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1.  Introduction

At present, minimally invasive intervention is the main treatment for vascular pathology, and the operation of 
surgical instruments is guided by x-ray angiography (XRA) images during intervention. This image modality 
has satisfactory performance on the display of vessels lumen after a contrast agent is injected in the arteries of 
interest through a catheter. The surgical instruments that navigate inside the vasculature can also be displayed 
clearly in XRA. However, performing interventional operations accurately under the guidance of single-view 
2D projection is difficult for interventional radiologists because of the absence of spatial information in XRA. 
Therefore, in interventional surgery, multi-view angiography images obtained by a rotating C-arm are used 
frequently, and the increasing dosage of toxic contrast agents can impose a burden on patients. To address 
this issue, a pre-operative computed tomography angiography (CTA) image can be used in combination with 
intraoperative XRA imaging. In this technique, the interventional image is augmented by projecting 3D vessels 
overlaid on 2D live images. Physicians and patients benefit from visualizing these different imaging modalities 
in one view. To achieve this goal, 3D/2D registration technology is mandatory for obtaining good alignment and 
relevant correspondences.

3D/2D registration methods use one 3D pre-interventional image and one or more intra-interventional 2D 
X-ray projection images as sources to perform the registration task (Markelj et al 2012). To establish 3D/2D 
registration, 3D and 2D image data as well as the C-arm geometry need to be required. For the x-ray image 

J Zhu et al

Printed in the UK

055010

PHMBA7

© 2020 Institute of Physics and Engineering in Medicine

65

Phys. Med. Biol.

PMB

1361-6560

10.1088/1361-6560/ab6b43

5

1

17

Physics in Medicine & Biology

IOP

6

March

2020

Heuristic tree searching for pose-independent 3D/2D rigid 
registration of vessel structures

Jianjun Zhu1, Jingfan Fan1, Shuai Guo1, Danni Ai1, Hong Song2, Cheng Wang3, Shoujun Zhou3   
and Jian Yang1

1	 Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics,  
Beijing Institute of Technology, Beijing 100081, People’s Republic of China

2	 School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
3	 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People’s Republic of China

E-mail: jyang@bit.edu.cn

Keywords: 3D/2D registration, vessel graph matching, search tree

Abstract
The 3D/2D registration of pre-operative computed tomography angiography (CTA) and intra-
operative x-ray angiography (XRA) images in vascular intervention is imperative for guiding 
surgical instruments and reducing the dosage of toxic contrast agents. In this study, 3D/2D vascular 
registration is formulated as a search tree problem on the basis of the topological continuity of vessels 
and the fact that matching can be decomposed into continuous states. In each node of the tree, a 
closed-solution of 3D/2D transformation is used to obtain the registration results based on the dense 
correspondences of vessel points, and the results of matching and registration are calculated and 
recorded. Then, a hand-crafted score that quantifies the qualities of matching and registration of 
vessels is used, and the remaining problem focuses on finding the highest score in the search tree. An 
improved heuristic tree search strategy is also proposed to find the best registration. The proposed 
method is evaluated and compared with four state-of-the-art methods. Experiments on simulated 
data demonstrate that our method is insensitive to initial pose and robust to noise and deformation. 
It outperforms other methods in terms of registering real model data and clinical coronary data. In 
the 3D/2D registration of uninitialized and initialized coronary arteries, the average registration 
errors are 1.85 and 1.79 mm, respectively. Given that the proposed method is independent of the 
initial pose, it can be used to navigate vascular intervention for clinical practice.
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sequence, the 3D/2D registration is usually deemed to be 3D/2D  +  t. Rotational imaging is frequently used in 
clinical practice, which can produce multi-plane x-ray images. In that case, the multi-plane 3D/2D registration 
can be regarded as 3D/2.5D. Since the 3D/2D registration is the basis of the 3D/2D  +  t and the 3D/2.5D, only the 
registration from 3D image to one-frame mono-plane 2D image is discussed in this work. The 3D/2D registra-
tion methods can be classified into two classes according to the properties of the registration technique, namely, 
intensity- and feature-based methods. Intensity-based methods are generally conducted by optimizing the simi-
larity measure between the projection of 3D pre-interventional image and 2D intra-interventional image. Digi-
tally reconstructed radiography (DRR) (Dorgham et al 2012) and maximum intensity projection (MIP) (Ker-
rien et al 1999) are two common methods that generate simulated x-ray projections of a computed tomography 
(CT) image. Hipwell et al (2003) analyzed six similarity metrics between DRR/MIP and x-ray images, in which 
pattern intensity and gradient difference exhibit the best performance. Given that the intensity-based methods 
use the entire intensity information for registration, they are sensitive to background outliers. Furthermore, the 
optimizing-based method may produce a small capture range when aligning data with large-scale transforma-
tions.

Feature-based 3D/2D registration relies on consistent features that can be extracted from two modalities. The 
centerline is the most popular representation of features for vessel registration. Related feature-based methods 
are summarized in Table 1, including the applied assumption, the basic work, evaluation metric and clinical 
application. Iterative closest point (ICP) method (Besl and McKay 1992) uses a strategy in which registration can 
be regarded as a sequential alternating procedure that includes matching and registration phases. For the match-
ing phase, point correspondence is assigned by searching for the minimal Euclidean distance of points. An exten-
sion of ICP for 3D/2D registration by back-projecting 2D points onto 3D space and then performing general ICP 
was introduced in Baka et al (2014). (Rivest-Henault et al 2012) used a precomputed distance transform of ves-
sel centerline to construct the objective function, which could accelerate the registration procedure. Benseghir 
et al (2013) proposed the iterative closest curve (ICC) method, which uses the vessel branch as the elements for 
pairing based on the closest relation and then estimates the transformation that minimizes the sum of distances 
between the paired branches. These ICP-like methods are sensitive to noise and outliers because they restrict the 
correspondence to a one-to-one assignment. The closest relation-based pairing also causes these methods to rely 
heavily on the initial pose.

In a probabilistic assignment framework, soft assignment relaxes the one-to-one correspondence to one-to-
many according to the sensitivity of hard assignment to noise and outliers. On the basis of the Gaussian mixture 

Table 1  Overview of related works for 3D/2D registration.

Method/citation Assumption Basic work

Evaluation  

Metric Application

ICP (Besl and McKay 1992, 

Baka et al 2014)

The closest relation determines 

correspondences of vessel points

Besl and McKay (1992) Mean projection 

distance error

Coronary 

artery

Rivest-Henault et al (2012) — Mean projection 

distance error

Coronary 

artery

Benseghir et al (2013) The closest relation determines 

correspondences of vessel curves

— Mean projection 

distance error

Coronary 

artery

Kang et al (2013) Assign probabilistic correspond-

ences of vessel points by GMM

Myronenko and Song  

(2010)

Rotation and transla-

tion errors

Femoroplasty

Baka et al (2014) The L2 distance of two orientat-

ed GMM responses determines 

registration

Jian and Vemuri (2011) Mean projection 

distance error, Success 

rate

Coronary 

artery

Benseghir et al (2015) Tree topology preserves in the 

pairing procedure

Benseghir et al (2013) Alignment and  

pairing errors

Coronary 

artery

Liu et al (2017) Topology consistency crosses 

modalities

— Mean projection 

distance error

Coronary 

artery

Varnavas et al (2015) The initialization is based on 

preoperative computation of 2D 

templates over a wide range of 

3D poses

— True/false positive/

negative rate

Lumbar spine

Miao et al (2013) It establishes a shape context-

encoded library of 2D contours 

and performed library match-

ing.

— X, Y, Z and angular 

differences, RMSD, 

Success rate

Metal implants

Gouveia et al (2017) It relates the features of 2D 

projection images to rigid trans-

formation parameters.

— 3D mean target  

registration error

Coronary 

artery
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model (GMM) and the expectation-maximization (EM) algorithm, (Myronenko and Song 2010) proposed the 
coherent point drift (CPD) method that forces GMM centroids to move coherently to preserve the global topo-
logical structure of point sets. Kang et al (2013) used the same framework as CPD for 3D/2D point set registra-
tion. When considering the nonlinear nature of perspective projections, particle swarm optimization (PSO) is 
used to solve the optimal estimation of the registration parameter in the maximization step. Baka et al (2014) 
proposed the oriented GMM (OGMM) method extended from (Jian and Vemuri 2011), it estimates the L2 dis-
tance of two point sets with orientational information and optimizes it to achieve 3D/2D coronary artery regis-
tration. Given that the OGMM takes advantage of the orientation of the centerline, it can achieve high accuracy 
and robustness for noisy data.

With vessel topology being an invariant property across modalities and dimensions, graph matching 
becomes an effective vascular registration approach. In the literature, the matching of vessel graph has been 
described as starting to estimate correspondences of vessel bifurcations and then matching vessel curves between 
paired bifurcations by considering them as vertices. Serradell et al (2014) treated vessel registration as a searching 
process for most likely correspondences, and a priority search was conducted to accelerate the process. Pinheiro 
et al (2016) formulated vessel matching as a tree searching method on the basis of the topology consistency of two 
graphs to be matched, and the Monte Carlo tree search was applied to solve this problem. Moriconi et al (2018) 
defined a compatibility function of graph matching by setting node and edge attributes and then maximized the 
function of the quadratic assignment problem to obtain node pairing. These methods (Serradell et al 2014, Pin-
heiro et al 2016, Moriconi et al 2018) are all associated with 3D/3D or 2D/2D vasculature matching/registration. 
For 3D/2D vessel matching, the overlaps in projection determined that the outliers and noise should be empha-
sized in the method. The ICC method (Benseghir et al 2013) uses vessel topology by pairing curves between two 
nodes. For the noisy 2D graph, neighborhood relation is used to restrict admissible candidates. Benseghir et al 
(2015) proposed matching tree centerlines in a divide-and-conquer framework based on the ICC framework 
while ensuring the connectivity of bifurcation points. Liu et al (2017) regarded 3D and 2D vessels as tree topol-
ogy and represented tree topology as a sequence; then, the vessel matching of nodes was achieved by performing 
sequence-to-sequence matching. The sequence was extracted using a topological sort algorithm by keeping the 
anteroposterior relationship, and then traversed in a successive order.

Optimization-based transformation calculation may also fall into the local extremum easily for the nonlinear 
nature of perspective projections, making these methods sensitive to the initial pose of registration. Initialization 
is crucial for 3D/2D registration. In general, pre-operative and intra-operative images are acquired from differ-
ent equipment. The capture ranges of most registration methods are insufficient to recover the transformation 
between the coordinate systems of two acquisition modalities. Some initialization approaches, such as the align-
ment of patient position and orientation, the registration of corresponding pairs of markers, and the manual ini-
tialization were introduced in Markelj et al (2012). However, an automatic initialization method that uses intrin-
sic features is suitable for intraoperative 3D/2D registration. Varnavas et al (2015) precomputed 2D projection 
templates over a wide range of 3D poses and used the intra-operative image to evaluate the similarity between the 
templates and the Generalized Hough Transform of 2D fluoroscopy to obtain initial alignment. Miao et al (2013) 
established a shape context-encoded library of 2D contours extracted from the silhouettes of metal implants and 
adopted Jensen–Shannon divergence as the matching metric for fast library matching. Gouveia et al (2017) pro-
posed a regression-based initial registration method of CTA and XRA that relates the features of 2D projection 
images to rigid transformation parameters.

For large capture range or non-sensitivity to the initial pose, the registration based on a match-then-trans-
form framework (Fan et al 2016a, 2016b) is more appropriate than optimization-based methods. Given the cor-
respondences of 3D and 2D points, the goal of 3D/2D registration is similar to the perspective-n-points (PnP) 
problem (Lepetit et al 2008) in the computer vision area. It aims to determine the camera pose by reducing 
the problem of estimating the transformation of paired points to that of estimating coordinates of four control 
points.

This work uses the topology consistency of 3D and 2D vessels to achieve vessel matching. The matching of 
two graphs can be formulated as a set of edge pairs in 3D and 2D. According to the topological continuity of vessel 
centerline, vessel matching can be regarded as a successive procedure of new paired edges being added to existing 
pairings. This property can decompose the matching procedure into successive states for search tree construc-
tion. In this work, our aim is to find the best state associated with optimal registration and matching in the search 
tree. We demonstrate the accuracy of our method by using simulated data, aorta model data, and clinical coro-
nary arteries. The contributions of this work are twofold. First, the 3D/2D registration of vessel graphs is form
ulated as a tree-searching problem. At each node of the tree, a closed solution is used to calculate the registration 
result based on the dense matching of vessel points, and a node score that evaluates the qualities of matching and 
registration is designed. Second, on the basis of the A-star search algorithms, an improved heuristic tree search 
strategy is proposed to find the optimal result with the highest node score.

Phys. Med. Biol. 65 (2020) 055010 (17pp)
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2.  Methods

2.1.  Problem definition
A graph G = {V , E} in 3D or 2D can be constructed by the set of vertices V  and set of edges E. Set of vertices V  
includes the bifurcations and endpoints, shown as blue points in figures 1(b) and (d). Edge set E is associated with 
the curves that connect two incident vertices. The matching between 3D graph G3D = {V3D, E3D} and 2D graph 
G2D = {V2D, E2D} is strongly reliant on an assumption that a vertex v3D

i ∈ V3D in 3D corresponds to a vertex 

v2D
j ∈ V2D in 2D and that an edge e3D

i ∈ E3D of the 3D graph should be matched with an edge e2D
j ∈ E2D of the 2D 

graph. The matching of two graphs G3D and G2D can be represted as sets of vertex pair πV =
¶Ä

v3D
i , v2D

j

ä©
 and 

edge pair πE =
¶Ä

e3D
i , e2D

j

ä©
. Given that the end-vertices of matched edges are matched and no other vertices are 

involved, edge matching πE uniquely determines a vertex matching πV .
In this study, a 3D vessel is considered an acyclic graph, while a 2D vessel is generally represented by a cyclic 

2D graph because several projected 3D branches will overlap in the 2D plane, thus forming fake bifurcations 
and connecting edges. Furthermore, because contrast agents are injected globally in CTA and locally through 
a catheter in XRA (Groher et al 2007), as well as the segmentation error and noise, 3D and 2D vessel graphs are 
distinctly different (figure 1). The topological differences between 3D and 2D graphs will hinder the matching. 
To address this issue in this work, the superedges (Pinheiro et al 2016), which are defined as sequences of multiple 
consecutive edges, are applied. In the definition, the superedge set contains a regular edge set, and we still use E to 
denote the superedge set.

The registration of 3D and 2D vessel structures can be formulated as finding an optimal transformation T of 
the 3D vessel whose projection best aligns the 2D vessel,

T̂ = argmin
T

D
(
P ◦ T

(
G3D

)
,G2D

)
,� (1)

where T indicates a set of admissible transformation, and D quantifies the distance between two graphs or two 
edges. P denotes a perspective projection operation that is constant and mandatory to compare a 3D and 2D 
modality and can be established using several parameters obtained from the DICOM head file of XRA. With 

the matching πE =
¶Ä

e3D
i , e2D

j

ä©
 of two graphs consisting of all matched superedges, the registration can be 

reformulated as finding an optimal transformation of the 3D vessel such that each 3D superedge best aligns with 
the 2D superedge,

Figure 1.  3D and 2D vessels to be registered. (a) 3D vessel model; (b) 3D centerlines of (a); (c) 2D angiogram image; (d) 2D 
centerlines of (c). The blue points in (b) and (d) are vertices of graph and the curves that connect two incident vertices are edges of 
the graph.

Phys. Med. Biol. 65 (2020) 055010 (17pp)
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T̂ = argmin
T,πE

∑

(e3D
i ,e2D

j )∈πE

D
Ä

P ◦ T
(
e3D

i

)
, e2D

j

ä
.

� (2)

Hence, the registration problem can be transformed to solving both transformation T and matching πE.

2.2.  Search tree
According to the formulation of πE, the matching of two graphs G3D and G2D can be formulated as a 

successive procedure by adding new superedge pair πE
(t+1) = πE

(t) ∪
Ä

e3D
i , e2D

j

ä
. This property decomposes 

the matching procedure into successive states, and a search tree can be constructed using these states. To 

preserve the topological consistency, a new pair of superedges 
Ä

e3D
i , e2D

j

ä
 is feasible only if two conditions are 

satisfied: (a) the start-vertices of e3D
i  and e2D

j  are contained in the set of matched vertex pairs πV
(t) and their end-

vertices are excluded, and (b) no matched superedges overlap. This step can be described as feasible pairing 
detection, given the two graphs G3D and G2D, current pairing of superedges and vertices, multiple new pairs 

of superedges 
¶Ä

e3D
i1

, e2D
j1

ä
,
Ä

e3D
i2

, e2D
j2

ä
, . . . ,

Ä
e3D

jk
, e2D

jk

ä©
 can be obtained. This step is formulated as function 

FeasiblePairingDetection (G3D, G2D, πE
(t), π

V
(t)) in algorithm 1. One example of a partial search tree is shown in 

figure 2, where a pair of vessel vertices is selected at the root node and expanded along the search tree.
In a newly expanded node of the search tree, the superedge pairing πE is updated. The vertex pairing πV  

determined by πE is also updated. The new transformation T  can be calculated by solving equation (2) with 
knownπE. Furthermore, a score S  related to the matching πE and registration T  will be calculated. The node N  

of the search tree can be formulated as N =
{
πE ,πV , T,S

}
.

2.3.  Transformation Calculation
Assuming that the superedge matching πE is given, the transformation T can be obtained by using a closed-
form solution. Dense matching of two vessel graphs is addressed by starting to conduct sparse correspondences 
between vertices and aligning edges/superedges between paired vertices by considering them as anchor points. 

Figure 2.  Partial search tree for vessel matching. A pair of vessel vertices is selected at the root node and then extended along the 
search tree. For the two vessel graphs in blue and green, matched edges are shown in black, and the newest candidate matching of 
edges is shown in yellow. Matched vertices are connected with a black solid line, and the newest candidate matching of vertices is 
connected with the black dashed line.

Phys. Med. Biol. 65 (2020) 055010 (17pp)
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In this study, the dense correspondence π of edges/superedges can be estimated using uniform interpolation πE. 

This step is formulated as function π(t+1) ← UniformInterpolation (πE
(t+1)) in algorithm 1.

For 3D points C3D and 2D points C2D, the registration procedure can thus be reformulated as follows

T̂ = argmin
T

∑
i

∥∥∥P ◦ T
(

c3D
i

)
− c2D

π(i)

∥∥∥ ,� (3)

where c3D
i  and c2D

j  are points on 3D and 2D vessel centerlines, π is associated with a mapping that assigns a 

2D point to each 3D point, and π (i) = j  indicates that c3D
i  is matched with c2D

j . A fast closed-form solution 

(Ferraz et al 2014) is used here to obtain rigid transformation. The central idea of the closed-form solution 

is to formulate the coordinates of 3D points c3D
i  as weighted sums of four control points 

¶
u(w)

j

©
 in the world 

coordinate system denoted by superscript 
(w)

, c3D
i

(w)
=

∑4
j=1 αiju

(w)
j , with 

∑4
j=1 αij = 1. The corresponding 

coordinate information c3D
i

(w)
 can be retrieved from the virtual control points by recording the coefficient αij .

The purpose of finding a transformation that maps 3D points in the world coordinate system to the camera 

coordinate system, denoted by superscript 
(c)

, T : c3D
i

(w) → c3D
i

(c)
 is similar to that of finding a mapping of the 

virtual control points T : u(w)
j → u(c)

j . This strategy transforms the problem of finding a best transformation to 

estimating the coordinates of the four control points 
¶

u(c)
j

©
 in the camera coordinate system. Given that the same 

coefficient relationship is held, we can obtain c3D
i

(c)
=

∑4
j=1 αiju

(c)
j . Supposing that each 3D point projection 

coincides with the corresponding 2D point, then we have P ◦ T
Ä

c3D
i

(w)
ä
= c2D

π(i). For T
Ä

c3D
i

(w)
ä
= c2D

i
(c)

, we 

derive:

ωi

ï
c2D
π(i)

1

ò
= P

(
c3D

i
(c)
)
= H

4∑
j=1

αiju
(c)
j ,� (4)

where His the internal calibration matrix of the camera, and ωi  is the homogeneous coefficient. The solution 

of 
¶

u(c)
j

©
 can be achieved by solving a small constant number of linear equations. Given the control points ¶

u(c)
j

©
, the transformation T : u(w)

j → u(c)
j  can be calculated by using the least-squares method (Arun et al 

1987). The closed-form solution runs much faster than the optimization-based solutions, but it is slightly less 
accurate. Therefore, a refinement procedure is used to increase the accuracy at very low computational cost. 
A quasi-Newton algorithm is used to achieve the refinement of 3D transformation T by solving equation (3). 
The calculation of transformation step is formulated as the function T ← TransformationCalculation (π) in 
algorithm 1.

2.4.  Node Score
To evaluate the registration and matching of each node in the search tree, we define a score S  related to the 
matching πE and registration T. The score is based on two criteria. The first criterion corresponds to an 
expectation that more paired superedges with high accuracy are encouraged. Therefore, the score of the first 
criterion is defined as

S1

(
πE , T

)
=

∑

(eA
i ,eB

j )∈πE

e−dF(P◦T(e3D
i ),e2D

j )/σ ,
� (5)

where dF(·) denotes the Fréchet distance (Alt and Godau 1995) of two sequential point sets, σ is the scale parameter 
to normalize the distance. S1 is related to the matching πE and transformation T and its supremum is the counts 

of matched superedges 
∣∣πE ∣∣. The second criterion corresponds to a common assumption on registration that 

more overlaps of projections of 3D points and 2D points are better. Thus, all the points are considered in the 
criterion and S2 is only related to the transformation T. Thus, we have

S2 (T) =
1

|CA|
∑

i

e
−
(
min

j
‖P◦T(c3D

i )−c2D
j ‖

)
/σ

+
1

|CB|
∑

j

e
−
(
min

i
‖P◦T(c3D

i )−c2D
j ‖

)
/σ

,� (6)

where 
∣∣C3D

∣∣ denotes the number of points in C3D. The supremum of S2 is 1. The minimal distance between 
projected 3D point P ◦ T (c3D

i ) and 2D point c2D
j  can be computed using distance transform. The overall score is 

defined as a weighted sum of the two scores

S
(
πE , T

)
= S1

(
πE , T

)
+ αS2 (T) ,� (7)

where α is the coefficient used to balance the contributions of S1 and S2. The calculation of node score is 
formulated as function S ← NodeScore(πE , T, P), where P = {σ,α}.

Phys. Med. Biol. 65 (2020) 055010 (17pp)
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2.5.  Greedy and Heuristic Strategy
To find the best state in the search tree effectively, two improved searching strategies are proposed. The first 
searching strategy, named greedy tree search, is an evolution of best-first search. The detailed pseudocode of 
greedy tree searching for 3D/2D registration (GTSR) is presented in algorithm 1. The 3D edge is regarded as 
a reference to match with 2D superedge. Thus, we first initialize the 2D superedge set E2D, which is defined as 
sequences of K  consecutive edges (Line 1). The matching procedure starts with assigning an initial pairing 
of vertices (v3D

0 , v2D
0 ) for the root node N (0) (Line 2). However, this initial step is optional, indicating that the 

matching in the root node can be a null set. In that case, additional child nodes of null root node will be generated. 
The initial pairing of vertices can also be obtained automatically by choosing vertices with the maximal radius in 
3D and 2D. In each level of the search tree, multiple new superedge pairings can be obtained by the feasible pairing 
detection. For each newly expanded child node, the superedge pairing πE, vertex pairing πV , transformation T 
and node score S  are updated correspondingly (Lines 15–18).

The greedy strategy selects one best leaf node to expand the tree. However, the strategy has a limitation that 
it’s easy to fall into the local extremum in the beginning steps, because fewer matched superedges are involved in 
estimating node score. In addition, less dense pairings of 3D and 2D points may decrease the accuracy of trans-
formation calculation. We use a method in which more candidates are selected in the beginning L steps and then 
the greedy strategy begins with step L + 1 (Lines 9–10). The procedure stops upon reaching the final level of the 
search tree, and the registration result T̂  is from the last leaf node (Line 11). The detailed implementation of the 

proposed GTSR method is presented in algorithm 1.

Algorithm 1.  Greedy tree search for 3D/2D registration.

Input: 3D vessel graph G3D = {V3D, E3D} and 2D vessel graph G2D = {V2D, E2D}, perspective projection operation P, initial 

vertex pairing v3D
0 , v2D

0 ;

Parameters: node score parameters P = {σ,α}, maximal length of superedge K , starting step of greedy strategy L ;

Output: registration result T̂ ;

1 Initial 2D superedge set E2D, which is defined as sequences of K  consecutive edges;

2 Create root node N (0) with πE
0 = null and πV

0 = {v3D
0 , v2D

0 }, leaf nodes list Q(0) =
{
N (0)

}
;

3 while isNotEmpty(Q(t)) do

4   foreach N (t) in Q(t) do

5    
¶Ä

e3D
i1

, e2D
j1

ä
,
Ä

e3D
i2

, e2D
j2

ä
, . . . ,

Ä
e3D

ik
, e2D

jk

ä©
←FeasiblePairingDetection(…)

6     foreach 
Ä

e3D
i , e2D

j

ä
 in 
¶Ä

e3D
i1

, e2D
j1

ä
,
Ä

e3D
i2

, e2D
j2

ä
, . . . ,

Ä
e3D

ik
, e2D

jk

ä©
 do

7       N (t+1) ← NodeExpand(πE
(t), 
Ä

e3D
i , e2D

j

ä
)

8       Q(t+1) ← append N (t+1)

    end foreach

  end foreach

9   if t > L then

10     Q(t+1) ← GreedyStrategy(Q(t+1));

    end if

end while

11 Registration result T̂ = T(t).

12 function FeasiblePairingDetection(G3D, G2D, πE
(t), π

V
(t))

13   return 
¶Ä

e3D
i1

, e2D
j1

ä
,
Ä

e3D
i2

, e2D
j2

ä
, . . . ,

Ä
e3D

ik
, e2D

jk

ä©
         // in section 2.2

14 function NodeExpand(πE
(t), 
Ä

e3D
i , e2D

j

ä
)

15   πE
(t+1) = πE

(t) ∪
Ä

e3D
i , e2D

j

ä
, πV

(t+1) ← πE
(t+1);

16   π(t+1) ← UniformInterpolation(πE
(t+1));               // in section 2.3

17   T(t+1) ← TransformationCalculation(π(t+1));            // in section 2.3

18   S(t+1) ← NodeScore(πE
(t+1), T(t+1),P);               // in section 2.4

19   return N (t+1) =
¶
πE
(t+1),π

V
(t+1), T(t+1),S(t+1)

©

20 function GreedyStrategy(Q(t))

21   return Q(t) =
{

argmaxN∈Q(t) (S)
}
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The greedy strategy conducts a modified depth-first search that aims to reach the deepest level of the search 
tree, indicating that most paired superedges are obtained. The node score in the greedy strategy is applied for 
comparison among leaf nodes at the same level, and then the tree is pruned without backtracking. The second 
searching strategy, name heuristic tree search for 3D/2D registration (HTSR), is an evolution of the A-star search 
algorithm. Different from the greedy strategy, the heuristic tree search is adaptive and allows for backtracking. It 
maintains a heuristic queue Qh of tree nodes that is most likely to lead to a correct solution. Furthermore, a close 
queue Qc is used to record visited nodes.

The pseudocode of HTSR is presented in algorithm 2. It begins with the initialization of 2D superedges and 
root node (Lines 1–2). Then the heuristic queue is initialized by pushing the root node into it, and the close queue 

is initialized as a null set (Line 3). For the visited node N =
¶
πE
(t),π

V
(t), T(t),S

©
, multiple new superedge pairings 

can be obtained by the feasible pairing detection (Line 6). For each new pair of superedges, a new expanded child 
node N (t+1) can be constructed by updating the superedge pairing πE, vertex pairing πV , transformation T  and 
node score S  correspondingly (Line 8). The new expanded child nodes are pushed into the heuristic queue, and 
the queue is sorted in descending order based on the node score (Line 9). The iteration procedure stops when the 
heuristic queue Qh is empty or the capacity of close queue Qc is above M  (Line 4). The final registration result T  is 
obtained from the close queue, for which the node score is the highest. Detailed implementation of the proposed 
HTSR method is presented in the following pseudocode.

The complexity analysis of two methods are presented. In practice, the 3D vessel edges are traversed and 
multiple 2D superedges are selected to match with each 3D edge. Therefore, the depth of search tree can be speci-
fied as the capacity of 3D edge set d = |E3D|. The branch factor of the search tree can be defined as the counts of 
FeasiblePairingDetection outputs whose maximum is specified as b = 2K − 1, where K  is the maximal length of 
superedge. The time complexities of functions NodeScore and TransformationCalculation are both O (n), where 
n denotes the counts of paired points. Therefore, the time complexity of NodeExpand is O (n). Considering the 
iterative procedure, the time complexities of GTSR and HTSR are O ((bL + d − L) n) and O (Mn), respectively. It 
can be found that the computation time of GTSR is sensitive to L  and K , while HTSR is more stable.

3.  Experiments and results

3.1.  Experimental Setting
The 3D/2D registrations are evaluated by calculating the mean projected distance (mPD) (van de Kraats et al 
2005) between projected 3D and 2D centerline points. The performance of the proposed 3D/2D registration 
methods is compared with four comparative methods in each experiment. (1) An extension of ICP (Besl 
and McKay, 1992) (i.e. ICP-BP) to the 3D/2D application introduced in Baka et al (2014). (2) An accelerated 
method for ICP matching (i.e. DT) (Rivest-Henault et al 2012) uses a precomputed distance transformation of 

Algorithm 2.  Heuristic tree search for 3D/2D registration.

Input: 3D vessel graph G3D = {V3D, E3D} and 2D vessel graph G2D = {V2D, E2D}, perspective projection operation P, initial 

vertex pairing v3D
0 , v2D

0 ;

Parameters: node score parametersP = {σ,α}, maximal length of superedge K , maximum counts of iterations M;

Output: registration result T̂ ;

1 Initial 2D superedge set EB, which is defined as sequences of K  consecutive edges;

2 Create root node N (0) =
{
πE

0 ,πV
0

}
 with πE

0 = null and πV
0 = {v3D

0 , v2D
0 }. 

3 Initialize heuristic queue Qh ← Push (N (0)) and close queue Qc = null

4 while isNotEmpty(Qh) & |Qc| < M  do

5   N ← Pop (Qh), Qc ← Push (N );

6  
¶Ä

e3D
i1

, e2D
j1

ä
,
Ä

e3D
i2

, e2D
j2

ä
, . . . ,

Ä
e3D

ik
, e2D

jk

ä©
←FeasiblePairingDetection(…)

7   foreach 
Ä

e3D
i , e2D

j

ä
 in 
¶Ä

e3D
i1

, e2D
j1

ä
,
Ä

e3D
i2

, e2D
j2

ä
, . . . ,

Ä
e3D

ik
, e2D

jk

ä©
 do

8     N (t+1) ←. NodeExpand(πE
(t), 
Ä

e3D
i , e2D

j

ä
)

9     Qh ← PushAndDescendSort(N (t+1))

  end foreach

end while

10 Registration result T̂ = argmax{πE ,πV ,T,S}∈Qc
{S}.
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Figure 3.  Results of pose independence experiment of the proposed method and comparative methods. Projected 3D and 2D 
centerlines are shown in green and red, respectively. The vessels of the initial state are presented in the first row. In the remaining 
rows from up to down, the results of ICPBP, DT, OGMM, Tree, GTSR and HTSR are presented. In the columns from left to right, the 
rotation angles of the 3D vessel are set to  −120°, −60°, −30°, 0°, 30°, 60° and 120°.

Figure 4.  Distance errors of pose independence experiment. The X-axis shows the rotation angles from  −180° to 180°. The Y-axis 
indicates the mean projected distance from 0 to 5 mm. The results of the proposed method and comparative methods are presented.

Phys. Med. Biol. 65 (2020) 055010 (17pp)
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a segmented vessel tree. (3) Tree topology matching for 3D/2D registration (i.e. Tree) (Benseghir et al 2015). (4) 
Oriented Gaussian mixture models (OGMM) (Baka et al 2014).

The node score parameters σ and α for proposed GTSR and HTSR are selected empirically. The scales of 
position and orientation are set σ = 5, and α = 0.2 is used to balance the contributions of the two score items. 
The length of superedge K = 3 is applied to extract superedge sets. In GTSR, the greedy strategy starts at step 
L = 3. For HTSR, M determines the maximum counts of iterations. M is set according to the node counts N of 
graphs to be registered. For N < 15, M = 100. is sufficient for the tree search. For 15 < N < 25, M = 200 is 
selected. For N > 25, a maximum count of M = 300 is selected.

3.2.  Validation of Proposed Method
Empirical assessments of the GTSR and HTSR are presend in this section. Since the vessel matching in 
the proposed method relies on the topological continuity of vessels, the proposed method is sensitive to the 
disconnected vessel centerlines. For noisy vessel branch, the proposed method shows good robustness.

The size of coronary branches, which can be defined as the capacity of edge set |E|, also influences the registra-
tion. For vessel matching based on topology continuity, |E| � 3 is recommended to establish a proper registra-
tion. However, |E| determines the depth of search tree. Large size of coronary branches means that more trails 
are required to find the optimal result. In spite of this, the registration of 3D and 2D vessels is executed using the 
whole vessel branch, which represents complete topological information. The initial vertex pairing is crucial for 
the proposed method, the search tree expands from the root node. If the root node is wrong, such as incorrect 
pairing, the vessel matching will fail. If the initial vertex pairing is not given, the search tree will start with a null 

Figure 5.  Cumulative histogram of errors of the XCAT data experiment. The percentage is indicated by the Y-axis and 100% 
percentage indicates 80 instances of registration. Mean projected distance (unit: mm) is indicated by the X-axis.

Figure 6.  Aorta model used in this work. (a) Normal aortic arch model. (b) Segmented vessel model. (c) Extracted 3D vessel graph.

Phys. Med. Biol. 65 (2020) 055010 (17pp)
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root and multiple leaf nodes with candidate vertex pairing are generated. Thus, the time complexities of GTSR 
and HTSR will be multiplied by |V2D|.

The initial pose, noise and deformation are mainly concerned in the validation. A public available dataset, 
XCAT data (Segars et al 2010), is applied to validate the pose independence and robustness to errors. A set of 
dynamic volume data of chests with heart-beat motions is generated from the XCAT tools. The entire heart tis-
sue, coronary arteries, and aorta are involved and enhanced. The volume data contain 301 slices, and the slice 
spacing is 0.5 mm. The image size and pixel spacing of each slice are 400  ×  400 and 0.5 mm  ×  0.5 mm. The vol-
ume data are input into the medical image processing software (Materialise Mimics), and then extract the center-
lines and connectivity relation of coronary arteries.

Given the 3D vessel graph G3D, a dataset of simulated 2D centerlines with noise and non-rigid deformation 
is designed, similar to the simulation in Serradell et al (2011). The deformation of the vessel is simulated using 
the statistical shape model (SSM), which can be constructed using the dynamic 3D centerlines. The SSM is estab-

Figure 7.  Results of aorta model experiments. Projected 3D and 2D centerlines are shown in green and red, respectively. The vessels 
of the initial state are presented in the first row. Results of GTSR and HTSR methods are presented in the second and third rows, 
respectively. Frames of Nos. 1, 5, 9, 13 and 17 are shown from left to right.

Figure 8.  Cumulative histogram of errors of the aorta model experiment. The percentage is indicated by the Y-axis and 100% 
percentage indicates 80 instances of registration. Mean projected distance (unit: mm) is indicated by the X-axis.

Phys. Med. Biol. 65 (2020) 055010 (17pp)
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lished to retain 95% of the variance, resulting in approximately 20 parameters. The deformed 3D vessel can be 
expressed as T (G3D, b), where T  denotes the non-rigid deformation driven by SSM and b is the parameter vec-
tor of constructed SSM. Then the 3D vessel structure is projected onto a 2D plane defined by the camera internal 
matrix from a DICOM file of XRA, to obtain the simulated 2D vessel structure P ◦ T (G3D, b). Branch noises are 
randomly added to the 2D centerline by locating randomly generated free-form curves adjacent to the 2D ves-
sel branch, implying that the topology of the 2D vessel is changed and different with a 3D centerline. Finally, the 
simulated 2D vessels are expressed as P ◦ T (G3D, b) +N (β), where N (β) denotes that β percentage of points 
are added. Furthermore, rotated 3D vessels are produced T (G3D,θ), where T  denotes rigid transformation and 
θ denotes rotation angles.

3.2.1.  Pose independence
The proposed method is designed with a large capture range, and the simulation experiment aims to test the 
ability to align 3D vessels rotated with an arbitrary angle to deformed and noisy 2D vessels. In this experiment, 
3D vessels T (G3D,θ) are registered to the deformed and noisy 2D vessels P ◦ T (G3D, b) +N (β). We set the 
rotation angle range from  −180° to 180° with 10° interval and produce 36 cases of 3D vessels. The deformation 
parameter is set as b = 0.1λ, where λ is the eigen-vector of SSM; the noise percentage is set as β = 50%.

Results of the pose independence experiment are visualized by plotting centerlines and distance error curves, 
as presented in figures 3 and 4. Projected 3D and 2D centerlines are shown in green and red in figure 3, respec-

Figure 9.  Results of 3D/2D registration methods conducted on un-initialized coronary artery data. Two samples of LCA and RCA 
are presented at the top and bottom of the figure, respectively. The applied method and mPD (unit: mm) are presented below the 
respective plotted sub-figures. Projected 3D and 2D centerlines are shown in green and red. The texts of registration with the best 
accuracy are colored in light blue.

Phys. Med. Biol. 65 (2020) 055010 (17pp)
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tively. The results of rotation angles  −120°, −60°, −30°, 0°, 30°, 60°, and 120° are selected. Accordingly, the 
distance errors of simulation experiments are presented in figure 4. Examples and distance error indicate that the 
proposed GTSR and HTSR methods are insensitive to initial pose. They achieve average accuracies of 1.29 and 
1.25 mm on the whole rotation angles, respectively. These comparative methods perform well on the data with 
rotation from approximately  −30° to 30°. By contrast, for rotation angles larger than 30°, the distance errors 
increase rapidly.

3.2.2.  Robustness to errors
Two sets of vessel data are generated for the robustness validation experiment. The first set is aim to validate 
the robustness to noise. Slighted deformation and small rotation are added. The deformation parameter is set 
as b = 0.1λ, and rotation angles θ are randomly generated ranging from  −10° to 10°. Three noise parameters 
{β} = {10%, 30%, 50%} are applied to the 2D vessels. The second set is aim to validate the robustness to 
deformation. Small rotation  −10◦ � θ � 10◦ and slighted noise β = 10% are added to vessel data. Three 
deformation parameters {b} = {0.1λ, 0.5λ, 1.0λ} are applied to the 2D vessels. 20 samples are generated for 
each set of parameters, and each sample is performed 4 times for every 3D/2D registration method. Results of 
the robustness validation experiment are displayed by the cumulative histogram of errors, as shown in figure 5. 
It can be found that the accuracy decrease obviously with the noise and deformation increase. For all the 
comparative methods, the proposed method demonstrated to be very robustness with respect to different noise 
and deformation. It is obvious that the proposed method is more accurate than the other comparing methods.

3.3.  Aorta model experiment
An aorta model is applied to produce a dataset for 3D/2D registration. The size of the model is 
26 cm  ×  17 cm  ×  14 cm. The model corresponds to the normal aortic arch model with the left and right 
coronary (www.elastrat.com), as shown in figure 6(a). A Siemens SOMATOM Definition Flash CT is used to 
scan the model and derive the corresponding volume data, which contains 316 slices with 1 mm spacing between 
slices. The image size of one slice is 512  ×  512, and pixel spacing is 0.590 mm  ×  0.590 mm. Medical image 
processing software (Materialise Mimics) is used to segment the vessel, and the segmented vessel model is shown 
in figure 6(b). With the centerline points and connectivity relations, the 3D vessel graph can be constructed, as 
shown in figure 6(c).

A rotational C-arm device is likewise used to produce rotational x-ray images. One image frame is captured 
when the C-arm rotates 2.5°, and a total of 20 frames are acquired. The image size and pixel spacing of x-ray image 
are 1024  ×  1024 and 0.417 mm  ×  0.417 mm respectively. The x-ray images of the aorta model are segmented 
manually, and then the 2D centerlines are extracted using image thinning. The 2D graphs can be obtained on the 
basis of neighbor relations.

Initial vertex pairings for aorta graphs are manually labeled. The 3D aorta graph is registered to the 20 frames 
of the 2D graph. Each frame is performed four times; thus, 80 instances of registration are conducted for each 
method. The results of the aorta model experiment are visualized by centerlines and cumulative histograms, as 
presented respectively in figures 7 and 8. The frames of Nos. 1, 5, 9, 13, and 17 are selected to be displayed from 
left to right. The first row indicates the initial pose of the projected 3D and 2D vessels. The second and third rows 
indicate the results of GTSR and HTSR, respectively. The results in figure 7 present a good overlap of 3D and 2D 
vessels. Detailed statistical errors are presented in figure 8 in the form of a cumulative histogram of errors. The 
errors are computed using the mean projected distance (unit: mm). The GTSR and HTSR methods achieve accu-
racies of 10.16 and 8.83 mm, respectively, which are tolerable with respect to the size of the aorta model. The four 
comparative methods, ICP-BP, DT, OGMM, and Tree, achieve accuracies of 15.91, 15.95, 19.92, and 26.85 mm, 
respectively.

3.4.  Clinical experiment of coronary arteries
Clinical data of coronary arteries are used in this study. The coronary artery dataset consists of intra-operation 
CTA and XRA coronary images from 14 patients from Peking Union Medical College Hospital. A total of 30 
pairs of 3D and 2D vessel data are used, comprising 16 pairs of right coronary arteries (RCA) and 14 pairs of left 
coronary arteries (LCA). The CTAs are acquired on a Siemens SOMATOM Definition Flash CT, reconstructed 
in the arterial phase. The image size and pixel spacing of each slice are 512  ×  512 and approximately 
0.35 mm  ×  0.35 mm, respectively. The scanning range of the collected CTAs covers all the cardiac tissue. The 
number of slices ranges from 200 to 400, and the slice spacing is 0.75 mm. The XRAs are acquired on a Philips 
INTEGRIS Allura Flat Detector at a frame rate of 15 fps. The image size and pixel spacing of the sequences are 
512  ×  512 and 0.37 mm  ×  0.37 mm, respectively.

CTAs of coronary arteries are preprocessed using medical image processing software (Materialise Mimics) 
manipulated by doctors. The 3D centerlines and connectivity of vessel branches can be acquired from the soft-
ware outputs. For XRA sequence, one frame with full filled contrast agent is selected manually and segmented 
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Figure 10.  Results of 3D/2D registration methods performed on initialized coronary artery data. Two samples of LCA and RCA 
are presented at the top and bottom of the figure, respectively. The applied method and mPD (unit: mm) are presented below the 
respective plotted sub-figures. Projected 3D and 2D centerlines are shown respectively in green and red. The texts of registration 
with the best accuracy are colored in light blue.

Figure 11.  Cumulative histograms of errors of un-initialized and initialized clinical experiments. Percentage is indicated by the  
Y-axis, and 100% percentage indicates 120 instances of registration. Mean projected distance (unit: mm) is indicated by the X-axis.

Phys. Med. Biol. 65 (2020) 055010 (17pp)
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using a convolutional neural network based method (Nasr-Esfahani et al 2018). Then, centerlines are extracted by 
applying iterative filtering operation and multi-direction indexed non-maximum suppression. Then, an eight-
neighborhood tracking method is used to connect adjacent 2D points. With the centerlines and the connection 
information, 3D and 2D graphs can be constructed. Vessel segmentation, centerline extraction, and graph con-
struction can be replaced with other methods. In the experiment, all the centerline-based comparative methods 
are conducted with the same centerline information.

The node counts of 3D vessel graphs range from 8 to 23, and the numbers of sampled 3D vessel points are 
approximately 500 for coronary arteries. The node counts of 2D vessel graphs range from 22 to 35, and the num-
bers of sampled 2D vessel points are approximately 1000. Initial vertex pairings for coronary graphs are auto-
matically recognized by selecting the vertices with the maximum radius.

In the clinical experiment, the initial projection of the 3D vessel onto the 2D image plane is far from the 2D 
vessel and exhibits large rotation angle discrepancies. For pose initialization-dependent methods, although the 
translation between 3D and 2D data can be adjusted by an automatic normalization operation, these methods 
predictably result in failed registration in most instances. Therefore, the initial pose for each 2D vessel is manu-
ally adjusted to conduct 3D/2D registration on un-initialized and initialized data. The mean value and standard 
deviation of distance errors (mPD) of un-initialized data are 15.17 and 7.35 mm, respectively. After initialization, 
the mean value and standard deviation are 5.70 mm and 3.14 mm, respectively. The proposed method aims to 
find matching and then calculate the transformation on the basis of topological consistency and dense matching 
of vessel points, respectively. The proposed method is expected to perform well on un-initialized and initialized 

data.
Four trials of registration are conducted for each pair of 3D and 2D vessels, and 120 instances of registration 

are conducted for each method. Samples of 3D/2D registration methods performed on un-initialized and ini-
tialized coronary artery data are presented in figures 9 and 10 in the form of centerlines overlapped on the x-ray 
images, respectively. The applied method and distance error are shown at the bottom of the respective plotted 
sub-figures. For the un-initialized data, only the GTSR and HTSR methods can achieve satisfactory results. For 
the initialized data, most comparative methods can register 3D and 2D data. The proposed method still performs 
best. The corresponding cumulative histograms of errors are presented in figure 11. For the initialized data, the 
percentages of distance errors under 3 mm of these methods are 36.67%, 41.67%, 26.67%, 10%, 76.67%, and 
90%. For the un-initialized data, the corresponding percentages are 70.00%, 66.67%, 76.67%, 13.33%, 93.33%, 
and 96.67%.

Table 2 presents the detailed statistical results of registration errors and the computation times of all the 
methods. The average and standard deviations are calculated. In the table, the best performances on accuracy 
and computational efficiency are in bold. The codes are run on a PC (Intel I7-7700 CPU, MATLAB platform), 
and the parameter tuning of all the methods aims to obtain high accuracy. The implementations of the algorithm 

presented in this paper are available online at https://github.com/JianjunZhu/HTSR.

4.  Discussion

In this study, a tree search framework for 3D/2D registration of un-initialized vessel graphs is proposed. On the 
basis of the property that the matching procedure can be decomposed into successive states, the registration 
problem is transformed into a tree search problem. Dense matching of the vessel points and closed-form 
transformation are used to obtain the registration results. Then, the node scores used to evaluate the qualities 
of matching and registration are calculated. Based on a definition, an HTSR is proposed to find the optimal 
registration with the highest score in the search tree. Given that the matching is based on the topological 
continuity of 3D and 2D vessels, the proposed method is expected to be insensitive to the initial pose.

Table 2.  Statistical results of all methods on three datasets used in this work.

XCAT simulation 

data Aorta model data Clinical data of coronary arteries

Distance error (mm) Distance error (mm)

Distance error (mm)
Computation 

time (s)Un-initialized Initialized

ICP-BP 2.30 (±0.73) 15.91 (±0.81) 5.78(±1.94) 2.95(±1.95) 0.43 (±0.09)

DT 4.26 (±1.28) 15.95 (±0.80) 5.06(±3.06) 3.10(±2.12) 0.06 (±0.01)

OGMM 3.60 (±2.21) 19.92 (±3.31) 8.75(±3.00) 2.65(±1.47) 10.39 (±5.49)

Tree 5.66 (±4.59) 26.85 (±5.08) 7.03(±3.91) 3.41(±1.85) 14.21 (±5.48)

GTSR 1.29 (±0.10) 10.16 (±3.18) 2.16(±1.66) 2.07(±0.74) 9.48(±6.17)

HTSR 1.25 (±0.09) 8.83 (±2.23) 1.85(±0.71) 1.79(±0.87) 2.28 (±0.30)
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Four state-of-art methods, namely, ICP-BP (Besl and McKay 1992), DT (Rivest-Henault et al 2012), OGMM 
(Baka et al 2014) and Tree (Benseghir et al 2015), are compared with our methods in the experiments. In addi-
tion, the GTSR approach that uses greedy search strategies as the baseline is proposed. The XCAT simulation 
experiment is designed to test the robustness with respect to the initial pose, noise and deformation. The results 
of simulated data demonstrate that the proposed method is barely sensitive to the initial pose even with distur-
bance of noise and deformation. Real captured images are used in the aorta model experiment and clinical coro-
nary artery experiment. For un-initialized data, only the proposed method can achieve acceptable registration 
results. For the data provided with post initialization, our method continues still achieve the best registration 
accuracy among these 3D/2D registration methods.

Among these methods, the proposed GTSR and HTSR can align data with large-scale rigid transformation. 
ICP-BP and DT achieve similar accuracies because they use the closest relationship to estimate the similarity 
metric. Given that DT precomputes a distance transform of the 2D centerline, it performs the fastest among all 
the methods, achieving an average computation time of 0.06 s for clinical data. OGMM performs well on simu-
lated data with low rotation difference, from approximately  −30° to 30°. By contrast, OGMM performs poorly 
on data with large rotation and un-initialized data because the optimization-based method relies on the initial 
pose. Tree methods use the topology continuity of vessels to obtain accurate matching. The distance-based met-
ric is used to pair the vessel branches; consequently, it is sensitive to initial pose. The HTSR uses a global informed 
searching strategy, which performs better than the GTSR based on local greedy strategy in all experiments.

5.  Conclusions

We presented a novel and potentially clinically useful 3D/2D registration method of un-initialized vessel graphs 
based on heuristic tree search. Insensitivity to the initial pose of registration is the primary advantage of our 
method. Moreover, GTSR and HTSR are robust to noise and deformation and their computation times are 
acceptable and improvable. Thus, it is suitable to navigate vascular intervention for clinical practice. One major 
limitation of the proposed method is that the topology of vessel centerlines is mandatory requirement. Hence, 
the accuracy of the proposed method relies on the XRA images preprocessing, including vessel segmentation, 
centerline extraction, and topology construction.
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