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Abstract. The rational modelling of wind power uncertainty is the premise of relevant analysis
and decision-making. The uncertainty, intermittent nature of cluster wind power and the spatial
correlation between different wind farms are the key factors to determine the impact of cluster
wind power on the power system. The rationality of the wind power uncertainty model will
determine the validity of the wind power uncertainty analysis and decision-making model and
the credibility of the analysis conclusions. The development of wind power in China is very
rapid, but the accumulation of wind power and meteorological statistics is insufficient. The
research on the uncertainty of cluster wind power output is not deep-going. For this reason, the
wind power uncertainty model is taken as the entry point. This paper will establish the
uncertain model of wind power and its simulation method. This method can generate time
series of wind farm output in accordance with wind power uncertainty characteristics, and
effectively analyze the overall output characteristics of large-scale cluster wind power to be
planned in the future, which provides a new idea for studying the impact of wind power on
future power systems.

1. Overview
The rational modelling of wind power uncertainty is the premise of relevant analysis and decision-
making. The uncertainty, intermittent nature of cluster wind power and the spatial correlation between
different wind farms are the key factors to determine the impact of cluster wind power on the power
system. The rationality of the wind power uncertainty model will determine the validity of the wind
power uncertainty analysis and decision-making model and the credibility of the analysis conclusions.
The development of wind power in China is very rapid, but the accumulation of wind power and
meteorological statistics is insufficient. The research on the uncertainty of cluster wind power output
is not deep-going.

At present, there are three main problems in the analysis of cluster wind power uncertainty:

(1) The analysis stays at the level of actual data and does not deep into the height of the model and
method. At present, the existing research on wind power uncertainty is based on the statistical analysis
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of the collected wind power historical data, but does not propose a widely applicable model. When the
object of analysis is changed, the reference and significance of it are limited.

(2) The detailed modelling of the spatial correlation of wind farms is less. For cluster wind power,
the spatial correlation between wind farms is an important factor in determining its overall output
characteristics and its impact on the power system. At present, the research on the spatial correlation
of wind farms only stays in the qualitative analysis and the calculation of several simple indicators,
and there is no mature theoretical support and sufficient empirical analysis.

(3) The perfect wind power operation simulation model is insufficiency. Many wind power
research needs to use time series data of wind speed or wind power output, but these data are often
difficult to obtain in practice: the wind farms studied may not have been fully put into operation or the
wind tower is not built, resulting in insufficient accumulation of wind data; The dispatching operation
of wind power farm may be affected by various factors, and its output cannot reflect its true random
characteristics. At present, there is a lack of a time series output simulation method that
comprehensively considers various operational factors of wind farms.

For this reason, the wind power uncertainty model is taken as the entry point. This paper will
establish the uncertain model of wind power and its simulation method. A probabilistic sequence
model of load and wind power dependence is established. At the same time, based on the study of
wind power intermittent, a set of cluster wind power operation simulation methods [1] that can
consider the random characteristics of wind speed, intermittent and spatial correlation are proposed.
The relationship between the research content of this paper can be summarized in figure 1.

This paper uses the way of the combination of empirical analysis and mathematical modeling.
Because of the wind speed and wind power prediction error time series data used in the analysis are
not enough in China, the Wind Integration Datasets[2] of US National Renewable Energy Laboratory
(NERL) is selected, which contains wind data from the US and offshore 30,000 wind towers from
2004 to 2006, meanwhile, the database also use the IEC wind power standard power characteristic
curve to indicate the "predicted” output and "predicted" forecast output of wind farm, providing
important data support for analyzing the uncertainty analysis and modeling of large-scale wind power
output. This paper will select the corresponding time series data from the 10 wind towers on the East
Coast of the United States in 2004 for an empirical analysis. The geographic locations and their
coordinate IDs of the 10 wind towers are shown in figure 2. It should be noted that although the US
wind power data is used in this paper, the proposed analytical methods and analytical conclusions are
equally applicable to wind farms in China.

2. Probability sequence modelling of power system generation and load dependence

The core of power system uncertainty analysis is considering the model and calculation method of
uncertainty. In the uncertainty analysis of power system considering wind power, the uncertainty of
power generation and load is usually considered at the same time. To this end, this section will
establish a probabilistic sequence model of power system generation and load dependence including
wind power, load and generator, which will lay the foundation for the uncertainty analysis and
decision-making method proposed in the following paper. Copula theory expresses the joint
distribution of multiple random variables as the "join" of their respective edge distributions. Therefore,
using this theory, the related multiple random variables can be modelled separately according to their
edge distribution and dependent structure, which provides great convenience for studying multiple
related random variables.

2.1. Univariate Edge Distribution Sequence Modeling
Taking the uncertainty of the long-term output of a single wind farm as an example, taking the
capacity discretization common factor as C, the wind power output discretization sequence length is:
N, =<C(,/C > (1)
Cyin formula (1) is the installed capacity of the wind power farm. According to the theory of
sequence operations, the wind power farm has a total of states of N,, + 1, wherein the available
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capacity of the i state is (i — 1)C. In the process of serialization of wind power farm output,
according to historical statistics, the frequencies of the output of each discretized interval wind power
farm are separately counted as an estimate of the probability that the output of the wind farm falls into
the discretization interval. Taking the statistical one-hour hourly output in one year as an example, the
P, (j) is the output of wind power farm in the jhour, the wind power output sequence S,, (i) can be

calculated by the following formula:
IS0 Li[<Py () /C>]

Sw() = P ,i=01,...,N, 2

In equation (2), < P, (j)/C > indicates discretization of wind power output data, I;(x) is an
explanatory function.

The modelling principle of load sequence model is the same as the wind power output sequence
model. The system load sequence can be generated by using the historical value of the statistical
system load and formula (2). This method is also applicable to the serialization modelling of the node
load.

In addition to the use of historical statistical values to generate a load sequence model, many
studies tend to consider the load as a normal distribution ™%, Therefore, a sequence model of load can
be established by load mean and variance information. Assume that the load mean value is ¢ and the
variance is a2. Since the normal distribution is unbounded distribution, it needs to be truncated, and
the probability distribution within the range of u + 50 is serialized. That is i,,;, =< u — 50 >,
Imax =< W + 50 >, then the sequence model of the load S, (i) is:

( ic
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In the uncertainty analysis of power system, the conventional generator set is generally modelled as
a two-state model considering the forced outage rate (FOR). Assume that the installed capacity of the
unit is Cs, the forced outage rate is F,. The available capacity sequence length of the unit is N; =<
C,/C >. The available capacity sequence S (i) of the unit can be expressed as:

Eg i=0
SS(O)(i):{O, i=12,...,Ng—1 )
1-F, i=N,

For hydroelectric units or thermal power units that consider the operating state of the falling force,
they are often modelled as multi-state units™®!, and their serialization methods are consistent with the
above-described modelling principles.

It should be noted that in the process of serializing the above-mentioned conventional generator set,
load, turbine generator system and virtual unit, a unified capacity discretization common factor C is
required, which will affect the accuracy of the uncertainty analysis.

2.2. Dependent structure modelling

Power system power generation and load-dependent structure refers to the complex relationship
between the available capacity of different power generation components and the load of different
nodes. It can be seen from the modelling process of the dependent probability sequence which the
complex joint distribution function between random variables with different edge distributions can be
transformed into the composite function form of their respective edge distributions and their
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dependent structures by Copula theory. Wherein, the dependent structure can be easily represented by
the Copula function. Thus, the modelling process of the dependent structure is transformed into the
fitting and parameter identification process of the Copula function, which is then transformed into the
process of determining the coefficient of rank correlation between each random variable. Assume that
the coefficient of rank correlation matrix between wind power and load is Cp. In this section, the
modeling of the dependent structure is divided into two cases: the dependent structure modeling
considering only active and the dependent structure modeling considering both active and reactive.
Only the active power of power generation and load is considered in the unit combination model
and the DC power flow model. At this time, the rank correlation coefficient matrix C, of wind power
and load can be expressed as:
CD — ’[C"WP CWP—LP (5)
Cwp-Lp Crp
In the formula (5), the sub-blocks Cy,p represent the rank correlation coefficients of the active
outputs of different wind farms, and the magnitudes thereof can be estimated by the distance between
the wind farms. C;p indicates the correlation between load and active power of different nodes, and it
is mainly determined by the type of load (industrial load, commercial load, etc.) supplied by the node
and the power supply scale of the node. Cyp_prepresents the correlation coefficient between wind
power and load and is determined by the daily characteristics of the load and wind power. The
identification of the above correlation coefficients and the selection of the Copula function can be
implemented by the method.

2.3. The dependent structure modelling of active and reactive power at the same time
In the calculation of the AC tidal current model, it is necessary to consider both the active power and
the reactive power of the power generation and the load. Therefore, the modelling of the dependent
structure is more complicated than considering only the active power. In the dependent structures
modelling considering active and reactive at the same time, the structure of the rank correlation
coefficient matrix Cpbetween load and wind power output is:
Cwrp  Cwp-wq Cwp_rp Cwp_1g
C CgVP—WQ Cwo Cwo-1r Cwo-1o 5
P Clporr Clyg-rr Cp Crr-ig ©)
CWP—LQ Ca/Q—LQ CZP—LQ CLQ

The meaning and calculation method of Cy,p, Cyyp—1p and Cpin equation (6) are the same as it in
the formula (5). The other sub-blocks in the matrix (6) are related to reactive power. In theory, these
matrices can be obtained by analyzing the synchronized time series with the actual data. However, in
practice, the data of wind power reactive power and reactive load are not easy to obtain. Therefore, the
rank correlation coefficient sub-matrix related to reactive power can be estimated by.

Cwo and €, respectively indicate the rank correlation coefficient of reactive power between the
different node loads and the different wind power farms, it can generally be considered to be the same
as the corresponding active rank correlation coefficient Cy,p and C .

Cwp-weindicates the rank correlation coefficient between the active output and the reactive output
of different wind farms. The diagonal element indicates the co-correlation between the active output
and the reactive output of a certain wind farm, which is related to the wind farm control strategy.
Generally speaking, wind farms are all powered by a constant power factor, so the diagonal elements
of Cyp_ are often close to 1, and the non-diagonal elements of Cy,p_, indicate the correlation
between the active output of one wind farm and the reactive power of another wind farm. Its’ amount
can be estimated indirectly by the active power output correlation of two wind power farms and the
rank correlation coefficient between active and reactive power output of the wind farm. Assume that
the element in Cyp is cW”, the element in Cyp_wqis ¢P~"2, then the non-diagonal element in
Cwp-wocan be estimated by the following formula:
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WP-WQ _ WP _ WP-WQ
CGj o =C Gj (")

That is, the rank correlation coefficient of the active output of the i wind farm and the reactive
power of the j wind farm can be approximated as the product of corresponding element in Cy,p and
the corresponding diagonal element to the j wind farm in Cyp_yq.

C.p—1oindicates the rank correlation coefficient of the active load and the reactive load between
different nodes, and its’ diagonal element indicates the rank correlation coefficient between the active
load and the reactive load of the node. Generally, the number of users carried by the node is related to
the load characteristic, and The fewer users carried by the node, the more single for the load type, then
the stronger the correlation between the active load and the reactive load. The non-diagonal elements
of C p_qrepresent the correlation between the active load of one node and the reactive load of
another node, where the size of each element can be estimated indirectly by €, andC,p_,¢:

LP-LQ _ (P LP-LO ®)
t Uy

Cwo-1q Indicates the co-correlation between a wind power reactive output and a node reactive
load. Generally, it can be considered that the corresponding active rank correlation coefficients are the
same.

Cwp-rorepresents the correlation between the active output of a wind farm and the reactive load of
a node. The size of each element can be estimated indirectly by Cy,p_p and Cpp_.¢:

wP-LQ _ CWP—LPCLP—LQ (9)
t Y 7]

Cwo-pindicates the correlation between the reactive output of a certain wind farm and the active

output of a certain node. The principle of is similar to determination ofCy,p_,, as follows:

WQ-LP _ WP-WQ .WP—LP
ij =Gy Cij (10)

c

(o

(o

3. Cluster wind power operation simulation model and method research
Effective cluster wind power operation simulation is of great significance for studying and planning
the output characteristics of wind farms and their impact on the power system. The key to the
simulation of cluster wind power operation is to consider the randomness of wind speed, the
correlation of multiple wind farms and the volatility of wind speed at the same time. In addition,
factors such as wind turbine reliability and wind farm wake effect should be considered.

Based on the study of wind power intermittent, this section uses the stochastic differential equation
model introduced in [20] to establish a cluster wind power operation simulation model and method.

3.1. Intermittent analysis of wind power
The intermittent nature of wind power comes from the volatility of wind speed. The effective way to
characterize the volatility of wind speed is to use the autocorrelation function, which is the linear
correlation coefficient of the sequence of time series and its own time shift. Set v, is a time series, ¥
and o2 is its’ mean and variance, then the autocorrelation function p(k) of v, is:
_1 Y We—p) (D) _
p(k) == , k=1,23.. (11)

T o2
The autocorrelation function is a measure of the temporal correlation of time series, reflecting the
magnitude of the volatility of the time series. In general, the value of the autocorrelation function is
attenuated by increasing the time difference, and the more intense the time series fluctuation, the faster
the autocorrelation function decays. Studies have shown that the autocorrelation function of wind
speed can be numerically represented by a negative exponential function:
p(k) = e %%, >0,k = 1,2,3... (12)
In equation (12), the size of 6 is determined by the speed of the autocorrelation function decay,
which in turn can reflect the severity of wind speed fluctuations.
The wind speed time series of a wind tower is selected, and the time interval of the data is 1 hour.
The autocorrelation function of the wind speed time series is fitted by the negative exponential
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function. The result is shown in figure 1. The fitting value 6 of the attenuation coefficient of the wind
speed autocorrelation function =0.0904
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Figure 1. Autocorrelation function and its fitting result of the wind farm (attenuation coefficient
=0.0904)

3.2. Single wind farm operation simulation model
The cluster wind power operation simulation method proposed in this section uses the stochastic
differential equation model introduced in [20]. The model is capable of simulating a stochastic process
that yields a given edge distribution and the autocorrelation function obeys exponential decay. Among
them, the single wind farm operation simulation model can be briefly described as follows:

Theorem 1 If the probability density function f(x) is greater than zero, continuous and the
variance is limited in its’ domain of definition (I, u), its mathematical expectation E(x) = u, the
stochastic process X, satisfies the following stochastic differential equation:

dX, = —0(X; — wdt + Jv(Xp)dW,, t=0 (13)
Wherein 8 > 0,W, is the standard Brownian motion, v(X;) is a non-negative function defined on
(L, u):
26
v(x) = )
Then there are the following conclusions:
(1) The stochastic process X is the ergodic of each state and the corresponding edge probability
density function f (x) of its state at each moment.
(2) The stochastic process X is mean-reverting and its autocorrelation function is consistent with:
corr(Xsse, Xs) = 7%, s,t>0 (15)
A stochastic process model can be established by using the above theorem. The corresponding
probability distribution of the state of the stochastic process at each moment (hereinafter referred to as
the probability distribution of the stochastic process) obeys the Weibull distribution, and its
autocorrelation function obeys the exponential decay. The sample with the fixed time interval of the
random process is generated as the wind speed time series, and the running simulation of the single
wind farm can be realized by combining the wind turbine standard power characteristic curve, the
reliability model and the wind farm wake effect.
Set the wind speed meet the Weibull distribution with the scale parameter ¢ and the shape
parameter k, then the average wind speed is u:

p=E@) =cl(3+1) (16)
The expression of the Weibull distribution and the definition of the function v(X;) according to
equation (1):

[[w=-nfondy, xe () (14)
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Wherein, F(x) is the corresponding distribution function forf (x), I'(a)is a gamma function

r(a) = [y y*ledy (18)
I'(x,a),x = 0 is incomplete gamma function
I'(x,a) = f;cya‘le‘ydy (19)

In summary, a single wind farm output time series ¥,,t = 1,2,...,Tcan be calculated iteratively by
the following formula:

Uy = Dpq +dX, (20)

The wind speed sequence of the wind farm is not a completely random process. For the weather
reasons, the wind speed of the wind farm in different seasons is different and has certain regularity
(such as small in winter and large in summer). In one day, the average wind speed at different times in
the day is different (such as large at night and small during the day), due to the different surface
temperatures of the wind farm. In order to consider the seasonality of the wind speed and the
regularity in one day of the wind farm, the generated wind speed sequence v; is corrected as follows:

ve = kpky, Uy (21)

Among them, k,,(m = 1,2,...,12) is the seasonal factor for wind speed, k,(h = 1,2,...,24) is the
daily characteristic factor for wind speed.

Using the corrected wind speed sequencev,, considering the output characteristic curve of wind
turbine generator, the wind farm wake effect and the wind farm wind turbine output reliability, the
wind farm timing output curve can be generated by the following formula:

P, =n.(1 —n)C(wikpky,) (22)

Among them, C(x) is the output characteristic curve of wind turbine generator,n is the wind farm
wake effect coefficient, which indicates that the wind farm loses its output due to the wake effect,
which is usually 5%~10%, n.is the number of units available for the wind farm, which is a random
variable and is the number of wind turbines available in the wind farm. If it is assumed that the unit
fault in the wind farm is subject to an independent exponential distribution, then for any timet, the
available wind turbines in the wind farm is subject to Bernoulli distribution, which can be obtained by
random sampling.

3.3. Cluster wind farm operation simulation model

The key to the simulation of cluster wind farm operation is to generate wind speed sequences
containing spatial correlation. According to the theorem and its properties of using multiple stochastic
differential equations to generate multiple stochastic processes in [20], it is easy to prove that
when f(x) is a normal distribution andW;is a non-independent multiple Brownian motion. Each
dimension edge probability distribution corresponding to the time state in its’ established
multidimensional normal stochastic processes still satisfies the two conditions in the conclusion of
Theorem 1, and at the same time, the linear correlation coefficient matrix of the joint probability
distribution corresponding to the state of the multi-dimensional normal stochastic process at each
moment is the same with thedW,, and the specific proof process for the above conclusions is given in
Appendix C. Using the above conclusions, it is possible to design a cluster wind farm operation
simulation model similar to the principle of section 2. The cluster wind farm wind speed sequence

X, = [Xt(l),Xt(Z),...,Xt(N)] can be generated by a number of stochastic differential equations as
follows:

XD = -0 — uMyde + fo®OxM)aw, P

i

X2 = —0@ P — u@yde + fv@xP)aw,?
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xM = g x™ — uMyar + det(m
(23)

oMW, 0@, ..., 0M) indicates the autocorrelation function attenuation coefficient of wind speed of
each wind farm, u@,u@, ..., u™ indicates the average wind speed of each wind farm. The

functionv® (X)), v@xH),...., v™ XMy is determined by the wind speed parameters of each
wind farm by formula (24). W, w,®,..., w."are 1-dimensional Brownian motions, whose linear

correlation coefficient in increments dw, ™, dw,®, ..., aw, " per unit time is 5.
It can be seen from Theorem 1 that the edge probability distributions of each dimension of
xP, %P, xMsatisfy the two conditions in the conclusion of Theorem 1 respectively. Set the

linear correlation coefficient of X, x®, ..., x®in the joint probability distribution corresponding to
each time state is 2’. The conclusion in Appendix C is forf (x) in normal distribution and therefore
X = X' cannot be derived. In fact, for the Weibull distribution, this conclusion is not strictly
established. However, since the shape of the Weibull distribution is similar to the normal distribution,
it can be inferred that 2’ is approximately equal to X' in the numerical value. The actual example in this
section shows that the linear correlation coefficient matrix X’ corresponding to the wind speed
generated by equation (23) is very similar to X.

It should be noted that the matrix obtained when evaluating the spatial correlation of wind speed is
the Kendall rank correlation coefficient matrix. When the simulation is performed by using equation
(23), the input matrix is a linear correlation coefficient matrix. After obtaining the wind speed curves
of the wind farms, the output curves of multiple wind farms can be generated by the same method as
the single wind farm operation simulation.

4. Summary

When studying the problem of large-scale wind power consumption in the power system in the future,
the actual wind power data is difficult to obtain, which makes it difficult to conduct research on the
impact of wind power uncertainty on the power system. Therefore, establishing a reasonable and
effective cluster wind farm operation simulation model is a necessary tool for subsequent research. To
this end, this paper uses the autocorrelation function model to study the intermittence of wind power,
on this basis, using a stochastic differential equation theory, a set of cluster wind power simulation
methods that can consider the random characteristics of wind speed, intermittent and spatial
correlation are proposed. This method can generate time series of wind farm output in accordance with
wind power uncertainty characteristics, and effectively analyze the overall output characteristics of
large-scale cluster wind power to be planned in the future, which provides a new idea for studying the
impact of wind power on future power systems. This paper not only verifies the effectiveness of
modelling of wind power using the theory of dependent probability sequence operation, but also
reflects the necessity of considering wind power spatial correlation in uncertain analysis and decision-
making of cluster wind power.
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