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Abstract. In the modern society, the technology of artificial intelligence is playing a more and 

more important role. It is well known that we can use the deep learning to do the human gesture 

recognition which is quite helpful for us. For example, if our system finds a student who is 

playing his cell-phone in the classroom, the system will give him a very low score in this lecture. 

For another example, if some students are taking notes carefully, our system will give them very 

high scores. In this project, I used the knowledge of the deep learning which is quite hot recently, 

and applied the knowledge of human key point detection to realize behavior recognition. 

1.  Introduction 

Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields is a very hot topic. The core of 

this project is to propose a human body pose estimation algorithm that uses Part Affinity Fields (PAFs) 

bottom-up algorithm (getting the key point position to obtain the skeleton) instead of the traditional top-

down algorithm (first detecting people and then return to the key point). I learned about OpenPose which 

is a real-time multi-person key point detection of CMU open source, including human key points, hand 

key points, face key point detection, and pose estimation. I decided to use OpenPose to solve the gesture 

recognition problem in the cloud classroom environment. After obtaining the key points of the human 

body, I could obtain some key angles by calculating the positional relationship between the key points, 

and use these angles and positions to estimate the gesture of the student in the video. The system could 

determine the six most common gestures in the classroom: listening, taking notes, playing cell phone, 

sleeping, raising hand, and standing. Although the code could run very fast on the server, it runs slower 

on my laptop because of the poor configuration of my laptop and there is no way to make real-time 

judgments on my laptop. I tried to combine Openpose with YOLO to make the system run faster, but 

there is still no way to solve the problem of slow speed on my laptop, and the average calculation time 

of one frame was more than 1 second. In order to achieve better results, I changed this real-time system 

to a system that does a recognition every 3 seconds. Finally, I combined the part of expression 

recognition with the part of gesture recognition. The system can do a recognition every 3 seconds, and 

record the results of each student's performance, and then send them to the teacher in real time. It is 

convenient for teachers to adjust their teaching styles for students' performance. What’s more, the 

system also generates a student's classroom performance report and the score of the performance in the 

class in order to realize the interactive behavior recognition. 

2.  Background 
Common Objects in Context (COCO): I use the COCO dataset to deal with the part of gesture 

recognition in the cloud classroom system. The COCO dataset is used for the OpenPose key points 

detection in the project. The COCO dataset prepared by Microsoft is a large image dataset designed for 
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object detection, segmentation, human key point detection, semantic segmentation and caption 

generation. The target of this dataset is scene understanding, which is mainly captured from complex 

daily scenes. The targets in the image are marked by precise segmentation. The COCO dataset includes 

a large number of images which are more than 200000 and 250000 person instances in this dataset are 

marked with key points. What’s more, most of people in the COCO dataset are at medium scales and 

large scales. Some examples of COCO dataset are shown in Figure 1.[1] 

 

 
Figure 1. Some examples of COCO dataset 

 

OpenPose: OpenPose is a well-known open source library which is based on convolutional neural 

network and supervised learning. It can realize the tracking of human facial expressions, torso and limbs 

and even fingers. This algorithm is quite appropriate for both single person and multi-person detection. 

This algorithm comes from "Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields", a 

paper by CVPR 2017, written by Cao Zhe from the CMU Perceptual Computing Laboratory. [2] 

In the OpenPose, we should enter an image, pass it through a backbone (such as VGG, Res-Net, 

Mobile-Net), and then go through 6 stages. Each stage has two branches, one for detecting heatmap and 

one for detecting vectmap. With heatmap and vectmap, you can know all the key points in the picture, 

and then mark the points to everyone through PAFs. The OpenPose framework is shown in Figure 2.  

 
Figure 2. The OpenPose framework 

3.  Human gesture recognition 

I need to use OpenPose to realize the key point recognition of the human body, and then estimate the 

posture of the person in the picture by the positional relationship between the marked key points. In 

addition, the system can send the detected gesture of the students to the teacher, and score the students' 

gestures at this time to reflect the performance of each student in the class. It can help teachers to have 

an intuitive understanding of the students' class performance. 
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OpenPose can estimate the pose of a single human target in the image, and can also handle the pose 

estimation of multiple people in the image. The input of this model is an image of h×w×3 and this model 

can output two arrays containing the confidence maps of the key points and the part affinity heatmaps 

of each key point pair. The top 10 layer of VGG19 is used to extract the feature maps of the input image. 

And then, 2-branch multi-stage CNN structure is used. The network structure of OpenPose is shown in 

Figure 3. 

 

 
Figure 3. The network structure of OpenPose 

 
After getting the input image, I used the first 10 layers of the VGG19 network to extract the features 

of the input image. One improvement of the VGG over AlexNet is the use of several consecutive 3×3 

convolution kernels instead of the larger convolution kernels in AlexNet (11×11, 7×7, 5×5). The main 

purpose of it is to improve the depth of the network and to improve the effect of the neural network to a 

certain extent under the condition of ensuring the same perception field. For example, the layer 

superposition of three 3×3 convolution kernels with the stride of 1 can be regarded as a receptive field 

of size 7 which means that three 3×3 continuous convolutions are equivalent to a 7×7 convolution. [3] 

The number of total parameters of three 3×3 continuous convolutions is 3×(3×3×𝐶2) . If the 3×3 

convolution kernel is used directly, the number of total parameters is 7×7×𝐶2, where C refers to the 

number of channels. Obviously, 27×𝐶2 is less than 49×𝐶2, which means that three 3×3 continuous 

convolutions can reduce the parameters; and the 3×3 convolution kernel helps to better maintain the 

image properties. What’s more, we used 3 nonlinear functions instead of 1 convolution, which increased 

the discriminating power of the function. The framework of VGG19 is shown in Figure 4. [4] 

 

 
Figure 4. The framework of VGG19 

 
After the first 10 layers of the VGG19 network, we can get the feature F. Feature F is processed 

through a continuous multi-stage network. Each phase (t) of the network contains two branches, and the 
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input results are S(t) (Part Confidence Map) and L(t) (Part Affinity Map). S(t) tells us where the head is 

and where the elbow is; L(t) tells us which places are definitely on which leg. With the help of L(t), the 

coordinate points of S(t) are connected to form a skeleton of the person's posture. 

The input received in the first phase of the network is the feature F. The feature F is processed by the 

network to obtain S (1) and L (1) respectively. Starting from phase (2), the input to the phase (t) network 

consists of three parts: S(t−1), L(t−1) and feature F. The inputs to the network for each phase are: 

𝑆𝑡=𝜌𝑡 (𝐹, 𝑆𝑡−1, 𝐿𝑡−1), ∀𝑡≥2    (1) 

𝐿𝑡=𝜑𝑡 (𝐹, 𝑆𝑡−1, 𝐿𝑡−1), ∀𝑡≥2                  (2) 

This network iterates until the network becomes converged. Figure 5 shows the results of two branch 

calculations for CNN. 

 
Figure 5. The results of two branch calculations for CNN 

 

Branch one: This network branch predicts the 2D confidence maps of the position of human key 

points, such as elbow, knee and so on. Each confidence map is a grayscale image, and the position 

coordinate of its maximum value is the highest probability corresponding to a certain key point of the 

human body which is shown in Figure 6. 

 
Figure 6. 2D confidence maps of the position of human key points 

 

Branch two: This network branch predicts the 2D vector field of PAF, which represents the degree 

of association between two key points. For example, part affinity between key points neck and left 

shoulder is shown in Figure 7, the affinity value between the key points belonging to the same person is 

relatively large. 



ISPECE 2019

Journal of Physics: Conference Series 1449 (2020) 012081

IOP Publishing

doi:10.1088/1742-6596/1449/1/012081

5

 

 

 

 

 

 

 
Figure 7. 2D vector field of PAF 

 

In order to determine whether the network is convergent, we define the loss function of the network: 

f = ∑ 𝑓𝑆
𝑡N

t=1
+ 𝑓𝐿

𝑡                                                               (3) 

𝑓𝑆
𝑡 and 𝑓𝐿

𝑡 represent the error conditions of the two output images respectively. Their formulas are 

𝑓𝑆
𝑡 =∑ ∑ 𝑊(𝑃) ∙ ‖𝑆𝑗

𝑡(𝑝) − 𝑆𝑗
∗(𝑝)‖

2

2

𝑃

𝐽

𝑗=1

                                     (4) 

𝑓𝐿
𝑡 =∑ ∑ 𝑊(𝑃) ∙ ‖𝐿𝑐

𝑡 (𝑝) − 𝐿𝑐
∗ (𝑝)‖2

2
𝑃

𝐶

𝑐=1

                                       (5) 

t represents the stage. 

𝑆𝑗
∗(𝑝) represents the ground-truth of part confidence map and it can be obtained by: 

𝑆𝑗,𝑘
∗ (𝑝) = exp⁡(−

‖𝑝−𝑥𝑗,𝑘‖2
2

𝜎2
)                                                 (6) 

𝑆𝑗
∗(𝑝) = max⁡(𝑆𝑗,𝑘

∗ (𝑝))                                                     (7) 

𝐿𝑐
∗ (𝑝) represents the ground-truth of part affinity vector field and it can be obtained by: 

𝐿𝑐,𝑘
∗ (𝑝) = {

𝑣⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑝⁡𝑜𝑛⁡𝑙𝑖𝑚𝑏⁡𝑐, 𝑘
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑠

                                                (8) 

𝐿𝑐
∗ (𝑝) =

1

𝑛𝑐(𝑝)
∑ 𝐿𝑐,𝑘

∗ (𝑝)𝑘                                                       (9) 

W represents a binary mask. If W(p)=0, it indicates that the current point p is missing (not visible or 

not in the image) in order to avoid wrong punishment during training. 

Finally, we can splice the key points and the torsos to complete the required model. We can get all 

parts of the body and the torso, and the two adjacent torsos must have shared joint point. By combining 

all the torsos through the joint points, we can get the body skeleton of all people. 

Through training for the ultimate network, I got the model: model.h5. I need to read the neural 

network, then adjust the size of the output to the same as the input, and then check the confidence map 

of the key point. We should save the (x, y) coordinates and the probability scores for each key point, 

and perform key point detection on the input image. And then use Heatmap to find the valid connection 

pair. Finally, combine all the key points belonging to the same person to draw the skeleton map. 

In the part of gesture recognition, we need to recognize six kinds of gesture which are sitting, taking 

note, playing cell phone, sleeping, raising hand and standing. In order to realize the recognition of these 
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gestures, we can record the coordinates of the key points of the human body, and then calculate the 

positional relationship between the various parts of the human body through the coordinates of each key 

point. We only need to know the coordinates of the three points to find out the angle formed by the three 

sides, and then use the range of values of these angles to infer the pose of the person in the image. 

Formulas for calculating these angles are shown below: 

A (𝑥1,⁡𝑦1)      B (𝑥2,⁡𝑦2)      C (𝑥3,⁡𝑦3)                                          

Vector AB: (𝑥2 − 𝑥1,⁡𝑦2 − 𝑦1)                                                  

Vector AC: (𝑥3 − 𝑥1,⁡𝑦3 − 𝑦1)                                                  

Vector BC: (𝑥3 − 𝑥2,⁡𝑦3 − 𝑦2)                                                 

cos ∠𝐴 =
[(𝑥2−𝑥1)(𝑥3−𝑥1)+(𝑦2−𝑦1)(𝑦3−𝑦1)]

|𝐴𝐵||𝐴𝐶|
                  (10) 

|𝐴𝐵| = [(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2]0.5                    (11) 

|𝐴𝐶| = [(𝑥3 − 𝑥1)
2 + (𝑦3 − 𝑦1)

2]0.5                    (12) 

Finally, through OpenCV, I can use the camera to record the performance of the students in front of 

the screen in the cloud classroom, then send the student's gesture to the teacher, and record the score of 

student's gestures. 

I use the OpenPose to do the human key points recognition. Through this model, we can get the 

coordinates of the 18 key points of the human body. We compared our approach with some of the 

methods proposed by previous people, and the result is shown in Table 1. Through the comparison of 

the experimental results in the table, we can find that the method we use has a very significant 

improvement in the accuracy of recognition compared to other methods. 

 

Table 1. Comparison of some different methods 

 Head Shoulder Elbow Wrist Hip Knee Ankle mAP 

Deepcut [18] 73.4 71.8 57.9 39.9 56.7 44.0 32.0 54.1 

Iqbal et al. [19] 70.0 65.2 56.2 46.1 52.7 47.9 44.5 54.7 

DeeperCut [20] 87.9 84.0 71.9 63.9 68.8 63.8 58.1 71.2 

Our method 94.1 91.2 81.5 72.7 78.1 72.9 67.9 80.2 

 

Our final system only needs to recognize six gestures. However, the COCO dataset does not have 

data specifically used to assess students’ gestures in the classroom, so I took 200 photos with the camera 

to test the accuracy of these four poses. The test accuracy confusion matrix of the six gesture 

recognitions is shown in Table 2. 

Table 2. The test accuracy confusion matrix of the six gesture recognitions 

 Predicted value 

Actual 

value 

 
Standing 

up 

Raising 

hand 

Taking 

notes 
Listening 

Playing cell 

phone 
Sleeping 

Standing up 87.5 0 0 11 0 1.5 

Raising hand 0 92 1 6 0 1 

Taking notes 3.5 1 79 6 9.5 1 

Listening 6 0 1 90 2 1 

Playing cell 

phone 
0 0 13 3.5 83 0.5 

Sleeping 5.5 0 0 0 0 94.5 

4.  Conclusion 

I completed the pre-processing of the dataset. I originally planned to use the EgoHands dataset, but 

found that it did not meet my needs, and later switched to the COCO dataset. And then I used OpenPose 
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which is an open source library based on convolutional neural networks and supervised learning and 

developed with Caffe as the framework for human key points detection. After getting the key points of 

the human body, I could find the angle formed by each part of the human body through the coordinates 

of each key point, and then infer the posture of the person in the image. In the end, our system can 

recognize four human poses with an accuracy of 75%. 
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