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1.  Introduction

The study of materials with linear energy dispersion relation 
in both two (2D)- and three (3D)-dimensional materials is 
one of the most active areas of research in condensed matter 
physics. Graphene is one such 2D material which has been 
studied exhaustively in last one and half decade [1, 2]. In 3D 
materials, the three-dimensional Dirac semimetals (3DDS), 
Weyl semimetals (WS), and topological insulators (TI) are 
the ones which gained interest in recent years. The surge of 
current research interest has focused on recently discovered 
novel 3DDS [3–18], which are interesting from the point of 
view of fundamental physics and their massive applications in 
future technological developments, particularly those relating 
to high electron mobility [7] and better optical properties [19].

The Angle-resolved photoemission spectroscopy measure-
ments gave evidence for the existence of 4-fold degenerate 
Dirac points in Cd3As2 [8, 9], and A3Bi (A  =  Na, K, Rb) 
materials which were theoretically predicted [4, 6]. These 

materials have revealed the linear electron energy dispersion 
[3, 7] around Dirac points making gapless energy bands. Of 
the available 3DDS materials, Cd3As2 has received great atten-
tion because of their chemical stability [8, 13] and very large 
electron mobility at very low temperature [14–16]. The recent 
reports of magneto-transport properties reveal a remark-
ably ultra-high in-plane Fermi velocity of 1.5  ×  106 m s−1  
[16, 17], and a large room temperature mobility of the order 
~ 104 cm2 V−1 s−1 [12]. The experimental investigation of 
Zhao et al [14] shows a quite low residual resistivity of about 
11.6 nΩ cm at 6 K, Liang et al [15] also observed a very low 
resistivity of few tens of nΩ cm with a ultra-high mobility of 
9  ×  106 cm2 V−1 s−1 at 5 K in one of their samples. These 
observed results showcase the suppression of backscattering 
at low temperature. The zero magnetic field resistivity and 
quantum transport properties in a magnetic field of 3DDS 
Cd3As2 are reported by He et al [18]. In an ideal Cd3As2, with 
a Fermi level close to the Dirac point, a large linear quantum 
magnetoresistance (up to 3100%) has been observed [20]. 
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Thus, these interesting results in 3DDS Cd3As2 motivate us to 
address the other transport properties namely, thermoelectric 
properties.

The study of thermoelectric properties involves a study of 
electrical and thermal responses of these materials to the elec-
tric field and temperature gradient. The thermoelectric energy 
conversion efficiency depends upon the performance of the 
materials that is quantified by the dimensionless factor known 
as thermoelectric figure-of-merit, Z  =  S2σ/κ, where S is the 
Seebeck co-efficient, σ is the electrical conductivity and κ is 
thermal conductivity of the material [21]. The study of ther-
mopower/Seebeck co-efficient is a measure of the magnitude 
of induced thermoelectric voltage in response to temperature 
gradient. There are two contributions to S: diffusion thermo-
power Sd and phonon drag thermopower Sg. Sd is found to be 
important at relatively higher temperature [21]. The thermal 
conductivity κ involves the study of contribution from both 
electrons (κe) and phonons (κph). κe is expected to be impor-
tant in the samples with high electron concentrations and 
relatively at higher temperature [22]. The material with large 
power factor S2σ with low κ would enhance the value of Z.

A rigorous study of these thermoelectric properties has 
drawn much attention in recent years because it is expected 
to play a significant role in meeting the energy challenges of 
the future [23, 24]. The study not only provides a means of 
assessing the efficiency of thermoelectric devices but also a 
non-destructive technique to understand the carrier scattering 
mechanisms operative in the system. The 3DDS Cd3As2 is a 
material of current interest whose thermoelectric properties 
need to be investigated.

In 3DDS Cd3As2, Zhang et al [25] have reported an unex-
pected low thermal conductivity of 4.17 Wm−1 K−1 and 
S  =  −74.1 µV K−1 at 300 K along with a large power factor 
of 1.58 mW·m−1 K−2 at room temperature. Wang et al [26] 
have measured σ, S and κ for four samples with different car-
rier concentrations in zero and non-zero magnetic field for 
T  =  ~5–500 K. In zero magnetic field, S is found to increase 
almost linearly with increasing temperature. The thermal con-
ductivity is found to decrease rapidly with increasing temper
ature for T  <  ~50 K and remains nearly constant/moderately 
increasing for temperature up to 300–400 K. For higher T it is 
found to increase. Pariari et al [27] observe a linear temper
ature dependence of S over a wide range with S  =  −60 µV 
K−1 at 300 K in zero magnetic field. A good agreement with 
the Mott relation is obtained by tuning the energy dependence 
of the relaxation time.

Das Sarma et al [11] have developed a theory of electrical 
conductivity, σ, considering scattering from the screened 
Coulomb disorder due to random charged impurities. Also, 
acoustic phonon limited σ is briefly discussed in Bloch–
Grüneisen (BG) and equipartition (EP) regime. Lundgren 
et  al [10] have theoretically studied electrical conductivity, 
electronic thermal conductivity and thermopower using the 
Boltzmann transport equation (BTE) technique in the relaxa-
tion time approximation, in the presence of the magnetic 
field, ignoring the scattering by phonons. Zhou et  al [28] 
have presented the First principle calculations of the elec-
tronic structure and the thermoelectric properties, by using 

simple thermoelectric relations, in Cd3As2 doped with both 
n and p-type impurities. Their calculations are based on the 
Boltzmann transport theory reserving the contributions from 
various scattering mechanisms and their relative importance. 
One of the authors [29] has presented the detailed calculations 
of the mobility limited by acoustic and optical phonons by 
solving the BTE in relaxation time approximation and recent 
experimental results are explained. In large electron concen-
tration Cd3As2, the scattering by phonons is considered to be 
quasi-elastic.

In this article, we have studied thermoelectric transport 
coefficients considering scattering from charged impurities 
(CI), short-range disorders (SD), acoustic (AP) and optical 
(OP) phonons in 3DDS Cd3As2. A theory of solving semiclas-
sical BTE by Ritz iteration technique for 3D Dirac system is 
presented in section 2. It is followed by the theory of thermo-
electric transport properties, namely electrical conductivity, 
electronic thermal conductivity and diffusion thermopower in 
Cd3As2. In section 3, we have investigated the relative contrib
ution and importance of the electron scattering by various 
scattering mechanisms. Our calculations are compared with 
the experimental observations.

2. Theoretical formulation

The carriers in 3DDS Cd3As2 behave like Dirac fermions. 
For low energy excitations, the electron energy dispersion is 
assumed to be isotropic and linear. It is given by Ek  =  ±sħvF|k|, 
where s is the band index and it takes the value  ±1 for conduc-
tion and valance band, k is the 3D electron wave vector, and 
vF is the Fermi velocity. The corresponding ground state wave 
function for 3D carriers is given by [11],

ψs
k(Ek) =

1√
2V

exp(ik · r)χs� (1)

where V is the sample volume, r  =  (x, y , z), χ±  =  [cos(θk/2)  ± 
sin(θk/2) eiϕ]T and θk (ϕ) is the polar (azimuthal) angle in 3D k 
space. We consider the situation in which Fermi energy EF is 
much above the Dirac point.

2.1.  Boltzmann transport equation (BTE)

The probability occupation of an electron in state k is given 
by the distribution function f (Ek). In the presence of an elec-
tric field E and temperature gradient ∇T, electron distribution 
function f (Ek) experiences a perturbation and hence deviates 
from its equilibrium value f 0(Ek). This deviation from the 
equilibrium value can be obtained by a series expansion of the 
Legendre polynomial. For low electric field and temperature 
gradient, neglecting the higher-order terms in E and ∇T, the 
series can be expanded as [30]

f (Ek) = f0(Ek) + f1(Ek)� (2)

where f 1(Ek)  =  −Fvk cosθk (∂f 0(Ek)/∂Ek) Φ(Ek) is the first-
order perturbation term in the distribution function due to 
external fields. Here F  =  [−eE  +  ((Ek  −  EF)/T)(−∇T)] is 
force acting on electrons due to E and ∇T, vk is the velocity 
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of the carriers in state k, θk is the angle between F and k, EF 
is the Fermi energy and Φ(Ek) is the perturbation function (to 
be determined).

The rate of change of f (Ek) with respect to time t is given 
by the BTE [31]

df
dt

= −1
�
∂Ek

∂k
· ∂f
∂r

− eE
�

· ∂f
∂k

+ Ic( f ),� (3)

where Ic(f ) is the collision integral arising due to the scattering 
of an electron from state k to k′ and is given by

Ic( f ) = − 1
8π3

´
[S(k, k′) f (Ek)(1 − f (Ek′))

−S(k′, k) f (Ek′)(1 − f (Ek))]dk′.
�

(4a)

Here S(k, k′) is the differential scattering rate from k to k′. In 
the steady-state, the Boltzmann equation becomes

Ic( f ) =
1
�
∂Ek

∂k
· ∂f
∂r

+
eE
�

· ∂f
∂k

.� (4b)

Using the principle of detailed balance, [S(k, k′) f 0(Ek) 
(1  −  f 0(Ek′))]  =  [S(k′, k) f 0(Ek′) (1  −  f 0(Ek)], then collision 
integral Ic(f ) for 3D Dirac carriers can be written as

Ic( f ) = − 1
8π3

FvF
kBT cos θk

´
[S(k, k′)f0(Ek)(1 − f0(Ek′))

×[Φ(Ek)− cos θΦ(Ek′)]dk′,
�

(5)

where θ is the angle between k and k′. Substituting the above 
expressions in equation (4b), we arrive at the linearized BTE 
for the 3D Dirac carriers and is given by

1 =
∑

k′

[Φ(Ek)− cos θΦ(Ek′)]S(k, k′)
1 − f0(Ek′)

1 − f0(Ek)
.� (6)

For elastic and quasi-elastic scattering, Φ(Ek)  =  Φ(Ek′) and it 
turns out be momentum relaxation time τ(Ek) (=Φ(Ek)), for 
these scatterings [31].

2.2.  Scattering theory in 3DDS

In this section, we find Φ(Ek) for the electron scattering, in 
3DDS Cd3As2, from the charged impurities, short-range 
disorders, and acoustic and optical phonons. The scattering 
of electrons by charged impurities and short-range disorders 
is elastic. Scattering by acoustic phonons via deformation 
potential coupling is assumed to be quasi-elastic and that by 
optical phonons to be inelastic. These scattering processes 
are effective at different lattice temperatures namely impu-
rity scattering for relatively pure samples dominates at low 
temperatures while polar optical phonons important at high 
temperatures. On the other hand, scattering by acoustic pho-
nons is important for intermediate temperatures.

2.2.1.  Scattering by charged impurities (CI).  We assume that 
the charged impurities are randomly spread in the material 
with impurity concentration ni. These charged impurities are 
screened by intrinsic free Dirac electrons and hence the inter-
action potential becomes screened coulomb disorder. Using 
equation  (6), the energy-dependent electron scattering time 
τCI(Ek), in 3D Dirac material, due to CI scattering within the 
Born approximation is given by [11]

1
τCI(Ek)

=
niE2

k
2π�4v3

F

ˆ π

0

∣∣∣∣
V(k, k′)

ε(q, T)

∣∣∣∣
2

sin θ(1 − cos θ)

Å
1 + cos θ

2

ã
dθ

� (7)
where V(k, k′)  =  (4πe2/εs) (1/q2) is the 3D Fourier transform 
of the Coulomb potential, εs is the background dielectric 
constant of the material, ε(q,T)  =  {1  +  [qTF(T)/q]2} [11] 
is the static dielectric function, qTF(T)  =  (4πe2D(EF)/εs)
[1  −  (π2/6)(T/TF)2] is the Thomas-Fermi (TF) wave vector, 
D(Ek)  =  gE2

k/(2π2(ħvF)3) is the density of states, g  =  gsgv is 
the total degeneracy and TF is the Fermi temperature. The 
equation for qTF(T), given here, is valid for T  <  TF. The relax-
ation time is evaluated in the long-wavelength limit with the 
temperature-dependent TF screening. It is to be noted that for 
elastic and quasi-elastic scattering (i.e. in equations  (7), (8) 
and (10)) q  =  2ksin(θ/2).

2.2.2.  Scattering by short-range disorders (SD).  SDs are the 
finite range potential caused by the defects or dislocations 
present in the material. Taking ndV2

o  as the effective potential 
experienced by charge carriers with defects concentration nd, 
the energy dependent relaxation time due to SD scattering is 
shown to be [11]

1
τSD(Ek)

=
ndV2

0 E2
k

2π�4v3
F

ˆ π

0

sin θ

|ε(q, T)|2
(1 − cos θ)

Å
1 + cos θ

2

ã
dθ.

� (8)

2.2.3.  Scattering by acoustic phonons (AP).  In 3DDS 
Cd3As2, for EF much above the Dirac point, the Fermi 
energy EF � ħωq, the acoustic phonon energy, and scatter-
ing can be treated as quasi-elastic. Then from equation (6), 
the solution for Φ(Ek) gives momentum relaxation time 
τAP(Ek), as found in conventional 3D semiconductors [32], 
for acoustic phonon scattering in 3DDS. The equation  for 
τAP(Ek) is given by

1
τAP(Ek)

=
∑

k′

S(k, k′)(1 − cosθ)
1 − f0(Ek′)

1 − f0(Ek)
� (9)

with the scattering probability between the states, k and k′ 
given by S(k, k′)  =  (2π/ħ)  ∑  q|Mkk′|2 ∆(Ek, Ek′), where |Mkk′|2 
is the interaction matrix element and Δ(Ek, Ek′)  =  [Nq δ(Ek  −   
Ek′  +  ħωq)  +  (Nq  +  1) δ(Ek  −  Ek′  −  ħωq) θ(Ek  −  ħωq)]. Here  
first and the second terms are, respectively, for the absorp-
tion and emission of phonon with wave vector q and energy 
ћωq  =  ћvphq, where vph being the acoustic phonon velocity, 
θ(Ek  −  ħωq) is the step function and Nq  =  [exp(ħωq/kBT)  −  1]−1 
is the phonon occupation factor.

The screened electron–phonon interaction matrix element 
is given by |Mkk′|2  =  |C(q)|2/|ε(q, T)|2. For electron scattering 
via acoustic deformation potential coupling |C(q)|2  =  (D2ħq/ 
2Vρmvph) [(1  +  cosθ)/2], where D is the deformation potential 
coupling constant (which signifies the strength of electron–
phonon scattering), ρm is the mass density, and [(1  +  cosθ)/2] 
is the factor arising due to the chiral nature of the Dirac elec-
trons in 3DDS. Using this matrix element in equation (9), the 
τAP(Ek) is found to be,
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1
τAP(Ek)

=
D2

4πρmvph(�vF)
3

1
(1 − f0(Ek))

×
ˆ π

0

q sin θ(1 − cos θ)[(1 + cos θ)/2]
|ε(q, T)|2

×[(Ek + �ωq)
2Nq(1 − f0(Ek + �ωq))

+(Ek − �ωq)
2
(Nq + 1)(1 − f0(Ek − �ωq))]dθ.

�

(10)

2.2.4.  Scattering by polar optical phonons (OP).  Since the 
electron scattering by OPs is inelastic, equation (6) has to be 
solved for Φ(Ek) without any approximation. Amongst several 
techniques existing in the literature, the Ritz iteration tech-
nique has been found to be very convenient because of its auto-
correction of the errors and accuracy [30]. Kawamura and Das 
Sarma [31] have used the Ritz iteration technique to solve BTE 
in conventional 2D heterostructures with the parabolic energy 
dispersion relation. In the present work, we solve the 3D lin-
earized BTE for three-dimensional Dirac system with linear 
energy dispersion relation following the Ritz iteration method 
and hence obtain the perturbation function Φ(Ek) for inelastic 
scattering by polar optical phonons. The matrix element for 
electron-optical phonon interaction via Fröhlich coupling is 
given by |C(q)|2  =  (2πe2ħω0/Vq2) (1/ε∞  −  1/εs) [(1  +  cosθ)/2] 
[29, 33, 39], where ħω0 is the optical phonon energy, and εs 
(ε∞) is the static (optical) dielectric constant of the material.

Substituting the above matrix element in equation (6), the 
linearized BTE can be written in the form of an equation cou-
pling Φ(Ek) with Φ(Ek  ±  ħω0),

1 = S0(Ek)Φ(Ek)− Sa(Ek)Φ(Ek + �ω0)

−Se(Ek)Φ(Ek − �ω0),
� (11)

where S0(Ek) is the sum of in and out scattering contributions 
of elastic and quasi-elastic scattering processes and sum of in 
and out scattering contributions from OPs. The other terms 
Sa(Ek) and Se(Ek) denote the in scattering contributions from 
the inelastic scattering process due to OPs. These functions 
are given by

S0(Ek) =
e2ω0

(�vF)
3

Å
1
ε∞

− 1
εs

ã
1

1 − f0(Ek)

×[(Ek + �ω0)
2
(1 − f0(Ek + �ω0))N0I+(Ek)

+(Ek − �ω0)
2
(1 − f0(Ek − �ω0))(N0 + 1)I−(Ek)

θ(Ek − �ω0)] + τ−1
tot (Ek),

�

(12a)

Sa(Ek) =
e2ω0

(�vF)
3

Å
1
ε∞

− 1
εs

ã
1

1 − f0(Ek)

×[(Ek + �ω0)
2
(1 − f0(Ek + �ω0))N0J+(Ek)]

� (12b)

and

Se(Ek) =
e2ω0

(�vF)
3

Å
1
ε∞

− 1
εs

ã
1

1 − f0(Ek)

×[(Ek − �ω0)
2
(1 − f0(Ek − �ω0))

×(N0 + 1)J−(Ek)θ(Ek − �ω0)],

� (12c)

where τ−1
tot (Ek)  =  τ−1

AP (Ek)  +  τ−1
CI (Ek)  +  τ−1

SD (Ek). The integrals

I±(Ek) =

ˆ π

0

sin θ

q2
±(Ek, θ)

[(1 + cos θ)/2]
|ε(q±, T)|2

dθ� (13a)

and

J±(Ek) =

ˆ π

0

sin θ cos θ

q2
±(Ek, θ)

[(1 + cos θ)/2]
|ε(q±, T)|2

dθ� (13b)

represent the angular dependence of the electron–phonon inter-
actions with q2

±(Ek, θ)  =  [(1/ħvF)2 (E2
k  +  (Ek  ±  ħω0)2  −  2Ek 

(Ek  ±  ħω0) cosθ)] and  +  (−) sign denotes the phonon emis-
sion (absorption).

Here, we employ a Ritz iterative technique [34] and obtain 
the solution for Φ(Ek) as follows. For a given value of the elec-
tron energy Ek  =  Ej   +  nħω0, where 0  <  Ej   <  ħω0 and n  =  0, 
1, 2…, in the first step of this iteration method, we set Sa(Ek) 
and Se(Ek) equal to zero in equation (11), so that zeroth-order 
solutions are given by

Φ0(Ej + n�ω0) = S−1
0 (Ej + n�ω0)� (14a)

and

Φ0(Ej + (n ± 1)�ω0) = S−1
0 (Ej + (n ± 1)�ω0)� (14b)

By repeatedly carrying out the iteration for m  +  1 steps, 
we get

Φm+1(Ej + n�ω0) = S−1
0 (Ej + n�ω0)

×[1 + Sa(Ej + n�ω0)Φ
m(Ej + (n + 1)�ω0)

+Se(Ej + n�ω0)Φ
m(Ej + (n − 1)�ω0)].

�

(15)

The iteration is terminated for a given value of Ek when 
Φm+1(Ek) converges to within some preset tolerance.

2.3. Thermoelectric transport coefficients

Under the influence of a weak static electric field E and temper
ature gradient ∇T, a macroscopic electric current density J, 
and heat current density U are produced in this medium. The 
perturbing function Φ(Ek), obtained above, is used in f 1(Ek) 
to obtain J and U and in turn to find thermoelectric transport 
coefficients. Following Ziman [35], the thermoelectric trans-
port coefficients in 3DDS Cd3As2 are given by

σ = e2K11� (16)

κe =
1
T

Ç
K31 −

K2
21

K11

å
� (17)

and

Sd = − 1
eT

K21

K11
� (18)

where

Krs =
gsgv

8π3

ˆ
Φs(Ek)vkvk(Ek − EF)

r−1
Å
∂f0(Ek)

∂Ek

ã
dk.

� (19)
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Thus, once the value of perturbation function Φ(Ek) is 
obtained by the iterative technique, σ, κe, and Sd can be inves-
tigated numerically through Krs.

3.  Results and discussion

In this section, we present the numerical calculations of per-
turbation function, and thermoelectric properties, using the 
theoretical framework given in section 2. Also, we compare 
our calculations with the experimental data. The material 
parameters of the 3DDS Cd3As2 used in our calculations are 
listed in table 1.

3.1. Temperature and electron concentration dependence

We present the calculations of the σ, κe and Sd as a func-
tion of temperature and electron concentration for the range 
T  =  2–300 K and ne  =  (0.1–10)  ×  1018 cm−3. A reasonable 
value of charged impurity concentration ni  =  1  ×  1018 cm−3 
and ndV2

0   =  ħ2ν2
F/q0 with q0  =  1/6 Å [36] are chosen for 

illustration.
As thermoelectric properties are sensitive to the energy 

dependence of perturbation function Φ(Ek), we present its 
numerical evaluation for the interaction of electrons with ine-
lastic polar optical phonons and relaxation rates for the inter-
action of electrons with acoustic phonons, charged impurities 
and short-range disorder for ne  =  1018 cm−3.

Since relaxation time due to acoustic phonon scattering is 
exhibiting a characteristic feature, in figure 1, we first present, 
τ−1

AP (Ek) versus Ek/EF. It is shown for T/TBG  =  0.4, 0.5, 0.7, 
1 and 1.5 with TBG  =  8.629 K for ne  =  1018 cm−3 (EF  ≈  162 
meV). The τ−1

AP (Ek) is found to increase with the increase in 
carrier energy and the increase is ~ E2

k. The energy-dependent 
relaxation time shows a characteristic dip (suppression of 
scattering rate) at Ek/EF  =  1 which arises due to the statistical 
occupation factor [Nq f 0(Ek′) (1  −  f 0(Ek)  +  (Nq  +  1) f 0(Ek) 
(1  −  f 0 (Ek′))] in the acoustic phonon relaxation time (equa-
tion (10)). The depth of the dip decreases with increase in 
the temperature and starts to disappear when T/TBG  =  1. The 
behaviour is similar to that observed in graphene (2D Dirac 

fermions) [44], bilayer graphene (BLG) [45] and conventional 
2DEG [31]. In the latter two cases, the energy dispersion rela-
tion is parabolic. The unscreened τ−1

AP (Ek) as a function of 
Ek/EF is shown in the inset for T  =  20 and 77 K. The effect 
of screening is found to reduce the τ−1

AP (Ek) by 1.2 times, 
agreeing with predictions in [29].

In order to know the relative importance of various scat-
tering mechanisms, the relaxation rates calculated from 
the equations (7), (8) and (10) for the CI, SD, and AP scat-
tering and perturbation function Φ(Ek) for OP scattering, 
using equation (15), (within 0.001% percentage of tolerance) 
are presented in figures  2(a)–(c) for T  =  20, 77 and 300 K, 
respectively.

The Φ(Ek) is obtained by iterative procedure and the results 
are presented as a function of electron energy Ek for OP scat-
tering in a combination of scattering from AP, CI, and SD. In 
the curve due to OP scattering, we observe oscillatory bumps 
due to the emission of phonons when the energy of the car-
rier is equal to ħω0 and its integer multiples. These oscilla-
tory bumps are well defined at lower carrier energy for about 
Ek/EF  <  2.5 and saturate at higher energy. It is also observed 
that with an increase in the temperature the sharpness of the 
bumps keeps reducing and the curve becomes smooth. The 
solid curve represents the total relaxation time which is cal-
culated by using the iterative technique including the contrib
ution of the elastic, quasi-elastic and inelastic scattering 
mechanisms discussed in section 2. It can also be noticed that 
at T  =  20 K (figure 2(a)) for low carrier energy Ek/EF  <  ~2, 
scattering due to CI dominates the overall rate and OP scat-
tering dominates for Ek/EF  >  ~2. The oscillatory bumps that 
appear in the optical phonon curve are found to be reflected in 
the resultant curve as well. For T  >  77 K and 300 K, the overall 
rate is dominated by AP and OP scattering. With increasing 
temperature, the oscillatory bumps gradually disappear. Also, 

Table 1.  The material parameters of the 3DDS Cd3As2.

Parameter Value References

High-frequency dielectric 
constant (ε∞)

12 [37]

Low-frequency dielectric 
constant (εs)

36 [38]

Mass density (ρm) 7  ×  103 kg m−3 [33]
Acoustic deformation 
potential (D)

20 eVa [29, 33]

Optical phonon energy 
(ħω0)

25 meV [40, 41]

Acoustic Phonon velocity 
(vph)

2.3  ×  103 m s−1 [42, 43]

Fermi velocity (vF) 106 m s−1 [15, 18, 42]

a It is varied when compared with the experimental results.

Figure 1.  Inverse relaxation time due to acoustic phonon scattering 
as a function of electron energy for different T/TBG  =  0.4, 0.5, 
0.7, 1.0 and 1.5 with TBG  =  8.629 K for an electron density 
ne  =  1  ×  1018 cm−3. Inset: inverse relaxation time as a function of 
electron energy with and without screening at 20 and 77 K.
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we have observed that the relaxation time due to CI is inde-
pendent of temperature. The contribution from SD is found to 
be negligible.

In figure 3(a), we present the calculations of σ as a func-
tion of T, evaluated for ne  =  1  ×  1018 cm−3. For the ni chosen, 
scattering due to CI is dominant for about T  <  70 K making 
the overall σ to be almost independent of temperature in 
this region. For T  >  70 K scattering due to optical pho-
nons becomes dominant and σ decreases with increasing T. 

Moreover, the contribution from AP scattering is found to be 
considerable for about T  >  40 K.

In figure 3(b), the calculations are shown for σ as a function 
of ne, at 77 K. The σ due to CI (phonon) scattering is increasing 
with increasing ne as σ ~ n1.3(0.6)

e . The ne dependence of σ due 
to AP is found to be stronger than that due to OP scattering 
and also SD is independent of carrier concentration. It is seen 
that for low ne (<~2.5  ×  1018 cm−3) contribution due to the CI 
dominates over the contribution from the phonon scattering. 
At higher ne, we see that overall σ is found to increase and APs 
dominate the carrier scattering at higher concentration, at this 
temperature. At 20 K (inset figure) σ is dominated by CI for 
about ne up to 7.0  ×  1018 cm−3. The variation of σ due to CI is 
σ ~ n1.3

e . For ne  >  7.0  ×  1018 cm−3, the contribution from AP 

Figure 2.  Relaxation rates as a function of electron energy due to 
scattering by CI, SD, AP, and perturbation function due to inelastic 
scattering of OP. (a) 20 K, (b) 77 K and (c) 300 K.

Figure 3.  (a) The electrical conductivity as a function of 
temperature for scattering due to CI, SD, AP, OP and resultant of all 
these mechanisms for ne  =  1  ×  1018 cm−3 and ni  =  1  ×  1018 cm−3. 
(b) Electrical conductivity as a function of electron concentration at 
T  =  77 K. Inset: at T  =  20 K.
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scattering dominates total σ. Consequently, total σ versus ne 
shows maximum for ne  =  10  ×  1018 cm−3.

The calculations of electronic thermal conductivity κe 
as a function of temperature T for ne  =  1  ×  1018 cm−3 and 
ni  =  1  ×  1018 cm−3 are presented in figure 4(a). The contrib
ution for κe from the individual scattering mechanisms (CI, 
SD, AP, and OP) are presented using the respective relaxa-
tion times to see the relative significance. For about T  <  75 K, 
the total κe is dominated by contribution due to CI and for 
T  >  75 K the total κe is dominated by the contribution from OP 
scattering. For about T  >  30 K, the contribution from AP scat-
tering is significant, although it is not dominant. For T  < 30 K, 
the total κe found to increase linearly (~T) with temperature 
(found by curve fit, although it is not obvious in the semi log 

scale of figure 4(a)) and it is only due to the scattering by CI. 
This observation validates Wiedemann–Franz law that (κe/σ) 
~ T, as σ due to CI, in this temperature range, is independent 
of T (as seen from figure 3(a)). For about 30  <  T  <  70 K, the 
total κe found to increase sub-linearly (~T 0.5). In the higher 
temperature region (T  >  70 K) the total κe found to be inde-
pendent of T. This may be ascribed to the fact that σ, due 
to phonon scattering, is decreasing with increasing T and the 
product σT is nearly independent of temperature. This range 
will shift to lower (higher) temperature region (seen in the 
inset) with the decrease (increase) of impurity concentration. 
Obviously, it is attributed to the shift in the CI dominating 
region of temperature. A very weak T dependence of κe for 
T  >  100 K is nearly validating the Wiedemann–Franz law for 
optical phonons scattering.

In figure 4(b), we present the calculations of κe as a function 
of ne at 77 K (inset: 300 K). At 77 K, it is found that scattering 
due to CI found to dominate the κe at lower carrier concentra-
tion ~0.1–1.0  ×  1018 cm−3, and at higher ne, the scattering by 
phonons limit the κe. It is found that κe due to AP and SD is 
almost independent of ne and AP scattering is found to domi-
nate in the high ne region. At 300 K, OP found to dominate the 
κe in the entire ne range. The total κe is found to increase as 
~n1(0.6)

e  at 77 K (300 K) in the considered range of ne.
The temperature dependence of diffusion thermopower 

Sd is shown in figure 5(a) for 2  <  T  <  300 K. The curves are 
shown for individual scattering due to CI, SD, AP, and OP in 
order to see their relative contribution to the resultant Sd. The 
Sd due to CI scattering coincides with the total curve at lower 
temperature T  <  20 K. It can also be seen from the energy 
dependence of the relaxation time in figure  2(a). At higher 
T, the Sd due to CI and OP scattering mechanisms are large 
compared to the total Sd. However, for T  >  ~50 K the resultant 
Sd is mainly controlled by the OP scattering and the contrib
ution from CI scattering is small, consistent with the energy 
dependence of the relaxation time calculations. The resultant 
Sd shows a linear behaviour for T  <  20 K and becomes nearly 
linear at higher T. This is comparable to the observation made 
in MLG [46] and BLG [45].

We present the ne dependence of diffusion thermopower 
Sd at 77 K (inset: 300 K) in figure 5(b). At 77 K, for low ne~ 
0.1–1  ×  1018 cm−3 scattering by CI is found to dominate the 
overall thermopower showing Sd ~ n−0.3

e . At higher ne, OP 
scattering is found to limit Sd showing n−0.3

e  dependence. The 
overall Sd is found to decrease as ~ n−0.4

e . At 300 K, scattering 
due to OP is found to dominate Sd and resultant is found to 
decrease as ~ n−0.4

e . The results observed by us are in agree-
ment with the Mott formula (Sd ~ E−1

F  ~ n−1/3
e ) and also 

with the calculations presented by Pariari et  al [27] while 
explaining their observed experimental results. Relaxation 
time due to SD varies as E−2

k  giving its zero contribution to Sd.

3.2.  Comparison with experiment

In the following, with our calculations, we have explained the 
experimental results of resistivity [12, 15, 18], thermal con-
ductivity [25, 26] and thermopower [26, 27] using respective 

Figure 4.  (a) The electronic thermal conductivity as a function 
of temperature due to scattering by CI, SD, AP and OP and 
the resultant of all these mechanisms for ne  =  1  ×  1018 cm−3 
and ni  =  1  ×  1018 cm−3. Inset: the resultant electronic thermal 
conductivity as a function of temperature with ni  =  0.1, 1, 
10  ×  1018 cm−3. (b) Electronic thermal conductivity as a function of 
electron concentration at T  =  77 K. Inset: at T  =  300 K.
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material parameters of these samples. In order to explain these 
data, since the CI concentration ni are not given, we vary it to 
fit the very low temperature experimental data. Also, acoustic 
deformation potential constant D is varied, in the range (10–
30 eV [29, 33]), to fit the data at intermediate temperature.

In figure 6(a), we have shown the comparison of our calcul
ations with experimentally measured ρ of Liang et  al [15]. 
The authors have measured ρ as a function of temperature in 
the range ~2–200 K for ne  =  1.33  ×  1019 cm−3 (sample-B1) 
and 1.5  ×  1019 cm−3 (sample-B7). For sample-B1, the exper
imental data shows the residual resistivity ρ0  =  46.5 µΩ cm 
at very low T (~5 K). The charged impurity concentration 
ni  =  2  ×  1019 cm−3 is chosen to obtain this residual resistivity. 
Then, D  =  29.7 eV is chosen to fit experimental data in the 
intermediate temperature region. We have shown ρ due to CI, 
SD, AP and OP and their total. A good agreement of resultant 

ρ is obtained with the experimental results in the entire temper
ature range. In the inset, we have shown the calculations for 
the sample B7 with ne  =  1.5  ×  1019 cm−3, by choosing 
ni  =  1.56  ×  1019 cm−3 and D  =  28.2 eV in order to explain 
the observed results. It was found that, in both samples, at low 
temperature CI scattering dominates the overall ρ and at higher 
temperature scattering due to APs dominates [11, 42].

We perform the resistivity calculations for the sample of 
Cao et al [12] with ne  =  1.67  ×  1018 cm−3 and compare with 
their experimental results in figure 6(b). We vary the defor-
mation potential constant to D  =  10 eV and the impurity 
concentration to ni  =  5.41  ×  1017 cm−3 to match with the 
experimental data. There is a good agreement for T  <  60 K, 
the region where CI scattering dominates the overall mobility. 
At higher temperature, the theoretical curves are larger than the 
observed results to some extent. In this temperature region OP 
scattering dominates the resultant resistivity. Similar obser-
vation is made by Kubakaddi in the phonon limited mobility 
study in which scattering by OPs is taken in the quasi-elastic 
approximation [29]. Along with the resultant curve, we have 
shown contributions from individual scattering mechanisms. 
In the inset, we show ρ versus T (~2–300 K) for the sample 
of He et al [18] with ne  =  5.3  ×  1018 cm−3. We find that, fol-
lowing the same procedure as mentioned above, the choice of 
ni  =  4.47  ×  1018 cm−3 and D  =  22.2 eV gives a good agree-
ment with experimental data. It is consistent with the mobility 
calculations taking the phonon scattering in the quasi-elastic 
approximation [29]. It is again found that CI scattering domi-
nates the ρ at low T and optical phonon scattering limit the ρ 
at higher T.

In the following, while explaining the thermal conductivity 
and thermopower data, we obtain ni in the respective samples 
by fitting to their residual resistivity/mobility. Then, deforma-
tion potential constant D is varied to obtain the agreement 
with the experimental data.

A comparison of thermal conductivity as a function 
of temperature for the sample D of Wang et  al [26] with 
ne  =  3.3  ×  1018 cm−3 in the temperature range ~7–500 K 
is presented in figure  6(c). The experimentally measured 
thermal conductivity has the contributions from both the 
electronic and phonon part, κ  =  κe  +  κph. Although the 
phonon contribution κph to κ is the dominant at low T, 
we attempt to explain the results only for T  >  ~50 K with 
the electronic contributions. The choice of ni  =  3.29  ×   
1018 cm−3 will give the residual resistivity 39.9µΩ cm of 
this sample. Then choosing D  =  17 eV, we obtain a reason-
ably good agreement with the observed results. By using the 
above parameters, we give the calculations of κe as a func-
tion of T for the individual mechanisms to measure their 
relative contribution to the total κ. For T  >  100 K we found 
the total curve being dominated by the electron scattering 
from phonons.

The calculations of κe as a function of temperature are car-
ried out for the sample of Zhang et al [25] with ne  =  1  ×  1019 
cm−3 and residual resistivity 46.22 µΩ cm and compared with 
their experimental data in figure 6(d). The residual resistivity 
in this sample can be obtained by selecting ni  =  1.67  ×  1019 
cm−3. Then experimental observations of κ are explained with 

Figure 5.  (a) The diffusion thermopower as a function of 
temperature for scattering due to CI, SD, AP, OP and resultant of all 
these mechanisms for ne  =  1  ×  1018 cm−3 and ni  =  1  ×  1018 cm−3. 
(b) Diffusion thermopower as a function of electron concentration 
at T  =  77 K. Inset: at T  =  300 K.
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D  =  20 eV. For T  >  ~ 200 K scattering from APs and OPs is 
found to dominate κe.

At low temperature, the thermal conductivity κ is gener-
ally dominated by phonon thermal conductivity κph in large 
ne samples [22]. This κph arises due to phonon scattering by 
(i) boundary (κph-b) at very low T, (ii) phonons (κph-ph), (iii) 
impurities (κph-i) and (iii) point defects (κph-d), at relatively 
higher T. Resultant κph is given by 1/κph  =  (1/κph-b)  +  (1/κph-

ph)  +  (1/κph-i)  +  (1/κph-d). It is found that κph-b ~ T3 and other 

mechanisms together show κph ~ T−1, dominated by κph-ph. 
We believe that in figures 6(c) and (d), the low T data (below 
50 K), but not very low T, is governed by the κph ~ T−1 behav-
iour which is due to the phonon scattering by phonons, impu-
rity, and defects. In 3D Cd3As2 semiconductor, it has been 
shown that lattice thermal conductivity, with a peak at 8 K, is 
decreasing with increasing temperature nearly as T−1 [47, 48]. 
In order to make a quantitative comparison with the exper
imental data for T  <  50 K, one needs to obtain κph-b, κph-i, 

Figure 6.  (a) Resistivity ρ as a function temperature T for the sample B1 (B7-Inset) of Liang et al [15]. The curves represent the calculated 
ρ due to CI, SD, AP, OP and the resultant ρ. The solid circles represent the experimental data. (b) Resistivity ρ as a function of temperature 
for the sample of Cao et al [12]. The curves represent the calculated ρ due to CI, SD, AP, OP and the resultant ρ. Inset: ρ as a function 
of temperature T is shown for the sample of He et al [18]. The solid circles represent the experimental data. (c) Thermal conductivity κ 
as a function temperature T for the sample D of Wang et al [26]. The curves represent the calculated κe due to CI, SD, AP, OP and the 
resultant κe. The solid circles represent the experimental data. (d) Electronic thermal conductivity κe as a function temperature T for the 
sample of Zhang et al [25]. The curves represent the calculated κe due to CI, SD, AP, OP and the resultant. The solid circles represent the 
experimental data. (e) Thermopower Sd as a function of temperature for the sample of Pariari et al [27]. The curves represent the calculated 
Sd due to CI, SD, AP, OP and the resultant Sd. The solid circles represent the experimental data. (f) Thermopower Sd as a function of 
temperature for the sample C of Wang et al [26]. The curves represent the calculated Sd due to CI, SD, AP, OP and the resultant Sd. The 
solid circles represent the experimental data.
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κph-ph and κph-d, by solving the phonon BTE in the relaxation 
time approximation in 3DDS. It is out of scope of the present 
work.

Pariari et  al [27] have made the temperature-dependent 
measurements of Seebeck coefficient Sd in the range ~2–
350 K in zero and quantizing magnetic field. In figure  6(e), 
we attempt to explain their zero-field thermopower data 
(from figure 4(a) of [27]). From the Hall resistivity measure-
ments, the electron concentration of the sample is found to 
be ne  =  6.8  ×  1018 cm−3. The charged impurity concentration 
ni  =  1.52  ×  1019 cm−3 is chosen to fit the residual mobility 
of the sample ~1.3  ×  104 cm2 V−1 s−1 at T  =  2 K. Also, we 
chose D  = 5 eV to obtain agreement between the calculated 
Sd and the experimental data. By using these values of ni, ne 
and D, we present the calculations of Sd as a function T. The 
calculations best fit the data up to 200 K. The calculations of 
Sd for individual scattering mechanisms are also presented to 
gauge their relative importance. It is clear that overall thermo-
power for T  <  ~20 K is dominated by scattering from CIs and 
at higher T by OPs.

Wang et al [26] have made the temperature-dependent meas-
urements of Seebeck coefficient in the range ~6–500 K in zero 
magnetic field. In figure 6(f), we attempt to explain their zero-
field thermopower data with our calculations for the sample C 
with ne  =  1.39  ×  1018 cm−3 and the residual resistivity 58.7 
µΩ cm. This value of residual resistivity can be obtained by 
choosing of ni  =  1.52  ×  1018 cm−3. Then, D  =  25 eV is chosen 
to explain the observed thermopower data. The calculations 
give reasonably good agreement with the data up to 350 K and 
it deviates marginally at a higher temperature.

From the comparison of the experimental results of σ, κ, 
and S, it can be seen that scattering by charged impurities is 
sufficient to explain the observed transport properties of the 
Cd3As2 at low temperature. The phonon scattering limits the 
transport in higher temperature region.

We would like to make the following remarks regarding 
ni. While comparing with the experimental data, ni is used as 
fitting parameter at very low T, where σ  =  σCI is independent 
of T. The ni thus used is believed to be sample specific due to 
its preparation and it is found to be in the same range as that 
of ne. The use of ni in the range of ne, and sometimes ni  >  ne, 
is also found in some earlier works [49, 50]. We have found 
that theoretical residual resistivity ρ  =  ρCI (=σ−1

CI ) ~ (ni/n1.3
e ). 

Interestingly, it is also noticed that, taking nr  =  (ni/n1.3
e ), the 

ratio of nr’s of any two of the experimental samples, con-
sidered here, is nearly equal to the ratio of their respective 
experimental residual resistivities. Moreover, in the samples 
with nearly same residual resistivity, sample with larger ne 
is found to have larger ni, because ρCI ~ (ni/n1.3

e ). These may 
reflect a kind of consistency in our choice of ni for samples 
with different residual resistivity and ne. Additionally, it is 
also noticed that, in the samples with residual resistivity of 
the order of few tens of µΩ cm, the required ni is about 2–4 
orders of magnitude larger, depending upon ne value, than 
the ni required in samples of few tens of nΩ cm of residual 
resistivity (sample of Zhao et al [14] and samples A1, A5 and 

A8 of Liang et al [15]), suggesting that the latter samples are 
nearly clean samples.

4.  Conclusions

In conclusion, thermoelectric properties of 3DDS Cd3As2 
are theoretically investigated as a function of temperature 
T and electron concentration ne by considering the electron 
scattering from the charged impurity, short-range disorder, 
acoustic and optical phonons. The first-order perturbation 
Φ(Ek) of the distribution function has been presented as a 
function of carrier energy Ek for the inelastic polar optical 
phonons, along with other elastic scattering processes, which 
is obtained by solving the linearized BTE via Ritz iteration 
method. At low temperatures, our results show that all ther-
moelectric transport properties (σ, κe, Sd) are dominated by 
the scattering of CIs. In the numerical calculations, at low 
temperature, we have found σ to be almost independent of 
temperature and the residual resistivity ρ  =  ρCI is shown to 
be ~ (ni/n1.3

e ). At a higher temperature, it decreases with an 
increase of T due to the influence of phonon scattering. At 
lower temperature κe was found to increase linearly with 
temperature dominated by CI scattering and is almost inde-
pendent of temperature at higher T. The Wiedemann–Franz 
law (κe/σ) ~ T is largely validated for CI and phonon scat-
tering. The diffusion thermopower Sd, in the low temperature 
region, was found to be linear in T and dominated by CIs scat-
tering. With the increasing temperature, Sd is nearly linear in 
T due to the dominance of scattering from phonons. Sd results 
are in agreement with the Mott’s relation at low T. The exper
imental data of ρ, κ and S are explained, by varying deforma-
tion potential constant D in the range 10–30 eV.

Note

After completion this work, we became aware of a recent 
work [51], in which the calculated lattice thermal conductiv-
ity κph in the Dirac semimetal Cd3As2 at 300 K is found to 
be in the range of 0.3–0.9 W/mK and it is decreasing with 
increasing T. These authors claim that their predictions are 
in good agreement with the experimental reports of Wang  
et al [52]. However, the observed thermal conductivity in [52], 
in the temperature range of 100– 400 K, is ~ 3 W/mK and is 
almost independent of T. Our calculations of κe are in good 
agreement with these experimental reports of [52], as found 
with the data in [26] by the same group (figure 6(c)).
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