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Abstract. Because bearing fault feature information is not easy to extract in noisy background, 

this paper proposes an improved rolling bearing fault feature extraction method based on 

combination of wavelet threshold and complementary ensemble empirical mode decomposition 

(CEEMD). Firstly, the improved wavelet threshold denoising method is used to reduce the 
noise of the vibration signal, and the impact characteristics in the signal are enhanced. Then, 

the CEEMD decomposition is used to obtain a set of Intrinsic Modal Functions (IMFs), and 

IMFs with larger kurtosis and correlation coefficients are selected for signal reconstruction. At 

last, the envelope spectrum analysis of reconstructed signal is carried out to extract fault 

characteristic information. Through the experimental analysis of the vibration signals of the 

outer ring and inner ring of the rolling bearing, it is proved that this method can effectively 

extract the fault characteristics of the bearing. 

1. Introduction 

Rolling bearing fault is one of the most common faults in rotating machinery. When rolling bearing 

breaks down, it will affect the normal operation of equipment, even cause casualties and economic 
losses. Therefore, fault diagnosis of rolling bearing has great practical significance [1]. In actual 

working conditions, the rolling bearing is affected by factors such as the working environment and the 

transmission path, so that the fault characteristic information in the vibration signal is usually covered 
by noise, and the fault feature cannot be accurately obtained. Therefore, it is necessary to construct an 

effective denoising algorithm. Wavelet threshold de-noising algorithm is a classical signal de-noising 

algorithm, which has the characteristics of de-correlation, multi-resolution and self-adaptation. It has 

unique advantages in bearing fault signal de-noising [2]. However, in traditional wavelet threshold 
denoising, both hard threshold function and soft threshold function have great shortcomings, resulting 

in fixed deviation and discontinuity of denoised signals [3-5]. In view of the shortcomings of 

traditional threshold denoising methods in processing bearing fault signals, an improved wavelet 
threshold denoising algorithm is proposed. Here, the improved wavelet threshold denoising method is 

tried to be combined with CEEMD, and the IMFs are choosen out for reconstruction by using the 

criteria of maximum kurtosis and larger correlation coefficient, and the envelope spectrum analysis of 

reconstructed signals is carried out to achieve the extraction of bearing fault characteristic frequency, 
which is verified in bearing fault diagnosis. 
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2. Wavelet threshold denoising 

2.1. Wavelet threshold denoising method 

Wavelet threshold de-noising method uses wavelet transform to carry out multi-order, low-frequency 
and high-frequency detailed analysis of signals, and quantifies the wavelet coefficients of each layer to 

achieve the purpose of signal de-noising. Wavelet threshold denoising sets a certain threshold for the 

wavelet coefficients of each layer, quantify and analyze each wavelet coefficients, retain useful data 
and eliminate useless data to complete signal denoising. The specific steps are as follows: 

1) Choosing appropriate wavelet basis and decomposition layer number, the wavelet coefficients 

kjh ,  are obtained by wavelet transform of noisy signals. 

2) The threshold  is estimated according to the threshold rules, and Wavelet coefficient kjh ,  is 

processed by threshold function, and the processed wavelet coefficients 
kjh ,



 are obtained. 

3) The signal is reconstructed by using the wavelet coefficients and approximate coefficients, and 

the noise reduction signal is obtained. 

In the process of wavelet threshold denoising, the common threshold functions are soft threshold 
function and hard threshold function. The formula of hard threshold function is as follows: 
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The formula of soft threshold function is as follows: 
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Where   is the threshold, ) (sign is the symbolic function, kjh ,  and 
kjh ,



 are wavelet transform 

coefficients. 

Soft thresholding and hard thresholding have their own advantages. But both soft and hard 
thresholds have some shortcomings. For example, there will be constant deviation between the signal 

and the real signal after denoising by soft threshold method, which will lead to signal distortion. As for 

the hard threshold function, the signal processed by the hard threshold noise reduction method will 
produce the problem of signal oscillation. 

2.2. An improved threshold function 

Aiming at the problems of traditional soft threshold and hard threshold functions, this paper introduces 

an improved threshold function between hard and soft thresholds. The expression of the improved 
threshold function is as follows: 










−
=







kj

kj

nn
n

kjkj
kj

h

hhhsign
h

,

,

1

,,
,

                        0               

    ))((
                                                (3) 

Where 1n . When +→n , the improved threshold function is equivalent to the hard threshold 

function, and when 1=n , the improved wavelet threshold function is equivalent to the soft threshold 

function. It can be seen that the improved threshold function is based on the hard threshold function 

and the soft threshold function, which can adjust the change. When =kjh , , 0, =


kjh ; when 

→kjh , , 0, →


kjh , that is, kjh ,



 is continuous in =kjh , , and with the gradual increase of kjh , , 

the deviation between kjh ,  and kjh ,



 decreases gradually. 

It can be seen from the above analysis that the improved threshold function reduces the oscillation 
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problem of hard threshold function and reduces the constant deviation problem of soft threshold 

method. Therefore, compared with hard and soft thresholds, the improved wavelet threshold function 

can improve the denoising effect more effectively and achieve higher signal reconstruction accuracy. 

3. CEEMD algorithm 

Empirical Mode decomposition (EMD) method decomposing complex signals adaptively into 

different IMFs based on different time-scale characteristics by looking for local maxima and minima 
points and their envelopment in signals, and recombining IMFs can realize the reconstruction and 

noise reduction of original signals. This method is suitable for non-stationary signal analysis and also 

widely used in mechanical vibration signal processing. However, when EMD decomposes signals, it is 

easy to generate modal aliasing. Yeh et al. proposed CEEMD method that can effectively suppress 
modal aliasing [6]. This method adds two groups of positive and negative white noise in pairs to the 

original signal, and then decomposes them by EMD. The IMFs obtained are averaged by two groups 

of IMF components of residual positive and negative white noise. The process of CEEMD algorithm is 
as follows: 

1) A pair of positive and negative white noise )(tn  is added to the original signal )(tx : 
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2) The EMD method is used to decompose )(tx+
 and )(- tx  to obtain +

kIMF  and -

kIMF . 

3) Calculate the average values of  +

kIMF  and -

kIMF : 
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4) The original signal can be expressed as: 
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Where )(tr  is the residual amount. 

4. Fault feature extraction of rolling bearing based on improved wavelet threshold and CEEMD 

In this paper, a fault feature extraction method of rolling bearing based on improved wavelet threshold 
and CEEMD is proposed. Firstly, the improved wavelet threshold is used to de-noise the vibration 

signal to reduce noise interference and enhance the impact characteristics. Then, CEEMD is used to 

decompose the noise reduction signal into a group of IMFs with different scales. False components are 
eliminated according to kurtosis and correlation coefficient, IMFs representing fault characteristics are 

selected and used for signal reconstruction. At last, the envelope spectrum analysis of reconstructed 

signal is carried out to extract fault characteristic information. The process of fault feature extraction is 

shown in Figure 1. 

 

Figure 1. Fault features extraction process 
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5. Experimental analysis 

The bearing data of Case Western Reserve University were used to analyze the experiment. The 

driving end bearing is selected as the object of this study, and the bearing model is 6205-2RS JEM 
SKF, with diameter of inner ring 25 mm, diameter of outer ring 52 mm, thickness 15 mm, diameter of 

rolling body 7.94 mm, pitch 39.04 mm, nine rolling bodies, contact angle 0 degree, sampling 

frequency 12 KHz, sampling points 2048, rotating speed 1772 r/min, load 746 W. The theoretical 
characteristic frequency of inner ring fault is 156.14 Hz, and that of outer ring fault is 103.36 Hz. 

First, take the fault signal, and then the wavelet base is selected as 5sym , with four decomposition 

layers and a threshold Nln2 = selected. Among them,   is noise standard variance and N is 

sampling signal length. The fault signals of inner and outer rings of rolling bearings are analyzed by 

using the fault feature extraction method based on improved wavelet threshold and CEEMD. 

5.1. Outer circle fault analysis 
The fault signal of bearing outer ring is analyzed. The time domain waveform of the outer ring fault 

signal is shown in Figure 2(a). It is obvious from the graph that the background noise of the original 

vibration signal is large and the impact characteristics are not obvious. The time-domain waveform of 
outer-loop fault signal denoised by improved wavelet threshold is shown in Figure 2(b), and it can be 

seen that the impulse component in the signal increases, and the fault characteristics are more obvious. 

CEEMD algorithm is used to decompose the denoised signal, and the first six IMFs are shown in 

Figure 2(c). The kurtosis and correlation coefficients of the first six components of CEEMD 
decomposition are shown in Table 1. It can be seen that the kurtosis and correlation coefficients of the 

first two components are larger. Then two IMFs, IMF1 and IMF2, are selected to represent the fault 

information of the signal, and use them to reconstruct signals, and envelope spectrum of reconstructed 
signal, as shown in figure 2(d). It can be seen from the envelope spectrum that the fundamental 

frequency of the fault is 105.5 Hz, which is approximately 103.36 Hz, the theoretical value of the fault 

characteristic frequency of the outer ring, and its double, triple and quadruple frequency etc can be 
obtained. Therefore, within the allowable range of errors, bearing outer ring damage can be 

determined.  

Table 1. Kurtosis and correlation coefficient of IMFs 

IMFs IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 

Kurtosis 8.6963 9.7282 8.4267 6.2198 3.7438 3.2045 

Correlation coefficient 0.9499 0.4720 0.0737 0.0789 0.0429 0.0200 

 

  
(a) Time-domain waveform of fault signal        (b)  Noise reduction signal waveform 
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(c) Decomposition results of CEEMD              (d) Envelope spectrum of reconstructed signal 

Figure 2. Analysis of outer circle fault signal 

5.2. Fault analysis of inner ring 
The fault signal of bearing inner ring is analyzed. The time domain waveform of the inner ring fault 

signal is shown in Figure 3(a). It is obvious from the graph that the background noise of the original 

vibration signal is large and the impact characteristics are not obvious. The time-domain waveform of 
inner-loop fault signal denoised by improved wavelet threshold is shown in Figure 3(b). It can be 

clearly seen that the impulse component in the signal increases and the fault characteristics are 
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Table 2. Kurtosis and correlation coefficient of IMFs 
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(c) Decomposition results of CEEMD                 (d) Envelope spectrum of reconstructed signal 

Figure 3. Analysis of inner circle fault signal 

5.3. Comparative analysis 
When the fault signal is not denoised, the CEEMD method is directly adopted to decompose the fault 

signal and conduct envelope spectrum analysis. The envelope spectra of the outer ring and inner ring 

signals of the bearing are shown in figure 4. It can be found that the middle and high frequency part of 
the fault signal is drowned by noise due to the influence of noise, and the fault impact characteristics 

of the middle and high frequency part of the signal are not obvious, which reduces the accuracy of 

fault diagnosis. Compared with it, the method adopted in this paper reduces the noise interference, 

features obvious fault impact, highlights the fault characteristic frequency, effectively extracts the fault 
characteristic information, and improves the accuracy of fault diagnosis. 

   
(a) Envelope spectrum of outer-loop signal             (b) Envelope spectrum of inner circle signal 

Figure 4. Fault signal analysis of inner and outer rings 
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information is extracted by envelope spectrum analysis. Through experimental analysis, this method is 

helpful for rolling bearing fault diagnosis. 
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