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Abstract
We derive the exact T=0 seniority-zero eigenstates of the isovector pairing
Hamiltonian for an even number of protons and neutrons. Nucleons are sup-
posed to be distributed over a set of non-degenerate levels and to interact
through a pairing force with constant strength. We show that these eigenstates
(and among them, in particular, the ground state) are linear superpositions of
products of T=1 collective pairs arranged into T=0 quartets. This grouping
of protons and neutrons first into T=1 collective pairs and then into T=0
quartets represents the distinctive feature of these eigenstates. This work
highlights, for the first time on the grounds of the analytic expression of its
eigenstates, the key role played by the isovector pairing force in the
phenomenon of nuclear quarteting.

Keywords: N = Z nucleus, isovector pairing, quarteting

(Some figures may appear in colour only in the online journal)

Introduction

Exact analytic treatments of model Hamiltonians can provide very useful insights into important
phenomena occurring in quantum many-body systems. A model Hamiltonian which has
received much attention over the years in the context of nuclear structure is the isovector pairing
Hamiltonian [1]. This Hamiltonian describes a two-component system consisting of protons (p)
and neutrons (n) interacting through a pairing force which acts on an equal footing on pp, nn and
p–n pairs. Particularly in light nuclei, owing to the fact that protons and neutrons share the same
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orbitals and due to the charge independence of the nuclear force, this Hamiltonian represents an
essential component of the effective nuclear interaction.

An exact analytic treatment of the isovector pairing Hamiltonian for a set of non-degenerate
levels has proved to be problematic. The oldest approach dates back to the 60s and is due to
Richardson [2]. This formalism was further elaborated a few years later by the same author in
collaboration with Chen [3]. More than three decades later, however, Pan and Draayer [4]
showed that the approach of [2, 3] was valid only for systems with at most two pairs of nucleons.
They also proposed a different approach but explicitly develop their formalism for up to three
pairs only. In the same year, Links et al [5] provided an exact eigenspectrum of the isovector
Hamiltonian by applying the quantum inverse scattering method without, however, explicitly
discussing its eigenstates. Finally, in 2006, Dukelsky et al [6] presented a complete exact
treatment of a more general isovector pairing Hamiltonian including also isospin-breaking terms.

As compared with the exact Richardson solution of the like-particle pairing [7–9], simply
formulated as a product of distinct collective pairs, the existing solution of the isovector
pairing Hamiltonian appears much less transparent. Indeed, in this case the eigenstates are
expressed not only by products of collective pairs but also in terms of isospin and special
raising operators [6]. Furthermore, besides the standard pair energies associated with the
Richardson pairs (see below), these eigenstates also depend on an additional set of spectral
parameters that do not have a clear physical interpretation. These facts prevent a simple
understanding of the type of correlations induced by the isovector pairing force.

The aim of this article is to propose a new exact treatment of the isovector pairing
Hamiltonian in which the eigenstates have a transparent physical interpretation. Our approach
has been focused on the T=0 seniority-zero eigenstates of a system with an even number of
protons and neutrons. It will be shown that these eigenstates (and among them, in particular, the
ground state) are linear superpositions of products of T=1 collective pairs arranged into T=0
quartets. The formation of such α-like four-body structures in the T=0 eigenstates of the
isovector pairing Hamiltonian has not been pointed out in any of the previous exact treatments of
this Hamiltonian. This result establishes, for the first time on the grounds of the analytic
expression of its eigenstates, the key role played by the isovector pairing force in the emergence
of nuclear quarteting, which is one of the oldest and still open issues in nuclear structure [10–16].

The paper is structured as follows. In section 2, we describe the formalism to construct
the exact eigenstates. In section 3, we provide some numerical applications. Finally, in
section 4, we give the conclusions.

The formalism

The Hamiltonian under study reads as
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This Hamiltonian describes a system of protons and neutrons distributed over a set of Ω levels
and interacting via an isovector pairing force with a level-independent strength g. The
operator stai

† (aiστ) creates (annihilates) a nucleon in the single-particle state characterized by
the quantum numbers (i, σ, τ ), where i identifies one of the Ω levels of the model,
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σ=±labels states which are conjugate with respect to time reversal and t =  1

2
is the

projection of the isospin of the nucleon. These operators obey standard fermion commutation
relations. The operator PiMT

† PiMT( ) creates (annihilates) a pair of nucleons in time-reversed
states with total isospin T=1 and projectionMT. Depending onMT, PiMT

† creates a pp, a nn or
a p–n pair and the Hamiltonian (1) is seen to act equally on these pairs. Finally the operator
i counts the number of nucleons on the level i, each level having an energy òi.

Owing to the presence of the σ, τ degrees of freedom, each level i is fourfold
degenerate being able to accommodate two protons and two neutrons in time-reversed
states. We limit the Hilbert space of the model to states with total seniority-zero according
to the notation of [2]. For a 2N-particle system the most general seniority-zero space is
spanned by the states

P P P 0 , 3i M i M i MT T N TN1 1 2 2
∣ ⟩ ( )† † †

where 0∣ ⟩ is the vacuum of the model. Since, as anticipated, we focus only on T=0
eigenstates, these states are subject to the condition + + + =M M M... 0T T TN1 2 . The
Hamiltonian (1) does not mix states with different seniorities [2].

We begin by illustrating the formalism that we have adopted to construct the T=0
seniority-zero eigenstates of the Hamiltonian (1) in the cases of 2p−2n and 4p−4n sys-
tems. We will then discuss the generic case of a Np−Nn system (N even).

As a basic principle, following Richardson’s suggestion [2], we assume the collective
isovector pairs

å=
-n

n=

W


B

E
P

1

2
4M

k k
kM

1
T T

( )† †

as building blocks of the eigenstates of the Hamiltonian (1). These pairs are formally identical
to those employed in the treatment of the like-particle pairing [7–9], differing only for the
explicit presence of the isospin degree of freedom. Their amplitudes depend on a parameter,
Eν, that we shall name ‘pair energy’ as in the like-particle case.

For a 2p−2n system, according to the above principle, the only T=0 state that can be
formed is

Y = B B 0 . 52
1 2
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This state is simply the product of two T=1 pairs (4) coupled to T=0. In the following we
will refer to such an α-like structure as a T=0 quartet. By making use of the commutation
relations
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one can easily verify that
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where

å=P P . 9M
k

kM ( )† †

The matrix C(M1, M2, M, M′) in equation (7) can be found in [2]. One deduces from the last
expression that Y 2∣ ⟩( ) is an eigenstate of H with eigenvalue E(2)=E1+E2 if the pair energies
E1 and E2 (the only parameters present in the definition (5)) are such that the two polynomials
in curly brackets are zero. This defines a system of two coupled nonlinear equations in the
two unknowns E1 and E2. In this case the present approach and Richardson’s one [2]
coincide.

As a next case we consider the 4p−4n system. As an ansatz, we assume that a T=0
seniority-zero eigenstate of the Hamiltonian (1) is a linear superposition of states which are
products of four pairs (4) arranged into T=0 quartets. These pairs must be symmetrically
distributed among the quartets. To express this more formally, we introduce the space of
states
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where the distribution of the pairs within the quartets is such to leave invariant the space
under the interchange of any two pairs. Each eigenstate has therefore the form

Y = + +d d d1 2 3 . 114
1 2 3∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ( )( )

One finds that

å åå å åY = Y + -
-

-
¢ -n

n
n n n n

n n

n n
n

= = = ¢¹

¢


H E d g

d

E
g

S s

E E
s

2
12

s
s

i

s

i

4

1

4
4

1

3

1

4⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭∣ ⟩ ∣ ⟩ ( ) ∣ ⟩ ( )( ) ( )

where the state ns∣ ⟩ is obtained from the state s∣ ⟩ of S(4) by replacing nB† with P† (9). An
explicit version of this expression and the definition of the matrices Sν′ν(s) appropriate for this
case can be found in the appendix.

One deduces from equation (12) that Y 4∣ ⟩( ) is an eigenstate of H with eigenvalue
= ån n=E E4

1
4( ) if the twelve polynomials in curly brackets are zero. This defines a system of

twelve coupled nonlinear equations of the type
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The variables involved in these equations are the three amplitudes ds and the four pair
energies Eν. Since the normalization of Y 4∣ ⟩( ) is unimportant, we can set one of the
amplitudes, say d1, equal to 1 and we are therefore left with the six unknowns d2, d3, E1, E2,
E3, E4. The system to be solved in this case is therefore made of twelve equations in these six
unknowns. The solution of such an overdetermined system of equations cannot be guaranteed
in principle. However, in the hypothesis that such a solution exists, this must be necessarily
such that
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with respect to the variables nd E,s is zero. This guarantees indeed that all the equations of the
system have been exactly satisfied. The variables found in correspondence with such a
minimum provide the solution of the system. This is the approach that has been followed to
solve the system of equations generated by our formalism in all the cases that we have treated
in this paper.

The formalism described so far for the cases of 2p−2n and 4p−4n systems can be
extended to a generic Np−Nn system. We define in this case a space of states

= = n n
=

=S s B B 0 , 16N
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q s q s s N
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†
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where, as in the case of S(4) (10), each of the Ns states s∣ ⟩ of this space is a product of N pairs
(4) arranged into T=0 quartets and where the distribution of the N pairs among the quartets
is chosen such to leave invariant the space under the interchange of any two pairs. As an
ansatz for a T=0 seniority-zero eigenstate of the Hamiltonian (1) for a 2N-particle system
we assume then the state

åY =
=

d s 17N

s
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s
1

s

∣ ⟩ ∣ ⟩ ( )( )

with s∣ ⟩ belonging to S (N). This state depends on two sets of variables: the N pair energies Eν

of (4) and the Ns amplitudes ds of the expansion (17). Choosing these variables such to satisfy
the set of coupled nonlinear equations still of the type (13) for ds=(1, Ns) and ν=(1, N)
guarantees the identity

åY = Y
n

n
=

H E , 18N
N

N

1

⎛
⎝⎜

⎞
⎠⎟∣ ⟩ ∣ ⟩ ( )( ) ( )

namely Y N∣ ⟩( ) is an eigenstate of H and the associated eigenvalue is just the sum of the N pair
energies Eν. This occurs because, for a generic Np−Nn system, it is
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where the state ns∣ ⟩ is obtained from the state s∣ ⟩ of S(N) by replacing nB† with P† (9). This
expression represents the natural generalization of equation (12) for a N-pair system. For what
concerns the matrices Sν′ν(s) to be used in a general case, we remark that providing an
analytical expression of these matrices requires the definition of the Ns states s∣ ⟩ of S(N) (16)
and, in correspondence with each of them, the definition of a matrix formulated in terms of
the amplitudes ds of the expansion (17). This has been done for N=4 but showing explicitly
all these matrices for systems with N>4 pairs becomes hardly possible owing to the size of
Ns (see below). In the following we state a practical rule to construct these matrices for a
generic Np−Nn system. In order to generate the element Sν′ν(s), two cases have to be
distinguished: (I), the quartet n n¢B B 0[ ]† † belongs to the state s∣ ⟩ or, (II), it does not. In case (I),
the element Sν′ν(s) is the sum of the amplitude ds plus the amplitudes of all those states of S(N)

where the pairs nB† and n ¢B† belong to distinct quartets while the remaining quartets, if any, are
the same as in s∣ ⟩. In case (II), instead, Sν′ν(s) includes only the sum of ds plus the amplitude
ds′ associated with the state ¢s∣ ⟩ which is obtained by interchanging the pairs nB† and n ¢B† in s∣ ⟩.
This sum has to be taken with a reversed sign. The application of this rule generates, in
particular, the matrices n n¢S s( ) for the 4p−4n case which are shown in the Appendix.

It is worthy noticing that the equations (13) closely remind the analogous equations
introduced by Richardson in the case of like-particle pairing [7–9] by exactly reducing to
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these if ºd 1s and º -n n¢S s 2( ) . However, as compared with that case and as already
discussed for the 4p−4n system, the explicit dependence on the amplitudes ds of the
equations (13) causes the total number of these equations to be larger than that of the variables
(ds,Eν), the two numbers being Neq=Ns·N and Nv=Ns+N−1, respectively (where, in
this definition of Nv, we have taken into account the irrelevancy of the normalization of
Y N∣ ⟩( ) ). Only in the simple case of a 2p−2n system one has that Nv=Neq. As already
anticipated, in order to solve this overdetermined system of Neq equations in Nv unknowns, in
all the cases that we have treated in this paper we have followed the approach illustrated for
the 4p−4n system and therefore searched for the minimum of the function

åå=
n

n
= =

F f d E, 20
s

N N

s
1 1

2
s

( ) ( )

with respect to the variables ds, Eν. In all cases the exact solution has been found.

Numerical applications

The systems that we have studied represent prototypes of axially deformed self-conjugate
nuclei. They consist of 4 nucleons, 2 protons and 2 neutrons, distributed over a set of
2 equispaced, fourfold degenerate levels (i.e. we have considered only half-filled systems).
To keep the model somehow close to some realistic calculations performed in the sd shell
[17], we have assumed single-particle energies = - + - i16 2 1i ( ), what corresponds to a
spacing Δò=2. In the present calculations both these energies and the pairing strength g will
be expressed in arbitrary units.

Before discussing some numerical results, we have to remark that, similarly to what
happens for the like-particle pairing [7–9], different eigenstates can be generated from
equations (13) in correspondence with different ‘boundary conditions’. For the ground state
of a 4 -nucleon system, for instance, we require that, at g=0, the lowest  levels are fully
occupied, each level by an uncorrelated T=0 quartet of the type n nP P 0[ ]† † , and the remaining
 levels are empty. This is realized in practice by letting the ground state approach, in the
limit g 0, a single product of quartets, the two pair energies associated with each quartet
pointing toward one of the values 2òi = i 1, 2, ,( ) . Excited states result from different
‘initial’ (i.e. g 0) configurations of the quartets. The total number of linearly independent
configurations of this type provides the actual number of eigenstates which can be generated
from equations (13). As we have also verified, this number coincides with the number of
T=0 eigenvalues which are found by diagonalizing H in the space of states (3) therefore
exhausting the total number of T=0 seniority-zero eigenstates of the model.

In figure 1 we show the pair energies Eν which characterize the ground state of a system
of 4 protons and 4 neutrons (i.e. a two-quartet system). This case is simple enough to be
discussed in some detail. As already seen in section 2, the ground state is represented by the
state Y 4∣ ⟩( ) (11). In this case, as well as in all the following applications of our formalism,
when searching for the solutions of equations (13) we have allowed both the amplitudes ds
and the pair energies Eν to be complex numbers. Two critical points, gcr

1( ) (≈0.88) and gcr
2( )

(≈1.78), are observed in figure 1. For <g gcr
1( ), all variables ds and Eν turn out to be real. In

the limit g 0, in particular, one finds that d 11 and d d, 02 3 while the four pair
energies are seen to converge two-by-two toward the two lowest values 2òi. In this limit, then,
Y  P P P P 04

1 1
0

2 2
0∣ ⟩ [ ] [ ] ∣ ⟩( ) † † † † . For g gcr

1( ), two pair energies belonging to pairs initially
sitting on different single-particle levels are seen to approach the same value (coinciding with
the smallest of the two initial values 2òi) and, exactly at =g gcr

1( ), they turn from real into
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complex-conjugate quantities. The dashed line starting at this point in figure 1 illustrates their
common real part after the critical point. This mechanism of entanglement between pairs is
identical to that observed in the case of like-particle pairing [7–9]. The two remaining pair
energies suffer the same fate at gcr

2( ). In the interval between the two critical strengths also the
amplitudes d1 and d2 become complex-conjugate while d3 remains real. Finally, for >g gcr

2( ),
the four pair energies evolve in a complex-conjugate form with all the amplitudes ds being
real. We remark that, at each critical point, the system of equations (13) undergoes a num-
erical instability. In [7–9], analogous instabilities were cured through some transformations of
variables. In the present work, we have limited ourselves to approach these points from the
left and from the right by proceeding in very small steps of g.

In figure 2 we show the pair energies characterizing the ground state of a system of 6
protons and 6 neutrons (i.e. a three-quartet system). The expansion (17) counts Ns= 15
components in this case . Similarly to the two-quartet case, for g 0, the six pair energies
converge two-by-two toward the lowest three values 2òi. The four uppermost pair energies in
this limit are therefore seen to behave as in figure 1 with increasing g. In the same range of the
pairing strength, the two remaining pair energies remain, instead, always real and well
distinct.

As a final example of a ground state, figure 3 shows the pair energies relative to a system
of 8 protons and 8 neutrons (i.e. a four-quartet system). The expansion (17) counts Ns=105
components for this system. The eight pair energies clearly split into two groups of four, each
group behaving as in figure 1. The dependence of these pair energies on the pairing strength is
rather similar to the one observed for a system of 8 identical particles [9], the basic difference
arising from the fact that in the present case two pairs can occupy each single-particle level.
As a result, the pattern of the pair energies for the proton-neutron system appears as ‘doubled’
with respect to the like-particle case.

Figure 1. Pair energies relative to the ground state of a system with 4 protons and 4
neutrons as a function of the pairing strength g. Pair energies are real (solid line) up to
the point where they come together (critical point). At this point they turn from real into
complex-conjugate. The dashed line starting at the critical point denotes the common
real part. All quantities are in arbitrary units.
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All the cases discussed so far have concerned the ground state of a N=Z system. As an
example for an excited state, in figure 4 we show the pair energies which characterize the first
excited state of a system with 4 protons and 4 neutrons. The wave function of this state is still
represented by equation (11). At variance with the corresponding case of figure 1, only one
critical point gcr (»1.15) is observed. For g<gcr, all the variables ds and Eν are found to be
real. In the limit g 0, in particular, one finds that Y  P P P P 04

1 1
0

2 3
0∣ ⟩ [ ] [ ] ∣ ⟩( ) † † † † . For

g gcr, two pair energies which belong to pairs initially sitting on the two lowest single-
particle levels approach each other and, at g=gcr, they become equal (also in this case this
value coincides with the smallest of the two initial values 2òi) and turn from real into

Figure 2. The same as in figure 1 for a system with 6 protons and 6 neutrons.

Figure 3. The same as in figure 1 for a system with 8 protons and 8 neutrons.
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complex-conjugate quantities. The same transformation is undergone, at the same point, by
the amplitudes d1 and d2 while d3 remains always real. No further transformation is observed
for g>gcr.

A crucial aspect of the exact wave functions discussed above is that they encapsulate
4-body alpha-like correlations in their structure. These correlations appear in the wave
functions in two different ways. One way, which is common to all the wave functions,
independently of the strength of the interaction, is through the coupling of two Richardson
pairs to the total isospin T=0, i.e. into quartets. Explicitly, a quartet has the following
structure

= + -n m n m m n n m
=

- -B B B B B B B B
1

3
. 21T 0

1 1 1 1 0 0[ ] ( ) ( )† † † † † † † †

One can notice that in a quartet the protons and the neutrons are entangled together through
the last term of the above expression. In addition, 4-body correlations are also generated into
the quartet when the two Richardson pairs become complex and conjugate to each other, i.e.
when Eν=ξ+iη and Eμ=ξ−iη. In this case the sum of the first two terms in
equation (21) can be expressed as

å x h+ =n m m n- - -B B B B x P P2 , , 22
i j

i j i j1 1 1 1
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, 1 1( ) ( )† † † † † †
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x h
x x h

x h x h
=

- - +

- + - +

 
 

x ,
2 2

2 2
. 23i j

i j

i j
,

2

2 2 2 2
( )

( )( )
(( ) )(( ) )

( )

It can be seen that in the expression (22) the protons and neutrons are entangled together
because xi j, is not separable in the indices i, j. A similar expression can be derived for the last
term of equation (21). Consequently, when the quartet is built with complex conjugate pairs,
apart from the 4-body correlations induced by the isospin coupling, there are additional
correlations between protons and neutrons in the individual terms of equation (21). These

Figure 4. Pair energies relative to the first excited state of a system with 4 protons and 4
neutrons. Solid and dashed lines have the same meaning as in figure 1.
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additional correlations appear also in the components of the wave functions in which the
conjugate Richardson pairs belong to different quartets. In this case, writing explicitly the
product of these quartets, it can be seen that correlations can appear also between 4 neutrons
or 4 protons. A similar mechanism of generating 4-body correlations through the conjugate
Richardson pairs was already noticed and discussed for the SU(2) like-particle pairing
Hamiltonian [20]. It should be stressed that these correlations are dynamical ones because
they appear only when the strength of the interaction is greater than a critical value.
Summarizing, the new representation of the exact eigenfunctions provided in this paper
clearly establishes that the isovector pairing generates 4-body correlations both kinematically,
through the isospin coupling, and dynamically, through the mechanism of the complex
conjugate pairs.

Conclusions

In this paper we have derived the exact T=0 seniority-zero eigenstates of the isovector
pairing Hamiltonian for even numbers of protons and neutrons distributed over a set of non-
degenerate levels and interacting through a pairing force with constant strength. Various
numerical applications have been provided which concern both ground and excited states.
Two are the key features which have been clearly identified in these eigenstates: (a), the
presence of T=1 collective pairs acting as building blocks (these pairs having a similar form
and behavior as the Richardson pairs of the like-particle pairing) and, (b), the coupling of
these T=1 pairs into T=0 quartets. A similar grouping of protons and neutrons first into
T=1 collective pairs and then into T=0 quartets had been assumed in previous approx-
imate treatments of the isovector pairing Hamiltonian[18, 17]. Moreover, the role of T=0
quartets had emerged in an analysis of this Hamiltonian under the simplifying assumption of
degenerate single-particle levels (the so-called SO(5) model) [19]. However, the fact that the
exact eigenstates of the isovector pairing Hamiltonian in the realistic case of non-degenerate
single-particle levels could be formulated in terms of T=0 quartets built with Richardson
pairs had escaped the previous exact treatments of this Hamiltonian. As a major result, then,
the isovector pairing force emerges from this work as a key element to understand the
formation of α-like structures in N=Z nuclei.

Finally we would like to mention that wave functions expressed in terms of α-like
structures have also provided an effective approximate scheme to treat a more general pairing
Hamiltonian which includes, in addition to the isovector force, the isoscalar proton-neutron
pairing interaction [21, 22]. The latter is an important component of the realistic two-body
interaction and its role in the development of proton-neutron pairing correlations is still an
open and debated issue [1]. The isovector–isoscalar pairing Hamiltonian can be solved
exactly for state-independent pairing forces of equal strength [23–26, 28, 29]. For the case of
degenerate levels it was shown that the exact solution can be expressed as a condensate of
α-like quartets built by a linear superposition of products of two isovector and two isoscalar
pairs coupled to the total isospin T=0 and total spin J=0 [19]. For non-degenerate levels
the exact solution of this Hamiltonian can be found in [28] for the case of a spherical mean
field and in [29] for an axially symmetric deformed system (the latter reference also contains
an exact treatment of the isovector pairing Hamiltonian leading to the same equations of [5]).
In [28], from the distribution of the spectral parameters characterizing the exact eigenvalues,
derived in the general framework of Richardson–Gaudin models [27], it was found evidence
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of alpha-like correlations in the ground state of N=Z systems. However, it is not yet clear
whether the exact wave function of the isovector–isoscalar pairing Hamiltonian can be
expressed in terms of alpha-like structures, as it has been shown here for the case of the
isovector pairing force.
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The matrices n n¢S s( ) entering this expression are defined in the following tables 1–3.
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