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Abstract. The output signal of the fiber optic gyro (FOG) often contains a large amount of  

noise, which makes it difficult to model and calibrate. Therefore, it must be denoised. In this 

paper, an adaptive noise cancellation method based on variational mode decomposition (VMD) 

is proposed. The FOG signal was decomposed into a series of mode components with different 

center frequencies, and the correlation coefficient method was used to determine the number of 

decomposition layer. The low-frequency signal and the high-frequency noise components were 

distinguished by the frequency distribution of each component. They were respectively 

accumulated to use as the ready denoising signal and the reference noise, then obtaining the 

denoised signal by adaptive noise cancellation. Using FOG measured data, the proposed method 

was taken into experiment compared with traditional methods. Allan variance analysis verified 

that the proposed method effectively suppresses the noise in the FOG signal. 

1. Introduction 
Fiber Optic Gyro (FOG) has the advantages of simple structure, fast start-up and small size. It has broad 

application prospects in inertial navigation systems [1]. However, due to factors such as internal 

structure and processing technology, FOG output often contains a large amount of noise and abnormal 

sampling values, which makes it difficult to obtain high accuracy for calibration and error modeling. 
Therefore, the output signal needs to be denoised [2][3].  

Threshold filtering effectively extracts useful signals from noise on the perspective of frequency 

domain, and solves the real-time problem through sliding data window [2]. It is a hotspot in recent years. 
The most widely used method is wavelet transform (WT) threshold denoising. The full-frequency 

wavelet multi-scale denoising method proposed in [4] has achieved better results than the traditional 

filtering method. However, it does not solve the basis function selection and decomposition layer 

number determination problem. Ensemble Empirical mode decomposition (EEMD) solves the 
shortcomings of WT and is successfully applied to FOG signal denoising [3][5]. However, since it is 

based on a recursive algorithm, modal aliasing is prone to occur. There are still some deficiencies in the 

theoretical basis and the computational efficiency. 
Variational mode decomposition (VMD) [6], as a new non-recursive decomposition method, 

overcomes the shortcomings of modal aliasing in EEMD. It has strict mathematical derivation and high 

decomposition precision. It obtains the center frequency and bandwidth of each component by 
iteratively searching for the optimal solution of the variational model. Since the high and low frequencies 

are still partially doped after decomposition, it is easily to discard the useful signals or retain the noise 

in part of the modes. The adaptive noise cancellation technique uses the reference noise to cancel the 

noise in the noisy signal through the filter, thereby realizing the extraction of the useful signal. It can be 
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applied to the stationary or non-stationary signal, and has good suppression performance for noise [7]. 

This paper proposes a method for FOG output signal denoising based on VMD and adaptive noise 

cancellation. FOG output signal is decomposed into a set of mode components with different center 
frequencies, and the useful signals and noise components are identified according to the frequency 

distribution. The high-frequency noise components are accumulated as the reference noise and the 

remaining low-frequency components are accumulated as the ready denoising signal, then obtaining the 
denoised signal by adaptive noise cancellation. The denoising effect of the method is verified by the 

measured data of FOG compared with different methods. 

2. Variational mode decomposition 

Under the constraint that the sum of the mode components is equal to the signal, VMD obtains a 
variational model satisfies that the sum of the estimated bandwidths of the mode components to be the 

smallest by continuously searching within the frequency range. The intrinsic mode function (IMF) of 

the VMD is defined as: 

( ) ( )cos( ( ))k k ku t A t t=  (1) 

Where ( )ku t  is the k th mode component， ( )kA t  and ( )k t  are instantaneous amplitude and phase. 

Mixed estimated center frequency of ( )ku t  is k . Using the H Gaussian smoothing of the demodulated 

signal to estimate the bandwidth of ( )ku t , the above constraints can be described as: 
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Where ( )t  is the impact function,   represents convolution operation, 1 2{ , , , }k ku u u=u  , 

1 2{ , , , }k k  =ω , x  is the ready decomposing signal. Using the penalty factor   and the Lagrange 

multiplication operator ( )t , introducing the alternating direction method of the multiplication operator, 
1ˆn

ku + , 1n

k
+  and ( )t  are constantly updated, and the binding variational problems is transformed into non-

binding one: 
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Calculate the extreme value of the above Lagrange function, then the frequency domain expressions 

of the mode component ku  and the center frequency kω  are respectively: 
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Performing an inverse Fourier transform on ˆ ( )ku  , the actual part is ( )ku t . Iterate continuously until 

the accuracy is satisfied [6][8]. 

3. Adaptive noise cancellation 

As shown in figure 1, the adaptive filter has two inputs, reference signal ( )nz  and desired signal ( )d n , 

and output signal is ( )y n . Here, the signal source containing noise is used as the desired signal, and the 

noise source is used as the reference signal. After multiple iterations, the difference between the desired 

signal and the output signal ( )e n  is the denoised signal. This process is called noise cancellation, which 

means removing the portion of the signal source that is strongly correlated with the noise source.  
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Figure 1. Adaptive filter structure 

The most important part of adaptive noise cancellation is the design of adaptive algorithms. For non-

stationary signals, recursive least squares (RLS) has better adaptability. RLS algorithm is based on the 
least squares criterion, which minimizes the sum of squares of all errors from the initial to current time: 
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Where    is exponential weighting factor, 0 1   , usually chosen near 1, ( )= ( ) ( )Hy i n iw z  , w  is 

adaptive filter weight vector. RLS can be described as adjusting weight vector w so that the sum of 
squared of the filter output errors is minimal for all input signals at each moment. Solving equation (6) 

and finding partial derivatives for w : 
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Define the auto-correlation and cross-correlation matrix of the signal as 
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Then the optimal solution is: 
1( ) ( ) ( )opt n n n−=w R r  (10) 

The iterations of ( )nR  and ( )nr  are: 
H( ) ( 1) ( ) ( )n n n n= − +R R z z  (11) 

( ) ( 1) ( ) ( )n n n n = − +r r z d  (12) 

The update formula for weights ( )nw  can be obtained by combining (10)-(12): 
H( ) ( 1) ( )[ ( ) ( 1) ( )]n n n n n n= − + − −w w k d w z  (13) 

Where gain vector H
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H( ) ( ) ( 1) ( )n n n n= − −e d w z  is the required denoised signal [7][9]. 

4. Adaptive noise cancellation based on variational mode decomposition 

4.1. Determination of the number of VMD layers 

VMD can customize the number of decomposition layer K. However, different K has a great influence 
on decomposition effect. Too large to cause over-decomposition, appear false components, too small to 

cause under-decomposition, some frequency components in the signal are not decomposed. The 

correlation coefficient method is used to determine the number of layers. The original signal is 
decomposed into 2,3, …, K layers in turn, the correlation coefficients between each mode component 

and the original signal is calculated. Set a threshold, when the correlation coefficient of a certain mode 

in a certain time of decomposition is less than the threshold, the decomposition is terminated. The 

number of layers of the previous decomposition is taken as the final decomposition layer. The threshold 
can be set as 1/10 of the maximum correlation coefficient that occurs in each time of VMD [10]. 
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4.2. High and low frequency mode component judgment  

Generally, the demarcation point of the high and the low frequency is defined as 4

s / 2f  according to 

different output frequencies sf [11]. However, in order to maximize the retention of useful signals in the 

higher frequency bands, this paper defines the demarcation point as 3

s / 2f . Since VMD decomposes the 

signal into mode components that are dominant at different frequencies, each component has a center 

frequency and bandwidth. Calculate the proportion of the frequency distribution in the high and low 
frequency bands of the component. If the ratio of high frequency (or low frequency) exceeds 80%, it is 

defined as the high frequency (or low frequency) component. If the ratios of the two parts are both less 

than 80%, then the point is further set as 2

s / 2f .  

4.3. Adaptive noise cancellation based on variational mode decomposition 

The main steps of adaptive noise cancellation based on VMD (VMD-RLS) are as follows: (1) Determine 

the number of decomposition layer by using the correlation coefficient method, and decompose the noisy 
signal into K layers. (2) Calculate the distribution proportion of each component frequency to determine 

that the component is high or low frequency, and respectively accumulating as the reference signal and 

the desired signal for adaptive noise cancellation. (3) Using adaptive noise cancellation to filter out noise 
in the ready denoising signal. (4) Output the denoised signal. 

5. FOG measured data verification and results analysis 

In order to verify the validity and denoising accuracy of the VMD-RLS algorithm, a certain FOG is 

placed on the laboratory leveling turntable statically. The sensitive axis points to the zenith. The data 
output frequency is 200 Hz, and the acquisition time is 1h. Take 50,000 data points after stable output 

as the ready denoising signal, and obtain the time domain waveform and spectrum shown in figure 2. It 

can be seen that the signal is basically covered by noise, especially near 30Hz and 90Hz. 

 

Figure 2. Time domain waveform and spectrum of FOG signal 

The signal is decomposed by VMD, and the number of layers in each time of decomposition is one 
more than the previous. The correlation coefficient between each mode component and the original 

signal for each time of decomposition is calculated in table 1: 

Table 1. Correlation coefficients between mode components and original signal under different 

decomposition layers 

Decomposition layer 

Correlation coefficient 

Threshold 
IMF1 IMF2 IMF3 IMF4 IMF5 

2 0.9017 0.1132 — — — 0.0901 

3 0.9004 0.0966 0.3965 — — 0.0900 

4 0.8958 0.0910 0.1575 0.3879 — 0.0896 

5 0.8955 0.0865 0.1026 0.1420 0.3819 0.0896 
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Table 1 shows that at the fifth time decomposition, the correlation coefficient between IMF2 and the 

original signal is 0.0865, which is less than the threshold value of 0.0896. This decomposition is judged 

as over-decomposition of the original signal. So, take 4 as the number of decomposition layer of VMD. 
The time and frequency domain of each mode component after decomposition are shown in figure 3. 

 

Figure 3. Waveform and spectrum of VMD mode components 

It can be seen that the mode spectrum distribution of the VMD is relatively concentrated. Calculating 

the high and low frequency distribution of each mode is shown in table 2. It can be seen that IMF1~IMF3 

are low frequency signal components, and IMF4 is noise component. The two parts are separately 
accumulated as ready denoising signal and reference noise. 

Table 2. Proportion of high and low frequency bands of mode components 

Mode component 
Proportion（%） 

High frequency（>25Hz） Low frequency（<25Hz） 

IMF1 0.43 99.57 

IMF2 0.65 99.35 
IMF3 0.32 99.68 

IMF4 99.53 0.47 

The ready denoising signal and the reference noise are used as inputs to the cancellation system to 

obtain denoised signal. In order to show the denoising effect, Kalman filter (KF), WT, EEMD-based 
noise cancellation (EEMD-RLS) and VMD threshold denoising (VMD) are used as comparisons. The 

denoising effect of different methods are shown in figure 4. 

 

Figure 4. Comparison results of different methods 

It can be seen from the figure that the VMD-RLS method has achieved good denoising effect. In 
order to quantify the denoising results of each method, the Allan variance is used as evaluation criteria. 

Figure 5 shows the Allan double logarithmic curve of the original gyro signal and various methods 

denoised signals. From the original signal, the Allan variance curve of FOG is mainly represented by 
quantization noise and angular random walk in a short correlation time. The effect of bias instability is 

small. The coefficients of quantization noise Q and angular random walk N obtained by fitting are shown 

in table 3. 
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Figure 5. Allan variance double logarithmic curve of different denoising methods   

Table 3. Comparison of Allan variance for denoising results 

Methods / μradQ  1/2/ ( )/hN   

Original 4.75e-2 5.01e-4 

EEMD-RLS 8.14e-4 6.85e-5 

WT 4.59e-4 3.87e-5 

KF 1.95e-3 1.16e-4 

VMD 5.15e-4 4.34e-5 

VMD-RLS 1.12e-4 9.42e-6 

It can be seen from figure 5 and table 3 that the various methods have a significant order of magnitude 

reduction for the quantization noise and the angular random walk coefficient. VMD-RLS is better than 
WT, VMD and other denoising method. It is verified that the proposed denoising algorithm is better than 

the traditional direct filtering high frequency method. KF performs poorly. From the partial 

amplification of the denoising result (figure 4), the denoised signal after KF is more jitter than other 
methods. The high-frequency characteristics are more obvious, so the noise coefficient is greater. The 

performance of EEMD-RLS is not ideal. It can be seen from the partial mode spectrum of EEMD (figure 

6) that the frequency span is large and there is modal aliasing, which fails to achieve effective separation 

of noise and signal, resulting in the desired signal and reference noise are of poor quality, and thus the 
denoising effect is poor. 

 

Figure 6. Spectrum of partial mode components of EEMD 

6. Conclusion 

This paper analyzes the importance of FOG output signal denoising. Based on this, VMD-RLS is 

proposed. The correlation coefficient method is used to determine the number of decomposition layer. 
The low frequency signal and the high frequency noise are determined by the mode component 

frequency distribution. The high and low frequency demarcation points are adjusted, the range of the 

low frequency band is appropriately expanded to retain the useful signal to the greatest extent. The signal 

and noise components are separately added for adaptive noise cancellation to obtain denoised signal. 
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Using FOG measured data for verification experiments, the results show that VMD-RLS has achieved 

the best denoising effect, the coefficients of quantization noise and angular random walk are both 

reduced by orders of magnitude. 
Compared with the traditional algorithms, VMD-RLS also shows its advantages. Compared with KF, 

the local jitter of the signal after denoising is smaller, and the high-frequency noise attenuation is more 

obvious. Compared with WT, it is not necessary to select the basis function, and the applicability is 
better. Compared with EEMD-RLS, it can better separate the noise and useful signals. The spectrum is 

relatively concentrated, the aliasing phenomenon is not obvious. It provides more accurate signals for 

adaptive noise cancellation. Compared with VMD by directly filtering out high frequency components, 

it retains the useful signal to the greatest extent while removing noise. 
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