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Abstract
To predict the epidermal growth factor receptor (EGFR) mutation status in patients with lung 
adenocarcinoma using quantitative radiomic biomarkers and semantic features.

We analyzed the computed tomography (CT) images and medical record data of 104 patients with 
lung adenocarcinoma who underwent surgical excision and EGFR mutation detection from 2016 
to 2018 at our center. CT radiomic and semantic features that reflect the tumors’ heterogeneity and 
phenotype were extracted from preoperative non-enhanced CT scans. The least absolute shrinkage 
and selection operator method was applied to select the most distinguishable features. Three logistic 
regression models were built to predict the EGFR mutation status by combining the CT semantic 
with clinicopathological characteristics, using the radiomic features alone, and by combining the 
radiomic and clinicopathological features. Receiver operating characteristic (ROC) curve analysis 
was performed using five-fold cross-validation and the mean area under the curve (AUC) values 
were calculated and compared between the models to obtain the optimal model for predicting EGFR 
mutation. Furthermore, radiomic nomograms were constructed to demonstrate the performance of 
the model.

In total, 1025 radiomic features were extracted and reduced to 13 features as the most important 
predictors to build the radiomic signature. The combined radiomic and clinicopathological features 
model was developed based on the radiomic signature, sex, smoking, vascular infiltration, and 
pathohistological type. The AUC was 0.90  ±  0.02 for the training, 0.88  ±  0.11 for the verification, 
and 0.894 for the test dataset. This model was superior to the other prediction models that used 
the combined CT semantic and clinicopathological features (AUC for the test dataset: 0.768) and 
radiomic features alone (AUC for the test dataset: 0.837).

The prediction model built by radiomic biomarkers and clinicopathological features, including 
the radiomic signature, sex, smoking, vascular infiltration, and pathological type, outperformed the 
other two models and could effectively predict the EGFR mutation status in patients with peripheral 
lung adenocarcinoma. The radiomic nomogram of this model is expected to become an effective 
biomarker for patients with lung adenocarcinoma requiring adjuvant targeted treatment.
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Introduction

Lung cancer accounts for 13% of the global cancer incidence and is the leading cause of cancer-related death 
(Halpenny et al 2014, Siegel et al 2019). According to the histological type, it is divided into non-small cell 
lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC accounts for 85  −  90% of lung cancer cases. 
Adenocarcinoma is the most common pathohistological subtype of NSCLC (Ganeshan et al 2012, Antonicelli 
et al 2013).

The introduction and progress of molecular targeted therapy have revolutionized NSCLC treatment, with 
significantly better selective tumor control than that in traditional chemotherapy and fewer toxic side effects 
(Nishino et al 2014, Ozkan et al 2015). Epidermal growth factor receptor (EGFR) is a transmembrane receptor 
tyrosine kinase involved in signaling pathways that regulate cell proliferation, apoptosis, angiogenesis, and inva-
sion (Travis 2011, Nishino et al 2011). Small-molecule tyrosine kinase inhibitors (TKIs) against EGFRs were the 
first targeted drugs for NSCLC treatment. The EGFR mutation status is an important predictor of EGFR-TKI 
therapy efficacy in patients with NSCLC (Sugano et al 2011). Namely, the response rate to EGFR-TKIs in patients 
with EGFR mutations (60%–80%) is higher than that in patients with wild-type EGFRs or unknown mutations 
(10%–20%) (Riely et al 2006). Therefore, it is vital to identify the EGFR mutation status before treatment.

Detection of the EGFR mutation status is based on surgical specimen, biopsy sample, or hematological exam-
ination, all of which are invasive modalities. Additionally, due to the heterogeneity of tumors, the positive rate of 
EGFR mutation detection may vary across different tissue samples of the same patient. A further disadvantage is 
the high cost. Therefore, a noninvasive method with greater sensitivity and lower cost is necessary for detection of 
the EGFR mutation status in patients who would benefit from EGFR-TKI therapy.

Presently, multi-slice spiral computed tomography (MSCT) is a commonly used noninvasive examination 
method to analyze the tumor morphology and examine the correlation among the clinicopathological charac-
teristics, CT imaging manifestations, and EGFR mutations in primary lung adenocarcinoma. Previous studies 
have shown that the EGFR mutation status is associated with many factors, such as the smoking status, pathohis-
tological subtype, sex, and ethnicity (Russell et al 2013, Shi et al 2014). Recent studies have also shown that EGFR 
mutation is associated with the ground-glass opacity (GGO) (Lee et al 2013, Usuda et al 2014, Yang et al 2015). 
However, these studies have the limitation of predicting EGFR mutations through traditional, univariate analysis 
of CT or clinical features.

Radiomics is an emerging calculation method used for extracting all information contained in radiographic 
images for comprehensive systematic analysis. More precisely, radiomics is the use of automated algorithms to 
extract a large amount of features from the region of interest (ROI) of the image and further extract and strip the 
large-scale information through the statistical information and data mining methods to obtain key information 
that ultimately help the auxiliary diagnosis, classification, or grading of the disease (Kumar et al 2012, Lambin 
et al 2012, Parmar et al 2014, Gillies et al 2016). In recent years, some studies have found that radiomics is more 
meaningful in terms of tumor analysis and treatment than traditional clinical data (Leijenaar et al 2013, Kuo and 
Jamshidi 2014, Coroller et al 2015, Antunes et al 2016). Therefore, a logistic regression (LR) model with multivar-
iate CT features and clinicopathological data was established in this study to predict the EGFR mutation status in 
peripheral lung adenocarcinoma.

Methods

Ethical considerations
This study was approved by our institutional review board.

Patient selection
We retrospectively reviewed the medical records of patients who underwent surgical resection for primary lung 
adenocarcinoma at our center from September 2016 to July 2018.

The inclusion criteria were as follows: (a) classification of the lung adenocarcinoma pathohistological sub-
type according to the 2015 World Health Organization (WHO) classification of lung cancer; (b) examination of 
the EGFR mutation status using amplification refractory mutation system-polymerase chain reaction (ARMS-
PCR); (c) CT examination of the entire thorax using the same CT machine with the same slice thickness (1 mm) 
within 4 weeks before surgery; and (d) assay of carcinoembryonic antigen (CEA) before surgery. The exclusion 
criteria were as follows: (a) history of chemotherapy, radiotherapy, or extrathoracic metastases prior to undergo-
ing CT examination; (b) insufficient or poor-quality tissue for molecular analyses; and (c) incomplete data.

The CT images and following clinicopathological data of all patients were collected for the analysis: age, sex, 
smoking history, pathohistological subtype, and EGFR mutation status.
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Histopathological evaluation and molecular analysis
All resected specimens were formalin-fixed and stained with hematoxylin and eosin in accordance with the 
routine procedure in our hospital. The pathohistological subtype of the lung adenocarcinoma was classified 
according to the 2015 WHO classification of lung cancer. Paraffin specimens of tumor tissue were evaluated by 
two pathologists for the criterion of containing at least 50% tumor cells. The EGFR mutation status was examined 
by ARMS-PCR. All procedures were performed according to the manufacturer’s protocol.

CT image acquisition and segmentation
All patients underwent non-enhanced CT examination of the entire thorax using a multidetector CT system 
(64-Slice; Siemens, Germany). In our study, the CT images were acquired using normalized protocols. The CT 
scan parameters were as follows: tube voltage, 120 kV; automatic tube current modulation, 35–90 mAs; pitch, 
0.9; field of view, 180 mm  ×  180 mm; matrix, 512  ×  512; reconstructed slice thickness and slice increment, 
both 1 mm. All CT images were exported in Digital Imaging and Communication in Medicine format for 
segmentation and image feature extraction.

Figure 1 shows the workflow of this study. Axial CT images were selected for analysis. The ROIs were deline-
ated manually in a blind fashion by two highly-qualified radiologists in thoracic CT interpretation and were 
manually segmented using MicroDicom software.

Feature extraction and selection
In this study, semantic and radiomic features were extracted from the CT images. The two radiologists 
independently reviewed the preoperative thoracic CT images on the Picture Archiving and Communication 
System without knowing the patients’ EGFR mutation status and evaluated the CT semantic features, including 
the type of lesion (solid type, pure or mixed GGO) and general tumor semantic features (such as location, size, 
lobulation, spiculation, and vacuolization).

The experiment was performed on a PC using a Windows 10 64-bit operating system with an Intel i7 CPU, 
16GB RAM. The construction environment of the machine learning model was Python 3.6.1. The least absolute 
shrinkage and selection operator (LASSO) method was used for radiomic feature extraction and dimensional-
ity reduction. The correlation coefficient of matrix thermal map and unsupervised clustering thermal map was 
calculated to judge the dimension reduction efficiency. Radiomic features were extracted from the ROIs using the 
pyRadiomics (2.0.1) package (van Griethuysen et al 2017) and included the tumor shape, intensity, texture, and 
wavelet features.

We also analyzed the interobserver reliability and intraobserver reproducibility of the two radiologists for the 
whole dataset in a blinded fashion.

Establishment of the prediction model and nomogram construction
Three LR models for prediction of EGFR mutation were established in the platform: (1) CT semantic features 
combined with clinicopathological features model, (2) radiomic biomarkers model, and (3) radiomic biomarkers 
combined with clinicopathological features model. A nomogram based on multivariate logistic analysis was 
implemented in R language to indicate the potential for EGFR mutation individually.

Figure 1.  The workflow in this study.

Phys. Med. Biol. 65 (2020) 055012 (13pp)
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The data were divided in two datasets: cross-validiation and test datasets, with a 8:2 proportion. Then the 
patients of cross-validiation dataset were evaluated by five-fold cross verification method. The first step is to 
randomly divide the original data into five copies without repeated samples. In the second step, one of them 
is selected as the verification dataset, and the remaining four are used as the training dataset. In the third step, 
the second step is repeated five times, so that each subset can be used as a verification and a training dataset. 
The fourth step is to calculate the average values of the test results of the five groups as the estimation of model 
accuracy and the performance index of the model under the current five-fold cross-validation. Finally, the test 
dataset is used to test the performance of the trained model. The training dataset was used to train the model, the 
validation dataset was used to adjust the complex parameters of the model, and the test dataset was used to test 
the performance of the model (figure 2).

Statistical analysis
Statistical analysis of the measurement and count data was performed using SPSS 24.0. Values of P  <  0.05 were 
considered statistically significant. Receiver operating characteristic (ROC) curve analysis was performed and 
the mean area under the curve (AUC) value was calculated using five-fold cross-validation to determine the 
prediction ability of the LR models. Additionally, the prediction ability of the three models was compared to 
obtain the optimal model to predict EGFR mutation.

An independent samples t-test was used to evaluate the differences between the features generated by reader 
1 and those by reader 2 (interobserver reliability), as well as the differences between the twice-generated features 
by reader 1 (intraobserver reproducibility). Inter- and intraclass correlation coefficients (ICCs) were used to 
evaluate the agreement of feature extraction. A good agreement was reached when the ICC was greater than 0.75.

Results

Clinicopathological data analysis
Of the total 824 patients whose records were reviewed, 104 patients were included in the analysis (figure 3). The 
statistical differences in EGFR mutation were detected between the cross-validation and test datasets in terms 
of age, sex, smoking status, CEA level, vascular infiltration, visceral pleural infiltration, lymph node metastasis, 
pathohistological subtype, and pathological stage. In this study, the rate of EGFR mutation was significantly 
higher in female than in male patients (P  =  0.015) and in nonsmokers than in smokers (P  <  0.001). The 
most common pathohistological subtypes of lung adenocarcinoma were the acinar and lepidic subtypes. The 
pathohistological subtypes of lung adenocarcinoma and the vascular infiltration status were correlated with 
EGFR mutation (P  =  0.024 and P  =  0.030, respectively). Therefore, the sex, smoking status, pathohistological 
subtype, and vascular infiltration status were used for the model and nomogram establishment. The results of 
the correlation analysis between table 1.

Figure 2.  Datasets of the study.

Phys. Med. Biol. 65 (2020) 055012 (13pp)
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CT semantic and radiomic features extraction and selection
CT semantic features extraction and selection
In this study, the CT semantic and clinicopathological features of the patients were represented as 45 categorical 
variables. Redundant features were ruled out by the LASSO dimensional reduction model, retaining six features, 
including sex, age, visceral pleural infiltration, papillary pathohistological subtype, spiculation, and tumor 
necrosis, as shown in figure 4.

Radiomic features extraction and selection
Using the LASSO regression model (figure 5), the original 1025-dimensional radiomic features were shrunk to 
13 nonzero radiomic features (table 2).

Radiomic feature verification
The unsupervised clustering thermal map and correlation coefficient matrix thermal map were used to 
preliminarily verify the dimensionality reduction of the radiomic features and evaluate the dimensionality 
reduction efficiency.

The unsupervised clustering thermal map was derived through clustering, which was an unsupervised learn-
ing method, of the 1025 pre-reduction radiomic features and the 13 phylogenetic post-reduction features. The 
clustering performance of the pre-reduction radiomic features was lower than that of the post-reduction fea-
tures, indicating that the 13 radiomic features obtained with the LASSO dimensional reduction model are supe-
rior (figure 6).

The correlation coefficient matrix thermal map was drawn for the 1025 classic features and the 13 classic fea-
tures of the experiment. Values close to ‘0’ indicated a lack of correlation, those closer to ‘1’ indicated a positive 
correlation, and those closer to ‘  −  1’ indicated a negative correlation. The results showed that the correlation 
coefficient matrix after dimensionality reduction retained the distribution characteristics of that before dimen-
sionality reduction and filtered out the redundant features (figure 7).

Development of the prediction models and ROC curve analysis
Development of the CT semantic features combined with the clinicopathological features model
This LR model was constructed according to the six features retained in the training dataset. Five-fold cross-
validation was used in this experiment. The ROC curves of the training, validation, and test datasets for the 
semantic modeling are shown in figure 8. The important parameters were determined by the five-fold cross-
validation, and the parameters of the LR classifier were as follow: solver  =  ‘liblinear’, tol  =  0.0001, C  =  1.0. The 
AUC of the prediction model was 0.78  ±  0.02 in the training, 0.69  ±  0.10 in the verification, 0.769 in the cross-
validation and 0.768 in the test dataset.

Figure 3.  Recruitment criteria for patients.

Phys. Med. Biol. 65 (2020) 055012 (13pp)
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Development of the radiomic features model
This LR model was established according to the 13-dimensional radiomic features of the training dataset through 
five-fold cross-validation. The established and determined important parameters of the LR classifier were as 
follows: solver  =  ‘liblinear’, tol  =  0.0001, C  =  1.0. As shown in the results (figure 9), the AUC of this prediction 
model was 0.92  ±  0.01 in the training, 0.84  ±  0.04 in the verification, 0.907 in the cross-validation, and 0.837 in 
the test dataset.

The prediction ability of the radiomic features LR model for EGFR mutation in the training and test datasets 
was further verified by constructing a box plot (figure 10). Because the average value is greatly affected by the 
extreme value, it is sometimes unreasonable to use it to measure the overall situation, whereas the median value 
is not affected by the extreme value. Thus, the median value was considered more suitable to represent the 1D 
radiomic features. In both datasets, the median difference between the two groups of data was large, indicating 
that the radiomic features LR model is better for the classification of negative-positive patients.

Development of the radiomic features combined with the clinicopathological features model
This LR model was established in the same manner by combining the 13 radiomic features with the 
clinicopathological features that were found to be associated with EGFR mutation: sex, smoking status, vascular 
infiltration status, and pathohistological subtype (figure 11). We mapped the 13 radiomics features to a single 
radiomics feature by equation

Table 1.  Correlation analysis between clinicopathological characteristics and EGFR mutations in patients with peripheral lung 
adenocarcinoma.

Clinicopathological Characteristics

Cross-validiation set

P

Test set

PEGFR  +   EGFR  −   EGFR  +   EGFR  −  

No. of patients 51 32 — 13 8 —
Age, mean  ±  STD 58.00  ±  8.10 58.53  ±  10.59 0.809 56.77  ±  11.13 55.88  ±  14.61 0.875

Gender

  Male 15 (29.4%) 18 (56.3%) 0.015a 2 (15.4%) 5 (62.5%) 0.030a 

  Female 36 (70.6%) 14 (43.7%) 11 (84.6%) 3 (37.5%)

Smoking status

  No 44 (86.3%) 16 (50.0%) 0.000a 11 (84.6%) 3 (37.5%) 0.030a

  Yes 7 (13.7%) 16 (50.0%) 2 (15.4%) 5 (62.5%)

CEA

  Normal 38 (74.5%) 19 (59.4%) 0.148 9 (69.2%) 4 (50.0%) 0.646

  Abnormal 13 (25.5%) 13 (40.6%) 4 (30.8%) 4 (50.0%)

Vascular infiltration

  No 46 (90.2%) 23 (71.9%) 0.030a 10 (76.9%) 2 (25.0%) 0.032a

  Yes 5 (9.8%) 9 (28.1%) 3 (23.1%) 6 (75.0%)

Visceral pleural infiltration

  No 18 (35.3%) 6 (18.8%) 0.106 3 (23.1%) 3 (37.5%) 0.631

  Yes 33 (64.7%) 26 (81.2%) 10 (76.9%) 5 (62.5%)

Lymph node metastasis

  No 42 (82.4%) 21 (65.6%) 0.083 9 (69.2%) 5 (62.5%) 1.000

  Yes 9 (17.6%) 11 (34.4%) 4 (30.8%) 3 (37.5%)

Histological subtype

  Solid 4 (7.8%) 6 (18.8%) 0.024a 0 (0.0%) 1 (12.5%) 0.025a

  Papillary 4 (7.8%) 6 (18.8%) 2 (15.4%) 0 (0.0%)

  Micro-papillary 2 (3.9%) 2 (6.3%) 1 (7.7%) 3 (37.5%)

  Acinar 31 (60.8%) 14 (43.8%) 5 (38.5%) 3 (37.5%)

  Lepidic 10 (19.6%) 4 (12.5%) 5 (38.5%) 0 (0.0%)

  Infiltrating mucinous 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (12.5%)

Stage

  I 37 (72.5%) 17 (53.1%) 0.060 9 (69.2%) 4 (50.0%) 0.316

  II 8 (15.7%) 7 (21.9%) 0 (0.0%) 1 (12.5%)

  III 4 (7.8%) 8 (25.0%) 4 (30.8%) 3 (37.5%)

  IV 2 (3.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

a P  <  0.05, the difference was statistically significant. There were statistically significant differences between the two groups in sex, 

smoking status, vascular infiltration, and pathohistological subtype.

Phys. Med. Biol. 65 (2020) 055012 (13pp)
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R∗ =
n∑
i

vi ∗ ci

where n was the number of radiomics features, vi  was each radiomics feature value and ci represent the 
corresponding coefficient of each image feature value. The important parameters of the LR classifier were 

Figure 4.  (a) α is the penalty term coefficient, and the ordinate is the mean square error. The ten dashed curves represent the 
relationship between the value of the negative logarithm of each alpha and the corresponding mean square error in the ten-fold 
cross-validation method. The solid line in the figure represents the mean value of the ten-fold cross-validation corresponding 
to the dashed curve, and the vertical dashed line represents the (−log(α)) value corresponding to the optimal α value when the 
mean square error is the smallest. The final value of α was 0.064. (b) The convergence graph of the characteristic coefficients of 
the screened features by the LASSO model ten-fold cross-validation method. Each curve in the figure represents the change of the 
characteristic coefficient of one of the 45 categorical variables with the α value, and the vertical dashed line indicates the (−log(α)) 
value corresponding to the optimal α value to obtain six features with nonzero characteristic coefficients.

Figure 5.  LASSO dimensionality reduction curve of radiomic features.

Table 2.  Names and coefficients of non-zero radiomics features.

Name Coefficient

Original_glszm_SmallAreaHighGrayLevelEmphasis 0.027 3974

Original_glszm_SmallAreaLowGrayLevelEmphasis −0.117 795

Original_gldm_LowGrayLevelEmphasis 0.030 3573

Log-sigma-1-0 mm-3D_glcm_Cluster Prominence 0.028 5841

Log-sigma-3-0 mm-3D_gldm_DependenceNonUniformityNormalized 0.026 4742

Wavelet-LLL_glcm_InverseVariance −0.083 8051

Wavelet-LLH_glcm_Imc2 0.063 1772

Wavelet-HLL_firstorder_Mean 0.049 0448

Wavelet-HLL_glszm_LowGrayLevelZoneEmphasis 0.032 4594

Wavelet-HLL_gldm_SmallDependenceHighGrayLevelEmphasis −0.043 8279

Wavelet-HLH_glszm_SizeZoneNonUniformityNormalized 0.033 0170

Wavelet-HHH_firstorder_Skewness −0.013 6832

Wavelet-HHH_glszm_Size Zone Non Uniformity Normalized 0.016 3165

Phys. Med. Biol. 65 (2020) 055012 (13pp)
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solver  =  ‘liblinear’, tol  =  0.0001, C  =  1.0. The results showed that the AUC of the prediction model was 
0.90  ±  0.02 in the training, 0.88  ±  0.11 in the verification, 0.898 in the cross-validation and 0.894 in the test 
dataset.

Additionally, the sensitivity, specificity, positive predictive value, and negative predictive value were calcu-

lated for each model to demonstrate the predictive power (table 3).

Validation of the radiomic nomogram
We trained the above model and obtained the Rad-score formula of the radiomics as follows:

Rad-score = −0.360 0158 + 1.511 727 63 ∗ radiomics − 0.210 275 81 ∗ sex + 0.354 184 95

∗smoking + 0.485 570 62 ∗ Vascular_infiltration − 0.384 636 02 ∗ Pathological_type.

Figure 6.  Unsupervised clustering thermal map before (a) and after (b) dimensionality reduction. The leftmost red color in 
the graph represents the category of EGFR mutations and the blue color represents the category of wild-type EGFR. The cluster 
distribution of the right graph is more concentrated, indicating that the 13 radiomic features obtained with the LASSO dimensional 
reduction model are superior.

Figure 7.  Correlation coefficient matrix thermal map before (a) and after (b) dimensionality reduction.

Phys. Med. Biol. 65 (2020) 055012 (13pp)
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According to the Rad-score formula, the individualized EGFR mutation prediction model comprised the above 
predictors by the nomogram. The nomogram, built in the training dataset, represented the relationship between 
the radiomic and clinicopathological features (sex, smoking, vascular infiltration status, and pathohistological 
type) and visually showed the potential ability (figure 12). The corresponding Rad-scores of the different 

Figure 8.  ROC curves of the training (a), verification (b), cross-validation (c), and test (d) datasets for the CT semantic model.

Figure 9.  ROC curves of the training (a), verification (b), cross-validation (c), and test (d) datasets for the radiomic features model.

Phys. Med. Biol. 65 (2020) 055012 (13pp)
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features were defined, and the total Rad-score was obtained by accumulating all points. Finally, the rate of EGFR 
mutation, namely, the diagnostic possibility, was obtained by the total Rad-score. An EGFR mutation rate of 50% 
corresponded to a Rad-score of 69.

Figure 10.  Box plot of EGFR mutation predicted by the radiomic features LR model. Blue color represents EGFR wild type and red 
color represents EGFR mutation type. The left side of the abscissa is the training set, and the right side is the test set. In the training 
set, the negative overall distribution is around  −0.17 and the positive overall distribution is approximately 0.2, which is more 
distinguished. Similarly, the median difference between the two groups of data was large in the test set. Thus, the radiomic LR model 
is better for classification of negative-positive patients.

Figure 11.  ROC curves of the training, verification, cross-validation, and test datasets for the radiomic features combined with 
clinicopathological features model.

Phys. Med. Biol. 65 (2020) 055012 (13pp)
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Discussion

EGFR-TKIs are the most effective first-line therapeutic modality for lung adenocarcinoma with EGFR mutation. 
Compared with traditional chemotherapy, it results in a longer progression-free survival and a higher quality of 
life. Therefore, it is extremely important to identify the EGFR mutation status. Efficient noninvasive detection of 
the EGFR mutation status is necessary for patients preparing to accept EGFR-TKIs. In this study, we extracted and 
combined the clinicopathological, CT semantic, and CT radiomic features of patients with lung adenocarcinoma 
using a series of rigorous statistical verification analyses to assess the EGFR mutation status.

As the most frequently used method for lung cancer screening, chest CT could provide various imaging fea-
tures, including the tumor location, quantity, size, density, calcifications, focal necrosis, cavitation, vacuolization, 
spiculation, lobulation, pleural indentation, and pleural effusion. Radiomics enables extraction and analysis of 
these features to obtain information that can aid in the diagnosis, classification, or grading of a disease, as well as 
in treatment response prediction. In our study, three LR prediction models were established: CT semantic fea-
tures combined with clinicopathological features model, radiomic features model, and radiomic features com-
bined with clinicopathological features model.

The CT semantic features combined with clinicopathological features model was developed, which com-
prised six features, including sex, age, visceral pleural infiltration, papillary pathohistological subtype, spicula-
tion, and tumor necrosis. Because the CT semantic features were low-dimensional, EGFR mutation could not 
be well predicted in this feature space. Therefore, high-dimensional radiomic features were used for modeling 
to obtain better prediction results. Thirteen potential predictors were implemented to develop the radiomic fea-
tures model. Subsequently, the radiomic features combined with clinicopathological features model was estab-
lished by combining the radiomic features with the clinicopathological features that were found to be associated 
with EGFR mutation, including the sex, smoking status, vascular infiltration, and pathohistological subtype. In 
the test dataset, the AUC values of the combined radiomic and clinicopathological features model were higher 
than those of the LR model with radiomic features alone, indicating that the model with combined radiomic and 
clinicopathological features could better predict EGFR mutation.

Previous studies have used radiomics to predict lung cancer gene mutations. Sacconi et al (2017) analyzed 
the correlation of quantitative texture radiomic features with EGFR mutation and survival rates in 68 patients 
with lung cancer. They found that the mean value (P  =  0.0001), standard deviation (P  =  0.0001), and skewness 
(P  =  0.0459) were significantly correlated with EGFR mutation, while entropy was the only variable correlated 
with mortality (r  =  0.2708, P  =  0.0329). Rios Velazquez et al (2017) studied the relationship between the radi-
omic features of lung adenocarcinoma and EGFR mutation. Their results showed that the AUC value of EGFR 
mutation predicted by the radiomic features alone was 0.69; thus, they combined this model with the clinical 
features model (AUC  =  0.70) to improve the prediction accuracy (AUC  =  0.75). Liu et al (2016) studied EGFR 

Table 3.  Accuracy of EGFR mutation predicted by the three models in the training, verification, cross-validation, and test datasets.

Model Cohort Sensitivity Specificity

Positive predic-

tive values

Negative predic-

tive values

CT Semantic And Clinicopathological 

Characteristics model

Training cohort of 

cross-validation

0.95  ±  0.01 0.22  ±  0.03 0.65  ±  0.01 0.74  ±  0.05

Validation cohort 

of cross-validation

0.95  ±  0.05 0.23  ±  0.01 0.66  ±  0.03 0.77  ±  0.20

Cross-validation 

cohort

0.95 0.22 0.65 0.73

Test cohort 1.00 0.19 0.55 1.00

Radiomics model Training cohort of 

cross-validation

0.73  ±  0.01 0.92  ±  0.01 0.85  ±  0.02 0.84  ±  0.00

Validation cohort 

of cross-validation

0.59  ±  0.21 0.82  ±  0.04 0.65  ±  0.16 0.77  ±  0.08

Cross-validation 

cohort

0.69 0.88 0.79 0.82

Test cohort 0.75 0.92 0.86 0.86

Radiomics and clinicopathological 

characteristics model

Training cohort of 

cross-validation

0.81  ±  0.04 0.87  ±  0.01 0.79  ±  0.01 0.88  ±  0.02

Validation cohort 

of cross-validation

0.80  ±  0.26 0.80  ±  0.16 0.72  ±  0.16 0.89  ±  0.13

Cross-validation 

cohort

0.81 0.86 0.79 0.88

Test cohort 0.75 0.85 0.75 0.85
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mutation in patients with peripheral lung adenocarcinoma using the radiomics method and obtained 219 radi-
omic features, among which, five features combined with clinical features could successfully predict EGFR muta-
tion with an AUC value of 0.709. Our findings are consistent with the results of these studies: combined radiomic 
and clinical features could successfully predict EGFR mutations. However, our findings are significant in that a 
much greater number of radiomic features were extracted (1025), the AUC value was significantly higher than 
those in the previous studies, and a nomogram was created for individualized prediction.

In this study, five-fold cross verification was used by which the sample data were divided into training, valida-
tion, and test datasets. Through five-fold cross-validation, the results of five different training groups are aver-
aged to reduce variance, thus the performance of the model is not so sensitive to data partition. Then the test 
dataset is used to test the performance of the trained model. In previous studies, the research model exclusively 
had training and verification datasets, with a ROC curve and an AUC value. When the training and verification 
datasets are randomly grouped again, the results will alter and be chosen as one of the highest AUC values in the 
final model, leading to certain bias and questioning the authenticity of the data.

There are some limitations to this study. First, the sample size was not substantial, and only 104 patients met 
the inclusion criteria. Second, the study was retrospective and included only Eastern Asian population, which 
limits the generalizability of the results. Therefore, future studies with a larger sample size should be performed 
and more Western population patients should participate to verify our findings and extend their generalizability. 
Moreover, the radiomic method can be combined with deep learning methods to improve the performance of 
the model.

Conclusion

This study revealed the correlation of clinicopathological and CT imaging features with the EGFR mutation 
status in patients with peripheral lung adenocarcinoma. The combined radiomic and clinicopathological features 
model, comprising the radiomic signature, sex, smoking status, vascular infiltration status, and pathohistological 
type, could effectively predict the EGFR mutation status. It was presented as a radiomic nomogram that is 
expected to become an effective biomarker for populations requiring adjuvant EGFR-TKI targeted treatment.
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