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Abstract. In recent years, new energy has achieved rapid development in the whole world. 

However, with the gradual increase in the installed capacity of new energy, because of the 

uncertainty and volatility of new energy output, new energy has brought many impacts and 

challenges to the operation of the power system. In order to guarantee the safe and stable 

operation of the power system, the power system has to provide sufficient flexibility to cope 
with the volatility and uncertainty of the new energy output. Improving the prediction error 

accuracy of new energy output can effectively reduce the uncertainty of new energy output, so 

as to reduce the demand for power system flexibility, reduce the operating cost, and improve 

the system operation reliability. This paper utilizes the data mining technology to establish the 

prediction error identification module. Based on the data feature extracted from the wind power 

prediction input data, the potential abnormal wind power prediction error can be identified, and 

the original wind power output prediction result can be corrected, so as to improve the 

predication accuracy of the wind power generation. At the same time, in the prediction and 

identification process, the wind speed prediction data and historical wind power output data of 

neighbouring regional wind farms will also be utilized to improve the prediction accuracy of 

wind farm output in this region. The predicated time scale is 12 hours ahead of time, and the 
predicted result is the wind power output of the next 12 hours (a predicted resolution of 1 hour, 

and a total of 12 predicted values). 

1. Overview 

In recent years, new energy has achieved rapid development in the whole world. However, with the 

gradual increase in the installed capacity of new energy, because of the uncertainty and volatility of 

new energy output, new energy has brought many impacts and challenges to the operation of the 
power system [1]. In order to guarantee the safe and stable operation of the power system, the power 

system has to provide sufficient flexibility to cope with the volatility and uncertainty of the new 

energy output. Improving the prediction error accuracy of new energy output can effectively reduce 
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the uncertainty of new energy output, so as to reduce the demand for power system flexibility, reduce 

the operating cost, and improve the system operation reliability. 

The uncertainty of new energy output is mainly demonstrated by its large prediction error. The 
larger the prediction time scale is, the lower the prediction accuracy is. The accuracy of short-term 

wind power output forecasting method plays an important role in formulating the unit commitment 

and power generating plan. Therefore, it is in urgent need of studying ways to improve the accuracy of 
short-term wind power forecasting. 

As previously mentioned, the wind power forecasting methods can be divided into three categories: 

the prediction method driven by physical models, the prediction method driven by data, and the 

combination of the two. There are many factors affecting wind power output, including wind speed, 
wind direction, temperature, fan model, fan position, topography, air density, wake effect and so on[2], 

in which, wind speed is recognized as the most important factor affecting wind power output. 

However, the wind speed prediction results usually come from third-party organizations such as the 
National Meteorological Service Station. Due to data contamination, defect, missing or other problems, 

the accuracy is not enough to fully support the wind power output prediction of the next stage. In order 

to solve the problem of bad data in wind speed prediction results, some scholars have already carried 
out research on the Numerical Weather Prediction (NWP) bad data identification [3]. 

However, these researches have shown their limitations: On the one hand, the prediction error is 

not only derived from the polluted, defected, missed or other bad data, but also comes from some data 

feature that could easily cause wind power prediction errors. The data feature which causes large 
deviations easily may be constituted by several consecutive data points. On the other hand, due to the 

time lag of the weather in the territory, the wind speed conditions in other regions have available 

information, which can be used as the reference for wind power prediction in the region. However, 
most of the current wind power prediction methods ignore such objective and useful information. 

Literature [4] summarizes four common data features that can easily generate prediction errors, but 

the data feature should not be limited to these four types. At the same time, the literature [5], [6], and 

[7] not only use the available information of the power plant in this region, but also adopt the available 
information of the nearby wind power plant for wind power predication, which effectively improves 

the accuracy of wind power forecasting. Therefore, this paper proposes a wind power output 

prediction method that considers multi-region numerical weather prediction and error identification, 
thus effectively improving the accuracy of wind power forecasting. 

This paper utilizes the data mining technology to establish the prediction error identification 

module. Based on the data feature extracted from the wind power prediction input data, the potential 
abnormal wind power prediction error can be identified, and the original wind power output prediction 

result can be corrected, so as to improve the predication accuracy of the wind power generation. At the 

same time, in the prediction and identification process, the wind speed prediction data and historical 

wind power output data of neighbouring regional wind farms will also be utilized to improve the 
prediction accuracy of wind farm output in this region. The predicated time scale is 12 hours ahead of 

time, and the predicted result is the wind power output of the next 12 hours (a predicted resolution of 1 

hour, and a total of 12 predicted values). 

2. Wind power output initial predication 

Based on Artificial Neural Network (AN), this paper builds the wind power output prediction method. 

The predicted input data includes the wind speed and wind direction prediction data for the next 12 
hours, wind speed and wind direction prediction data for the past 12 hours, and the wind power output 

measured value of the past 12 hours of this region and other regions, the output data is the predicted 

value of wind power output for the next 12 hours. 

Artificial Neural Network adopts a Multi-Layer Perceptions (MLPs) with a hidden layer. The 
structure is a nonlinear function that can approximately express the common function under any 

accuracy. It is capable of forecasting the wind power out predication in the future 12 hours. In addition, 

it is usually required to carry out structural selection, so as to determine the number of neurons in each 
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layer. In this paper, the final structure of the neural network in the wind power output prediction 

module uses 504 neurons of the input layer, 81 neurons of the hidden layer, and 12 neurons of the 

output layer. The input layer and the hidden layer adopt the log-sigmoid transfer function. The output 
layer adopts the linear transfer function. The BP (Back Propagation) method is used for the training. 

The gradient descent method with dynamics and adaptive learning speed is adopted to improve the BP 

neural network, so as to improve the problem that it is easily get trapped in locally optimal solution 
and it has a slow convergence speed. 

3. Wind power predication error pattern identification 

 
Figure 1. Flow chart of training and implementation of error pattern recognition module 

The wind power prediction error pattern identification module is trained by using the historical 
accumulated data: first of all, all historical AWPFs are extracted according to the definition of AWPF; 

secondly, the wind power prediction input data corresponding to AWPF is conducted with feature 

extraction. In addition, the error pattern identification module is trained with this as the input and the 
wind power predication error corresponding to AWPF as the output. In the end, all AWPFs are 

classified based on BIC (Bayes Information Criterion) method and K-means clustering method, and 

the corresponding center and boundary of each cluster is obtained.  
In the implementation process of error pattern identification: first of all, the wind power predication 

input data is conducted with the feature extraction, and then its Euclidean distance with each AWPF 

clustering center is calculated. When the distance is smaller than the set threshold value, the 

predication will be judged as AWPF, and then the predication result is corrected. 

3.1. Historical AWPF Extraction 

First, the AWPF is extracted from the historical data to form an AWPF set, which is recorded as S. 

The historical data is scanned, and every 12 points is a prediction result. Afterwards, it is required to 
compare the wind power practically measured value and the predicated value of the corresponding 

point. When the average prediction error of a certain prediction (a total of 12-point prediction results) 

exceeds the given threshold, the prediction is judged to be AWPF, and the corresponding data set will 

be placed in the set S. 
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3.2. AWPF Feature Extraction 

Secondly, the feature vector of the data set that can represent AWPF from the set S. Under normal 

conditions, AWPF of the same type should have similar or approximate feature vectors, and vice versa. 
Future forecasts with similar or approaching feature vectors with the historical AWPF will also 

probably cause AWPF. If the relationship between the AWPF feature vector and the anomaly 

prediction error mode can be mined and applied in future predictions to identify the potential AWPF, 
the final prediction accuracy will be improved. In this paper, the feature candidate is constituted by the 

wind speed, wind direction, and wind power feature candidate of the local area and the adjacent area. 

The detailed conditions are as follows: 

3.2.1. Wind speed data feature candidate 
Wind speed predication peak and valley difference: The peak-to-valley difference of wind speed 

predication can describe the fluctuation of wind speed, as shown in the formula: 

𝑃𝑉𝑠
𝑥 = 𝑚𝑎𝑥(𝑊𝑆𝐹𝑡

𝑥|𝑊𝑆𝐹𝑡 ∈ 𝑆𝑡𝑟𝑢𝑐𝑡𝑡
𝑥) − 𝑚𝑖𝑛(𝑊𝑆𝐹𝑡

𝑥|𝑊𝑆𝐹𝑡
𝑥 ∈ 𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥) 𝑥 = 0,1,2, . . . , 𝑚    (1) 

Wherein, the superscript x indicates different regions, the subscript s indicates the characteristic 

value related to the wind speed, the same below max (∙) and min (∙) respectively will return to the 

maximum and minimum values. 

Wind speed predication average value: the average wind speed predication value can describe the 
wind speed, just as shown in the below formula: 

𝜇𝑠
𝑥 =

∑ 𝑊𝑆𝐹𝑡
𝑥

𝑊𝑆𝐹𝑡
𝑥∈𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥

num(𝑊𝑆𝐹𝑡
𝑥∈𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥)
, 𝑥 = 0,1,2, … ,𝑚                                   (2) 

Wherein, num(∙) will return to the number of elements in the vector. 

Maximum wind speed predication uphill value: The maximum wind speed predicted uphill value 
can reflect the demand for future wind power demand for the down regulation of the unit within the 

system, as shown in the formula: 

𝑅𝑈𝑠
𝑥 = max(𝑊𝑆𝐹𝑡+1

𝑥 −𝑊𝑆𝐹𝑡
𝑥|𝑊𝑆𝐹𝑡

𝑥 ,𝑊𝑆𝐹𝑡+1
𝑥 ∈ 𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥), 𝑥 = 0,1,2, . . . , 𝑚            (3) 

Maximum wind speed predication downhill value: The maximum wind speed predicted downhill 

value can reflect the future demand for wind power to adjust the up-regulation of the unit within the 
system, as shown in the formula: 

𝑅𝐷𝑠
𝑥 = max(𝑊𝑆𝐹𝑡

𝑥 −𝑊𝑆𝐹𝑡+1
𝑥 |𝑊𝑆𝐹𝑡

𝑥 ,𝑊𝑆𝐹𝑡+1
𝑥 ∈ 𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥), 𝑥 = 0,1,2, . . . , 𝑚         (4) 

Wind speed predication standard deviation: The wind speed predication standard deviation can 

reflect the fluctuation intensity of the future wind power, as shown in the following formula: 

𝜎𝑠
𝑥 = √

∑ (𝑊𝑆𝐹𝑡
𝑥−𝜇𝑠

𝑥)
2

𝑊𝑆𝐹𝑡
𝑥∈𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥

num(𝑊𝑆𝐹𝑡
𝑥∈𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥)
, 𝑥 = 0,1,2, . . . , 𝑚                               (5) 

3.2.2. Wind direction data feature candidate 

Peak-to-valley difference of wind direction predication value: Peak-to-valley difference of wind 
direction predication can describe the fluctuation of the wind direction, as shown in the following 

formula: 

𝑃𝑉𝑑
𝑥 = 𝑚𝑎𝑥(𝑊𝐷𝐹𝑡

𝑥|𝑊𝐷𝐹𝑡
𝑥 ∈ 𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥) − 𝑚𝑖𝑛(𝑊𝐷𝐹𝑡
𝑥|𝑊𝐷𝐹𝑡

𝑥
𝑡
∈ 𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥) 𝑥 = 0,1,2, . . . , 𝑚 (6) 

Wherein, the superscript x indicates different regions, and the subscript d indicates the 

characteristic value related to the wind direction, the same below. 

Wind direction predication average value: The wind direction forecast average value can describe 
the general trend of the wind direction, as shown in the formula: 

𝜇𝑝
𝑥 =

∑ 𝑊𝑃𝑂𝑡
𝑥

𝑊𝑃𝑂𝑡
𝑥∈𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥

num(𝑊𝑃𝑂𝑡
𝑥∈𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥)
, 𝑥 = 0,1,2, . . . , 𝑚                                 (7) 
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Maximum anticlockwise changing value of wind direction forecast: Maximum anticlockwise 

changing value of wind direction forecast can reflect the deviation of the future wind speed to 

anticlockwise direction, as shown in the formula: 

𝑅𝑈𝑝
𝑥 = max(𝑊𝑃𝑂𝑡+1

𝑥 −𝑊𝑃𝑂𝑡
𝑥|𝑊𝑃𝑂𝑡

𝑥 ,𝑊𝑃𝑂𝑡+1
𝑥 ∈ 𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥), 𝑥 = 0,1,2, . . . , 𝑚             (8) 

Maximum clockwise changing value of wind direction forecast: Maximum clockwise changing 
value of wind direction forecast can reflect the deviation of the future wind speed to clockwise 

direction, as shown in the formula: 

𝑅𝐷𝑝
𝑥 = max(𝑊𝑃𝑂𝑡

𝑥 −𝑊𝑃𝑂𝑡+1
𝑥 |𝑊𝑃𝑂𝑡

𝑥,𝑊𝑃𝑂𝑡+1
𝑥 ∈ 𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥) 𝑥 = 0,1,2, . . . , 𝑚             (9) 

Wind direction forecast value standard deviation: Wind direction forecast value standard deviation 

can reflect the intensity of the future wind direction change, as shown in the formula: 

𝜎𝑝
𝑥 = √

∑ (𝑊𝑃𝑂𝑡
𝑥−𝜇𝑝

𝑥)
2

𝑊𝑃𝑂𝑡
𝑥∈𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥

num(𝑊𝑃𝑂𝑡
𝑥∈𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥)
, 𝑥 = 0,1,2, . . . , 𝑚                          (10) 

3.2.3. Wind power output characteristic value 
Peak-to-valley difference of measured wind power output: Peak-to-valley difference of the actually 

measured wind power output can describe the fluctuation of the wind power output, as shown in the 

formula: 

𝑃𝑉𝑝
𝑥 = 𝑚𝑎𝑥(𝑊𝑃𝑂𝑡

𝑥|𝑊𝑃𝑂𝑡
𝑥 ∈ 𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥) −𝑚𝑖𝑛(𝑊𝑃𝑂𝑡
𝑥|𝑊𝑃𝑂𝑡

𝑥 ∈ 𝑆𝑡𝑟𝑢𝑐𝑡𝑡
𝑥)𝑥 = 0,1,2, . . . , 𝑚  (11) 

Wherein, the superscript x indicates different regions, and the subscript p indicates the 

characteristic value related to the measured wind power output, the same below. 
Average value of measured wind power output: Average value of measured wind power output can 

describe the wind power output, as shown in the formula: 

𝜇𝑝
𝑥 =

∑ 𝑊𝑃𝑂𝑡
𝑥

𝑊𝑃𝑂𝑡
𝑥∈𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥

num(𝑊𝑃𝑂𝑡
𝑥∈𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥)
, 𝑥 = 0,1,2, . . . , 𝑚                                         (12) 

Maximum uphill value of measured wind power output: Maximum uphill value of measured wind 
power output can reflect the demand of the historical wind power to the downward regulation of the 

unit in the system, just as shown in the formula: 

𝑅𝑈𝑝
𝑥 = max(𝑊𝑃𝑂𝑡+1

𝑥 −𝑊𝑃𝑂𝑡
𝑥|𝑊𝑃𝑂𝑡

𝑥 ,𝑊𝑃𝑂𝑡+1
𝑥 ∈ 𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥), 𝑥 = 0,1,2, . . . , 𝑚               (13) 

Maximum downhill value of measured wind power output: Maximum downhill value of measured 

wind power output can reflect the demand of the historical wind power to the upward regulation of the 
unit in the system, just as shown in the formula:   

𝑅𝐷𝑝
𝑥 = max(𝑊𝑃𝑂𝑡

𝑥 −𝑊𝑃𝑂𝑡+1
𝑥 |𝑊𝑃𝑂𝑡

𝑥,𝑊𝑃𝑂𝑡+1
𝑥 ∈ 𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥), 𝑥 = 0,1,2, . . . , 𝑚                (14) 

Standard deviation of the measured wind power output: Standard deviation of the measured wind 

power output can reflect the fluctuation intensity of the historical wind power, as shown in the formula: 

𝜎𝑝
𝑥 = √

∑ (𝑊𝑃𝑂𝑡
𝑥−𝜇𝑝

𝑥)
2

𝑊𝑃𝑂𝑡
𝑥∈𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥

num(𝑊𝑃𝑂𝑡
𝑥∈𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥)
, 𝑥 = 0,1,2, . . . , 𝑚                           (15) 

3.3. Error Pattern Identification Module 

3.3.1. Training process 

The feature vectors include a total of N=15(m+1) feature values, which correspond to k kinds of 
AWPFs, and k is unknown. As shown in Figure 2, these feature values are like the DNA of AWPF, 

and various types of AWPF are like different performances. Different DNAs will lead to different 

traits. In order to reveal the relationship between the two, data mining technology is required to 
explore the inner inside of the "black box." However, this "black box" is the error pattern identification 

module. 
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Figure 2. Diagram of the relationship between the data feature values and abnormal wind power 

predication error mode 

The error pattern identification module also adopts the ANN method for modelling because ANN 

has the problem of over-fitting, namely bias-variance dilemma, which usually requires feature 

selection. A good feature selection model is designed to try to reduce the ratio between the complexity 
and the size of the training set. There are many related studies [8-10] on this aspect. In this paper, the 

feature selection process uses the Random Probe method [11] because it has the following advantages: 

1) it does not depend on the probability distribution of characteristic values; 

2) it can sort all candidate features; 
3) the method has simple operation, high calculation efficiency and wide application field. 

Specifically, probe features are firstly generated. These features are generated by the feature values 

in the random exchange feature vector, and the entire feature set is constituted by the uncorrelated 
feature set and the candidate feature set. After that, based on Gram-Schmidt orthogonalization, 

orthogonal forward regression is used to rank feature vectors. The probability that certain features in 

the irrelevant feature set rank better than the candidate features will be evaluated, and the given 

ranking boundary will eliminate the features that are ranked behind, so the boundary should eliminate 
as many irrelevant features as possible. Set np to indicate the number of uncorrelated features, because 

the uncorrelated feature set is generated by the feature values in the random exchange feature vector, 

so it has the same probability distribution as the original candidate feature set. The probability that the 
rank of the irrelevant feature is better than the candidate feature is evaluated as follows: the probability 

that the irrelevant feature rank is less than or equal to r is recorded as nrp/np, where nrp is the number 

of irrelevant features ranked after or the same as r. In the ranking process, when the r of nrp/np > δ 
appears, the ranking process finishes, and the ranking boundary value r0 = r - 1, in which, δ is the 

given risk threshold. The literature [11] provides a specific example of the operation of the above 

method. 

The ANN adopts a three-layer structure. The number of neurons in the input layer is equal to the 
number of features selected at the end, and the 12 neurons in the output layer and the hidden layer 

neurons are the square root of the product of the number of neurons in the input layer and the number 

of neurons in the output layer. The input layer and the hidden layer adopt the log-sigmoid transfer 
function, the output layer adopts the linear transfer function, and the training adopts the BP (Back 

Propagation) method. Each AWPF feature vector is used as an input, and the corresponding wind 

power prediction error is used as an output to train the error pattern identification module. 
This paper uses the K-means clustering method to summarize k kinds of AWPF, and K-means 

clustering method needs to give the number of species in advance. Therefore, the BIC (Bayes 

Information Criterion) method is further used to obtain the optimal k value. Setting the center of k 

clusters as  𝐶𝑘 = (𝐶𝑘
1, 𝐶𝑘

2, … , 𝐶𝑘
𝑀), in which, 𝑀 is the number of the characteristic values, namely, 

𝑀 = 18(m+ 1). This paper utilizes the BIC method to determine the optimal k value. The formula is 
as follows: 
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𝐵𝐼𝐶 = 𝑙𝑜𝑔∏ [
𝑁𝐶(𝑖)

𝑁

1

√2𝜋𝜎𝐶(𝑖)
𝑒𝑥𝑝 (−

‖𝑥𝑖−𝑚𝐶(𝑖)‖

2𝜎𝐶(𝑖)
2 )]𝑖 −

𝑝⋅𝑙𝑜𝑔𝑁

2
                         (16) 

Wherein, N is the total number of the elements, C(i)  represents the clustering of the element 𝑥𝑖 ,  

NC(i) is the number of elements in the clustering C(i), then, N = ∑ NC(i)i . mC(i) is the central vector of 

C(i) , σC(i)  is the standard deviation of the elements in C(i)  to the clustering central distance. p 

represents the number of parameters in the statistics model, namely, 𝑝 = 𝑘 ∙ 𝑀. In the formula, the 

first part on the right side of the equal sign is the log approximation expression of k-means. The higher 

the value is, the more accurate the classification of the clustering is. The second part reflects the rising 
complexity of the model as the k value increases. When the value of k increases, the first part and the 

second part of the right side of the equal sign will also increase accordingly, and the BIC value will 

reach a peak value at a certain k value. The k value will be selected as the number of categories of the 
clustering. 

3.3.2. Implementation process 

Set the radius threshold of the kth clustering as  𝑒𝑘, with its size be equal to the maximum Euclidean 

distance between the element in the clustering and the clustering center, as shown in the formula: 

𝑒𝑘 = 𝑚𝑎𝑥(√∑ (𝐹𝑘,𝑖
𝑗 − 𝐶𝑘

𝑗)2𝑀
𝑗=1                                            (17) 

In the formula, 𝐹𝑘,𝑖
𝑗

 is the 𝑗𝑡ℎ characteristic value of the 𝑖𝑡ℎ element in the 𝑘𝑡ℎ clustering, M is the 

number of characteristics in each element. 

The number, center and radius of clustering will be used as the basis for future AWPF 

identification. The error pattern identification module will evaluate whether the wind power prediction 

value of each point belongs to a certain type of potential AWPF. The identification method is as 
follows: 

𝐼(𝑆𝑡𝑟𝑢𝑐𝑡𝑡) =

{
 

 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑆𝑡𝑟𝑢𝑐𝑡𝑡 ∈ 𝑘
𝑡ℎ  𝑐𝑙𝑢𝑠𝑡𝑒𝑟 , √∑ (𝐹𝑡

𝑗 − 𝐶𝑘
𝑗)2𝑀

𝑗=1 ≤ 𝛼𝑒𝑘

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑆𝑡𝑟𝑢𝑐𝑡𝑡 ∉ 𝑘
𝑡ℎ  𝑐𝑙𝑢𝑠𝑡𝑒𝑟, √∑ (𝐹𝑡

𝑗
− 𝐶𝑘

𝑗
)2𝑀

𝑗=1 > 𝛼𝑒𝑘

          (18) 

In the formula, I (∙) is the AWPF discriminant function. As to each data set of wind power 
predication, whether it will lead to AWPF will be identified according to the function. The principle of 

discrimination is that when the distance between the feature vector of the data set and the center 

distance of a certain cluster is less than the threshold, the prediction will be judged as AWPF, 

otherwise, it will be judged as NWPF. Ft
j
is the 𝑗𝑡ℎ characteristic value of the prediction. α ∈ [0, 1] is 

the threshold adjustment parameter. 

3.3.3. AWPF predication result correction 

In predicting the future wind power output, the data structure 𝑆𝑡𝑟𝑢𝑐𝑡𝑡  will first be used to determine 

whether it will lead to potential AWPF: When it is judged as the potential AWPF, 𝑆𝑡𝑟𝑢𝑐𝑡𝑡  will be sent 

to the error pattern identification module in the first, and then correct each predication point of the 

initial wind power output predication result as formula (19) , otherwise, it will be directly sent to the 

wind power output prediction module for prediction. 

𝑊𝑃𝐹𝑡
′ =

𝑊𝑃𝐹𝑡

1+𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑡)
, 𝑡 = 1,2, . . . ,12                                         (19) 

In which, 𝑊𝑃𝐹𝑡 is the initial predicted wind power value at the time of t. 𝑊𝑃𝐹𝑡
′  is the final 

predicted wind power at the time of t. Error Rate is the output of the error pattern identification 

module, that is, the expected error amplitude of AWPF. Error Rate is constituted by 12 data points, 

which are corresponding to the 12 predication points in the wind power prediction results respectively.  
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4. Case analysis 

4.1. Case Composition List 

There are a total of four cases, as shown in Table 1. 
Case 1-1 and Case 1-2 use only the data of this area for wind power prediction. Case 2-1 and Case 

2-2 use both the data of the region and neighbouring area for wind power prediction. Case 1-1 and 

Case 2-1 do not carry out AWPF identification, and Case 1-2 and Case 2-2 carry out AWPF 
identification. Such case composition is conducive to the comparison and verification of the effects of 

multi-zone data sets and AWPF identification, respectively. 

Table 1. Case composition 

Name Date set 
Carry out AWPF 

identification 

Case 1-1 Use only 𝑆𝑡𝑟𝑢𝑐𝑡𝑡
0, not use 𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥 , 𝑥 = 1,2, . . . , 𝑚 No 

Case 1-2 Use only 𝑆𝑡𝑟𝑢𝑐𝑡𝑡
0, not use 𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥 , 𝑥 = 1,2, . . . , 𝑚 Yes 

Case 2-1 Both use 𝑆𝑡𝑟𝑢𝑐𝑡𝑡
0, and 𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥 , 𝑥 = 1,2, . . . ,𝑚 No 

Case 2-2 Both use 𝑆𝑡𝑟𝑢𝑐𝑡𝑡
0, and 𝑆𝑡𝑟𝑢𝑐𝑡𝑡

𝑥 , 𝑥 = 1,2, . . . ,𝑚 Yes 

4.2. AWPF identification and data adjustment 
Based on the historical wind power output measured value and the historical wind power output 

predicted value reproduced by the ANN method in this paper, the historical AWPF set, and then the 

extracted candidate features shall be conducted with the feature extraction. The uncorrelated feature 

sets are randomly generated by 𝑆𝑡𝑟𝑢𝑐𝑡𝑡  , and δ is set to 5%. The final selected feature vector is: 

(𝜇𝑠
0, 𝜇𝑠

1 , 𝜇𝑠
2, 𝑅𝑈𝑠

0, 𝑅𝐷𝑠
0, 𝜇𝑑

0 , 𝜇𝑑
1 , 𝜇𝑑

2 , 𝑃𝑉𝑝
0 , 𝜇𝑝

0 , 𝑅𝑈𝑝
0, 𝑅𝐷𝑝

0)                            (20) 

4.3. Predication result analysis 

The RMSE results for each case are shown in Figure 3. The data-adjusted wind power output 

prediction method has obvious higher accuracy. At the same time, adopting the multi-region NWP 

data to predicate can also improve the predication accuracy, which verifies that the wind power output 
predication method of considering the numerical weather forecast and error pattern identification has a 

higher accuracy. 

 

Figure 3. Comparison of each case RMSE result 

5. summary 

The difficulty in multi-zone absorption wind power is how to efficiently allocate flexible resources to 

address the uncertainty of wind power output. However, improving the accuracy of wind power output 

prediction is the most direct and effective way to reduce the uncertainty of wind power output. 
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Therefore, this paper proposes a wind power output prediction method considering multi-zone 

numerical weather prediction and error pattern identification. It can be seen from the analysis results 

of the example that the wind power output prediction method proposed in this paper can effectively 
identify the potential abnormal wind power prediction error mode and have a high accuracy of wind 

power output prediction. 
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