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Abstract. Ultrasonic motor is a kind of newly developed motor different from the traditional 
electromagnetic one, with its output is obtained by inverse piezoelectric effect and ultrasonic 
oscillation. As it is a complex coupling system, speed control of the motor is a quite difficult 
task. A comprehensive parametric model for prediction of the steady-state speed of a linear 
ultrasonic motor is developed in this paper. The model is derived from synthesizing coupled 
subsystem models, and retains physical insight into some important nonlinearities. The driving 
circuit employing H-bridge inverter and LC resonance is described. The vibration equations of 
the stator are deduced by using Hamilton’s principle. An interface friction model involving 
asperity based stick behavior is introduced to characterize the stick-slip-separation dynamics at 
the interface. Further, an effective real-time and synchronous data acquisition and transmission 
experimental setup based on a L1B2 ultrasonic motor actuated motion platform is established to 
collect data for the parametric identification, and the results validate reliability of the model.  

1. Introduction 
Ultrasonic motors (USMs) with the excellent features of high accurate, quick response and low noise, 
have been widely used in precise positioning and actuating [1]. Among them the linear ultrasonic motor 
(LUSM), which converts micro ultrasonic oscillation into macro linear motion, has been of great interest. 
However, due to that the LUSM is a complicated coupling system, it is difficult to implement the speed 
prediction and control [2]. For the subsystem of driving circuit, frequency-drift and temperature-drift 
compensating techniques are needed. The subsystem of contact mechanism relates many factors such as 
material features, roughness and preload, and it greatly affects the speed. And the contact behavior of 
LUSM has strong position-dependent nonlinearity compared with other types of USMs. Also, 
comprehensively modeling of the whole motor is also a hard task. For high-performance control, the 
model should not be too complex or inaccessible and should retain physical insight into some important 
nonlinearities. Thus, neither pure analytical nor pure black-box identification methods can be used.  

L1B2 USM is a bimodal LUSM that belongs to a kind of standing wave type USMs (SWUMs), the 
stator and the slider of which are in intermittent contact. Many studies on modeling are carried out. A 
dynamic model including four subsystems is developed in which the interface friction is simplified as 
Coulomb model [3]. On contact mechanism, Hertz microscopic contact model [4] and asperity based 
model [5] are used. However, these analytical models are too complex and failed to describe the 
position-dependent nonlinearity. And none concludes a comprehensive model. By modern identification 
and artificial intelligence methods, black-box models are obtained without any prior knowledge, but of 
poor precision in cases of system state changing and complex state space relationships [6, 7]. 

This paper proposes a new parametric model of the whole motor system to predict the steady-state 
output speed of L1B2 USM with considering the position-dependent nonlinearity.  
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2. Description of L1B2 USM and the test rig 
The schematic of motor investigated is given below. It consists of a piezoelectric resonator, a driving 
tip, a preload spring and a fixture. The first longitudinal and second bending modes are simultaneously 
excited by applying sinusoidal or cosine signal to CH1 or CH2 to produce elliptical motion. The test rig 
includes a prototype motor, a bolt to adjust the initial preload, a friction bar, a linear guide and an encoder.  

 
Figure 1. The schematic of L1B2 USM                   Figure 2. The motor based test rig 

3. Subsystem models 
The four coupled subsystems is shown below. Here we consider the steady-state response of the model 
to study its changes with the position of the interface contact point on friction bar. 

 
Figure 3. The steady-state model of L1B2 USM 

3.1. The driving circuit 
The electric drive employs H-bridge inverter and LC resonance. With the PWM control signal, the 
resulted square wave voltage invV  derived from the current voltage supply sV  acts as input for the 

resonance. And by LC resonance, the sinusoidal output of the drive with amplitude 0V  and frequency 

  can be obtained. By using Fourier transform, the fundamental component of invV  is given by [3] 

1
invb 4 sin(0.5 ) sin ,s sV V t                                                       (1) 

where   is duty ratio of the PWM signal and s  is switching frequency. Usually =s   and they are 

close to the resonant frequency of the stator. Equivalent circuit for the resonance tank is shown below. 

 
Figure 4. The equivalent circuit of the resonance tank 
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The inductor L  and the capacitance 1C can be determined by matching technique. The amplitude of 

the sinusoidal output can be obtained by ( 0  is the resonant frequency) 

1 1 2 2 2
0 04 sin(0.5 ) ,s m mV V R R L                                                       (2) 

1 1 2 2
0 1= ,m mL C R C C C C       ，

                                                     (3) 

Practically, the electrical parameters of L  and 1C  are affected by frequency s  or temperature T ,  

1 1( , ), ( ),s sL L T C C                                                                  (4) 

3.2. The stator 
The rectangle stator is considered as a Timoshenko beam and vibration displacement components are  

( , ) ( ) ( ), ( , ) ( ) ( ),u l b bu x t x u t w x t x w t                                                    (5) 

in which ( , )u x t  and ( , )w x t  are the displacements in longitudinal and transverse directions. And ( )u x ，

( )b x  are the mode shape functions. By using Hamilton’s principle, the vibration equations are 

0( ) ( ) ( ) sin ,l l l l l l l N NM u t C u t K u t AV t F                                               (6) 

0( ) ( ) ( ) sin ,b b b b b b b T TM w t C w t K w t A V t F                                             (7) 

where lM  and bM , lC  and bC , lK  and bK  are the mass, damping and stiffness for the L1 mode and 

the B2 mode, respectively. lA  and bA  are the corresponding electromechanical coupling factors. N  

and T  are the load coefficients for normal interface force NF  and tangential interface force TF . 

In order to describe the position-dependent nonlinearity, a vibration related nominal axial force of 
the stator P  is introduced as a function of the position s . Accordingly, the mode shape functions are 

( ) cos / ,u x x L                                                               (8) 

1 1 2 2( , ) cos ( ) sin ( ) sinh ( ) cosh ( ) ,b x P C P x D P x E P x F P x                        (9) 

2
2 2

1 = ,
2 2b

P S P

EI EI EI

 
      
   

                                                 (10) 

2
2 2
2 = + ,

2 2b

P S P

EI EI EI

 
     
   

                                                 (11) 

where , , , , , bL E I S   are length of stator, Young's modulus, moment of inertia, density, cross section 

area and natural frequency of B2 mode, respectively. The steady-state vibration amplitudes are 

    
1

22 2

0 0( ) 1 / 2 / ,l l u l l l lU F L K     


 
   

 
                           (12) 

    
1

22 2

0 0( ) 1 / 2 / ,w b b b b b bU F L K     


 
   

 
                          (13) 

where ,l bF F  denote the amplitudes of equivalent harmonic excitations for the L1 and B2 modes, and 

0 0 0/ , / , / 2 ,l l l b b b l l l lK M K M C M      0/ 2b b b bC M  . 
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0 0, ,l l l N p b b b T tF AV F F A V F                                                   (14) 

in which ,p tF F  are the static axial force and the steady-state thrust respectively and ,l b   are the 

corresponding nonnegative equivalent factors. 

1 1
, ,

t T t T

p N t Tt t
F F dt F F dt

T T

 
                                                     (15) 

0 ,pF P                                                                     (16) 

where T  is the period time and 0  is a nonnegative conversion factor satisfying 0 1  . With the 

analysis of the intermittent contact mechanism, the normal interface force in one period can be given as 

0, 0 ( ) / 2,( ) / 2 2

(sin cos0.5 ), ( ) / 2 ( ) / 2
c c

N
e l c c c

t t
F

k U t t

      
      

     
      

                     (17) 

in which ek  is the equivalent contact stiffness of friction layer. The relationship between c  and pF  is 

 sin 0.5 0.5 cos0.5 /c c c l p eU F k                                             (18) 

Different from one-to-one mapping between P  and s , mapping between the transverse vibration 
amplitude wU  and the position s  is one-to-multiple under different input voltages. 

3.3. The interface friction 
For the micro contact friction mechanism, the effect of the asperity cannot be ignored. The developed 
stick-slip interface friction model is shown in Figure 5. In the stick phase, the friction force is determined 
by the elastic-plastic deformation of asperity links and is proportional to the relative displacement. In 
the slip phase, with break of the pairs of the asperity links and newly formed lubricating film, the friction 
force contains dynamic friction force and viscous friction force. The threshold of the relative 
displacement for the two phases is denoted by mu  and the interface friction forces are as follows 

 
Figure 5. The schematic of the stick-slip interface friction model 

, ( ) , ( )
, ,

, ( ) , ( )
k N b s r m

f k r
k N b s r m

F w t v u t u
F c u

F w t v u t u





     




                                   (19) 

( ) , ( ) , ( )
,

( ) , ( ) , ( )
b s p N b s r m

f
b s p N b s r m

w v F w t v u t u
F

w v F w t v u t u

 
 
         

 
                                    (20) 

in which   is the viscous friction coefficient and sv  is the steady-state speed of the slider. And k  is 

the friction coefficient in the stick phase that is proportional to the magnitude of relative displacement. 
And p  is the dynamic friction coefficient. The proportional coefficient c  is given by /p mc u . 

Figure 6 shows the relationship between ( )bw t  and sv  in one period.  
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Figure 6. The relationship between transverse vibration velocity of the stator and steady-state speed of 

the slider in one period 

3.4. The slider 
The motion equation of the slider is obtained by force equilibrium as follows 

,s
r s d g load

dv
m c v F F F

dt
                                                   (21) 

sign( ) ( 9.81 ),g s sd pF v F m                                                 (22) 

where , ,r sdm c   are the mass of slider, viscous damping coefficient, and dynamic friction coefficient of 

linear guide and ,d loadF F  are the driving the load forces. The friction force gF  includes the effects of 

gravity force of the slider and normal interface force that is time-averaging of the static axial force pF .  

4. Comprehensively modeling and parametric identification  
For simplification, the submodel of driving circuit is not included. The feedback position and speed of 
the slider s  and sv  act as state input for the model in the present moment. The input voltage with 0V  

and   act as excitation input, and the output is the speed of slider to be predicted in the next moment.   
Here we consider the case of high-voltage input. According to Section 3.3, the interface friction can 

be approximated by pure slip friction in this case. On the assumption that the contact angle is a constant, 
i.e., c  , by employing Fourier transform the fundamental component of interface friction force is 

 1
1 10.5 2 sin 2 0.5 2 sin ,fb w s pF U v F t t t                                   (23) 

where  1 1 1
1 arcsin s wt v U     and the steady-state transverse vibration amplitude is 

  1 1 1 2 2 2 1 1
0 0.5 +2 2 1 2arcsin 0.5w b T w T s T p s w s w s wU A V U v F v U v U v U                        

  

      
-1/222 2-1

0 0( ) 1 / 2 / ,b b b b bL K          
 

                                                                    (24) 

An interesting phenomenon is observed in experiment that sv  is approximately proportional to wU . 

The solution of wU  can be obtained below ( 0k  denotes the proportional coefficient) 

    11 2 1
0 0 0+2 2 1 2arcsin 0.5 0.5 ,w b T s T p TU A V v k k k F       

          
       (25) 

      
-1/222 2-1

0 0= ( ) 1 / 2 /b b b b bL K          
 

，                                    (26) 



ISPECE 2019

Journal of Physics: Conference Series 1449 (2020) 012007

IOP Publishing

doi:10.1088/1742-6596/1449/1/012007

6

Based on the difference representation of Equation (21), output speed is obtained by  

0

1
,

T

d fF F dt
T

                                                                (27) 

   ( 1) 1 / ( ) / ( ) ( ) ( ) , 0,1,2,s r s s s d g loadv k c T m v k T m F k F k F k k                   (28) 

in which sT  is the sampling time. And the above difference equation can be expanded as 

  0( 1) 1 / / ( ) 0.5 ( ) ( ) / ( )s r s s sv k c T m m k T v k k mV k             

   2 2
0 0 0 0+ ( ) / 0.5 ( ) 2 1 2arcsin 0.5 2 1 1p sF k m k k k k T k            

  

   / 9.81 ( ) ( ) 9.81 0.5 ( ) ,s load s sd s pT m m k sign v k m F k                              (29) 

 -1 1 1=4 / 0.5 ,T s TT T        1 1=2 / 0.5 ,b s TT A T                      (30) 

Here, nonlinear polynomial models of the position are introduced for , ,P   ( , ,n p q  are orders) 

( ), ( ), ( ),n p qP P s s s                                                      (31) 

Here the parametric identification is implemented by using off-line maximum likelihood estimation.  

 1

1

( )
( ) ( ) 0,

TN
k

k k
k

y tJ
R z t y t



        
 

                                     (32) 

where J  is the fitness function, and R  is the covariance between prediction ( )ky t  and measured ( )kz t . 

  is the parameter vector to be identified and above equation can be resolved by iteration algorithm.  

5. Simulation and experimental results  

5.1. Experimental setup 
The schematic and physical layout of the experimental setup are illustrated below. The encoder used in 
the L1B2 USM test rig has a resolution of 50nm. A PZT-8 cube of dimensions 30mm×7.5mm×3mm is 
chosen as the stator. A laser vibrometer (OFV-503/2510, Polytec, Inc. Germany) is used to collect the 
vibration data, and a data acquisition card (DAQ card) with the maximum sampling rate of 2MS/s (USB-
6361, NI, Inc. USA) along with NI-DAQmx software in LABVIEW environment are employed for real-
time data monitoring and storage. A servo drive supporting EtherCAT technology, is designed and 
communicates with host PC by TwinCAT software. The load is applied by mechanism of fixed pulley. 
And the overall setup is placed on a pneumatic vibration isolation table (T1020CK, Thorlabs, Inc. USA).  

 
Figure 7. The schematic of the experimental setup     Figure 8. The physical layout of the setup 
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The driving frequency is set to be a constant of 48.5kHz. Figure 9(a) shows that the load-free steady-
state speed of the slider varies with the position under different inputs and Figure 9(b) shows the effect 
of the horizontal load on the speed under a constant input. Figure 9(c) shows the discrete points of 
 ,w sU v , and the fitting line indicates that sv  has significantly positive linear relationship to wU . 

 

(a) Variation of load-free steady-state speed with     (b) Variation of steady-state speed with position 
position under different high-voltage inputs              under different horizontal loads with 0 324VV   

 
(c) The relationship between the steady-state speed and the amplitude of the transverse vibration 

velocity 
Figure 9. The measured experimental data 

5.2. Simulation and model validation 
Based on Section 4, input and output vectors of the comprehensive model are given by 

0[ ] , ,T
s sV s v y v x                                                       (33) 

The weights sampled from 0.03kg to 0.09kg with an equal interval of 0.02kg are applied as the loads. 
The models in Equation (31) are represented by eight-order polynomials of the position. 

, , ,T T TP     p S S S                                                    (34) 

where ,p    are coefficient vectors of the polynomials, and S  is eight-order vector of the position.  

The parameter vector to be identified can be represented as 

0[ ] ,T
r sdc k   p                                                (35) 

By empolying the global search toolbox in MATLAB, the identification result for the model is listed. 
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Table 1. Estimation result of parameters in the comprehensive model 

Parameters to be identified  ( / )rc N s m  ( / )N s m   (1)  
0 (1)k  (1)sd  

Estimation result 3.0871 0.0014  0.2297  0.5844  0.0994  

-6 -4[-2.2549 10 -0.8633 -63.5158 31.9521 81.9674 -132.9991 -1.3819 0.0078 5.9610 10 ]T    

7 6 5 3 -5 -6[8.3913 10 -8.7852 10 -1.5375 10 7.2194 10 76.8995 -1.7187 -0.0104 6.7924 10 1.0573 10 ]T        

14 12 11 9 7 5 4[-1.0573 10 -3.1504 10 1.4224 10 2.9068 10 -2.5863 10 -7.8668 10 -1.9848 10 59.4874 6.0554]T       p

 

(a) Comparsion between the predicted and the measured with the load of -0.05kg 

 

(b) Comparsion between the predicted and the measured with the load of 0.05kg 

Figure 10. Comparison between the model output and the experimental data 

The loads of ±0.05kg are chosen to be the testing data set, and the results are shown in Figure 10. It 
the noted that the absolute values of the relative error are within 5% in almost all the positions except 
for the possible large fluctuations at two edges positions, which may result from the disturbtion by 
collision between the linear guide and the mechanical limit screw.  

6. Conclusion 
In the paper, a new parametric comprehensive model is presented for steady-state speed prediction and 
control for L1B2 USM, in which both analytical techniques and identification methods are employed to 
cover the uncertain and complicated position-dependent nonlinearity and to retain some physical sight 
into other important nonlinearities. Besides, an asperity based interface friction model is introduced to 
describe the complex stick-slip-separation dynamics at the interface. An effective real-time and 
synchronous experimental setup is established for model identification and validation.  
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