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Abstract: In this study, analytical results are obtained for fuel-optimal spacecraft formation 
maneuver, including initialization and reconfiguration. The method consists of two stages. The 
first is parameterization of the problem and a new form of the problem is developed for 
simplicity. Second, the out-of-plane and in-plane maneuver are studied with the help of a 
useful inequality introduced and proved, the lower bound of the fuel consumption and the 
corresponding constraints of the control forces are derived and obtained. The result shows that 
the minimum total fuel consumption depends on the relative size parameters, and that the 
existence of optimal control algorithms depends upon the initial conditions. Numerical 
simulation of application proved the validity and efficiency of the proposed method, which can 
also be utilized in the maneuver of PCF. 

1. Introduction 
Design of fuel saving control algorithms for spacecraft formation flying maneuver, including 
initialization and reconfiguration[1],[2],[3] has attracted worldwide attention recently. This research falls 
into two categories according to the different models used for the design of the algorithms: linear 
model or orbit element differences. 

The design of the fuel saving control algorithms using linear model has appeared in many 
literatures, such as Hill’s equations[4] (also known as Clohessy-Wiltshire equations[5]) in circular orbits, 
Lawden equations[6] and Tschauner-Hempel equations[7] in elliptic Keplerian orbits. Approaches used 
for optimization can be summarized as linear programming[8], minimum sliding mode error feedback 
controller[9], hybrid multi-agent optimization architecture and genetic algorithm[10], particle swarm 
optimization[11] niched evolutionary algorithm[12], Hamilton-Jacobian-Bellman optimality[13],[14], 
genetic algorithm and primer vector theory[15], [16], hybrid linear/nonlinear controller[17], analytical 
solutions[18], pseudo spectral homotopy algorithm[19], quadratic homotopy method[20], indirect method 
and successive convex programming[21] and the use of nonlinear trajectory generation software 
package[22]. Other research aspects include reachability and optimal phasing analysis for formation 
reconfiguration[23], a general method for optimal guidance of formations by optimizing the orbit design, 
open-time minimum-fuel problem with impulsive control[24]. 

Other noteworthy approaches for modeling spacecraft formations and designing control algorithms 
are orbit element differences[25],[26] and Theona theory[27]. Achievements in this field include analytical, 
two-impulse solution to achieve the expected orbital-elemental differences[28],[29], maneuver guidance 
with analytical performance by mapping relative orbital elements into a fuel equivalent space[30], 
feedback control law with guaranteed neighboring fuel-optimality[31], fuel-optimal using Gauss 
pseudospectral method[32],[33], and fuel-optimal maneuver using low-thrust propulsion[34]. 
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However, the methods mentioned above have lots of problems, strong constrains and obvious 
shortcomings. Due to the lack of reliable analytical methods, some researchers have to rely on 
numerical methods. The high numerical sensitivity and nonlinearity corresponding to the bang-bang 
control are existed in numerical methods. Almost all methods use merely impulse or continuous thrust, 
which limit flexibility in formation maneuvering. Some methods even cannot guarantee the optimality 
of solutions.  

This work obtains analytical solutions to the optimal spacecraft formation maneuver problem 
whose cost function expressed by characteristic velocity, with the help of the use of configuration 
parameters. The in-plane and out-of-plane maneuver are studied. The minimum fuel consumption and 
the corresponding constraints of control forces are derived. Application of orbital maneuvers is 
discussed and numerical simulation is illustrated. 

2. Problem Formulation 
The first-order approximation of relative motion for formation spacecraft expressed in 
Local-Vertical-Local-Horizontal (LVLH) frame is the well-known Hill’s equations 
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where T( ) [ ( ), ( ), ( ), ( ), ( ), ( )]     X t x t y t z t x t y t z t     are the states of the relative motion, including position and 

velocity, and T( ) [ ( ), ( ), ( )]  x y zU t u t u t u t  are the control forces. Sub-matrices 1A  and 2A  are given by 
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where n  denotes the mean motion of the chief orbit. The state transfer matrix of (1) is obtained as 
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Generally, the formation maneuver can be regarded as a controlled orbit transfer from the initial 
states 0X  to terminal free states ( )d fX t , as follows: 

0 0
( ) ( ) ( ) ( )d

ft

d f f fX t t X t t BU t t                          (4) 

where ft  denotes the terminal time. Furthermore, the target configuration should be stable, i.e., 

0 02d dy nx  . A simple form from Eq. (4) can be expressed as 

00
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t BU t t X                              (5) 

where 0 0 0dX X X    denotes the initial error states. 

It is assumed that there are three different thrusters, one for each direction. Fuel consumption due 
to a single impulse is proportional to the 1-norm of the control force. The optimal maneuver can be 
formulated as follows: 
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where J  is the fuel cost function. By substituting Eq. (3) into Eq. (6), one can obtain 
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It is noted that control forces ( )xu t , ( )yu t , and ( )zu t  become delta functions for impulsive 

formation maneuver. 

3. Parameterization of the Problem 
At first, a configuration parameters vector, denoted as T[ , , , , , ]    P p s l q  , are defined 
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where , [0, 2 )     . Let us assume that 0   when 0p  , and 0   when 0q  .The error states 

( )X t  can be formulated with P  as 
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The detail expression is 
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Obviously, parameters p  and   represent the size and orientation of the in-plane motion, s  

and l  denote the center offsets, and q  and   describe the size and orientation of the out-of-plane 

motion, respectively. 
With the help of the relationship between 0X  and P , the optimization problem Eq. (7) can be 

developed as 
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Here, Eq. (11) is called the parameterized problem of the fuel-optimal formation maneuver. When 
compared with Eq. (7), the integral terms of constraints in Eq. (11) seem much easier to deal with. 
 

4.Problem Solving 
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To discuss and solve the parameterized problem Eq. (11) directly, a useful inequality is introduced 
first as follows: 
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where both ( )f t  and ( )g t  are real integrable functions defined on interval [0, ] ft . 

Proof: Let us define a plane curve, denoted by L , with a parametric equation as follows: 
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Obviously, the initial point (0) (0, 0)L   is with origin O , as illustrated in Fig.1. The length of L  

can be derived as 
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where ( ) '  denotes the derivation with respect to t . In plane Oxy , the line segment fOL  has the 

minimum distance than that of any curve connected to points O  and fL , hence 
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where ( )f fL L t  is the terminal point of L . By substituting Eqs. (13) and (14) into Eq. (15), we can 
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holds, ( )L t  becomes a beeline fOL , and its property can be obtained as 
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where ( )k t  denotes the slope of L . Equation (18) implies that the terminal point fL  determinates 

the nature of curve L , which satisfies Eq. (17). 
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Fig.1 Curve L 

4.1 Out-of-plane 
The optimization problem of out-of-plane motion can be obtained from Eq. (11) 
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Considering the inequality Eq. (12) and constraints in Eq. (19), the cost function zJ  becomes 
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Consequently, nq  is a lower bound of zJ . When following equations: 
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hold, zJ  reaches its global minimum value *
zJ nq , and the corresponding optimal control force 

*( )zu t  is 
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where 2 /T n  is the chief orbital period, k Z  , /T n  . It must be noted that *( )zu t  has 

nonzero value only in a series of separate instants with interval 0.5T , while its absolute integral value 
nq  is always nonzero in most applications. Then, *( )zu t  becomes the sum of a series of 
corresponding delta functions as follows: 
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where subscript “+” denotes the positive impulses, while “−” denotes the negative ones. zm  and zm  

denote the counts of the positive and negative impulses, respectively, and jk   and jk Z  . 

Equation (23) indicates that the optimal maneuver of the out-of-plane motion must be impulsive 
control process, which satisfies 
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                  (24) 

Equation (24) is the analytical solution to optimization problem Eq. (19). Clearly, any set of 
impulses, which is agreeable with Eq. (24), is a proper, optimal, and open control algorithm. The 
simplest set only contains a positive impulse nq  exerted at time t T T  , or a negative impulse 

nq  exerted at time 1.5t T T  . 

4.2 In-plane 
According to Eq. (11), the optimization problem of in-plane motion can be written as 
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Considering inequality Eq. (12) and the first two constraints in Eq. (25), the cost function xyJ  

becomes 
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It has been shown that 0.5np  is a lower bound of xyJ . When 0.5xyJ np , the cost function reaches 

its minimum value, and the corresponding optimal control forces satisfy 
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With a similar analysis in above-mentioned discussions on ym , * ( )yu t  is also observed to be the 

sum of a series of the corresponding delta functions as follows: 
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where subscript “+” denotes the positive impulses, while “−” denotes the negative impulses. ym  and 

ym  denote the counts of the positive and negative impulses, respectively, and jk   and jk Z  . It 

must be noted that there is no force or impulse exerted along the x-axis. The optimal maneuver of 
in-plane motion in this case is impulsive control strategy that satisfies 
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Furthermore, according to the third constraint of problem Eq. (25), the cost function also satisfies 
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Equation (30) shows that xyJ  has another lower bound 0.5 | |n s . When 0.5 | |xyJ n s  holds, the 

optimal control forces become 
* *( ) 0, ( ) 0; [0, ]x y fu t u t s t t                          (31) 

It has been shown that the optimal force along the x-axis is zero, while it is either positive or 
negative along the y-axis during formation maneuver. 

From the previous arguments, the lower bound of cost function xyJ  is 
* inf max{0.5 | |, 0.5 }xy xyJ J n s np                      (32) 

If | |p s , from previous discussions, in this case, the optimal control strategy must be impulsive 
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control with fuel consumption 0.5np . By substituting Eq. (29) into Eq. (25), the constraints of the 

optimal impulses can be obtained as 
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                (33) 

where 
( ) , ( ) ( 0.5)y j y jt j k T T t j k T T 

                         (34) 

and * ( ) 0yu j  , * ( ) 0yu j  . Equation (37) can be developed into a new form as follows: 
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




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 


 


  


   





 

         (35) 

From Eqs. (38) and (39), there are many feasible optimal solutions to formation maneuver problem 
when | |p s . Generally, at least three impulses are needed because of the same number of constraints 

in Eq. (39). Let us suppose that there are two negative impulses and one positive impulse. Thus, Eqs. 
(38) and (39) become 

*
1

*
1

*
2 ,

(1) , (1) 0.25 ( )

(1) ( 0.5) , (1) 0.25 ( )

(2) ( 0.5) (2) 0.25(1 ) ( )

y y

y y

y y

t k T T u n p s

t k T T u n p s

t k T T u n p s









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  

  

   
     
      

            (36) 

where [0, 1]   , which satisfies 

1 12 2

24 ( )
( ) ( ) ( )[ ]

3 2

sTl p s
p s k p s k p s k k

T



    

                    (37) 

Equation (41) can be called as the basic equation of the optimal three-impulse maneuver, where 
| |p s .  

One of the feasible solutions of Eq. (41) can be derived as follows: 

After defining 2 1 2( ) 1k k k k        , 0
p s

p s
 
 


, and 

21 4

3 2

sTl p s
b

p s T



 

     
, Eq.(41) can be 

rewritten 
1k k b                                (38) 

Considering 1k Z   and 1k   , 1k   can be chosen as 

1 max{ , 1}k b                               (39) 
Then 

1

1 2, 1, ,
k b

k k k k k k k



      

               
                    (40) 

where     denotes the ceil integer of a real number and     denotes the floor integer of a real 

number. By integrating Eqs. (40), (43), and (44), an analytical solution of the optimal three-impulse 
maneuver can be obtained in this case. 

5. Applications: Maneuver of PCF 
PCF is a formation for which deputy spacecraft is distributed on a circle, as seen from Earth. The PCF 
can be described with the radius R  and angular position  . The relative configuration parameters 
vector is 
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T[0.5 , , 0, 0, , 0.5 ]     P R R     
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




 

where 0 0( , )R   and ( , )d dR   denote the initial and target PCF, respectively. From previous discussions, 

the optimal PCF reconfiguration is an impulsive maneuver process. For the out-of-plane motion, the 
optimal impulse is 

*(1.75 0.5 / ) ,z zt T u nR      
For in-plane motion, consider p s , and a feasible optimal solution is three impulses. According 

to Eqs.(40), (43), and (44), 1 2k   , 1 2k   , 2 1k   , 0.5  , and the three impulses are 
*

*

*

(1) (2 0.5 / ) (1) / 8

(1) (1.5 0.5 / ) (1) /16

(2) (2.5 0.5 / ) (2) /16

y y

y y

y y

t T u nR

t T u nR

t T u nR

 
 
 

 

 

 

  
   
   

 

The whole fuel consumption is 
2 2
0 0 01.5 1.25 2 cos( )d d dJ nR n R R R R        

It can be observed that the minimum fuel consumption is 1.25 n  times larger than the relative size 
R . 

Let us consider that the target spacecraft runs in a circular orbit with 800 km height, 1000 m ( ) 
initial PCF, and 2000 m ( ) target PCF. Then, the relative PCF (1000 m, 0) can be calculated.

 

Simulation results are shown in Fig.2. In Fig.2(a), the solid line denotes the maneuver process from 
initial PCF (dashed point line) to target PCF (dash line). In Fig.2(b), the solid lines represent the 
parameters of maneuver process. It must be noted that the phase parameters   and   are constant 
during reconfiguration maneuver, as shown in Fig.2(b). This indicates that the impulses are exerted at 
times when ( ) 0x t   or ( ) 0z t  , according to Eqs. (8) and (9). 
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Fig.2 Fuel-optimal PCF reconfiguration 

6.Conclusions 
Based on the well-known Hill’s equations, this paper has discussed the fuel-optimal formation 
maneuver in the first-order approximation. It has been shown that the low bound of the fuel 
consumption only depends on the relative size parameters. The initial conditions affect the existence 
of the optimal solution of the in-plane maneuver. In the application of formation reconfiguration, the 
optimal solution must be impulsive control because both the initial and target configurations are stable, 
and a good choice is a set of impulses. The method proposed in this paper can also be employed in 
PCF. Further work will focus on nonlinear optimal maneuver under various constraints. And problems 
will be investigated later in terms of T-H equations. 
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