
Commun. Theor. Phys. 71 (2019) 955–990 Vol. 71, No. 8, August 1, 2019

Editor’s Suggestion Topical Review

Supervised Deep Learning in High Energy Phenomenology: a Mini Review∗

Murat Abdughani (木拉提 ·阿不都艾尼),1,2,† Jie Ren (任杰),1,2,‡ Lei Wu (武雷),3,§ Jin-Min Yang (杨金民),1,2,4,¶

and Jun Zhao (赵俊)1,2,∥

1CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences,
Beijing 100190, China

2School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China

3Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China

4Department of Physics, Tohoku University, Sendai 980-8578, Japan

(Received May 16, 2019)

Abstract Deep learning, a branch of machine learning, has been recently applied to high energy experimental and
phenomenological studies. In this note we give a brief review on those applications using supervised deep learning. We
first describe various learning models and then recapitulate their applications to high energy phenomenological studies.
Some detailed applications are delineated in details, including the machine learning scan in the analysis of new physics
parameter space, the graph neural networks in the search of top-squark production and in the CP measurement of the
top-Higgs coupling at the LHC.

DOI: 10.1088/0253-6102/71/8/955

Key words: high energy physics, phenomenology, machine learning, deep learning

1 Introduction

As a typical interdisciplinary field involving math-

ematical statistics, optimization theory, computer sci-

ence, algorithm theory and neuroscience, machine learn-

ing (ML) mainly studies algorithms and statistic mod-

els, which helps improve the performance of computer for

given tasks.[1] For a given task, the ML algorithms can

automatically build a mathematical model from training

samples and then perform inference directly without any

need of manual programming.

Deep learning,[2] also known as deep structured learn-

ing or hierarchical learning, is part of a broader family of

ML methods based on learning data representations, as

opposed to task-specific algorithms. Deep learning mod-

els are neural networks with many layers, such as the deep

fully-connected neural networks, deep belief networks, re-

current neural networks, and recursive neural networks.

Due to the development of algorithm and computing hard-

ware, deep learning has become a hot topic in both re-

search and application. Actually, deep learning has been

applied to many fields (like mail filtering, computer vision,

speech recognition, audio recognition, machine transla-

tion, bioinformatics, drug design, material design, game

design, etc.) and demonstrated its learning and inference

ability similar or superior to human.

The traditional ML methods have been applied to

the experimental high energy physics (HEP) for more

than thirty years.[3] A most successful application is the

boosted decision tree (BDT) which helps discover the

Higgs boson at the LHC.[4] Currently, deep learning has

been paid great attention not only in experimental HEP,

but also in phenomenological studies, e.g. Refs. [5–11]. In

this note, we give a brief review on these applications. We

will first describe various deep neural network models, and

then recapitulate their applications to HEP phenomeno-

logical studies. Some detailed applications will also be de-

lineated, including the machine learning scan in the anal-

ysis of new physics parameter space,[12] the graph neural

networks in the search of top-squark production[13] and

in the CP measurement of the top-Higgs coupling at the

LHC.[14] Finally, we give a summary and outlook.

2 Machine Learning Basics

The name of machine learning was proposed by Arthur

∗Supported by the National Natural Science Foundation of China under Grant Nos. 11705093, 11305049, 11675242, 11821505, and

11851303, Peng-Huan-Wu Theoretical Physics Innovation Center (11747601), the CAS Center for Excellence in Particle Physics (CCEPP),

the CAS Key Research Program of Frontier Sciences, and a Key R&D Program of Ministry of Science and Technique under Grant

No. 2017YFA0402200-04
†E-mail: mulati@itp.ac.cn
‡E-mail: renjie@itp.ac.cn
§E-mail: leiwu@itp.ac.cn
¶E-mail: jmyang@itp.ac.cn
∥E-mail: zhaojun@itp.ac.cn

c⃝ 2019 Chinese Physical Society and IOP Publishing Ltd

http://www.iopscience.iop.org/ctp http://ctp.itp.ac.cn

956 Communications in Theoretical Physics Vol. 71

Samuel in 1959.[15] Then a widely accepted definition for

ML algorithm was given by Tom M. Mitchell:[16] “A com-

puter program is said to learn from experience E with

respect to some class of tasks T and performance mea-

sure P if its performance at tasks in T , as measured by

P , improves with experience E”. The ML tasks can be

classified into supervised learning, semi-supervised learn-

ing, unsupervised learning, active learning, reinforcement

learning and so on.

• Supervised learning algorithms are utilized to build

a mathematical model for a data sample with input

and target output values.[17] For a data with partial

expected output values, we can use semi-supervised

learning to construct an ML model. The typical

supervised learning algorithms are for classification

and regression. If target output values are discrete

categories, it is a classification problem (for example,

classification of pictures of different kinds of cats).

If target output values are continuous, it is a re-

gression problem (for example, prediction of house

prices according to their features).

• Unsupervised learning algorithms are utilized to

construct a mathematical model for a data sample

with only inputs but no target output values.[18] Un-

supervised learning algorithms are usually used to

find out the hidden structures in a data sample, e.g.,

to cluster the data into groups according to some

given criteria).

• Active learning algorithms can reduce the total cost

of acquiring data sample, especially when the cost

of labeling the target output values of a given in-

put data is very high. Active learning can preferen-

tially pick out those data samples, which need to be

labeled and thus lowers the total cost of acquiring

data sample.

• Reinforcement learning[19] algorithms are mainly

used to deal with dynamical environment problems.

In this kind of problems, data mainly comes from

observing environment state and the reward given

by environment after some actions performed. For

example, in various chess games the environment is

the current state of chessboard, i.e., the positions

of chess pieces. Moving a chess piece is an action,

which will lead to a new chessboard state. The final

score, win or lose, is the reward given by environ-

ment after performing a series of actions.

ML has a close relation with optimization theory.

They have something in common. Most ML problems

use loss function to measure the difference between out-

put values and target values, and thus the ML problems

can be written as problems of minimizing the loss func-

tion. The difference of ML from optimization theory is

that, although optimization theory can minimize the loss

of ML model over the training data set, ML pay more

attention to the loss of ML model over the data set with

unknown target output.[20] In the ML field, we use gener-

alization performance to measure the performance of ML

models over new data or environment not participating

in the learning. Therefore, optimizing the generalization

performance is the main goal of ML.

ML also has a close relation with statistics. In ML,

from mathematical models to theoretical tools, there are

many correspondences in statistics. Some scholars think

that ML emphasizes studying algorithm models while

statistics emphasizes data models. The ML field which

mainly applies statistical methods is usually called statis-

tical learning.[1]

2.1 Supervised Learning

In general, in order to solve a given supervised learning

problem, we need the following steps:

(i) Determine the type of training sample. For ex-

ample, to train an ML model for handwriting character

recognition, the samples we collected are pictures of vari-

ous handwritten characters, handwritten words, or whole

lines and paragraphs of handwritten words.

(ii) Collect data samples as the training set. The data

samples in the training set should be representative and

can reflect the data distribution in the real application en-

vironment. Meanwhile, for each data sample we need to

label its corresponding target output value (the expected

value output from ML model). Such data labeling can be

done by human experts or by various measurement meth-

ods.

(iii) Design the features of data sample as input of ML

model. The accuracy of an ML model depends heavily on

how data samples are represented. Usually, a data sample

is represented as a high-dimensional feature vector whose

each component describes a specific aspect of the data

sample. In order to improve the accuracy of ML model,

a feature vector must contain enough information on the

data sample. However, due to the curse of dimensionality,

the number of features should not be too larger.

(iv) Choose an ML model and its corresponding learn-

ing algorithm. For example, the commonly used super-

vised ML models include the generalized linear regression,

logistic regression, decision trees, support vector machine

and neural networks.

(v) Train the ML model with the collected training

samples. Generally, ML models and supervised learn-

ing algorithms have some hyperparameters to control the

complexity of the model and the details of learning. These

parameters are usually adjusted according to the general-

No. 8 Communications in Theoretical Physics 957

ization performance of the ML model on a separate vali-

dation set, which is called cross validation.

(vi) Assess the accuracy of ML model. After the ad-

justment of hyperparameters and the optimizing the learn-

able parameters in the ML model, the accuracy of the final

ML model needs to be further evaluated on a separate test

set.

We now give the working principle of supervised learn-

ing algorithm without loss of generality. Given a training

set containing N samples, and each sample has an input

feature vector xi ∈ X and a target output value yi ∈ Y .

Here, we assume that the samples in the training set are

independently and identically distributed, and they are

also independently and identically distributed with the

data samples in the real application environment. The

task of supervised learning is to find a function mapping

g : X → Y between the input feature space X and the

target output space Y . We call the function space formed

by all the candidate functions g as the hypothesis space.

In order to evaluate the goodness of any function g

fitted to the sample, we need to define a loss function L.

When the function g gives the output value ŷi for train-

ing sample (xi,yi), the function g has a prediction error

L(yi, ŷi) on this sample. For the entire training set, the

empirical risk of function g is defined as

R(g) =
1

N

∑
i

L(yi, g(xi)) . (1)

There are two ways to select the function g. One is to

minimize the empirical risk, and the other is to minimize

the structural risk. With empirical risk minimization, we

can turn the supervised learning problem into an opti-

mization problem that minimizes R(g). In this case, if

the function g is a conditional probability P (y|x) and the

loss function is chosen to be the negative logarithmic like-

lihood function L(yi, ŷi) = − logP (y|x), minimizing the

empirical risk is equivalent to maximizing the likelihood

function. The downside of this approach is that if there

are only small number of training samples and the hypoth-

esis space is too large, the function g will over-fit the data

seriously, resulting in a poor generalization performance.

By introducing penalty terms to regularize the model,

the structural risk minimization can suppress the over-

fitting problem of empirical risk minimization. The

penalty terms constrain the complexity of the function.

Penalty terms can take a variety of forms. Denoting the

learnable parameters in function g as {βj}, the Euclidean

norm (L2 norm) for these parameters ||β||2 =
∑

j β
2
j can

be used as the penalty term, which is also the most com-

monly used penalty term. Other norm forms of learnable

parameters, e.g., L1 norm ||β||1 =
∑

j |βj | and L0 norm

(the number of non-zero βj) are also the commonly used

penalty terms. For the sake of discussion, we denote all the

penalty terms as C(g). In this way, we can transform the

supervised learning problem into an optimization problem

that minimizes structural risks

J(g) = R(g) + λC(g) . (2)

Here the constant parameter λ controls the prediction bias

and variance of the function g. When λ = 0, J(g) is the

empirical risk R(g) and the optimized function g has a

smaller prediction bias and a larger prediction variance.

When λ is too large, the optimized function g has a large

prediction bias and a smaller prediction variance. In gen-

eral, we use cross validation to select an appropriate λ to

maximize the generalization accuracy of the function g.

In fact, choosing an ML model is to select a function

with tunable parameters βi, which constitutes the hypo-

thetical space G. The purpose of supervised learning al-

gorithm is to minimize the generalization risk of the ML

model by adjusting the learning parameters in the model.

Usually, the risk function is also called the loss function.

So far various ML models have been developed. How-

ever, there is no single ML model that can cope all the

types of data and learning tasks. Each ML model has its

pros and cons. Therefore, to select an ML model, we need

to consider at least the following factors:

• The trade off between prediction bias and variance.

The prediction error of ML model can be decom-

posed into bias and variance. If an ML model has a

small prediction error in the validation set, it means

that the ML model is flexible enough to learn data

well. But if an ML model is too flexible, it will

learn the training set too well and perform poorly

on the validation set, resulting in a too large predic-

tion variance.

• The complexity of the data and the number of train-

ing samples. If the hidden pattern of the data is

simple, a simple ML model can describe the data

well by learning a small number of training samples.

Otherwise, if the data distribution function is quite

complex, a large training set, many features of each

training sample and a much flexible ML model are

needed.

• Number of input features. If the dimension of in-

put feature vector is very high but the actual data

distribution is simple, the extra data dimension will

lead to a large prediction variance of ML model, and

thus increasing the difficulty of training ML model.

In order to avoid such problems, we usually pre-

process the data, such as using dimension reduction

technique to remove irrelevant features to reduce the

dimension of the input space, so as to improve the

prediction accuracy of the ML model.

• Noise in the target output of samples. If the target

output values are too noisy, the ML algorithm will

try to learn the noise in the training sample, thus

958 Communications in Theoretical Physics Vol. 71

making the generalization performance of the ML

model in the validation set worse. This phenomenon

is called over-fitting. Even if there is no noise in the

target output of samples, when the flexibility of the

ML model itself exceeds the complexity of the data

to be learned, it will also cause the over-fitting prob-

lem. In the actual ML model training, we usually

use techniques such as early stopping to detect and

reduce the influence of noise in the training samples

on the generalization performance of ML.

2.2 Decision Trees

Decision trees are a kind of non-parametric statistical

ML models with tree structure, which can be used to deal

with both classification and regression problems.[21] If the

value of the output is discrete, the decision tree is called a

classification tree. Otherwise, if the output is continuous,

the decision tree is called a regression tree.

Take a decision tree shown in the left panel of Fig. 1 as

an example. Each non-leaf node in the tree corresponds

to an input variable. It has two (or more) edges that con-

nect the child nodes, and each edge corresponds to a range

of values for the input variable. Each leaf node labels an

output value. When a sample starts from the root of the

tree and reaches a leaf node by following the branches de-

termined by the non-leaf nodes, then the predicted output

value of the sample is the value attached to the leaf node.

Fig. 1 (Color online) A decision tree that estimates the probability of a patient developing a hunchback after
surgery based on the patient’s age and the location of the spine where the surgery was performed. The figure shows
two different representations of the decision tree. The colored leaf nodes in the left figure give the probability
of postoperative hump and the proportion of samples reaching each leaf node. The right figure shows the age of
the patient and the position of the spine on which the surgery was performed, where different regions correspond
to different leaf nodes. The locations of the sample points are also shown as points. This picture is taken from
https://en.wikipedia.org/wiki/Decision-tree-learning.

Decision tree is a learnable model. As shown in the

right panel of Fig. 1, the purpose of decision tree algo-

rithms is to learn from training samples some classification

rules, which divides the input feature space into many re-

gions. These classification rules are the non-leaf nodes and

edges in the decision tree, and the regions are correspond

to the leaf nodes.

The advantages of a decision tree are:[22] (i) They are

white box models, easy to understand, explain and visu-

alize; (ii) Few data preprocessing are needed; (iii) Low

computational cost to make an inference; (iv) It can pro-

cess both category data and numerical data; (v) It can

handle multiple output variables. (vi) The reliability of

decision trees can be validated by statistical test; (vii)

Even if the real data and training samples are not com-

pletely consistent, the decision trees usually still have good

generalization performance.

The disadvantages of a decision tree are: (i) The learn-

ing algorithms may construct over-complex decision trees,

which leads to poor generalization performance; (ii) The

decision trees can be unstable; (iii) The problem of learn-

ing optimal decision tree is NP-complete;[23] (iv) There are

some logical relationships that are not easily represented

by decision trees; (v) If the number of training samples

in each output category is unbalanced, the decision trees

constructed by the learning algorithms are biased.

In order to solve the shortcomings of a single decision

tree, we usually combine decision trees in the ensemble

learning framework. Taking the classification problem as

example, the purpose of ensemble learning is to improve

the overall generalization performance and prediction sta-

bility by combining the output values from multiple weak

classifiers. There are usually two kinds of ensemble learn-

ing methods. The first one is to take the average. This

type of methods build multiple weak classifiers {Ck} in-

dependently and then simply average their outputs as the

overall output value y = (1/N)
∑

k Ck(x), where x and y

are input and output of decision trees, respectively. Be-

No. 8 Communications in Theoretical Physics 959

cause taking the average can reduce the variance of the

output value, the overall prediction stability of multiple

classifiers is better than a single classifier. Such methods

include bagging and random forest, etc.

The second kind of methods are boosting. They build

each weak classifier sequentially. Each new weak classi-

fier Ck is constructed to reduce the prediction bias of the

combined output values given by all the previously con-

structed weak classifiers C1, . . . , Ck−1. AdaBoost[24] and

gradient tree boosting are two commonly used models.

The built decision trees are generally called boosted de-

cision trees (BDT), which is one of the most widely used

ML models in HEP experiments.

3 Deep Neural Networks

Deep learning is a branch of neural network,[2,25] In

deep neural networks, each neural network layer learns a

transformation of the data output from the previous layer.

The representation of data becomes more abstract as the

depth of the network increases, making it more efficient

to learn the complex correlations between features. Take

human face recognition as an example. the original input

image is usually represented as a matrix composed of pixel

luminosity. The first neural network layer will focus only

on learning the correlations between local pixels in the

image, which extracts the edges from the image. The sec-

ond layer is used to learn how to combine and encode the

pattern of edges, and to identify the noses and eyes pat-

terns. The last layer will be used to classify whether the

image contains a human face. Therefore, the key point of

deep learning is that it puts the learning and optimization

of different levels of data abstraction into many network

layers, and different layers produce abstract data repre-

sentations in different levels. In this way, deep learning

can realize end-to-end learning, from the raw input data

to the target output, without the manual design of input

features. In 2017 the depth of neural network model can

reach thousands of layers, and the number of neurons and

connections can reach millions. Although that number is

many orders smaller than the human brain, neural net-

works can outperform humans at certain tasks, such as

the game of go.

Many kinds of deep neural network structures have

been developed. The commonly used deep neural net-

works include fully-connected neural network, recurrent

neural networks (RNN), convolutional neural networks

(CNN), etc. Each deep learning model can achieve great

success in its applicable field.

While deep neural networks have been hugely success-

ful, they also have their own problems. The two biggest

problems are the serious over-fitting and heavy computa-

tional consumption.

(i) Since a deep neural network has many layers, it

will also learn from the noise in the training set, which

leads to serious over-fitting problem. Various regulariza-

tion methods, such as neuronal pruning,[26] weight decay

(L2 regularization) and sparsification (L1 regularization),

are used to prevent over-fitting during training.[27] In ad-

dition, Dropout regularization could prevent over-fitting

by randomly restraining some neurons in hidden layers

during training.[28] There are many other methods to re-

duce over-fitting, such as expanding the training set by

clipping, rotating and flipping images.

(ii) Deep neural network has many hyperparameters

that need to be optimized, such as the number of layers in

the neural network, the number of neurons in each layer,

the learning rate of training, and the initial value of learn-

able parameters. Because of the limitation of time and

computing resources, it is not practical to find the optimal

values in the whole space of the hyperparameters. Various

techniques are used to speed up the training of deep neural

networks. For example, the gradient of loss function can

be calculated with small batches of training samples in-

stead of the whole training set.[29] In addition, because the

deep neural networks involve a large number of matrix and

vector calculations, utilizing large-scale multi-core com-

puting architectures, such as NVIDIA graphics processing

unit (GPU) and Intel Xeon Phi, can significantly improve

the training speed of deep neural networks.[30−31]

3.1 Fully Connected Neural Network

Artificial neural network is a computing system in-

spired by biological neural network, which belongs to con-

nectionism model. Similar to a biological neural network,

an artificial neural network consists of a series of artificial

neurons that communicate with each other through con-

nections. The artificial neuron processes the received data

and passes the processing results to the subsequently con-

nected artificial neurons. Artificial neurons can be state-

less or have a memory. Typically, artificial neurons are or-

ganized in layers, with different layers of neural networks,

which applies different transformations to the data. Data

are input from the first layer, transformed by each layer,

and output from the last layer. For the convenience of

description, the name “neural network” refers to artificial

neural network in the following.

Fully connected neural network (FCNN) is the sim-

plest neural network model, which is an ML model

that can learn function mapping of any vector to vector

through training. As shown in Fig. 2, neurons in FCNN

have a layered structure. The first layer is the input layer,

and the last layer is the output layer. Between the input

and output layers are hidden layers. The input layer con-

tains Ni neurons, each corresponding to an input feature

of the sample. Each neuron in the hidden layer takes the

output of neurons in the previous layer as a weighted linear

sum and applies nonlinear transformation as the output,

where the nonlinear transformation function is called the

960 Communications in Theoretical Physics Vol. 71

activation function of a neuron. Usually a layer of neurons

have the same activation function.

Fig. 2 Diagram of a fully connected feed-forward neu-
ral network with one hidden layer. This picture is taken
from https://computersciencewiki.org/index.php/Multi-
layer perceptron (MLP).

The number of hidden layers in an FCNN, the number

of neurons in each hidden layer, and the activation func-

tion of each hidden layer are all chosen depending on the

specific learning tasks. They are selected through cross-

validation or other methods, according to the complexity

of the problem to be learned and the size of the training

set, etc. The commonly used activation functions include

sigmoid function, tanh function, relu function, leaky relu

function, etc. In addition, we usually use the term “mul-

tilayer perceptron” to refer to an FCNN with only one

hidden layer.[32]

FCNN has several advantages, e.g., able to learn non-

linear mapping and able to perform on-line learning (by

acquiring more training samples, the learned nonlinear

mapping relationship is gradually improved to improve

the prediction accuracy). FCNN also has some draw-

backs. First, the loss function of a FCNN is usually non-

convex and has many local minima. Therefore, different

initial values of learnable parameters in the neural net-

work will lead to completely different parameter values,

further affecting the generalization prediction accuracy.

Second, FCNN has many hyperparameters that need fine

tuned, such as the number of hidden layers, the number of

neurons in each hidden layer, and the number of training

iterations. Third, FCNN is very sensitive to the scale of

input features. It is usually necessary to first normalize

the input features of the samples.

3.2 Convolutional Neural Network

Convolutional neural network (CNN) is mainly applied

to the analysis of image data. It is a deformation of multi-

layer perceptron, mainly used to reduce the image prepro-

cessing work. Such networks are characterized by weight

sharing and image translation invariance.[33−34] Inspired

by the biological information processing,[35] the connec-

tion pattern of neurons in CNN imitates the connection

of biological neurons in biological visual cortex. A neuron

in a biological visual cortex responds only to visual stim-

uli in a certain region known as the reception field of the

neuron. The reception fields of adjacent neurons overlap,

and the combine reception field of all neurons covers the

entire field of vision.

There is almost no need to manually preprocess the

image. The CNN can learn how to filter the image step

by step. In this way, the learning of CNN is not lim-

ited by human prior knowledge, and the inference perfor-

mance is greatly improved. CNN has been widely used in

image and visual recognition, recommendation system,[36]

image classification, medical image analysis, and natural

language processing.[37] A very successful application is

the AlphaGo,[38] which takes the state of the go board as

an image and uses CNN to extract its features. Together

with the use of Monte Carlo tree search, reinforcement

learning and other techniques, AlphaGo beats the top hu-

man players for the first time.

Figure 3 shows a typical CNN structure. CNN is dif-

ferent from the fully connected NN in that the hidden lay-

ers of the CNN usually include convolutional layer, ReLU

and other nonlinear activation functions, pooling layer,

full-connected layer and normalization layer, etc.

Fig. 3 (Color online) Schematic diagram of a typical structure of convolutional neural network. This piture is
taken from https://en.wikipedia. org/wiki/Convolutional neural network.

No. 8 Communications in Theoretical Physics 961

• The convolutional layer is used to apply a convo-

lution operation (actually a cross correlation oper-

ation) to the input image and pass the processing

results to the next layer of the NN. This convolu-

tion operation simulates the response of each neu-

ron to visual stimuli in its reception field. The size

of the convolution kernel determines the reception

field of the neuron. If the fully connected NN is

used, a neuron needs to be connected to every pixel

of the input image, so a lot of neural connections

are needed to process the input image, thus forming

a large number of learnable parameters. However,

when using the convolution layer, only the parame-

ters of the convolution kernel need to be learned, and

the size of the convolution kernel is usually small,

which greatly reduces the number of parameters to

be learned in the NN. In addition, it is worth noting

that the convolution operation is translation invari-

ant for image processing, and different neurons in

the same convolutional layer share the same convo-

lution kernel. Therefore, it is an implementation of

local connection and weight sharing in the convolu-

tional layer.

• The pooling layer is used to combine the outputs

of multiple neurons.[39−40] For instance, maximum

pooling[41] computing takes the maximum output of

a group of neurons as the total output, while aver-

age pooling[42] computing takes the average output

of a group of neurons as the output.

• The fully connected layer is the same as the NN layer

in the fully connected NN.

Although having fewer learnable parameters than the

fully connected NN, CNN has a great performance advan-

tage in the field of image data processing, in order to avoid

the problems caused by over-fitting. But we still need a

large number of training samples to train the CNN.[43]

3.3 Recurrent Neural Network

In the feed-forward NN, we assume that all input data

are independent. For sequential data, this assumption is

unreasonable. For example, in a natural language sen-

tence, there may be a strong connection between two

words, even they are far apart. For this kind of prob-

lem, we can treat the input data as a sequence to be pro-

cessed by the recurrrent neural network (RNN). Unlike the

feed-forward NN, the neurons in the RNN have memories

stored in their internal state vectors. The current data

processing depends on the results of the previous calcula-

tion, which enables the RNN to process the information

in the sequence data very well.

As shown in Fig. 4, learning tasks can be classified into

several categories according to the relationship between

input data and output data.

Fig. 4 (Color online) The types of sequential tasks that recurrent neural networks can handle. Each rect-
angle represents a vector, and the arrow represents applying transformation. Input vectors, output vectors,
and network state vectors are represented in red, blue, and green, respectively. This piture is taken from
http://karpathy.github.io/2015/05/21/rnn-effectiveness.

(i) Single data input to single data output, which can

be solved by using feed-forward NN.

(ii) Single data input to sequence data output, for ex-

ample, given an image and generate the text description

of this image.

(iii) Sequential data input to a single data output,

such as determining whether the content of a given text

paragraph is a positive comment.

(iv) Sequence data input to sequence data output, for

example, a sentence in English language is translated into

a sentence in Chinese language.

(v) Synchronous sequence data input to sequence data

output, such as classification of each frame in video.

The left side of Fig. 5 illustrates the structure of a

typical RNN. For the convenience of analysis, the RNN is

usually expanded into a complete NN along the iteration

time. As shown on the right side of Fig. 5, its connection

pattern forms a directed graph along time. When the se-

962 Communications in Theoretical Physics Vol. 71

quence length of the input data is T , the time-expanded

NN has T layers, where the input data of the neuron in t-

th layer is xt and the output data is ht. In each iteration,

the original RNN neuron performs the following nonlinear

transformation

ht = tanh(Wxt + Uht−1 + b) . (3)

However, the use of RNN neurons results in too much

focus on the most recent data input, so it cannot well de-

scribe the long-distance correlation in the sequence, that is

the correlation between the data with a longer distance.

Therefore, the long short-term memory (LSTM)[44] and

gated recurrent unit (GRU)[45] are developed.

Fig. 5 (Color online) A schematic diagram of the structure of the recurrent neural network and the complete
neural network expanded along the iteration time. This piture is taken from http://colah.github.io/posts/2015-
08-Understanding-LSTMs.

In theory, RNN can process sequence data of any

length. Due to the great advantages of RNN in pro-

cessing these sequence problems, its various deforma-

tions have been widely applied in many fields such

as online handwritten character recognition,[46] speech

recognition,[47−48] natural language understanding, image

description generation and so on.

3.4 Recursive Neural Network

Recursive neural network (RecNN) is a kind of deep

learning model applied to data of tree structure. The

RecNN was first used for structural decentralization,[49]

and then it was further developed in the 1990s.[50−51]

Fig. 6 (Color online) Typical structure of binary re-
cursive neural network. The picture is taken from
https://en.wikipedia.org/wiki/Recursive neural network.

Figure 6 gives a typical binary RecNN. This structure

performs nonlinear transformation of the child-node fea-

tures ci and cj to father-node data pij , for example,

pij = tanh(W [ci; cj] + b) , (4)

where [· · ·] represents vector concatenation, and W and

b are learnable parameters. Starting from the leaf nodes,

such a transformation is applied to every node in the tree

until reaching the root node. Then the features of the root

node is a compact vector representation of the whole tree

structure. Similar variants of RecNN have been widely

used in the fields of natural scene understanding and se-

mantic analysis of natural language.

3.5 Graph Neural Network

Graph neural network (GNN) is a kind of deep learn-

ing model applied to data of graph structure. On the

basis of the GNN model, the deep tensor network,[52]

message passing neural network (MPNN),[53] locally con-

nected neural network,[54] graph convolutional neural

network[55−57] have been also developed.

For the sake of simplicity, we consider only the MPNN

for undirected graphs. Denote the feature vector of each

node as xv and the feature vector of each edge as evw
in an undirected graph G. In the embedding layer, each

node generates its hidden states h0
v according to its feature

vector. Typically, a certain number of message passing it-

erations are performed on the input graph. In the t-th

message passing, the hidden states ht
v of each node in the

graph are updated according to the following equations

mt+1
v =

∑
w∈G

Mt(h
t
v,h

t
w, evw) , (5)

ht+1
v = Ut(h

t
v,m

t+1
v) , (6)

whereMt is a learnable message function and Ut is a learn-

able node status update function. If the messags passing

runs totally T iterations, then the hidden states of each

node in the graph are hT
v . Finally, data is read from all

No. 8 Communications in Theoretical Physics 963

(or part) of nodes in the graph

y = R(hT
v |v ∈ G) , (7)

as the output value of the neural network to the input

graph. Here R is a learnable readout function.

4 Machine Learning in High Energy Phe-
nomenology

4.1 A Brief Overview

Machine learning is a powerful tool for the study of

high energy physics, because it can discover the hidden

patterns in a large amount of complex data and apply

them to new data or physical models.[4] One of the big

successful applications is the use of the Boosted Decision

Trees (BDT) in the discovery of the Higgs boson in the

LHC experiments.[3] In recent years, more and more ad-

vanced machine learning techniques, such as Deep Neural

Network (DNN) and Message Passing Neutral Network

(MPNN), have been applied to the research of new physics

experiments and phenomenology, e.g. Refs. [5–11]. We re-

view such applications in the following.

(i) Parameter Scan

The ML model has been used to learn and approx-

imate the mapping between the parameter space of the

new physics model and the experimental physical observ-

ables, so as to efficiently constrain the parameter space of

the new physics model.

• Learning new mass spectrum using multi-

layer perceptron. Under the sensitivity of AT-

LAS experiment, it needs a very large amount of

computing power to deduce the survived regions of

the parameter space of CMSSM using Bayesian pos-

terior probability and likelihood function ratio test.

In order to reduce the amount of computation, the

article[7] uses a multilayer perceptron as a regres-

sor to learn the mapping from the CMSSM model

parameter θ to the weak-scale supersymmetric par-

ticle masses m. The output of physical package

SoftSusy[58] was used as the target output value of

the neural network. About 4000 sample points in

the parameter space were collected as the training

set to train the regressor. Given a set of CMSSM pa-

rameters, this multilayer perceptron model was used

to rapidly predict the corresponding supersymmet-

ric particle mass spectrum. It was found that this

method is much faster than the traditional calcula-

tion method by about 104 times.

• Using multilayer perceptron and support-

vector machine to learn the number of new

physics events at the collider. It can be very

time consuming to generate collider event samples at

the LHC using Monte Carlo simulation. A fast de-

tector simulation usually takes a few minutes, while

a full detector simulation based on the experimental

group GEANT4 would take several days. There-

fore, to study the supersymmetric model, the AT-

LAS and CMS experimental groups limited the sam-

ple points of model parameters to a small number

of grid points on certain planes, and then perform

parallel full detector simulations with these param-

eters. If an ML model can be constructed to learn

the mapping between the parameter points of the

supersymmetric model and the output results of the

collider simulation, we can generalize this to the en-

tire parameter space of the supersymmetric model

and thus the number of signals generated by the spe-

cific model at the LHC collider can be estimated in

a very short time. In this way, the phenomenologi-

cal study can be accelerated. In Ref. [8] the CMSSM

model with four parameters was chosen to be investi-

gated. Two ML models, multi-layer perceptron and

support-vector machine, were used to learn the re-

lationship between the number of signal events and

the parameters of CMSSM. It was found that the

accuracy of predicting the likelihood function can

reach several percent with 2000 training samples.

• Learning the exclusion of new physics mod-

els at the LHC using a decision tree approach.

Exploring new physics is one of the key research top-

ics at the LHC. In order to test whether any par-

ticular set of parameter points of the new physics

model have been excluded by the LHC experiment,

a lot of time and computational resources need to

be spent to generate simulated events on the LHC.

Also the scattering cross section calculation, detec-

tor simulation, event reconstruction, and event se-

lection on hundreds of signal intervals in ATLAS

and CMS experiments need to performed. So it is a

challenging problem. In the project BSM-AI,[10] ML

models are used to predict whether a new physics

model has been excluded by the LHC experiments

based on the input model parameters in millisec-

onds. The first implementation case is SUSY-AI.

At present, SUSY-AI model can reproduce the ex-

clusion region of ATLAS with an accuracy of 93%

in the 19-dimensional parameter space of pMSSM.

For CMSSM and NMSSM, the prediction accuracy

is also very good. The establishment of these models

will help to solve the problem of recasting the LHC

experiments when testing any new physics model.

• Using neural networks to learn likelihood

functions to accelerate bayesian analysis of

parameter space. In Ref. [59] an algorithm

964 Communications in Theoretical Physics Vol. 71

for fast Bayesian analysis is proposed, which is

called blind accelerated multimodal Bayesian infer-

ence (BAMBI). It combines the advantages of nested

sampling and artificial neural network, and improves

the MultiNest method with neural network to learn

the likelihood function. For the likelihood function

which is very complicated to calculate, this algo-

rithm can use the neural network to calculate the

likelihood function quickly and thus greatly improve

the efficient of Bayesian analysis. This algorithm has

been used in the Bayesian analysis of the parameter

space of cosmological model. The BAMBI method

was found to have a great acceleration in various

physics models and data.

In another work[60] a tool named SCYNet is pro-

posed to verify the supersymmetric model based on

the LHC data. This tool uses neural networks as re-

gressors to quickly estimate likelihood function ra-

tios. The work designs two neural network mod-

els. The first one uses the 11-dimensional model

parameters of pMSSM as input in the training. It

can estimate the likelihood function ratio in millisec-

onds, which is then used for fast scanning of pMSSM

model parameters. The second one uses designed

model-independent features as inputs, such as the

energy and particle multiplicity derived from a given

new physics model. Although such an approach re-

quires some time to calculate model-independent in-

put parameters, the corresponding neural network

obtained is more universal. So the neural network

are trained only once but can be used to predict

the likelihood function ratios of various new physics

models at the LHC.

• Using neural network to determine the pa-

rameters of new physics model. Most of the re-

searches studied the mapping of new physics model

parameters to experimental observables. However,

few researchers have inversely studied the mapping

of the physical observables at the LHC to the param-

eters of the new physics model, aiming to directly

determine the unknown physical parameters in the

minimal supersymmetric model. In Ref. [9] a multi-

layer perceptron is trained with 84 physical observ-

ables at the 14 TeV LHC as inputs and taking the

parameters of supersymmetric model as the target

outputs. It was found that if the collider luminosity

is 10 fb−1, the CMSSM model parameters M0 and

M1/2 can be determined reliably, only with 1% error.

If the collider luminosity reaches 500 fb−1, the model

parameters tanβ and A0 can also be very accurately

determined. As a contrast, the traditional method

of minimizing χ2 gives relatively poor results.

• Active incremental learning for parameter

space analysis. We recently proposed a novel

active incremental learning analysis framework to

achieve more fast and reliable exploration of new

physics parameter spaces.[12] As a proof-of-concept,

we applied this approach to several benchmark mod-

els and two real physical models. It can be found

that such a method can significantly reduce the com-

putational cost and ensure the discovery of all sur-

vived regions.

(ii) Jet Tagging
The massive particles produced in a collider with high

center-of-mass energy usually have high velocity. Their

hadronic decay products are approximately collinear so

that the jets formed by these products overlap with each

other. Determining whether a jet object comes from a

single light particle or from the decays of a heavy particle

is an important task in the data analysis of the collider.

Traditional techniques rely on the expert constructed dis-

tribution features of energy deposited in the calorimeter

cells. But the complexity of the data makes machine learn-

ing methods more effective than human works.[61−80]

• Tagging with jet images. In Ref. [61] the con-

cept of jet image is proposed. The detector is re-

garded as a camera, and the energy distribution of

jet in calorimeters is regarded as a two-dimensional

digital image, where each pixel corresponds to the

energy deposited in a specific cell of the calorime-

ter. Thus the jet tagging task becomes a standard

pattern recognition problem and the jet data can

be handled using machine learning algorithms for

image classification. Taking differentiation of the

hadronic W boson decay from the jet generated by

a quark or gluon as an example, this work classifies

jet images using Fisher classification analysis in ma-

chine learning. With Monte Carlo simulation, it is

found that this method can achieve better jet dis-

crimination ability than traditional jet substructure

methods, and gives a deeper insight into the internal

structure of jet.

In Ref. [62] the CNN is further used to investigate

the hadron decay of the boostedW boson. This deep

learning technique can go beyond the traditional ap-

proach of building jet features based on physical in-

tuition. At the same time, this work also visually

presents learned jet features to explain why CNN

can have better performance, which in turn can be

used to further understand the physics in jet.

In Ref. [63] the CNN is used to distinguish quark

and gluon jets, and obtained a better tagging per-

formance than expert-constructed jet observables.

This work not only takes the energy distribution of

jet in the calorimeter as an image, but also uses

No. 8 Communications in Theoretical Physics 965

different image channels to respectively represent

the transverse momentum of charged particles, the

transverse momentum of neutral particles and the

number of charged particles in the calorimeter cell.

The results show that the CNN can achieve or ex-

ceed the traditional jet tagging method using jet

observables. At the same time, similar to tradi-

tional jet observables, the CNN is not sensitive to

the quark and gluon jets generated by different event

generators. Therefore, CNN can be used to extract

reliable physical information from imperfect collider

simulation data.

In Ref. [64] the learning is performed on the data

using a DNN with both local connection layers and

full connection layers. It is found that the DNN can

reach or even exceed the performance of the best tra-

ditional algorithm without the jet observables built

by experts. Moreover, the DNN maintains its ad-

vantage even after considering the effects of pileup

collisions.

In Ref. [65] the NN was trained using a large num-

ber of Monte Carlo samples of boosted top jets and

light quark or gluon jets. The results show that

the NN marking method has very good classifica-

tion performance. When jet’s pT is in the range of

(1100–1200) GeV, such an approach can achieve a

top tagging efficiency of 60% at a mis-tagging error

of 4%. This work also discussed the most important

jet features that NN learned, and the relationships

between these jet features and the known hand-built

jet observables. Furthermore, the work[66] compared

the CNN with the QCD based multi-variable top-

tagging. It was found that they have similar tagging

performance.

Although DNN based machine learning techniques

have good application prospect in jet classification,

these ML models require a large number of train-

ing samples from Monte Carlo event generator. The

data distribution of these generated training samples

is not completely consistent with experimental data

at the colliders, which makes ML models biased.

Therefore, the work[67] investigated the performance

of DNN classifiers with different parton shower phe-

nomenological models and the detector-related ef-

fects. It was found that the background suppression

of ML models trained with samples from different

event generators can reach 50% for the same signal

selection efficiency. In addition, this work also stud-

ied the applicability of DNN to different jet trans-

verse momentum scales. These studies will help en-

hance our understanding of jet features learned from

DNN.

• Jet classification using particle information.

Although jet is regarded as an image in the calorime-

ter and the performance of detecting jet substruc-

ture can be improved greatly by combining the ad-

vantages of DNN in image classification, such meth-

ods also encounter some problems, such as sparsity

of jet images. In addition, building jet images by

pixelation or building advanced jet features can re-

sult in precision loss. In addition to the method of

classifying jet images, in Ref. [68] the input of the

DNN are constructed using the four-momenta of the

particles in jet. In this way, for reconstructed top jet

with transverse momentum between 600 GeV and

2500 GeV, the suppression rate of QCD background

jet can reach 45% when the tagging efficiency of top

jet is 50%. The calculations also showed that this

method is not sensitive to the interference from the

LHC Run 2 pileup collisions.

The study in Ref. [69] used the Lorentz vector and

the Minkowski metric to construct the features of

the final-state particles as the input of DNN, and

then constructed a special DNN layer. This ap-

proach allows us to identify top jet not only from the

data in the calorimeter, but also from the particle

track information. It was found that this DNN can

further improve the tagging performance, compared

with other ML methods such as image classification.

The study in Ref. [70] performed jet tagging us-

ing recursive neural networks (RNN). This method

utilizes the similarity between jet clustering process

and the structure of natural language, by consider-

ing the four-momenta of the final-state particles in

jet as the words in natural language, and regarding

the history of jet clustering using sequential combi-

nation clustering algorithm as the analysis process of

the grammatical structure of natural language. The

jet clustering process forms a tree structure and each

jet has its own unique tree structure. The RNN is

much suitable for processing the data of this kind

of tree structure, so that the four-momenta of the

final-state particles in jet can be directly used, and

it works with any number of final-state particles.

The results showed that this method can construct

a vector representation of the input jet, and it has

a higher data utilization efficiency and a better pre-

diction accuracy than the ML method based on jet

image. This work further extends the method to

the classification of whole events, thus implemented

the event classification directly from the data of the

stable final-state particles of event at the LHC.

In Ref. [71] the RNN is further applied to the tagging

of quark and gluon jet. It was found that the gluon

jet suppression rate of the RNN is only a few percent

966 Communications in Theoretical Physics Vol. 71

higher than that of the BDT. Therefore, some rel-

evant factors affecting the tagging performance of

RNN are studied in this work. It was found that

even if the information of momentum and position

of the final-state particles are not given, the tag-

ging efficiency can be well enough based on the tree

structure formed by jet clustering history. There-

fore, the main classification features of quark and

gluon jet have already been reflected in the tree

structure formed by jet clustering history. In ad-

dition, preliminary results on the tagging of up and

down quarks are also given in this work.

In Ref. [72] the final-state particles in jet are rep-

resented as nodes in the graph, and jet is tagged

using a convolutional MPNN. This work studied

three kinds of MPNN. The first one has a learn-

able adjacency matrix, the second one has a learn-

able symmetric adjacency matrix, and the third one

has a unit adjacency matrix with aggregated hid-

den state. It was found that the MPNN with learn-

able adjacency matrix and two message passing it-

erations gets the best jet tagging performance, com-

pared with other NN models.

• Use deep learning to build model-independent

jet tagging algorithm. New physics particles pro-

duced at the LHC typically have large boost, espe-

cially if they come from heavy particles. The sig-

nal generated by such a boosted particle will be

a fat massive jet if it decays hadronically. Such

a jet usually has a large QCD background. Al-

though both the jet substructure method and the

ML method can identify specific boosted jets from

the QCD background, there is no jet tagging method

that can be applied to all types of jets. In Ref. [73]

a model-independent jet tagging method using N -

subjettiness as NN input is described. It could iden-

tify various hadronical decays of boosted jets from

the QCD background. The results showed that this

method can be used to identify fat jet generated by

any new physics model at the collider by 2−8 times

than the performance of traditional methods.

• Using deep learning techniques to construct

jet physical observables ML techniques are in-

creasingly used in data analysis at the LHC. In

particular, a large amount of ML work used image

recognition, natural language processing and other

algorithms for the identification of jets generated

by different particles. However, these studies did

not interpret the machines learned features that en-

able them to give a better tagging performance than

the traditional manually constructed jet observables.

Therefore, due to the black box nature, the ML is

still widely criticized in the HEP phenomenological

research.

Take the identification of the hadron decay of

boosted Z boson from the QCD jet background as

an example to understand what ML models actu-

ally learned. In Ref. [74] the learned features were

mapped to some known manually constructed jet

observables. The results showed that the main fea-

tures that distinguish Z jet from QCD jet are the

jet observables in the phase space of four-body final-

states.

In Ref. [75] the data planing method was used to

identify which combinations of expert constructed

jet observables are able to distinguish the signal from

the background. The weights of input features were

introduced to suppress some input features and the

NN was trained on the new data. If the classifica-

tion ability of the NN decreases significantly after

the removal of some input features, it indicates that

the removed feature has an important influence on

the jet tagging performance and thus it is a main

features that distinguishes the signal from the back-

ground. In addition, using a toy model and a large

mass resonance model at the LHC, this work also

showed that the planning method can also be used

to study whether the classification boundary of sig-

nals and backgrounds is linear or non-linear.

In addition to studying what classification features

ML models learned, the study in Ref. [76] used ML

as an auxiliary to construct new jet tagging observ-

ables. This method first grouped jet observables

according to particle phase space, and then mea-

sured how many jet observalbes should be used to

saturate the classification ability of the ML model.

If the N -body jet observables saturate the perfor-

mance, the new jet observables can be constructed

according to these N -body jet observables. In this

work, a general form with adjustable parameters is

adopted as the newly constructed jet observable. By

adjusting the parameters in the new observable, it

will get a classification performance approaching the

ML model. Taking the distinction between H → bb̄

and g → bb̄ as an example, a new jet observable

is constructed, which shows great classification per-

formance than the traditional jet observable con-

structed from theory.

• Jet image generation. Studying new physics at

the LHC requires Monte Carlo simulation of new

physics signals and backgrounds, so as to give the ex-

pectation of experimental data. Especially in exper-

iments, the number of simulated events used for data

analysis is extremely large, and it takes a lot of time

No. 8 Communications in Theoretical Physics 967

and computing resources to generate the required

simulated events using existing algorithms. When

it comes to exactly calculating how energetic par-

ticles interact with materials in the detector, such

calculations can be extremely time-consuming.

Applying the generation model in the field of ML to

the simulation of the physical process at the collider,

the study in Ref. [77] proposed to use the generative

adversarial network (GAN) to artificially generate

jet images in the calorimeter. A large number of sim-

ulated high energy collider events are used to train

a kind of GAN so as to generate realistic jet energy

distribution. It was found that the pixel brightness

of jet images generated by the GAN can span many

orders and give the expected low-dimensional phys-

ical observables like reconstructed jet mass and n-

subjettiness. At the same time, the limitations of

this method and an empirical validation of the im-

age quality is also presented. If this method can be

further improved, it can be used to simulate HEP

events quickly.

In Rrf. [78] the feasibility of deep generation model

in high-quality, fast and electromagnetic calorime-

ter simulation is further studied. It was found that

although it is difficult to accurately simulate the

whole phase space with deep generation model, this

method can reproduce many simulation properties

of the detector and can accelerate the simulation of

calorimeter by 100,000 times.

(iii) Collider Event Classification

Particle collisions in the high energy collider are the

most effective experimental approach to generate new par-

ticles. It is always a critical task to identify signals from

background events in the search for rare new particles.

This is a major application of ML techniques in the ex-

perimental HEP research. Standard data analysis meth-

ods mainly use traditional or shallow learning methods,

but these ML models have limited ability to learn complex

nonlinear functions in the input data and rely on manu-

ally constructed nonlinear event features. A large number

of traditional techniques show similar performance. The

development of deep learning techniques make it easy to

learn complex and non-linear functions to better distin-

guish signal events from background events at the collider.

• Event classification with DNN. In Ref. [5] two

groups of new physics signals were used for valida-

tion. It was found that the deep learning method not

only needs no expert constructed event features, but

also improves the performance of classifying signal

and background events by 8% compared with the

best existing methods.

The Higgs boson provides the masses for the fun-

damental fermions. Although the measurements

at the LHC are still consistent with the standard

model, the traditional analytical techniques used in

the experiments cannot enhance the significance to

5σ without adding additional data. Deep learning

technique provides the ability to automatically learn

complex data. So, in Ref. [6] the deep learning tech-

nique is applied to the detection of Higgs decaying

to τ+τ− at the LHC. The hyperparameters of DNN

are optimized by Bayesian optimization algorithm.

The detection significance is 25% higher than the

existing traditional analysis techniques.

The article[81] used DNN to study the signal of the

light charged Higgs particle produced by the top

quark decay at the LHC. The difficulty of finding

this signal comes mainly from the large W boson

background. Taking the low level kinematic fea-

tures of events with the expert constructed event

features as input, respectively, it was found that the

DNN not only needs no expert constructed event

features as inputs, but also has better classification

performance than the shallow NN. It also showed

that DNN can automatically learn the information

of manually constructed event features from data.

In addition, increasing the number of neurons in the

DNN will lead to the increase of the complexity of

the NN model, so it cannot effectively improve the

classification performance.

In the framework of the standard model efficient

field theory, the article[82] studies the observability

of four-fermion operators containing heavy quarks at

the LHC through the tt̄bb̄ process. In this work, the

kinematic features of the events and the NN model

were used to optimize the detection sensitivity of the

signals at the LHC. The NN was used to classify the

top quark events with various helicity. It provides a

new direction for testing effective operators and can

improve the measurement of top quark interactions

at the LHC.

• Event classification with CNN. The work[83]

studied the application of CNN to event classifica-

tion in high energy particle collision. It proposed to

represent the jet types and momentum information

of the final-state particles in the image in the η ver-

sus ϕ plane, which are used to train CNN for event

classification. By testing a set of simulated data of

CMS detector for the singal and background of lep-

tonic decays of tt̄ process at 7 TeV LHC, it was found

that the CNN and DNN have similar classification

performance.

968 Communications in Theoretical Physics Vol. 71

The Higgs particle production with large pT at the

LHC can be used to study the internal interaction

structure of the gg → H loops. The decay of Higgs

particle to bb̄ has the largest branching ratio, which

is conducive to the statistical analysis of the event.

Although this process has a large QCD background,

using jet substructure technique can improve the ob-

servability of gg → H → bb̄ at the LHC. To further

improve the detection sensitivity of this process, a

two-path CNN was constructed in Ref. [84]. One

path in CNN takes the jet information as input, and

the other takes the features of the whole event as

input. This NN greatly improved the detection sen-

sitivity of the Higgs particle at the LHC, which not

only helps to detect the Higgs particle with large pT
in the standard model, but also can detect the Higgs

particle production in new physics models. Unlike

the hadronic decays of other massive particles, the

b-tagging in the two sub-jets of fat jet generated by

the deacy of Higgs boson with large pT can suppress

almost all jet backgrounds.

• Event classification with MPNN. In Refs. [13–

14] we propose to represent events as graphs and

use MPNN to search for the stop pair production

and Htt̄ production at the LHC. We found that the

signal and background events can be efficiently dis-

criminated by the patterns of event graphs. Such an

approach can thus improve the current LHC detec-

tion sensitivity for the stops and helps to reveal the

CP nature of the top-Higgs interaction. In the fol-

lowing section, we will give a expanded description

for these applications.

• Comparison of various NN. In Ref. [85] the

performance of DNN, CNN and RecNN in real-time

event classification at the LHC are compared. This

work considered various data representations of col-

lider events and trained corresponding deep learn-

ing models as collider event classifiers. In the com-

parison, the original event data and the advanced

event features constructed by human were used re-

spectively. By analyzing some specific data, it was

found that the background selection efficiency can

be effectively reduced by one order of magnitude un-

der the condition that the signal selection efficiency

is 99%. If these ML models are applied to the on-

line event selection in LHC collider experiments, the

storage of a large number of irrelevant background

events for subsequent analysis can be reduced, thus

significantly reducing the operation cost of detectors

and improving the efficiency of data storage.

(iv) Other Miscellaneous Applications

• Pileup subtraction. A collision in the LHC col-

lider typically involves many protons, which forms

pileup. In addition to the main collisions, other soft

collisions produce noise in the detector. The pileup

collisions contaminate the main collision event and

make it difficult to reconstruct the jets. The work

in Ref. [86] used ML technique to find important

data features to accurately reconstruct the energy

of final jets. It examined the performance of var-

ious ML models, including linear regression, SVM

and decision trees. It is found that the linear re-

gression model gives the best results with predictive

data features as input. Compared with the bench-

mark model, the ML method greatly improves the

performance of jet reconstruction.

The study in Ref. [87] used CNN to eliminate the

effects of pileup. For each collider event, the en-

ergy distribution of charged particles generated from

the primary colliding vertex and from the pileup

as well as all neutral particles generated from colli-

sions in the detector are taken as the input of CNN,

and the energy distribution of all particles generated

from the primary collision vertex in the detector is

taken as the output of CNN. Such a method is called

PUMML in the work. It is found that this algorithm

can greatly suppress the energy noise generated by

th pileup in the detector, so as to improve the re-

construction accuracy of the final jet observables. In

addition, the stability of the algorithm is tested.

• Parton distribution function fitting. The

greatest challenge of the parton distribution func-

tion (PDF) is to estimate the uncertainty of the

combined PDF from a single PDF. Since 2014 sev-

eral approaches have been proposed to tackle this

problem. The literature[88] summarized the recom-

mended strategies in PDF4LHC15 and a new clus-

tering method using ML is discussed.

• Phase space integral of final-state particles.

Reference [89] proposed the Monte Carlo integration

method using the generative decision tree model and

the generative DNN, respectively. Taking integrand

that cannot be factored as test cases, it showed that

both ML methods can greatly improve the accuracy

of integration, compared with the existing integra-

tion methods, using the same number of integrand

evaluations. If the stability and performance of this

method are further validated, combing this integra-

tion method with the scattering amplitude computa-

tion can improve the efficiency of Monte Carlo based

collider event generation.

No. 8 Communications in Theoretical Physics 969

4.2 Active Incremental Learning in

Parameter Scan

The research on parameter space of new physics mod-

els is an important part in the process of discovering new

physics. However, with the constraints of experimental

data, it is very time-consuming and difficult to fully ex-

plore the parameter space of new physical models and find

all the parameter regions that meet the experimental con-

straints. Especially when the parameter space of a new

physical model is high dimensional, or there are several

independent survived parameter regions, the work of pa-

rameter space scanning becomes more challenging. There-

fore, we proposed a new method of using active incremen-

tal learning to accelerate the parameter space scanning

of new physical models, which we call machine learning

scan (MLS).[12] In this method, the parameter space is

explored by iterative and incremental learning the his-

torical data to actively guide the subsequent parameter

sampling. Firstly, active learning can greatly improve the

efficiency of parameter sampling. Secondly, through incre-

mental learning, the ML model can be continuously opti-

mized. In addition, the accuracy of the learned physical

observables can be greatly improved by using the DNN.

All the sampled parameter points, including some addi-

tional random parameter points, are used for the accurate

reconstruction of the global parameter space. As valida-

tion, we tested this MLS method in several toy models

and compared its performance with other methods. Fur-

ther, the MLS method is applied to the parameter space

exploration of two given new physics models. We found

that the MLS method can greatly reduce the computing

cost, and at the same time has a better ability to find the

multiple independent survived parameter regions.

Note that some ML related works have been done us-

ing ML to accelerate parameter space analysis for new

physics models.[7−10,60] However, most of them use off-

line learning to train ML models to approximate physical

observables or likelihood functions. Because the perfor-

mances of these methods depend heavily on the complex-

ity of the ML models and the quality of initial training

samples, it is difficult for them to obtain high local pre-

cision. BAMBI[59] is a method of online learning, which

uses newly collected samples to incrementally train a shal-

low NN. The role of NN in this method, however, is only

to improve the local precision of the likelihood function

calculation in the MultiNest algorithm;[90] it does not im-

prove the MultiNest algorithm in finding the independent

survived regions in the whole parameter space. In the

following we provide a detailed description of the MLS

method based on our recent work.[12]

(i) Description of the Method

Approximation of the likelihood function: Like-

lihood function is widely used to measure the quality of

model parameter x in interpreting experimental data. We

usually use the definition

L(x) =
∏
i

Li(Oi(x);O
∗
i , σ
∗
i) , (8)

where Oi(x) is the theoretical prediction of the physical

observable Oi at model parameter point x and O∗i is the

corresponding experimental value with an uncertainty σ∗i .

To simplify our analysis, we ignored the correlation be-

tween experimental data.

For a new physics model with many free parameters,

in most part of the parameter space the likelihood L(x)

is close to zero. Moreover, it is possible to have a large

likelihood value only on or near a very thin “surface”. In

addition, a new physics model may have multiple survived

parameter regions, which are usually independent and far

apart in the parameter space. Therefore, using a limited

number of random parameter samples, it is insufficient

or difficult to reconstruct a likelihood function accurately

through an ML model.

Note that compared with the likelihood function, the

physical observable functions usually change very slowly

with the change of parameter values, which makes them

more suitable for ML. Using a sufficient number of param-

eter samples, the trained ML models can reconstruct the

physical observable functions with high accuracy. There-

fore, we do not directly train the ML model to fit the

likelihood function, but train the ML model to learn the

physical observable functions.

We use the symbol Mi to represent the ML model of

physical observable, then Oi(x) ≈ Ôi(x) = Mi(x), with

Oi(x) representing the theoretical predictions of the new

physics model on the physical observables when parame-

ters take value of x, Ôi(x) being the output given by the

ML model Mi. If we use the physical packages to calcu-

late the physical observables Oi(x), it can be rather time

consuming. Usually it may take seconds to hours to calcu-

late all physical observables for a single parameter point

of a new physics model, or even several days if the collider

simulation is needed. However, using the approximate cal-

culations from the ML models, all physical observables for

millions of parameter points may be calculated in about

one second. Since the ML model has a powerful general-

ization capability, the likelihood function can be further

approximated by
∏

i Li(Ôi(x);O
∗
i , σ
∗
i).

Active and incremental learning: In order to ex-

plore the parameter space of the new physics model with

ML, it is necessary to train the ML model so that it can

reconstruct the likelihood function accurately. Usually,

the ML model is trained only once, using the method de-

scribed in Refs. [7–10, 60]. In order to achieve a good ap-

proximate accuracy, the only method is to collect a large

amount of parameter sample data to train the ML model.

However, generating a large amount of parameter sample

970 Communications in Theoretical Physics Vol. 71

data is a computing intensive work, because it is necessary

to generate enough random parameter points and calcu-

late the prediction of the physical observables for each

parameter sample. Therefore, we adopt active and incre-

mental learning strategy to improve or avoid such prob-

lems.

Figure 7 shows the overall workflow of our method.

In the k-th iteration, we first use the collected parameter

sample data Tk to train the ML models to obtain the ap-

proximate function Ôi of the physical observables, and fur-

ther obtain the approximate function L̂ of the likelihood.

Then, according to the approximate likelihood function

L̂, this method actively identifies the important parame-

ter regions and recommends some parameter points within

these regions which are worthy of further exploitation. We

then use the physical packages to calculate the exact val-

ues of physical observables for each of the recommended

parameter sample. These data will be used as the newly

collected sample data Dk and appended to the training

sample data set Tk: Tk+1 = Tk ∪ Dk. In the next iter-

ation, Tk+1 will be used to incrementally train the ML

models, in order to gradually improve the accuracy of the

ML models in the reconstruction of physical observables

and likelihood functions. The above process is repeated

until a sufficient number of parameter samples are col-

lected for subsequent physical analysis. In this way, the

ML models will become more and more accurate based

on more and more high-quality sample data. At the same

time, with the continuous improvement of ML model ac-

curacy, the parameter regions that need to be focused on

will be constantly optimized, and the boundaries of these

regions will become clearer and clearer. Finally, more and

more parameter samples are collected in the survived pa-

rameter regions, and the ML model becomes very accurate

in approximating the physical observables and likelihood

functions within the survived parameter regions. In addi-

tion, the ML model also has a rather good reconstruction

accuracy in the nonviable parameter regions. In this way,

the sampling efficiency of parameter points will be greatly

improved since there is only a small chance to sample the

parameter points outside the survived parameter regions.

Fig. 7 (Color online) The flow diagram of active and incremental machine learning scan algorithm. This figure
is taken from Ref. [12].

The implementation details of our MLS method are as

follows.

• The initial training set T0 usually has a small num-

ber of data samples. These parameter points are

usually generated by random sampling. Of course,

it can be much useful to add the previously existing

data samples, which can further improve the effi-

ciency of the parameter space analysis of the new

physics model.

• MLS is a general framework and is not limited in the

types and specific choices of ML models. By default,

we choose the DNN because it has been proved to

be powerful enough for data fitting.[91−92] Of course,

we can choose any ML model with sufficient repre-

sentation capability and generalization ability.

• Because ML model can evaluate millions of parame-

ter points in a very short time, we took the approxi-

mate likelihood function L̂ as the target distribution

and adopted simple rejection sampling to sample the

“important” parameter regions. Of course, adding

prior knowledge or experience about the parameter

space of the new physics model into the sampling

algorithm can further accelerate the sampling of the

important parameter regions and further improve

the quality of the sampled points.

• In order to find more important parameter regions,

in addition to the points sampled according to the

approximate likelihood function L̂, it is also crucial

to generate some random parameter points. If we

need to encourage the algorithm to find more im-

portant parameter regions, we need to generate more

No. 8 Communications in Theoretical Physics 971

random parameter samples. On the contrary, with

fewer random parameter samples, the algorithm will

focus on exploring the important parameter regions

it already found.

• It is worth noting that because it is very time-

consuming to calculate physical observables using

physical packages, all the collected samples are used

to train the ML model without the validation, test-

ing, and regularization that normally required in

machine learning. Using a subset of all the samples

as training samples may result in the failure of ML

models to learn some key features in the parameter

space. Regularization the ML model will inevitably

smooth the steep features in the parameter space to

some extent, thus affecting the approximate accu-

racy of ML models near these regions. In ML, lack of

validation, testing and regularization often leads to

severe overfitting. Although overfitting is inevitable,

this problem can be controlled in our method. Com-

bined with the characteristics of active learning and

incremental learning, if the ML model mistakenly

learns the false important parameter regions, the al-

gorithm will subsequently collect a certain number

of data samples in these regions, which will be used

to correct the ML models accordingly.

For each of the recommended parameter points, we

need to use the physical packages to accurately calculate

the corresponding physical observables. Therefore, the

data samples obtained by our method are all accurate. In

addition, the final ML models are accurate enough to be

used for the rapid calculation of physical observables in

the subsequent parameter space analysis.

We implemented our MLS framework in Python envi-

ronment, in which the open source of deep learning frame-

work PyTorch[93] was used for the construction and train-

ing of DNN models. All calculations below are performed

on machines with Intel Core i7-4930k and NVIDIA Titan

XP. In order to test the performance and reliability of MLS

method, we first applied it to some toy models. The first

toy model is a simple one-dimensional model used to vali-

date the MLS method. The second toy model has a num-

ber of independent survived parameter regions spaced far

apart and is used to test the capability of MLS to discover

independently survived parameter regions. A third toy

model is used to test the performance of the MLS method

in high-dimensional parameter space. Finally, we applied

the MLS method to the analysis of parameter space of two

new physics models.

(ii) One-Dimensional Toy Model

We first validate the MLS method on a simple one-

dimensional toy model. In this model, there is only one

physical observable

O(x) = x2 , (−2 < x < 2). . (9)

Its likelihood function has a Gaussian form exp[−(O(x)−
O∗)2/2(σ∗)2]. We assume that the experimental value

O∗ = 2 with an uncertainty σ∗ = 0.1. Figure 8 shows

the above physical observable and likelihood functions.

This toy model has the basic characteristics of the real

new physics parameter space, that is, it only has a rela-

tively large likelihood in a very narrow parameter region.

Without some prior knowledge of the locations and shapes

of these narrow survived parameter regions, it is difficult

to analyze such parameter space directly using the tradi-

tional parameter space scanning methods.

We use a deep feed-forward fully connected neural net-

work to fit this physical observable function. This NN

has one input layer, three hidden layers, and one output

layer. The input layer has only one neuron. Each hid-

den layer has 10 neurons, and each neuron is activated

by the ReLU activation function. The output layer has

only one linearly activated neuron. The standard ADAM

optimization algorithm[94] is used to train the learnable

parameters in the neural network. In each iteration of the

MLS algorithm, a fixed learning rate of 0.001 is used to

train the NN up to 2000 epochs.

First, we used 10 initial random samples to train the

neural network. The first figure in Fig. 8 shows the phys-

ical observable function learned by the NN and the re-

constructed likelihood function. For each subsequent iter-

ations, the MLS algorithm samples 9 parameter points

according to the approximate likelihood function L̂(x),

and generates one random parameter point at the same

time. Figure 8 gives the physical observable function and

the reconstructed likelihood function learned from the ML

model after 9 iterations. After 9 iterations, the MLS al-

gorithm generated a total of 90 parameter points (plus an

initial sample of 10 random parameter points, a total of

100 parameter points). In the figure, we give the parame-

ter point samples used to train the ML model in each iter-

ation and the histogram statistics of the newly generated

parameter point samples in the parameter space. Through

the operation process of MLS algorithm, we can see clearly

that with the constant improvement of the prediction ac-

curacy of the ML model, the MLS algorithm used the clues

provided by the approximate physical observable function

to quickly find the two narrow parameter regions with

large likelihood function values and then heavily samples

in and around these regions. At the same time, as more

and more parameter points are concentrated in the sur-

vived parameter regions, the prediction accuracy of the

ML model in the survived parameter regions is rapidly

improved.

972 Communications in Theoretical Physics Vol. 71

Fig. 8 (Color online) The first 9 iterations of MLS for the one-dimensional toy model. The black solid curves represent the
theoretical values of the physical observable function and the likelihood function. The red dotted curves represent the physical
observable function obtained from the deep neural network learning and the likelihood function obtained from the indirect
reconstruction. The blue dots represent the newly generated parameter samples for each iteration. Histogram statistics of the
distribution of all parameter samples in the parameter space are also given.

No. 8 Communications in Theoretical Physics 973

Fig. 9 (Color online) The parameter space analysis and the sampling efficiency of parameter points of each scan
method for the one-dimensional toy model.

In addition, we calculated the sampling efficiency of

parameter points as shown in Fig. 9. We measure the sam-

pling efficiency by the proportion of the parameter points

in the survived parameter regions with different confidence

levels (1σ, 2σ, 3σ). For comparison, we also used the ran-

dom scan, the MCMC scan, and the MultiNest scan to

analyze the model parameter space. We can clearly see

that the random scan algorithm is an aimless sampling

algorithm and the sampling is uniform in the whole pa-

rameter space. In this way, only a few sample points from

the random scan method can fall into the survived pa-

rameter regions. Therefore, the sampling efficiency of the

random scan method is very low. For the MCMC algo-

rithm, the Gaussian distribution is adopted as the pro-

posal distribution for the MCMC sampling. The width of

the Gaussian distribution is set to 1/20 of the range of the

parameter space. It can be seen from the MCMC sampling

results that although the MCMC algorithm has a rela-

tively high sampling efficiency, the MCMC algorithm is

trapped in one survived parameter region and cannot find

another independent survived parameter region, which is

a major shortcoming of the MCMC scan method. As the

most commonly used method of parameter space analy-

sis, MultiNest can find two independent parameter regions

with high sampling efficiency, but its sampling efficiency

is slowly going up and not stable, which means it needs

more parameter samples and large amount of calculation.

In contrast, our MLS method can quickly find two inde-

pendent survived parameter regions and rapidly improve

the sampling efficiency.

974 Communications in Theoretical Physics Vol. 71

(iii) Two-Dimensional Egg-Box Toy Model

Inspired by Ref. [90], we tested the ability of MLS to

find multiple independent survived parameter regions on

a two-dimensional egg-box toy model. This model has two

free parameters and one physical observable. The model

parameters x1and x2 range from [0, 10π]. The physical

observable takes the form

O(x1, x2) =
(
2 + cos

x1

2
cos

x2

2

)5

. (10)

As shown in Fig. 10, because the shape of this physical ob-

servable is very similar to the shape of eggbox, this model

is called the two-dimensional eggbox model. Further, we

assume that the experimental value O∗ = 100 with an

uncertainty σ∗ = 10. We construct a Gaussian likelihood

function exp[−(O(x1, x2)−O∗)2/2(σ∗)2]. We need to find

the parameter regions that satisfy the experimental data

within the 2σ range. As shown in Fig. 10, the target pa-

rameter regions are a series of independent and widely

separated thin rings.

Fig. 10 (Color online) The parameter space analysis of the eggbox toy model: the sample coverage rates and the
sampling efficiencies of machine learning scan, MCMC scan, and MultiNest scan. The MultiNest scan used 500
live parameter points and other scans sampled 3×104 parameter points. The corresponding algorithm parameters
are marked in brackets. The blue points represent the parameter samples located in the survived parameter region
(2 sigma), and the gray points represent the non-survived parameter samples. This figure is taken from Ref. [12].

Figure 10 presents the results given by MLS, MCMC,

MultiNest in analyzing the eggbox toy model. This fig-

ure shows the distribution of parameter samples and the

sampling efficiency. For the MCMC method, we used

20 Markov chains and for each Markov chain the Gaus-

sian proposal distribution is used to sample the parameter

points. If the width of the proposal distribution is set to

1/20 of the range of the parameter space, the sampling of

the parameter points will span several survived parame-

ter regions, and the locations and shapes of the survived

No. 8 Communications in Theoretical Physics 975

parameter regions cannot be found out accurately. Oth-

erwise, if the width of the proposal distribution is set to

1/50 of the range of the parameter space, the sampling of

the parameter points will be trapped in some local sur-

vived parameter regions, and other independent survived

parameter regions with relatively long distances cannot be

found out. Therefore, the sampling efficiency and sample

distribution of MCMC method are very poor.

For MultiNest method, using a small number (500)

of live points, it is difficult to find all the survived re-

gions of the parameter space. By fine tune this parame-

ters, we found that the use of at least 4000 live points is

needed to guarantee the finding of all survived parameter

regions. However, in this case, its sampling efficiency will

be greatly suppressed.

Using our MLS method, we constructed a DNN to

learn the physical observable function. This NN has one

input layer, four hidden layers, and one output layer. Each

hidden layer has 100 neurons, and each neuron adopts the

ReLU activation function. The output layer has a neu-

ron with a linear output. We used the mean-square-error

as the loss function and the standard ADAM optimiza-

tion algorithm to train the learnable parameters in the

NN model. The learning rate of the NN model was fixed

at 0.001. Each iteration of the MLS algorithm trains the

NN up to 1,000 epochs. In the experiments, we used 100

random parameter samples. Each iteration of the MLS

algorithm generates 90 parameter points sampled accord-

ing to the approximate likelihood function L̂(x1, x2), and

10 random parameter points. As a test, we also used an-

other DNN with different hyperparameters. From Fig. 10

we find that the performance of MLS method has little

dependence on the hyperparameters of DNN model. As

long as the learning and generalization capability of the

selected ML model are powerful enough, the sampling ef-

ficiency of the parameter points of MLS method is almost

consistent, and it has the capability to consistently find

all the independent survived parameter regions with rela-

tively long distances.

In addition, we also carried out the experiments of

learning the likelihood function directly with the shallow

NN and the deep NN. The shallow NN has only a hidden

layer of 2,000 neurons. The deep NN has 4 hidden layers,

and each hidden layer has 100 neurons. We used a sample

of 1800 random parameter points to train the two NN re-

spectively. Unlike the MLS method, which trains the NN

iteratively and incrementally, these two neural networks

are trained only once. Additionally 200 random parame-

ter points as the validation set were used for model selec-

tion, and the corresponding NN model parameters with

the minimum loss on the validation set were selected. As

shown in Fig. 11, we found that the shape of the likelihood

function could not be accurately reconstructed by direct

learning of the likelihood function, neither the shallow NN

nor the deep NN. For comparison, the NN model in the

MLS method can reconstruct the shape of the likelihood

function very accurately when the MLS method samples

2000 parameter points. This is because the active pa-

rameter point sampling of MLS method can specifically

improve the learning of the NN model on the physical ob-

servable in the parameter space, so as to better reconstruct

the structure of the likelihood function.

Fig. 11 (Color online) The likelihood functions reconstructed using the shallow neural network, the deep neural
network and our machine learning scan algorithm. The first two methods use 2000 parameter samples to learn
the target likelihood function directly. The machine learning scan algorithm runs until 2,000 parameter points
are sampled. The colors in the figure represent the values of the reconstructed likelihood function. This figure is
taken from Ref. [12].

Therefore, by both theoretical analysis and practice,

we can prove that if the likelihood function is directly

fitted instead of indirectly reconstructed by learning the

physical observable function, only if a sample parameter

point is collected accidentally within a survived parame-

ter region, can this survived parameter region be further

discovered. So more parameter point samples are needed,

which leads to the increase of computing cost.

(iv) High Dimensional Toy Model

In order to test the performance of MLS in explor-

976 Communications in Theoretical Physics Vol. 71

ing high-dimensional parameter space, we built a high-

dimensional quadratic toy model. This model has an n-

dimensional parameter space and its unique physical ob-

servable is defined as O(x) = xTx =
∑

x2
i . We adopt

a gaussian likelihood function L(x) = exp[−(O(x) −
O∗)2/2(σ∗)2], where we assume the experimental value

O∗ = 2 with an uncertainty σ∗ = 0.1. Our task is to find

the survived parameter regions that meet the experimen-

tal data within the range of 2 sigma. According to the

model, we can know that the survived parameter region

is a hyperspherical shell in a high-dimensional space.

We use a DNN to learn the physical observable func-

tion. This NN has one input layer, four hidden layers, and

one output layer. The input layer has n neurons, corre-

sponding to n parameters of the toy model. Each hidden

layer has 100 neurons, and each neuron adopts the ReLU

activation function. The output layer has a neuron with

a linear output. We use the mean-square-error as the loss

function and the standard ADAM optimization algorithm

to train the learnable parameters in the NN model. The

learning rate of the NN model is fixed at 0.001. Each it-

eration of the MLS algorithm trains the NN up to 1,000

epochs.

For the 2-dimensional model (n = 2), we used 20 ini-

tial random samples. Each iteration of MLS algorithm

produces 18 samples according to the approximate likeli-

hood function L̂(x1, x2), and 2 random samples. For the

7-dimensional model (n = 7), we use 100 initial samples.

Each iteration of MLS algorithm produces 90 samples ac-

cording to the approximate likelihood function L̂(x1, x2),

and 10 random samples.

Figure 12 shows the sampling efficiencies and the sam-

ple distributions of the 2-dimensional and 7-dimensional

models given by the MLS, MCMC and MultiNest meth-

ods. For the MCMC and MultiNest, the parameters are

carefully optimized in order to use as few samples to get

the best parameter space coverage. For the MCMC, we

use the Gaussian proposed distribution, with the distri-

bution width set to 1/50 of the range of the parameter

space, and run 10 independent Markov chains. For the

MultiNest, we use 200 and 1000 live points for the 2-

dimensional and 7-dimensional models, respectively. From

the results we can see that for the same number of sampled

parameter points, the sampling efficiency and the sample

distribution of the MLS method are the best. In order

to compare the performance changes of scan algorithms

with the increase of parameter space dimensions, we mea-

sured the sampling efficiency of various scan algorithms for

different parameter space dimensions with 1000 collected

samples. For the MLS method the sampling efficiencies

of the 2-dimensional and 7-dimensional models are 84.5%

and 55.5%, respectively; while for the MCMC they are

48.2% and 22.9%, and for the MultiNest they are 19.6%

and 0.4%, respectively. On the other hand, the distribu-

tion of samples obtained by MCMC method is the worst,

and it does not cover the survived parameter space to a

sufficient extent, because the MCMC chain is easy to be

trapped into the local extrema of likelihood function and

hard to jump out.

Fig. 12 (Color online) The analysis of the parameter space of the high dimensional toy model: the sample
coverage rates and sampling efficiencies of the MLS, the MCMC and the MultiNest scan methods. For the 2-
dimensional model (left) and the 7-dimensional model (right) the scan analysis, the scan analysis uses 3000 and
2× 104 samples, respectively. This figure is taken from Ref. [12].

No. 8 Communications in Theoretical Physics 977

(v) MSSM Alignment Limit

Now we apply the MLS method to new physics phe-

nomenology studies. The minimum supersymmetric stan-

dard model (MSSM) is currently the most popular exten-

sion of the standard model (SM). Under the current LHC

constraints and dark matter experiments, when the light

CP-even Higgs boson (h) acts as the SM Higgs boson,

the mass of bino-like dark matter in the MSSM must be

above 30 GeV.[95−96] However, in the alignment limit,[97]

the heavier CP-even scalar boson (H) can also act as the

SM Higgs boson with a mass of 125 GeV. Meanwhile, the

light CP-even Higgs boson (h) can be very light.[98−99]

Under the constraint of dark matter relic density, through

the interaction of a light h, it is possible for a bino-like

dark matter below 30 GeV.

We used MLS and MultiNest to analyze the parameter

space of the MSSM to find the alignment parameter space.

We require the parameter points to satisfy the constraints:

(i) The CP-even H in the MSSM model is taken as the

SM-like Higgs boson. (ii) Satisfy the experimental values

of the Higgs-related physical observables, which is car-

ried out by using HiggsBounds-4.3.1[100] and HiggsSignals-

1.40[101] (yielding the corresponding χ2 value denoted as

χ2
HS). (iii) Dark matter relic density Ωh2 should be in the

experimental range at 3σ level.[102]

Fig. 13 (Color online) The analysis of the parameter space of the MSSM alignment limit: the sample coverage
and sampling efficiencies of the MLS and MultiNest scan methods. This figure is taken from Ref. [12].

The masses of the Higgs bosons mh and mH are cal-

culated using FeynHiggs 2.13.0[103] and dark matter relic

density Ωh2 using MicrOMEGAs 4.3.2.[104] We performed

a parameter space scan in a wide range of parameter space.

For the first sampling of 200 random parameters, we found

that the dark matter relic density Ωh2 spans several or-

ders (from zero to 103) while other physical observables

change rather slowly. Therefore, in our parameter space

scan we take the likelihood function as

θ(3− |mH − 126|)× θ(112.7273− χ2
HS)

978 Communications in Theoretical Physics Vol. 71

×θ(0.03651− |Ωh2 − 0.1186|)× e−0.15mh , (11)

where the step function θ means that the physical observ-

able value must strictly fall in the corresponding interval.

The last term is used to guide the scan to look for h as

light as possible. We used four separate regressors to fit

mh, mH , χ2
HS, and lnΩh2, respectively, and one classifier

for identifying nonphysical parameter points. For both

regressors and classifier, fullly connected DNN are used

and they have almost the same structure: an input layer,

four hidden layers, and one output layer. The input layer

contains three input neurons corresponding to three free

input parameters. Each hidden layer has 60 neurons, and

each neuron is activated by the ReLU function. The out-

put neurons of the classifier are activated by the Sigmoid

function. The output neurons of the regressors are lin-

ear. For training the classifier we choose the binary cross-

entropy function as the loss function, while for training

the regressors we use the mean-square-error function as

the loss function. The standard ADAM optimizer is used

to train the learnable parameters of these classifiers and

regressors. For each iteration of the MLS algorithm, each

classifier and regressor are optimized up to 2000 epochs.

For the parameter sample recommendation in each it-

eration, the candidate samples are first filtered by the clas-

sifier. Then the selected samples are sent to the regressors,

to evaluate their corresponding physical observables and

calculate their corresponding likelihoods. If using a phys-

ical package, the calculation for a parameter point takes

about two seconds, while the DNN can calculate 106 pa-

rameter points every second.

Our experiments showed that the ML model quickly

learns the structures of the physical observables and the

likelihood function in the parameter space, so that the

subsequent parameter points generated by MLS iterations

lie in or around the survived parameter space. As shown

in Fig. 13, after 20 iterations, about 90% of the param-

eter points generated by each MLS iteration falls within

the survived parameter regions. The total MLS sampling

efficiency reaches 65%. The random scan, by contrast,

needs to use 105 samples and its sampling efficiency is

only 0.68%. The MLS method is about two orders faster.

In Fig. 13, we show the analysis of the parameter

space of the MSSM alignment limit, displaying the sam-

ple coverage and sampling efficiencies of the MLS and

MultiNest scan methods. There are two independent sur-

vived parameter regions in the scan ranges. For the MLS

method we use 1000 random parameter points to initial-

ize the DNN. Then, each iteration produces 100 param-

eter points, 95 of which come from the sampling of the

approximate likelihood function, and the other 5 are ran-

dom parameter points. We see from the results that the

MLS sampling efficiency of the parameter points increases

very fast, which means that the DNN quickly learns the

structure of the physical observable functions and the like-

lihood function in the parameter space. When sampling

2×104 parameter points, the MLS sampling efficiency has

reached 80%. However, for MultiNest with optimized pa-

rameters of algorithm (using 1000 live samples), its sam-

pling efficiency is relatively low, and it needs to keep run-

ning till sampling 2.35 × 105 parameter points to cover

the whole survived parameter regions. Even so, compared

with the MLS method, MultiNest scan results have a poor

coverage for the survived parameter region with a smaller

M1.

(vi) CMSSM Survived Parameter Space

Now we use the MLS method to analyze the CMSSM

parameter space, and with comparison to the MultiNest

results, to verify the effectiveness of our MLS method in

the study of actual phenomenological study. Limited by

our computing resources, we scan the CMSSM parameter

space: 5 TeV < M0 < 10 TeV, 1 TeV < M1/2 < 10 TeV,

|A0| < 10 TeV, 3 < tanβ < 70, and sign(µ) = −1. In ad-

dition, all the SM parameters are fixed in our calculation.

In order to use the likelihood function in real phenomeno-

logical research, we directly use the likelihood function de-

fined in the open source package GAMBIT.[105] The like-

lihood function contains many contributions from precise

electroweak measurements PrecisionBit,[106] dark matter

detection DarkBit,[107] flavor physics FlavBit,[108] and di-

rect search at colliders ColliderBit.[109] We use the open

source package GAMBIT-1.1.3[105] to calculate the cor-

responding physical observables and the likelihood func-

tion of the parameter samples. Among them, the calcu-

lations of physical observables use a lot of external pack-

ages, such as micrOMEGAs 3.6.9.2,[110] DDCalc 1.0.0,[111]

FlexibleSUSY 1.5.13,[112] gamLike 1.0.0,[111] GM2Calc

1.3.0,[113] HiggsBounds 4.3.1,[114] HiggsSignals 1.4,[101]

SuperIso 3.6,[115] SUSY-HIT 1.5,[116] etc.

Fig. 14 (Color online) Sampling efficiencies of the
CMSSM parameter space: the MLS uses 5000 initial sam-
ples and the MultiNest uses 5000 live samples. Both
methods perform the calculation for 2 × 105 parameter
samples. This figure is taken from Ref. [12].

No. 8 Communications in Theoretical Physics 979

Fig. 15 (Color online) The profile likelihood ratio displayed on the M0 −M1/2 plane for 2× 104, 15× 104, and

20× 104 samples obtained from the MLS (upper panel) and MultiNest (lower panel), respectively. This figure is
taken from Ref. [12].

Fig. 16 (Color online) The ROC curve of a deep neural network classifier for identifying physical and non-physical
parameter points (upper left), and comparion of the experimental physical observable values estimated by the
deep neural network regressors with those calculated by physical packages. This figure is taken from Ref. [12].

980 Communications in Theoretical Physics Vol. 71

Using the above likelihood function, we initialize the

MLS with 5000 random parameter samples. After evalu-

ating 200,000 parameter points, 58,719 (129,249) samples

are found to locate within 68% (95%) CL region of the

parameter space. Actually, the survived regions can be

mostly discovered with about 20,000 samples. For com-

parison, we also performed a MultiNest scan with 5,000

live points, same as the setting in GAMBIT.[105] It turns

out that 523 (2016) out of 200,000 samples are within 68%

(95%) CL region of the parameter space. Figure 14 shows

the dependence of sampling efficiency on the number of

samples. If the number of samples is large enough, the ef-

ficiency of MultiNest may become comparable with MLS.

Figure 15 shows the profile likelihood ratio on the

M0 − M1/2 plane for 2 × 104, 15 × 104, and 20 × 104

samples obtained from the MLS (top panel) and Multi-

Nest (bottom panel), respectively. In this region, the relic

abundance of neutralino dark matter is achieved through

the chargino-neutralino coannihilation or the A/H funnel.

We see that the chargino-neutralino coannihilation region

(the large continuous region in Fig. 15 for the MLS scan

is consistent with the MultiNest scan as well as with the

GAMBIT result.[105] For the A/H funnel region, i.e., the

sporadic regions around M0 ≃ 8 TeV and M1/2 ≃ 2 TeV,

the MLS method can find more samples than the Multi-

Nest. So we successfully show that the MLS has a higher

sampling efficiency than MultiNest in case of limited com-

puting resource.

In Fig. 16 we show the performance of the ML model

in the MLS. We see that the ROC curve of the DNN clas-

sifier is very steep, which means that the physical and

non-physical parameter points can be distinguished very

well. Also we can see that the DNN regressors can ac-

curately estimate the values of the experimental physical

observables (or likelihood function) from the parameter

points.

To summarize, we proposed a new method for explor-

ing the parameter space of new physics models, called

the machine learning scan (MLS). It can quickly and reli-

ably explore the parameter space of a new physics model

with multiple parameters and multiple independent sur-

vived parameter regions. As a performance comparison,

we compared the MLS method with other conventional

scan methods in several toy models and two practical phe-

nomenological studies. It can be seen from the comparison

results that the MLS method can greatly reduce the calcu-

lation cost required by the parameter space analysis and

at the same time improve the sampling efficiency and the

coverage of the survived parameter regions.

4.3 Graph Neural Network in New Physics

Studies

In addition to the traditional cut-flow based analysis

techniques, ML methods provide another way to distin-

guish signals from background events. So far the tradi-

tional ML methods have been used in collider data anal-

ysis for about 30 years.[3] An example is that in the LHC

experiment the use of BDT in data analysis helps to dis-

cover the Higgs particle.[4] Recently, more ML techniques

have been developed and applied to the study of high en-

ergy physics.[5−11]

When using ML technique to deal with collider events,

we must first construct a representation of events and then

choose an ML model to learn and infer this representa-

tion. A collider event is usually described as a collection

of final-state particles with specific kinematic features. It

is worth noting that the geometric relationship between

the final-state particles in the event can be used as a sen-

sitive feature to distinguish the signal from background.

Moreover, in mathematics such geometric patterns com-

posed of some entities are usually expressed in the form of

graphs, so as to facilitate the further use of ML algorithm

for numerical analysis.

Among various ML methods, the MPNN[53] provides

a universal framework for supervised graph learning. It is

especially suitable for problems that need to learn and in-

fer the geometric patterns of graphs. In fact, the MPNN

is an extension and improvement of the original Graph

Neural Network (GNN).[117−118] At the same time, the

MPNN also improves the training and infering efficiency

of the original GNN model. The MPNN can be regarded

as a nonlinear mathematical model with learnable param-

eters which can map the input in graph form directly to

the output. We can use supervised learning to train their

learnable parameters. At present, some varieties of MPNN

have been applied in many fields such as network science,

molecular physics and jet physics.[53,72]

In our work[13−14] we applied the MPNN to the clas-

sification of signals and background events at the LHC.

Each collider event is represented as a graph, which we

call the event graph. In an event graph, the nodes de-

scribe the final-state particles and the edges represent

the geometric relationship between each two final-states

in the event. Note that unlike RNN and fully connected

DNN, the MPNN is a dynamic neural network which is

inherently independent of the number of nodes in the in-

put graph and also independent of the ordering of nodes.

In the following we provide a detailed description of our

applications.[13−14]

(i) Event Graph Neural Network

Event graph representation: A collision in a col-

lider usually produces a lot of final-state particles. These

final-state particles are further reconstructed into objects

such as photons, leptons (electron or muon) and jets with

four-momentum information. Each collider event can nat-

urally be represented by a graph, based on the space ge-

ometry formed by final-state objects in the detector. We

call this representation event graph representation.

No. 8 Communications in Theoretical Physics 981

Given a collider event, the corresponding event graph

is constructed as follows. Each final object is represented

as a node in the graph, and then each pair of nodes is

connected by an edge, forming an undirected weighted

complete graph. Each node in the event graph has a fea-

ture vector. We denote the feature vector of the node i as

xi, which is used to describe the main information of the

final object i in the event. Each edge in the event graph

has its own weight. We denote the edge connecting nodes

i and j as dij , which is used to represent the geometric

distance between two final objects of i and j in the event.

As an illustration, in Fig. 17 we show an event graph

of the process pp → t̃1t̃
∗
1 → tt̄χ̃0

1χ̃
0
1 → ℓ+ 2b+ ≥ 2j + E̸T ,

where the detailed node feature vector x and edge weights

matrix d are also given. To be specific, the main properties

of the i-th final-state are encoded into the 7-dimensional

node feature vector xi. The first feature indicates that the

final-state is a photon (1) or not (0). If the final-state is a

lepton, its charge acts as the second feature; otherwise 0.

The third feature indicates that the final-state is a b-jet

(1), light jet (−1) or not a jet (0). The fourth feature

is used as an indicator of missing energy (MET) (1) or

not (0). The rest three features are transverse momentum

(pT), energy (E) and mass (m) of the object. By construc-

tion, such a feature vector is simple and compact, and, at

the same time, is extendable. By extending the dimension

of node feature vector, various other experimental data as-

sociated with final objects can be conveniently added to

the feature vector.

Fig. 17 (Color online) A sample of event graph from the process pp → t̃1t̃
∗
1 → tt̄χ̃0

1χ̃
0
1 → ℓ+ 2b+ ≥ 2j + E̸ T at

the 13 TeV LHC. This figure is taken from Ref. [13].

In the event graph, the edge weight of two nodes i and

j is set as the angular distance of two final objects i and

j: dij =
√
∆y2ij +∆ϕ2

ij with ∆y and ∆ϕ respectively rep-

resenting the difference between rapidities and azimuth

angles.

It is noteworthy that in the event graph construction

we deliberately do not put the information of the angle

ϕ of the final object in the node feature vector. Instead,

only the azimuth angle difference ∆ϕ between two nodes

is included in the edge weight. In this way we can guar-

antee that the event graph is invariant under the rotation

of collider events around the beam axis.

Graph neural network design: In our work, we de-

signed a variant of MPNN to better classify events. Fig-

ure 18 shows the basic structure of the MPNN we de-

signed. This NN consists of a series of functional layers,

including a node embedding layer, T groups of message

passing and node state update layers as well as a voting

output layer.

First, in the node embedding layer the feature vector

xi of each node is mapped to a high-dimensional node

state vector s
(0)
i = fe(xi) with fe being the node embed-

ding function. Up to now the state vector s
(0)
i only en-

codes the i-th node features xi without any information

about the geometrical pattern of the whole graph.

Then the message passing techniques are used to per-

form the event graph embedding, which encodes the whole

event graph into each node state vector. This is done by a

number of message passing layers and node state update

layers. At iteration t, each node i collects the messages

982 Communications in Theoretical Physics Vol. 71

sent from other nodes j

m
(t)
i =

∑
j ̸=i

m
(t)
i←j =

∑
j ̸=i

f (t)
m (s

(t−1)
j , dij) , (12)

and update its state vector s
(t)
i = f

(t)
u (s

(t−1)
i ,m

(t)
i) with

f
(t)
m being the learnable message functions and f

(t)
u being

the learnable update functions. By repeating this proce-

dure, the information in node states and the distances be-

tween nodes are disseminated with the sent messages, and

each node updates its knowledge of other nodes and the

relationships between all nodes. Therefore, after T itera-

tions each node state is an encoding of the whole graph,

which is a compact representation of the information of

both the kinematic features of all final-states and the geo-

metrical relationship between them. They can be viewed

as event features automatically extracted from the input

event graph.

Next, based on its own state vector, each node votes

a number which is the likeness of the event as the signal

yi = fv(s
(T)
i) with fv being the vote function. Finally, to

make the prediction stable we take average for the votes

from all nodes as the final score of discrimination of the

event y =
∑

i yi/|V| with |V| being the number of nodes.

Then the event selection can be made by applying a spe-

cific cut θy on the score y, i.e., only the events with y > θy
are selected.

Fig. 18 (Color online) The structure of our MPNN designed for event graph classification. It has the functional
layers shown as shadowed blocks, with T pairs of message passing and state updating layers for automatic event
feature extraction. The state vectors s, the message vectors m, the votes yi and the discrimination score y are
shown as black boxes. The colored arrows denote the application of node embedding function fe, message passing
function fm, state update function fu and vote function fv, respectively. The operators are given in gray circles,
with ⊕ denoting vector concatenation, Σ, and Σ/N being summation and average, respectively. This figure is
taken from Ref. [13].

In our calculations, the state and message vectors are

chosen as 30-dimensional, and the single layer perceptrons

are chosen for the node embedding, message passing, up-

date and vote functions

fe(x) = relu (Wex+ be) , (13)

f (t)
m (s, d) = relu

(
W (t)

m (s⊕ [d]) + b(t)m

)
, (14)

f (t)
u (s,m) = relu

(
W (t)

u (s⊕m) + b(t)u

)
, (15)

fv(s) = σ (Wvs+ bv) , (16)

with ⊕ denoting the vector concatenation, relu being the

rectified linear unit, σ being the sigmoid function, W and

b being the learnable parameters. For each iteration the

independent message and update functions are used. To

ease the learning of message functions, we expand the

pair distance d on a Gaussian basis N(µi, δ
2), linearly dis-

tributed in [0,5] with width of 0.25, as a 21-dimensional

vector [d]i = exp{(d− µi)
2/2δ2}.

We found that the above choices are a good trade-off

between model complexity and prediction accuracy. We

No. 8 Communications in Theoretical Physics 983

not only consider to increase the complexity of the neural

network model to ensure that it can fully learn and ex-

press the characteristics of sample data, but also consider

to decrease the complexity of the neural network model

to reduce the overfitting phenomenon and improve the

generalization prediction ability of the model. Based on

the above selection, our MPNN model has a total of 7051

learnable parameters.

The MPNN can be efficiently trained using supervised

learning techniques. We adopt binary-cross-entropy as the

loss function and use the Adam[94] optimizer with a learn-

ing rate of 0.001 to optimize the model parameters based

on the gradients calculated on a mini-batch of 500 training

examples. A separate set of validation samples is used to

measure the generalization performance. All the calcula-

tions are implemented with the open-source deep learning

framework PyTorch[93] with a strong GPU acceleration.

(ii) Graph Neural Network for Top-Squark

Search at LHC

In order to verify our MPNN method, we apply it to

the stop search at the LHC, i.e., the search for the stop

pair production pp → t̃1t̃
∗
1 → tt̄χ̃0

1χ̃
0
1 → ℓ+ 2b+ 2j + E̸ T

at the 13 TeV LHC with 36.1 fb−1. We assume that the

lightest supersymmetric particles χ̃0
1 is bino-like, and focus

on the kinematic region mt̃1
≥ mt+mχ̃0

1
. The main back-

grounds come from tt̄, W +jets and tW . The background

tt̄Z(→ νν̄) is non-negligible for a heavy stop and is also

included in our calculations. The multi-jet background is

found to be negligible for this signal.[119]

The package MadGraph5 aMC@NLO[120] is used as an

event generator to simulate signal and backgrounds at

parton-level. The parton shower and hadronization are

carried out with Pythia8.2,[121] and a fast detector simula-

tion is performed using Delphes-3.4.1.[122] We use the anti-

kt algorithm[123] with the distance parameter R = 0.4 to

cluster jets, and assume a b-tagging efficiency of 80%. The

event preselection is performed by CheckMATE-2.0.14[124]

with the following pre-selection cuts: exactly one lepton

with pT (ℓ) > 10 GeV and |η(ℓ)| < 2.5, at least 4-jets/2b

with pT (j) > 25 GeV and |η| < 2.5, and the transverse

missing energy E̸ T > 150 GeV. The stop pair produc-

tion rate to the NLO QCD is calculated with Prospino.[125]

The backgrounds tt̄ and W+jets are normalized with their

NNLO cross-sections.[126−127] We display the significance

Z = S/
√
B and, to guarantee the statistics, we require at

least 10 events after the cuts.

In order to compare with the performance of other ma-

chine learning methods, we also use deep fully connected

neural network (DNN) to classify events. Since the input

size of DNN is fixed, we sort the nodes in each event graph

by their identities and pT and then arrange the node fea-

tures and edge weights into a fixed-size feature vector of

the form

[xT

E̸T
,xT

ℓ ,x
T

b1 ,x
T

b2 ,x
T

j1 , . . . ,

xT

jN ; dE̸TE̸T
, dE̸T ℓ, . . . , djN jN] , (17)

where N = 17 is the maximum number of light jets in our

event graphs. Zero-padding is adopted to fill the missing

values in the feature vector, namely for an event graph

with n light jets, xjk = 0 (k > n) and djkjl = 0 (k or l >

n). We carefully tune the hyperparameters of DNN and

training settings to avoid over-fitting. The DNN has 588

input neurons, four 400-neuron hidden layers with the relu

activation function and a dropout rate of 0.5, and one

output neuron with the sigmoid activation function. It is

trained with the same settings as in our MPNN.

Table 1 The significance (Z) of MPNN and DNN for two benchmark points at 13 TeV LHC with
the luminosity of L = 36.1 fb−1. MPNN6 and DNN6 are for the results of using six objects (one
lepton, two b-jets, two leading light-jets and MET) as inputs.

mt̃1
/GeV mχ̃0

1
/GeV Z(MPNN) Z(DNN) Z(MPNN6) Z(DNN6)

Point A 525 352 4.6 2.7 3.5 2.9

Point B 900 330 5.4 4.0 4.3 4.2

Table 1 shows the performances of MPNN and DNN

for two benchmark points. The two benchmark points

are chosen with distinctive kinematic features: point A is

in the compressed region mt̃1
≈ mt + mχ̃0

1
, while point

B is in the uncompressed region mt̃1
≫ mt + mχ̃0

1
. The

results of MPNN6 and DNN6 with six objects (one lep-

ton, two b-jets, two leading light-jets and MET) as inputs

are also presented. The reduced event graphs for MPNN6

have 6 nodes and 36 edges. The input feature vectors for

DNN6 are of the form of Eq. (17) with N = 2 so that it

has 78 input features. From Table 1 we can see that the

MPNN has a better significance than DNN for both bench-

mark points, especially for the case A in which the signifi-

cance increases from 2.9σ (DNN6) to 3.5σ (MPNN6), and

2.7σ (DNN) to 4.6σ (MPNN). With more input features,

MPNN outperforms over MPNN6, while DNN has no such

a feature, since more learnable parameters usually lead to

a more serious over-fitting for DNN.

Figure 19 shows the discriminating power of MPNN

and DNN on signal and background events for benchmark

984 Communications in Theoretical Physics Vol. 71

points A and B. Since the over-fitting is very small, we

only show the results on validation set. The top panel

shows that the signal and background events are well sepa-

rated in the distributions of discrimination scores for both

MPNN and DNN. But for MPNN the scores of signals are

inclined to have larger values than DNN, while the scores

of backgrounds have smaller values than DNN. The mid-

dle panel shows that MPNN has a higher signal selection

efficiency εS and lower background selection efficiency εB
than DNN. This leads to sharper receiver operating char-

acteristic (ROC) curves than DNN, as shown in the bot-

tom panel.

Fig. 19 (Color online) The discriminating powers of MPNN and DNN on signal and backgrounds for benchmark
points A and B in Table 1. This figure is taken from Ref. [13].

Fig. 20 (Color online) The 95% CL exclusion limits
on the plane of mt̃1

versus mχ̃0
1
by using MPNN and

DNN at the 13 TeV LHC with a luminosity of L = 36.1
fb−1. The black line corresponds to the mass relation
mt̃1

= mχ̃0
1
+mt. This figure is taken from Ref. [13].

Figure 20 shows the 95% C.L. exclusion limits on the

plane of mt̃1
versus mχ̃0

1
by using MPNNs and DNNs

at the 13 TeV LHC with the luminosity L = 36.1 fb−1.

We see that MPNNs can produce stronger exclusion lim-

its than DNNs. For examples, in the compressed region

mt̃1
≈ mχ̃0

1
+ mt, the mass bound of stop from MPNN

can be 670 GeV, which is about 100 GeV larger than the

DNN result. In other regions mt̃1
> mχ̃0

1
+mt, the exclu-

sion limits of stop mass can be enhanced by several tens

of GeV.

(iii) Graph Neural Network for Probing Top-

Higgs Coupling at the LHC

An accurate measurement of the coupling of the top

quark and the Higgs boson will allow for a deep under-

standing of new physics beyond SM. In our work,[14] we

used the MPNN to study the CP property of this coupling

through the semi-leptonic decay channel of the process

pp → tt̄H at the 13 TeV LHC. Based on the event classi-

fication probability of the output of the MPNN, we con-

structed a variable and performed a hypothetical test. We

found that the pure CP-even and CP-odd couplings can

be well distinguished at the LHC with at most 300 fb−1

experimental data.

Including the possible CP-violation, the top-Higgs

No. 8 Communications in Theoretical Physics 985

interaction can be parameterized as −(yt/
√
2)t̄(cos ξ +

iγ5 sin ξ)tH with yt =
√
2mt/v and ξ = 0 in the

SM[128] (v = 174 GeV is the vacuum expectation value

of the Higgs field). The CP violation in this coupling

is caused by the presence of sin ξ term, which has been

constrained.[129−130] These indirect constraints are model-

dependent and the most robust test of this coupling

is from the direct measurement of tt̄H production at

colliders.[131−140] In the following, we denote the Higgs

boson with the CP-even coupling (ξ = 0) as h, and the

one with the CP-odd coupling (ξ = π/2) as A. At the LHC

the tt̄h and tt̄A productions have the same backgrounds,

dominantly from the process pp → tt̄bb̄+X.

In our study we used event graphs as the representa-

tion of collider events and designed an MPNN to classify

the collider events, i.e., give the probabilities of the input

event graph e as tt̄h, tt̄A or tt̄bb̄ denoted as p(h|e), p(A|e),
and p(b|e), respectively. Finally, a variable from the out-

put of MPNN is constructed and a hypothetical test is

performed. As the input of MPNN, each collider event is

represented as an event graph as shown in Fig. 21.

Fig. 21 (Color online) An event graph for a simulated tt̄h event at the 13 TeV LHC. This figure is taken from
Ref. [14].

Fig. 22 (Color online) An illustration of p-value evalua-
tion for rejecting the CP-even or CP-odd scenario. This
figure is taken from Ref. [14].

If the top-Higgs coupling is CP-even (CP-odd), the

event sample collected in experiments will come from the

tt̄h (tt̄A) process plus the dominate tt̄bb̄ background pro-

cess. To discriminate event samples of the two scenarios,

we construct two likelihoods from the single-event proba-

bility output from the MPNN

Lh(D) =
∏
e∈D

′
p(h|e) , LA(D) =

∏
e∈D

′
p(A|e) . (18)

For the CP-even (CP-ood) scenario, we have Lh(D) ≫
LA(D) (Lh(D) ≪ LA(D)). Then we use a log-likelihood

ratio lnQ(D) = ln(LA(D)/Lh(D)) to perform a hypoth-

esis test as the test statistics. The distribution of lnQ

denoted as fh and fA in the two scenarios can be numer-

ically obtained by evaluating a large number of random

simulated event samples.
Once the distributions of lnQ are given and the value

of lnQ∗ calculated from the observed experimental data

D∗, as illustrated in Fig. 22, we can evaluate the p-values

of rejecting the CP-even or CP-odd scenario by the inte-

grals

ph(lnQ
∗) =

∫ +∞

lnQ∗
fh(x)dx ,

pA(lnQ
∗) =

∫ lnQ∗

−∞
fA(x)dx . (19)

986 Communications in Theoretical Physics Vol. 71

Fig. 23 (Color online) The distributions of p(h|e), p(A|e), and p(b|e) for tt̄h, tt̄A, and tt̄bb̄ events from the
MPNN output. This figure is taken from Ref. [14].

Fig. 24 (Color online) The left panel shows the distribution of the log-likelihood ratio from pseudo-experiments
while the right panel shows the receiver operating characteristic (ROC) curve versus ph of the hypothesis test.
This figure is taken from Ref. [14].

No. 8 Communications in Theoretical Physics 987

As in the preceding section, in our simulations we used

the packages MadGraph5,[120] Pythia8,[121] Delphes,[122]

and CheckMATE2.[124] We require leptons to have pT >

20 GeV and |η| < 2.5, jets to have pT > 25 GeV and

|η| < 2.5, and assume a b-tagging efficiency of 60%. We

used the semi-leptonic channel, which has exactly one lep-

ton, four b-jets and at least two light jets in the final states.

We collected 9 × 105 samples with balanced numbers of

tt̄h, tt̄A and tt̄bb̄ events as the training sets, while another

3× 105 samples as the validation set for the performance

evaluation.

Figure 23 shows the distributions of the trained MPNN

outputs evaluated on the validation set. We see that the

MPNN has successfully learned some discriminative event

features for different processes. The background events

tend to have higher p(b|e), while the tt̄h and tt̄A events

have higher p(h|e) and p(A|e), respectively.
For each of the two scenarios, millions of pseudo-

experiments were performed, with the pseudo-experiment

events taken from the validation set. As shown in Fig. 24,

with the increase of luminosity, the distributions for CP-

even and CP-odd couplings get more separated, and when

the luminosity reaches 300 fb−1, the two distributions

almost have no overlap. This indicates that the LHC

with 300 fb−1 experimental data may distinguish the CP

property of the top-Higgs couplings using such an MPNN

method.

5 Summary

Machine learning has been developed as a typical in-

terdisciplinary field. It studies algorithms and statisti-

cal models, in order to gradually improve the capabili-

ties of computer systems to solve given tasks. As a sub-

field, deep learning techniques have shown powerful learn-

ing den inference capabilities, which are comparable to or

even superior than human experts. Traditional machine

learning techniques have already been widely applied to

high energy experiments for more than three decades with

fruitful results. A great successful application is the us-

ing of boosted decision trees in data analysis that leads to

the discovery of Higgs boson at the LHC. Currently, deep

learning attracts more attentions in high energy experi-

ments, but also some interesting applications have been

done using deep learning in the field of phenomenology.

In this note we provided a brief review on these appli-

cations. We first described various deep neural network

models and then recapitulated their applications to high

energy phenomenological studies. Some detailed applica-

tions including the machine learning scan in the explo-

ration of parameter space, the graph neural networks in

the search of top-squark and Htt̄ productions at the LHC

were delineated.

Acknowledgments

We thank Rong-Gen Cai for suggestions and com-

ments.

References
[1] A. Webb, Statistical Pattern Recognition, Wiley Inter-

Science Electronic Collection, Wiley (2003).

[2] Y. LeCun, Y. Bengio, and G. Hinton, Nature (London)
521 (2015) 436.

[3] P. C. Bhat, Ann. Rev. Nucl. Part. Sci. 61 (2011) 281.

[4] B. P. Roe, H. J. Yang, J. Zhu, et al., Nucl. Instrum. Meth.
A 543 (2005) 577, arXiv:physics/0408124[physics].

[5] P. Baldi, P. Sadowski, and D. Whiteson, Nature Com-
mun. 5 (2014) 4308, arXiv:1402.4735[hep-ph].

[6] P. Baldi, P. Sadowski, and D. Whiteson, Phys. Rev. Lett.
114 (2015) 111801, arXiv:1410.3469 [hep-ph].

[7] M. Bridges, K. Cranmer, F. Feroz, et al., J. High Energy
Phys. 03 (2011) 012, arXiv:1011.4306 [hep-ph].

[8] A. Buckley, A. Shilton, and M. J. White, Comput. Phys.
Commun. 183 (2012) 960, arXiv:1106.4613[hep-ph].

[9] N. Bornhauser and M. Drees, Phys. Rev. D 88 (2013)
075016, arXiv:1307.3383[hep-ph].

[10] S. Caron, J. S. Kim, K. Rolbiecki, et al., Eur. Phys. J. C
77 (2017) 257, arXiv:1605.02797[hep-ph].

[11] G. Bertone, M. P. Deisenroth, J. S. Kim, et al., (2016),
arXiv:1611.02704[hep-ph].

[12] J. Ren, L. Wu, J. M. Yang, and J. Zhao, (2017),
arXiv:1708.06615[hep-ph].

[13] M. Abdughani, J. Ren, L. Wu, and J. M. Yang, (2018),
arXiv:1807.09088[hep-ph].

[14] J. Ren, L. Wu, and J. M. Yang, (2019), arXiv:1901.
05627[hep-ph].

[15] A. L. Samuel, IBM Journal of Research and Development
3 (1959) 210.

[16] T. Mitchell, Machine Learning, McGraw Hill, New York
(1997).

[17] S. Russell, S. Russell, P. Norvig, and E. Davis, Artificial
Intelligence: A Modern Approach, Prentice Hall Series in
artificial Intelligence, Prentice Hall, New Jersey (2010).

[18] G. Hinton, T. Sejnowski, and T. Poggio, Unsupervised
Learning: Foundations of Neural Computation, A Brad-
ford Book, MCGRAW HILL BOOK Company, New York
(1999).

[19] M. Wiering and M. van Otterlo, Reinforcement Learn-
ing: State-of-the-Art, Adaptation, Learning, and Opti-
mization, Springer, Berlin, Heidelberg (2012).

[20] N. Le Roux, Y. Bengio, and A. Fitzgibbon, Optimization
for Machine Learning, Mit Press (2012) p. 404.

[21] S. Shalev-Shwartz and S. Ben-David, Understanding Ma-
chine Learning: From Theory to Algorithms, Cambridge
University Press, Cambridge (2014).

988 Communications in Theoretical Physics Vol. 71

[22] G. James, D. Witten, T. Hastie, and R. Tibshirani, An
Introduction to Statistical Learning: with Applications in
R, Springer, New York (2014).

[23] L. Hyafil and R. L. Rivest, Information Processing Letters
5 (1976) 15.

[24] Y. Freund and R. E. Schapire, Journal of Computer and
System Sciences 55 (1997) 119.

[25] Y. Bengio, Learning Deep Architectures for AI, Now Pub-
lisher Inc., Hanover, MA, USA (2009).

[26] A. G. Ivakhnenko, IEEE Transactions on Systems, Man,
and Cybernetics SMC-1 364 (1971).

[27] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu,
in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing (2013) pp. 86248628.

[28] G. E. Dahl, T. N. Sainath, and G. E. Hinton, in 2013
IEEE International Conference on Acoustics, Speech and
Signal Processing (2013) pp. 86098613.

[29] G. E. Hinton, A practical Guide to Training Restricted
Boltzmann Machines, in Neural Networks: Tricks of the
Trade, Second Edition, eds. G. Montavon, G. B. Orr,
and K. R. Müller, Springer, Berlin, Heidelberg, (2012)
pp. 599619.

[30] Y. You, A. Buluc, and J. Demmel, in Proceedings of the
International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC’17, ACM, New
York, NY, USA (2017) pp. 9-19:12.

[31] A. Viebke, S. Memeti, S. Pllana, and A. Abraham, The
Journal of Supercomputing (2017), 10.1007/s11227-017-
1994-x.

[32] T. Hastie, R. Tibshirani, and J. Friedman, The Elements
of Statistical Learning, Springer, New York (2009).

[33] W. Zhang, in Proceedings of Annual Conference of the
Japan Society of Applied Physics (1988).

[34] W. Zhang, K. Itoh, J. Tanida, and Y. Ichioka, Applied
Optics 29 (1990) 4790.

[35] M. Matsugu, K. Mori, Y. Mitari, and Y. Kaneda, Neural
Networks 16 (2003) 555, Advances in Neural Networks
Research: IJCNN ’03.

[36] A. van den Oord, S. Dieleman, and B. Schrauwen, in Ad-
vances in Neural Information Processing Systems 26, eds.
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, Curran Associates, Inc., Neveda
(2013) pp. 2643-2651.

[37] R. Collobert and J. Weston, in Proceedings of the 25th
International Conference on Machine Learning - ICML
08, ACM Press, New York (2008).

[38] D. Silver, J. Schrittwieser, K. Simonyan, et al., Nature
(London) 550 (2017) 354.

[39] D. C. Cireşan, U. Meier, J. Masci, et al., in Proceedings
of the Twenty-Second International Joint Conference on
Artificial Intelligence - Volume Volume Two, IJCAI’11,
AAAI Press, Barcelona (2011) pp. 1237-1242.

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Commun.
ACM 60 (2017) 84.

[41] S. Mittal, Neural Computing and Applications, (2018),
10.1007/s00521-018-3761-1.

[42] D. Ciresan, U. Meier, and J. Schmidhuber, in 2012 IEEE
Conference on Computer Vision and Pattern Recognition,
IEEE (2012).

[43] D. S. Maitra, U. Bhattacharya, and S. K. Parui, in 2015
13th International Conference on Document Analysis and
Recognition, (ICDAR) (2015) pp. 1021-1025.

[44] S. Hochreiter and J. Schmidhuber, Neural Computation
9 (1997) 1735.

[45] K. Cho, B. van Merrienboer, Ç. Gülçehre, et al.,
abs/1406.1078 (2014), arXiv:1406.1078.

[46] A. Graves, M. Liwicki, S. Fernandez, et al., IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 31
(2009) 855.

[47] H. Sak, A. W. Senior, and F. Beaufays, in INTER-
SPEECH (2014).

[48] X. Li and X. Wu, http://arXiv.org/abs/1410.4281v2.

[49] C. Goller and A. Kuchler, (1996) pp. 347-352 vol.1.

[50] A. Sperduti and A. Starita, IEEE Transactions on Neural
Networks 8 (1997) 714.

[51] P. Frasconi, M. Gori, and A. Sperduti, IEEE Transactions
on Neural Networks 9 (1998) 768.

[52] K. T. Schütt, F. Arbabzadah, S. Chmiela, et al., Nature
Commun. 8 (2017) 13890.

[53] J. Gilmer, S. S. Schoenholz, P. F. Riley, et al,, CoRR
abs/1704.01212 (2017), arXiv:1704.01212.

[54] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, CoRR
abs/1312.6203 (2013), arXiv:1312.6203.

[55] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, et al., in
Advances in Neural Information Processing Systems 28,
eds. C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, Curran Associates, Inc., New York (2015)
pp. 2224-2232.

[56] M. Defferrard, X. Bresson, and P. Vandergheynst, CoRR
abs/1606.09375 (2016), arXiv:1606.09375.

[57] T. N. Kipf and M. Welling, CoRR abs/1609.02907 (2016),
arXiv:1609.02907.

[58] B. C. Allanach, Comput. Phys. Commun. 143 (2002) 305,
arXiv:hep-ph/0104145[hep-ph].

[59] P. Graff, F. Feroz, M. P. Hobson, and A. Lasenby,
Mon. Not. Roy. Astron. Soc. 421 (2012) 169, arXiv:
1110.2997[astro-ph.IM].

[60] P. Bechtle, S. Belkner, D. Dercks, et al., Eur. Phys. J. C
77 (2017) 707, arXiv:1703.01309[hep-ph].

[61] J. Cogan, M. Kagan, E. Strauss, and A. Schwarztman, J.
High Energy Phys. 02 (2015) 118, arXiv:1407.5675[hep-
ph].

[62] L. de Oliveira, M. Kagan, L. Mackey, et al., J. High En-
ergy Phys. 07 (2016) 069, arXiv:1511.05190[hep-ph].

[63] P. T. Komiske, E. M. Metodiev, and M. D. Schwartz, J.
High Energy Phys. 01 (2017) 110, arXiv:1612.01551[hep-
ph].

[64] P. Baldi, K. Bauer, C. Eng, et al., Phys. Rev. D 93 (2016)
094034, arXiv:1603.09349 [hep-ex].

[65] L. G. Almeida, M. Backović, M. Cliche, et al., J. High
Energy Phys. 07 (2015) 086, arXiv:1501.05968[hep-ph].

[66] G. Kasieczka, T. Plehn, M. Russell, and T. Schell, J. High
Energy Phys. 05 (2017) 006, arXiv:1701.08784[hep-ph].

[67] J. Barnard, E. N. Dawe, M. J. Dolan, and N. Rajcic, Phys.
Rev. D 95 (2017) 014018, arXiv:1609.00607[hep-ph].

[68] J. Pearkes, W. Fedorko, A. Lister, and C. Gay, (2017),
arXiv:1704.02124[hep-ex].

[69] A. Butter, G. Kasieczka, T. Plehn, and M. Russell, Sci-
Post Phys. 5 (2018) 028, arXiv:1707.08966[hep-ph].

No. 8 Communications in Theoretical Physics 989

[70] G. Louppe, K. Cho, C. Becot, and K. Cranmer, (2017),
arXiv:1702.00748[hep-ph].

[71] T. Cheng, Comput. Softw. Big Sci. 2 (2018) 3, arXiv:
1711.02633[hep-ph].

[72] I. Henrion, J. Brehmer, J. Bruna, et al., in Deep Learning
for Physical Sciences, NIPS 2017 (2017).

[73] J. A. Aguilar-Saavedra, J. H. Collins, and R. K. Mishra, J.
High Energy Phys. 11 (2017) 163, arXiv:1709.01087[hep-
ph].

[74] K. Datta and A. Larkoski, J. High Energy Phys. 06 (2017)
073, arXiv:1704.08249[hep-ph].

[75] S. Chang, T. Cohen, and B. Ostdiek, Phys. Rev. D 97
(2018) 056009, arXiv:1709.10106[hep-ph].

[76] K. Datta and A. J. Larkoski, J. High Energy Phys. 03
(2018) 086, arXiv:1710.01305[hep-ph].

[77] L. de Oliveira, M. Paganini, and B. Nachman, Comput.
Softw. Big Sci. 1 (2017) 4, arXiv:1701.05927[stat.ML].

[78] M. Paganini, L. de Oliveira, and B. Nachman, Phys. Rev.
Lett. 120 (2018) 042003, arXiv:1705.02355[hep-ex].

[79] A. J. Larkoski, I. Moult, and B. Nachman, arXiv:1709.
04464[hep-ph].

[80] B. Bhattacherjee, S. Mukherjee, and R. Sengupta, arXiv:
1904.04811[hep-ph].

[81] G. K. Demir, N. Sönmez, and H. Dogan, arXiv:1803.
01550[hep-ph].

[82] J. D’Hondt, A. Mariotti, K. Mimasu, et al., J. High En-
ergy Phys. 11 (2018) 131, arXiv:1807.02130[hep-ph].

[83] C. F. Madrazo, I. H. Cacha, L. L. Iglesias, and J. M. de
Lucas, arXiv:1708.07034[cs.CV].

[84] J. Lin, M. Freytsis, I. Moult, and B. Nachman, J. High
Energy Phys. 10 (2018) 101, arXiv:1807.10768[hep-ph].

[85] T. Q. Nguyen, D. Weitekamp, D. Anderson, et al.,
arXiv:1807.00083[hep-ex].

[86] V. S. Kong, J. Li, and Y. Zhang, arXiv:1512.04672[hep-
ph].

[87] P. T. Komiske, E. M. Metodiev, B. Nachman, and
M. D. Schwartz, J. High Energy Phys. 12 (2017) 051,
arXiv:1707.08600[hep-ph].

[88] S. Carrazza and J. I. Latorre, in Proceedings, 51st Ren-
contres de Moriond on QCD and High Energy Interac-
tions: La Thuile, Italy, March 19-26, (2016) pp. 235-238,
arXiv:1605.04345[hep-ph].

[89] J. Bendavid, arXiv:1707.00028[hep-ph].

[90] F. Feroz, M. P. Hobson, and M. Bridges, Mon. Not. Roy.
Astron. Soc. 398 (2009) 1601, arXiv:0809.3437[astro-ph].

[91] G. Cybenko, Mathematics of Control, Signals and Sys-
tems 2 (1989) 303.

[92] K. Hornik, Neural Networks 4 (1991) 251.

[93] http://pytorch.org/.

[94] D. P. Kingma and J. Ba, CoRR abs/1412.6980 (2014),
arXiv:1412.6980.

[95] F. Ambrogi, S. Kraml, S. Kulkarni, et al., Eur. Phys. J.
C 78 (2018) 215, arXiv:1707.09036[hep-ph].

[96] M. Abdughani, L. Wu, and J. M. Yang, Eur. Phys. J. C
78 (2018) 4, arXiv:1705.09164[hep-ph].

[97] M. Carena, I. Low, N. R. Shah, and C. E. M.Wagner, J.
High Energy Phys. 04 (2014) 015, arXiv:1310.2248[hep-
ph].

[98] P. Bechtle, H. E. Haber, S. Heinemeyer, et al., Eur. Phys.
J. C 77 (2017) 67, arXiv:1608.00638[hep-ph].

[99] S. Profumo and T. Stefaniak, Phys. Rev. D 94 (2016)
095020, arXiv:1608.06945[hep-ph].

[100] P. Bechtle, O. Brein, S. Heinemeyer, et al., Eur. Phys. J.
C 74 (2014) 2693, arXiv:1311.0055[hep-ph].

[101] P. Bechtle, S. Heinemeyer, O. Stäl, et al., Eur. Phys. J.
C 74 (2014) 2711, arXiv:1305.1933[hep-ph].

[102] P. A. R. Ade, et al., (Planck), Astron. Astrophys. 594
(2016) A13, arXiv:1502.01589[astroph.CO].

[103] S. Heinemeyer, W. Hollik, and G. Weiglein, Comput.
Phys. Commun. 124 (2000) 76, arXiv:hep-ph/9812320
[hep-ph].

[104] G. Belanger, F. Boudjema, P. Brun, et al., Comput.
Phys. Commun. 182 (2011) 842, arXiv:1004.1092[hep-
ph].

[105] P. Athron, et al., (GAMBIT), Eur. Phys. J. C 77 (2017)
824, arXiv:1705.07935[hep-ph].

[106] P. Athron, et al., (GAMBIT Models Workgroup), Eur.
Phys. J. C 78 (2018) 22, arXiv:1705.07936[hep-ph].

[107] J. M. Cornell, (GAMBIT), in 15th International Confer-
ence on Topics in Astroparticle and Underground Physics
(TAUP 2017) Sudbury, Ontario, Canada, July 24-28,
(2017), arXiv:1711.00463[hep-ph].

[108] F. U. Bernlochner, et al., (The GAMBIT Flavour
Workgroup), Eur. Phys. J. C 77 (2017) 786, arXiv:
1705.07933[hep-ph].

[109] C. Balázs, et al., (GAMBIT), Eur. Phys. J. C 77 (2017)
795, arXiv:1705.07919[hep-ph].

[110] G. Bélanger, F. Boudjema, A. Pukhov, and A. Se-
menov, Comput. Phys. Commun. 192 (2015) 332,
arXiv:1407.6129[hep-ph].

[111] T. Bringmann, et al., (The GAMBIT Dark Matter-
Workgroup), Eur. Phys. J. C 77 (2017) 831, arXiv:
1705.07920[hep-ph].

[112] P. Athron, J. H. Park, D. Stöckinger, and A. Voigt,
Comput. Phys. Commun. 190 (2015) 139, arXiv:
1406.2319[hep-ph].

[113] P. Athron, M. Bach, H. G. Fargnoli, et al., Eur. Phys. J.
C 76 (2016) 62, arXiv:1510.08071[hep-ph].

[114] P. Bechtle, O. Brein, S. Heinemeyer, et al., Comput.
Phys. Commun. 181 (2010) 138, arXiv:0811.4169[hep-
ph].

[115] F. Mahmoudi, Comput. Phys. Commun. 178 (2008) 745,
arXiv:0710.2067[hep-ph].

[116] M. Muhlleitner, A. Djouadi, and Y. Mambrini,
Comput. Phys. Commun. 168 (2005) 46, arXiv:hep-
ph/0311167[hep-ph].

[117] M. Gori, G. Monfardini, and F. Scarselli, in Proceedings.
2005 IEEE International Joint Conference on Neural Net-
works, Vol. 2 (2005) pp. 729–734.

[118] F. Scarselli, M. Gori, A. C. Tsoi, et al., IEEE Transac-
tions on Neural Networks 20 (2009) 61.

[119] M. Aaboud, et al., (ATLAS), J. High Energy Phys. 06
(2018) 108, arXiv:1711.11520[hep-ex].

[120] J. Alwall, R. Frederix, S. Frixione, et al., J. High Energy
Phys. 07 (2014) 079, arXiv:1405.0301[hep-ph].

[121] T. Sjöstrand, S. Ask, J. R. Christiansen, et al., Comput.
Phys. Commun. 191 (2015) 159, arXiv:1410.3012[hep-
ph].

990 Communications in Theoretical Physics Vol. 71

[122] J. de Favereau, C. Delaere, P. Demin, et al.,
(DELPHES 3), J. High Energy Phys. 02 (2014) 057,
arXiv:1307.6346[hep-ex].

[123] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy
Phys. 04 (2008) 063, arXiv:0802.1189[hep-ph].

[124] M. Drees, H. Dreiner, D. Schmeier, et al., Comput. Phys.
Commun. 187 (2015) 227, arXiv:1312.2591[hep-ph].

[125] W. Beenakker, M. Klasen, M. Kramer, et al., Phys.
Rev. Lett. 83 (1999) 3780, [Erratum: Phys. Rev. Lett.
100,029901(2008)], arXiv:hep-ph/9906298[hep-ph].

[126] M. Czakon and A. Mitov, Comput. Phys. Commun. 185
(2014) 2930, arXiv:1112.5675[hepph].

[127] R. Boughezal, C. Focke, X. Liu, and F. Petriello, Phys.
Rev. Lett. 115 (2015) 062002, arXiv:1504.02131[hep-ph].

[128] J. A. Aguilar-Saavedra, Nucl. Phys. B 821 (2009) 215,
arXiv:0904.2387[hep-ph].

[129] V. Cirigliano, W. Dekens, J. de Vries, and E. Mereghetti,
Phys. Rev. D 94 (2016) 016002, arXiv:1603.03049[hep-
ph].

[130] A. Kobakhidze, N. Liu, L. Wu, and J. Yue, Phys. Rev.
D 95 (2017) 015016, arXiv:1610.06676[hep-ph].

[131] J. F. Gunion and X. G. He, Phys. Rev. Lett. 76 (1996)
4468, arXiv:hep-ph/9602226[hep-ph].

[132] J. Ellis, D. S. Hwang, K. Sakurai, and M. Takeuchi, J.
High Energy Phys. 04 (2014) 004, arXiv:1312.5736[hep-
ph].

[133] J. Bramante, A. Delgado, and A. Martin, Phys. Rev. D
89 (2014) 093006, arXiv:1402.5985[hep-ph].

[134] F. Demartin, F. Maltoni, K. Mawatari, et al., Eur. Phys.
J. C 74 (2014) 3065, arXiv:1407.5089[hep-ph].

[135] J. A. Aguilar-Saavedra, D. Amidei, et al., Rev. Mod.
Phys. 87 (2015) 421, arXiv:1406.1798[hep-ph].

[136] R. M. Godbole, G. Mendiratta, and S. Rindani, Phys.
Rev. D 92 (2015) 094013, arXiv:1506.07486[hep-ph].

[137] M. R. Buckley and D. Goncalves, Phys. Rev. Lett. 116
(2016) 091801, arXiv:1507.07926[hep-ph].

[138] H. L. Li, P. C. Lu, Z. G. Si, and Y. Wang, Chin. Phys.
C 40 (2016) 063102, arXiv:1508.06416[hep-ph].

[139] J. Li, Z. G. Si, et al., Phys. Lett. B 779 (2018) 72,
arXiv:1701.00224[hep-ph].

[140] Q. H. Cao, S. L. Chen, Y. Liu, et al., arXiv:1901.

04567[hep-ph].

