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Abstract
Digital adiabatic passage in multi-pod and multi-lambda systems is investigated. We show that
using digital variation of control fields, one can create a coherent superposition of ground states
in multi-state systems. In order to design the propagator at every step, the multi-state systems are
simplified to a three-state system using Morris-Shore transformation. In this method, the number
of steps is arbitrary and by increasing the number of steps the population of excited states
decreases to negligible small values. Sensitivity of the final fidelity with respect to exact value of
tmax decreases by increasing the number of steps.
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1. Introduction

In recent years, creation of coherent superposition of states
due to its application in quantum processes such as quantum
information processing [1] and nonlinear optics [2], has been
considered extensively. Multi-pod and multi-Lambda lin-
kages are two important quantum systems in which coherent
superposition of states can be generated. In a multi-pod
linkage, an arbitrary number of ground states are coupled to
an excited state and the multi-lambda linkage pattern is
composed of an initial ground state, an arbitrary number of
excited states and the target ground states such that the
number of excited states is equal to the number of target
states. In resent years, STIRAP (stimulated Raman adiabatic
passage) [3–9] and π-pulse [10] techniques have been
developed and are used to create a coherent superposition of
ground states in multi-pod and multi-lambda systems
[11–15].

Shapiro et al. [16] proposed a technique, named piecewise
adiabatic passage (PAP), Which can be used to transfer the
population in three-state Λ-like systems by a train of femtose-
cond pulses. Rangelov and Vitanov [17] proposed another
technique for producing complete population transfer in three-
state Λ-like systems by a train of coincident pulse pairs, in

which for large number of pulse pairs the maximum population
in the middle state is reduced to a negligible small value.
Recently, the proposed technique in [17] has been extended to
multi-state systems [18–20], nuclear state population transfer
[21, 22] and hyperbolic-tangent pulses [23]. Vatikus and
Greentree [24] proposed another scheme of adiabatic passage,
with a stepwise change of the fields, named digital adiabatic
passage (DAP). In this scheme the tunnel matrix elements (Rabi
frequencies) are forced to vary in discrete steps, rather than
smoothly. Recently, it has been shown that DAP technique can
be used in optical waveguides in the case of waveguide
separation that is varied digitally [25, 26].

Here we show that DAP technique can be implemented
in multi-pod and multi-lambda systems to generate an arbi-
trary coherent superposition of ground states. For this pur-
pose, by using Morris-Shore (MS) transformation [27–29] we
first reduce the multi-pod and multi-lambda systems to a
three-state Λ-like system . Then we introduce fractional
digital adiabatic passage (F-DAP) in MS basis and extend it to
original basis. The tunnel matrix elements are piecewise
constant with time and are designed to create an arbitrary
coherent superposition of all ground states from an initial
state. In this method, the Rabi frequencies are changed
abruptly in each step and by increasing the number of steps,
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maximum population of excited states reduces to a negligible
small values.

This paper is organized as follows. In section 2 we
introduce the Hamiltonian of a multi-pod system. Using a
suitable MS transformation we reduce the Hamiltonian in
original basis to a three state Hamiltonian in MS basis. By
designing stepwise sinusoidal Rabi frequencies we generate a
coherent superposition of desired states. In section 3, we show
how DAP technique can be applied in muti-lambda systems.
Finally, in section 4 we provide a summary of the results.

2. Superposition of states in N-pod systems using
digital pulses

2.1. Reduction to Λ-system using MS transformation

We consider a system consists of N+1 ground states and an
excited state ñe∣ [see figure 1(a)]. The initial state ña∣ is cou-
pled to the excited state with a pump pulse ΩP(t). Other
ground states ñ ñ ñN1 , 2 , ,∣ ∣ ∣ are also coupled to the excited
state with Stokes pulses W W Wt t t, , ,S S1 2 SN( ) ( ) ( ) . We impose
that the Stokes pulses have the same shape. The initial
Hamiltonian in original basis ñ ñ ñ ñ ña e N, , 1 , 2 , ,{∣ ∣ ∣ ∣ ∣ } can be
written as ( = 1):
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where the single-photon detuning measures the frequency
offset from resonance. The Rabi frequencies of the couplings
between the ground states and the excited state respectively
denoted as

W = W ft t ae , 2P P
i P( ) ∣ ( )∣ ( )

W = W =ft t j N be , 1, , . 2Sj Sj
i Sj( ) ∣ ( )∣ ( )

We assume that all of the laser pulses are in exact resonance
with their transitions (Δ=0) and the phases have constant
values. Following MS transformation technique [27–29], the
initial Hamiltonian (1) can be transformed into an effective Λ-
system reading in the basis, fñ ñ ña e, , C{∣ ∣ ∣ } [see figure 1(b)]
as has been shown in [13, 14, 19, 30]. The Hamiltonian in the
new basis reads:
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where

f c c cñ = ñ + ñ + + ñN1 2 , 4C N1 2∣ ∣ ∣ ∣ ( )

and cW = Wt tSSC 1 1( ) ( ) . In the above equation c =i, 1,i (
N2, , ) is defined as follows:
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Here q¢ =x sinj j and q= = ¼ -x j Ncos , 1, 2, , 1j j ( ),
where q p<0 2j is an angle parametrizing the Stokes
amplitudes as follows:
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Figure 1. Multi-state system with multi-pod linkage pattern (a) in original basis, (b) in MS basis.
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2.2. Digital fractional adiabatic passage in MS basis

In the following we impose that fP=fS1=0. The eigen-
vectors of the reduced Hamiltonian (3) in MS basis are

f
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W ñ  W + W ñ + W ñ
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Here ñD0∣ is referred to the dark state in the context of
STIRAP. In F-STIRAP our aim is to transfer the population
from the initial state ña∣ to the final state f ñC∣ such that we can
create a coherent superposition of these states as:

j j fY ñ = ñ - ñt acos sin . 9f CT∣ ( ) ∣ ∣ ( )

where j is an angle parmetrizing the ΩP and ΩSC pulses in
MS basis. Using smoothly varying control function for ΩP(t)
and ΩSC(t), with the constraints thatW = W =t t0 0PSC( ) ( )
and ¹W =

W =
0t t

t tP
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( )
( )

, the population is transferred fractionally

from ña∣ to f ñC∣ . Our strategy is to digital control of the time
evolution of the system in order to fractional population
transfer between the states ña∣ and f ñC∣ . For digital control we
use sinusoidal functions in S steps as the pulses in the kth step
are
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Using digital pulses, the difference between kth and (k+1)th
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In order to calculate the unitary evolution operator for kth step
in MS basis we define the second MS basis so called bright
and dark states [31] as follows:
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Due to piecewise constant nature of the digital Hamiltonian,
the mixing angle Jk is constant. The MS Hamiltonian in the
dark-bright basis is =H T H Tdb MS
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The dark-bright propagator at the end of kth step can be
calculated as follows:
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where t = tk
k

max
( ) . The transition propagator in the kth step of

MS basis t =U TU TkMS db
ˆ ( ) ˆ † is (20)
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In this method we take p= = Wt t SS
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kt Smax . Figure 2 shows the evolution of Rabi frequencies and
population, for S=5,15 which leads to find a state with equal
superposition of ña∣ and f ñC∣ . The results show that by increasing
the number of steps, S, the maximum population of ñe∣ is
negligible which resembles STIRAP in three-state systems.

It is seen from equation (20) that when p= Wt nS2 Mmax ,
with Î n in each case, then t p= Wnk2k M and tU k

ˆ ( ) will
be an identity matrix. Hence the overall evolution must also
be identity. Figure 3 shows the population of state f ñC∣ at the end
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of the Half-DAP protocol as a function of tmax for different
values of S. The time axis is considered between two resonance
tmax=0 and p= Wt S2 Mmax corresponding to UMS(τk)=I. It
is observed that sensitivity of the system with respect to the
exact value of tmax decreases with increasing the number of steps
which means the robustness of the population transfer.

2.3. Digital pulses in original basis

The purpose of this section is to create an arbitrary coherent
superposition of all ground states in a (N+1)-pod system by

F-DAP technique. Using (4) and (9), F-DAP in original basis
leads to

j j c c cY ñ = ñ - ñ + ñ +¼+ ñt a Ncos sin 1 2 .

22
f N1 2∣ ( ) ∣ ( ∣ ∣ ∣ )

( )

For creation of a desired superposition of all ground states

å åY ñ = ñ + ñ + =
= =

t c a c j c c, 1, 23f a
j

N

j a
j

N

j
1

2

1

2∣ ( ) ∣ ∣ ∣ ∣ ∣ ∣ ( )

Figure 2. Fractional digital adiabatic passage evolution of Rabi frequencies and population as a function of fractional time t/tmax in MS basis
for S=5, 15 with j p= 4 and p= Wt S Mmax . Half population transfer is achieved in both cases in stepwise manner. However, the
population Pe(t ) of the intermediate state is different depending on the number of steps. The Rabi frequencies are designed using (10).

Figure 3. Final population of f ñC∣ after Half-DAP in MS basis using sin and cos protocol as a function of tmax for the first four values of S ((a)
odd valus (S=3, 5, 7, and 9) and (b) even values (S=4, 6, 8, and 10). When t W =cos 1k M( ) , then the propagator becomes identity, which
is seen by two nulls in the population.
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at the end of evolution, we use sinusoidal functions for Rabi
frequencies in S steps such that the pulses in the kth step are
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By adjusting β and ζi appropriately, we can create a coherent
superposition of states with desired amplitudes. Figure 4
shows an example for a (N+1)-pod system, N=5, using

Figure 4. Time evolution of Rabi frequencies and population in a (N+1)-pod system with N=5 using S=5,15 steps that leads to a
superposition of ground states with equal amplitudes at the end of the evolution. The Rabi frequencies are designed using (24).

Figure 5. Final fidelity of the system with respect to the desired state Y ñ = ñ - ñ - ñ - ñ - ñ - ña 1 2 3 4 5desired
1

6
∣ (∣ ∣ ∣ ∣ ∣ ∣ ) in a (N+1)-pod

system with N=5 using the sinusoidal protocol as a function of tmax for the first four values S ((a) odd values (S=3, 5, 7, and 9) and (b)
even values (S=4, 6, 8, and 10)). When t W =cos 1k M( ) , the propagator becomes identity, as it is seen the population starts from 0.168 and
ends at the same value.

5

Phys. Scr. 95 (2020) 035109 N Irani et al



S=5, 15 steps. In both cases, the population is transferred
from the initial state ña∣ to a superposition of all ground states
with equal amplitudes at the end of the dynamics. The tran-
sient population of the state ñe∣ is damped to a negligible value
for S=15. In figure 5 we have plotted the fidelity of
final state, = áY Y ñF tfdesired

2∣ ∣ ( ) ∣ with respect to the desired

state Y ñ = ñ - ñ - ñ - ñ - ñ - ña 1 2 3 4 5desired
1

6
∣ (∣ ∣ ∣ ∣ ∣ ∣ ), as

a function of tmax for different values of S in a (N+1)-pod
system with N=5. We observe that for different values of
tmax, as the number of steps increases, the final fidelity
remains close to 1. Figure 6 shows time evolution of popu-
lations and fidelity in (N+1)-pod system with N=4 using
S=5 steps that leads to a superposition of ground states with
unequal amplitudes and different phases as follows:

Y ñ= ñ - ñ - ñ

- ñ - ñ

p

p p

t a
1

16

2

16
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3

16
e 2

4

16
e 3

6

16
e 4 . 26

f
i 3

i 6 i 2

∣ ( ) ∣ ∣ ∣
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3. Superposition of states in multi-lambda systems
using digital pulses

3.1. Reduction to Λ-system using MS transformation

In this section we consider a multi-lambda system [11, 18] as
shown in figure 7(a). The resonant real pump pulses couple the

Figure 6. Time evolution of populations (left frame) and fidelity (right frame) in a N+1-pod system with N=4 using S=5 steps that lead
to (26). The Rabi frequencies are designed using (24).

Figure 7. Multi-state system with multi-lambda linkage pattern (a)- in original basis, (b)- in MS basis.
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initial state ña∣ to a set of excited states ñ = +m m N 1,∣ (
+ ¼N N2, , 2 ) via Rabi frequencies W = ¼t n N1, 2, ,Pn( )( ).

The resonant real Stokes pulses ΩSn(t) also couple the excited
states ñ = + ñ = ¼m N n n N1, 2 ,∣ ∣ ( ) to the ground states
ñn∣ . The effective Hamiltonian of such a system in the space
ñ ñ ñ ñN a1 , 2 , , 2 ,{∣ ∣ ∣ ∣ } is given by:

=

W
W

W
W W

W W

W W
W W W

27

H t

t
t

t

t t

t t

t t

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

0 0 0 0 0 0
0 0 0 0

.

S

S

S

S

1

2

SN

1 P1

2 P2

SN PN

P1 P2 PN

( )

ˆ ( )
( )

( )

( )
( ) ( )

( ) ( )

( ) ( )

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

 
 

        
   
   
    

       

 

Following MS transformation technique , the initial Hamiltonian
can be transformed into an effective Λ-system reading in the
basis f fñ ñ ña , ,2 1{∣ ∣ ∣ } and N−1 two state systems which are
separated from each other [see figure 7(b)] [18], in which f ñ1∣
and f ñ2∣ are superposition of ground states and excited states of
original basis, respectively. In order to satisfy MS condition in
this system we require that the pump Rabi frequencies have the
same shape and also all of the Stokes Rabi frequencies have the
same temporal pule shape:

W = W = = W = Wt t t t . 28S S S1 2 SN( ) ( ) ( ) ( ) ( )

The Hamiltonian in the subspace f fñ ñ ña , ,2 1{∣ ∣ ∣ } can be read as
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In equation (30), χi can be calculated using (5) and (6) by
substituting ΩPi instead of ΩSi.

3.2. Digital pulses in original basis

The purpose of this subsection is to create an arbitrary
coherent superposition of all ground states in a multi-lambda
system. For creation of a desired superposition of all ground
states at the end of the evolution as

å åY ñ = ñ =
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we use sinusoidal functions in S steps as the pulses in the kth
step are follows:
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Figure 8. Time evolution of populations in a five-lambda system using S=5, 15 steps of digital pulses that leads to (34). The Rabi
frequencies are designed using (32) and (33).
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where ξ is given by (11). Figure 8 shows the evolution of
population in a five-lambda system, N=5, for S=5, 15
steps of digital pulses that leads to

Y ñ= ñ + ñ
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In both cases the population is transferred from state ña∣
to an equal superposition of ground states. The transient
population of the intermediate states is damped as S increases,
where for S=15 it gives negligibly small values. Figure 9
also shows the fidelity of the final state with respect to the
desired state (34) as a function of tmax for different values of S
in a five-lambda system. It is seen, similar to multi-pod sys-
tems as the number of steps increases the robustness of final
fidelity of the system also increases with respect to tmax.

4. Conclusion and discussion

In this paper, we studied generation of coherent superposition
of states in multi-pod and multi-lambda systems, with reso-
nant condition, using DAP technique. We showed that this
technique can be extended to fractional population transfer in
a three-state system. By applying MS transformation in both
multi-pod and multi-lambda systems, we found special values
of pulse parameters to designe appropiate digital Rabi fre-
quencies for creatation a desired coherent superposition of
ground states. The results of numerical studies show that DAP

technique in multi-state systems is robust against digitization
of the control parameters and so it resembles simple adiabatic
passage. Moreover, we showed that if the step number of
digital sinusoidal pulses increases, the robustness of final
fidelity of generated superposition state, with respect to tmax,
increases. Recently, the technique of three state DAP imple-
mented experimentally in three optical waveguides [26]. In
[32] an optical beam splitter with one input and N output
waveguide channels (N+1-pod linkage) is introduced. The
DAP technique in multi-pod systems could be implemented
experimentally in such optical beam splitter. Also the DAP
technique in multi-state systems can be used to creation of
fast qudit gates.

We note that while the analytic solution for digital
adiabatic passage is applicable to exact resonance only, the
technique can be modified to include nonzero single-photon
detuning. In order to numerical study we consider (N+1)-
pod system with N=1 as our aim is to transfer the popula-
tion from state ña∣ to ñ - ña 11

2
(∣ ∣ ). In figure 10 we plot the

final fidelity of desired state Y ñ = ñ - ñt a 1f
1

2
∣ ( ) (∣ ∣ ) versus

the single-photon detuning for (S=5, 15) steps of digital
pulses. The figure demonstrates that by increasing the number
of steps, this technique is applicable for some range of non-
zero single-photon detuning.

At the end, we study how the final fidelity is affected by
increasing the number of levels with the same steps of digital
pulses. In order to study the robustness of the protocol for
more complicated level systems, we choice three (N+1)-pod
systems with N=5, 10, 15. Our aim is to create coherent
superposition of all ground states with equal amplitudes in
these systems using S=3 steps of digital pulses. In figure 11
we have plotted the fidelity of final state as a function of tmax

using S=3 steps of digital pulses in these systems. It can be
seen that on all systems, F=1 is achieved for the same value

Figure 9. Final fidelity of five-lambda system for desired state (34) as a function of tmax using the sinusoidal protocol for the first four values
S (a) odd values (S=3, 5, 7, and 9) and (b) even values (S=4, 6, 8, and 10). When t W =cos 1k M( ) , the propagator becomes identity, as it is
seen the population starts from zero and ends at the same value.
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of tmax. However, with deviation from this value of tmax, it is
harder and harder to achieve higher fidelities for larger
systems.
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