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Introduction

Algorithm benchmarking and characterization are important processes in medical physics, used in product 
development and comparison prior to clinical implementation. Comparing algorithms is particularly important 
when specifying which algorithms are acceptable for use as part of a clinical trial workflow. When centres are 
considering version updates or algorithm changes, effective assessment of algorithm differences is also relevant.

Quantitative guidelines for algorithm comparisons are often well established. However, for certain applica-
tions the labour-intensive nature of establishing expert-defined ‘ground truth’ may limit benchmarking to a 
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Abstract
Algorithm benchmarking and characterization are an important part of algorithm development 
and validation prior to clinical implementation. However, benchmarking may be limited to a 
small collection of test cases due to the resource-intensive nature of establishing ‘ground-truth’ 
references. This study proposes a framework for selecting test cases to assess algorithm and workflow 
equivalence. Effective test case selection may minimize the number of ground-truth comparisons 
required to establish robust and clinically relevant benchmarking and characterization results.

To demonstrate the proposed framework, we clustered differences between two independent 
workflows estimating during-treatment dose objective violations for 15 head and neck cancer 
patients (15 planning CTs, 105 on-unit CBCTs). Each workflow used a different deformable image 
registration algorithm to estimate inter-fractional anatomy and contour changes. The Hopkins 
statistic tested whether workflow output was inherently clustered and k-medoid clustering 
formalized cluster assignment. Further statistical analyses verified the relevance of clusters to 
algorithm output. Data at cluster centers (‘medoids’) were considered as candidate test cases 
representative of workflow-relevant algorithm differences.

The framework indicated that differences in estimated dose objective violations were naturally 
grouped (Hopkins  =  0.75, providing 90% confidence). K-medoid clustering identified five clusters 
which stratified workflow differences (MANOVA: p   <  0.001) in estimated parotid gland D50%, 
spinal cord/brainstem Dmax, and high dose CTV coverage dose violations (Kendall’s tau: p   <  0.05). 
Systematic algorithm differences resulting in workflow discrepancies were: parotid gland volumes 
(ANOVA: p   <  0.001), external contour deformations (t-test: p   =  0.022), and CTV-to-PTV margins 
(t-test: 0.009), respectively. Five candidate test cases were verified as representative of the five clusters.

The framework successfully clustered workflow outputs and identified five test cases 
representative of clinically relevant algorithm discrepancies. This approach may improve the 
allocation of resources during the benchmarking and characterization process and the applicability 
of results to clinical data.
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small collection of test cases, such as dose calculation algorithms (Court et al 2010, Fragoso et al 2010, Ehler et al 
2014) and deformable image registration (DIR) (Kumarasiri et al 2014, Pukala et al 2016, Loi et al 2018). For 
DIR benchmarking and characterization, both algorithm and workflow output may be affected by anatomical 
site (Kashani et al 2008, Hoffmann et al 2014), contour size (Kumarasiri et al 2014, Mencarelli et al 2014), and 
different implementations of a similar algorithmic framework (Kashani et al 2008). Physical phantoms, digital 
phantoms, and literature case studies are helpful but may not be always representative of application-specific 
clinical cases. Therefore, it is generally recommended to repeat algorithm comparisons against ground truth for 
each institution-specific clinical application.

As computing power continues to increase, the resources required for running algorithms is generally dimin-
ishing. Scripting and automation capabilities are increasing the ease of producing workflow output. In contrast, 
the establishment of manual gold standards and expert review of results remain labour-intensive processes (for 
example, Brock et al 2017). We propose that information contained in workflow output can better inform test 
case selection for benchmarking and comparisons against expert-defined ground truth, as compared to conven-
tional qualitative or random test case selections.

We use unsupervised machine learning techniques to let workflow data inform test case selection. These 
techniques can identify properties in large datasets by accounting for higher-dimensional associations difficult 
for individuals to quantify. In particular, data clustering formalizes natural groupings in workflow and algorithm 
output. Cluster centres and/or outlier cases may serve as candidate test cases. Principal components analysis 
(PCA) aids in data visualization, and supplemented with conventional statistics, confirms that clusters stratify 
the differences in algorithm output most relevant to the clinical application. Such an approach is hypothesized 
to better ensure that test cases are representative of clinical data and may reduce the number of test cases needed 
to establish robust benchmarking results. Our aim is to provide researchers with a general framework to identify 
which differences between algorithms are clinically relevant, and to identify representative examples of those dif-
ferences for benchmarking and ground-truth-based assessments.

To demonstrate the proposed framework, we consider two independent and partially-automated workflows, 
each based on a different DIR algorithm. Each workflow estimates violations of original dosimetric planning 
objectives for head and neck cancer patients that may result from anatomical changes (e.g. weight loss, tumor 
shrinkage) occurring throughout the 6–7 weeks of curative-intent treatment. Estimated planning objective vio-
lations exceeding a given allowable margin indicate that the patient should be assessed for treatment replanning. 
Both algorithms have been validated in the literature in comparative assessments (Kumarasiri et al 2014) and 
independently against expert-based ground-truth (Cline et al 2015, Ramadaan et al 2015, Pukala et al 2016, Loi 
et al 2018) and are expected to produce similar geometric output. However, differences in the geometric output 
of DIR algorithms that are considered minor in such standalone evaluations (Brock et al 2017) may lead to clini-
cally significant differences between workflows due to non-linear error propagation or workflow ‘upweighting’ 
of algorithm differences. This study shows that the clinically-relevant differences in algorithm output may be 
identified by clustering on pairwise differences in workflow output. Data points at cluster centers (‘medoids’) are 
considered for their suitability as test cases. Test cases may then be assessed against ground truth and workflow-
specific algorithm performance requirements.

Materials and methods

Image data, algorithms and clinical workflow
We retrospectively assessed the image data from a cohort of 15 head and neck cancer patients. Each patient 
received curative-intent VMAT chemoradiotherapy (70 Gy in 33 fractions). Treatment plans were designed to 
meet institutional dosimetric planning objectives including: high dose clinical target volume (CTV) D99%, 
D95%, D2%; low dose CTV D99%, D95%, D20%; high dose planning target volume (PTV) D99%, D95%, D2%; 
low dose PTV D99%, D95%, D20%; brainstem Dmax; spinal cord Dmax; and ipsilateral and contralateral parotid 
gland D50% dose parameters (Weppler et al 2018). Planning was performed in the Eclipse Treatment Planning 
System, Version 11 (Varian Medical Systems, Palo Alta, CA) with the anisotropic analytical algorithm (AAA). 
Throughout treatment, each patient received a pre-treatment CT simulation (pCT) as well as approximately 
weekly on-unit cone-beam CT (CBCT) imaging, totaling 15 pCTs and 105 CBCTs for the cohort.

The two compared workflows (‘workflow #1’ and ‘workflow #2’) indicated the need for a replan assess-
ment according to differences in planned and delivered doses. For each patient, two commercial DIR algorithms, 
B-spline-based Velocity™ Version 3.2.0 (Rueckert et al 1999, Lawson et al 2007) (‘DIR#1’) and demons-based 
SmartAdapt® (Thirion et al 1998, Wang et al 2005) (‘DIR#2’) (Varian Medical Systems, Palo Alto, CA), indepen-
dently deformed copies of the pCT over the field of view of CBCTs. The DIR#1 ‘CBCT Corrected Deformable’ 
multi-pass option provided the most flexibility in CT-to-CBCT deformation. The ‘Structure-Guided’ multi-
pass option was used for a patient with bolus digitally rendered on the pCT and physical bolus applied during 
treatment. DIR#2 had only one deformation option available. After pCT to CBCT deformation, the resulting 
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‘synthetic CTs’ (‘sCT#1’ and ‘sCT#2’) had the original pCT HU calibration curve, larger pCT field of view, 
and CBCT-based anatomical changes. The original clinician-delineated target and organ-at-risk contours were 
propagated from the pCT to the sCTs according to DIR deformation vector fields. Several sCT#2’s had obvious 
local artifacts in the external contour and these errors were corrected as part of a reasonable clinical workflow; 
sCT#2 CTVs and PTVs were cropped 3 mm from the corrected external contour as needed. It was uncommon to 
observe external contour artifacts in sCT#1 images and corrections were generally not required.

The original treatment plan was reapplied to synthetic CTs in the treatment planning system to estimate the 
dose delivered on the day of CBCT-acquisition. Instances where delivered doses violated scaled institutional 
planning objectives (total plan ÷ 33 fractions) were tabulated for each patient (p), fraction with CBCT-acquisi-

tion ( f ), and dose parameter (d), in addition to whether the violation (vp,f ,d) exceeded {τ}5
j=1 = {1%, 2%, 3%, 

5%, 10%} of the scaled planning objective (motivated by Weppler et al 2018):

w̃p,f ,d = arg min
{τj| τj� vp,f ,d}

(vp,f ,d − τj).� (1)

Therefore, quantized differences, w̃sCT#1
p,f ,d − w̃sCT#2

p,f ,d , in workflow output emphasized large discrepancies in 

estimated violations (e.g. the change from 5% to 10% is likely more important than the change from 2% to 3%), 
according to sample cut-off values that may be used to assess replan need in practise.

Data clustering on workflow output

Differences in workflow output, w̃sCT#1
p,f ,d − w̃sCT#2

p,f ,d , were input for data clustering as a matrix with pf  rows and 

d  columns; each analyzed patient and fraction was assigned to a data cluster. Data was centered but unscaled to 

preserve the relative magnitude of w̃sCT#1
p,f ,d − w̃sCT#2

p,f ,d  differences among dose parameters. The Hopkins statistic 

(Lawson et al 1990) tested for the presence of natural data groupings in workflow output differences. k-Medoid 
clustering (PAM-k) (Kaufman et al 1990) heuristically assigned paired data points to k clusters where k was 
estimated by the Duda-Hart test (Duda et al 1973) and average silhouette width (Hennig et al 2013). Euclidean 
and Manhattan distances were tested as similarity metrics. PCA projected the results of the d-dimensional 
clustering into two dimensions for visualization and qualitative inference of factors contributing to cluster 
differences.

Assessing differences in algorithm output
We verified whether workflow clusters also grouped patients/fractions according to algorithm differences, 

asCT#1
p,f ,g − asCT#2

p,f ,g , where g  denotes a geometric parameter directly assessing algorithm output. Differences in 

centers-of-mass (CoM) between sCT#1 and sCT#2 paired contours were calculated. In addition, we assessed 
differences in contour volumes and CTV-to-PTV planning margins (CTV-to-PTV mean distance to agreement). 
Differences in external body contour were measured on the CT axial image slice containing the high dose CTV 
CoM. All algorithm differences except CoM (in mm) were considered as a percentage difference relative to values 
at planning.

MANOVA and ANOVA statistical tests determined whether there were statistically significant differences 

(p   <  0.05) in asCT#1
p,f − asCT#2

p,f  between clusters, and with respect to which geometric parameters. This ensured 

that workflow-based clusters did not simply result from random algorithm discrepancies. For ANOVA results 
with 0.05  <  p   <  0.10 for a given parameter g , paired t-tests (accounting for heteroscedasticity) were performed 
between the cluster with the largest mean absolute difference and aggregate of the remaining clusters.

Correlation tests verified that statistically significant differences in g  between clusters were relevant to the 
workflow output. Pearson correlation coefficient identified correlations between algorithm output parameters. 

Kendall’s rank correlation coefficient assessed the correlation of aggregate asCT#1
p,f ,g − asCT#2

p,f ,g  differences with 

w̃sCT#1
p,f ,d − w̃sCT#2

p,f ,d  differences for each g  and d . Benjamini–Hochberg p  values adjustments managed the false 

discovery rate under multiple testing (Benjamini et al 1995).

Simulated data
In order to facilitate interpretation of clustering and PCA results for the more complex patient data, we created 
a simple simulation. We simulated the output of two algorithms, denoted as Algorithm A and Algorithm B, in 
seven independent Gaussian-distributed variables (analogous to the structure-specific dose parameter values) 
and produced 1000 samples of each. Details are provided in table 1. Systematic differences between Algorithms 
A and B were repeated in two variables where the simulated workflow upweighted one variable but not the other. 
We assessed: (1) the detectability of systematic and random differences in workflow output, (2) the detectability 

of the upweighted algorithm variables, (3) the qualitative characteristics of simulated clusters.
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Framework overview
In summary, the above framework (figure 1): (1) produces data clusters based on differences in workflow output; 
(2) assesses algorithm differences among clusters; and (3) verifies that those algorithm differences are the most 
relevant to the workflow. The result is a process that clusters data based on the algorithm differences that are 
most relevant to the workflow output. Lastly, (4) data points at the centre of each cluster (cluster ‘medoids’) are 
considered as paired sCT#1 and sCT#2’s representative of ‘average’ algorithm differences. These are assessed 
as candidate test cases. For general differences in algorithm output associated with each cluster, the mean values 
of test cases are compared with cluster averages.

All clustering, PCA, and statistical analyses were performed in R (R Version 3.5.1, The R Foundation for Sta-
tistical Computing, Vienna, Austria).

Results

Simulated data
The results of our simulation demonstrate how the framework detects algorithm discrepancies and workflow 
effects. The Hopkins statistic strongly indicated that simulated data was naturally clustered (Hopkins 
statistic  =  0.13, sampling rates from 5% to 10%). Seven ground truth clusters were present (v1−7), while 
PAM-k assigned data into six subgroups (clusters ‘a’–‘f’). Cluster assignment is summarized in table 1 and PCA 
projections are shown in figure 1.

Cluster shape and location corresponds to various systematic differences in algorithm output (figure 2). 
Qualitatively, as algorithm discrepancies or workflows produce larger systematic offsets in data (µA

i  versus µB
i  for 

some variable vi), the cluster will move farther from the origin in a PCA projection. The number of clusters and 
corresponding test cases are also dependent on σ. As variability increases, clusters will generally elongate about 
the data origin and may separate to produce a band of smaller clusters. Excess noise in the algorithm and work-
flow data may lead to fewer clusters in general and medoids occurring nearer to mean noise values.

Variable v6 had a systematic offset and difference in variability between Algorithms A and B and was 
upweighted in importance by the workflow. As expected, data clustering and PCA identified this discrepancy as 
having the greatest workflow effect, shown through the alignment of cluster ‘f’ and the v6 loading and its strong 
association with PCA dimension 1. Qualitatively, this cluster was systematically offset from, but still contained, 
the data origin. However, when compared to ground truth, v6 data about the origin was partially assigned to the 
‘random variation’ cluster, as further examined below. Variable v4 simulated Algorithm A versus Algorithm B 
differences in variability alone, with differences upweighted by the workflow. The framework produced two clus-
ters symmetric about the origin and aligned with PCA dimension 2. This indicates that manual corrections may 

Table 1.  Simulated algorithm and workflow data. Algorithm output in each variable was sampled from a Gaussian distribution with mean 
(µ) and standard deviation (σ) indicated. Each of the seven subsets of samples had a specific discrepancy. The simulated workflow up-
weighted select algorithm discrepancies by a factor of two. Applying the proposed framework to the simulated data produced the cluster 
assignment in the right-most column. Yellow font: Algorithm A. Red font: Algorithm B. Blue font: Workflow Effect.

Phys. Med. Biol. 65 (2020) 055014 (12pp)
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be required to consolidate clusters to better reproduce ground truth. However, the framework output provided 
improved sampling of the variability (medoids for clusters ‘c’ and ‘d’) compared to the ground truth medoid 
which aligned with that of the random grouping. The variable with the workflow-upweighted systematic offset 
(v2) was shifted from the data origin, dominating PCA dimension 3.

Non-upweighted workflow effects, such as v1 and v3, and the random variable (v7) were assigned exclusively 
to a random variation cluster (cluster ‘a’), approximately centered about the original data origin. As data must be 
centered prior to clustering and PCA, there is some misalignment of the original data origin and the PCA origin. 

Figure 1.  Summary of the proposed test case selection framework.

Figure 2.  Data clustering (coloured ellipses with solid boundaries) and PCA results for the simulated algorithm and workflow. 
The first three principal component dimensions aligned with the algorithm differences upweighted by the workflow (v6, v4, and 
v2) as indicated by the principal component loadings. More subtle algorithm differences were consolidated with the random noise 
effects (v7) in cluster ‘a’. Ground truth clusters are indicated by ellipses with dotted boundaries; ground truth clusters correspond 
to the discrepancies simulated in each row of table 1. For example, samples 715–857 in row 6 of table 1 have a ground truth cluster 
assignment of v6, indicated by the dark green dotted line aligning with PCA dimension 1.

Phys. Med. Biol. 65 (2020) 055014 (12pp)
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All variables except that with the workflow-upweighted systematic offset (v2) had some elements assigned to the 
random variation group. Clustering should be visually reviewed and adjusted if needed.

MANOVA confirmed that clusters stratified workflow differences (p   <  0.001). ANOVA identified statisti-
cally significant differences in algorithm output according to cluster stratification for variables: v1, v5, and v6 
(p   <  0.05). Weak statistical differences were indicated for v2 and v4. If differences in algorithm variability in a 
given parameter are indicated, such as those due to workflow upweighting, statistical tests may be supplemented 
by tests assessing differences in standard deviation (e.g. Levene’s test). Weak associations may still be informative 
as statistical significance can be limited for variables where systematic algorithm discrepancies partially overlap 
with random noise, such as for v2 and v4. In general, statistical significance may also be limited by sample size.

Data clustering on workflow output

For the clinical data, the Hopkins statistic showed that workflow differences, w̃sCT#1
p,f ,d − w̃sCT#2

p,f ,d , had a naturally 

clustered structure. Statistic values were approximately 0.75 under various sampling rates from 5% to 10%. 
Therefore, we rejected the null hypothesis that the data did not have a natural clustering tendency with 90% 
confidence (Lawson et al 1990). PAM-k clustered the data into five groups; figure 3 shows the projection of 
clusters into the first two principal component dimensions. 84.3% of the data variance was explained by the 
first four principal components (30.1%, 22.3%, 18.9%, and 13.0%, respectively). Variance explained by the fifth 
principal component reduced to 3.8%. As a result, we reviewed projections into the first four principal component 

dimensions. Qualitatively, cluster 1 contained the original w̃sCT#1
p,f ,d − w̃sCT#2

p,f ,d  data origin, corresponding to 

identical workflow output in all parameters, and consisted of relatively small discrepancies between workflows. 
All other clusters were offset from the origin, indicating potentially significant systematic offset discrepancies 
in workflow output as indicated by the data simulation. Based on PCA, inferences about workflow differences 
defining each systematic cluster are indicated in figure 3. These hypotheses were confirmed by statistical analysis 
below.

Table 2 summarizes the differences in workflow output among the clusters. For patients/fractions assigned 
to cluster 2, mean and median workflow #2 estimates of ipsilateral parotid gland D50% were much larger than 
for workflow #1. For cluster 3, mean and median low dose target coverage violations estimated by workflow #2 
were larger than workflow #1. Mean high dose CTV hotspot, brainstem and spinal cord violations estimated by 
workflow #2 were larger for cluster 4 data. In contrast, for cluster 5, mean and median estimated target coverage 
violations were small for workflow #2 relative to that of workflow #1. Median workflow differences for cluster 1 
were identically zero across all parameters. These results are consistent with the qualitative indications from PCA.

Various modifications of the analysis were tested to assess framework robustness. As closed-form sample 
size calculations do not generally exist in the machine learning setting, varying the input sample size provided a 
measure of cluster stability. Ninety-six or more randomly selected samples gave comparable clustering and PCA. 
Clusters 2, 3, and 4 demonstrated some variability so that method stability may further improve by increasing 
sample size. Although workflows were partially automated, manual image import/export, basic contour correc-
tions and others imposed sample size limitations. However, it is helpful to know which parameters may vary as 
a result of practical constraints on sample size. When using Euclidean and Manhattan distances, cluster assign-
ment was identical for 94 of the 105 data points. Variations occurred in the definition of clusters 2 and 4, which 
were adjacent and overlapping in projections onto PCA dimensions 1 and 2. PAM-k with Manhattan distance 
introduced a single-datapoint outlier cluster. For the remainder of this analysis, we elected to use the results 
obtained with the more conventional Euclidean distance.

Assessing differences in algorithm output

Differences in algorithm output, asCT#1
p,f ,g − asCT#2

p,f ,g , for patients/fractions within each cluster are included in 

table 3. MANOVA confirmed that algorithm output was significantly different between clusters (p   <  0.001), 
with ANOVA identifying significant differences in estimations of: target, spinal cord and parotid gland volumes; 
and high dose CTV-to-PTV margins. T-tests found statistically significant differences between cluster 5 and 
the aggregation of clusters 1–4 for DIR#1 and DIR#2 low dose CTV-to-PTV margin estimates (p   =  0.009); 
external contour estimates showed a larger discrepancy for cluster 4 than the remaining pooled data (p   =  0.022). 
Cluster 1 variability was largest for spinal cord CoM differences with p   =  0.017, again based on t-test results, 
possibly due to differences in algorithm processing of minor CT-to-CBCT misalignments of bony anatomy. All 
other algorithm differences in cluster 1 images were relatively small; we considered cluster 1 to be analogous to 
cluster ‘a’ in the simulation.

Kendall’s τ  test identified significant correlations (p   <  0.05 after Benjamini–Hochberg adjustment) in 

w̃sCT#1
p,f ,d − w̃sCT#2

p,f ,d  for ipsilateral parotid gland D50% and asCT#1
p,f ,g − asCT#2

p,f ,g  for target, parotid gland, and exter-

nal contour volumes. These associations most clearly coincided with the above observations for cluster 2. High 
dose target hotspot violation differences correlated with CTV CoM, coinciding with observations for cluster 4 
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(although CoM differences were not found to be statistically significantly different by ANOVA). High dose cover-
age was correlated with high dose CTV-to-PTV margin, as captured by cluster 5. No significant correlations were 

identified to confirm that asCT#1
p,f ,g − asCT#2

p,f ,g  differences for clusters 1 and 3 were relevant to workflow output. 

This is expected for a random variations between DIR#1 and DIR#2 output (cluster 1). We further consider 
cluster 3 in the Discussion.

Often, Kendall’s τ  tests found significant correlations with multiple target parameters, such as low dose CTV 
and low dose PTV volume changes, not found by clustering. Pearson correlation coefficient confirmed that for 
high dose and low dose targets, statistically significant correlations existed between CTV and PTV volume and 
CoM discrepancies; the single exception was for low dose PTV volume and low dose PTV CoM with p   =  0.156. 
Discrepancies in algorithm output for CTV volume and CoM were weakly correlated, all others were moderately 
to highly correlated (Pearson correlation coefficient of 0.54–0.85).

Cluster medoids were considered as candidate test cases. Axial CT slices of candidate test cases showing the 
largest discrepancies in algorithm output are included in figure 3 for clusters 2–5. For cluster 2, differences in 
DIR#1 and DIR#2 estimations of ipsilateral and contralateral parotid gland volumes were 13.2% and 13.5% for 
the medoid, similar to the cluster averages of 13.7% and 12.3%, respectively. Cluster 4’s differences in estimated 

Figure 3.  Data clustering of patients/fractions based on differences in the output between two workflows (w̃sCT#1, w̃sCT#2). PCA 
indicates the presence of one random grouping (cluster 1) and four kinds of systematic discrepancies (clusters 2–5) between the 
two workflows. Four candidate test cases (cluster 2–5 ‘medoids’) are shown. Contours include: high dose CTV (red); high dose 
PTV (pink); low dose CTV (orange); low dose PTV (yellow); spinal cord (cyan); spinal cord plus margin (blue); left parotid gland 
(dark blue); right parotid gland (green); and bolus (white). In general, workflow-relevant algorithm discrepancies occurred in the 
processing of: (a) parotid glands, (b) high dose CTV, (c) external contour, (d) CTV-to-PTV margin. *Based on projection of clusters 
onto dimensions 1 and 3 (not shown). Reproduced with permission from COMP65 Annual Scientific Meeting: Young Investigators 
Symposium - ‘Artificial Intelligence to Advance Adaptive Radiation Therapy’ by S Weppler et al.
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external contours was 5.7% for both the medoid and cluster average. Cluster 5’s high dose CTV-to-PTV margin 
discrepancy was  −15.8% for the medoid and an average of  −14.6% for the remainder of the cluster. No clear 
correspondence between cluster medoid and cluster averages were observed for clusters 1 and 3, as expected for 
cluster 1. However, including cases from clusters with small discrepancies in workflow output (e.g. Cluster 1) is 
important as although these cases have similar workflow output, this output may differ from ground truth.

Figure 4 shows the assignment of patient/fraction data to each of the five clusters. Cluster 5 consisted of data 
exclusively from patient 1, who was the only patient analysed with DIR#2’s ‘structure-guided’ setting. Only 
three patients were exclusively assigned to one cluster (patient 9 to cluster 1, patients 10 and 12 to cluster 3). Given 
that some patients were imaged for the first three fractions and then weekly, medoids were generally from the first 
half of treatment.

Discussion

Test selection and prioritization techniques are well developed in select fields, such as computer science, yet 
are uniquely tailored to those applications (e.g. Hao et al 2016). To our knowledge, the proposed framework 
provides the first general approach for test case selection in medical physics. As demonstrated for the simulated 
and DIR-based clinical examples, the framework may be used to identify workflow-relevant differences between 
algorithms by clustering discrepancies in downstream workflow output. Cluster centres provided representative 
test cases for further algorithm benchmarking and characterization. Such an approach may offer important 
improvements on alternative benchmarking approaches that unevenly or randomly sample from the inherent 
data clusters. For example, to compare the approach with current standards for DIR algorithm benchmarking 
and characterization, conventional test case selection may assess end-of-treatment images from sequential 
patients. For our dataset, the first 8 patients of our sequence were needed to get an example from each cluster. 
Without cluster analysis, stopping criteria on qualitative selection would be unknown. Alternatively, random 
selection of five images has a 1.3% probability that at least one image is included from each cluster, based on 
the hypergeometric distribution. At least 20 random cases are required for a probability of 75%. The proposed 
approach has the potential to select test cases that better represent algorithm and workflow variability, while 
reducing the number of cases requiring expert review.

Table 2.  Cluster-specific differences in w̃sCT#1
p,f ,d  and w̃sCT#2

p,f ,d  expressed as median (mean).

Clusters with the largest and second largest absolute median differences between w̃sCT#1
p,f ,d  and w̃sCT#2

p,f ,d  are highlighted with dark and light 

colors, respectively (ties are broken according to absolute mean differences).

Phys. Med. Biol. 65 (2020) 055014 (12pp)
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K-medoid clustering was the selected clustering method as it is a robust alternative to conventional k-means 
clustering (Kaufman et al 1990) and defines clusters relative to a representative data point, rather than a cluster 
average of datapoints as for k-means. This reduces the effect of data noise during clustering and provides can-
didate test cases. Hierarchical clustering is another alternative but may be affected by erroneous merges or splits 
during clustering (Han et al 2012). Density-based methods may filter out outlier cases (Han et al 2012) which are 
of potential value in cluster assignment and possible outlier analysis. The medoids in our framework are pairs 
of datapoints ‘typical’ of each cluster, while outliers can also be identified. Our work identified the single outlier 
patient where DIR#1 used the structure-guided setting as the planning CT had digital bolus and CBCT had 
physical bolus (cluster 5 in figures 3, 4 and tables 2, 3). Approximately 5%–10% of patients are treated with bolus 
at our centre; input data for test case selection should be as representative as possible of future clinical workflow 
inputs.

While correlations between algorithm and workflow discrepancies were clear for clusters 2, 4, and 5 in the 
patient data example, the statistical significance of these correlations for clusters 1 and 3 could not be confirmed. 
This was expected for cluster 1 as it contained relatively small discrepancies between DIR algorithms, similar to 
the ‘random’ cluster in the simulated data. A distinct type of algorithm discrepancy may not have been observed 
for cluster 3 as PCA showed cluster 3 differences in workflow output were intermediate to clusters 2 and 4. The 
heuristic nature of data clustering may also have identified weak associations that were not clear enough to be 
of statistical significance. While conventional statistics provide a deterministic result, the machine learning  

Table 3.  Geometric differences, asCT#1
p,f ,g − asCT#2

p,f ,g , between DIR#1 and DIR#2 algorithm output expressed as mean (standard deviation) 

for each cluster.

Clusters with the largest and second largest mean differences between asCT#1
p,f ,g  and asCT#2

p,f ,g  are highlighted with dark and light colors, 

respectively. P values  <  0.05 (ANOVA statistical tests) indicate that statistically significant differences existed between clusters 1–5 with 

respect to the corresponding geometric parameter.
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framework is intended to guide our interpretation of the data. Data simulations can provide valuable insight into 
the nature of data clusters and algorithm/workflow discrepancies.

PTV coverage is expected to degrade with daily patient setup uncertainties but was included in the analysis to 
improve the sensitivity of the framework to algorithm differences. Although not conventionally assessed for DIR 
benchmarking, differences in DIR#1 and DIR#2 deformations of CTV-to-PTV margins may be used to infer 
algorithm trade-offs in image similarity and regularization. As CTV-to-PTV margins were generally smaller 
for sCT#1s, we hypothesize that DIR#1 applied a larger emphasis on regularization; we note that local tumor 
shrinkage effects are ‘blurred’ into these planning margins. Differences in CTV-to-PTV margins in the context 
of the dose violation estimates may be of value for clinicians when deciding to monitor PTV dose objective viola-
tions or CTV dose deviations relative to planned. Post-DIR scripts may be considered necessary to automatically 
re-contour PTV margins (e.g. expand CTV).

Five patients had CBCT images acquired for the first three fractions then weekly, likely contributing to the 
occurrence of medoids in the first half of treatment. In theory, one could weight certain fractions more heavily 
if they are anticipated to be more important in the workflow. For example, correct replan indications are more 
valuable early in treatment when treatment replanning can lead to the greatest improvements in target coverage 
and healthy tissue sparing.

For the patient demonstration, all images were analyzed in aggregate even though some correlation of algo-
rithm differences could be expected for each patient. Algorithm details are proprietary so it was unclear whether 
algorithms would process images differently primarily as a result of patient-specific factors (e.g. image quality, 
proximity of volumes to high contrast regions such as bone) or temporal changes (e.g. extent of weightloss and 
shrinkage effects). This uncertainty motivated the analysis of these variables in aggregate. More refined multi-
level approaches may be used in practise if dominant effects are known beforehand.

Some DIR implementations are capable of accumulating doses delivered over multiple fractions. Although 
dose accumulation capabilities were not available for DIR#2 at our centre, the proposed framework may also be 
applied for workflows based on dose accumulation or dose warping. However, if the nature of algorithm discrep-
ancies are not yet known, it may be beneficial to first assess dose estimates individually. If algorithm differences 
are patient-specific, dose accumulation may clarify clusters; if dose estimates for a given patient exhibit multiple 
types of algorithm discrepancies (as observed for the patient demonstration, figure 4), accumulation may have 
the potential to confound results. For the latter case, we would suggest an iterative approach to assess how nested 
processes within an algorithm correlate with workflow output discrepancies (figure 1, part 2.) b).

The proposed clustering/PCA/statistical analysis framework is generalizable to a variety of settings. Although 
it was outside of the scope of this study, analyzing the sequences of cluster assignment may indicate trends in 
algorithm differences relevant for benchmarking. If correlations between algorithm and workflow variables are 
unclear, data clustering and PCA can be applied to a combined dataset of workflow and algorithm parameters. 
While we considered cluster medoids as candidate test cases, algorithm assessments could also be performed for 
cluster outliers (e.g. on the convex hull of clusters). As PAM-k is a heuristic approach to clustering, future work 
may examine the selection of test cases according to ideas of mathematical optimality depending on the size of 
input datasets. While PAM-k provided a suitable number of clusters, k, if constraints on the number of test cases 

Figure 4.  Cluster assignment for each analyzed fraction. In general, patients were not exclusively assigned to one cluster. As 
identified via the framework, test cases representing discrepancies in DIR#1 and DIR#2 algorithm output that were found most 
relevant to the clinical application generally occurred mid-course.
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exist, medoid clustering may be performed for a pre-specified number of clusters. If no clustering tendency is 
present for a dataset, it may indicate that algorithms are consistent in terms of workflow output or that systematic 
differences are dominated by random effects. Clustering on random data will still produce a ‘Voronoi tessella-
tion’ (Hastie et al 2009) and partition workflow output for testing. To benchmark more than two algorithms, the 
framework may be applied to all possible pairs of algorithms. Similarities or differences in workflow clusters and 
test cases for these pair-wise comparisons can be used to establish a comprehensive test set. These sets could be 
disseminated with ground truth references to be used by various institutions for algorithm assessments and trial 
credentialing.

Conclusions

This study proposes a method for selecting test cases for algorithm benchmarking and characterization based on 
the differences between algorithms that most affect workflow output. This approach is best applied in situations 
where algorithm output is easy to obtain, but establishing ground truth references is resource-intensive. We 
compared two workflows, each based on a different DIR algorithm, to estimate the magnitude of during-
treatment planning objective violations. Clustering workflow differences on estimated dose violations produced 
a stratification of algorithm output. Each cluster exhibited a different type of algorithm discrepancy: differences 
in estimated parotid gland volume; external contour deformation; or CTV-to-PTV margin. Cluster medoids 
were considered as test cases and found to be representative of algorithm differences defining the clusters.
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