
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ISPECE 2019

Journal of Physics: Conference Series 1449 (2020) 012125

IOP Publishing

doi:10.1088/1742-6596/1449/1/012125

1

 

Sparse MIMO linear array imaging based on Localized Low-

rank Promoting algorithm 

Chen Qiao
1,a

, Tong Ningning
1,b

, Wei Wei
2,c,

 Yan Chong
2,d

 

1Air Force Engineering University 

2Air Force Logistics Institute 

a1498682392@qq.com 

b1043961004@qq.com 

c1125084795@qq.com 

d1137366857@qq.com 

Abstract. In order to improve the image quality of (Multiple-Input Multiple-Output, MIMO) 

sparse linear array, this paper deeply explored the block sparse characteristics of imaging 

targets. By introducing LLP algorithm, firstly, the elements of echo signal are divided into 4-

length blocks, and each block matrix is transformed into 2-2-size matrix. By using a 

logarithmic determinant function which has the ability to promote the block-sparsity and local 

smoothness simultaneously, the low rank of these 2 × 2 matrices is improved. Finally, the 

iterative weighting method can efficiently reconstruct the objective image by iteratively 

minimizing a surrogate function of the original objective function. Simulation results show that 

the proposed method can get higher quality target image than the traditional algorithm. 

1.  Introduction 

Through the effective remote sensing technology, it is an important research direction of modern radar 
technology to obtain the two-dimensional image of airspace target, which is widely used in military 

and civil fields. As a new radar system, MIMO radar obtains more virtual array than the real array by 

the characteristics of multi transmit and multi receive array structure, and uses space sampling instead 

of time sampling to achieve the imaging effect of single snapshot.  Wang H studied a single snapshot 
MIMO imaging algorithm, but the number of array elements is still relatively large and the system is 

relatively complex[1]. On this basis, Chen G studied sparse array imaging technology to effectively 

reduce array elements while ensuring the quality of imaging, and studies the problem of data loss[2]. In 
the face of sparse array imaging, compressed sensing is an effective signal processing and image 

restoration technology. By solving a sparse constraint problem, sparse signals can be recovered from 

incomplete observation vectors. In recent years, the imaging algorithm based on compressed sensing 

has made rapid development [3,4]. The theory of compressed sensing (CS) is applied to MIMO radar, 
which overcomes the defect of sparse array and realizes single snapshot imaging[5]. However, the 

traditional sparse recovery algorithm often does not consider the target block aggregation 

characteristics[6], ignoring the block structure characteristics of the echo signal, and the imaging 
performance needs to be further improved. Aiming at the problem that the traditional CS algorithm 

can't take advantage of the block sparseness of MIMO target, this paper adopts a block sparseness 
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reconstruction LLP (localized low range promoting) algorithm[7] for MIMO sparse linear array 

imaging. The simulation results show that the proposed algorithm improves the image quality. 

2.  The imaging signal model of MIMO sparse linear array 

On the premise of performance guarantee, sparse MIMO radar array can reduce the number of 

elements, reduce the hardware complexity and improve the flexibility of system design. A sparse 

MIMO linear array is presented[5], as shown in Figure 4.1. Compared with the uniform linear array, the 
transmitting array does not change (it is still a uniform arrangement of transmitting array elements), 

and the receiving array elements are sparse. 

 

(a) MIMO sparse linear array 

 

(b) Equivalent transmit and receive collocated sparse linear array 

Figure 1. MIMO sparse linear array and its equivalent array 

When sparse, in order not to affect the azimuth resolution, it is necessary to ensure that the total 

aperture length of the equivalent array remains unchanged, that is, the position of the receiving array 

elements at both ends of the linear array remains unchanged, Among the N receiving arrays, 'N are 

randomly selected and reserved, and MN   virtual receiving arrays are obtained by PCA. Define the 

sparsity as ( )1 '/ 100%N N = −  . 

Sparse linear array adopts the structure shown in Figure 1, which is established at the position 

parallel to the x-axis ( )by y= . The position coordinate of the scattering point target is set as ( ),q qQ x y , 

the reference center of the target is set at the ( ),a aA x y which is the origin of coordinates  , and the 

position coordinate of the uniform transmitting array of the spacing Nd  is expressed as 1 2[ , , , ]t t tmx x x  . 

without sparse, the receiving array is a uniform array of the spacing d , the sparse coordinate is

1 2[ , , , ]r r rNx x x  , and the equivalent transmitting and receiving virtual array is approximated by the 

PCA. The position coordinate is 1 2[ , , , ]e e eMNx x x   and the interval is / 2d . 

The distance from the scattering point Q  of the target to the m -th transmitting array element is 

represented by mT Q , the distance from the point Q  to the corresponding n -th receiving array element 

is represented by nQR  , the distance from the target to the m -th transmitting array element and the n -

th receiving array element passing through the PCA equivalent virtual array element is iE Q , and the 

distance from the target reference center A to the equivalent array element is iE A . Under the far-field 

condition, the sum of distance between mT Q  and nQR  is: 
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Where, =eix '

2

tm rnx x+
 It represents the equivalent virtual array element position of mT and nR  . 

If 2 2( ) ( )q b q eiy y x x− + − is recorded as iE Q  and 2

'( ) / 4( )tm rn q bx x y y− −  as iE Q , then formula (1) 

can be simplified as: 

1R 2R 1NR − NR 

1T 2T
1MT − MT

1eR
eMNR 
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' 2m n i iT Q QR E Q E Q+ = +                                                       (2) 

iE Q  represents the distance from Q  to the equivalent array, and iE Q  represents the error phase 

generated by the approximate process of the phase center, which needs to be compensated in the 

subsequent processing, otherwise, the phase defocusing will affect the imaging quality. 

The transmitted signal still adopts phase coded signal. Since M  transmitted signals irradiate the 
scattering point Q  of the target, the echo signal of the 'n th receiving array element is  a mixture of M  

signals. After removing the carrier frequency of the signal, it can be expressed as follows: 

 
( ) ( ) 
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Where, 
q  is the scattering coefficient of scattering point Q , c  is the speed of light, and   is the 

carrier wavelength 

The waveform of the mixed echo signal is separated. After separation, the signal echo of the 'n th 

receiving array element irradiated by the m -th transmitting array element is as follows: 

  ' '

'

( ) ( )
( , ) [ ]exp[ 2 ]m n m n
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Where, ( )p t  is the correlation function of phase coded signal, equation (5) can be fourier 

transformed to: 

' '

1
( , ) ( )exp[ 2 ( )( )]n q m n

f
s f m R f j T Q QR

c
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Where a is the frequency domain representation of B, take equation (4.2) into equation (4.5) to get:  

'

1
( , ) ( )exp[ 2 ( )( )]n q i i

f
s f m R f j E Q E Q

c
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Multiply equation (6) by 
1

exp( 2 ( ))i

f
j E Q

c



 +  for distance compensation, and then perform inverse 

Fourier transform to obtain the signal received by the equivalent transceiver array: 

'
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Where, 2( 2 ) / 2i q q ei ei qE Q y x x x y + − + . 

The azimuth compression can be realized by multiplying ' ( , )n eis t x  by 
1

exp( 2 ( ))i

f
j E Q

c



 + . the 

compressed signal is: 

'
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The echo of all receiving channels is represented by  ' 1 ' 2 '( , ) , ( , ) , , ( , )H H H

n e n e n eMNs t x s t x s t x Y = . 

obviously, the dimension of data matrix Y  is L MN  , where L  is the number of range vectorization 

elements and MN   is the number of PCA equivalent virtual elements. Because the dimension of the 

echo data matrix Y  of the uniform linear array without sparse processing is L MN , that is, the 

number of the range vectorization elements is L , and the number of the equivalent virtual elements is

MN . Therefore, each distance element data of Y  can be regarded as a low dimensional observation of 

full array data Y , and the observation matrix  , =Φ is a generalized unit matrix: 

,

1, , 1, , , 1, ,

0,else

MN MN 

 

   


= = 
= 


                              (9) 

Where,   is consistent with the sparse position of the equivalent virtual array element. 
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Sparse basis Ψ  is IDFT transformation matrix: 
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Where, 
2

= expMNZ j
MN

 
 
 
-  , Because the receiving elements of sparse array are random missing, Ψ  

and Φ  satisfy rip criterion. Assuming that the scattering point distribution of the target in the l -

th( =1 ,l L， ) distance element is recorded as lX  as a , and the l  row of matrix Y  is recorded as y , 

then according to the sparse recovery theory, a  can be obtained by solving the following formula: 

0
min

. .s t =

a

y Θa
                                                     (11) 

Where, =Θ ΦΨ  By solving a with equation (11), we can get the scattering point distribution of all 

distance elements of the target, that is, the two-dimensional image of the target 

3.  Sparse MIMO linear array imaging based on Localized Low-rank Promoting algorithm 

3.1.  Local rank minimization for sparse imaging 

In the MIMO sparse array radar imaging scene, transform equation (11) into the following signal 

model 
 = +y Θa w                                                             (12) 

Where, 1MNR
y  is the sparse array observation signal, 1MNR a  is the target image to be 

reconstructed, ( )MN MNR MN MN
  Θ  is the perception matrix, and 1MNR w  is the error and noise. 

There is block structure coefficient in MIMO echo signal, which contains block related information, 

but the location of block structure is unknown. In order to realize the reconstruction of signal a in 

equation (12), the matrix ( )1 20,

,0

N
R

+  
 

 

a
A

a
 is constructed. Suppose iX  represents the 2 2  submatrix 

composed of line i and line 1i + of X , as follows: 
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A                                                           (13) 

Where ia  represents the i  -th element of a , where 1ia − , ia  and 1ia +  are all zero, then the rank of iA  

is 0. When 1ia − , ia  and 1ia +  are not zero and are locally smooth, the rank of iA  is approximately 1. 

Therefore, the non-zero element solution of vector a  is transformed into the rank minimum solution of 

matrix  iA , that is: 

    
( )

1

2

min rank

s.t.

N

i

i



=




x

A

y - aΘ

                                                      (14) 

  is the error tolerance parameter related to noise statistics. 

3.2.  Local rank minimization for sparse imaging 

Matrix rank minimization problem is a NP hard problem. In order to avoid this problem, using 

log 2 logH

i i j= i
A A , where j  represents the j -th singular value of i

A , the solution of matrix rank 

is transformed into the relatively easy solution of logarithmic determinant function [7] 
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Where E  is a positive definite matrix: 

1

1





 
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 

E                                                  (16) 

In order to avoid the algorithm falling into the local minimum because   is constant, the parameter 

 is set as decreasing sequence, that is, ( ) ( )1
10

t t
 

+
= , ( )

( )t
  represents the result of  the t -th iteration 

variable, vector or matrix of a times. Parameter  is selected as follows: 

1,2 1,1H H =                                                 (17) 

Where, HH A A . Usually, 1 1−   . The formula (15) is unconstrained, i.e: 
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2T

2
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= + + −a A A E y Aa                             (18) 

Where,   is the trade-off parameter, which is used to control the last two weights. 

The upper bound of the objective function is minimized by means of the MM algorithm [8]. So 

equation (18) satisfies the following inequality 

( ) ( )( ) ( )( )
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t tH H

i i i i i i
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+  + + −A A E A A E ΦΦ                    (19) 

Where, ( ) ( ) ( )( )( )
1H

t t t
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−

+Φ A A E , When ( )t
i i=A A , the above equation holds. Therefore, 
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A is called the upper bound function of the logarithm determinant function in control equation (20). 

when: 
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i i

t
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c d
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Then formula ( )( )|
t

f a a  can be further expressed as: 

( )( ) ( )( )
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=
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Where, MN MNR W  is a diagonal matrix, and there are nonzero elements on the main diagonal and 

the upper and lower diagonal of the main diagonal. The positions and shapes of these non-zero 

elements are similar to 1 1

,

1
( )

2

i i i i

i i a d d a− += + + +W  , 1

1,

1
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0 1 0Nd a += = .  

Construct the following alternative functions: 

( )( ) ( )( ) 2
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| + log
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i

Q N
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= + − Αa a a Wa Φ y - a                               (23) 

The optimization problem of equation (18) is transformed into that of iterative minimization (23). 

The optimal solution can be expressed as follows: 

( )
1

1H H
−

−= +a Θ Θ Θ Θ y                                                (24) 

Therefore, when the optimization problem of iterative minimization (23) is solved, the function is 

non incremental in each iteration, and finally the MIMO target image reconstructed by LLP algorithm 
is obtained. 
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3.3.  LLP based sparse MIMO linear array imaging algorithm flow 

Input: sparse array signal y , sensing matrix Θ , parameters   and  , minimum  number  of iterations 

T ;  
Iteration:  

1): initialization signal ( )0
= +

a Θ y , the initial setting of the number of iterations is 0t = ; 

2) when the solution result is not convergent and t T , the following iteration 3) to 6) is carried 

out;  

3): calculate ( )t
i  and get W ;  

4): a new estimated signal is obtained by equation (24), which is recorded as ( )1t+
a ;  

5): if the signal satisfies ( ) ( ) ( )

2

1
10

t t t


+
− a a , then ( ) ( )1

/10
t t

 
+

= ;  

6): 1t t= + ;  

7): when the convergence condition is satisfied, the iteration is stopped and the reconstruction 

result AA is obtained.  

Output: reconstruct the MIMO image data a . 

4.  simulation experiment 

4.1 Simulation experiment 1: LLP algorithm reconstruction performance analysis 
Set the simulation block sparse signal to test the performance of the algorithm. Consider a block 

sparse signal x , dimension 200, the length of non-zero segmentation block is 4, there are 50 blocks in 

total, and define the sparsity as K  (the number of blocks). The non-zero block position is randomly 

distributed, and the data in the block follows the standard Gaussian normal distribution. The 

reconstruction effect is measured by the accurate reconstruction probability, which is defined as 
3ˆmax 10

i

−


− x x . Figure 2 shows the results of 200 Monte Carlo simulation experiments of LLP 

algorithm under different sparsity. With the increase of K , the reconstruction probability of LLP is 

higher than that of SBL. 

 

Figure 2. reconstruction probability curve with K  Figure 3. curve of MSE with K  

Further, the MSE of the reconstructed signal is used for the reconstruction performance of the 

algorithm under different sparsity. When K changes from 2 to 16, 200 Monte Carlo simulation 

experiments are conducted, and the relationship curve between MSE and LLP algorithm is shown in 
Figure 3. It can be seen that the larger the K  is, the larger the MSE is; when K  is greater than 6, with 

the increase, the MSE of LLP algorithm is better than that of SBL algorithm, and the greater the K  is, 

the more obvious the advantage is. Simulation results show that the reconstruction accuracy of LLP 

algorithm is better than that of SBL algorithm. 
In order to test the reconstruction performance of LLP algorithm for block sparse signal under 

different signal-to-noise ratios, make it 10, and the signal-to-noise ratio changes from 2dB to 20dB 
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with 1dB interval, and carry out 100 Monte Carlo tests. The MSE curve of LLP algorithm and SBL 

algorithm changes with the signal-to-noise ratio is shown in Figure 4: 

 

Figure 4. change curve of MSE with SNR 

It can be seen from the above figure that with the increase of signal-to-noise ratio, the performance 
of LLP algorithm and SBL algorithm has been improved, but LLP algorithm always has better 

reconstruction accuracy, and its reconstruction probability error curve has been under the SBL 

algorithm, so LLP algorithm has better signal recovery performance for block sparse structure than 
SBL algorithm. 

4.2 Simulation experiment 2: LLP algorithm sparse MIMO linear array imaging experiment 

 

Figure 5. scatter point model 

Set the MIMO sparse linear array radar imaging scene, and the scattering point model of the imaging 
target is shown in Figure 5. The linear array of 4 transmitters and 20 receivers in Figure 1 is 

established, with the receiving array element spacing of 18m and array sparsity set as 50% = . The 

imaging results of direct IFFT, SBL algorithm and LLP algorithm are shown in Figure 4.6 
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(a) IFFT                                                          (b) SBL  

 

(c) LLP  

Figure 6. imaging effect of different algorithms 

It can be seen from Figure 6 (a) that the sparse array is FFT directly, and the image appears serious 

defocusing and blurring; Figure 6 (b) the imaging effect is improved compared with Figure 6 (a), and 
the sparse reconstruction algorithm based on SBL can improve the imaging quality of sparse array, but 

there are many false points; Figure 6 (c) the imaging effect is further improved compared with SBL, 

which shows that LLP algorithm utilizes the sparse target block Sparse characteristics improve the 
imaging quality. MSE of several algorithms is shown in table 1. It can be seen that LLP algorithm has 

the best imaging effect. It shows that the block sparse reconstruction algorithm takes advantage of the 

block sparse feature of radar target and can further improve the imaging effect of sparse array. 

Table 1 MSE of several algorithms 

  IFFT SBL LLP 

MSE 0.5968 0.3959 0.2293 

Further, the array sparsity Γ is increased from 20% to 70% at 10% interval. Repeat 100 Monte 

Carlo experiments, and the mean square error of sparse linear array imaging obtained by different 

algorithms is shown in Figure 7. As shown in Figure 7, with the increase of array sparsity, the 
effectiveness of the three algorithms is poor, but the sparse linear array imaging effect based on LLP 

algorithm is the best, because LLP algorithm can take advantage of the block sparsity of the target 

image, which has better imaging effect than the traditional sparse reconstruction algorithm. 
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Figure 7. change curve of MSE with sparsity  Figure 8. change curve of MSE with SNR 

When the array sparsity is fixed to 50%, and the SNR changes from 0dB to 40dB at 10dB intervals, 

repeat 100 Monte Carlo experiments, and the results are shown in Figure 4.8. It can be seen from 

figure 8 that the standard deviation of several imaging methods increases with the decrease of signal-
to-noise ratio, and the standard deviation of LLP is always lower than that of other methods. It shows 

that the phase algorithm has better adaptability under different noise conditions 

5.  conclution 

In view of the block sparsity of radar target echo signal, LLP algorithm is used for imaging. The target 

echo to be reconstructed is transformed into the minimization problem of multiple 2 2  dimension 

matrix ranks, and the block sparse signal is reconstructed by using a determinant function which can 
promote the block sparse and local smooth solution. In the process of solving, the optimal solution is 

obtained by maximizing the minimum method and iteratively minimizing the upper bound of 

determinant function. The simulation results show that the LLP algorithm has the advantages of 

different array sparsity and SNR conditions. 
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