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Abstract. The thermodynamical properties of the photon-plasma system have
been studied using statistical physics approach. Photons develop an effective
mass in the medium thus—as a result of the finite chemical potential—a photon
Bose-Einstein condensation can be achieved by adjusting one of the relevant
parameters (temperature, photon density and plasma density) to criticality.
Due to the presence of the plasma, Planck’s law of blackbody radiation is also
modified with the appearance of a gap below the plasma frequency where a
condensation peak of coherent radiation arises for the critical system. This is
in accordance with recent optical microcavity experiments which are aiming
to develop such photon condensate based coherent light sources. The present
study is also expected to have applications in other fields of physics such as
astronomy and plasma physics.
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1. Introduction

Quantum gases are one of the most studied subjects in physics and have well-estab-
lished statistical descriptions which have been verified by high precision experimental
observations. In particular, the theory of the ideal Bose gas (IBG) predicts the phenom-
enon of the Bose—Einstein condensation (BEC). It was first experimentally realized by
using gaseous rubidium and sodium in 1995 and resulted in a joint Nobel Prize for
Cornell, Wiemann and Ketterle, [1, 2]. However, this discovery occurred over seventy
years after Bose and Einstein’s prediction [3, 4], showing the numerous technological
challenges that the researchers had overcame in order to demonstrate the existence
of BECs. Einstein’s derivation used a modification of Bose’s work on photon gas to
describe the statistics of massive particles. In fact, their work showed that only massive
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gases (following Bose statistics) are able to go through the condensation procedure.
Hence, the initially studied photon gas, being massless, does not possess this property
despite the bosonic nature of the light quanta. However, condensation is possible by
changing experimental conditions, e.g. by considering the photon gas interacting with
a plasma. In this scenario, the photon dispersion relation is modified due to the col-
lective oscillation of the charged particles and an effective ‘photon mass’ can be intro-
duced [5-9]. The mass generation through interaction was first proposed by Anderson
using the examples of plasmon theory and superconductivity [5]. In its more general
formulation, this phenomenon became known as the Brout—-Englert—Higgs mechanism
after the authors who proved the possibility of mass generation thorough spontaneous
gauge symmetry breaking in relativistic quantum field theories [10, 11] but others also
contributed to the topic [12]. This idea made it possible to explain the existence of
massive vector bosons in the electroweak sector of the Standard Model by Weinberg
and Salam [13, 14].

In the present paper, the corresponding massive quasiparticle, bosonic in nature,
is known as bulk plasmon-polariton! and can be identified as the two transverse mode
of the electromagnetic (EM) field in the plasma like in Anderson’s classical argument.
It is emerged as the fundamental degrees of freedom in the diagonalized Hamiltonian
consisting of charges coupled to a single EM mode [6, 7, 9]. The bosonic ensemble built
up from plasmon-polaritons must have different statistical properties compared to the
free photon gas. Indeed, as a consequence of the effective mass, if the (quasi)particle
number is conserved, a finite chemical potential can be introduced, and it makes it pos-
sible for the system to undergo the BEC phase transition. The photon-plasma interac-
tion has already been discussed in several papers which even led to the conclusion of
the possible existence of the photon BEC. Kompaneets considered a kinetic equation of
the photon distribution (Fokker—Planck equation) in plasma where the interaction is
mediated exclusively by Compton scatterings, i.e. no emission and absorption pro-
cesses have been taken into account [15]. This eventually leads the system to thermal
equilibrium. Zel’dovich and Levich, using the results derived in [15], showed that the
system could possess a BEC phase [16]. This topic was then revisited in [17] where
the same result was concluded: it was shown that by including non-number conserving
processes the BEC phase cannot develop. However, as no effective ‘photon mass’ was
considered in the approach used in [15-17], they could only provide valid results in
very dilute plasmas where the dispersion relation of the plasmon-polariton has a negli-
gible mass term, i.e. it is the same as the free photon. In [18], the effect of the plasma
on the thermodynamics of photons has been considered with the assumption that the
chemical potential is equal to the ‘photon mass’, however, no BEC was found in this
case due to the omission of the ground state energy. In [19], a kinetic theory of the
photon BEC was considered for radiations with sufficiently large intensity (e.g. strong
laser pulse) where the photon-photon interactions are the dominant, hence the photon-
electron interactions with absorptions are negligible. Different aspects of possible BEC

! Throughout the text the terminology ‘(bulk) plasmon-polaritons’ and ‘photons’ indicate the same physical object
while the plasma is present. Photons without interacting with the plasma are referred to as ‘free photons’ or ‘free
photon gas’. It is also worth to emphasize that the plasmon and the plasmon-polariton are not the same: the
former is the quanta of electrostatic oscillations, whereas the latter is the quanta of transverse radiation in the
plasma.
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formation are considered in [20] with the study of the longitudinal mode (plasmon) and
four-wave mixing, by using also kinetic theory, where the photon-number conservation
is assumed as a consequence of including only Compton scatterings. In both of the lat-
ter two studies the bulk plasmon-polariton dispersion relation was used. Despite these
findings are correct, as of yet, no comprehensive theory on the statistical description
of such system was provided which is the main focus of the present paper. However,
there exist other different mechanisms to form a BEC in a photon gas. In [21, 22], the
photon effective mass comes from the paraxial approximation of field quantization in
the Fabry—Pérot microcavity and the thermalization is a consequence of the interaction
with dye molecules that fill the cavity [22]. Experimental observations of photon BEC
in the microcavity have been reported in [23]. Further studies of the photon BEC based
on variations of the previous ideas can be found in [24-29].

2. Model for the photon-plasma system

A statistical model of the ideal plasmon-polariton gas has been considered using the
grand canonical ensemble framework in order to describe the physics of a photon gas
in a homogeneous, isotropic plasma in the current paper. The following Hamiltonian
defines a system of a Ny, charges interacting with a quantized monochromatic EM field,

JLL e \2 1 i

H2m;<p’ A) +h“<2+aa>’ 1)
where p;’s and m are the momenta and the mass of the charges which have unit charge
e and the summation is over the Ny number of these charged particles. The linearly
polarized EM mode is represented by the vector potential A, which in the dipole
approximation has the form of A = a &(a + a'), where the terms a' and a are the cre-
ation and annihilation operators of the mode with angular frequency w. The parameter
a = cy/2rh/Vw, with the light speed ¢, the quantization volume V and the Planck
constant i = h/27. The real unit vector € gives the direction of the polarization. In the
case of a single charge in (1) (N4, = 1), the Hamiltonian was exactly diagonalized by
Varr6 and Bergou [6] using a displacement (D) and a Bogoliubov (C) transformation in
order to eliminate the linear and quadratic terms of the ladder operators. The result-
ing Hamiltonian was used to describe nonlinear scattering processes. The solution was
generalized to the elliptically polarized cases [9], as well as to N, > 1 charges which
was also done in [7] for a similar model. In this scenario, the system can be considered
as a plasma where the Coulomb interactions are damped between electrons and ions
by Debye screening—a free electron gas. The homogeneity of the plasma is achieved by
taking the limit p; — 0 for all 7. This gives a uniformly distributed Nge net charge in
the box (volume V') according to the Heisenberg’s uncertainity principle [9]. Applying
the above described operations on (1) results in an effective Hamiltonian of a free har-
monic quantum oscillator describing a plasmon-polariton system [9]:

HC’—D>H—hQ<bTb+%>, (2)

pi~)0 Vi
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where b = C~1a)C" are the annihilation and the creation operators of the plasmon-
polariton quasiparticles, with [b,b7] = 1. The effective frequency associated to the

quasiparticles is defined as Q = |/w? + w2, where w, = y/4me?n,/m defines the plasma
frequency with the plasma density n, = Ng,/V. Likewise, the ‘plasma energy’ can be
obtained as €, = hw,. By observing the similarity of the dispersion relation to a rela-
tivistic massive particle’s this is often considered to be the ‘rest energy’ of the pho-
ton in plasma [5]. In (2) the A/2 term represents the vacuum energy, and thus will
be omitted throughout this analysis. Some details of the diagonalization is presented
in appendix A. The grand potential is defined as ® = 7! Zg In (1 — e_ﬂ(5€_“)), and
hence the quantum statistics of the system follows the Bose-Einstein distribution,
npg = 1/(e?¢=" — 1), with 8 = 1/kgT, where kg is the Boltzmann constant and T'is the
temperature; ¢ indicates a given one-particle state with energy e; and p is the chemical
potential associated to the conserving number of quasi-particles. The finite chemical
potential makes the properties of the plasmon-polariton system crucially different from
the vacuum scenario where the photons are massless, hence it is nonsensical to talk
about a definite number of photons in the system as they can be created even with an
infinitesimal amount of energy, i.e. ¢ = 0. Thermal equilibrium between the photon
gas and the plasma (as well as conserving photon number) is assumed throughout the
paper, which can be achieved by one of the previously mentioned mechanisms [15-20].

3. Thermodynamics and Bose—Einstein condensate

Taking the thermodynamic limit, the summation over the one-particle states is replaced

by the integral over the phase space: Zg — Zspin % | d*p, where the summation goes
for the spin degeneracy and gives a factor of g, provided there is no spin dependence.
The introduction of the density of states (DOS) enables the integral to be rewritten as

gs25 | &®p = [ de p(e) with the DOS
Vo LAk 8V ——
P(5> = Js (271_)347#{5 & = Wé‘ g2 — 6123. (3)

In the present case g; = 2 as the degeneracy consists of the two transverse modes. The
DOS of the free photon gas, p = 87Ve?/(ch)?, is naturally recovered in the ¢,/¢ — 0
limit. The grand potential is

Vs [ )

O = —396— de’e've? —11n (1 — el _1)z> , (4)
A B

where the following dimensionless quantities are introduced: & =¢/e,, x = e,

pp = i1/, and the fugacity z = expx(p, — 1). The lower bound of the integral is set

to €, as there is no real contribution below the ground state energy. The quantity

Ar = Bch/2r'/3 is the thermal de Broglie wavelength for massless particles. It is pos-
1/3

sible to introduce another analogous length scale A, = ch/27'/%¢, which will also be
used throughout the text. The integral is well defined only for chemical potential values
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tp < 1, hence z € [0,1]. Using the expression for @, all the relevant thermodynamical
quantities can be derived; average particle number, energy, entropy and pressure:

N=- (a#q))v7T , E= (aﬁﬂq})gu , S=- (8T<I>)#’V , P=E/3V. (5)

Hence, the average photon number in plasma is

— Vo[, a¥e? -1
N=3 /1 de’ o, a1 (6)

However, in the thermodynamic limit it only makes sense to talk about the particle
density as V and N — oo while @ = N/V is kept fixed. The same is true for the plasma
density n,, encapsulated by ¢,. These conditions are applied throughout the paper. The
integral in (6) is a monotonically increasing function of z and z < 1 so the maximal value
is when z =1, where the system is found to be critical, i.e. m. = Ti(z = 1). As the DOS
gives zero weight to the ground state, the formula in (6) provides the particle number
only for the thermal states, and above the critical threshold the further particles accu-
mulate in the ground state with energy ¢, by forming a BEC: Nyoy = T, + Mese, (Where
Tie>e, is used for 7 emphasizing its thermal attribute). The same phenomenon happens
for massive IBG in three dimensions when reaching the critical temperature or par-
ticle density. Besides the photon (plasmon-polariton) density and the temperature, the
plasma density is also able to drive the current system to criticality. Thus, the chemical
potential depends on all of these parameters and a critical value exists for each of them
for p, =1 or z=1, figure 1(a). The critical particle density hence can be expressed
as a function of T and n,, figures 1(b) and (c): by fixing the photon density 7 and
decreasing T or n, the system reaches criticality at T, and nj, respectively. Decreasing
these parameters further a fraction of 7., photons condense in the ground state while
the rest remain in the thermal states with 7. . However, there is a crucial difference
between the two parameter dependences. When the temperature reaches 7. the chemi-
cal potential becomes ;1 = ¢, and preserving this value as T'— 0. On the other hand,
when the plasma density reaches its critical value the chemical potential acquires the
value ¢, again, but in this case p must go to zero as n, — 0, since ¢,  ,/n, and the
chemical potential cannot exceed the value of ¢,. This can be seen in figure 1(c): as n,
goes to zero the photon number in the thermal states reaches a finite value (dashed
line), @ = 167((3)/A\3—this is exactly the value for the average particle density in a
free photon gas. Thus, by lowering the plasma density, a fraction of the initial number
of photons in the plasma indeed condense, however, the particle density in the thermal
states cannot go below its vacuum value which is determined by the free photon gas.
Details of the numerical algorithms for the plots presented in figure 1 can be found in
appendix B.

The fingerprint of the phase transition can be observed in the behavior of the ther-
modynamical quantities usually manifesting as a change in the analytic properties at
the given critical parameter. The thermodynamic quantities listed in (5) are shown in
figure 2. In figures 2(a)—(c) the temperature and plasma density dependences of the
total energy, the entropy and the heat capacity at fixed particle density are given. The
heat capacity is used as the main indicator of phase transitions due to its parameter
sensitivity around criticality: in the current case a cusp can be observed at T., which
is characteristic to BEC transitions. Similar behavior can be found in case of the IBG
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Figure 1. Figure (a) shows the general shape of the temperature, photon density
and plasma density dependence of the fugacity. Figures (b) and (c) show the
temperature and the plasma density dependence of the critical photon density
in units of 1/A3 and 1/A}, respectively. The temperature is in units of ¢,/kp and
the plasma density is in units of 1/\2R., where R, = ¢?/mc? the classical electron
radius.

and also in interacting Bose systems such as the liquid *He, where the heat capacity
even gets logarithmically singular at the critical temperature, called the ‘lambda-trans-
ition’ [30, 31]. These quantities are obtained through numerical integration by using
the formulae in (4) and (5). In appendix C the pressure derived from basic principles
results in the formula P = E/3V, which coincides with the free photon case rather
than the massive IBG. The pressure dependence on the specific volumes of the photons
U = 1/m and plasma v, = 1/n,, is in figure 2(d). It behaves much like for the IBG with
respect to U, at a constant plasma density: below the critical value, v., the pressure
gets independent of the specific volume of the photons. On the other hand, by keeping
7 fixed, below the critical plasma density, ng = 1/v5, the system enters the BEC phase,
whereas for v, — 0 the pressure diverges showing the incompressibility of the plasma.
All of these thermodynamical quantities are approaching the values defined by the free
photon gas as n, — 0, indicated by dashed lines in figure 2.

A better qualitative insight is obtained by applying approximations to enable exact
analytical solutions of (4). It is obvious that the energy scale of the system is deter-
mined by the temperature and the plasma energy, hence their ratio, z = ¢,/kgT, is
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Figure 2. Total energy (a), entropy (b) and heat capacity (c) are plotted with
respect to temperature and plasma density at fixed m = 5/)\21 and © =5/,
respectively. The pressure is presented with respect to ¥ and v, in (d), with fixed

ep/kpT =1 and m = 5/, respectively. Blue and red sections are for the BEC and
gaseous phases.

pl

a crucial dimensionless parameter. The formula for the grand potential in (4) can be
recast in the form of an infinite series of Dirichlet-type equation D.1:

. (e72) ' 2—1Li gty forz <1
Z ) KQ(.]:E) = V 23/2
- J \/; £5-Lisa(2), for x> 1,

where K(y) is the Macdonald function with index s. The sum can be computed for
the limiting cases, as shown in (7), where the function Lis(y) denotes the polyloga-
rithm with index s. In the regime where the temperature dominates the plasma energy
(r < 1), the grand potential oc Liy(e*#*). This approximation fails to study the BEC
phenomenon as the domain of the polylogarithm for real values is well-defined only in

the interval (—oo, 1] and from the previous analysis, the BEC occurs at p, = 1. It only
describes the system correctly for p, < 0.

(7
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Table 1. Exact expressions of the thermodynamical quantities in the x> 1
regime, and their scalings in the critical system for the thermal particles.

n(z) = Lis/s (2) /Lis (2) and k(z) = Ligsp (2) /Liyje (2).

Quantity Gaseous phase Scaling at criticality
N 'V .
§E$3/2L13/2 (2) o T2 oc 2/
o —n(2)NksT x —T%/% oc —n/*
E 3 T3/2 T5/2.
Nep + on(z) NkpT - 3/4+ - /4
X 1y + X np
S
Nkg in(z) —1In(2) oc T3/2: o /4
P 1—¢ 1 kgT o T3/24 o T5/2
N2 = N_=_
3V 2 (2) Vv o<n3/4+o<nz5,/4
Cv 3=, (b 3 ,
§NkB (277(2) - 2”(7«')> o T3/% o ni/*

However, in the case when = = 0, the polylogarithm becomes Lis(1) = ((s) (where ¢
is the Riemann zeta function), and hence ® = —40VT*/3c with the Stefan—Boltzmann
constant o = 27°k} /15¢2h?, which is exactly the free energy of the free photon gas.
Thus, in this extreme regime, by using the formulae in (5), the statistics of the free
photon gas is reproduced (see in equation E.1).

By considering the region where the temperature is much less than the plasma
energy (x > 1), the argument of the polylogarithm only contains z which equals to
unity at p, = 1. Thus, the formation of the BEC can be correctly described. The ther-
modynamical quantities are shown in table 1 for both the gaseous and the critical sys-
tem. The detailed derivation is in appendix E.2. The critical quantities show power-law
behavior both in temperature and plasma density and their scalings in 7" are the same
as in the case of the IBG with a non-zero ground state energy in the BEC phase. The
particle density in the condensate fraction can also be expressed in the same way as for
the IBG: 7., = Tyt (1 — T/T,)*? matching the findings in [19] and [20]. These results
should not be surprising as the dispersion relation of the plasmon-polariton is formally
the same as those of the massive relativistic IBG, for which the same functional form
of the thermodynamical quantities can be found as for the current system [32-34]. The

critical value for the temperature and the plasma density can be read off from the criti-
cal expression of N in table 1: T, o« %3/, /m, and ng oc n*/? /T2,

4. Modified blackbody radiation

In different regimes, the system behaves more as a free photon gas (z < 1) or as a mas-
sive Bose gas (z > 1) but the system describes the behavior of radiation in plasma.
Hence, it is sensible to ask whether the thermal radiation is modified in the presence of
the medium. The total energy is

https://doi.org/10.1088/1742-5468 /ab633a 9
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— o0 _ 8th V212 — 12
E = V/V dvu(v), with wu(v)= R 7 p (8)

P

where the frequency v(,) = w(p)/27. This modified form of the blackbody spectral
density with changing parameters is shown in figure 3. All curves start at v, with
a hard cut-off as there is no light propagation below the plasma frequency. In the
gaseous phase, the curves are similar to the usual blackbody radiation (with a gap)
but a sharp peak appears at v, once the particular parameter is tuned to or beyond
criticality. This happens when the radiation coming from the ground state start
to dominate the radiation associated to the thermal particles. At the critical value
(when z reaches unity), the spectrum develops a singularity at the plasma frequency
as the particles start to accumulate in a coherent BEC phase. Even though the spec-
tral density becomes singular at v, it remains normalizable, hence the overall energy
does not diverge. For the general shape comparison of the non-critical, critical and
Planckian spectra see figure 3(a). In case of tuning 7T, the thermal tail of the distribu-
tion vanishes as more particle enters the BEC state, and the normalized distribution
eventually tends to a Dirac-delta concentrated at the plasma frequency. Hence, the
total energy of the system becomes E = Nsp as all the particles joined the conden-
sate, figure 3(b). The plasma density dependence is shown in figure 3(c). In this case
while n, decreases, the gap v, shifts towards zero since its value is determined by the
plasma density. The condensation peak appears at the critical plasma density and
this singularity eventually ends up at v, =0, for which the spectrum becomes the
blackbody radiation in vacuum. Nevertheless, a fraction of photons are still in the
condensate but with energy ¢, ~ 0 there is no way to observe them in the spectrum.
This somewhat resembles the infrared catastrophe in quantum electrodynamics where
infinitely many soft photons are radiated during the brehmsstrahlung process, how-
ever, no realistic detector can register them due to their finite resolution [35-37]. By
adjusting the photon density n above 7. does not change the shape of the distribution
further as the system cannot have a higher particle density than its critical threshold,
figure 3(d). Indeed, any additional particle ends up immediately in the BEC, or by
compressing the system, the particles from the normal phase join the BEC in a way
that preserves the n. density of the thermal particles. The condensation peak shows
up once the critical particle density has been reached. A similar shape of the pho-
ton spectrum is derived numerically in [20] where the kinetic equation, taking into
account the processes of Compton and inverse Compton scattering exclusively, drives
the plasma-photon system to thermal equilibrium with the condensation peak at the
plasma frequency for the right parameters. These results are extremely resembling
the findings in [23], where the peak arises at the cut-off frequency of the cavity, rep-
resenting the effective photon mass in this case. The idea put forward in [22] and [23]
that the photon BEC in an optical microcavity can be used as coherent light source
are applicable for the present system. The spectrum presented in figure 3 should be
producible with the appropriate experimental setup, for which the present study
could serve as a theoretical background.
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Figure 3. Unnormalized radiation spectra. (a) comparison of the general shape of
the plasma-modified Planck spectrum (critical and non-critical) and the Planck
spectrum in vacuum for an arbitrarily fixed temperature. Parameter dependencies:
(b) temperature dependence with fixed m =5/ )\fﬂ, (c) plasma density dependence
with fixed @ = 5/A} (and v§ = v,(ng) critical plasma frequency) and (d) photon
density dependence with €,8 = 1. Red curves indicate the gaseous phase and blue

the BEC phase.

5. Discussion

The study presented in this paper gives a comprehensive theoretical description of the
plasma-photon statistical system. It is shown that the BEC formation is possible for
a photon gas in a plasma medium by tuning its relevant parameters to their critical
values. The radiation spectra shown in figure 3 represent the modified blackbody radia-
tion. The distribution develops a sharp condensation peak at the plasma frequency
in the BEC state corresponding to coherent radiation which should be detectable in
experiment, and perhaps could be used as a new type of source for coherent radiation,
likewise in the case of the cavity photon BEC [23]. The thermodynamical properties of
the plasma-photon system should also have some potential application in other fields
of physics. For instance, non-Planckian modifications of the radiation spectra could be
detected in the cosmic microwave background at low frequencies [38]. Furthermore,
the modification of the thermodynamical quantities, e.g. for the radiation pressure and
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the emitted total energy, might also have some relevance for modeling massive stellar
interiors [18, 39, 40] and plasma transport properties [41, 42].
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Appendix A. Hamiltonian diagonalization

In order to diagonalize the Hamiltonian in (1) a Bogoliubov transformation must be
used to cancel the quadratic terms of a(!):

O = ezflalal—aa), (A1)

where 0 is a real parameter. The quasiparticle ladder operators are defined by its action
as b = C~1aWC, with [b,b'] = 1. And a shift must be performed on b in order to
take care of its linear terms after the action of C. This is done by the displacement
operator:

D = ettt (A.2)

where o is its parameter. By choosing the parameters 6§ and o appropriately, the fol-
lowing form of the Hamiltonian can be achieved:

New 12 1 2
HZ;%+hQ [b*b+§— 7 (Y Nae?), } (A.3)

Further details of the diagonalization can be found in [6] and [9]. The resulting
Hamiltonian is the sum of Ny, free charges and a quantum harmonic oscillator with a
shifted particle number by |o|%. ¢ depends linearly on the momenta {p;}. Thus, by tak-
ing the limit p; — 0 for all 7 results in a vanishing o, and hence (2) remains.

Appendix B. Details of the numerical algorithms for the exact case

Numerical evaluations of (4) along with the relations in (5) provide the thermodynami-
cal quantities depicted in figure 2. However, this requires the derivation of the param-
eter dependence of the fugacity, which can be done numerically.

B.1. Temperature dependence of the fugacity

In order to derive the temperature dependence of the fugacity it is instructive to
rewrite the formula in (6) as
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o [ele] / 12 _ 1
N = 1/ de’ V= VIT(:L“, z), (B.1)
1

cr(e@—1) -1 _1 )\_?)1

where Ay = ch/ 2mt/ 3¢, and the temperature dependence only present in x = Be, in the
integral part I7. By fixing n and solving the equation ﬁ)\il = Ir(z,1) numerically, the
critical temperature is obtained, T, = T, (77), for the given 7. In the next step the equa-
tion mA3) = Ip(xx.(7), 2) is solved for zfor a given 7 numerically, where y = z/z.(7) and
x. = fB.€,. By interpolating the data points a z(7(%)) function is defined, with 7 = T'/T.,
from which the chemical potential read as p,(7) = In(z(7))7T, + 1. The temperature
dependence of the fugacity is shown in figure 1(a) for fixed m = 5/ )\f)l.

B.2. Plasma density dependence of the fugacity

For the plasma density dependence it is advisable to use (6)

— VvV [™ 3e'\e? — 1 vV
N=— [ a = I (x,2).
¥ /1 o g @) B2

In this formula the e, dependence is only present in [,(z,2). The plasma energy is
expressed with the plasma density as ¢, = ii\/4me?n,/m. In order to obtain the density
dependence of the fugacity, the same procedure must be done as for the temperature.
The plasma density dependence of the fugacity is shown in figure 1(a) for m = 5/A3..

B.3. Photon number density of the fugacity and the chemical potential

Using (B.1) with fixed =, the critical particle density is . = I7(z,1) in units of 1/\3
for that given x. Solving the same equation 7 = I7(z, z) now for z (again numerically),
and using an interpolation gives the function z(7/7.), which is plotted for z=1 in
figure 1(a).

Appendix C. Pressure

It is not trivial if the equation of state is the same as for the massless Bose gas, i.e.
E = pV/3. However, it turns out that this is the case which will be proven in the fol-
lowing by using the argument in [30]. The integral form of the pressure is given as
the momentum transfer per photons times the flux of photons. Considering photons
reflecting from a wall that is normal to the z axis the photon flux is v, cos 6, where v,
is the phase velocity in of the radiation in plasma and € is the angle enclosed by the
momentum of the photon and the z axis. It is shown in [43, 44] that the phase veloc-
ity is the relevant quantity to use when computing radiation pressure in a dispersive
medium. This is in agreement with experiments presented in [45]. The momentum
passed over to the wall by each reflection is 2p cos 6. Hence the total pressure has the
form of
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dp 8t [ 3
P=2 3 —2 pUppNBE COS 29 = 3 dp p*vpnnpE. (C.1)
pes0 N 3h3 J,

Here, the spherical coordinates were used in the second expression for which the restric-
tion of p, means 0 < § < 7/2 and the factor two comes from the number of polariza-
tions of the EM field. The phase velocity corresponding to the radiation in plasma

Q 1 7 1
Uph = E = E w2 + wg = ]—9 (pc)2 + 8% (02)

Substituting into (C.1) and switching to energy variable, ¢ = , /(pc)? + €2

8r [  dp , 1 Sm [ ¥\ -2
P=55) “Ep%muu4‘3M§/(k&@m—r (C.3)
This implies that P = E/3V as the well-known relation for the photon gas. However,
the relationship between the grand potential and the pressure, & = — PV , is no longer
true:

_VBQ/ deey/e? —e2In l—e_B(6 ”) ‘3//\’23/ de (&? —E)B/QHBE(E) 3(E Ne,), c
(C.4)

where integration by parts was used. The grand potential does not include the ‘effective
mass’ of the photon. However, as it is acquired by the plasma oscillation it also should
contribute to the exerted pressure on the container wall, hence (C.3) yields the correct
formula.

Appendix D. Series representations of thermodynamic quantities and their
convergence

By expanding the integrand into power series in (4) a series representation of the grand
potential and the other thermodynamical quantities can be achieved by applying (5).
Even though the results are exact, the sums do not have a closed forms.

D.1. Grand potential

The grand canonical potential of a the system is defined thorough the integral in (4),
and hence

Vo [ Va3 [ = (e"2)T
P =—— deeve2 —1In (1 —e D) = - deevez -1 — e %
)‘% B ( ) )‘% B ; J

_ V()
- %5%;

where L is for the Laplace transform. This Laplace transform can be computed exactly
as follows

/ deeve? — le77% = Llever —1](jz), (D.1)
1

A:‘%
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Llever —1](jz) = / deeve? — le 7% = / dy coshy sinh? y e 7@ coshy
0

1

= / dy cosh3ye_j“05hy — / dy coshye_j““hy
0 0

1 [~ , ~ .
- _/ dy (cosh 3y + 3coshy) e 77 coshy — / dy coshy e iz eoshy
0 0

4
1 . _ _ Ky(jx
= () + 3K () — () = 22D, (D2
4 jx
Here the integral representation of the Macdonald function is used
K, (z) = / dt cosh st e *sht, (D.3)
0
together with the recurrence relation
2 . .
—SKS($) _ e(s_l)mKs_l(fL‘) . e(s—i—l)m i1 ($) (D4)
x

Thus the series for the grand potential reads

Vo2? X (e2)/ ,
¢ = —EE j2 KZ(jx)' (D5)

Switching the integration with the summation in (D.1) is well-justified in the present case: after
the series expansion the integrand reads f =}, f; = >, eve’ — 1[exp(z)z]? exp(—jze)/j,
where { f;}; is a sequence of positive and integrable functions with a convergent sum.
These properties imply that the integration and summation indeed commute and the
series representation of the grand potential in (D.5) converges to the same value as the
integral. However, it is not hard to see the convergence of (D.5) alone by using Abel’s
test: the series 1/ 4% is convergent and (e®z)? Ky( jz) monotonically decays to zero

which implies the convergence.
The series defined in (D.5) is a Dirichlet series [46] of the form

3 A Z @7 with s = 2,and  ¢(j) = (e%2)? Ko( jx). (D.6)

=1 7

Moreover, since the sum only with the term (1) corresponds to the grand potential in
the classical limit, 1/ (exp 8(e — p) — 1) = exp f(u — €), the series in (D.5) can also be
considered as the Dirichlet transform of the classical grand potential. From the general
theory of the Dirichlet series with variable s = o + it, it is also known that there exists
o. € R for which if ¢ > o, the series is convergent, hence o. cuts the plane into halves
and the region o > o, is called the half-plane of convergence. Since (D.5) is shown to
be convergent, s = ¢ = 2 is in the half-plane of convergence. Furthermore, if o is in
a compact subset of this half-plane then the series is uniformly convergent (theorem
11.11, [46]). Since for (D.5) this is definitely satisfied, it is uniformly convergent, too.
This property is useful when other thermodynamical quantities are computed through
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the relations (5) where differentiations are involved. The uniform convergence makes it
possible to execute the differentiation term by term.

D.2. Other thermodynamical quantities

As it is discussed in appendix D1 the sum obtained as the series representation for the
grand potential in (D.5) is uniformly convergent. Hence the term-by-term differentiation
is possible without altering its result. This property can be exploited when computing
the other thermodynamical quantities by using (5):

= _V 4 = (e®2)7 _
N—)T%w Jz_; 7 Ky(jz),
b= AV%WZ (ejz)] (jok(jo) +3Kz(ja),

_ Vo - (e72)7 - . .
S—/\%ka Z i (jxKy(jx) + (4 — j (log(z) + 2)) Ka(jz)),
P 5 AL ok (5 + 38l 52),

1% = (e*z)7 [ 2k . . . o
Cy = wa Z (c” 7 ) < ]; [Ko(jx)jx (2 (]2:1;2 —3jx + 6) + 5% log?(2) + 2j(ja — 3) log(z))
T j=1

+K(jz) (=25%" — 2j (j%2% — 2jz 4 6) log(z) + Tj°2” + 25 log?(z) — 12jx + 24)]

12,0 (logf) ) [Ki(jo) j2 = Kal(jw) j( o + jlog(2) - 3>]> - ©.7

ror

For the heat capacity the formula Cy = T(0rS)y is used as it is easier to handle than
the £ derivative of the energy at fixed particle number. It also can be shown that these
expressions are convergent. However, the fugacity z still need to be determined for the
non-critical regime which makes the numerical treatment of (4) much more comfortable
than the series representation. z simply can be set to unity in the BEC phase.

D.3. Asymptotics

The series given in (D.5) cannot be summed up to get a closed form, however, it is pos-
sible in the limiting cases.

e For the case when <1 (and s>0), the Macdonald function
K (y) = 25*1F(s)y*3 + O(y 2) hence

(ez) V 1
— — — _Ti Inz+x )
A‘%ﬁ )\;%5 a(e™) (D.8)

e For the case when x>1 (and s>0), the Macdonald function

)= e [/5/1+ 0 (4] hence
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Here, at the summation, the definition of the polylogarithm is used, Li,(y) = > y7/j°
=1

Appendix E. Analytical expressions of the thermodynamical quantities in the
asymptotic regimes

In appendix D.3 the asymptotic expansions of the Macdonald function (for x < 1 and
x > 1) made it possible to sum up the series and obtain a closed form for the grand
potential. Using the relations in (5) and the differentiation identity of the polylogarithm,

d 1
d—yLls( y) = ;Lis_l(y), (E.1)

can provide further analytical expressions for the thermodynamical quantities in these

limits.

E.1. High temperature and low plasma density limit (x < 1)

The thermodynamical quantities in the z < 1 limit are found to be the following
expressions

— V2/70_ . . 2V
N = N7 (mLu(e z))V,T X —Liz (e¥2),
— 0 Lig(e”z) 6V 1
E=-2V{— —Li
(5 ),, = Syt
o 1 _. V Vv :
S =2V (8—T)\%—6L14(ewz))%v = 8kp— X Liy (e"2) — 2/{:3)\—% (Inz+ x) Liz (e2),
E 21
e .
5V N iy (e"2). (E.2)
The average particle number is kept fixed when computing the heat capacity. Therefore
— 2V R dT 2V dz
dN = pw (3Li3 (e"2) — xLiy (€72)) — T /\3 —-Lis (e"2) — o= 0. (E.3)
And thus dz/dT can be expressed as
dz Liz (e"2)\ =
— = —3— ) =
a7 (x Lis (ewz)) T (E-4)
The total energy can be expressed through the average particle number as
E = 3y(e"2)NksT, (E.5)
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where y(e®z) = Liy(e®z)/Liz(e*z). The specific heat at constant volume is obtained by
differentiating the energy with respect to the temperature

Cy = (g—i) _ gk 20T (7§;Z)T)
= 3kgN (:—;g (1 - Ez Ezzz;fy(ezz)> + y(e"2) (xtlz Ez:; + 1) - :c)
= 3Nky (47(e 2) 3153 222)
= 24/@3%1414 (e%z) — 181@3%%, (E.6)

where in the third line the expression of dz/dT is used from (E.4). The argument of the
polylogarithms can be rewritten as exp(z,), and thus it shows that this approximation
is not suitable for p, > 0, since for these values the polylogarithm becomes complex.
As a consequence, these expressions cannot describe the BEC phenomenon as it would
require p, = 1. However, at the extreme limit of very high temperatures, i.e. x ~ 0, the
polyloglogarithms take the form Lig(e™r) = Lis(1) = ((s) and dz/dT =0 from (E.6).
This results that (E.2) and (E.6) reproduce the thermodynamics of the free photon gas:

O F— 74UVT4 N 120UV((3)T37 ol 4<7VT47 g 75, p— 4—UT4 Cy = IGUVT37
3c micky c 3c 3c c
(E.7)
where o = 27°kg /15¢*h3 is the Stefan-Boltzmann constant, F is the free energy, which

in this limit is equal to the grand potential ®.

E.2. Low temperature and high plasma density limit (x > 1)

The thermodynamical quantities in the z > 1 limit are found to be the following
expressions

N=- ( > \f 2Ly s (),
V., T

E = 0p® — ZK 320 1,4 ( >+§ Eliﬂm (2)

=95 BM_ 2)\%:1: Eplilg s (2 2\ 228 B 5/2\%2),

0P V o, . .
S =— (a—T>u7 — \/jAS 3/2 kB (§L15/2<2) — L13/2(Z> ln(Z)) y
FE 1 [x1 , 1 [x 1232
= W = g\/;E.T?)pEle?,/g (Z) + 5 §E7L15/2 (Z) . (E8)

When computing the specific heat, it must be remembered that the average particle
number is kept fixed. Therefore

— 3 TV 2% Vo3
dN = )\3 L13/2( )de+ \/>)\3 s Lll/g( )dZ:O (Eg)
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And thus dz/dT can be written as

Az 3Lgpa(z) 2
AT~ 2Lija(2) T (E.10)

The total energy can be expressed through the average particle number as
_ 3
E = Ne, + §n(z)Nk:BT, (E.11)

where 7(z) = Lis/2(2)/Lig/2(2). The specific heat at constant volume is obtained by
differentiating the energy with respect to the temperature

-t (- 1)

: 2
\/* 3/2k,B ( Ll5/2( ) g%) ’ (E.12)

where in the third line the expression of dz/dT is used from (E.10). Tuning the system
to criticality requires z= 1, for which the polylogarithm Lis(1) = {(s) when s > 1 and
infinite for s < 1. Thus the formulae in (E.8) and (E.12) become

b=\,

_ \[ S (3)3).

_\[Ag % ((3/2) + 3[%%4(5/%
= 3G (o),

p:3\f Se312) + 1 [T 6,

Cy = 2T Y srp0572). (E.13)

4 2)\3

All the quantities in (E.8) and (E.12) can be expressed as function of the average par-
ticle number which are given in table 1.
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Figure E1. Fugacity as a function of temperature.
E.3. The fugacity function

In the following the fugacity function in the x > 1 regime for appendix E.2 is derived.
However, its parameter dependence cannot be obtained in a closed form but can be
derived numerically by solving the equation of the average particle density for z from:

_ 4\/§7r3/2 c 3/2‘
nzw<gp> Lizs (2) - (E.14)

Reduced parameters are used, that are normalized with respect to their critical value.
In the following, the temperature dependence is computed, however, the procedure is
similar for the n, and @ dependence. Solving (E.14) for the temperature gives

33 2/3 72/3 - 3h3 2/3 72/3
2Liz/9(2) 2nkpe, 2¢ (3/2) 2rkpe,

The second formula above gives the critical temperature. From (E.14), using 7 = T/T.
follows

2/3
V2’2 1 372 ¢(5)
1= S (epkpTTe)” " Ligs (2) — 7 = Tisa(?) . (E.16)

Hence, the z dependence of 7 is derived from which numerically the z = z(7) relation
can be obtained, and of course the chemical potential, too, through y = ¢, + In(2)kgT.
By using interpolation, the function of z and the chemical potential p is depicted in
figure E1. The full parameter dependence of the thermodynamical quantities is obtained
by inserting the numerically defined function z into the expressions of appendix E.2.
An interpolating function for the fugacity z in the case of appendix E.1 (z < 1 regime)
can be computed in the similar fashion, however, criticality in that case is impossible
to achieve, thus reduced parameters, such as 7, can not be defined with the critical
parameter.
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