symmetries of the same action, characterized by infinitesimal
parameters òα1 and  a

2
4. Suppose that the two classes of

symmetries are locally identical, that is, there is a set of
coefficients ( )af xa such that a transformation of the first type
is equivalent to a transformation of the second type with the
choice ( ) ( ) ( )= a

a x f x xa a
2 1 . The variation of the action under

( ) xa
2 reads, by equation (1),

( ) ( )ò òd = ¶ = ¶ + ¶m
m

m
a m

a a
m a  S x J x J f fd d , 12a

a
a

a a
2 2 2 1 1

which, due to the assumed local equivalence of the two
symmetries, should be equal to

( )òd = ¶a
m

m
aS x Jd . 131 1

This is only possible if

( )¶ = ¶m
m a m a

mJ f N 14a
a

2

for some vector function ( )a
mN x ; we will refer to equation (14)

as the ‘integrability condition.’ Integration by parts then leads
to a linear relation between the currents,

( )= -a
m

a
m

a
mJ f J N , 15a

a1 2

modulo the ambiguity due to adding a vector function whose
divergence vanishes off-shell.

Equation (15) is our main result. We stress, however, that
equation (14) imposes a nontrivial constraint, as it has to hold
off-shell. As such, it is not a mere consequence of
equation (15) and current conservation. In fact, by taking a
divergence of equation (15) and using the integrability con-
dition(14), we obtain another off-shell identity,

( )¶ = ¶m a
m

a m
mJ f J . 16a
a1 2

This underlines the close relation between the conservation
laws stemming from the two symmetries.

The correction term a
mN spoils somewhat the elegance of

the result(15), which otherwise copies the relation between
the associated symmetry transformations. It is therefore nat-
ural to ask whether the ambiguity in the definition of the
currents could be exploited to remove a

mN . This is unfortu-
nately not always the case, as shown by an explicit counter-
example in section 5.1.

4. Gauge invariance approach

The Noether current can also be derived following an alter-
native approach that likewise makes use of the local sym-
metry transformation. The starting point is the assumption
that the Lagrangian density can be modified by adding a
vector field Aμ(x) so that the action is invariant under the local
rather than just global transformations. Technically, this

4 The below-outlined argument follows closely the presentation in [6].
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amounts to assuming that the original action S[f] is replaced
with a new action ˜[ ]fS A, such that ˜[ ] [ ]f f=S S, 0 and that
the new action is invariant under a simultaneous transfor-
mation of the original, ‘matter’ fields fA as in equation (7) as
well as of the gauge field Aμ. We further assume that the
transformation of the gauge field takes the generic form

( ) ( ) ( ) ( ) ( ) ( ) ( )¢ = + X + S ¶m m m m A x A x x x x x ; 17

the notation is chosen to resemble that used in equation (10).
The variation of the new action to first order in ( ) x

consists of contributions from varying fA(x) and Aμ(x),

˜ ˜ ˜

˜ ˜
( )

[ ( ) ( ) ( ) ( )]
( )

ò

d d d

d
d

d

= +

= + X + S ¶

f

f
m

m m 

S S S

S x
S

A x
x x x xd .

18

A

Upon setting Aμ= 0, the term ˜dfS must reproduce the var-
iation of the action in the ungauged theory, equation (1). The
assumed gauge invariance of S̃ then implies that there must be
a vector function Rμ(x) such that

˜
( )

( ) ( ) ( )d
d

X = -¶
m

m m
m

=

S

A x
x R x . 19

A 0

An explicit expression for the Noether current follows in turn,

( ) ( )
˜
( )

( ) ( )d
d

= -S -m

m

m

=

J x x
S

A x
R x . 20

A 0

The alternative approach presented here is completely
equivalent to the derivation of the Noether current given in
section 1, as long as the global symmetry in question can be
gauged. As a concrete application of this formalism, we will
rederive the main result of section 3, equation (15). To that
end, introduce a set of gauge fields ( )mA xI and parameterize
their transformation under the two classes of symmetries with
infinitesimal parameters ( )a x1 and ( ) xa

2 by the functions
( )Xam xI1 , ( )Sa xI1 and ( )X m xa

I2 , ( )S xa
I2 . Assuming that the gauge

transformations of ( )mA xI are identical provided one identifies
the infinitesimal parameters as ( ) ( ) ( )= a

a x f x xa a
2 1 ,5 we

obtain from equation (17)

( ) ( )

¢ - = X + S ¶

= X + S ¶ + S ¶
m m m m

a
a m m a a m

a

 

 

A A

f f f . 21

I I a
a
I

a
I a

a
a
I

a
I a

a
I a

2
2 2

2

1
2 2 2

1

We thus identify the coefficient functions asS = Sa af
I a

a
I1 2 and

X = X + S ¶am a m m af fI a
a
I

a
I a1 2 2 . The condition(19) applied to the

first symmetry transformation then takes the form

˜ ˜
( )d

d
d
d

X + S ¶ = -¶
m

a m
m

m a m a
m

= =

S

A
f

S

A
f R . 22

I
a

a
I

A
I a

I a

A

2

0

2

0

1

Using equations (19) and(20) applied to the second sym-
metry transformation, this can be rewritten as

( )
( ) ( )

-¶ =- ¶ - + ¶

= -¶ - ¶
m a

m
a m

m m m
m a

m a
m m

m a

R f R J R f

f R J f . 23

a
a a a

a

a
a a

a
1 2 2 2

2 2

Consistency now leads to the integrability condition(14),
whence we obtain = +a

m
a

m
a
mR f R Na

a1 2 . Plugging this back
into equation (20) together with the relationS = Sa af

I a
a
I1 2 then

finally reproduces the relation(15) among the currents.

5. Examples

In order to illustrate the results and arguments of the preceding
sections, we will now work out several concrete examples of
internal and spacetime symmetries. For the sake of simplicity,
we will mostly consider theories whose Lagrangian density
depends just on the fields and their first derivatives.

5.1. Shift symmetries of a massless scalar

Consider the theory of a free massless scalar field as given by
the Lagrangian

L ( ) ( )f= ¶m
1

2
. 242

Its action is invariant under the following coordinate-depen-
dent transformation,

( ) ( ) ( )f f¢ = + + a
ax x a b x , 25

known as the ‘Galileon’ symmetry [14]. For the constant shift
parameterized by a, we have ξ=1 and the invariance con-
dition(4) is trivially satisfied with Kμ=0. According to
equation (5), the corresponding Noether current is f= ¶m mJ .
On the other hand, for the linear shift parameterized by bα, we
have x =a ax and the invariance condition(4) is satisfied
with d f=a

m
a
mK . The Noether current then reads =a

mJ
f d f¶ -a

m
a
mx by equation (5).

Observe that the local forms of the two symmetries in
this example are identical, as follows by setting

( ) ( )= a
aa x x b x . The integrability condition(14) where we

take fα(x)=xα then implies that d f=a
m

a
mN . The current

f d f= ¶ -a
m

a
m

a
mJ x then follows from equation (15) at once.

This example also shows that it is not always possible to
remove the correction term a

mN in equation (15) by exploiting
the ambiguity in the definition of the Noether currents.
Indeed, suppose that there were improved currents ˜ ( )mJ x and
˜ ( )a
mJ x such that ˜ ( ) ˜ ( )=a

m
a

mJ x x J x holds. By taking the
divergence and using the assumed on-shell conservation of
both currents, we arrive at the condition,

˜ ˜ ˜ ˜ ( )= ¶ = + ¶ =m a
m

a a m
m

aJ J x J J0 , 26

which makes both currents identically vanish on-shell.
Finally, let us use this example to illustrate the gauge

invariance method presented in section 4. The gauged version
of the Lagrangian density(24) reads

L ( ) ( )f= ¶ -m mA
1

2
, 272

5 This is a nontrivial assumption, requiring more than just that the two
physical global symmetries are locally identical. It demands implicitly that
the two symmetries can be simultaneously gauged by adding a single set of
gauge fields.
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and is invariant under a simultaneous local transformation of
the scalar and the gauge field,

( ) ( ) ( ) ( ) ( ) ( ) ( )f f¢ = + ¢ = + ¶m m m x x x A x A x x, . 28

The transformation of the gauge field has the form(17) with
Ξμ= 0 and Σ= 1. The condition(19) is then trivially satis-
fied with Rμ=0, and the general result for the current(20)
yields f= ¶m mJ .

How can we get the other current, a
mJ , from the same

Lagrangian and gauge transformation? We must match
equation (28) to a localized version of the linear shift with
parameter bα, i.e.to identify ( ) ( )= a

a x x b x . The transfor-
mation of the gauge field then becomes

( ) ( ) ( ) ( ) ( )¢ = + + ¶m m m a m
aA x A x b x x b x . 29

Matching this to equation (17) gives dX =m
a

m
a and S =a ax .

The consistency condition(19) then gives d f=a
m

a
mR , upon

which equation (20) reproduces the correct expression for the
current, f d f= ¶ -a

m
a

m
a
mJ x .

5.2. Spacetime translations

A shift of the spacetime coordinate, ¢ = +m m mx x a , can be
written in the form(2) with ξA=0 and w d=a

m
a
m; the index α

labels translations in different directions and aα plays the role
of the parameter of the transformation. The invariance con-
dition(4) is satisfied with Kμ=0 provided that the
Lagrangian density does not depend explicitly on the coor-
dinate, which will be assumed in the following without fur-
ther mentioning. The corresponding Noether current is the
canonical EM tensor,

L
L

( )
( )d

f
f= -

¶
¶ ¶

¶a
m

a
m

m
aT . 30

A
A

A generalization of this result to Lagrangians with derivatives
of higher order is trivial. Indeed, upon setting x f= -¶a aA A,
seeequation (7), the generalized invariance condition(8) is
satisfied with Ld= -a

m
a
mK , and equation (9) then gives a

general expression for the EM tensor,

L

L⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( )

( )
( )

( )





å åd

f
f

= - -

´ ¶ ¶
¶

¶ ¶ ¶ ¶
¶ ¶ ¶

a
m

a
m

m m
m m m

m m a

=

¥

=

+

+

T 1

.

31

n k

n
k

A
A

1 1

1

k

n

k n2

2

1

This important example of a Noether current will be discussed
in much more depth in section 6.

5.3. Spacetime rotations

For the sake of illustration, we now limit our discussion to the
simplest case of scalar fields. We can then again set ξA=0
and take the coordinate transformation as q¢ = - =m m mn

nx x x
q w+m ab

ab
mx 1

2
, where θαβ is an antisymmetric rank-two

tensor of infinitesimal transformation parameters and
w d d= -ab
m

a b
m

b a
mx x . The invariance condition(4) is satisfied

with Kμ=0 provided L[ ( )]f f¶ ¶ ¶ ¶m
n

A A, or equivalently
Tμν, is symmetric in the indices μ, ν, which is the case for

scalar fields6. Equation (5) then implies for the conserved
tensor current,

L
L⎡

⎣⎢
⎤
⎦⎥( )

( )

( )

h
f

f d d= -
¶

¶ ¶
¶ -

= -

mab mn

m

n a
n
b b

n
a

a mb b ma

M x x

x T x T . 32

A
A

This relation between the EM and angular momentum tensors
is not accidental. Local infinitesimal translations and rotations
coincide provided one identifies their parameters by

( ) ( ) ( )q=m
ab
m aba x f x x1

2
, where w d d= = -ab

m
ab
m

a b
m

b a
mf x x .

Next, we note that ¶ = -n
m

m ab
n

ab baT f T T vanishes provided
Tμν is symmetric. The integrability condition(14) is then
satisfied with =ab

mN 0, and equation (15) immediately tells us
that

( )= = -ab
m

ab
n

n
m

a b
m

b a
mM f T x T x T , 33

in agreement with the result obtained above directly from
Noether’s (first) theorem.

5.4. Dilatations

For a further illustration, let us return to the theory of a free
massless scalar field, equation (24). An infinitesimal dilatation
is a rescaling of the coordinate with infinitesimal parameter δ,

( )d¢ = +m mx x1 , so that ωμ(x)=xμ. Suppose that the scalar
field rescales simultaneously according to

( ) ( ) ( ) ( )f d f¢ ¢ = + Dx x1 , 34

so that ξ(x)=Δf. The invariance condition(4) is satisfied
with Kμ=0 provided that Δ=1−d/2, where d is the
dimension of the spacetime. Equation (5) then gives the
canonical dilatation current [15]

( )f f= + D ¶m n
n
m mD x T , 35

where the canonical EM tensor is given by the right-hand side
of equation (30).

In d=2 dimensions, the scale dimension Δ of the scalar
field vanishes and a local dilatation can be recovered from a
local translation with aμ(x)=f μ(x)δ(x) where f μ(x)=xμ.
Moreover, ¶ =n

m
m

nT f 0, hence the integrability condi-
tion(14) is trivially satisfied. Equation (15) then implies that
the dilatation current is related to the EM tensor by

= =m n
n
m

n
mnD f T x T , which agrees with the above explicit

calculation. Note that the EM tensor is sometimes ‘improved’
ad hoc so that the relation Dμ=xνT

μν holds [15]; our dis-
cussion of locally equivalent symmetries suggests that this
relation is only natural in two spacetime dimensions.

5.5. Galilei transformations

Until now, most of the discussed examples were explicitly
relativistic, and we even used consistently the four-vector
notation. However, our general results of course apply equally
well to nonrelativistic systems. For a concrete example,
consider a theory of a complex Schrödinger field ψ(x). This is

6 Here Lorentz indices are assumed to be lowered by the Minkowski metric
ημν and raised by its inverse ημν.
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usually equipped with the symmetry under a change of phase
of the field, ψ′(x)= yqei (x), which implies conservation of
the number of particles.

What really distinguishes nonrelativistic systems from
relativistic ones, however, is the invariance under Galilei
boosts as opposed to Lorentz transformations. Under a
coordinate boost ¢ = +x x vt with velocity v, the Schrö-
dinger field transforms as

( ) ( ) ( )( · )y y¢ ¢ = +x xt t, e , . 36v x vm ti 1
2

2

An infinitesimal boost takes accordingly the form
( ) ( ) ( )y y y¢ ¢ = -x x xt t mv x t, , i ,i

i
7, we can thereby identify

( ) ( )x y= -x mx xii i and ( )w d=m mx ti i , where the velocity v i

serves as the parameter of the transformation.
We will not attempt to write down a fully general

expression for the Noether current arising from invariance under
Galilei boosts. Instead, we will concentrate on its interplay with
Noether currents of other symmetries. A local infinitesimal
Galilei boost is equivalent to a combination of a local transla-
tion with ( ) ( )d=m ma x v x ti

i and a local phase transformation
with ( ) ( )q = -x mx v xi

i . In the language of section 3,
this corresponds to ( ) d=m mf x ti i and ˜ ( ) = -f x mxi i. By
equation (14), the EM tensor Tμν and the particle number
current Jμ must satisfy the integrability condition [16]

( )- = ¶m mT mJ N 37i i i0

with some vector function Nμi. By equation (15), the boost
Noether current Bμi then satisfies the relation

( )= - -m m m mB tT mx J N . 38i i i i

Whether or not the vector function Nμi(x) vanishes is a
dynamical question that can be answered by an analysis within
a concrete model. It can nevertheless be shown that Nμi=0
provided the spatial translation and phase symmetries of the
Schrödinger field can be simultaneously gauged as required by
the approach of section 4. Namely, by a slight generalization of
the argument therein, one can then deduce identities equivalent
to equations (37) and(38) with Nμi=0 [6]. A detailed dis-
cussion would, however, take us far beyond the scope of this
paper, as it would require the knowledge of the nonrelativistic
version of general coordinate invariance [17].

6. Energy–momentum tensor

The EM tensor is undoubtedly the most important example of
a Noether current. In section 5.2, we derived the canonical
EM tensor Tμν(x) using equation (9). However, a different
definition of the EM tensor is often used when the given set of
matter fields is (or can be) coupled to a background metric
tensor gμν(x) in such a way that the resulting action ˜[ ]fS g,
is invariant under general coordinate transformations. The

‘metric’ EM tensor is thus defined by

( )
˜
( )

( )q
d

d
=mn

mn h=

x
S

g x
2 , 39

g

where ημν is the actual (Minkowski) metric of the spacetime.
It is not a priori obvious how the tensors Tμν(x) and θμν(x)
are related, and it is in fact well known that they in general do
not coincide, notably when the theory contains fields with
spin (see [18] for a review of the various constructions of the
EM tensor).

As a simple example, consider the theory of a massive
vector field Bμ(x), defined by

L ( )= - -mn
mn

m
mF F m B B

1

4

1

2
, 402

where = ¶ - ¶mn m n n mF B B 8. The field Bμ is to be identified
with the matter field fA in equation (2), and using the identity
L ( )¶ ¶ ¶ = -m n

mnB F , we obtain from equation (30) the
canonical EM tensor,

L ( )h= + ¶mn mn ma n
aT F B . 41

The metric EM tensor is found by writing the action in a
generally covariant form. Skipping the well-known steps of
the calculation, we just quote the result,

L ( )q h= + +mn mn ma
a
n m nF F m B B . 422

Thanks to the antisymmetry of Fμν, we have

L ( )
( ) ( )

 h
q

+ ¶ - ¶
= - ¶ +

mn mn ma n
a a

ma n

mn n
a

ma m

T F B F B

B F m B , 432

where the symbol ;indicates equality up to a term whose
divergence identically vanishes off-shell. The expression in
the parentheses on the second line defines the equation of
motion for the vector field Bμ, and thus vanishes on-shell.
The Tμν and θμν tensors are therefore related, but not equal or
even physically equivalent.

The metric EM tensor(42) is distinguished from the
canonical EM tensor(41) by two appealing properties: the
symmetry in μ, ν and the dependence solely on Fμν in the
limit m→0. The problem how to ‘improve’ the canonical
EM tensor in order to reproduce these properties has a long
history, from a purely ad hoc argument [19] to more refined
approaches, typically invoking additional constraints to fix
the ambiguity in the EM tensor, especially the electro-
magnetic gauge invariance [20].

Here we wish to understand the relation between the
canonical and metric EM tensors using only translational
invariance, building on our understanding of the intimate
connection between the form of the Noether current and the
local symmetry transformation, used to obtain it via
equation (1). Naively, the metric EM tensor is exactly what
we would expect from the gauge-invariance-based approach
of section 4, which we claimed therein to be merely an
alternative way to derive the same canonical Noether current

7 Note that we use the relativistic convention where raising or lowering a
spatial index adds a minus sign.

8 The special case of m=0 is Maxwell’s electrodynamics in the absence of
sources of electric charge. We choose to work with the general massive case
in order to avoid confusion related to gauge invariance.
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as in section 1. How is it then possible that the canonical and
metric EM tensors do not coincide?

This naive expectation has two flaws, which suggest two
possibilities how to reconcile the canonical and metric EM
tensors. First, under general coordinate transformations, a
vector field (in fact, any non-scalar field) does not transform
according to equation (2) with ξA=0, which was the starting
point in the derivation of the canonical EM tensor in
section 5.2. Second, the transformation of the metric gμν
under general coordinate transformations does not match the
ansatz(17), on which our gauge invariance approach in
section 4 is based. Below we will show that: (i) it is perfectly
possible to obtain the symmetric EM tensor θμν using Noe-
ther’s canonical approach, provided that we start from a
suitably defined local translation; (ii) it is perfectly possible to
reproduce the canonical EM tensor Tμν using the gauge
invariance approach, provided that we express the generally
covariant action solely in terms of scalar field variables,
whose transformation properties match equation (2) with
ξA=0.

6.1. Metric EM tensor from Noether’s theorem

Under the infinitesimal general coordinate transformation
( )¢ = +m m mx x a x , a covariant vector field such as Bμ(x)

transforms as

( ) ( ) ( ) ( ) ( )¢ ¢ = - ¶m m n m
nB x B x B x a x . 44

This does not match equation (2), which does not contain any
derivatives of the transformation parameter. We therefore
have to resort to its generalization, equation (10). Upon
rewriting equation (44) as ( ) ( ) ( ) ( )s¢ ¢ = + ¶m m ma

n
n

aB x B x x a x ,
we can identify ( ) ( )s d= -ma

n
m
n

ax B x . This gives via
equation (11) the canonical EM tensor, corresponding to the
local translation of the field, defined by equation (44),

∣ ( )h s
d
d

q= +mn mn
s

na
la
m

l

mn
=T T

S

B
, 450

where we used the fact that ( )d d = - ¶ +m a
ma mS B F m B2 in

the last step.
This shows that the metric EM tensor θμν can be natu-

rally recovered from the canonical Noether procedure. There
is no ambiguity in the derivation apart from that expressed by
the ;relation; we merely insisted that the local form of the
symmetry transformation, used to deduce the EM tensor via
equation (1), matches the form of the general coordinate
transformation of the field.

6.2. Canonical EM tensor from gauged action

We would now like to apply the formalism developed in
section 4 to an action where spacetime translations are gauged
by coupling the matter fields to a background spacetime
geometry. To that end, we trade the metric gμν(x) for the
vielbein ( )me xa . This constitutes a set of fixed vectors, labeled
by the index a, forming a local basis at any spacetime point. It
is customary, though not mandatory, to require that the basis

be orthonormal, that is h=mn
m ng e ea b ab. The vector index μ of

the vielbein is raised and lowered using the spacetime metric
gμν, whereas the basis index a is raised and lowered using the
Minkowski metric ηab. The inverse relation h=mn m ng e eab

a b,
which expresses the completeness of the vielbein basis,
allows us to trade the metric for the covariant vielbein vec-
tors ( )me xa .

Under the infinitesimal general coordinate transformation
( )¢ = +m m mx x a x , the covariant vielbein transforms just like

the Bμ field in equation (44). This can be expressed equiva-
lently as

( ) ( ) ( )¢ = - ¶ - ¶m m a m
a a

a me x e x e a a e , 46a a a a

which takes the form of equation (17). We thus identify

( )X = -¶ S = -am a m a ae e, . 47a a a a

The absence of the background gauge field corresponds to
( ) d=m me xa a so that the consistency condition(19) is satisfied

trivially with =a
mR 0. The EM tensor is then given by

equation (20) as

( ) ( )
˜
( )

( )d
d

=a
m

a
m d=

T x e x
S

e x
. 48a

a
e

As follows from the derivation in section 4, this EM tensor
has to equal that extracted from the canonical procedure based
on equation (1), provided that the local symmetry transfor-
mations of the matter fields fA in the two approaches match.
To that end, it is important to realize that different local
symmetry transformations of the matter fields require differ-
ent forms of the generally coordinate invariant action ˜[ ]fS e, .

The metric EM tensor θμν is obtained via equation (48)
from a generally covariant action where the matter field Bμ is
a covariant vector, that is transforms according to
equation (44). Such an action can be taken as

( )
˜[ ]

( )

 ò= -

´ - -

m m

ma nb
mn ab

mn
m n

S B e x g

g g F F m g B B

, d

, 49

a

1

4

1

2
2

where h=mn m ng e eab
a b . In order to compute the variation of the

action with respect to the covariant vielbein me
a, one can

use the identities d d= -m m n
ne e e ea b a
b and    d d= m

me e e ea
a.

Equation (48) then yields the EM tensor(42) after a
straightforward computation.

The nonsymmetric EM tensor Tμν (41) can likewise be
obtained via equation (48) from a generally covariant action
where the matter field is a scalar, that is, transforms according
to equation (2) with ξ=0. This can be achieved by pro-
jecting Bμ on the vielbein to get ( ) ( ) ( )= m

mB x e x B xa a , and
analogously = ¶ - ¶m

m
m

mF e B e Bab a b b a. In this case, the gen-
erally covariant action can thus be taken as

( )˜[ ]

( )

 ò h h h= - -mS B e x e F F m B B, d .

50

a
a ac bd

ab cd
ab

a b
1

4

1

2
2
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It is then a matter of a straightforward exercise to show that
equation (48) indeed leads to the canonical EM tensor(41).

7. Summary and conclusions

The (first) Noether theorem predicts the existence of a con-
served current in a system with a global continuous sym-
metry. In this article, we showed that additional insight may
be gained by inspecting the role of the corresponding local
field transformations. While not being a symmetry of the
action on their own, these provide a useful tool to identify the
Noether current. Moreover, they illuminate part of the
ambiguity associated with the definition of the current.

The emphasis on local symmetry transformations led us
naturally to certain linear relations between currents of dis-
tinct global symmetries that coincide on the local level. While
none of the examples worked out in section 5 is new, our
general argument provides a unified framework for their
understanding. Moreover, the utility of the master form-
ula(15) goes beyond the examples of section 5: it has been
used for instance to analyze the low-energy scattering of
massless particles in certain class of exceptional field the-
ories [21].

Finally, our analysis of the correspondence between
different local symmetry transformations associated with
the same global symmetry, and different forms of the
Noether current of this symmetry, sheds (what we believe to
be) new light on the infamous discrepancy between the
canonical and metric EM tensors in theories of particles
with spin. It turns out that the discrepancy is non-existent as
long as one uses a fixed form of the local translation con-
sistently. In particular, this means that the symmetric EM
tensor can be naturally recovered from the canonical Noe-
ther procedure. Somewhat more surprisingly, the naive
canonical EM tensor can likewise be recovered from a
generally covariant field theory, obtained by coupling the
system to a background geometry. We believe that these
observations are of certain pedagogic value for both stu-
dents and professionals, as they refute the lore that the
canonical EM tensor needs an ad hoc ‘improvement’ to
match the metric EM tensor.
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