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Abstract. To improve the accuracy of tool wear detection, this paper proposes a tool wear 

detection method based on genetic neural network. Firstly, the vibration signals during tool 

processing are collected, and these signals are preprocessed to eliminate background noise. 
Then, in addition to the time-frequency analysis, the Ensemble Empirical Mode Decomposition 

which is more suitable for the processing of non-stationary random signals is also applied to 

extract tool wear sensitive features from signals. To reduce the computational complexity of 

the neural network, some minor components in the sensitive features can be omitted by kernel 

principal component analysis, leaving the principal components as the input of the neural 

network. Finally, aiming at the shortcomings of the BP neural network, the genetic algorithm is 

optimized in terms of chromosome coding, setting of control parameters and genetic operation, 

so that it can obtain better weights and thresholds to improve the BP neural network. The 

experimental result proves that the accuracy of BP neural network is 86.7% and that of genetic 

neural network is 96%. The tool wear detection method based on genetic neural network is 

more suitable for practical use. 

1. Introduction 

Tool wear is a common phenomenon in machining. Tool wear directly affects the efficiency and 
precision of machining. The detection of tool wear is one of the most important research directions in 

machining. It is of great significance in reducing machining cost and ensuring machining quality [1].  

At present, tool wear detection technology generally includes three parts: signal acquisition, Signal 
Processing, and tool wear detection. Among them, tool wear detection as an important part has been 

widely concerned [2]. The signal generated by the process of machining is a time-varying signal. 

Therefore, the analytical method and empirical formula method used in the past have gradually failed 
to adapt to the complexity of the process of machining.  

Artificial neural network is often used for tool wear detection due to its excellent performance in 

nonlinear modeling. Jakub Gajewski [3] uses discrete wavelet transform to extract tool wear 

characteristics. The state of the tool is classified by fuzzy neural network, and the recognition accuracy 
reaches 93.3%. Raphael Corne [4] aims to evaluate and analyse spindle power data for real-time tool 

wear monitoring. Power data  spindle to feed into the neural network for functional processing. Zheng 

Jian ming [5] uses wavelet decomposition coefficient of power spectrum to fuse BP neural network to 
realize intelligent identification of the tool wear state. These studies usually use time-frequency 

analysis method, which is more suitable for the analysis of stationary and linear signals. In addition, 

the accuracy of tool wear detection by neural network is also insufficient, which cannot fully meet the 
requirements of actual use [6]. 
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This paper analyses the current tool wear detection technology, and the vibration signal that can 

better characterize tool wear is selected for analysis. In addition to the time-frequency analysis, 

Ensemble Empirical Mode Decomposition is added to extract the characteristics of vibration signals. 
On the basis of Principal Component Analysis, the kernel function is introduced to make it more 

suitable for dimensionality reduction of tool wear characteristics. Aiming at the shortcomings of 

traditional BP neural network, the improved genetic algorithm is used to optimize its initial weight and 
threshold. Experiments show that the accuracy of tool wear detection by genetic neural network is up 

to 96%, which is more suitable for practical application. 

2. Signal acquisition and processing 

2.1. Vibration signal acquisition experiment 
In this paper, VA3 vertical high-speed machining center is selected as the experimental platform to 

collect vibration signals. Install the acceleration sensor on the processing platform. As shown in figure 

1, select the X, Y, Z three-axis direction to collect the vibration signal. 

 

Figure 1. Acceleration sensor installation. 

The size of processed workpiece is 100mm×40 mm×20mm. The material of processed workpiece 

is 316L stainless steel. The processing parameters are set as follows: n=5000 r/min, Vc=1000 r/min, 
Ap=1mm, Ae=5 mm. 

Keep the processing parameters unchanged, the single processing time is 4 seconds. After each 

processing, stop the machine to measure tool wear and record. After the tool and workpiece are 
completely cooled, repeat the above process. If the workpiece cannot be processed, replace the same 

one and continue until the tool is severely worn. 

The vibration signals collected by the experiment, on the one hand, there are environmental 
disturbances in these signals, and on the other hand, the amount of data is too large. So it is impossible 

to input them directly into the neural network for use. The signal must be preprocessed to improve the 

signal-to-noise ratio. Then the sensitive characteristics of tool wear were extracted and screened. The 

preprocessing mainly uses smooth filtering to remove individual peak interference signals. These 
interferences mainly come from the vibration of other machines in the industrial environment or the 

vibration caused by human beings.  

2.2. Signal processing 

2.2.1. Characteristics extraction. Time-frequency analysis is s commonly used signal processing 

method, which is more suitable for the analysis of stationary signals. In this paper, the root mean 

square value, the main peak value of autocorrelation, Spectrum magnitude, Power spectral density and 
db1 Sub band energy are selected as the time-frequency characteristics of tool wear.  

However, the vibration signal generated in the process of tool machining is non-stationary random 

signal. Therefore, in addition to the time-frequency analysis, the Ensemble Empirical Mode 

Decomposition (EEMD) [7] which is more suitable for the processing of non-stationary random 
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signals is also applied in this paper. To solve the modal aliasing problem of Empirical Mode 

Decomposition (EMD), EEMD emerge as the times require. It is an adaptive time-frequency 

localization analysis method, which gets rid of the limitations of Fourier transform. Unlike the wavelet 
packet transform, it does not need to set the basis function. 

The steps of EEMD are as follows: 

1) Gaussian White noise is added to the original signal for several times to obtain the signal 
with white noise added for the ith time. 

                                    𝑆𝑖(𝑡) = 𝑆(𝑡) + 𝑛𝑖(𝑡)                                                                          (1) 

2) EMD was performed on all the obtained 𝑆𝑖(𝑡). 

                                  𝑆𝑖(𝑡) = ∑ 𝑐𝑖𝑗(𝑡) + 𝑟𝑖𝑛  𝑛
𝑗=1                                                                         (2) 

Where  𝑐𝑖𝑗(𝑡) describes the IMF component while  𝑟𝑖𝑛  represents the residual component. 

3) The overall average of all IMF components is calculated to obtain the final IMF. 

                                                         𝑐𝑖(𝑡) =
1

𝑁
∑ 𝑐𝑖𝑛(𝑡)𝑁

𝑖=1                                                                       (3) 

After multiple debugging, when the standard deviation of Gaussian white noise is 0.3 and the 

number of noise addition is 100, the effect of EEMD is the best.  

2.2.2. Characteristics Selection. The tool wear sensitive characteristics extracted by time-frequency 

analysis and EEMD, many of which have high dimension. In order to further reduce the computational 

complexity of the neural network, some components with small contribution rate can be eliminated 
from the characteristics. 

Kernel function principal component analysis (KPCA) [8] is a nonlinear expansion algorithm of 

principal component analysis (PCA), which extracts principal components by non-linear methods. 
KPCA maps the original data to high-dimensional space by the mapping function before PCA. KPCA 

can remove the secondary characteristics and noises from the high dimension tool wear sensitive 

characteristics, and retain the main components, so as to improve the data processing speed. 

The steps of KPCA are as follows: 
1) Signal sample data is constructed by gaussian radial basis function. 

2) Calculate the eigenvectors and eigenvalues of the kernel function matrix. Find the 

contribution rate of the elements corresponding to each eigenvalue (the ratio of each eigenvalue to the 
sum of all eigenvalues). 

3) The cumulative contribution rate is set to 95%, and the first six principal components are 

taken to reflect the original information. 
Finally, the six principal components contain more than 95% of the original sensitive 

characteristics, which greatly reduce the complexity and increase the speed of the operation. 

3. Genetic neural network 

BP neural network (BPNN) [9] is a kind of multilayer feedforward network trained by error back 
propagation. It uses gradient search technology to minimize the mean square error between the actual 

output and the desired output. BPNN has strong nonlinear mapping ability and adaptive ability. At the 

same time, it also has a good performance in fault tolerance. 
However, BPNN also has some shortcomings. The essence of BPNN is a local search algorithm, 

which does not have the ability of global search. In addition, due to the complexity of tool wear 

detection, BPNN has insufficient ability to deal with it.  

As an important branch of artificial intelligence, genetic algorithm (GA) [10] is an optimization 
mechanism based on natural selection and biological genetic mechanism abstracted from biological 

evolution process. It solves the problem according to the natural evolutionary rules of the survival of 

the fittest. It has good scalability and is easy to integrate with BPNN. 
The sample genetic algorithm (SGA) has two major shortcomings. The first one is that the 

algorithm has limited ability to explore new space, which makes it easy to converge to the local 

optimal solution. The other is that the algorithm will swing around the optimal solution, making it 
difficult to converge. In view of these shortcomings of SGA, this paper improves it in chromosome 
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coding, setting of control parameters and genetic operation so it can better optimize BPNN. The 

algorithm flowchart of BPNN optimized by improved genetic algorithm (IGA) is shown in figure 2. 

 

Figure 2. Algorithm flowchart. 

The SGA adopts binary coding, but it has the problem of Hamming cliff. In the gray code 

corresponding to two consecutive integers, only one bit is different. Therefore, when variation occurs, 

its original phenotype is continuous with its present phenotype. Gray code can effectively solve the 
problem of Hamming cliff and improve the local search ability of SGA. 

In the setting of control parameters, the SGA adopts fixed crossover probability and mutation 

probability. It means that individuals with good or inferior quality have undergone the same 
probability of crossover and mutation operations. This paper introduces the idea of self-adaptation [11]. 

At the initial stage of evolution, the population needs a high probability of crossover and mutation in 

order to find the optimal solution quickly. However, at the later stage of evolution, the population 
needs low probability of crossover and mutation to converge quickly after finding the optimal solution. 

The probability of crossover and mutation needs to be adjusted with the evolution of population to 

meet the needs of evolution. 

Compared with the linear function used in the adaptive genetic algorithm, sigmoid function has a 
smoother top and bottom. This function shows a good balance between linear and nonlinear changes. 

It is more suitable for adaptive adjustment of crossover probability and mutation probability. The 

adaptive adjustment formulas for crossover probability and mutation probability are shown in 
equations (1) and (2). Where fmax represents the maximum fitness of the population and favg represents 

the average fitness of the population.  

                                   𝑃𝑐 = {

𝐾1−𝐾2

1+𝑒𝑥𝑝(𝐴(
2(𝑓𝑐−𝑓𝑎𝑣𝑔)

𝑓𝑚𝑎𝑥−𝑓𝑎𝑣𝑔
))

+ 𝐾2            𝑓𝑐 ≫ 𝑓𝑎𝑣𝑔

    𝐾1                                                     𝑓𝑐 ≫ 𝑓𝑎𝑣𝑔    

                                                 

(4) 

Where fc represents the greater fitness of the two individuals participating in the crossover. K1 
represents the maximum crossover rate and k2 represents the minimum crossover rate. 

                                                     𝑃𝑚 = {

𝐾3−𝐾4

1+𝑒𝑥𝑝(𝐴(
2(𝑓𝑚−𝑓𝑎𝑣𝑔)

𝑓𝑚𝑎𝑥−𝑓𝑎𝑣𝑔
))

+ 𝐾4          𝑓𝑚 ≫ 𝑓𝑎𝑣𝑔

    𝐾3                                                  𝑓𝑚 ≫ 𝑓𝑎𝑣𝑔    

                                                  

(5) 

Where fm represents the fitness of the mutant individual. K3 represents the maximum mutation rate 

and k4 represents the minimum mutation rate. 
The adjustment curves of crossover probability and mutation probability are shown in figure 3 and 

figure 4. 
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Figure 3. Cross probability adjustment curve.    Figure 4. Mutation probability adaptive curve. 

In the genetic operation, the preselection strategy is used to improve the selection operation [12]. 
When the fitness of the new generation is greater than that of the parent, the new generation will 

inherit to the next generation instead of the parent, otherwise the parent will be retained.  

As shown in Figure 5, the fitness value of IGA is reduced to the lowest when the evolutionary 
generation is 4, which improves its convergence speed. The prediction error comparison between 

BPNN and IGA-BP is shown in Figure 6. It can be seen that compared with BPNN, IGA-BP has 

significantly improved the prediction ability. 

                           

Figure 5. Fitness curve of IGA.                           Figure 6. Prediction error. 

4. Results and analysis 
The output of the neural network (tool wear) is normalized to [0, 1]. The five tool wear states are set as 

follows: new tool state [0, 0.1], initial tool wear state [0.1, 0.3], medium tool wear state [0.3, 0.6], late 

tool wear state [0.6, 0.9], and severe tool wear state [0.9, 1]. 

The experimental data were trained by BPNN and IGA-BP respectively. 30 groups of test data 
corresponding to five tool wear states were randomly selected for verification. The results are shown 

in table 1 and table 2. 

Table 1. Result of BPNN.                                                Table 2. Result of IGA-BP. 

No. 
Actual 

wear state 

Correct 

identification 

Accuracy 

rate 

              
No. 

Actual 

wear state 

Correct 

identification 

Accuracy 

rate 

1 
new tool 

state 
28 93.3% 

 
1 

new tool 

state 
30 100% 

2 
initial tool 

wear state 
26 86.7% 

 
2 

initial tool 

wear state 
29 96.7% 

3 

medium 

tool wear 

state 

23 76.7% 

 

3 

medium 

tool wear 

state 

27 90% 

4 
late tool 

wear state 
24 80% 

 
4 

late tool 

wear state 
28 93.3% 

5 
severe tool 

wear state 
29 96.7% 

 
5 

severe tool 

wear state 
30 100% 
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As can be seen from the table, when using BPNN for detection, only the new tool state and severe 

wear state have an accuracy rate of over 90%. The detection accuracy for the medium tool wear state 

is even less than 80%. The overall average accuracy of the five tool wear states is only 86.7%. 
However, the IGA-BP has a detection accuracy of 100% for the new tool state and the severe tool 

wear state. The accuracy of others is also above 90%. The overall average accuracy rate reached 96%. 

Compared to the BPNN, the accuracy of tool wear detection has increased by nearly 10%. 

5. Conclusion 

To improve the accuracy of tool wear detection, this paper takes the tool processing process as the 

experimental basis and collects the vibration signal. To reduce the computational complexity of the 

neural network, time-frequency analysis and the EEMD are performed to extract tool wear sensitive 
characteristics. The KPCA is then used to extract the principal components of the sensitive 

characteristics for training and testing of BPNN and IGA-BP. The experimental results show that the 

accuracy of tool wear detection of IGA-BP is up to 96%, which is significantly improved compared 
with the traditional BPNN. It provides a good theoretical basis for further research on tool wear 

condition monitoring and makes it more suitable for practical use. 
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