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Abstract. The energy loss of the switches of the lead legs and lag legs during the operation of 

the intermediate frequency heating power supply using the traditional full bridge control 

method has a certain difference, and the greater the power of the device, the more obvious the 

difference. This phenomenon seriously affects the reliability of high-power intermediate 

frequency heating power supplies. In this paper, the original full-bridge inverter drive is 

adjusted, and the conditions for implementing ZVS are analyzed. Finally, the equal losses 

control strategy for all switches is achieved by using the waveform generated by the FPGA 

controller. 

1. Introduction 

The intermediate frequency induction heating power supply is one of the electromagnetic induction 
heating power supplies. It relies on an inductor to transfer electrical energy to the heated metal through 

electromagnetic induction, and generates eddy currents inside the metal to convert electrical energy 

into thermal energy for the purpose of heating the metal load. At present, intermediate frequency 

heating power supplies have replaced many processes that require large amounts of coal and oil. 
However, as the demand for intermediate frequency heating equipment increases, how to maximize 

the efficiency of the intermediate frequency heating power supply, especially the high power 

intermediate frequency heating power supply, becomes a problem worthy of discussion. After 
analyzing its working principle, it can be found that in the full-bridge inverter using the conventional 

driving method, the temperatures of the lead legs and lag legs are different when working. This not 

only affects the efficiency of devices, but also becomes an unstable factor in the high-power 

intermediate frequency heating power supply in practical applications. 
The main circuit structure of the intermediate frequency heating power supply is the full bridge 

converter shown in the Figure 1. At present, the control mode of the full bridge circuit is mainly 

controlled by ordinary bipolar control, phase shift control, finite bipolar control and so on. The latter 
three have adopted zero-voltage switching (ZVS) technology, so they have higher efficiency in the 

application of high-power power supply equipment. Based on finite bipolar control, this paper adjusts 

the full-bridge drive control waveform to realize equal losses of all switches. 

2. Analysis Power Loss Analysis of Switches of Full-Bridge Inverters 

According to the opening and closing laws of the lead legs and lag legs, the power loss on the switch 

of the full bridge converter circuit can be calculated as: 
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Among them, equation (1) is the power loss of the lead lags and the equation (2) is the power loss 
of the lag legs. From the equation we can see that the lag legs soft switch is difficult to achieve zero 

voltage conduction when the circuit works at light load due to the lack of freewheeling energy. 

Therefore, the energy loss of the lag leg is more than the energy loss of the lead legs.  
In actual operation, different switching losses cause the temperature of the lag legs to be higher 

than the lead legs. The increase of temperature causes the body resistance of the switch tube to 

increase, which in turn increases the loss of the switch, forming a positive temperature feedback. 

When the loss reaches a certain level, the switch of the lag legs will be damaged first, and the 
reliability of the converter is reduced. If the heat sink is designed according to the difference between 

the lag legs switching loss and the lead legs switching loss, the system design is difficult and the cost 

increases. 

3. Equal losses PWM control strategy 

The basic idea of the equal losses PWM control strategy is to make each leg work as the lead leg and 

lag leg in two cycles, that is, if a switch works as the lead leg, then it works as the lag legs in next 

cycle. The equal loss PWM control strategy is shown in Figure 2. Among them, Qa and Qb are the 
driving signals of the upper and lower switch of a certain bridge arm during operation. Qc and Qd are 

divided into anti-phase control signals of Qa and Qb. As can be seen from the figure, the working time 

of the four switches is the same in two cycles, and since the switch is cycled as the lead and leg legs, 
theoretically, the power losses of the four switches is the same. 

  

Figure 1. Mode of main circuit Figure 2. Mode of main circuit equal losses 

PWM control. 

The modals of the power losses control PWM exists in 2 cycles as follows: 

• [t0-t1]: The switches Qa and Qd are turned on, and the circuit is in the power output phase. At 

this time, the current Ip transfers the electric energy to the load through the transformer and leakage 
inductance Lm stores energy.  

• [t1-t2]: The lag leg switch Qd is turned off at time t1, and the primary current Ip can only flow 

through capacitors C3 and C4, where C4 is charged and C3 is discharged. At time t2, the voltage of C3 

is 0, ready for the zero voltage turn-on of Qc. 

• [t2-t3]: The circuit is in the clamped freewheeling state. The primary side leakage inductance 

Lm is almost in a short circuit state, and the circuit Ip decays slowly. 

• [t3-t4]: Qa is turned off, the circuit switch is in the rest period, and the circuit continues to 
flow through diode D3. 

• [t4-t5]: Qc is turned on, the primary leakage inductance Lm continues to flow through the 

capacitors Ca and Cb, and the current Ip gradually decreases due to the reverse voltage. 
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• [t5-t6]: Qb is turned on, the primary current increases in the reverse direction. When the 

working state of this segment ends, the circuit starts the power transmission phase of the negative half 

cycle. 

• [t6-t7]: The circuit is in the negative half cycle, the working state is the same as [t0-t6], the 

waveform is symmetrical but the direction is opposite. 

• [t7-t8]: The switches exchange between the lead leg and the lag leg. Since the voltage of the 
capacitor C4 is 0 at the end of the previous state, the Q4 can achieve zero voltage turn-on. The 

working state of the circuit is the same as the previous cycle. 

Through the improvement of the PWM control strategy, it can be seen that the four switches 
circulate as the lead leg and the lag leg in two cycles. So we can get the average loss of each switch is: 
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After analysis, the new PWM control strategy will not affect the ZVS condition of the lag bridge 
implementation. Therefore, the theoretical maximum dead time (4) can be obtained. 
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Among them, kL  is the leakage inductance, totalC is: 

 total j external transformerC C C C= + +
 (5) 

4. Implementation of Equal Loss PWM Control Strategy 

4.1. Drive control signal generation 

The power control PWM control signal is generated by Xilinx FPGA chip. The phase shift value is 
calculated by setting the frequency, power signal and output voltage signal sampled from the main 

circuit. Finally, the PWM control signal of equal power loss is generated by looking up the table. 

 

Figure 3. Modelsim simulation diagram of equal loss control PWM 

Figure 3 is a logic waveform diagram of four PWM control signals obtained by simulating the 

Xilinx FPGA compiler and ModelSim. As can be seen from the figure, the waveform of the equal-loss 

PWM control can theoretically be generated. After the verification is passed, the program is 
downloaded into the FPGA controller (the Xilinx xc6slx45 controller is selected), and the PWM 

output waveform is tracked by the oscilloscope. Finally, the equal-loss controlled PWM waveform can 

be implemented in hardware, which means that the control waveform can be applied to actual 
engineering, and the hardware waveform will be given in the next section. 

4.2. System implementation 

This paper was verified by a 40kW intermediate frequency induction heating device. In the main 

circuit, the three-phase electric input is converted into direct current through the three-phase rectifier 
bridge; after that, it is converted into a square wave of the corresponding frequency according to the 

control signal by the full-bridge inverter; finally, the power is output after passing through the 

transformer. In terms of control circuitry, the intermediate frequency induction heating power supply 
uses two different controllers, Xilinx's xc6slx45 (the FPGA controller mentioned earlier) and 
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STMicroelectronics' Stm32F103 series. The FPGA controller is responsible for collecting relevant 

information of the load to judge the current working state of the device, and generates a PWM control 

signal to be sent to the full-bridge inverter through the driving circuit. The stm32f103 controller 
mainly implements LCD display and provides user interaction interface to facilitate observation and 

adjustment of real-time parameters of the device. In addition, there are protection circuits in the circuit 

structure that can protect the device in real time when the device is working abnormally. 

 

Figure 4. System frame for intermediate frequency heating power supply 

The equal loss control waveform generated by the FPGA in the system is shown in Figure 5. It is 

not difficult to see that the actual output waveform of the FPGA is almost the same as the waveform 
obtained on the simulation tool. Figure 6 is the output voltage waveform of the intermediate frequency 

heating system in actual operation. It can be seen that the equal loss control strategy verified in this 

paper can be verified under the system. 

 

 

 

Figure 5. PWM drive waveform output from 
hardware 

 Figure 6. Driving voltage and output current 
waveform 

4.3. Efficacy analysis of control strategies 

The easiest way to verify the effects of the equal loss control strategy is to collect the temperature of 
the switches when the intermediate frequency heating power supply is operating at different power 

levels. In the figure below, Figure 7 shows the temperature of the switch of the intermediate frequency 

induction heating power supply under different powers under the traditional control method. Figure 8 

shows the temperature of the switch of the intermediate frequency power supply under different 
powers under the equal loss control method.  

It can be seen that in the intermediate frequency heating power supply using the traditional control 

method, the temperature difference between the lead leg and the lag leg can be as close as 8 ° C. If the 
power of the equipment is continuously increased, this will inevitably become an important factor 
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affecting the stability of the equipment. In contrast, under the equal power control strategy, the 

temperature difference of the switches is significantly smaller or even disappears. Although there are 

still gaps in the temperature of different switches, in actual systems, these temperature differences are 
unavoidable due to differences in heat dissipation. In addition, due to the reduction of the body 

resistance of the total switches, the power loss is reduced overall, so the power of the inverter is also 

slightly improved. 

 

 

 

Figure 7. The temperature of the switch of the 

traditional control method 

 Figure 8. The temperature of the switch of 

the equal loss control method 

5. Conclusion 

This paper presents an improved PWM control strategy. Under the control strategy, the shortcomings 

of the inconsistent heat generation of the lead leg and the lag leg during the operation of the high-

power full-bridge inverter are overcome. The feasibility of the control strategy is demonstrated by a 40 
kW intermediate frequency induction heating device, and the efficiency of the equipment operation is 

improved. 
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