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Abstract. With the advancement of artificial intelligence technology, the product of its 

integration with robots:intelligent robots, is appearing more and more in people's lives and 

work. Compared to the single function of industrial robots, intelligent robots have the ability to 

perceive, recognize and decide on the outside world. In order to achieve these functions, data 

needs to be collected by various types of sensors, and then processed by various algorithms. 

The introduction of these modules has increased the complexity of the system. Therefore, in 
order to reduce the complexity between the functional modules, reducing the coupling between 

modules, and improving the code reuse rate of the functional modules has become an urgent 

task. This paper proposes an improved FreeRTOS operating system have a driver layer, a 

middleware layer, and a functional module layer. The experimental results show that the 

scheme can support the maximum 2000hz module response frequency and the Topic data 

throughput rate of 2K Bytes per second. 

1. Introduction 

The International Organization for Standardization defines robots as: "The robot is an automatic, 

position-controllable, programmable multi-function manipulator with several axes that can handle 
various materials by means of programmable operation, parts, tools and special equipment to perform 

various tasks".[1]. Intelligent robots enhance the perception, recognition and decision-making ability 

of the external environment based on traditional robots [2]. These capabilities are achieved by 

installing different types of sensors on the robot. A large number of sensors increase the difficulty of 
robot design and development. Therefore, in order to improve the design and development efficiency 

of the robot function module and coordinate the effective work of each function module, how to 

effectively reduce the coupling between the function modules becomes an urgent problem to be solved. 
The world-renowned ROS (Robot Operating System) is a robotic operating system that allows users to 

quickly build their own robot platform [3, 4]. The primary design goal of ROS is to increase the code 

reuse rate in the field of robot development and reduce the coupling and complexity between 
functional modules. Through the publisher/subscriber communication mechanism, ROS allows any 

functional module to be mounted on the ROS as a node at any time, and the nodes are well connected, 

so that the coupling degree of each functional module is greatly reduced. However, ROS is based on 

the Linux operating system. Linux is a non-real-time operating system and cannot cope with scenarios 
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with high real-time requirements. This article describes a robotic operating system that combines a 

real-time operating system with a publisher/subscriber communication mechanism in ROS. It can not 

only solve the real-time demand of intelligent robots, but also improve the function code reuse rate 
and reduce the coupling degree between functional modules. 

2. Real-time operating system selection 

Most of the current robot system hardware platforms are based on the ARM core M series MCU, 
which is characterized by no MMU (memory management unit). Its fast response and strong real-time 

performance are limited to Flash and SRAM capacity, and most of them are lightweight RTOS. 

Mainly with multi-task scheduling management, optimize CPU runtime and system resource 

allocation. Robotic systems typically require processing power for a variety of sensor data, requiring a 
high degree of real-time and hard interrupt generation, and any upper-level instructions and decisions 

require the underlying timely response and processing. The ROTS selected by this solution is 

FreeRTOS. FreeRTOS is an AWS-authorized open source project authorized by MIT. The ecological 
environment is very stable and will receive more technical support. No matter whether it is scientific 

research or late products, there is no need to consider the issue of fees. As an RTOS system, 

FreeRTOS has low complexity and a small number of files. At the same time, FreeRTOS has been 
ported to many different microprocessors, which is very convenient for use [5-9]. 

3. Overall system design 

The real-time robot operating system proposed in this paper adopts a distributed processing framework. 

Each functional module is designed as a node and runs under a loosely coupled model. Each module 
uses PSP (Publish-Subscribe-Pattern) model for communication. The whole system is divided into 

three layers: device driver layer, middleware layer, and functional module layer. As shown in Figure 1. 

 

Figure 1. System structure diagram. 

The function module layer completes the data acquisition and distribution functions of the sensor 
device. The middleware layer mainly provides two management services: the first implements the PSP 

(Publish-Subscribe-Pattern) communication mechanism of the whole system; the second establishes a 

unified sensor management model. The device driver layer defines a common device operation 
interface for each device. 

3.1. Analysis and design of functional module layers 

The design of the functional module layer is to effectively implement code reuse, so the general 
functions of the functional modules are abstracted into the basic classes. The function module layer 

includes: an algorithm module, a timer module, a frequency parameter setting module, etc. The timer 

can periodically arrange the processing functions in the module to acquire data and process the data. 

The frequency parameter setting module can control the frequency of operation of the submodule. 
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3.2. Analysis and design of middleware layer 

3.2.1. Communication mechanism design  

The real-time robot operating system proposed in this paper adopts PSP (Publish-Subscribe-Pattern), 
which is the publisher/subscriber communication model. Its essence is event monitoring and broadcast 

model: The subscriber of the message registers a listener with the publisher when needed and registers 

the topic that they want to subscribe to the message dispatch center. When a publisher has a message 
to publish, the message to be published is broadcast to the message dispatching center in the form of a 

topic, and the event notification is triggered to the subscriber through the listener. The dispatching 

center will uniformly schedule the processing code of the subscriber to the dispatch center.  

This scheme implements PSP communication mechanism in the form of cyclic message queue. The 
topic published by the publisher is defined as a circular message queue, which reads and writes by 

means of reading and writing pointers. Since each subscriber has its own read pointer, subscribers can 

control the timing of reading data at their own discretion without affecting other subscribers. This 
enables a data communication model for multiple publishers of a publisher. 

3.2.2. Sensor Management Module Design 

The robot system will contain a variety of sensors, such as: motion sensor (IMU), air pressure sensor, 
GPS, camera, sound sensor, etc. These sensors are the data input sources of the robot. In order to 

effectively manage these sensors and their data, a sensor management module was designed: 

SensorManager. The device module Dev is abstracted in the SensorManager. As shown in Figure 2. 

 

Figure 2. Sensor device call flow chart. 

First, all the sensor devices are added to a global sensor device list. When the SensorManager starts 

and initializes, it traverses each sensor device in the list and calls the open function interface. Each 

device completes the initialization process of the sensor device by implementing the open interface, 
and then the timer callback function is periodically scheduled in the SensorManager. In the callback 

function, iterate through each device registered in the device list, and call each sensor device write 

function to write the device's timing control instruction to the device, read function to read the sensor 

number data. Finally, the sensor data received by the TopicManager function is released to the system. 

3.2.3. Drive layer analysis and design 

The driver layer is a software module responsible for communicating with external hardware devices, 

and generally includes a hardware abstraction layer (HAL), a board support package (BSP), and a 
driver. The driver layer is the main channel for communication between the system and external 

sensors and external control devices. Its main function is to provide the operation interface of the 

external device and the driver of the device for the upper module. Device drivers can generally be 
abstracted as: open, close, read, read, write. These operations basically cover all operations of an 

external device.  
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4. System implementation and testing 

4.1. Test environment 

The real-time robot operating system proposed in this paper is verified by STM32F4 [10-12]. The 
main technical indicators of the system include: frequency pressure, message delay response time, 

maximum load capacity and stability. The test cases and test results of each performance indicator are 

described in detail below. 

4.2. Test case 

According to the scheduling frequency of the system, four test cases are designed. 

1) Frequency stress test: Define four modules to run the addition operation at 2000Hz, 1000Hz, 

500Hz, 200Hz, and calculate the running frequency of the output module every 3S. At the same time, 
the error between the actual frequency and the expected frequency is counted. 

2) Message delay response test: Add test Topic communication based on test case one. Time stamp 

and broadcast for each message in the 500Hz module. Then raise the 200Hz module to 500Hz, and test 
the Topic in it, and receive the receiving timestamp. Compare timestamp errors received and sent, 

delayed response of statistical messages. 

3) Maximum load capacity test: Copying multiple submodules through a submodule template and 
implementing the receiving operation of the test topic in it. Each module operates at 200Hz. Count the 

frequency error of each module and the average frequency error of all modules. The error statistics are 

then output at a frequency of 3S. 

4) 24-hour stability test: Start 1000Hz module for Sensor data acquisition; Start the 400Hz module 
to solve the pose and send the attitude data Topic; Start 200Hz module for attitude data reception. 

Statistical gesture information output per 3S. These functions perform a 24-hour trial run and count 

frequency errors, attitude errors, and message delay errors. 

4.3. Test Results 

1) Results of the first test: In the test, the priority order of the modules is 

500Hz>200Hz>1000Hz>2000Hz (The highest priority module is generally set at 500Hz, which can 

meet the scheduling period of each module in the overall system.). Sampling every 10 minutes, 
sampling a total of six times, the results are shown in Table 1: 

Table 1. Frequency pressure data. 

Test 

frequency 
1 sampling 2 sampling 3 sampling 4sampling 5 sampling 

Average 

sampling 

2000Hz 1989 1926 1975 1894 1988 1907 
1000Hz 978 986 976 984 977 988 
500Hz 498 499 491 497 497 495 
200Hz 198 199 195 197 199 196 

It can be seen from the experimental data that the real-time operating system running frequency is 
stable at 200-1000 Hz. When the frequency domain is running to 2000 Hz, the scheduling 

performance loss has begun to increase gradually. Therefore 2000Hz is basically the maximum 

scheduling frequency of the real-time system. If you want to implement a high frequency module, you 
need to use a hardware timer to complete. For high frequency modules, a hardware timer is used to 

complete. 

2) Results of the second test the size of the message is 2048B, 1024B, 256B, 64B, and a total of six 

samples, the results are shown in Table 2. 
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Table 2. Message delay response data. 

Message 

data volume 

1 sampling 

average 

2 sampling 

average 

3 sampling 

average 

4sampling 

average 

5 sampling 

average 

Average 

sampling 

2048 B 30us 29us 31us 30us 32us 31us 
1024 B 29us 29us 30us 29us 29us 30us 
256 B 30us 29su 32us 28us 29us 29us 
64B 30us 29us 29us 31us 32us 31us 

During the experiment, I found that the amount of Topic data will affect the frequency of its data 

update. Because Topic is a circular queue buffer, its buffer size is fixed. Therefore, if the amount of 

Topic data is too large, the number of buffered cache data is too low, so that too much data cannot be 
cached. If the subscriber module does not update the data in time, it will result in data loss. This real-

time operating system can support Topic data cache of 2048B per second. 

3) Results of the third test: In the test, Tested the load capacity of 100, 80, 50, 20 submodules 
respectively. All modules have a priority of normal. The average operating frequency of each type of 

module is sampled every 10 minutes, and a total of 6 records are recorded. The results are shown in 

Table 3. 

Table 3. Maximum load capacity test data. 

Number of 
load 

modules 

1 sampling 

average 

2 sampling 

average 

3 sampling 

average 

4sampling 

average 

5 sampling 

average 

Average 

sampling 

100 193 192 194 193 194 193 
80 197 196 193 195 195 196 
50 199 198 199 198 199 199 
20 200 200 200 200 200 200 

It can be seen from the experimental data that the delay of the message will increase as the number 

of system modules increases. As the number of modules increases, the period in which a message 
needs to be distributed becomes longer. In robot systems, some messages require real-time broadcast 

and response; some message delays have little effect on the system. Therefore, when designing the 

module, it is necessary to divide the purpose of the topic, and set the upper limit of the subscriber 

according to the demand for the response. 
4) Results of the fourth test: In the test, the system status indicators are saved every 1 minute. The 

indicators include: the actual running frequency of the module, the average delay time and the 

maximum delay time of the Topic data transmission-reception. The system has accumulated 24 hours 
of operation (1440 points). The results are shown in Table 4. 

Table 4. 24-hour stability test data. 

Sampling 

point 

1000Hz 

module 

frequency 

400Hz 

module 

frequency 

200Hz 

module 

frequency 

Topic 

average 

delay 

Topic 

maximum 

delay 

1 1000 400 198 30us 35us 
2 1000 400 199 28us 35us 
3 999 400 195 31us 36us 
4 999 400 194 29us 34us 
5 1000 400 199 31us 35us 
6 1001 400 198 30us 34us 
7 999 400 197 29us 33us 
8 1000 400 196 28us 35us 
...      

1440 1000 400 199 32us 35us 
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It can be seen from the experimental data that the stability of the real-time operating system is good, 

and the experimental data of 1440 minutes has no large fluctuations. 

5. Conclusion 

This paper proposes a real-time robot operating system based on FreeRTOS. The system leverages the 

ROS publisher/subscriber communication mechanism to combine the real-time nature of FreeRTOS. 

The whole system is divided into three layers: drive layer, middleware layer and functional module 
layer. The middleware layer is the core of the whole system, which can uniformly manage the sensor 

and PSP communication mechanism. The sensor management module is responsible for uniformly 

scheduling the interface functions of each sensor and controlling the access timing of the sensor. The 

user can access the system to work by simply inheriting the driver device base class and adding it to 
the driver device list. The PSP communication module uses Topic as the message hub of the entire 

middleware, responsible for the establishment of Topic and the distribution of messages. The message 

data area is stored by using the message data wake-up queue, the subscription list information is saved 
by using the subscriber list, and the message distribution is completed by updating the subscriber list 

when the message is updated, thereby speeding up the message forwarding process. 

Through theoretical analysis and experimental data, the system can better meet the user's 
requirements for the robot system in real-time and load capacity. In the subsequent research process, 

some common modules will be developed by themselves, such as log module, IMU module, SLAM 

module, etc. These modules can better verify the scalability of the system. 
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