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Abstract

We analyzed properties of waves excited by mildly relativistic electron beams propagating along the magnetic field
with a ring-shape perpendicular momentum distribution in neutral and current-free solar coronal plasmas. These
plasmas are subject to both the beam and the electron cyclotron maser instabilities driven by the positive
momentum gradients of the ring-beam electron distribution in the directions parallel and perpendicular to the
ambient magnetic field, respectively. To explore the related kinetic processes self-consistently, 2.5D fully kinetic
particle-in-cell simulations were carried out. To quantify excited wave properties in different coronal conditions,
we investigated the dependences of their energy and polarization on the ring-beam electron density and magnetic
field. In general, electrostatic waves dominate the energetics of waves, and nonlinear waves are ubiquitous. In
weakly magnetized plasmas, where the electron cyclotron frequency ωce is lower than the electron plasma
frequency ωpe, it is difficult to produce escaping electromagnetic waves with frequency ω>ωpe and small
refractive index ∣ ∣w <ck 1 (k and c are the wavenumber and the light speed, respectively). Highly polarized and
anisotropic escaping electromagnetic waves can, however, be effectively excited in strongly magnetized plasmas
with ωce/ωpe�1. The anisotropies of the energy, circular polarization degree (CPD), and spectrogram of these
escaping electromagnetic waves strongly depend on the number density ratio of the ring-beam electrons to the
background electrons. In particular, their CPDs can vary from left-handed to right-handed with the decrease
of the ring-beam density, which may explain some observed properties of solar radio bursts (e.g., radio spikes)
from the solar corona.

Unified Astronomy Thesaurus concepts: Solar magnetic reconnection (1504); Solar corona (1483); Solar coronal
radio emission (1993)

1. Introduction

The solar corona consists of a very dynamic, hot and dilute
magnetized plasma in which eruptive energy and mass releases
take place, such as solar flares and coronal mass ejections. In
the course of these solar activity, energetic particles can be
accelerated by magnetic reconnection(Zhou et al. 2015, 2016;
Muñoz & Büchner 2016, 2018a), shocks(Aschwanden 2002;
Benz 2008; Chen et al. 2015), and turbulence(Petrosian &
Liu 2004; Fletcher & Hudson 2008; Vlahos & Cargill 2009).
These energetic particles can produce electromagnetic emis-
sions from radio to γ-ray wavelengths. Of particular interest are
solar radio bursts (SRBs) characterized by (a) high brightness
temperatures; (b) short, eruptive timescales; (c) narrow
frequency bands; and (d) strong polarization. These character-
istics indicate that the SRBs are likely due to coherent
emissions of plasma waves caused by plasma instabilities in
the solar corona plasma(Melrose 2017). Therefore, SRBs carry
rich information of plasma dynamics in the solar corona and
may be used to remotely study the related plasma processes.

SRBs can be classified into many types by their distinctive
structures in the dynamical spectrum (or spectrogram; Wild
et al. 1963). Among all types of the SRBs, spikes immediately
attracted the attention of researchers since their first detec-
tions(Droege & Riemann 1961; Elgarøy 1961; De Groot 1962)
owing to their particular observed properties: extremely short
duration (down to and probably even less than a few
milliseconds, limited by the time resolution of radio tele-
scopes), narrow bandwidth (<1%), and mostly X-mode-
dominated high degree of polarization (can be≈100%; see,

e.g., Fleishman & Mel’nikov 1998 for a review and references
therein). Solar radio spikes are closely related to particle
acceleration and primary energy release processes in solar
flares. They might provide direct information on the finest
structure of these energy release processes(Benz 1985, 1994).
To deduce energy release information of solar flares from
observations of solar radio spikes, one first needs a reliable
generation mechanism for these solar radio spikes. Since right-
handed polarized X-mode waves are predominant in most cases
of solar radio spikes, electron cyclotron maser (ECM)
emission(Twiss 1958; Gaponov 1959; Schneider 1959) has
been widely accepted as the most likely coherent emission
mechanism for their generation(Dulk 1985; Vlahos 1987;
Vlahos & Sprangle 1987; Melrose 1994; Fleishman &
Mel’nikov 1998).
The so-called ECM mechanism, proposed by Twiss (1958),

is a consequence of a linear ECM instability, where electro-
magnetic waves absorb the energy of energetic electrons, i.e.,
negative absorption of waves by energetic electrons, via wave–
particle interactions(see Melrose 2017, chap. 3.2). Besides
solar radio spikes, the ECM mechanism was also applied to the
generation of Earth’s auroral kilometric radiation (AKR; Wu &
Lee 1979; Lee & Wu 1980; Lee et al. 1980; Strangeway et al.
2001) and Jupiter’s decametric emission (DAM; Goldreich &
Julian 1969). For the ECM mechanism to operate on remote
radio emissions, first the electron cyclotron frequency ωce needs
to be greater than the plasma frequency ωpe in the generation
sites of radio emissions, since strong wave excitations by the
ECM instability are mainly located around ωce and waves with
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frequencies below local ωpe cannot escape from a plasma
directly, i.e., the escape condition(e.g., Melrose 2017). The
condition ωce>ωpe, however, implies high local Alfvén
velocities ∼0.02c (Wu et al. 2014), which cannot be easily
satisfied within the standard model of the solar atmosphere
(Wild 1985; Wu 2012, 2014; Wu et al. 2014). Wu et al. (2014)
and Chen et al. (2017) suggested that the condition ωce>ωpe

can be fulfilled if local density cavities form, e.g., due to
fluctuations in the ubiquitous Alfvénic turbulence. Such density
cavities are, indeed, found recently along the path of the
electron beam propagating parallel to the low-density separa-
trices of strong-guide-field magnetic reconnection via 3D fully
kinetic particle-in-cell (PIC) simulations(Drake et al. 2003;
Pritchett & Coroniti 2004; Muñoz & Büchner 2018b).
Observations by Régnier (2015) and Morosan et al. (2016)
also demonstrated that the condition of w w>ce pe can be
satisfied within some areas of the solar corona, such as the core
of a large active region.

Furthermore, to trigger the ECM emission (i.e., the ECM
instability), a positive gradient is required in the electron
momentum distribution perpendicular to the ambient
magnetic field, i.e., ¶ ¶ >^f u 0, where f is the electron
momentum distribution and û is the perpendicular momentum
of electrons. This property, called population inversion,
drives the maser instability. Possible momentum distributions
with ¶ ¶ >^f u 0 include ring distributions(Pritchett 1984;
Vandas & Hellinger 2015), loss-cone distributions(Wu &
Lee 1979; Tsang 1984), and horseshoe distributions(Pritchett
et al. 1999; Melrose & Wheatland 2016).

¶ ¶ >^f u 0 was obtained by considering particle acceleration
in the outflow region of magnetic reconnection, where cup-like
momentum distributions are found(Büchner & Kuska 1996).
Energetic particles’ magnetic gradient drifts can also cause a
redistribution of the energy of parallel-flowing beam particles to
the perpendicular direction(Zhou et al. 2015), forming ring or
crescent-shaped momentum distributions in the perpendicular
direction(Voitcu & Echim 2012, 2018). Vlahos & Sprangle
(1987) and Vlahos (1987) mentioned that the interaction of quasi-
perpendicular shocks with the ambient solar coronal plasma might
lead to formation of a ring momentum distribution in the direction
perpendicular to the ambient magnetic field. A quasi-perpend-
icular shock-related SRB event during a solar flare was reported
by Chen et al. (2015). Additionally, by means of fully kinetic PIC
simulations, it has been proved that ring momentum distribution
in the direction perpendicular to the ambient magnetic field can
indeed be produced during magnetic reconnection(Bessho et al.
2014; Shuster et al. 2014, 2015). Moreover, electron holes in the
electron exhaust regions at the X-points of magnetic reconnection
could also provide ¶ ¶ >^f u 0 for the ECM emissions
(Treumann et al. 2011, 2012; Treumann & Baumjohann 2017).
Note that gradients in the parallel direction ¶ ¶f u can also drive
ECM emissions. This requires, however, extremely anisotropic
electron momentum distributions, e.g., ( ) D D^ u c u c2 for a
bi-Maxwellian electron momentum distribution, whereDû , Du ,
and c are the perpendicular and parallel thermal momenta of
electrons and the speed of light, respectively(Melrose 1973, 2017).
There is, however, no observational evidence for the existence of
such strong anisotropy in the solar corona.

On the other hand, energetic electrons always follow a beam
momentum distribution in the direction along the coronal
magnetic field based on some high-energy phenomena in the
solar corona, e.g., type III SRBs, hard X-ray bursts, and solar

energetic particle events (Cairns et al. 2018; Chen et al.
2015, 2018). 3D fully kinetic PIC and test particle simulations
have also shown that strongly energized electron beams can be
generated by guide-field magnetic reconnection(Büchner et al.
2018; Muñoz & Büchner 2018a; Zhou et al. 2016). The beam
momentum distribution is unstable to the beam instability
driven by free energies from electrons with a momentum
distribution f containing · ¶ ¶ >u f u 0 (see Melrose 1986;
Gary 1993). The classical theory of plasma emission, suggested
by Ginzburg & Zhelezniakov (1958), is based on this beam
instability.
The plasma emission mechanism contains nonlinear three-

wave interaction processes. The theory starts with the
excitation of electrostatic Langmuir waves (L) via the beam
instability. Then, backward-directed Langmuir (L′) waves can
be generated via the electrostatic decay or induced back-
scattering of forward-directed Langmuir waves by fluctuations
of ions (  ¢ L L S, where S represents ion-acoustic wave;
see Umeda 2010). Electromagnetic decay or coalescence
of L and S waves will lead to the fundamental electromagnetic
emission ( wT pe) at the electron plasma frequency ωpe

(  wL T Spe ), while the second harmonic electromagnetic
emission ( wT2 pe) at 2ωpe can be produced by the coupling of
L and L′ waves ( + ¢  wL L T2 pe;Karlický & Bárta 2011;
Melrose 2017; Henri et al. 2019). Generally, the classical
plasma emission processes will lead to excitations of the L, L′,
wT pe, wT2 pe, and S waves owing to the beam instability. Recently,
Umeda (2010) proposed an alternative mechanism for the
generation of the L′ waves with two symmetric counter-
propagating electrons beams, where the L and L′ waves can be
directly induced by the forward- and backward-propagating
electron beams, respectively(Ganse et al. 2012a, 2012b;
Thurgood & Tsiklauri 2015). The plasma emission theory
has been widely used to explain the formations of type I, II, and
III SRBs(Aschwanden 2005; Melrose 2017). In situ spacecraft
observations of the interplanetary type III SRBs have also
confirmed the plasma emission theory (Lin et al. 1981; Ergun
et al. 1998).By considering many propagation effects (e.g.,
wave scattering, decreasing magnetic field strength, interpla-
netary shocks) during the transportation of energetic electrons
from the solar corona to the interplanetary medium (IPM),
momentum distributions of the energetic electrons in the solar
corona should be quite different from those in the IPM.
Both the beam and ECM instabilities (driven by free

energies in · ¶ ¶ >u f u 0 and ¶ ¶ >^f u 0 distributions,
respectively) have been invoked separately to explain the
coherent emission mechanism of different types of SRBs (see,
e.g., Aschwanden 2005; Melrose 2017, for reviews of SRBs).
For a more general application to the microscopic emission
processes in plasmas, here we will generalize these two
distributions and characterize the properties of emission
processes due to both instabilities. On the other hand, based
on the above-mentioned theoretical studies and numerical
simulations, both free energies with population inversion

· ¶ ¶ >u f u 0 and ¶ ¶ >^f u 0 in the electron momentum
distribution and density cavity with w w>ce pe can be realized
simultaneously in the dynamically evolving fast solar
magnetic reconnection events in the solar corona.
In this paper, via 2.5D fully kinetic PIC simulations, we

investigate properties of waves excited by mildly relativistic
ring-beam electrons in neutral and current-free solar coronal
plasmas. In this system, the ring-beam electrons, together with
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protons and background electrons, support the global charge
and current neutralities, respectively. Many theories and
observations have proved that the majority of the current
induced by energetic beam electrons can be rapidly compen-
sated by the return current of drifting background electrons
(e.g., Brown & Bingham 1984; van den Oord 1990;
Melrose 1990; Khodachenko et al. 2009). Note that nonzero
net current in plasmas can not only introduce a current
instability (see Melrose 1986; Matsumoto & Omura 1993; Wu
et al. 2014; Chen et al. 2017) but also generate strong magnetic
fields and oscillations, leading to a very complex plasma
system (Henri et al. 2019).

Some parametric dependence of the wave excitations
resulting from the electron ring-beam momentum distribution
has been investigated by Lee et al. (2011) utilizing 2.5D fully
kinetic PIC simulations. In particular, these authors explored
the influences of the average kinetic energy and pitch angle of
the ring-beam electrons on the wave excitations, keeping the
density ratio of ring-beam and background electrons fixed
( =n n 1:19rb bg ), as well as the frequency ratio ωce/ωpe=5. In
order to derive properties of waves generated by energetic ring-
beam electrons at different locations along the beam trajectory
in the solar corona, we utilize a 2.5D version of the fully kinetic
PIC code ACRONYM to explore the dependences of the
nonlinear wave generation and saturation by energetic ring-
beam electrons on the frequency ratio of ωce/ωpe and the
density ratio of the ring-beam nrb to background nbg electrons
with the average kinetic energy and pitch angle of the ring-
beam electrons fixed.

Compared with previous studies (e.g., Pritchett 1984;
Lee et al. 2009, 2011), we have developed precise diagnostics
to investigate the nonlinear evolution, saturation, and
anisotropy of different electromagnetic wave modes guided
by the dispersion relations of a magnetized cold plasma
(see Section 2.2.1). Since only electromagnetic waves with
frequency ω>ωpe and small refractive index ∣ ∣w <ck 1 can
escape from their generation sites and might be detected by
remote detectors, polarization, spectrogram, and anisotropies
of these escaping electromagnetic waves are explored to
compare with the ground-based observations of solar radio
spikes (see Section 2.2.2).

This paper is organized as follows: after the introduction, we
present the numerical simulation model in Section 2. Section 3
contains the key results of this study, and in Section 4 we draw
our conclusions and discuss the application of our results.

2. Numerical Simulation

2.1. Model and Setup

Since the excitation and growth of waves driven by plasma
instabilities are, in general, kinetic and nonlinear processes,
self-consistent kinetic simulations are required to investigate
them. In these simulations, particle interactions through the
electromagnetic fields and effects of particles’ motions on the
electromagnetic fields, as well as nonlinear wave–wave and
wave–particle interactions, can be correctly incorporated. Our
tool of choice is a fully kinetic PIC code, which can model all
those processes from a first-principle approach. In a fully
kinetic PIC code, generally, the electromagnetic fields are
calculated from the Maxwell equations with the charge and
current densities by knowing the positions and velocities of all

particles. And then the particles move owing to these
electromagnetic fields from the Newton–Lorentz equation of
motion, and the new positions and velocities of particles
lead to a new state of the electromagnetic fields. This step is
equivalent to solving the effective Vlasov equation for the
(numerical) particles. These steps are repeated until the end of a
simulation. Therefore, the fully kinetic PIC algorithm solves
the full set of the Vlasov–Maxwell equations(see, e.g., Birdsall
& Langdon 1991; Tskhakaya et al. 2007; Lapenta 2012;
Vay & Godfrey 2014, for reviews of the basic theories and
applications of fully kinetic PIC codes).
We performed this study with the fully kinetic PIC code—

ACRONYM (http://plasma.nerd2nerd.org/; Kilian et al. 2017),
a fully relativistic electromagnetic code tuned for the study of
kinetic-scale plasma wave phenomena and interactions in
collisionless plasmas in a wide variety of physical environments
(see, e.g., Ganse et al. 2012a; Kempf et al. 2016; Muñoz &
Büchner 2016, 2018b; Schreiner et al. 2017; Büchner et al.
2018). We use its version in two spatial dimensions and
three dimensions in momentum and components of the
electromagnetic fields (i.e., 2.5D).
The 2D simulation box contains 1024×1024 grid points in

the x–y plane. Periodic boundaries are applied in both directions
for both fields and particles. In our simulations, to keep the global
charge neutrality, three species of particles are employed, one for
the mildly relativistic ring-beam electrons and the other two
species for the protons and the background electrons. For
physically realistic results, the proton-to-electron mass ratio has
been chosen as the physical mp/me=1836. Initially, 2000
particles per cell are implemented to reduce the numerical noise
(Hockney 1971; Dawson 1983; Birdsall & Langdon 1991). These
particles are homogeneously distributed in the whole simulation
domain with a constant ambient magnetic field =B xB0 0 along
the x-axis, since typical domain sizes modeled by fully kinetic PIC
simulations are much smaller than the typical length scale of the
density and magnetic field gradients in the solar corona.
The initial momentum distributions of all particles (both electrons

and protons) are characterized in terms of momentum per unit
mass, g=u v, where g = - = +v c u c1 1 12 2 2 2 . Note
that, hereafter, we will simply refer to “momentum per unit mass”
as “momentum.” Correspondingly, the momentum distribution for
the mildly relativistic ring-beam electrons is (Umeda et al. 2007;
Lee et al. 2011; Kainer & MacDowall 1996)

⎡
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where  ^u u, are the particle momenta along and perpendicular
to the ambient magnetic field B0, respectively. (  ^u u,rb rb ) and
(  ^u u,th th ) are their corresponding bulk drift and thermal

momenta (   g= =v u k T me eth th th B , and g= =^ ^v uth th th

^k T me eB , , where Te, ( ^Te, ) is the parallel (perpendicular)
electron temperature, kB is Boltzmann’s constant, and

( )g = + + ^u u c1th th
2

th
2 2 ). According to our simulations,

the parallel and perpendicular directions are along the x-axis
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and y-axis, respectively. Considering the typical velocity of
energetic beam electrons (Wild et al. 1959; Alvarez &
Haddock 1973; Suzuki & Dulk 1985; Reid & Ratcliffe
2014) and typical temperature in the solar corona, initially

we take ( )g = + + =^u u c1 1.2rb
2

rb
2 2 (∼100 keV and

 + =^u u c0.67rb
2

rb
2 ) as the average initial kinetic energy

of the ring-beam electrons. Their averaged pitch angle is
( )f = = -

^u utan 300
1

rb rb , which indicates that the ring-
beam electrons have more energies in the B0 parallel direction.
And  = = = =^u u u u c0.025th th rbth th . ^Q in Equation (1) is
the normalization constant

⎡
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For a current-free system, all the background electrons drift in
the opposite direction to that of the ring-beam electrons with a
momentum  = -u u n nbg rb rb bg, where nrb and nbg are the
number densities of the ring-beam and background electrons,
respectively(Karlický & Bárta 2009; Ganse et al. 2012b).

The background electrons, hence, follow a drifting Max-
wellian momentum distribution with a thermal spread
ubgth=0.05c along each dimension. The backward-drifting
background electrons, hence, also contain free energies

· ¶ ¶ >u f u 0 for the beam instability. Protons are used for
the global charge neutrality. They are assumed to follow an
isotropic Maxwellian momentum distribution with the same
temperature as the background electrons. Note that protons are
quite important for the generation of the ion-acoustic waves in
the plasma emission mechanism, so that we let them move
freely, i.e., our simulations also solve the equations of motion
for the protons, even though they respond to electromagnetic
forces at much larger timescales than electrons.

Due to the free energies provided by the ring-beam and
backward-drifting background electrons, both the beam and
ECM instabilities can be driven owing to the positive gradients

· ¶ ¶ >u f u 0 and ¶ ¶ >^f u 0 in the electron momentum
distribution, respectively. To distinguish contributions from the
beam and ECM instabilities, we also carry out simulations with
only either a pure-beam or a pure-ring momentum distribution
for the energetic electrons ( =^u 0rb or  =u 0rb , respectively),
while other parameters are the same as these ring-beam
simulations.

In this study, all quantities are solved in real (spatial-
temporal) space with CGS units, and all simulations have the
same spatial and time resolution. In particular, the grid
cell size is  lD = Dx y De, where l w= uDe th pe is the
electron Debye length and ωpe is the total electron plasma
frequency, i.e., w w w p= + = n e m4 t epe prb

2
pbg
2 2 , where

= +n n nt rb bg and e are the total number density and charge
of electrons, respectively. And ωprb (ωpbg) is the plasma
frequency of the ring-beam (background) electrons. The time
step in our simulations is determined by the inherent length
and timescale requirements in a fully kinetic PIC code, i.e.,
the Courant–Friedrichs–Lewy (CFL) condition for the speed
of light c. Correspondingly, our simulations can cover
∣ ( )∣w <k c 92.2x y, pe and ∣ ∣w w < 12.3pe with resolutions

wD =k c0.18x y, pe and w wD = 0.015 pe, respectively, in the
wavevector–frequency ( w-k ) space.

Variable parameters are nrb/nt (being equal to 5%, 10%, 20%,
30%, 40%, 50% with fixed w w = 5ce pe ; see Section 3.1) and
w wce pe (being equal to 0.2, 0.3, 0.5, 1, 2, 3 with fixed

=n n 5%trb ; see Section 3.2). Note that simulation with
=n n 5%trb and w w = 5ce pe can be compared with Case B

in the study of Lee et al. (2011). The ambient magnetic field B0 is
initialized based on the frequency ratio ωce/ωpe. Note that the
values of the ratio of beam to total density are probably much
higher than those thought to exist in the solar corona, but they
could be considered appropriate for density cavities, where the
background density drops considerably. In addition, fully kinetic
PIC simulations of magnetic reconnection tend to generate
electron beams, propagating through the low-density separatrices,
with similar density ratios (Muñoz & Büchner 2016).
Normalizations used throughout this paper are as follows:

ωnorm=5.0ωpe is the normalization of frequency. Time,
momentum, and distance are normalized by 1/ωnorm, c, and
c/ωnorm, respectively. Bnorm is the normalization of the electric
and magnetic field strengths and corresponds to the ambient
magnetic field B0 for ωce/ωpe=5.0. Energy is normalized by
the magnetic field energy εnorm corresponding to a uniform
Bnorm in the whole simulation domain.

2.2. Diagnostic Method

2.2.1. Energy in Wave Modes

Since all quantities in our simulations are given in real
(spatial-temporal) space, to characterize the plasma waves, one
applies fast Fourier transforms (FFTs) on the electromagnetic
fields over the spacetime domain of the simulations. Mean-
while, different wave modes are distinguished by their own
dispersion relation. To estimate the energy contained by
different wave modes, we should consider their dispersion
relations. As a simplification, we take the wave dispersion
relations in the magnetized cold plasma as an approxima-
tion(see, e.g., Andre 1985; Melrose 1986; Stix 1992), despite
that the criteria for the validity of the cold-plasma approx-
imation(Melrose 1986; Stupp 2000) could not be always
satisfied in our simulations. For a numerical simulation,
different from theoretical studies, these criteria are, however,
difficult to adopt since the effective electron temperatures in
simulated plasmas are quite inhomogeneous and dynamic.
Generally, the cold-plasma dispersion relation constitutes a
good approximation to the full hot plasma dispersion relation in
many conditions(Chen et al. 2013).
We also assume that energy spectral density of a wave

mode M, i.e., ( )wkI ,M , follows a Gaussian frequency
distribution around its dispersion surface in the w-k space
(Comişel et al. 2013):

( ) ∣ ( )∣ ( )åw w=k kI A, , 3M
m

m M,
2

⎧⎨⎩
⎡
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⎤
⎦⎥
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( ) ( )

· ( ( )) ( )

w w

ps
w w

s

=

-
-

k k

k

A A, ,

1

2
exp

2
, 4

m M m

M

,

cold
2

2

1 2

where ( )w kMcold denote the frequency of the wave mode M at the
given wavevector k (dispersion relation) in the magnetized cold-
plasma approximation. σ characterizes the frequency broadening
for the wave mode M around its corresponding cold-plasma
dispersion relation surface. Here we use σ=0.05ωnorm for each
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wave mode as a simplification. And m indicates different

components of the electromagnetic fields ( )
 
E B, . We apply FFTs

on the electromagnetic field components am(x, y, t) over the entire
space and time domain of our simulations to get their fluctuations

( ) [ ( )]w =kA a x y t, FFT , ,m x y t m, , in w-k space. And then a
Gaussian filter is applied on ( )wkA ,m to get the electromagnetic
field component fluctuations of the wave mode M, i.e.,

( )wkA ,m M, . This method is hereinafter called the Gaussian filter
method.

For the (temporal) evolution of energy of the wave mode
M, an inverse FFT (IFFT) is implemented on ( )wkA ,m M,
(Equation (4)) in the frequency ω space. An integration over the
wavevector k space is applied on the IFFT results to get the
energy evolution of the electromagnetic field component m,
i.e.,

( ) ∣ [ ( )]∣ ( )ååe w= Dw k kt AIFFT , . 5
k

M
m

m M,
2

For the study of the wave energy along different wave
propagation directions, we integrate ( )wkI ,M in the w-k
space only if q = k kcos is satisfied, where θ is the pitch
angle between the k and B0 and kP is the B0 parallel component
of the wavevector k, and then the energy of the wave mode M
along the direction θ is

( ) ( ) ( ) ( )ååe q w d q w= - D D
w

k kI k k, cos , 6
k

M M

where δ(∗) is the Dirac delta function.

2.2.2. Polarization

To get the polarization of waves propagating along each
direction, the polarization vector ep is defined with respect to
the wave propagation vector k in the x–y plane (Melrose 1986;
Willes & Cairns 2000; Bittencourt 2004):
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∣ ∣
( )=

=
= ´
=

e
e k
e e e
e e

k
, 7p

z
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2 3 1

3

where = ´e e ez x y is the unit vector in the direction
perpendicular to the x–y plane. To separate the left- and
right-handed polarized components ( ( ) ( )w wk kE E, , ,l r ) of the
transverse electric fields, i.e., perpendicular components of

( )wE k, with respect to k, a circular basis (e e,l r) is defined
based on the polarization vector ep in Equation (7):
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where ( )wE k, is the electric field in the w-k space and is
obtained via the FFT. With the definition of Equation (8), the
polarization state of a wave also refers to the ambient magnetic
field(Stix 1962; Gary 1993). Hence, the right- and left-handed
polarized waves rotate in the same sense as an electron and a
proton, respectively, as far as they propagate along (either

parallel or antiparallel to) the ambient magnetic field. Also note
that the wave and its polarization make no sense when ω=0
and/or ∣ ∣ =k 0. Hence, the contribution of ω=0 and/or
∣ ∣ =k 0 to the polarization is not considered in our calculations.

Following the definition of the Stokes parameters (McMaster
1954; Carozzi et al. 2001), for a wave at a given time, its
circular polarization degree (CPD, P) can be calculated as

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

( )=
-
+

P
E E

E E
, 9r l

r l

2 2

2 2

where the vertical bars ∣ ∣* indicate the amplitude of the
respective quantity. In order to determine the CPD, P, in a
plasma (with many waves) at a given time or a wave over a
period, instead of taking the average value of CPDs from
different waves, we use

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

( )=
á ñ - á ñ
á ñ + á ñ

P
E E

E E
, 10r l

r l

2 2

2 2

where the angle brackets á * ñ indicate the average value of
each corresponding quantity. Note that for different studies,
averages are calculated in different spaces, i.e., (1) averages
over the k space are considered for the evolution of the CPD,
and (2) for CPD along a wave propagation direction θ with
respect to B0, we take averages in both ω and  q=^k k cos
spaces. The definition in Equation (10), hence, can give us a
direct idea of which polarization is energetically dominant. We
thus can verify that the polarization is circular with a right- or
left-handed sense according to P>0 or P<0, respectively. A
value of P=1(−1) corresponds to fully right-handed (left-
handed) circular polarization, and P=0 indicates a linear
polarization.
In our diagnostics, magnetic fields are used to determine the

energies of electromagnetic wave modes. Adopting magnetic
fields can automatically filter out electrostatic waves since an
electrostatic wave does not contain magnetic fluctuations. For
calculations related to polarization, however, electric fields are
used. Note that we will not investigate evolutions of the
anisotropy and CPD, since the whole time duration of our
simulations (dozens of microseconds) is much shorter than
the time resolutions of the remote detectors (more than
milliseconds).

3. Simulation Results

As mentioned in Section 2.2.1, the dispersion relation of
magnetized cold plasmas will be applied to identify which
wave has been excited. There are five different wave branches
in the cold-plasma limit, while each mode branch (or surface)
can be differently named for different frequencies and/or wave
propagation directions (Andre 1985). For example, when
waves propagate along the ambient magnetic field, the X
mode is usually called the (right-handed polarized) R mode,
while the O mode is associated with the (left-handed polarized)
L mode. In this paper, however, we will simply call them ion-
cyclotron, whistler, slow extraordinary (Z), ordinary (O), and
fast extraordinary (X) modes from the low to high frequencies,
respectively. For the applied physical proton-to-electron mass
ratio =m m 1836p e , the frequencies in the ion-cyclotron
branch are marginally resolved in our calculations. In the
following, we will ignore the ion-cyclotron branch.
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3.1. nrb/nt Dependence

In this section, the dependence of excited wave properties on
the number density ratio between the ring-beam and total
electrons nrb/nt is discussed. In addition, the ratio between the
electron cyclotron frequency ωce and the electron plasma
frequency ωpe is fixed at ωce/ωpe=5.

Both beam and ECM instabilities can occur with the ring-
beam momentum distribution. Note that many instabilities can
fit with the description of the beam instability, since their free
energy sources come from the drifting beam population, e.g.,
the reactive beam instability, kinetic Langmuir beam (or bump-
in-tail) instability, whistler heat flux instability, firehose
instability, etc.(Melrose 1986; Gary 1993). With the initial
setup in this study (see Section 2.1), these instabilities may
occur at the different stages of the free energy release. We will
not distinguish these instabilities and call them simply the beam
instability in this study.

3.1.1. Statistics of Particles

The beam and ECM instabilities, in general, are triggered
by the electron free energies in the directions along and
perpendicular to the ambient magnetic field B0, respectively.
Evolution of the electron momentum along each direction can,
hence, give us insights on the growth and saturation of
these instabilities. Panels (a)–(d) of Figure 1 show the
evolutions of the bulk (or average) drift momenta and thermal
spreads in the directions along and perpendicular to B0 for
both the ring-beam and background electrons, respectively.
The bulk drift momentum and thermal spread of different
electron species (s) along different directions (t) are defined
as ( )= åu u Nd s t i s t i, , , , and [ ( )]= å -u u u Ns t i s t i d s tth, , , ,

2
, ,

2 ,
where s=rb or bg for the ring-beam or background electrons,
respectively, and =t or ⊥ for the direction along or
perpendicular to B0, respectively. In addition, us t i, , is the
parallel or perpendicular momentum of a single electron i, and
N is the total electron number in species s. The evolution
of the perpendicular bulk drift momentum of the background

electrons is not shown in Figure 1(b), since it is negligible
compared to that of the ring-beam population. Note that we
stopped our simulations when these quantities reach quasi-
steady values, i.e., there is no obvious energy exchange
between electromagnetic fields and particles.
Panels (a) and (b) of Figure 1 show the evolutions of the

bulk drift momenta in the parallel and perpendicular directions,
respectively. The first minima of these curves indicate the
saturation of their corresponding instabilities. One can see that
the reduction of the free energy, generally, is faster and larger
in the parallel than in the perpendicular direction. The faster
free energy reduction in the parallel direction implies that
waves excited by the beam instability will saturate earlier than
those by the ECM instability. (Note that, in this paper, the
saturation of a wave corresponds to the end of the growth phase
in its energy evolution profile.)
While the free energy release rates of the beam instability do

not vary significantly among cases with dense ring-beam
electrons ( n n 20%trb , Figure 1(a)), the free energy for the
ECM instability decreases faster with the increase of the ring-
beam electron population (Figure 1(b)). Moreover, the greater
free energy reduction in the parallel direction implies that
waves induced by the beam instability should contain more
energy than those due to the ECM instability. This difference
becomes larger with the increase of nrb/nt.
Figure 1(a) shows that both the ring-beam and background

electrons simultaneously lose their bulk drift energies along B0,
making contributions to the wave excitation driven by the beam
instability. Generally, in both the parallel and antiparallel
directions, the release of the electron drift energy increases
monotonically with the increase of nrb/nt. Evolution of the bulk
drift momentum of the ring-beam electrons in the direction
perpendicular to B0 (Figure 1(b)) is, however, more compli-
cated than that in the parallel direction, i.e., the decreases of
the perpendicular bulk drift momentum in the cases with
nrb/nt=5% and 10% are slower but even more significant
than in the cases with nrb/nt�20%. This indicates that
different dynamic processes are underway between cases with

n n 10%trb and n n 20%trb , which we will clarify later.

Figure 1. Evolutions of the bulk (or average, ud) drift momenta and thermal spreads (uth) in the directions along (panels (a) and (c)) and perpendicular (panels (b) and
(d)) to the ambient magnetic field B0 for both the ring-beam (rb; solid lines) and the background (bg; dashed lines) electrons, except for the perpendicular bulk drift
momentum of the background electrons ( ^ud,bg, ), which is close to 0. In each panel, different colors are used to distinguish the different number density ratios between
the ring-beam and total electrons n ntrb . Here ωce/ωpe=5.0, and all momenta are normalized by the speed of light c.
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Part of the released energies from the bulk drift motion are,
however, absorbed again by electrons themselves via wave–
particle interactions, leading to electron heating and accelera-
tion. Electron thermal spread is, hence, strongly enhanced and
has opposite behavior to its corresponding bulk drift motion in
both parallel and perpendicular directions; see panels (c) and
(d) of Figure 1. Especially in the direction along B0 (panel (c)),
the final thermal spread of the ring-beam electrons already
reaches a relativistic regime (>0.4c) in the cases with
nrb/nt>30%. For the case with nrb/nt=50%, this is almost
equal to its initial parallel drift momentum. In the final quasi-
steady state, the thermal spread of the background electrons is,
in general, smaller than that of the ring-beam electrons, and the
thermal spread of all electrons is much wider in the parallel
direction than in the perpendicular direction, which agrees with
the distributions of the parallel and perpendicular momenta
shown in Figure 2.

Figure 2 shows the evolutions of the parallel and perpend-
icular momentum and energy distributions of all electrons. One
can see that when the plasma system is close to its quasi-steady
state ( w= -t 1275 norm

1 , column (f)), the initial free energies for
the beam ( · ¶ ¶ >u f u 0, row (a)) and ECM (¶ ¶ >^f u 0,
row (b)) instabilities are almost totally dissipated and plateau
momentum distribution forms in all directions. Meanwhile,
with panels in rows (a) and (b), strong electron acceleration can
also be seen along each direction, particularly in the cases with
larger nrb/nt. Note that the high momentum tail in the
antiparallel direction contains reflected ring-beam electrons
and reflection of the ring-beam electrons is suppressed in cases

with n n 10%trb . The reflection of the ring-beam electrons
makes the wave generation more symmetric with respect to the
plane perpendicular to B0. Petrosian & Liu (2004) found that
acceleration of particles via resonant wave–particle interactions
can be enhanced significantly if particles can resonate with
multiple waves simultaneously. Hence, reflection of the
ring-beam electrons will increase their acceleration efficiency.
This may explain the correlation between the ring-beam
electron reflection and their acceleration in the perpendicular
direction. Strong perpendicular acceleration also leads to the
late increase of perpendicular drift momentum in the case
with the maximum ring-beam electron density (nrb/nt= 50% in
Figure 1(b)). Interestingly, in each n ntrb case, a double
power-law distribution forms in the high-energy tail with
g - > ~1 0.1 50 keV when the plasma system is close to its
quasi-steady state, i.e., after the releases of the free energies for
both the beam and ECM instabilities. Their break energies are
located around the initial energy (γ∼ 1.2) of the ring-beam
electrons (see the bottom right panel in Figure 2).

3.1.2. Excited Electrostatic Waves

Based on the coordinates of our simulations, electric comp-
onent Ez is purely transverse, while the characters of the Ex and Ey
components change with wave propagation direction, i.e., Ex is a
purely longitudinal (transverse) component when waves propagate
along (perpendicular to) the ambient magnetic field B0, i.e., k B0
and θ=0° or 180° ( ^k B0 and θ=90° or 270°). But, in
general, Ex and Ey represent a mixture of both longitudinal and
transverse electric field components. Note that θ�90°, together

Figure 2. Distributions of the parallel momentum ( ( )//f u , row (a)), perpendicular momentum ( ( )p ^ ^U f u2 , row (b)) and total kinetic energy ( f (γ − 1), row (c)) of all
electrons at t=0.0 (column (d)), w-255 norm

1 (column (e)), and w-1275 norm
1 (column (f)), corresponding to the initial condition, the time around when the parallel bulk

drift momenta of the ring-beam electrons reach their minima (see Figure 1(a)), and the time close to the end of simulations. In each panel, different colors are used to
distinguish the different number density ratios between the ring-beam and total electrons nrb/nt. Here ωce/ωpe=5.0. All distributions are normalized by the number of
all electrons.
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with the sign of±k, gives two supplementary wave propagation
directions in the wave w-k (or dispersion) spectra of Figures 3,
4, 7, and 10.

Hence, in row (a) of Figure 3, one can mainly find excited
electrostatic modes, i.e., Langmuir and (electron) beam modes.
Hereinafter we define a wave mode being excited if its spectral
intensity is significantly higher than that of an isotropic
equilibrium Maxwellian plasma, which has the same thermal
spread and ωpe as the background and total electrons in the
ring-beam simulations (see Section 2.1), respectively, corresp-
onding to nrb/nt=0% in Figures 5 and 6. Since the ECM
instability, in general, mainly excites electromagnetic modes,
the excitations of the electrostatic Langmuir and beam modes
should be mostly due to the beam instability.

Similar to Karlický & Bárta (2009) and Ganse et al. (2012b),
antiparallel-propagating Langmuir waves (L′) are also excited
in all ring-beam plasmas (see the left half of each panel in row
(a) of Figure 3, where θ= 0° and k< 0). As mentioned in
Section 1, generation of the L′ waves could be attributed to
electrostatic decay of the parallel-propagating Langmuir waves
(  ¢ +L L S) and/or free energies for the beam instability in
the antiparallel-drifting background electrons. In our simula-
tions, we indeed found both intensity enhancement in the ion
density fluctuation spectra for plasmas with dense ring-beam
electrons nrb/nt�20% (similar to Figure 4 of Thurgood &
Tsiklauri 2015) and reduction of the free energy in the
antiparallel-drifting background electrons (see row (a) of
Figure 2).

Furthermore, one can see the rise of these excited L′ branches
toward larger ω at a given wavenumber k<0 with the increase
of nrb/nt, which agrees with a higher effective electron

temperature of the antiparallel-moving electrons in plasmas with
a larger nrb/nt (Figure 1(c)), since higher electron temperature
will lead to a larger slope (dω/dk) in the dispersion relation of
the Langmuir wave, i.e., w w= + k v32

pe
2 2

the
2 , where µv Tethe

is the effective thermal velocity of electrons. Correspondingly,
excitation of the L′ waves appears at increasingly smaller
wavenumbers ∣ ∣k . That could be due to electron Landau
damping(Landau 1946; Tsurutani & Lakhina 1997) of
longitudinal electric fluctuations with large ∣ ∣k in hot plasmas,
where Langmuir waves will get damped when their ∣ ∣k become
larger than 1/λDe (l µ TeDe and Te is the effective electron
temperature).
In the direction antiparallel to B0, except for the L′ wave,

intensity of the beam mode w w= <kvb pe is also enhanced.
The typical drift velocity vb of these excited antiparallel-
propagating beam modes also increases with the increase of
nrb/nt, since initially we have  = -u u n nbg rb rb bg, i.e., the
initial bulk drift momentum of the background electrons ubg

increases with the increase of nrb/nt (see dashed lines at t= 0 in
Figure 1(a)).
In the direction parallel to B0 (q = 0 with k>0 in row (a)

of Figure 3), similar to the conditions in the antiparallel
direction, enhanced intensities of both the parallel-propagating
Langmuir (L) and beam modes can be found in each nrb/nt
case. And also, due to the Landau damping in hot plasmas,
these excited L waves are confined to smaller ∣ ∣k with the
increase of nrb/nt. Landau damping of small-scale longitudinal
electric fluctuations will lead to electron heating discussed in
Section 3.1.1. While different from those antiparallel-propagat-
ing beam modes, the typical drift velocity vb of the excited

Figure 3. Row (a): wavevector–frequency ( w-k or dispersion) spectra of electric component Ex of waves propagating along (either parallel k > 0 or antiparallel k < 0 to)
the ambient magnetic field B0 (θ= 0°). Different panels in row (a) are for different nrb/nt (from left to right column =n n 5%, 10%, 20%, 30%, 40%, 50%trb ,
respectively) and share the same contour scale, normalization Bnorm (Section 2.1). In each panel of row (a) from the bottom to top, the overplotted lines are the whistler (black
dotted lines), Z (black dashed lines), O (magenta dotted lines), and X (magenta lines) modes in magnetized cold plasmas, respectively. These w-k spectra are obtained via
the FFT over the entire spacetime domain of our simulations. Panel (b) presents energy evolutions of the total electric fields (dashed lines) and total longitudinal electric fields
(dotted lines) of all waves in the simulation domain. Panel (c) shows energy evolution of the longitudinal electric fields of waves propagating along B0 (solid lines), as well as
that of the electric component Ex (dashed lines) in the whole simulation domain. The inset of panel (c) shows the fitted exponential growth rate of these B0-aligned
longitudinal electric fields (black dotted line), as well as the theoretical maximum growth rate of the electrostatic waves by the reactive beam instability in unmagnetized cold
plasmas (red solid line with circles; see Equation (11)). Fitted ranges for these growth rates are indicated by crosses and circles in the main part of panel (c). Different colors in
panels (b) and (c) are used to distinguish cases with different nrb/nt but ωce/ωpe=5.0.
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parallel-propagating beam modes, however, decreases with the
increase of nrb/nt owing to the stronger reduction of the parallel
bulk drift energy of the ring-beam electrons in cases with larger
nrb/nt (see solid lines in Figure 1(a)).

By comparing these electrostatic waves in the θ=0° and
180° directions (row (a) of Figure 3), one can see that
intensities of the parallel-propagating Langmuir and beam
modes are generally stronger than the antiparallel-propagating
ones for each nrb/nt case. This difference is, however, reduced
with the increase of nrb/nt, since the free energy for the beam
instability from the antiparallel-moving background electrons
becomes comparable to that from the parallel-moving ring-
beam electrons with the increase of nrb/nt. Moreover, for high
ring-beam density cases with n n 20%trb , a significant
fraction of the ring-beam electrons can be reflected, which also
makes the wave excitation more symmetric with respect to the
perpendicular plane. Additionally, besides linear waves as
indicated by the cold-plasma dispersion relations, diffusive
nonlinear electrostatic waves are also excited.

Figure 3(b) shows energy evolutions of the total electric
fields ( [ ( )]å D DE x y x y,x y,

2 ) and total longitudinal electric

fields ( [( ( ) · ) ∣ ∣]å DE k k kkk
2 ) of all waves in the simulation

domain, where ( )E k is the electric field vector of waves with
wavevector k. Note that the total longitudinal electric fields
contain not only electric fields of electrostatic waves but also
the longitudinal electric component of the electromagnetic
waves. One can see that, for each nrb/nt case, the total
longitudinal electric component occupies most of the total
electric field energy (their energy evolution profiles are almost
overlapped with each other): it is over one order of magnitude
larger than the transverse electric field energy, which is shown
in Figure 7(e). A similar result had also been found by Lee
et al. (2009).
Energy evolutions for the electric component ( )E x y,x

( [ ( )]å D DE x y x y,x y x,
2 ) and the longitudinal electric fields of

waves propagating along B0 ( [( ( ) · ) ∣ ∣]å =^
E k k kk 0

2, i.e., waves
shown in row (a) of Figure 3) are presented in Figure 3(c).

Figure 4. w-k spectra of different electric field components for different nrb/nt (from left to right columns =n n 5%, 10%, 20%, 30%, 40%, 50%trb ,
respectively) and wave propagation directions θ (row (a): Ez with θ = 0°; row (b): Ez with θ = 20°; row (c): Ex with θ = 90°; row (d): Ey with θ = 90°; row (e): Ez with
θ = 90°) with ωce/ωpe=5.0. In each panel, overplotted lines, contour scale, and normalization are the same as those in row (a) of Figure 3.
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One can see that the energy of Ex(x, y) is comparable to the total
longitudinal electric fields. And the energy of the B0 aligned
longitudinal electric fields is a factor of a few lower except in the
early phase of these simulations, when the energy of the total
longitudinal electric fields appears to be isotropic (especially at
t= 0) and dominated by nonparallel-propagating waves. To
validate our simulations, in the inset of panel (c) we compare the
growth rate of these B0-aligned longitudinal electric fields to the
maximum growth rate of electrostatic waves by the beam
instability in the nonresonant fluid or reactive regime of
unmagnetized plasmas (i.e., in cold unmagnetized plasmas).
These two growth rates should agree with each other, since the
B0-aligned longitudinal electric fields are dominated by electro-
static waves (see row (a) of Figure 3) and these electrostatic
waves are mainly excited by the beam instability. Moreover, in
magnetized plasmas, excitation of the electrostatic waves
propagating along the ambient magnetic field is exactly the
same as that in unmagnetized plasmas(see Gary 1993, chap.
3.3). Additionally, the setup of our simulations is also located in
the reactive regime with ( ) ( )  n n u u 1trb

1 3
rb th , where

( ) ( ) n n u utrb
1 3

rb th is a measure of the reactive (�1) or
kinetic (<1) nature of the beam instability(Melrose 1986;
Gary 1993; Melrose 2017).

The maximum growth rate of the electrostatic waves
due to the reactive beam instability was obtained from the
dispersion equation for unmagnetized plasmas by setting
the longitudinal dielectric element ( )w kK ,L to be zero. In the
unmagnetized cold-plasma limit (  u urb th , Equation (2.16)

in Melrose 1986), that is
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where Σs is for a summing over all particle species (s) in
plasma and vds, ( )g = - -v c1s ds

2 2 1 2 are the bulk drift
velocity and its corresponding gamma factor of particle
species s, respectively. When n ntrb , one can get the
growth rate of the classical weak-beam instability from
Equation (11): ( )wG = n n3 2pe rb bg

1 3 4 3 (see Equation
(3.2.9) in Gary 1993). The growth rate of the electrostatic
waves propagating along B0 in our simulations is evaluated
via a linear fit in the range indicated by crosses and circles in
panel (e). One can see that the growth rate of the electrostatic
waves propagating along B0 is generally slightly smaller than
the theoretical maximum one by the reactive beam instability.
Similar results were also found in the study of Karlický &
Bárta (2009). On the one hand, this could be due to the free
energy reduction of the energetic ring-beam electrons,
i.e., effective nrb and urb for the reactive beam instability
will decrease with the wave excitation. Small effective nrb and

urb lead to a smaller growth rate for the reactive beam
instability(Gary 1993). On the other hand, particles can

Figure 5. Magnetic energy evolutions of the electromagnetic whistler (εwhistler, panel (a)), X (εX, panel (b)), Z (εZ, panel (c)), and O (εO, panel (d)) modes, where solid
(dashed) lines are for plasmas with energetic ring-beam (pure-beam) electrons and ωce/ωpe=5.0. Panel (e) shows the fitted exponential growth rates of these four
electromagnetic wave modes for plasmas with energetic ring-beam electrons but different nrb/nt (distinguished with different colors). The solid, dashed, dotted, and
dashed–dotted lines in panel (e) are for the whistler, X , Z, and O modes, respectively. And fitted ranges for these growth rates are indicated by crosses and circles in
their corresponding panels (panels (a) to (d)).
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simultaneously absorb some waves during the wave excita-
tions (i.e., plasma heating by Landau damping; see
Figure 1(c)), and increased electron momentum spread (or
temperature) can also reduce the growth rate of the reactive
beam instability(see Section 3.4 in Melrose 1986). Addition-
ally, not all electrostatic waves propagating along B0 grow
with the theoretical maximum rate of the reactive beam
instability. Generally, values of the growth rate of the
electrostatic waves propagating along B0 are quite similar to
those of the whistler mode (Figure 5(e)), which is also
consistent with the study of Lee et al. (2011).

3.1.3. Excited Electromagnetic Waves

Figure 4 shows the electric field dispersion spectra of
electromagnetic waves along different wave propagation
directions θ (=0° or 20° or 90°). Due to the rotational
symmetry in the direction perpendicular to the ambient
magnetic field B0, dispersion spectra of Ey and Ez are very
similar for waves with =k̂ 0 (row (a)), and the dispersion
spectra of waves with  =k 0 are symmetric with respect to

=k̂ 0 (rows (c) to (e)).
Excitations of all electromagnetic whistler, Z, O, and X

modes can be found in the purely transverse electric component
Ez spectra along B0 (row (a) of Figure 4). Similar to the
electrostatic component Ex along B0 (row (a) of Figure 3), there
is also an asymmetry on the transverse electric intensity of
waves oppositely propagating along B0, especially for plasmas
with tenuous ring-beam electrons. It is interesting to note that
the X (Z) mode dominates the transverse electric field spectra
in the direction parallel (antiparallel) to B0 with tenuous ring-
beam electrons. Between the excited X and Z modes, there are
also diffusive nonlinear waves that do not follow the dispersion
relations of the linear waves in the cold-plasma limit. With the
increase of nrb/nt, excitations of the X and Z modes, as well as
the whistler and O modes, become more and more symmetric
with respect to the B0 perpendicular plane. The enhanced
excitation of the antiparallel-propagating X mode in plasmas
with dense ring-beam electrons may be caused by reflected
ring-beam electrons (see row (a) of Figure 2), while the

intensity of the parallel-propagating X-mode waves appears to
be saturated. Along B0, the excitations of the whistler, Z, and O
modes are inefficient for plasmas with tenuous ring-beam
electrons, in contrast to the dense ring-beam cases.
For obliquely propagating electromagnetic waves with

q = 20 and 160° (row (b) of Figure 4), their transverse
electric component Ez spectra have similar properties to those
of the parallel- and antiparallel-propagating electromagnetic
waves (in row (a)). Ez intensities of these excited obliquely
propagating electromagnetic waves are, however, enhanced
compared to those of the B0-aligned electromagnetic waves,
especially in the whistler and Z modes.
Rows (c) to (e) of Figure 4 show the dispersion spectra of the

electric components Ex, Ey, and Ez, respectively, for perpend-
icular-propagating electromagnetic waves. The whistler branch
is absent in these panels, since its resonance or maximum
frequency w  0W

res at θ=90° and 270° with the physical
proton-to-electron mass ratio mp/me=1836 in the magnetized
cold-plasma limit (Melrose 1986; Stix 1992). It is well known
that the electric field of the O (Z and X) mode is parallel
(perpendicular) to B0, when they propagate in the direction
perpendicular to B0, i.e., ^k B0. In row (c), hence, one can
find a strong O-mode excitation. The strong Z- and X-mode
excitations, on the other hand, appear in the Ey and Ez spectra
(rows (d) and (e)). The transverse electric Ez components of the
Z and X modes contain more energies than their longitudinal
electric Ey components. Generally, similar to the electrostatic
modes (row (a) of Figure 3), intensities of the O, Z, and X
modes also increase with the increase of nrb/nt in the plane
perpendicular to B0.
In rows (d) and (e) of Figure 4, the X mode appears

to be enhanced just below the second harmonic of ωce,
and there is, additionally, an excited horizontal band
located around ωce and below the cutoff frequency of
the X mode ( )w w w w w= + + »4 2 1.04X

cut
ce ce

2
pe
2

norm.
Following Pritchett (1984), we call this horizontal band
the (electromagnetic) relativistic Bernstein mode. This mode
results from the relativistic corrections to the classical
dispersion of the magnetized cold-plasma approximation;
see Pritchett (1984) for more details. This relativistic

Figure 6. Anisotropic magnetic energies (Equation (6)) of the electromagnetic whistler (εwhistler, panel (a)), X (εX, panel (b)), Z(εZ, panel (c)), and O (εO, panel (d))
modes with ωce/ωpe=5.0. Different colors in each panel are for different nrb/nt.
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Bernstein mode is, however, evident only in the cases with
= -n n 5% 30%trb , and the central frequency of this excited

relativistic Bernstein mode increases with the increase of
nrb/nt. The absence of this horizontal mode in the cases with
nrb/nt>30% could be due to merging of the X and Bernstein
modes. Based on Figure 1 in Pritchett (1984), one can see that
the cutoff frequencies of the X and Bernstein modes can be
the same and above wce in plasmas with electron temperature
above 0.1c. In other words, the merging of the X and
Bernstein modes indicates that the effective electron temper-
ature could be higher than 0.1c (i.e., efficient heating occurs)
in the cases with nrb/nt>30%.

3.1.4. Electromagnetic Wave Energy

Since solar radio emissions are electromagnetic waves, we
will mainly concentrate on properties of the electromagnetic
whistler, Z, O, and X modes in the following. Section 3.1.3
shows that these four mode branches dominate the excited
electromagnetic waves and roughly follow the dispersion
relations of a magnetized cold plasma. Following the Gaussian
filter method described in Section 2.2.1, we extract the
magnetic energy carried by each branch of these four
electromagnetic modes.

Panels (a)–(d) of Figure 5 show the evolutions of the
magnetic energies of the whistler, X, Z, and O modes,
respectively, where the case with nrb/nt=0%, an equivalent
isotropic thermal plasma, shows how much these whistler-,

Z-, O-, and X-mode waves are enhanced with respect to their
corresponding thermal levels. Note that, in numerical simula-
tions, the whistler-, Z-, O-, and X-mode waves can also be seen
in isotropic thermal plasmas without a source of free energy,
which is due to the thermal noise numerically enhanced by the
finite number of macroparticles (Kilian et al. 2017). Moreover,
in Figure 5, the solid (dashed) lines represent the plasmas with
a ring-beam (pure-beam) momentum distribution of energetic
electrons. Differences in the magnetic energy evolutions
between the ring-beam and the associated pure-beam momen-
tum distributions are used to assess the effects of the ring
feature in the ring-beam momentum distribution.
By comparing the magnetic energy evolutions between the

ring-beam and the equivalent isotropic thermal plasmas, one
can see that the saturation of each mode is over three orders of
magnitude larger than their corresponding thermal levels.
However, these magnetic energies are about one order of
magnitude lower than the electric energy of the electrostatic
waves propagating along B0 shown in Figure 3(c). All excited
waves in the simulation domain are therefore dominated by
electrostatic waves. Comparing the results of the ring-beam and
pure-beam simulations, one can see that while the whistler
mode appears to be mostly driven by the beam instability, the
growths of the Z, O, and X modes have two components,
especially in plasmas with tenuous ring-beam electrons.
Moreover, in ring-beam plasmas, the onsets of the Z-, O-,
and X-mode growth appear to be dominated by the ECM
instability. The beam instability has delayed contributions to

Figure 7. Panels (a)–(d) show the w-k spectra of the LPTE (El, panels (a) and (c)) and RPTE (Er, panels (b) and (d)) of electromagnetic waves propagating along
θ=0° (panels (a) and (b)) and 90° (panels (c) and (d)), respectively, in plasmas with nrb/nt=5%. These four panels share the same color bar. Overplotted lines and
normalization in these four panels are the same as those in Figures 3 and 4. Energy evolutions of the RPTE (solid lines) and LPTE (dotted lines) of all electromagnetic
waves in the simulation domain are presented in panel (e). Panel (f) shows the CPD evolution of these transverse electric fields. Dependences of the energies of the
RPTE (solid lines with crosses), LPTE (dotted lines with circles), and the CPD on the wave propagation direction θ are shown in panels (g) and (h), respectively, for
transverse electric fields of all electromagnetic waves in the simulation domain. Different colors in each of panels (e) to (h) are used to distinguish the different nrb/nt
cases, but all cases have ωce/ωpe=5.0.
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the excitations of the Z, O, and X modes. For each wave mode,
this delay decreases with the increase of the ring-beam electron
density. In a plasma, this delay appears to increase with the
increase of wave frequency. The beam instability, hence, tends
to excite low-frequency waves first.

The saturation of the Z mode is, however, dominated by the
beam instability in ring-beam plasmas. The same is true for O
modes with dense ring-beam electrons (nrb/nt� 20%). For

n n 10%trb , the O-mode saturation is governed by the ECM
instability and similar to the saturation time of the X mode,
which corresponds well to the slow dissipation rate of the free
energies in the direction perpendicular to the ambient magnetic
field B0 (see Figure 1(b)) in the cases with n n 10%trb . For
the X mode, as predicted by the classical plasma emission
theory, pure-beam distribution alone cannot lead to an efficient
excitation of the X mode in plasmas with tenuous pure-beam
electrons. On the other hand, with dense pure-beam electrons
(e.g., npb/nt= 50%, where npb is the number density of the
pure-beam electrons), generation of the X mode can also
saturate at a quite high energy.

Note that the magnetic energy envelope of the X mode in the
case with ring-beam electrons nrb/nt=5% and w w = 5ce pe
(blue solid line in panel (b)) is almost the same as those
(Figure 4(i)) in the study of Lee et al. (2011).

Generally, the magnetic energy saturations of the whistler, Z,
and O modes are enhanced with increasing ring-beam electron
population (i.e., larger nrb/nt). But for the X mode with the
ring-beam momentum distribution, its magnetic energy satura-
tions in the cases with =n n 5%trb and 10% are not the
smallest ones, since the free energies released from the
perpendicular bulk drift momenta are, correspondingly, not
the least in these two cases (see Figure 1(b)). Furthermore, in
the ring-beam plasmas with the same nrb/nt, the whistler mode
has larger magnetic energy saturation than the other three (Z,
O, and X) modes. Saturations of the Z-, O-, and X-mode waves
decrease in that order when n n 20%trb , which implies that
wave excitation is more efficient at lower frequencies in
plasmas with dense ring-beam electrons. For nrb/nt�10%, the
X mode can, however, have a larger saturation than the Z and O
modes, and the saturation of the Z mode becomes the least
among the Z, O, and X modes owing to contributions from the
ECM instability.

In general, Figures 1 and 5 are well corrected and can be
used to study energy exchange between waves and electrons.
Due to the presence of waves and dynamic energy exchanges
between particles and waves, the magnetic energy saturations
of these electromagnetic wave modes are not exactly the same
as the saturation time of their dominating instabilities (indicated
by the formation of a plateau in their corresponding momentum
distribution functions). In particular, a small positive gradient
still remains in the perpendicular momentum distribution close
to the end of simulations for plasmas with tenuous ring-beam
electrons (panels (b)–(f) of Figure 2). Since the growth rates of
the beam and ECM instabilities are proportional to the positive
gradients of their corresponding distributions, their growth
rates will become smaller when those gradients (free energy
sources) are reduced (dissipated). When the gain of wave
energy (due to instabilities) is equal to its losses (to heat plasma
or accelerate particles), the wave energy will stop increasing
and its energy saturation will be reached, no matter whether
free energies for the instabilities remain or not. Moreover, the
energy exchange between particles and waves can also lead to

electron acceleration and heating: the increase of the electron
perpendicular momentum in plasmas with dense ring-beam
electrons (row (b) of Figure 2) is likely caused by cyclotron
resonances, while the spread of the electron distribution in the
parallel direction is dominated by Landau damping (row (a) of
Figure 2). The nonlinear dynamic coupling between waves and
particles is simplified or ignored in most of theoretical models.
But they can be self-consistently recovered in fully kinetic PIC
simulations.
Figure 5(e) shows the fitted growth rates of all four

electromagnetic (whistler, X, Z, and O) modes in the ring-
beam plasmas with different nrb/nt, although these magnetic
energies do not increase exactly exponentially with the time.
The fitted ranges for these growth rates are shown in their
corresponding panels of Figure 5. As one can see, the growth
rate of each wave mode monotonously increases with the
increase of nrb/nt, in agreement with the theoretical predictions
for the growth rates of the O and X modes (e.g., Freund et al.
1983; Wu & Freund 1984). In addition, with the fitted ranges
we used, the growth rates between the whistler and Z (as well
as O and X) modes are quite similar, probably due to the same
dominant beam (ECM) instability during their growth phases.
And the whistler mode always has a larger growth rate than the
X mode, which is consistent with the study of Lee et al. (2011).
Additionally, we also study anisotropies of the whistler-, Z-,

O-, and X-mode magnetic energies, as shown in Figure 6. In
each panel, the total magnetic energy of an electromagnetic
mode, covering the whole simulation domain and time series, is
divided among the different wave propagation directions θ
(Equation (6)). Considering the rotational symmetry of the
system in the plane perpendicular to the ambient magnetic field
B0 we only need to investigate dependence of the energy on θ
from 0° to 180°. Note that the magnetic energy of the whistler
mode at θ=90° is not included in panel (a) owing to its
resonance frequency w  0W

res at θ=90° with the physical
proton-to-electron mass ratio mp/me=1836 in the magnetized
cold-plasma limit.
Contrary to the electrostatic waves (Figure 3), magnetic

energies are dominated by nonparallel electromagnetic waves.
In plasmas with tenuous ring-beam electrons, the energy-
dominated waves of all mode branches propagate in the same
side as the ring-beam electron propagating (i.e., θ< 90°). The
anisotropies of the whistler, Z, and O modes decrease with the
increase of the ring-beam electron density, while the anisotropy
of the X mode is always high. In plasmas with dense ring-beam
electrons, the X-mode magnetic energy has a stronger
anisotropy than the other three (whistler, Z, and O) modes.
The X mode is the strongest around θ=60°, indicating
influences from the beam instability on the excitation of the X
mode, since the strongest energy of the X mode is exactly
located at θ=90°, when the energetic electrons initially follow
a pure-ring momentum distribution(Pritchett 1984). In iso-
tropic thermal plasmas (i.e., with nrb/nt= 0%), the magnetic
energies of the whistler-, Z-, O-, and X-mode waves are much
smaller than the excited ones by ring-beam electrons and more
or less isotropic except for the whistler mode, which has (about
one order of magnitude) less magnetic energy than the other
three wave modes, but its anisotropy is the strongest.
Consistent with row (a) of Figure 4, in the directions along

θ=0° and 180°, wave excitation is dominated by the X and
Z modes, respectively, in plasmas with tenuous ring-beam
electrons. And energies of the obliquely propagating whistler
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and Z modes with θ=20° and 160° are larger than those of the
B0-aligned ones (rows (a) and (b) of Figure 4, respectively).
Along with the increase of the ring-beam electron density,
magnetic energy of each electromagnetic mode increases in
directions both along (row (a) of Figure 4) and perpendicular to
(rows (c) and (e) of Figure 4) the ambient magnetic field B0,
except for the quasi-parallel-propagating X-mode waves, which
appear to be saturated as discussed for rows (a) and (b) of
Figure 4 in Section 3.1.3.

We note that, with the Gaussian filter method, magnetic energy
for each wave mode in Figures 5 and 6 might contaminate each
other when the dispersion relations of two wave modes are close
to each other. For example, row (a) of Figure 4 shows that, in
plasmas with tenuous ring-beam electrons nrb/nt�10%, the
energy of the O mode propagating in the parallel (antiparallel)
direction can have contributions from the X (Z) mode. The
growth of the O mode in plasmas with tenuous ring-beam
electrons (Figure 5(d)), therefore, may be influenced by these
effects. This can be clearly seen in the following section when we
consider the polarization of these waves.

3.1.5. Polarization Properties

The polarization of a wave depends on its propagation
direction θ(Melrose 1986). When propagating parallel to B0
(i.e., θ= 0°), the O-mode (X-mode) waves are fully left-handed
(right-handed) circularly polarized and the Z-mode waves are
fully left-handed (right-handed) circularly polarized when their
frequencies ( )w w< > pe (see panels (a) and (b) of Figure 7).
When θ=90°, both O- and X-mode waves are linearly
polarized (see panels (c) and (d) of Figure 7, as well as rows (c)
to (e) of Figure 4), since the electric fields of the O-mode (X-
mode) waves are parallel (perpendicular) to B0.

Following the method described in Section 2.2.2, we
separate the energies contained by the left- and right-handed
polarized transverse electric fields (LPTE and RPTE) in
electromagnetic waves. Figure 7(e) shows the energy evolu-
tions of the LPTE and RPTE for all electromagnetic waves in
the simulation domain. In the nrb/nt�10% cases, energy
evolution profiles of the LPTE and RPTE contain two growth
phases, indicating that both the beam and ECM instabilities
play roles in the excitation of the electromagnetic waves in the
simulation domain. These two growth phases correspond well
to the obviously different dissipation rates of the free energies
along the parallel and perpendicular directions for the beam and
ECM instabilities, respectively (see panels (a) and (b) of
Figure 1 and Figure 5). In general, in each nrb/nt case, the
RPTE dominates the transverse electric field energy during
most of the simulation time, due to the energy dominance of
the right-handed polarized whistler and X-mode waves; see
Figure 5.

Figure 7(f) shows the evolution of the CPD (Equation (10)) for
all electromagnetic waves in the simulation domain. Due to the
dominance of the RPTE in each nrb/nt case, all CPDs are positive
at the beginning and increase during the wave growth phase.
However, they start to decrease after the energy saturation of the
transverse electric fields. For larger nrb/nt cases, the CPDs can be
close to 0 and become negative at the end of the simulations. The
decreased CPD indicates more reduction of the right-handed
polarized waves than the left-handed polarized ones by electrons
via wave–electron cyclotron resonance interactions.

Over the whole time–frequency domain and for all
electromagnetic waves in the simulation domain, energy

anisotropies of their LPTE and RPTE (panel (g)) and the
anisotropy of their CPDs (panel (h)) are also presented in
Figure 7. Consistent with panels (e) and (f), RPTE predomi-
nates the total energy of transverse electric fields along most of
the wave propagation directions in each nrb/nt case. Corre-
spondingly, the CPDs at different wave propagation angles are,
hence, mostly positive (right-handed polarized). Small negative
(or left-handed polarized) CPDs, however, also exist for the
nrb/nt=30% and 40% cases, e.g., along θ�160°. Further-
more, consistent with the classical definition of the perpend-
icular-propagating electromagnetic waves, their CPDs are
always around 0 (linearly polarized) at θ=90° for all cases.
For parallel-propagating electromagnetic waves (θ= 0°) in
nrb/nt=5% and 10% cases, the resulting CPDs can reach 1.0,
i.e., fully right-handed circularly polarized (see panels (a)
and (b) of Figure 7 for nrb/nt= 5%). There the left-handed
polarized O mode has negligible contributions to the total
energies of the parallel-propagating electromagnetic waves.
All electromagnetic waves in the simulation domain are

included in the above discussions. From the observational point
of view, however, not all excited waves can be detected
remotely. It is known that an electromagnetic wave can escape
from an astrophysical plasma only if its refractive index is less
than unity, i.e., ∣ ∣w <ck 1, and its frequency is larger than
the local plasma frequency, i.e., ω>ωpe (Melrose 1986;
Budden 1988; Stix 1992; Benz 2002; Bellan 2006). Escaping
electromagnetic waves in plasmas, hence, are only the O and X
modes. Properties of the polarization and spectrogram are,
hence, investigated for these escaping electromagnetic waves
with ω>ωpe and ∣ ∣w <ck 1 (the escape condition), shown in
Figures 8 and 9, respectively. Other waves, with larger
refractive indices and low frequencies, are trapped and can
be absorbed or reflected (depending on their cutoff or/and
resonance frequencies) during wave propagations in the IPM or
interestellar plasmas. The only way that those waves can be
remotely detected is by means of conversion to escaping
electromagnetic waves via mechanisms such as wave–wave
coupling, coalescence or decay, antenna mechanisms, or mode
conversation in inhomogeneous plasmas(see, e.g., Graham
et al. 2017, 2018, and references therein), which is, however,
beyond the scope of this study.
Due to the removal of electromagnetic waves with ω�ωpe

or ∣ ∣w ck 1 (mostly the whistler and Z modes), energies of
both the escaping RPTE and LPTE are reduced (Figure 8(e)) in
comparison with those of all electromagnetic waves in the
simulation domain (Figure 7(e)). Another obvious difference
between the escaping RPTE, LPTE and the RPTE, LPTE of all
electromagnetic waves is that, when nrb/nt�10%, the first
growth phase (during ωnorm t< 325, which is associated with
the beam instability) in the energy evolution profiles of the
RPTE and LPTE of all electromagnetic waves does not exist
anymore in Figure 8(e) for the escaping electromagnetic waves.
That indicates that the excitations of the high-frequency
escaping electromagnetic waves are mainly due to the ECM
instability in plasmas with tenuous ring-beam electrons
( n n 10%trb ), and the significant growth of the O mode
associated with the beam instability in Figure 5(d) is likely
caused by contamination from the Z mode in these tenuous
ring-beam cases.
Figure 8(f) shows the evolution of the CPD for the escaping

electromagnetic waves. In the cases with larger nrb/nt�20%,
one can see that the CPDs of the escaping electromagnetic
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waves are always smaller than those of all electromagnetic
waves and can flip sign and be close to −0.4 at the end of
simulations. In contrast, the CPDs of the escaping electro-
magnetic waves in n n 10%trb cases are larger than those of
all electromagnetic waves, especially around the saturation of
the first growth phase in the energy evolution profile for all
waves (∼ωnorm t< 325 in Figure 7(e)).

Figure 8(g) shows the energy anisotropies of the LPTE and
RPTE for the escaping electromagnetic waves. Different from
those of all the electromagnetic waves in the simulation
domain, dominance of the RPTE or LPTE changes with the
wave propagation direction θ in plasmas with tenuous ring-
beam electrons n n 10%trb . For plasmas with dense ring-
beam electrons (especially nrb/nt� 30%), LPTE dominates the
escaping transverse electric field energy along most of the wave
propagation directions. Correspondingly, the anisotropy of the
CPD for the escaping electromagnetic waves (Figure 8(h)) is
also quite different from the one for all electromagnetic waves
in the simulation domain (Figure 7(h)). For the escaping
electromagnetic waves, a left-handed CPD can be found at
some directions for each nrb/nt case. Furthermore, the left-
handed CPD dominates over all wave propagation directions in
plasmas with dense ring-beam electrons nrb/nt�40%. At
q = 90 , escaping electromagnetic waves are still linearly
polarized. Additionally, with the increase of nrb/nt, the CPDs
of the escaping electromagnetic waves become increasingly
symmetric around θ=90°, corresponding to their symmetric
energies of the RPTE and LPTE (Figure 8(g)).

Figure 9 shows the dependences of the spectrograms of the
RPTE and LPTE in escaping electromagnetic waves on the
wave propagation direction. These spectrograms have similar
anisotropy and symmetry properties (i.e., corresponds well) to
their corresponding CPDs in Figure 8(h). With the exception of
waves propagating near θ=90°, the spectrograms of the
RPTE and LPTE are quite different along any other propaga-
tion directions. These differences increase with increasing
value of ∣ ∣q - 90 . And with Figure 9, one can also find that the
CPD of these escaping electromagnetic waves depends not
only on the wave propagation direction and the population of
the ring-beam electrons, but also on the wave frequency and

time. Furthermore, intense emissions in these spectrograms are
generally located around the frequencies ωpe and/or ωce.
Bandwidths and intensities, as well as the patterns of these
intense emissions, vary a lot among different frequencies, wave
propagation directions, and populations of the ring-beam
electrons. Emission around 2ωce can also be found in these
spectrograms, especially for the perpendicular propagation
θ=90° and for plasmas with a dense ring-beam electron
population.

3.2. ωce/ωpe Dependence

As mentioned in Section 1, ωce>ωpe is required for an
efficient escaping ECM emission. Many previous numerical
studies for the ECM emission (e.g., Pritchett 1984; Lee et al.
2009, 2011), hence, considered situations with ωce>ωpe.
Although ωce>ωpe can exist in some density cavities owing
to, e.g., turbulent magnetic field fluctuations (Wu et al. 2014;
Chen et al. 2017; Melrose 2017), based on the standard solar
atmosphere model (Wild 1985), ωce<ωpe is typical for the
solar coronal conditions. In this section, we will focus on the
wave excitation dependence on the w wce pe for ring-beam
energetic electrons with fixed number density ratio nrb/nt to 5%
and fixed total electron plasma frequency ωpe. This is justified
considering that the typical gradient length of the particle
number density is usually larger than that of the magnetic field
strength in the solar corona (see Equations (1.6.1) and (1.4.2) in
Aschwanden 2005). The ratio between the electron cyclotron
frequency ωce and ωpe takes 0.2, 0.3, 0.5, 1, 2, and 3, while the
case ωce/ωpe=5 has been analyzed in Section 3.1. Similar to
Figure 4, the dispersion spectrum dependences on the ωce/ωpe

and wave propagation direction θ are presented in Figure 10.
As for the case with w w = 5ce pe , excitations of the beam,

Langmuir (row (a)), whistler (row (b)), O (row (c)), Z (row (d)),
and X (row (e)) modes still exist in each w w < 5ce pe case.
Intensities of the escaping electromagnetic waves from the
weakly magnetized plasmas w w < 1ce pe are, however, sig-
nificantly suppressed and negligible compared with those from
plasmas with w w > 1ce pe , which is consistent with the
statement of Vlahos (1987). With the decrease of the

Figure 8. Same as panels (e) to (h) in Figure 7, but for transverse electric fields of the escaping electromagnetic waves with ω>ωpe and ∣ ∣w >k c.
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ωce/ωpe, the dispersion relation surfaces of the O and X modes
tend to overlap with each other in the cold-plasma approx-
imation. The intensity differences between the O and X modes,
hence, cannot be well resolved for small ωce/ωpe cases with
the limited resolution in the ω space in our simulations.
Quantitative investigations of the energy and polarization
property dependences on the ωce/ωpe ratio will be presented in
following papers with a higher ω resolution. Here we will

concentrate on discussing the harmonic excitations of the ωpe

and ωce.
In Figure 10, one can find that excitations at higher and

higher harmonics sh of both ωpe (rows (a) and (b)) and ωce

(rows (c) to (e)) appear with the decrease of the ωce/ωpe.
However, excitations of ωpe harmonics can only be found in
cases with ωce/ωpe<1, i.e., weakly magnetized plasmas. In
row (b), although frequencies of the excited harmonics of wpe

Figure 9. Spectrograms of the RPTE and LPTE in escaping electromagnetic waves (with ω > ωpe and ∣ ∣w <ck 1) along different wave propagation directions θ
(=    0 , 40 , 90 , 140 and 180° from the left to right column, respectively) for plasmas with nrb/nt=5% (top two rows), 20% (middle two rows), and 50% (bottom
two rows) and ωce/ωpe=5.0. In each nrb/nt case, rows (a) and (b) are for the RPTE and LPTE, respectively. All panels use the same color bar shown at the bottom.
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are evidently higher than ωpe, the refractive indices in these
harmonics of ωpe are, however, much larger than 1. These
waves are likely reflected at the boundary of plasmas with
distinct properties, and they therefore cannot be observed
remotely. Meanwhile, these non-escaping harmonics of ωpe are
mainly located in the direction quasi-parallel to the ambient
magnetic field B0, implying a beam instability origin. Note that
these excited non-escaping harmonics of ωpe are not centered
exactly at the integer multiples of ωpe. Instead, their frequencies
increase with k, i.e., with a small positive slope in each non-
escaping harmonic ωpe band. Similar results can also be found
in the study of Thurgood & Tsiklauri (2015) for the plasma
emission theory. These frequency shifts in the fundamental ωpe

mode have been attributed to deviations from the prediction of
the cold-plasma theory in the case of dense beams(Fuselier
et al. 1985; Cairns 1989), where the beam-mode waves might

affect the generation of the fundamental ωpe mode. And the
frequency shifts at higher non-escaping harmonics of ωpe are,
perhaps, due to the frequency shift of the fundamental ωpe

mode, since the fundamental mode is responsible for the
excitations of other higher harmonics. Enhanced harmonics of
ωce can be found in each panel of rows (c) to (e) of Figure 10.
In other words, excitation of harmonic ωce does not depend on
the magnetized condition of plasma ωce/ωpe. Additionally,
these excited harmonics of ωce are likely excited by the ECM
instability, since excitation of them is mainly located in the
direction perpendicular to the ambient magnetic field B0.
Although the excitation mechanisms for the harmonics of

ωpe and ωce are totally different, they still have some common
characteristics. For instance, all these harmonic waves contain
both longitudinal (row (a) for sh ωpe, row (d) for sh ωce) and
transverse (row (b) for sh ωpe, rows (c) and (e) for sh ωce)

Figure 10. Similar to Figure 4, but for plasmas with nrb/nt=5% but different w wce pe, from the left to right columns, ωce/ωpe=0.2, 0.3, 0.5, 1, 2, 3, respectively.
Row (a) is for Ex with θ=0°. Row (b) is for Ez with θ=20°. Row (c) is for Ex with θ=90°. Row (d) is for Ey with θ=90°. Row (e) is for Ez with θ=90°. Also
note that the color scale in this figure is, however, different from that in Figure 4.
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components, but the longitudinal component is stronger
than the transverse one, which is opposite to those of
the Z and X modes in the perpendicular direction. Harmonic
excitation of ωpe with a preferential longitudinal component
has been found previously by Klimas (1983), Nishikawa &
Cairns (1991), Yoon et al. (2003), Yi et al. (2007), and
Rhee et al. (2009). Additionally, intensities in these excited
harmonics of wpe and ωce decrease with the increase of the
harmonic number. Moreover, all excited harmonics of ωpe and
ωce are non-escaping modes in weakly magnetized plasmas
with w w < 1ce pe .

4. Conclusions and Discussion

Using 2.5D fully kinetic PIC simulations, we investigated
the energy and polarization properties of electromagnetic
waves excited by mildly relativistic ring-beam electrons in
neutral and current-free solar coronal plasmas. These energetic
ring-beam electrons could be produced by magnetic reconnec-
tion, quasi-perpendicular shocks, and/or electron beams
propagating in inhomogeneous magnetic fields in the solar
corona. These ring-beam electrons, together with the back-
ground electrons and protons, support the global current and
charge neutralities in these plasmas, where all background
electrons drift oppositely to the ring-beam electrons (i.e., return
current) to fully compensate the current induced by the ring-
beam electrons, i.e., a neutral ring-beam-return current system.
To apply the simulation results to solar radio observations and
considering variations of the electron ring-beam density and
magnetic field strength along the path of electron propagation,
we explore the dependences of the electromagnetic wave
excitations on the number density ratio of the ring-beam
electrons over the total electrons (nrb/nt) and the ratio of the
electron cyclotron frequency (ωce) to the electron plasma
frequency (ωpe).

We found that the beam and ECM instabilities together can
efficiently excite the whistler-, Z-, O-, and X-mode electro-
magnetic waves, as well as harmonics of ωpe (only when
ωce/ωpe< 1) and ωce. We also found the excitations of
electrostatic waves, relativistic Bernstein waves, and some
diffusive nonlinear waves that do not follow well-defined
dispersion relations. Electrostatic waves always dominate the
energetics of all excited waves. These electrostatic waves can
lead to significant heatings on the ring-beam and background
electrons due to Landau damping.

Properties of the electromagnetic whistler-, Z-, O-, and
X-mode waves were studied in detail. In order to obtain the
energy evolutions of these electromagnetic waves, we adopted a
Gaussian filter centered on the wave dispersion surfaces of the
magnetized cold plasmas in the wavevector–frequency ( w-k )
space and assumed a frequency broadening of all excited
electromagnetic waves σ=0.05ωnorm, which is frequently seen
in the spectrograms of escaping electromagnetic waves
(Figure 9). For a convergence test, we also carried calculations
with s w= 0.03 norm and 0.2ωnorm, while the frequency resolu-
tion in our PIC simulations is w´ -3 10 3

norm. We found that
results with σ=0.03ωnorm and 0.05ωnorm are almost the same.
We admit that this Gaussian filter method for energy of a
wave mode might contain contamination from other waves
particularly when the dispersion relations of two wave modes are
close to each other. Additionally we might also underestimate
the energies of diffusive waves with a fixed σ for all
wave modes. However, in general, this method gives more

accurate information about the mode energy compared to
estimates given in the previous studies (see, e.g., Pritchett 1984;
Lee et al. 2009, 2011).
Based on the Gaussian filter method, we carried out detailed

studies of the dependences of the excited electromagnetic
whistler-, Z-, O-, and X-mode properties on the ring-beam
electron density for ωce/ωpe=5 and found the following:

1. Both the beam and ECM instabilities contribute to the
excitation of these electromagnetic waves. The beam
instability dominates the saturations of the whistler and Z
modes, as well as O mode in plasmas with dense ring-
beam electrons. But the X-mode waves cannot be
efficiently excited by the beam instability only, especially
with tenuous ring-beam electrons.

2. In the growth phase of a wave mode, the free energy
dissipation rate and the wave growth rate, in general,
increase with the increase of the ring-beam density. The
growth rates of the whistler and Z modes are comparable
but higher than those of the O and X modes.

3. The saturation levels of different electromagnetic wave
modes also increase with the increase of nrb/nt, except for
the X-mode waves produced by low-density ring-beam
electrons. The X-mode saturation level for nrb/nt=5% is
actually higher than that for nrb/nt=10%.

4. The energy of each electromagnetic wave mode is
strongly anisotropic. This anisotropy is suppressed in
plasmas with dense ring-beam electrons, where the X
mode has the strongest anisotropy.

Although only the O and X modes are remotely detectable
and related more to the remote observations of the SRBs, the
individual investigation of the energy properties of all the
whistler, Z, O, and X modes obtained here will complement
their linear and quasi-linear theoretical studies. In theoretical
studies, nonlinear processes (e.g., wave–wave and wave–
particle cyclotron resonance interactions) and evolution of the
plasma system itself (e.g., population of the energetic and
background electrons, plasma temperature) cannot be usually
treated self-consistently. In this study, we found that all these
processes affect the energy saturations and growth rates of
those wave modes.
Harmonic excitations of ωpe and ωce are studied for

differently magnetized plasmas with w w 0.2 5ce pe . Over
all simulated cases, one can find that harmonics of ωce can be
always excited, while there is no obvious excitation for the
escaping harmonics of wpe. Such results were also found by
Ganse et al. (2012b). As mentioned by Thurgood & Tsiklauri
(2015), as well as according to Equation (6.80) in Melrose
(1986) for the probability of the + ¢  wL L T2 pe process, the
key reason for the absence of the escaping harmonics of ωpe in
our simulated plasmas could be the weak intensities (in plasmas
with tenuous ring-beam electrons n n 20%trb ) and/or the
predominant wave intensities located at small wavenumber ∣ ∣k
(due to Landau damping in plasmas with dense ring-beam
electrons) of both the parallel- and antiparallel-propagating
electrostatic Langmuir waves. Based on the study of Thurgood
& Tsiklauri (2015), escaping harmonics of ωpe are more likely
present in plasmas with very tenuous beam electrons

<n n 0.6%trb , and generations of the harmonics of ωpe are
very sensitive to the chosen parameters, like the populations of
the beam and oppositely drifting electrons, the drifting
velocity of the beam electrons, the magnetized condition, etc.
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(Rhee et al. 2009; Umeda 2010; Ganse et al. 2012b; Thurgood
& Tsiklauri 2015; Henri et al. 2019). The setup parameters
used here, however, favor more the excitation of the beam
mode instead of Langmuir waves.

Non-escaping harmonics of ωpe can be excited only when
ωce/ωpe<1. Higher and higher non-escaping harmonics of ωpe

are driven with the decrease of ωce/ωpe. No matter whether
escaping harmonics of ωpe are excited or not, the beam
instability can always lead to the excitations of the Langmuir,
whistler-, Z-, and O-mode waves. ECM excitations of the
harmonics of ωce, however, do not depend on the ratio of
ωce/ωpe. In other words, sh ωce (as well as X mode) will be
excited as long as the free energy ¶ ¶ >^f u 0 exists for the
ECM instability. The requirement of ωce/ωpe>1 in the ECM
emission theory is for an efficient generation of observable
escaping emissions by remote detections, i.e., the escape
condition (see Section 1).

In addition, to compare with solar radio observations, we
also obtained the polarization properties (CPD, spectrogram) of
the electromagnetic waves, in particular of the escaping
electromagnetic waves with ω>ωpe and ∣ ∣w <ck 1. In
summary, escaping emission decreases rapidly with the
decrease of w wce pe. In weakly magnetized plasmas with
ωce/ωpe<1, most of the excited escaping electromagnetic
waves are located close to the plasma frequency ωpe, and their
energies are significantly weaker and negligible compared to
those of plasmas with ωce/ωpe>1, i.e., strongly magnetized
plasmas. Energy and polarization properties of the escaping
electromagnetic waves in strongly magnetized plasmas depend
on the density ratio nrb/nt:

1. When nrb/nt�10%, the ECM instability dominates
the excitations of the escaping electromagnetic waves.
RPTEs dominate the transverse electric field energies of
the escaping electromagnetic waves. And right-handed
polarized CPDs can be expected along many wave
propagation directions. Moreover, the strongest escaping
emission is in the same side of the ring-beam electron
propagation direction (i.e., θ< 90°). These properties
may explain observed properties of solar radio spikes.

2. For plasmas with dense ring-beam electrons nrb/nt �20%,
the escaping emissions are dominated by the ECM
instability at the beginning. The beam instability plays a
more important role later on, giving rise to more isotropic
and LPTE-dominated emissions, which may be applied to
observations of type III bursts.

Considering the population reduction of the ring-beam
electrons during their propagations in the solar corona, these
results might explain the increased time delay of the type III
bursts (<1 s) and solar radio spikes (2–5 s) to the hard X-ray
bursts (see Fleishman & Mel’nikov 1998 for a review of the
solar radio spikes). Moreover, diversities in the SRBs’ CPD
and spectrogram observations may already originate from their
generation sites.

Our results above deal with properties of waves driven by
energetic ring-beam electrons at the site of wave generation,
where the global charge and current neutralities are maintained
via protons and drifting background electrons, respectively.
Note that the remotely observed energy and polarization
properties of the SRBs might deviate from those in their source
regions, due to some propagation effects of the electromagnetic
waves (e.g., reflection, refraction, Faraday rotation, energy

absorption via wave–particle interaction) along the wave path
in the IPM. For an accurate prediction of the remote SRB
observations, one, hence, still needs to combine our simulations
with a proper model describing the wave propagation effects in
the IPM(Li et al. 2008a, 2008b, 2009). This study is, however,
still meaningful to gain insight into the generation mechanisms
of the original coherent emission by energetic ring-beam
electrons in the neutral and current-free solar coronal plasmas,
where all background electrons drift oppositely to the ring-
beam electrons to fully compensate the current induced by the
ring-beam electrons.
Finally, we note that dynamic processes in plasmas with

energetic ring-beam electrons contain not only the excitations
of waves but also plasma heating and electron acceleration.
Significant plasma heating and electron acceleration can be
expected, particularly, in plasmas with dense ring-beam
electrons, where a significant fraction of the ring-beam
electrons can be reflected, making the system more or less
symmetric with respect to the plane perpendicular to the
ambient magnetic field B0. Due to the acceleration of electrons,
a double power-law distribution is formed in the high-energy
tail (g - > ~1 0.1 50 keV) of the electron energy distribu-
tion when the wave–particle plasma system reaches an
equilibrium.
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