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Abstract.  The thermodynamical properties of the photon-plasma system have 
been studied using statistical physics approach. Photons develop an eective 
mass in the medium thus—as a result of the finite chemical potential—a photon 
Bose–Einstein condensation can be achieved by adjusting one of the relevant 
parameters (temperature, photon density and plasma density) to criticality. 
Due to the presence of the plasma, Planck’s law of blackbody radiation is also 
modified with the appearance of a gap below the plasma frequency where a 
condensation peak of coherent radiation arises for the critical system. This is 
in accordance with recent optical microcavity experiments which are aiming 
to develop such photon condensate based coherent light sources. The present 
study is also expected to have applications in other fields of physics such as 
astronomy and plasma physics.
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1.  Introduction

Quantum gases are one of the most studied subjects in physics and have well-estab-
lished statistical descriptions which have been verified by high precision experimental 
observations. In particular, the theory of the ideal Bose gas (IBG) predicts the phenom
enon of the Bose–Einstein condensation (BEC). It was first experimentally realized by 
using gaseous rubidium and sodium in 1995 and resulted in a joint Nobel Prize for 
Cornell, Wiemann and Ketterle, [1, 2]. However, this discovery occurred over seventy 
years after Bose and Einstein’s prediction [3, 4], showing the numerous technological 
challenges that the researchers had overcame in order to demonstrate the existence 
of BECs. Einstein’s derivation used a modification of Bose’s work on photon gas to 
describe the statistics of massive particles. In fact, their work showed that only massive 
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gases (following Bose statistics) are able to go through the condensation procedure. 
Hence, the initially studied photon gas, being massless, does not possess this property 
despite the bosonic nature of the light quanta. However, condensation is possible by 
changing experimental conditions, e.g. by considering the photon gas interacting with 
a plasma. In this scenario, the photon dispersion relation is modified due to the col-
lective oscillation of the charged particles and an eective ‘photon mass’ can be intro-
duced [5–9]. The mass generation through interaction was first proposed by Anderson 
using the examples of plasmon theory and superconductivity [5]. In its more general 
formulation, this phenomenon became known as the Brout–Englert–Higgs mechanism 
after the authors who proved the possibility of mass generation thorough spontaneous 
gauge symmetry breaking in relativistic quantum field theories [10, 11] but others also 
contributed to the topic [12]. This idea made it possible to explain the existence of 
massive vector bosons in the electroweak sector of the Standard Model by Weinberg 
and Salam [13, 14].

In the present paper, the corresponding massive quasiparticle, bosonic in nature, 
is known as bulk plasmon-polariton1 and can be identified as the two transverse mode 
of the electromagnetic (EM) field in the plasma like in Anderson’s classical argument. 
It is emerged as the fundamental degrees of freedom in the diagonalized Hamiltonian 
consisting of charges coupled to a single EM mode [6, 7, 9]. The bosonic ensemble built 
up from plasmon-polaritons must have dierent statistical properties compared to the 
free photon gas. Indeed, as a consequence of the eective mass, if the (quasi)particle 
number is conserved, a finite chemical potential can be introduced, and it makes it pos-
sible for the system to undergo the BEC phase transition. The photon-plasma interac-
tion has already been discussed in several papers which even led to the conclusion of 
the possible existence of the photon BEC. Kompaneets considered a kinetic equation of 
the photon distribution (Fokker–Planck equation) in plasma where the interaction is 
mediated exclusively by Compton scatterings, i.e. no emission and absorption pro-
cesses have been taken into account [15]. This eventually leads the system to thermal 
equilibrium. Zel’dovich and Levich, using the results derived in [15], showed that the 
system could possess a BEC phase [16]. This topic was then revisited in [17] where 
the same result was concluded: it was shown that by including non-number conserving 
processes the BEC phase cannot develop. However, as no eective ‘photon mass’ was 
considered in the approach used in [15–17], they could only provide valid results in 
very dilute plasmas where the dispersion relation of the plasmon-polariton has a negli-
gible mass term, i.e. it is the same as the free photon. In [18], the eect of the plasma 
on the thermodynamics of photons has been considered with the assumption that the 
chemical potential is equal to the ‘photon mass’, however, no BEC was found in this 
case due to the omission of the ground state energy. In [19], a kinetic theory of the 
photon BEC was considered for radiations with suciently large intensity (e.g. strong 
laser pulse) where the photon-photon interactions are the dominant, hence the photon-
electron interactions with absorptions are negligible. Dierent aspects of possible BEC 

1 Throughout the text the terminology ‘(bulk) plasmon-polaritons’ and ‘photons’ indicate the same physical object 
while the plasma is present. Photons without interacting with the plasma are referred to as ‘free photons’ or ‘free 
photon gas’. It is also worth to emphasize that the plasmon and the plasmon-polariton are not the same: the 
former is the quanta of electrostatic oscillations, whereas the latter is the quanta of transverse radiation in the 
plasma.
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formation are considered in [20] with the study of the longitudinal mode (plasmon) and 
four-wave mixing, by using also kinetic theory, where the photon-number conservation 
is assumed as a consequence of including only Compton scatterings. In both of the lat-
ter two studies the bulk plasmon-polariton dispersion relation was used. Despite these 
findings are correct, as of yet, no comprehensive theory on the statistical description 
of such system was provided which is the main focus of the present paper. However, 
there exist other dierent mechanisms to form a BEC in a photon gas. In [21, 22], the 
photon eective mass comes from the paraxial approximation of field quantization in 
the Fabry–Pérot microcavity and the thermalization is a consequence of the interaction 
with dye molecules that fill the cavity [22]. Experimental observations of photon BEC 
in the microcavity have been reported in [23]. Further studies of the photon BEC based 
on variations of the previous ideas can be found in [24–29].

2. Model for the photon-plasma system

A statistical model of the ideal plasmon-polariton gas has been considered using the 
grand canonical ensemble framework in order to describe the physics of a photon gas 
in a homogeneous, isotropic plasma in the current paper. The following Hamiltonian 
defines a system of a Nch charges interacting with a quantized monochromatic EM field,

H =
1

2m

Nch∑
i=1

(
pi −

e

c
A
)2

+ �ω
(
1

2
+ a†a

)
,� (1)

where pi’s and m are the momenta and the mass of the charges which have unit charge 
e and the summation is over the Nch number of these charged particles. The linearly 
polarized EM mode is represented by the vector potential A, which in the dipole 
approximation has the form of A = αE(a+ a†), where the terms a† and a are the cre-

ation and annihilation operators of the mode with angular frequency ω. The parameter 

α = c
√

2π�/V ω, with the light speed c, the quantization volume V  and the Planck 
constant � = h/2π. The real unit vector E gives the direction of the polarization. In the 
case of a single charge in (1) (Nch = 1), the Hamiltonian was exactly diagonalized by 
Varró and Bergou [6] using a displacement (D) and a Bogoliubov (C) transformation in 
order to eliminate the linear and quadratic terms of the ladder operators. The result-
ing Hamiltonian was used to describe nonlinear scattering processes. The solution was 
generalized to the elliptically polarized cases [9], as well as to Nch > 1 charges which 
was also done in [7] for a similar model. In this scenario, the system can be considered 
as a plasma where the Coulomb interactions are damped between electrons and ions 
by Debye screening—a free electron gas. The homogeneity of the plasma is achieved by 
taking the limit pi → 0 for all i. This gives a uniformly distributed Nche net charge in 
the box (volume V ) according to the Heisenberg’s uncertainity principle [9]. Applying 
the above described operations on (1) results in an eective Hamiltonian of a free har-
monic quantum oscillator describing a plasmon-polariton system [9]:

H
C, D−−−−−→

pi→0 ∀i
H = �Ω

(
b†b+

1

2

)
,� (2)
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where b(†) = C−1a(†)C  are the annihilation and the creation operators of the plasmon-
polariton quasiparticles, with [b, b†] = 1. The eective frequency associated to the 

quasiparticles is defined as Ω =
√

ω2 + ω2
p , where ωp =

√
4πe2np/m defines the plasma 

frequency with the plasma density np = Nch/V . Likewise, the ‘plasma energy’ can be 
obtained as εp = �ωp. By observing the similarity of the dispersion relation to a rela-
tivistic massive particle’s this is often considered to be the ‘rest energy’ of the pho-
ton in plasma [5]. In (2) the �Ω/2 term represents the vacuum energy, and thus will 
be omitted throughout this analysis. Some details of the diagonalization is presented 

in appendix A. The grand potential is defined as Φ = β−1
∑

ξ ln
(
1− e−β(εξ−µ)

)
, and 

hence the quantum statistics of the system follows the Bose–Einstein distribution, 
nBE = 1/(eβ(ε−µ) − 1), with β = 1/kBT , where kB is the Boltzmann constant and T is the 
temperature; ξ indicates a given one-particle state with energy εξ and µ is the chemical 
potential associated to the conserving number of quasi-particles. The finite chemical 
potential makes the properties of the plasmon-polariton system crucially dierent from 
the vacuum scenario where the photons are massless, hence it is nonsensical to talk 
about a definite number of photons in the system as they can be created even with an 
infinitesimal amount of energy, i.e. µ = 0. Thermal equilibrium between the photon 
gas and the plasma (as well as conserving photon number) is assumed throughout the 
paper, which can be achieved by one of the previously mentioned mechanisms [15–20].

3. Thermodynamics and Bose–Einstein condensate

Taking the thermodynamic limit, the summation over the one-particle states is replaced 

by the integral over the phase space: 
∑

ξ −→
∑

spin
V
h3

∫
d3p, where the summation goes 

for the spin degeneracy and gives a factor of gs, provided there is no spin dependence. 
The introduction of the density of states (DOS) enables the integral to be rewritten as 

gs
V
h3

∫
d3p =

∫
dε ρ(ε) with the DOS

ρ(ε) = gs
V

(2π)3
4πk2dk

dε
=

8πV

c3h3
ε
√
ε2 − ε2p.� (3)

In the present case gs  =  2 as the degeneracy consists of the two transverse modes. The 
DOS of the free photon gas, ρ = 8πV ε2/(ch)3, is naturally recovered in the εp/ε → 0 
limit. The grand potential is

Φ =
V

λ3
T

x3

β

∫ ∞

1

dε′ ε′
√
ε′2 − 1 ln

(
1− e−x(ε′−1)z

)
,� (4)

where the following dimensionless quantities are introduced: ε′ = ε/εp, x = βεp, 
µp = µ/εp and the fugacity z = exp x(µp − 1). The lower bound of the integral is set 
to εp as there is no real contribution below the ground state energy. The quantity 
λT = βch/2π1/3 is the thermal de Broglie wavelength for massless particles. It is pos-

sible to introduce another analogous length scale λpl = ch/2π1/3εp which will also be 

used throughout the text. The integral is well defined only for chemical potential values 

https://doi.org/10.1088/1742-5468/ab633a


Statistical theory of photon gas in plasma

6https://doi.org/10.1088/1742-5468/ab633a

J. S
tat. M

ech. (2020) 023102

µp � 1, hence z ∈ [0, 1]. Using the expression for Φ, all the relevant thermodynamical 
quantities can be derived; average particle number, energy, entropy and pressure:

N = − (∂µΦ)V ,T , E = (∂ββΦ)βµ , S = − (∂TΦ)µ,V , P = E/3V .� (5)

Hence, the average photon number in plasma is

N =
V

λ3
T

∫ ∞

1

dε′
x3ε′

√
ε′2 − 1

ex(ε′−1)z−1 − 1
.� (6)

However, in the thermodynamic limit it only makes sense to talk about the particle 
density as V  and N → ∞ while n = N/V  is kept fixed. The same is true for the plasma 
density np , encapsulated by εp. These conditions are applied throughout the paper. The 
integral in (6) is a monotonically increasing function of z and z � 1 so the maximal value 
is when z  =  1, where the system is found to be critical, i.e. nc = n(z = 1). As the DOS 
gives zero weight to the ground state, the formula in (6) provides the particle number 
only for the thermal states, and above the critical threshold the further particles accu-
mulate in the ground state with energy εp by forming a BEC: ntot = nεp + nε>εp (where 
nε>εp is used for n emphasizing its thermal attribute). The same phenomenon happens 
for massive IBG in three dimensions when reaching the critical temperature or par-
ticle density. Besides the photon (plasmon-polariton) density and the temperature, the 
plasma density is also able to drive the current system to criticality. Thus, the chemical 
potential depends on all of these parameters and a critical value exists for each of them 
for µp = 1 or z  =  1, figure 1(a). The critical particle density hence can be expressed 
as a function of T and np , figures 1(b) and (c): by fixing the photon density n and 
decreasing T or np  the system reaches criticality at Tc and nc

p, respectively. Decreasing 
these parameters further a fraction of nεp photons condense in the ground state while 
the rest remain in the thermal states with nε>εp. However, there is a crucial dierence 
between the two parameter dependences. When the temperature reaches Tc the chemi-
cal potential becomes µ = εp and preserving this value as T → 0. On the other hand, 
when the plasma density reaches its critical value the chemical potential acquires the 
value εp again, but in this case µ must go to zero as np → 0, since εp ∝

√
np  and the 

chemical potential cannot exceed the value of εp. This can be seen in figure 1(c): as np  
goes to zero the photon number in the thermal states reaches a finite value (dashed 
line), n = 16πζ(3)/λ3

T—this is exactly the value for the average particle density in a 
free photon gas. Thus, by lowering the plasma density, a fraction of the initial number 
of photons in the plasma indeed condense, however, the particle density in the thermal 
states cannot go below its vacuum value which is determined by the free photon gas. 
Details of the numerical algorithms for the plots presented in figure 1 can be found in 
appendix B.

The fingerprint of the phase transition can be observed in the behavior of the ther-
modynamical quantities usually manifesting as a change in the analytic properties at 
the given critical parameter. The thermodynamic quantities listed in (5) are shown in 
figure 2. In figures 2(a)–(c) the temperature and plasma density dependences of the 
total energy, the entropy and the heat capacity at fixed particle density are given. The 
heat capacity is used as the main indicator of phase transitions due to its parameter 
sensitivity around criticality: in the current case a cusp can be observed at Tc, which 
is characteristic to BEC transitions. Similar behavior can be found in case of the IBG 
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and also in interacting Bose systems such as the liquid 4He, where the heat capacity 
even gets logarithmically singular at the critical temperature, called the ‘lambda-trans
ition’ [30, 31]. These quantities are obtained through numerical integration by using 
the formulae in (4) and (5). In appendix C the pressure derived from basic principles 
results in the formula P = E/3V , which coincides with the free photon case rather 
than the massive IBG. The pressure dependence on the specific volumes of the photons 
v = 1/n and plasma vp = 1/np is in figure 2(d). It behaves much like for the IBG with 
respect to v , at a constant plasma density: below the critical value, vc, the pressure 
gets independent of the specific volume of the photons. On the other hand, by keeping 

n fixed, below the critical plasma density, nc
p = 1/vcp, the system enters the BEC phase, 

whereas for vp → 0 the pressure diverges showing the incompressibility of the plasma. 
All of these thermodynamical quantities are approaching the values defined by the free 
photon gas as np → 0, indicated by dashed lines in figure 2.

A better qualitative insight is obtained by applying approximations to enable exact 
analytical solutions of (4). It is obvious that the energy scale of the system is deter-
mined by the temperature and the plasma energy, hence their ratio, x = εp/kBT , is 

(a)

(b) (c)

Figure 1.  Figure (a) shows the general shape of the temperature, photon density 
and plasma density dependence of the fugacity. Figures  (b) and (c) show the 

temperature and the plasma density dependence of the critical photon density 

in units of 1/λ3
pl and 1/λ3

T , respectively. The temperature is in units of εp/kB and 
the plasma density is in units of 1/λ2

TRe, where Re = e2/mc2 the classical electron 
radius.

https://doi.org/10.1088/1742-5468/ab633a
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a crucial dimensionless parameter. The formula for the grand potential in (4) can be 
recast in the form of an infinite series of Dirichlet-type equation D.1:

Φ = − V

λ3
T

x2

β

∞∑
j=1

(exz) j

j2
K2( jx) =

{
−2 V

λ3
T

1
β
Li4(e

ln z+x), for x � 1

−
√

π
2

V
λ3
T

x3/2

β
Li5/2(z), for x � 1,

� (7)

where Ks(y ) is the Macdonald function with index s. The sum can be computed for 
the limiting cases, as shown in (7), where the function Lis(y) denotes the polyloga-
rithm with index s. In the regime where the temperature dominates the plasma energy 
(x � 1), the grand potential ∝ Li4(e

xµp). This approximation fails to study the BEC 
phenomenon as the domain of the polylogarithm for real values is well-defined only in 
the interval (−∞, 1] and from the previous analysis, the BEC occurs at µp = 1. It only 
describes the system correctly for µp � 0.

Figure 2.  Total energy (a), entropy (b) and heat capacity (c) are plotted with 

respect to temperature and plasma density at fixed n = 5/λ3
pl and n = 5/λ3

T , 

respectively. The pressure is presented with respect to v and vp in (d), with fixed 

εp/kBT = 1 and n = 5/λ3
pl, respectively. Blue and red sections are for the BEC and 

gaseous phases.
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However, in the case when x ≈ 0, the polylogarithm becomes Lis(1) = ζ(s) (where ζ 
is the Riemann zeta function), and hence Φ = −4σV T 4/3c with the Stefan–Boltzmann 
constant σ = 2π5k4

B/15c
2h3, which is exactly the free energy of the free photon gas. 

Thus, in this extreme regime, by using the formulae in (5), the statistics of the free 
photon gas is reproduced (see in equation E.1).

By considering the region where the temperature is much less than the plasma 
energy (x � 1), the argument of the polylogarithm only contains z which equals to 
unity at µp = 1. Thus, the formation of the BEC can be correctly described. The ther-
modynamical quantities are shown in table 1 for both the gaseous and the critical sys-
tem. The detailed derivation is in appendix E.2. The critical quantities show power-law 
behavior both in temperature and plasma density and their scalings in T are the same 
as in the case of the IBG with a non-zero ground state energy in the BEC phase. The 

particle density in the condensate fraction can also be expressed in the same way as for 

the IBG: nεp = ntot(1− T/Tc)
3/2, matching the findings in [19] and [20]. These results 

should not be surprising as the dispersion relation of the plasmon-polariton is formally 
the same as those of the massive relativistic IBG, for which the same functional form 
of the thermodynamical quantities can be found as for the current system [32–34]. The 

critical value for the temperature and the plasma density can be read o from the criti-

cal expression of N  in table 1: Tc ∝ n2/3/
√
np  and nc

p ∝ n4/3/T 2.

4. Modified blackbody radiation

In dierent regimes, the system behaves more as a free photon gas (x � 1) or as a mas-
sive Bose gas (x � 1) but the system describes the behavior of radiation in plasma. 
Hence, it is sensible to ask whether the thermal radiation is modified in the presence of 
the medium. The total energy is

Table 1.  Exact expressions of the thermodynamical quantities in the x � 1 
regime, and their scalings in the critical system for the thermal particles. 
η(z) = Li5/2 (z) /Li3/2 (z) and κ(z) = Li3/2 (z) /Li1/2 (z).

Quantity Gaseous phase Scaling at criticality

N
√

π

2

V

λ3
T

x3/2Li3/2 (z) ∝ T 3/2; ∝ n
3/4
p

Φ −η(z)NkBT ∝ −T 5/2; ∝ −n
3/4
p

E Nεp +
3

2
η(z)NkBT

∝ T 3/2+ ∝ T 5/2; 
∝ n

3/4
p + ∝ n

5/4
p

S
NkB

(
5

2
η(z)− ln(z)

)
∝ T 3/2; ∝ n

3/4
p

P 1

3
N
εp
V

+
1

2
η(z)N

kBT

V
∝ T 3/2+ ∝ T 5/2; 
∝ n

3/4
p + ∝ n

5/4
p

CV 3

2
NkB

(
5

2
η(z)− 3

2
κ(z)

)
∝ T 3/2; ∝ n

3/4
p
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E = V

∫ ∞

νp

dν u(ν), with u(ν) =
8πh

c3
ν2
√

ν2 − ν2
p

eβh(ν−νp)z−1 − 1
,� (8)

where the frequency ν( p) = ω( p)/2π. This modified form of the blackbody spectral 
density with changing parameters is shown in figure 3. All curves start at νp with 
a hard cut-o as there is no light propagation below the plasma frequency. In the 
gaseous phase, the curves are similar to the usual blackbody radiation (with a gap) 
but a sharp peak appears at νp once the particular parameter is tuned to or beyond 
criticality. This happens when the radiation coming from the ground state start 
to dominate the radiation associated to the thermal particles. At the critical value 
(when z reaches unity), the spectrum develops a singularity at the plasma frequency 
as the particles start to accumulate in a coherent BEC phase. Even though the spec-
tral density becomes singular at νp it remains normalizable, hence the overall energy 
does not diverge. For the general shape comparison of the non-critical, critical and 
Planckian spectra see figure 3(a). In case of tuning T, the thermal tail of the distribu-
tion vanishes as more particle enters the BEC state, and the normalized distribution 
eventually tends to a Dirac-delta concentrated at the plasma frequency. Hence, the 

total energy of the system becomes E = Nεp as all the particles joined the conden-

sate, figure 3(b). The plasma density dependence is shown in figure 3(c). In this case 
while np  decreases, the gap νp shifts towards zero since its value is determined by the 
plasma density. The condensation peak appears at the critical plasma density and 
this singularity eventually ends up at νp = 0, for which the spectrum becomes the 
blackbody radiation in vacuum. Nevertheless, a fraction of photons are still in the 
condensate but with energy εp ≈ 0 there is no way to observe them in the spectrum. 
This somewhat resembles the infrared catastrophe in quantum electrodynamics where 
infinitely many soft photons are radiated during the brehmsstrahlung process, how-
ever, no realistic detector can register them due to their finite resolution [35–37]. By 
adjusting the photon density n above nc does not change the shape of the distribution 
further as the system cannot have a higher particle density than its critical threshold, 
figure 3(d). Indeed, any additional particle ends up immediately in the BEC, or by 
compressing the system, the particles from the normal phase join the BEC in a way 
that preserves the nc density of the thermal particles. The condensation peak shows 
up once the critical particle density has been reached. A similar shape of the pho-
ton spectrum is derived numerically in [20] where the kinetic equation, taking into 
account the processes of Compton and inverse Compton scattering exclusively, drives 
the plasma-photon system to thermal equilibrium with the condensation peak at the 
plasma frequency for the right parameters. These results are extremely resembling 
the findings in [23], where the peak arises at the cut-o frequency of the cavity, rep-
resenting the eective photon mass in this case. The idea put forward in [22] and [23] 
that the photon BEC in an optical microcavity can be used as coherent light source 
are applicable for the present system. The spectrum presented in figure 3 should be 
producible with the appropriate experimental setup, for which the present study 
could serve as a theoretical background.
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5. Discussion

The study presented in this paper gives a comprehensive theoretical description of the 
plasma-photon statistical system. It is shown that the BEC formation is possible for 
a photon gas in a plasma medium by tuning its relevant parameters to their critical 
values. The radiation spectra shown in figure 3 represent the modified blackbody radia-
tion. The distribution develops a sharp condensation peak at the plasma frequency 
in the BEC state corresponding to coherent radiation which should be detectable in 
experiment, and perhaps could be used as a new type of source for coherent radiation, 
likewise in the case of the cavity photon BEC [23]. The thermodynamical properties of 
the plasma-photon system should also have some potential application in other fields 
of physics. For instance, non-Planckian modifications of the radiation spectra could be 
detected in the cosmic microwave background at low frequencies [38]. Furthermore, 
the modification of the thermodynamical quantities, e.g. for the radiation pressure and 

Figure 3.  Unnormalized radiation spectra. (a) comparison of the general shape of 
the plasma-modified Planck spectrum (critical and non-critical) and the Planck 
spectrum in vacuum for an arbitrarily fixed temperature. Parameter dependencies: 

(b) temperature dependence with fixed n = 5/λ3
pl, (c) plasma density dependence 

with fixed n = 5/λ3
T  (and νc

p = νp(n
c
p) critical plasma frequency) and (d) photon 

density dependence with εpβ = 1. Red curves indicate the gaseous phase and blue 

the BEC phase.
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the emitted total energy, might also have some relevance for modeling massive stellar 
interiors [18, 39, 40] and plasma transport properties [41, 42].
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Appendix A. Hamiltonian diagonalization

In order to diagonalize the Hamiltonian in (1) a Bogoliubov transformation must be 
used to cancel the quadratic terms of a(†):

C = e
1
2
θ(a†a†−aa),� (A.1)

where θ is a real parameter. The quasiparticle ladder operators are defined by its action 
as b(†) = C−1a(†)C , with [b, b†] = 1. And a shift must be performed on b(†) in order to 
take care of its linear terms after the action of C. This is done by the displacement 
operator:

D = eσb
†−σ†b,� (A.2)

where σ is its parameter. By choosing the parameters θ and σ appropriately, the fol-
lowing form of the Hamiltonian can be achieved:

H =

Nch∑
i=1

p2
i

2m
+ �Ω

[
b†b+

1

2
−
∣∣∣σ

(∑
p
i
,Nche

2
)∣∣∣

2
]
.� (A.3)

Further details of the diagonalization can be found in [6] and [9]. The resulting 
Hamiltonian is the sum of Nch free charges and a quantum harmonic oscillator with a 
shifted particle number by |σ|2. σ depends linearly on the momenta {pi}. Thus, by tak-
ing the limit pi → 0 for all i results in a vanishing σ, and hence (2) remains.

Appendix B. Details of the numerical algorithms for the exact case

Numerical evaluations of (4) along with the relations in (5) provide the thermodynami-
cal quantities depicted in figure 2. However, this requires the derivation of the param
eter dependence of the fugacity, which can be done numerically.

B.1. Temperature dependence of the fugacity

In order to derive the temperature dependence of the fugacity it is instructive to 
rewrite the formula in (6) as
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N =
V

λ3
pl

∫ ∞

1

dε′
ε′
√
ε′2 − 1

ex(ε′−1)z−1 − 1
=

V

λ3
pl

IT (x, z),� (B.1)

where λpl = ch/2π1/3εp, and the temperature dependence only present in x = βεp in the 

integral part IT. By fixing n and solving the equation nλ3
pl = IT (x, 1) numerically, the 

critical temperature is obtained, Tc = Tc (n), for the given n. In the next step the equa-

tion nλ3
pl = IT (χxc(n), z) is solved for z for a given n numerically, where χ = x/xc(n) and 

xc = βcεp. By interpolating the data points a z(τ(n)) function is defined, with τ = T/Tc, 

from which the chemical potential read as µp(τ) = ln(z(τ))τTc + 1. The temperature 

dependence of the fugacity is shown in figure 1(a) for fixed n = 5/λ3
pl.

B.2. Plasma density dependence of the fugacity

For the plasma density dependence it is advisable to use (6)

N =
V

λ3
T

∫ ∞

1

dε′
x3ε′

√
ε′2 − 1

ex(ε′−1)z−1 − 1
=

V

λ3
T

Ip(x, z).� (B.2)

In this formula the εp dependence is only present in Ip (x,z). The plasma energy is 

expressed with the plasma density as εp = �
√

4πe2np/m. In order to obtain the density 
dependence of the fugacity, the same procedure must be done as for the temperature. 
The plasma density dependence of the fugacity is shown in figure 1(a) for n = 5/λ3

T .

B.3. Photon number density of the fugacity and the chemical potential

Using (B.1) with fixed x, the critical particle density is nc = IT (x, 1) in units of 1/λ3
T  

for that given x. Solving the same equation n = IT (x, z) now for z (again numerically), 
and using an interpolation gives the function z(n/nc), which is plotted for x  =  1 in 
figure 1(a).

Appendix C. Pressure

It is not trivial if the equation of state is the same as for the massless Bose gas, i.e. 
E = pV/3. However, it turns out that this is the case which will be proven in the fol-
lowing by using the argument in [30]. The integral form of the pressure is given as 
the momentum transfer per photons times the flux of photons. Considering photons 
reflecting from a wall that is normal to the x axis the photon flux is vph cos θ, where vph 
is the phase velocity in of the radiation in plasma and θ is the angle enclosed by the 
momentum of the photon and the x axis. It is shown in [43, 44] that the phase veloc-
ity is the relevant quantity to use when computing radiation pressure in a dispersive 
medium. This is in agreement with experiments presented in [45]. The momentum 
passed over to the wall by each reflection is 2p cos θ. Hence the total pressure has the 
form of
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P = 2

∫

px>0

d3p

h3
2 p vphnBE cos

2θ =
8π

3h3

∫ ∞

0

dp p3vphnBE.� (C.1)

Here, the spherical coordinates were used in the second expression for which the restric-
tion of p x means 0 < θ < π/2 and the factor two comes from the number of polariza-
tions of the EM field. The phase velocity corresponding to the radiation in plasma

vph =
Ω

k
=

1

k

√
ω2 + ω2

p =
1

p

√
( pc)2 + ε2p.

�
(C.2)

Substituting into (C.1) and switching to energy variable, ε =
√
( pc)2 + ε2p,

P =
8π

3h3

∫ ∞

εp

dε
dp

dε
p2ε

1

eβ(ε−µ) − 1
=

8π

3h3c3

∫ ∞

εp

dε
ε2

√
ε2 − ε2p

eβ(ε−µ) − 1
.� (C.3)

This implies that P = E/3V  as the well-known relation for the photon gas. However, 
the relationship between the grand potential and the pressure, Φ = −PV  , is no longer 
true:

Φ =
V β2

λ3
T

∫ ∞

εp

dε ε
√
ε2 − ε2p ln

(
1− e−β(ε−µ)

)
= −V β3

3λ3
T

∫ ∞

εp

dε
(
ε2 − ε2p

)3/2
nBE(ε) = −1

3

(
E −Nεp

)
,�
(C.4)

where integration by parts was used. The grand potential does not include the ‘eective 
mass’ of the photon. However, as it is acquired by the plasma oscillation it also should 
contribute to the exerted pressure on the container wall, hence (C.3) yields the correct 
formula.

Appendix D. Series representations of thermodynamic quantities and their 
convergence

By expanding the integrand into power series in (4) a series representation of the grand 
potential and the other thermodynamical quantities can be achieved by applying (5). 
Even though the results are exact, the sums do not have a closed forms.

D.1. Grand potential

The grand canonical potential of a the system is defined thorough the integral in (4), 
and hence

Φ =
V

λ3
T

x3

β

∫ ∞

1

dε ε
√
ε2 − 1 ln

(
1− e−x(ε−1)z

)
= − V

λ3
T

x3

β

∫ ∞

1

dε ε
√
ε2 − 1

∞∑
j=1

(exz) j

j
e−jxε

= − V

λ3
T

x3

β

∞∑
j=1

(exz) j

j

∫ ∞

1

dε ε
√
ε2 − 1e−jxε = − V

λ3
T

x3

β

∞∑
j=1

(exz) j

j
L[ε

√
ε2 − 1]( jx),

�

(D.1)

where L is for the Laplace transform. This Laplace transform can be computed exactly 
as follows
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L[ε
√
ε2 − 1]( jx) =

∫ ∞

1

dε ε
√
ε2 − 1e−jxε =

∫ ∞

0

dy cosh y sinh2 y e−jx cosh y

=

∫ ∞

0

dy cosh3 y e−jx cosh y −
∫ ∞

0

dy cosh y e−jx cosh y

=
1

4

∫ ∞

0

dy (cosh 3y + 3 cosh y) e−jx cosh y −
∫ ∞

0

dy cosh y e−jx cosh y

=
1

4
(K3( jx) + 3K1( jx))−K1( jx) =

K2( jx)

jx
.

�

(D.2)

Here the integral representation of the Macdonald function is used

Ks(x) =

∫ ∞

0

dt cosh st e−x cosh t,� (D.3)

together with the recurrence relation

2s

x
Ks(x) = e(s−1)πiKs−1(x)− e(s+1)πiKs+1(x).� (D.4)

Thus the series for the grand potential reads

Φ = − V

λ3
T

x2

β

∞∑
j=1

(exz) j

j2
K2( jx).� (D.5)

Switching the integration with the summation in (D.1) is well-justified in the present case: after 

the series expansion the integrand reads f =
∑

j fj =
∑

j ε
√
ε2 − 1[exp(x)z] j exp(−jxε)/j, 

where { fj}j is a sequence of positive and integrable functions with a convergent sum. 
These properties imply that the integration and summation indeed commute and the 
series representation of the grand potential in (D.5) converges to the same value as the 
integral. However, it is not hard to see the convergence of (D.5) alone by using Abel’s 
test: the series 

∑
j 1/j

2 is convergent and (exz) jK2( jx) monotonically decays to zero 
which implies the convergence.

The series defined in (D.5) is a Dirichlet series [46] of the form

− V

λ3
T

x2

β

∞∑
j=1

ϕ( j)

js
, with s = 2, and ϕ( j) = (exz) jK2( jx).� (D.6)

Moreover, since the sum only with the term ϕ(1) corresponds to the grand potential in 
the classical limit, 1/ (exp β(ε− µ)− 1) ≈ exp β(µ− ε), the series in (D.5) can also be 
considered as the Dirichlet transform of the classical grand potential. From the general 
theory of the Dirichlet series with variable s = σ + it, it is also known that there exists 
σc ∈ R for which if σ > σc the series is convergent, hence σc cuts the plane into halves 
and the region σ > σc is called the half-plane of convergence. Since (D.5) is shown to 
be convergent, s = σ = 2 is in the half-plane of convergence. Furthermore, if σ is in 
a compact subset of this half-plane then the series is uniformly convergent (theorem 
11.11, [46]). Since for (D.5) this is definitely satisfied, it is uniformly convergent, too. 
This property is useful when other thermodynamical quantities are computed through 
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the relations (5) where dierentiations are involved. The uniform convergence makes it 
possible to execute the dierentiation term by term.

D.2. Other thermodynamical quantities

As it is discussed in appendix D1 the sum obtained as the series representation for the 
grand potential in (D.5) is uniformly convergent. Hence the term-by-term dierentiation 
is possible without altering its result. This property can be exploited when computing 
the other thermodynamical quantities by using (5):

N =
V

λ3
T

x2

∞∑
j=1

(exz) j

j
K2( jx),

E =
V

λ3
T

εpx
∞∑
j=1

(exz) j

j2
( jxK1( jx) + 3K2( jx)) ,

S =
V

λ3
T

kBx
2

∞∑
j=1

(exz) j

j
( jxK1( jx) + (4− j (log(z) + x))K2( jx)) ,

P =
V

3λ3
T

εpx
∞∑
j=1

(exz) j

j2
( jxK1( jx) + 3K2( jx)) ,

CV =
V

2λ3
T

x2

∞∑
j=1

(exz) j

j

(
2kB
jx

[
K0( jx) jx

(
2
(
j2x2 − 3jx+ 6

)
+ j2 log2(z) + 2j( jx− 3) log(z)

)

+K1( jx)
(
−2j3x3 − 2j

(
j2x2 − 2jx+ 6

)
log(z) + 7j2x2 + 2j2 log2(z)− 12jx+ 24

)]

+2εp
∂

∂T

(
log(z)

x

)[
K1( jx) j

2x−K2( jx) j( jx+ j log(z)− 3)
])

.

�

(D.7)

For the heat capacity the formula CV = T (∂TS)V  is used as it is easier to handle than 
the β derivative of the energy at fixed particle number. It also can be shown that these 
expressions are convergent. However, the fugacity z still need to be determined for the 
non-critical regime which makes the numerical treatment of (4) much more comfortable 
than the series representation. z simply can be set to unity in the BEC phase.

D.3. Asymptotics

The series given in (D.5) cannot be summed up to get a closed form, however, it is pos-
sible in the limiting cases.

	•	 �For the case when x � 1 (and s  >  0), the Macdonald function 
Ks(y) = 2s−1Γ(s)y−s +O(y2), hence

Φ = − V

λ3
T

2

β

∞∑
j=1

(exz) j

j4
= −2

V

λ3
T

1

β
Li4(e

ln z+x).� (D.8)

	•	 �For the case when x � 1 (and s  >  0), the Macdonald function 

Ks(y) = e−y
[√

π
2

√
1
y
+O

(
1

y3/2

)]
, hence
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Φ = − V

λ3
T

√
π

2

x3/2

β

∞∑
j=1

z j

j5/2
= − V

λ3
T

√
π

2

x3/2

β
Li5/2(z).� (D.9)

Here, at the summation, the definition of the polylogarithm is used, Lis(y) =
∞∑
j=1

y j/js.

Appendix E. Analytical expressions of the thermodynamical quantities in the 
asymptotic regimes

In appendix D.3 the asymptotic expansions of the Macdonald function (for x � 1 and 
x � 1) made it possible to sum up the series and obtain a closed form for the grand 
potential. Using the relations in (5) and the dierentiation identity of the polylogarithm,

d

dy
Lis(y) =

1

y
Lis−1(y),� (E.1)

can provide further analytical expressions for the thermodynamical quantities in these 
limits.

E.1. High temperature and low plasma density limit (x � 1)

The thermodynamical quantities in the x � 1 limit are found to be the following 
expressions

N =
V

λ3
T

2

β

(
∂

∂µ
Li4(e

xz)

)

V ,T

=
2V

λ3
T

Li3 (e
xz) ,

E = −2V

(
∂

∂β

Li4(e
xz)

λ3
T

)

βµ

=
6V

λ3
T

1

β
Li4 (e

xz) ,

S = 2V

(
∂

∂T

1

λ3
Tβ

Li4(e
xz)

)

µ,V

= 8kB
V

λ3
T

Li4 (e
xz)− 2kB

V

λ3
T

(ln z + x) Li3 (e
xz) ,

P =
E

3V
=

2

λ3
T

1

β
Li4 (e

xz) .

�

(E.2)

The average particle number is kept fixed when computing the heat capacity. Therefore

dN =
2V

λT

(3Li3 (e
xz)− xLi2 (e

xz))
dT

T
+

2V

λ3
T

Li2 (e
xz)

dz

z
= 0.� (E.3)

And thus dz/dT  can be expressed as

dz

dT
=

(
x− 3

Li3 (e
xz)

Li2 (exz)

)
z

T
.� (E.4)

The total energy can be expressed through the average particle number as

E = 3γ(exz)NkBT ,� (E.5)
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where γ(exz) = Li4(e
xz)/Li3(e

xz). The specific heat at constant volume is obtained by 
dierentiating the energy with respect to the temperature

CV =

(
∂E

∂T

)

N ,V

= 3NkB
∂ (γ(exz)T )

∂T

= 3kBN

(
dz

dT

T

z

(
1− Li2 (e

xz)

Li3 (exz)
γ(exz)

)
+ γ(exz)

(
x
Li2 (e

xz)

Li3 (exz)
+ 1

)
− x

)

= 3NkB

(
4γ(exz)− 3

Li3 (e
xz)

Li2 (exz)

)

= 24kB
V

λ3
T

Li4 (e
xz)− 18kB

V

λ3
T

Li3 (e
xz) 2

Li2 (exz)
,

�

(E.6)

where in the third line the expression of dz/dT  is used from (E.4). The argument of the 
polylogarithms can be rewritten as exp(xµp), and thus it shows that this approximation 
is not suitable for µp > 0, since for these values the polylogarithm becomes complex. 
As a consequence, these expressions cannot describe the BEC phenomenon as it would 
require µp = 1. However, at the extreme limit of very high temperatures, i.e. x ≈ 0, the 
polyloglogarithms take the form Lis(e

xµp) = Lis(1) = ζ(s) and dz/dT = 0 from (E.6). 
This results that (E.2) and (E.6) reproduce the thermodynamics of the free photon gas:

Φ = F = −4σV

3c
T 4, N =

120σV ζ(3)

π4ckB
T 3, E =

4σV

c
T 4, S =

16σV

3c
T 3, P =

4σ

3c
T 4, CV =

16σV

c
T 3,

� (E.7)
where σ = 2π5k4

B/15c
2h3 is the Stefan–Boltzmann constant, F is the free energy, which 

in this limit is equal to the grand potential Φ.

E.2. Low temperature and high plasma density limit (x � 1)

The thermodynamical quantities in the x � 1 limit are found to be the following 
expressions

N = −
(
∂Φ

∂µ

)

V ,T

=

√
π

2

V

λ3
T

x3/2Li3/2 (z) ,

E =

(
∂βΦ

∂β

)

βµ

=

√
π

2

V

λ3
T

x3/2εpLi3/2 (z) +
3

2

√
π

2

V

λ3
T

x3/2

β
Li5/2 (z) ,

S = −
(
∂Φ

∂T

)

µ,V

=

√
π

2

V

λ3
T

x3/2kB

(
5

2
Li5/2(z)− Li3/2(z) ln(z)

)
,

P =
E

3V
=

1

3

√
π

2

1

λ3
T

x3/2εpLi3/2 (z) +
1

2

√
π

2

1

λ3
T

x3/2

β
Li5/2 (z) .

�

(E.8)

When computing the specific heat, it must be remembered that the average particle 
number is kept fixed. Therefore

dN =
3

2

√
π

2

V

λ3
T

x5/2

εp
Li3/2 (z) k dT +

√
π

2

V

λ3
T

x3/2

z
Li1/2 (z) dz = 0.� (E.9)
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And thus dz/dT  can be written as

dz

dT
= −3

2

Li3/2(z)

Li1/2(z)

z

T
.� (E.10)

The total energy can be expressed through the average particle number as

E = Nεp +
3

2
η(z)NkBT ,� (E.11)

where η(z) = Li5/2(z)/Li3/2(z). The specific heat at constant volume is obtained by 
dierentiating the energy with respect to the temperature

CV =

(
∂E

∂T

)

N ,V

=
3

2
NkB

∂ (η(z)T )

∂T

=
3

2
NkB

(
η(z) +

T

z

dz

dT
−

Li1/2(z)Li5/2(z)

Li3/2(z)2
T

z

dz

dT

)

=
3

2
NkB

(
5

2
η(z)− 3

2

Li3/2(z)

Li1/2(z)

)

=
3

2

√
π

2

V

λ3
T

x3/2kB

(
5

2
Li5/2(z)−

3

2

Li3/2(z)
2

Li1/2(z)

)
,

�

(E.12)

where in the third line the expression of dz/dT  is used from (E.10). Tuning the system 
to criticality requires z  =  1, for which the polylogarithm Lis(1) = ζ(s) when s � 1 and 
infinite for s  <  1. Thus the formulae in (E.8) and (E.12) become

Φ = −
√

π

2

V

λ3
T

x3/2

β
ζ(5/2),

N =

√
π

2

V

λ3
T
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2
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λ3
T

x3/2εpζ(3/2) +
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2
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2
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ζ (5/2) ,
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√
π

2

V

λ3
T

x3/2kBζ(5/2),

P =
1

3

√
π

2

1

λ3
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x3/2εpζ(3/2) +
1

2

√
π

2

1

λ3
T

x3/2

β
ζ (5/2) ,

CV =
15

4

√
π

2

V

λ3
T

x3/2kBζ(5/2).

�

(E.13)

All the quantities in (E.8) and (E.12) can be expressed as function of the average par-
ticle number which are given in table 1.
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E.3. The fugacity function

In the following the fugacity function in the x � 1 regime for appendix E.2 is derived. 
However, its parameter dependence cannot be obtained in a closed form but can be 
derived numerically by solving the equation of the average particle density for z from:

n =
4
√
2π3/2

c3h3

(
εp
β

)3/2

Li3/2 (z) .� (E.14)

Reduced parameters are used, that are normalized with respect to their critical value. 
In the following, the temperature dependence is computed, however, the procedure is 
similar for the np  and n dependence. Solving (E.14) for the temperature gives

T =

(
c3h3

2Li3/2(z)

)2/3
n2/3

2πkBεp

z=1−−→ Tc =

(
c3h3

2ζ (3/2)

)2/3
n2/3

2πkBεp
.� (E.15)

The second formula above gives the critical temperature. From (E.14), using τ = T/Tc 
follows

1 =
4
√
2π3/2

c3h3

1

n
(εpkBτTc)

3/2 Li3/2 (z) −→ τ =

(
ζ
(
3
2

)
Li3/2(z)

)2/3

.� (E.16)

Hence, the z dependence of τ  is derived from which numerically the z = z(τ) relation 
can be obtained, and of course the chemical potential, too, through µ = εp + ln(z)kBT . 
By using interpolation, the function of z and the chemical potential µ is depicted in 
figure E1. The full parameter dependence of the thermodynamical quantities is obtained 
by inserting the numerically defined function z into the expressions of appendix E.2. 
An interpolating function for the fugacity z in the case of appendix E.1 (x � 1 regime) 
can be computed in the similar fashion, however, criticality in that case is impossible 
to achieve, thus reduced parameters, such as τ , can not be defined with the critical 
parameter.

Figure E1.  Fugacity as a function of temperature.
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