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Abstract

Foot clearance during walking is considered as a key indicator for assessing fall risk, obstacle
negotiation strategies and energy expenditure. Foot clearance estimation using inertial
measurement units (IMUs) has the advantages of small size, low cost and user-friendliness.
However, its application is still limited due to issues with accuracy and reliability. In this paper,
we aimed at understanding the limiting factors in foot clearance estimation using low-cost
IMUs and proposed a foot clearance estimation method with millimeter-level accuracy. We first
analyzed each component in conventional double-integration-based foot clearance estimation,
and then proposed a set of new procedures for foot trajectory estimation, including a
gait-adaptive complementary filter for orientation estimation, a two-IMU configuration and a
shock absorber. Finally, we extracted the foot clearance from the estimated foot trajectory. In the
experiments, we recruited eight healthy subjects and instructed them to walk under level and
uneven ground conditions; moreover, to validate the applicability of the proposed method, we
also instructed the subjects to mimic pathological gaits, including ataxic gait (zigzag walking),
waddling gait and Parkinsonian gait. A total of 2640 gait cycles were collected and the extracted
foot clearances were benchmarked with the optical motion capture system. With the proposed
method, the average mean and standard deviation of the extracted maximal heel clearance and
minimal toe clearance in all the gait cycles were —0.34 £ 0.24 cm and 0.02 £ 0.26 cm. The
results are more accurate than in previous studies. Most importantly, the proposed method does
not require any post correction and flat-floor assumption. The presented foot clearance
estimation method provides an applicable and practical clinical solution not only for heel and
toe clearance estimation but also for foot trajectory estimation.

Keywords: foot clearance, foot trajectory, inertial sensors, orientation estimation, fall risk
assessment

(Some figures may appear in colour only in the online journal)

1. Introduction disease [2, 3]. Among these gait parameters, the foot clear-

ance, which refers to the distance between the foot and the

Gait analysis is considered to be an effective way of assessing
human mobility [1]. The temporal and spatial gait paramet-
ers obtained from gait analysis can be used to character-
ize changes of gait in the elderly and people with mobility
disorders such as cerebellar ataxia, myopathy and Parkinson’s
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ground, is considered to be an important indicator for risk of
fall. Insufficient foot clearance will increase the risk of trip-
ping in forward walking [4, 5], and quantification of fall risk
is essential for fall prevention and intervention [6, 7]. Foot
clearance is also related to energy expenditure as well as safety
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during obstacle-crossing [8], and it is also a safety indicator
when going up and down stairs [9]. Accurate foot clearance
estimation is significant in these applications.

The conventional foot clearance measurement system is the
optical motion capture system, which uses multiple cameras to
track the positions of reflective markers located on shoes, and
then determines heel and toe clearance [10, 11]. This method is
accurate and reliable and is often regarded as the gold standard
in foot clearance estimation. However, this method has a vari-
ety of shortcomings. It is inevitably expensive and can only
track a limited number of steps within a laboratory setting.
Hence, it cannot be used as a convenient means to analyze the
natural gait in the daily living environment.

Wearable sensors are becoming more and more accurate,
with a small size, and low cost. Microelectromechanical sys-
tems (MEMS)-based inertial measurement units (IMUs) have
been shown to be an attractive solution for ambulatory estim-
ation of foot clearance [12]. The IMUs can be easily attached
to shoes for continuous outdoor gait tracking without disturb-
ing natural gaits. Foot clearance is the vertical component of
foot displacement, which can be estimated by double integ-
ration of the foot acceleration in the earth frame [13—15]. In
this estimation process, the error in sensor orientation estima-
tion and accumulative errors from double integration will inev-
itably lead to large errors in displacement estimations. In a
broader sense, displacement-related gait parameters include
stride length, foot clearance, step width, etc. A large number
of studies focus on the displacement in the horizontal plane
such as stride length, walk distance, etc, and the stride length
estimation has achieved very good accuracy with total distance
estimation error as small as 1% [16]. However, in the ver-
tical direction, the foot clearance error is usually several cen-
timeters [13, 17]. As the total height of toe clearance is only
about 8—15 cm [18], the estimation error will cause a large rel-
ative percentage error. To date, foot clearance estimation with
millimeter-level accuracy is still challenging.

IMU-based foot clearance estimations can be divided into
two categories: the indirect and direct estimation methods.
The indirect methods estimate the clearance of IMU first,
and then calculate the heel and toe clearance through geo-
metric transformations. In [13], Mariani et al proposed an
IMU-based foot clearance estimation method. The IMU was
mounted at the instep of the shoe. The algorithm calculated the
displacement of the IMU and automatically estimated the
location of the IMU, and then calculated the toe and heel
clearance using geometric transformations. The reported
accuracy of the maximum heel clearance (MaxHC) was 4.1 £
2.3 cm (mean £ SD), and the minimal toe clearance (MinTC)
was 1.3 &+ 0.9 cm. The system was easy to wear and to use
and provided a useful tool for gait analysis. In [19], Kanzler
et al proposed a similar indirect foot clearance estimation
method, where the IMU was placed at the heel of the shoe. The
achieved accuracy was equivalent to the accuracy in [13]. Both
of the studies were based on the assumption of level ground
walking, which made the presented methods only suitable in
level ground walking. The achieved centimeter-level accuracy
was not enough, especially when analyzing the toe clearance

variability, because the observed MinTC variability during
walking was only about several millimeters [20]. The advant-
ages of the indirect methods are that only one IMU is required
and the placement of IMU is not restricted. However, in the
indirect calculation process, errors in the IMU location estim-
ation and the relative motion of IMU will increase the error of
foot clearance estimation.

Another category is direct foot clearance estimate methods
[17, 21, 22]. In these methods, the IMU is placed near the toe
or heel, so that the estimated clearance of the IMU can be
regarded as the toe or heel clearance. In [17], Hannink et al
measured the heel clearance by placing an IMU beside the
heel; several typical combinations of the orientation estima-
tion method and double-integration schemes for displacement
estimation were analyzed. The reported accuracy of the prefer-
able combination was 1.97 £ 3.56 cm. In [14], Kitagawa and
Ogihara developed a system to monitor foot clearance using
an IMU placed at the instep. The mean accuracy and preci-
sion was approximately 0.2 & 0.7 cm for foot clearance, which
was much more accurate than previous studies [13]. However,
this direct method relied on displacement correction based on
the flat floor assumption, and the estimated clearance was the
clearance of instep IMUs rather than the biomechanical toe
and heel clearance.

Besides IMUs, miniature range sensors have also been used
to measure the distance and these do not suffer from accumu-
lative error. Several studies have attempted to combine range
sensors with IMUs to get higher accuracy in foot clearance
estimation [18, 23, 24]. Arami et al estimated the foot clear-
ance by adding range sensors [18]. The authors compared the
schemes of different combinations of range sensors and IMUs,
and they concluded that the integration of the range sensor
and IMU performed the best. The foot clearance estimation
accuracy was 0.31 4+ 0.93 cm. Although the accuracy had
been improved by adding range sensors, it increased the sys-
tem’s complexity, and it also relied on the flat floor assump-
tion. Moreover, the accuracy of the range sensor was influ-
enced by floor materials and the foot angle between the shoe
and ground. These limitations made range sensor-based sys-
tems less practical.

Since foot clearance estimation relies on accurate orient-
ation estimation and double integration of acceleration, we
believe that with the development of MEMS technologies and
sensor fusion algorithms, the foot clearance accuracy can be
improved without adding other types of sensors. Therefore, in
this paper, we focused on developing an accurate foot clear-
ance measurement system using only IMUs. We first system-
atically analyzed the key factors that influenced the accuracy
of foot clearance estimation, including the accuracy of ori-
entation estimation, sensor placement and shock absorption.
Then, we proposed improved solutions for each component
to achieve a reliable toe and heel clearance estimation with
millimeter-level accuracy. Finally, to validate the applicability
of the proposed method, we performed the experiments under
various walking conditions, including not only level ground
walking conditions, but also uneven ground walking and imit-
ative pathological walking conditions.
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2. Methods

2.1. Measurement system

An overview of the developed multiple-IMU system is shown
in figure 1. This system was a redundant IMU system includ-
ing three IMUs, where the instep IMU was used for the com-
parison study. Precisely, the instep IMU was placed flat at the
instep. The heel IMU was first mounted on one end of a plastic
sheet, and a shock absorber was used to attenuate the acceler-
ation at heel strike. Then, the other end of the shock absorber
was fixed on the side of the shoe sole, keeping the IMU close to
the heel. Thus, the trajectory of the heel IMU represented the
heel trajectory. The placement of the toe IMU was similar to
the heel IMU. Although the physical coordinates of the three
sensors were different, for convenience, we converted them to
consistent coordinates where the Z axis pointed up, the X axis
pointed left and the Y axis pointed back, as shown in figure 1.
For the comparison study, we developed four estimators with
different IMU configurations to estimate the foot clearance.
The details of each estimator are listed in table 1. The instep
IMU, toe IMU and heel IMU estimators are indirect methods
using only one IMU, while the two-IMU estimator is a direct
method using two independent IMUs. The two-IMU config-
uration is an improved configuration presented in this paper,
and the others are the commonly used configurations in the
literature.

The IMUs in this system were used to estimate the sensor
trajectory, and the method of double integration of the accel-
eration was considered [17]. The overall schematic of the
three-dimensional (3D) sensor trajectory calculation is shown
in figure 2. The procedure includes sensor calibration, ori-
entation estimation, gravity acceleration removal and double
integration of the acceleration. In this paper, we focus on
improving the key components in this procedure. The details
of the improved solutions for each component are described in
the following subsections.

2.2. Sensor orientation estimation

2.2.1. Basic sensor fusion algorithm. In figure 2, £g is the
orientation quaternion of the sensor frame relative to the earth
frame, which is estimated by fusing the accelerometer and
gyroscope data. The accuracy of the orientation estimation
determines the accuracy of motion acceleration after removing
the gravity acceleration, and then affects the accuracy of the
final displacement estimation. Therefore, accurate orientation
estimation is extremely important. The challenge of accur-
ate orientation estimation comes from the influence of the
large acceleration during walking, which reaches up to 8-10 g
sometimes [25]. To reduce the influence of the large acceler-
ation, we adopt the state machine-based complementary fil-
ter presented in our previous study [25]. Only step one in
the sensor fusion method is required because foot clearance
estimation does not need heading information, thus it does not
need a magnetometer. The implementation of the algorithm is
described as follows.

Supposing that the orientation of the previous iteration is
34 =[q0q1 q295], the measured angular velocity in the sensor
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Figure 1. Overview of the developed multiple-IMU system and the
placement of the IMUs and markers.

Table 1. Four estimators with different configurations of IMU.

Estimators IMUs Heel clearance Toe clearance
Instep IMU One Indirect Indirect

Toe IMU One Indirect Direct

Heel IMU One Direct Indirect

Two IMU Two Direct Direct

Note: ‘Direct’ and ‘Indirect’ indicate that the foot clearance is estimated
directly or indirectly.
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Figure 2. Overall schematic of the double integration method for
sensor trajectory estimation.

Sw=|we wy w]. A(3g) is the rotation matrix

frame is
representation of %é, and the measured acceleration is Sa =
[ax ay az]. The gravity acceleration is g= [O 0 1].

Then, the predicted acceleration, a,, can be calculated as

29193 — 2q0q>2
ap=A(3q) g = | 29293 +2q0q1 | - (1)
2g0* — 1 +2¢3°
The difference, e,, between the measured acceleration, a,
and the predicted acceleration, a,, is calculated as the cross-
product of them, as described in (2):
2

e, =d X a,, where a =

|*a
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Then the corrected angular velocity w’ is calculated as (3):
w' =50+ Kue,. 3

K, is the tuning parameter which regulates the weighting
factor between the gyroscope and accelerometer measure-
ment. A large value means it is trusting the accelerometer
more, and typically it is determined experimentally through
trial and error.

The rate of change of the quaternion, ¢, is computed as

1
§=524©[0 )] 4)

Then 34 is calculated through the integration, as described
in (5):

i-quth 5)

Ea=(q)" 6)

Here, %q describes the orientation of the earth frame relative to
the sensor frame; the final orientation fq of the sensor frame
relative to the earth frame can be obtained through the qua-
ternion conjugate operation.

It is worth noting that the sensor calibration is also critical.
The acceleration accuracy will affect the orientation estima-
tion and the displacement estimation directly. The gyroscope
accuracy will affect the displacement estimation indirectly.
Although sensors are factory calibrated, calibration would still
need to be checked at the end-user level. The scale factor and
bias of the sensor can be updated using the method described
in [26]. The gyroscope bias needs to be removed in sensor
fusion methods. In this paper, for simplicity, we used the no-
motion gyro bias update method to remove the bias, as depic-
ted in our previous study [27].

2.2.2. The adaption of the filter gain. In the sensor fusion
algorithm, it is crucial to regulate the filter gain K, according
to external acceleration. Human walking is a cyclic motion,
and the gait events and gait phases during walking are shown
in figure 3. The gait phases include the stance and swing
phase; the gait events include toe off, heel strike, etc. The
sensor fusion algorithm is concerned with the motion state
of the sensor rather than the precise moment of gait events
[25]. Hence, we simply divide the gait cycle into two states
according to the motion state, i.e. the dynamic state and static
state [16]. In the dynamic state, the foot is considered to be in
a dynamic state with large external acceleration. In the static
state, corresponding to the mid-stance phase, the foot is con-
sidered to be in a stationary state and the external acceleration
is negligible.

The motion states are detected by the magnitude of the
measured acceleration. To avoid sudden change, we first use
a low-pass filter to filter the magnitude of acceleration and
then compare the filtered magnitude with the gravity acceler-
ation. When the deviation is smaller than a set threshold, it is
regarded as a static state. Otherwise, it is a dynamic state. The

]
Stance

Swing Stance
| :
| | | | [
Heel off Toe off Heel strike  Foot flat Heel off
K;
Dynamic Static Ka
Kn |-y
/ éo
L Integral duration: K, = 0 i /’ Gain setting

Figure 3. The gait phases and events during normal walking.

filter gain K, is adaptively set according to the motion state. As
shown in figure 3, in dynamic state, K, is set to zero. Hence,
the orientation estimation relies only on gyroscope integra-
tion. This period is called the integral duration. In static state,
eq =a X a,, where a = Hi—Z” is set as a large initial value K;
for rapid convergence, and then is linearly decreased to nor-
mal value, K, in a time interval ¢y. The static state is important
to bound the drift of integration. Note that the static state occu-
pies only about 20% of the gait cycle [28], and the convergence
speed of the orientation estimation algorithms should be fast
enough so that the orientation error due to the integration in
the dynamic state can be corrected in such a short period.

2.3. Toe and heel trajectory estimation and feature extraction

2.3.1. 3D sensor trajectory estimation. In the process of
double integration in sensor trajectory estimation, as shown
in figure 2, the first step is to calculate the acceleration in
the earth frame, £a (¢), using the measured 3D acceleration
Sa(f) and the estimated orientation £¢ (), and then to calcu-
late the linear acceleration £a’ () by subtracting the gravity
acceleration g, as described in (7). Through integration, we get
the 3D velocity £v (7). To avoid the accumulative error in accel-
eration integration, the zero-velocity update (ZUPT) method
is used for the velocity correction [29]. During the static state,
the IMU is in a static state, so the velocity of the sensor is set
to zero, as described in (8). This known information is used to
bound the error growth by correcting the velocity at the end
of a dynamic state, v,,4, to zero. The correction method is the
linear de-drifting method, as described in (10) and (11) [30].
Finally, we get the 3D displacement £d (¢) by integrating the
corrected 3D velocity £v’ (¢), as described in (12):

Fa' (1) =§q (1) Pa(r)-5q' (1) — g. ()
In static state:
Ey' (1) =Ev(r) = 0. 8)
In dynamic state:

Ey(r) = / ey () dr )

start

(t - tstart) *Vend

Lend — Ustart

Vars (1) = (10)
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Figure 4. The heel and toe clearance in a normal gait and the .
definition of the four features (MaxHC, MaxTC1, MinTC and For the toe IMU estimator:
MaxTC?2) of the foot clearance.
Zie (1) = Zr_mu () (19)
E./ E
V(1) ="v(t) = varp(1) (11 .
ZHeeI (t) = ZI_IMU (I) — ((l + C) - SIN x (l) . (20)
where fy,,, and f,,4 are the start and the end of a dynamic state
in a gait cycle, and v, is the velocity at the end of a dynamic  For the two-IMU estimator:
state before de-drifting:
Zroe (1) = Zr v (1) (21)
Ed(r) = /Ev’(t)dt. (12)
2.3.2. Toe and heel clearance calculation. For instep IMU, Zieer (1) = Zg_mu (1) (22)

toe IMU and heel IMU estimators, we estimate the sensor tra-
jectory first and then use geometric transformations to estimate
the heel and toe clearances indirectly. In the two-IMU estim-
ator, the toe IMU and heel IMU clearances are regarded as
the toe and heel clearance. The indirect toe and heel clearance
are calculated using geometric transformations presented in
[13]. Specifically, for each estimator, the toe and heel clear-
ance are calculated through (14)—(22), where A, B and C are
the locations of the heel IMU, instep IMU and toe IMU, and
a, b and ¢ denote the relative distances between the IMUs, as
shown in figure 4. @y (¢) is the shoe angle between the shoe
sole and the ground. In the sagittal plane, it is linearly correl-
ated to the roll angle of the IMUs for the X axis of the IMUs
pointing left. The shoe angle can be calculated from the roll
angle of the IMUs, as described in (13). To avoid discrepancy
in IMU location estimation, we measured the locations (a, b
and ¢) of the IMUs using the optical motion capture system
instead of using the automatic estimation method presented
in [13]. Hence, even the single IMU estimators in this paper
avoided IMU location errors, and they should be more accurate
than the original estimator presented in [13]:

px (1) = = (¢ (1) = @o) (13)

where (g is the roll angle of IMU in static state, which is
regarded as the offset angle. () is the roll angle during
walking. oy (f) is the shoe angle. The minus sign is to make
the shoe angle positive at the moment of heel strike.

where Zr,. (t) and Zg,, (f) are the calculated toe and heel
clearance. Z; pu (1), Zr mu (t) and Zy gy (1) are the vertical
components of the trajectory of the instep, toe and heel IMU.

2.3.3. Feature extraction. In clinical gait analysis, the major
interests are the features of the toe clearance and heel
clearance. As shown in figure 4, there are four features in
the foot clearance in a normal gait according to the defini-
tion in [13]. They are maximal heel clearance (MaxHC) right
after toe-off, the first maximum toe clearance (MaxTC1), the
minimal toe clearance (MinTC) in the dynamic state and the
second maximum toe clearance (MaxTC2) before heel strike.
In these features, the most important feature is the MinTC,
for it relates to tripping and safety in obstacle negotiation [8].
There are also a few studies focusing on the significance of the
other three features. For example, Dadashi et al reported that
the age effect was also significant for MaxHC and MaxTCl1,
and the study of MaxTC1 and MaxTC2 revealed strategies
in the toe-off control and obstacle negotiation [31]. For com-
pleteness, we analyzed all four features of foot clearance. The
features (MaxHC, MaxTC1, MinTC and MaxTC2) are extrac-
ted by finding the maximum or minimum from the estimated
heel and toe clearance. All the features are calculated in each
step, and the height at the end of the previous step is regarded
as the offset height when calculating the foot clearance
features.
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Figure 5. (a) The scenario of the validation experiment. (b) The prototype of the IMU system and the placements of the IMUs and markers.

3. Experimental validation

In this section, we validated the proposed foot clearance
estimation method through walking experiments. The IMU
system was developed with commercially available IMU
modules. As shown in figure 5, it contained three IMU
modules (MTi-3-8A7G6, XSENS B.V. Technologies,
Enschede, Netherlands), a data recorder and a remote con-
troller. The IMU modules were encased in a PLCC28 socket,
and the size was 18x 18 x5 mm, which could be easily fixed
onto the shoe. The data recorder was used to record the output
data of the three IMU modules in three SD cards synchron-
ously. The data recorder contained a 1200 mAh li-ion battery,
providing about five hours of battery life. The remote control-
ler controlled the start and the stop of recording. A six-camera
optical motion capture system (Vicon T40 s, Oxford, UK)
served as the gold standard of the foot clearance. There was
also another receiver connected to the trig-in port of the Vicon
host to synchronize the data collection of the IMU system and
Vicon system. All the data from Vicon and the IMU systems
were processed offline in MATLAB (MathWorks Inc., Natick,
MA, USA).

We recruited eight healthy male subjects for this study (age
25.3 £ 4.2 years, height 179 &+ 4.5 cm, mass 70.1 + 4.2 kg,
EUR. shoe size 42.1 £ 1.1). Informed consent was obtained
from each subject prior to the experiment, and the study was
approved by the ethical committee at Zhejiang University.
During the experiments, the recorder was attached to the shank
of the subject using a Velcro strap. The experimental scenario
is shown in figure 5(a) and the placements of IMUs and mark-
ers are shown in figure 5(b). The details of the IMU system are
described in section 2. All six cameras for the motion capture
were placed on one side to maximize the capture area. To
acquire the reference height of the IMU, we placed the markers
close to the center of the IMUs at the same height. Thus, instru-
ment error could be minimized. The scale factor and bias of the
accelerometers were re-calibrated using the method described
in [26]. In addition, in the proposed foot clearance estimation
methods, the threshold for static detection was set as 0.025 g.
K, was set to 5, and was then linearly decreased to 0.5 within
0.2 s, to ensure rapid convergence of the orientation during
static state.

» Scenario A

Level ground walking

A block, height: 5.5 cm

Ascending Descending

Figure 6. The test scenario of level ground walking with different
speeds (scenario A) and uneven ground walking (scenario B).

3.1. Experimental protocol

To investigate the effects of different walking conditions, the
proposed method was evaluated under four normal walking
and three imitative pathological walking conditions. The nor-
mal walking conditions included uneven ground walking and
level ground walking at three different speeds. Figure 6 shows
the scenario of the tests. The speeds of level ground walk-
ing were slow (0.8—1.0 m s~!), normal (1.0-1.2 m s~'), and
fast (1.2-1.4 m s~!). In the uneven ground walking test, the
subjects were instructed to walk up and down a block with a
preferable speed, and the height of the block was 5.5 cm. In the
pathological walking experiments, the subjects were trained
to mimic ataxic gait, waddling gait and Parkinsonian gait. We
trained the subjects using a standard pathological gait video
and demonstration. The step sequence of each gait is shown
in figure 7. In normal gait, the step width is moderate and the
stride length is long. In ataxic gait, the subjects will not be
able to walk in a straight line because of cerebellar disease, so
they walk in a zigzag shape. In waddling gait, because of hip
girdle muscle weakness on one side, the subjects will drop in
the pelvis on the contralateral side of the pelvis while walking,
leading to waddling. In Parkinsonian gait, the subjects take
jerky steps, and the strides become quicker and shorter than
in normal gait [3]. In each trial of the experiment, the subject
was asked to stand still for about 20 s, so the gyroscope bias
could be removed by subtracting the mean of the gyroscope
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Figure 7. Graphic representation of the step sequence in normal gait
and three pathological gaits. (a) Normal gait, regular steps. (b)
Ataxic gait, zigzag walking. (c) Waddling gait, broadened base. (d)
Parkinsonian gait, quicker and shorter steps.

output. Then, the subject walked straight in the motion cap-
ture volume about four steps. Each walking trial was repeated
about 25 times. Considering the limited capture volume, we
discarded the initiation and termination part of the gaits in each
trial. The intermediate two steps were regarded as valid steps,
and thus we got about 40-50 valid gait cycles under each walk-
ing condition.

3.2. Data analysis

We extracted the features (MaxHC, MaxTC1, MinTC,
MaxTC2) from the heel and toe clearance estimated by IMU
and Vicon. The features from Vicon were regarded as the
reference. For easy comparison with different accuracy rep-
resentations in the literature, the mean, standard deviation and
the root mean square error (RMSE) of MaxHC, MaxTCl,
MinTC and MaxTC2 were all calculated. The limit of agree-
ment (LOA) of the proposed IMU system with different estim-
ators and the Vicon system was also assessed using the Bland
and Altman graphical method.

4. Results

4.1. Foot clearance estimation using different estimators

The heel and toe clearance of one typical participant (Sub-
ject 5) are shown in figure 8. There were two consecutive
gait cycles of normal gait with level ground walking, normal
gait with uneven ground walking, waddling gait, ataxic gait
and Parkinsonian gait. The foot clearances were estimated by
the two-IMU estimator and Vicon. For easy calculation of the
relative foot clearance in each gait cycle, we manually aligned
the foot clearance of IMU estimators and Vicon in the middle
of the static state. As can be seen from the figure, the foot clear-
ance in normal gait was regular and the MaxHC was higher
than with pathological gaits; the MaxHC with Parkinsonian
gait was much smaller than with the other gaits, which was in
accordance with the symptoms of quicker and shorter steps.

We extracted a total of 2640 gait cycles (8 subjects x 7 con-
ditions x 40-50 gait cycles). The gait cycles were different
because of the gait cycle variability in subjects during the
experiments. To compare the accuracy of the different estim-
ators, we analyzed the foot clearance from different estim-
ators. The mean, standard deviation and RMSEs of the four
features of each estimator are listed in table 2. In the two-
IMU estimator, the mean, standard deviation and RMSE of
MaxHC and MinTC were —0.34 + 0.24 cm, 0.42 cm and 0.02
+ 0.26 cm, 0.26 cm, and those of MaxTC1 and MaxTC2 were
—0.13 =+ 0.24 cm, 0.27 cm and —0.03 &+ 0.35 cm, 0.35 cm.
All the RMSEs were below 1 cm, achieving better accuracy
than the heel IMU and instep IMU estimators. The Bland and
Altman plots of all the features of foot clearance estimated by
different estimators are shown in figure 9, and the mean of the
differences and 4-1.96 standard deviation were plotted to illus-
trate the bias and the LOA (95% confidence intervals) between
the IMUs and Vicon system. It can be seen that the MinTC
contained many negative values and large values (>10 cm).
The negative values appeared when the subject walked down
from the block, and the large values appeared when the sub-
ject walked up to the block. By comparing four estimators, we
can see that the LOA of the two-IMU estimator (black line)
was the smallest. The toe IMU estimator (green line) also per-
formed well in terms of the accuracy of MaxHC; the RMSE
was just 0.70 cm. However, the good results relied on the
accurate measurement of IMU locations and the placement,
and the standard deviation was larger than that of the two-IMU
estimator. Therefore, the two-IMU estimator was found to be
the best estimator.

4.2. Influence of walking speed on foot estimation

As the two-IMU estimator represents the best estimator, we
only present the results of the two-IMU estimator in the
following subsections for simplicity. The accuracy of the foot
clearance in slow (0.8—-1.0 m s~!), normal (1.0-1.2 m s™'),
fast walking (1.2-1.4 m s~'), uneven ground walking con-
ditions and pathological gaits are listed in table 3. The res-
ults of each condition were calculated from the gait cycles of
all the subjects. It can be seen that for the first six walking
conditions, the differences were small in the error of MaxHC,
MaxTC1, MinTC and MaxTC2, while for Parkinsonian gait,
the error was smaller than with the other conditions. This can
be explained by the fact that total foot clearance was much
smaller with this than with other gaits, as shown in figure 8(e),
and thus achieved smaller error at a certain percentage
erTor.

4.3. The intra-subject variability in foot clearance accuracy

As the walking pattern of different subjects may be different,
it is necessary to analyze the foot clearance accuracy between
different subjects. In the appendix, we list the accuracy of all
the subjects walking in different conditions. For normal gait,
as in tables A1-A4, it can be seen that the accuracy varies
between subjects. For example, in table Al, for subject 2 in
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Figure 8. An example of the heel and toe clearance estimated by two-IMU estimator and Vicon. (a) Level ground walking, (b) uneven
ground walking, (c) waddling gait, (d) ataxic gait, (¢) Parkinsonian gait.

Table 2. The accuracy of foot clearance estimated by different estimators.

MaxHC (cm) MaxTCl1 (cm) MinTC (cm) MaxTC2 (cm)
Estimators Mean + SD RMSE Mean + SD RMSE Mean + SD RMSE Mean + SD RMSE
Instep IMU —0.21 £ 1.16 1.18 —1.35+0.95 1.65 —0.28 £ 0.63 0.69 0.83 £0.75 1.12
Toe IMU 0.51 £0.48 0.70 —0.13 £ 0.24 0.27 0.02 £0.26 0.26 —0.03 £0.35 0.35
Heel IMU —0.34 £0.24 0.42 —1.19 £ 0.54 1.31 —0.95 £ 0.60 1.13 —0.06 £ 0.76 0.77
Two IMU —0.34 £ 0.24 0.42 —0.13 + 0.24 0.27 0.02 + 0.26 0.26 —0.03 £+ 0.35 0.35

the fast walking condition, the RMSE of MaxHC was 0.93 cm,

5. Discussion

which was much higher than others. In table A2, for subject 6

in the normal walking condition, the RMSEs of MinTC and

5.1. The accuracy of the estimated foot clearance

MaxTC2 were 0.42 cm and 0.53 cm, which were larger than

those of other subjects. However, for imitative pathological
gaits, as shown in tables A5—A7, the results show good con-

sistency between subjects.

In this study, we aimed at understanding the limiting factors
in foot clearance estimation when using low-cost IMUs.

Through the improvements in sensor fusion algorithm, sensor
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Figure 9. Bland and Altman plots of the mean +1.96 SD LOA of foot clearance features of all the 2640 gait cycles estimated by four
different estimators. (a) MaxHC, (b) MaxTCl, (¢) MinTC, (d) MaxTC2. Different estimators are marked with different markers and line
type. The black line indicates the LOA of two-IMU estimator, which achieved the best accuracy.

Table 3. The accuracy of the foot clearance in different walking conditions using two-IMU estimator.

MaxHC (cm) MaxTC1 (cm) MinTC (cm) MaxTC2 (cm)
Type Mean £ SD RMSE Mean + SD RMSE Mean + SD RMSE Mean + SD RMSE
Fast —0.38 £0.36 0.53 —0.00 £0.19 0.19 0.13 £0.24 0.27 0.09 +£0.34 0.35
Normal —0.43 £0.21 0.48 0.02 £0.19 0.19 0.14 £0.22 0.26 0.13 £ 0.28 0.31
Slow —0.43 £0.18 0.46 0.04 £0.14 0.15 0.13 £ 0.18 0.22 0.11 £ 0.24 0.26
Uneven —0.44 £0.21 0.48 —0.01 £ 0.15 0.15 0.14 £0.34 0.36 0.04 £ 0.35 0.35
Ataxic —0.25 £0.28 0.37 —0.33 £0.24 0.41 —0.11 £0.28 0.30 —0.21 £0.38 0.43
Waddling —0.32 £0.11 0.34 —0.39 £0.16 0.42 —0.16 £0.29 0.33 —-0.23 £0.39 0.45
Parkinson —0.17 £0.10 0.19 —0.20 £ 0.08 0.21 —0.09 £0.10 0.13 —0.13 £0.17 0.22

placement and shock absorption, we improved the accur-
acy in foot clearance estimation. From the results in table 2,
we can see that for the two-IMU estimator, the achieved
accuracy of MaxHC and MinTC was —0.34 £+ 0.24 cm
and 0.02 + 0.26 cm, and the corresponding RMSEs were
0.42 cm and 0.26 cm. All of them were below 1 cm, show-
ing high accuracy and precision. The accuracy comparison
between different studies and the features of each study are
summarized in table 4. The accuracy of the estimated foot
clearance in [13] was only centimeter level. The RMSE in
[22] was much smaller, but the results relied on the machine
learning approach, and the models for different groups of
subjects were different. Kitagawa and Ogihara also achieved
good accuracy, but the method relied on the flat floor assump-

tion, and the estimated clearance was the clearance of instep
IMU rather than the biomechanical heel and toe clearance
[14]. In the method presented in [18], the range sensor was
added, data-driven models were used to correct the foot clear-
ance, and the flat floor assumption was also required. In this
paper, the proposed improved method with two-IMU con-
figuration (two-IMU estimator) showed better accuracy. It
did not rely on any post-estimation correction or any data-
driven models, i.e. it did not rely on a subject-specific train-
ing dataset and can be easily used in real-time systems.
Moreover, it also did not rely on the flat floor assump-
tion, and thus could be used for uneven ground walking;
the results in table 3 show that it achieved equivalent accur-
acy to level ground walking. Systematic biases are observed
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Table 4. The accuracy comparison between different studies.
MaxHC (cm) MinTC (cm)

Study Mean £ SD RMSE Mean + SD RMSE
Mariani et al [13] 41+23 - 1.3£0.9 -
Santhiranayagam et al [22] - - - 0.66
Kitagawa and Ogihara [14] - - 0.24+0.7 -
Arami et al [18] 0.08 £ 0.75 - 0.09 + 0.61 -
Two-IMU estimator —0.34 £ 0.24 0.42 0.02 + 0.26 0.26

Note: ‘-’ denotes information not available in the literature.

in MaxHC; as shown in figure 9(a), most of the estim-
ated MaxHCs were smaller than the reference. The accur-
acy can be further improved if post-estimation correction is
performed.

Interestingly, in table 2, the error of MaxHC of the toe IMU
estimator was just 0.51 = 0.48 cm, which was comparable with
the —0.34 £ 0.24 cm from the two-IMU estimator. However,
the results were based on accurate IMU locations measured
by Vicon. Inaccurate estimation of the locations would enlarge
the error of the MaxHC. The results in table 3 show that dif-
ferent walking speeds and uneven ground conditions do not
show large differences. A plausible interpretation is that as
long as the static state is successfully detected, the accuracy
of the foot clearance is reliable. The results in tables A1-A4
in the appendix show that gait variability has an impact on the
accuracy of foot clearance. A reasonable interpretation is that
the stability of the toe or heel of different subjects is differ-
ent. As the ZUPT is based on the assumption of zero velo-
city, if the velocity of the IMU is forced to be corrected to
zero with an initial velocity, velocity error will be introduced,
thus enlarging the foot clearance estimation error. However,
the results in tables AS—A7 show good consistency between
subjects.A plausible explanation is that because all the subjects
were trained from the same demonstration video, the similar
imitative gait pattern may cause it. Considering the diversity
of the pathological gaits, the presented method should be val-
idated with patients in the future.

In the presented IMU-based 3D foot trajectory estimation
method, the orientation and the displacement estimations are
both continuous, while in the studies [13, 14, 18], orientation
and displacement reset were required and the displacement
was estimated in each step. Compared with these studies, the
method in this paper could potentially be used for continuous
gait tracking under various conditions, including stairs, slopes
and uneven ground walking.

5.2. Orientation estimation and its effects on foot clearance
calculation

According to the above analysis, the orientation accuracy is
important for foot clearance estimation because it determines
the accuracy of motion acceleration that is used for double
integration. Based on our previous study, the angular velo-
city integration error in a dynamic state (1-2 s) is negligible
[27]. Hence, the orientation error is mainly caused by the

initial error before the integration period, i.e. the orientation
error in static state. Therefore, the key to the sensor fusion is
to ensure the orientation converges to the orientation calcu-
lated from the acceleration in static state timely, because the
orientation calculated from the acceleration is more reliable
in static state. Otherwise, the accumulative orientation error
cannot be eliminated and will become significant especially
in the continuous walking condition, and thus decrease the
accuracy in the following foot clearance estimation. In par-
ticular, we estimate the orientation through the sensor fusion
algorithm instead of using the orientation calculated from the
acceleration directly, because it ensures the continuity and
the smoothness of the orientation estimation. Thus, the estim-
ated orientation can also be used in continuous foot trajectory
estimation.

5.3. Necessary factors for accurate foot clearance estimation

Through this study, we understood the necessary factors for
achieving high precision as follows:

(a) Sensor calibration: The displacement estimation is the
basis of the foot clearance estimation, which is calculated
by double integration of acceleration. Accurate displace-
ment estimation is more demanding in accelerometer cal-
ibration than orientation estimation. Although the IMUs
are factory calibrated, they should be carefully checked
before being used for foot clearance estimation.

(b) The orientation estimation algorithm: Similarly, the sensor
orientation determines the accuracy of motion accelera-
tion after subtracting the gravity acceleration. Foot clear-
ance estimation also demands a high orientation estima-
tion accuracy. In the optimized sensor fusion process, the
convergence speed in static state is critical. If the conver-
gence is not fast enough, the accumulative error cannot be
removed in the short interval, thus degrading the accuracy
of the estimated orientation.

(c) Shock absorber: Shock absorption is a commonly used
method in accelerometer-based displacement estimation.
This can be explained by the fact that the measurement
error of an accelerometer is usually within a certain per-
centage. The absolute error increases with the magnitude
of acceleration, which means larger acceleration contains
a bigger absolute error. Therefore, attenuating large accel-
eration can improve the accuracy of acceleration and also
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avoid exceeding the full-scale range of an accelerometer,
thus improving the displacement estimation indirectly.
To attenuate the shock of the IMUs, we fixed the IMUs
to the middle of the shoe sole through a plastic shock
absorber. Hence, the shock of the IMU was equivalent
to the middle of the shoe sole, which avoided the strong
shock at the toe and heel of the shoe sole but still estimated
the toe and heel clearance. According to our primary tests,
the absorber attenuated the peak acceleration occurring
at the moment of heel strike or toe-off and had no effect
on acceleration during the swing phase, and the RMSEs of
estimated foot clearance were improved.

(d) The installation direction of the sensor: For MEMS-based
IMUs, the accelerometers in each axis are different due to
the sensor variability. When used in foot clearance estim-
ation, it is necessary to find the most suitable installation
direction through trial and error tests.

5.4. The method of using two independent IMUs

In single-IMU-based foot clearance estimations, as in
[13, 19], the IMU location estimation relied on accurate gait
event detection and the assumption that the heel clearance
was zero at the event of heel strike. The geometric trans-
formations require accurate shoe angle estimation and no
relative motion between the IMU and shoe. Any errors in
these intermediate calculations would enlarge the error in
foot clearance estimation. However, in the two-IMU estim-
ator, two independent IMUs were used for toe and heel clear-
ance estimation. This avoided intermediate calculations errors,
and thus achieved better accuracy than the single-IMU indir-
ect methods. Therefore, a direct foot clearance estimator is
recommended.

In short, the proposed method with the two-IMU estimator
has several advantages. First, the proposed method does not
rely on accurate gait phase detection, and thus it has the poten-
tial to be used in abnormal gaits. Second, it does not depend on
the hypothesis of a horizontal surface, thus it can be used on
stairs and for uneven ground walking. Third, foot clearance
is directly estimated by the double integration method. The
results do not rely on any data-driven models [18] or machine
learning method depending on specific training [22], thus, it is
more applicable. Moreover, the proposed method can poten-
tially serve as a general foot trajectory estimation method;
more gait parameters can also be extracted from the estimated
position, such as stride length, step width, etc.

The proposed method also has some limitations. The
installation direction of each sensor needs to be fine-tuned; a
change of sensor may need an additional initial tuning proced-
ure. The shock absorber still needs further improvement for it
may easily collide with other things in our daily life envir-
onments. Although the pathological walking conditions were
included in the experiments, they were imitative pathological
gaits of healthy subjects, which might not fully represent real
pathological gaits. In the future, the method should be valid-
ated with patients.

6. Conclusions

This paper developed a set of procedures to improve the
key components in foot clearance estimation, by considering
orientation estimation, sensor placement and shock absorp-
tion. The improved method was validated through walking
experiments under different conditions, including normal gait
and imitative pathological gaits. The mean and standard devi-
ation of MaxHC and MinTC were —0.34 £ 0.24 cm and 0.02
£ 0.26 cm, which was more accurate than previous studies
but required fewer preconditions. The results demonstrate that
it is possible to achieve reliable millimeter-level accuracy in
foot clearance estimation using only IMUs. The method may
also be suitable for uneven ground walking as well as three
kinds of imitative pathological gaits, without the dependence
on any data-driven models or any post-estimation correction.
Accurate foot clearance estimation using an inertial sensor is
significant for fall risk assessment in the daily living envir-
onment. In addition, the presented improved method has the
potential for accurate gait tracking and extraction of other
spatial gait parameters. In the future, the proposed method
will be extended to real-time biofeedback and gait retraining
applications.
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Appendix

In this appendix, the accuracy of the foot clearance of differ-
ent subjects is listed in the following tables. The foot clear-
ance was estimated by two-IMU estimator and the conditions
included fast, normal and slow speed level ground walking
conditions and uneven ground walking condition.
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Table A1. The accuracy of the foot clearance features between different subjects using two-IMU estimators in fast walking condition.

MaxHC (cm) MaxTC1 (cm) MinTC (cm) MaxTC2 (cm)
Subject Mean + SD RMSE Mean £+ SD RMSE Mean + SD RMSE Mean £ SD RMSE
1 —0.33+£0.11 0.35 0.08 £0.14 0.16 0.11 £0.14 0.17 0.04 £+ 0.19 0.20
2 —0.86 + 0.35 0.93 0.06 £ 0.10 0.11 —0.01 £0.14 0.14 —0.11 £0.19 0.21
3 —0.41 £0.15 0.44 0.00 £ 0.13 0.13 0.08 £ 0.24 0.24 —0.09 £0.29 0.31
4 —0.38 £0.22 0.44 0.33 £0.13 0.35 0.31 £0.17 0.36 0.23 £0.23 0.32
5 —0.30 £0.20 0.36 —0.22 £0.10 0.24 0.30 £0.15 0.33 0.41 £0.21 0.46
6 —0.03 £ 0.68 0.67 —0.12 £0.10 0.15 0.32 £0.23 0.39 0.43 +£0.29 0.52
7 —0.51 £0.15 0.53 —0.07 £0.10 0.12 0.03 £0.19 0.19 —0.04 £0.30 0.30
8 —0.32 £ 0.09 0.33 —0.08 £0.13 0.15 —0.09 £ 0.20 0.21 —0.19 £0.30 0.36

Table A2. The accuracy of the foot clearance features between different subjects using two-IMU estimators in normal walking condition.

MaxHC (cm) MaxTC1 (cm) MinTC (cm) MaxTC2 (cm)
Subject Mean £ SD RMSE Mean + SD RMSE Mean + SD RMSE Mean £ SD RMSE
1 —041+£0.16 0.44 0.06 +£0.12 0.13 0.02 £ 0.16 0.17 0.00 +0.21 0.20
2 —0.64 £0.13 0.66 0.10£0.14 0.17 0.01 +0.20 0.20 —0.02 +£0.28 0.28
3 —0.44 +£0.10 0.45 0.02 +0.21 0.21 0.09 +0.29 0.30 0.01 +£0.35 0.35
4 —0.45+0.23 0.50 0.31 £0.12 0.33 0.35 +0.15 0.38 0.33 £0.19 0.37
5 —0.40 £0.12 0.41 —0.22 £ 0.07 0.23 0.21 £0.10 0.23 0.27 £0.14 0.31
6 —0.34 £0.42 0.53 —0.01 £0.10 0.10 0.38 + 0.17 0.42 0.51 = 0.16 0.53
7 —0.48 £0.12 0.49 —0.01 £0.08 0.08 0.15 £ 0.09 0.17 0.15+0.13 0.20
8 —0.31£0.10 0.32 —0.06 £0.11 0.12 —0.01 £0.12 0.12 —0.05£0.16 0.17

Table A3. The accuracy of the foot clearance features between different subjects using two-IMU estimators in slow walking condition.

MaxHC (cm) MaxTC1 (cm) MinTC (cm) MaxTC2 (cm)
Subject Mean £ SD RMSE Mean + SD RMSE Mean + SD RMSE Mean + SD RMSE
1 —0.39 +£0.17 0.43 0.12 £0.10 0.15 0.07 £0.14 0.15 0.05 £0.14 0.15
2 —0.63 £0.08 0.64 0.15 + 0.07 0.16 0.08 £ 0.12 0.14 0.14 + 0.17 0.22
3 —0.51 £0.09 0.52 0.07 £ 0.13 0.15 0.09 £ 0.22 0.23 —0.00 £ 0.31 0.30
4 —0.46 £0.14 0.48 0.15 + 0.09 0.17 0.21 £0.18 0.28 0.08 + 0.16 0.18
5 —0.32£0.10 0.33 —0.19 £ 0.06 0.19 0.17 £ 0.10 0.19 0.16 £ 0.11 0.19
6 —0.42 +0.31 0.52 0.08 £0.11 0.14 031 £0.18 0.35 0.47 £0.21 0.51
7 —0.38 £0.12 0.40 0.06 £ 0.08 0.10 0.21 £ 0.08 0.22 022 £0.12 0.25
8 —0.32 £0.08 0.33 —0.05 £ 0.07 0.09 —0.04 £0.08 0.09 —0.14 £ 0.11 0.18

Table A4. The accuracy of the foot clearance features between different subjects using two-IMU estimators in uneven ground walking
condition.

MaxHC (cm) MaxTC1 (cm) MinTC (cm) MaxTC2 (cm)
Subject Mean + SD RMSE Mean £ SD RMSE Mean + SD RMSE Mean £ SD RMSE
1 —0.28 £0.18 0.33 0.06 £0.10 0.11 0.04 £0.12 0.12 0.03 £0.17 0.17
2 —0.66 £ 0.18 0.68 0.03 £0.10 0.11 —0.04 £0.13 0.13 —0.09 £0.25 0.26
3 —0.50 £0.11 0.51 —0.00 £0.18 0.18 0.09 £ 0.27 0.28 —0.05 £0.35 0.35
4 —0.45 £0.21 0.49 0.10 £ 0.21 0.23 0.36 = 0.27 0.45 —0.13 £0.27 0.30
5 —0.46 £0.11 0.47 —0.04 £ 0.09 0.10 0.51 £ 0.56 0.76 0.51 £0.20 0.54
6 —0.37 £0.32 0.48 —0.05 £0.13 0.14 0.22 +£0.25 0.33 0.36 +0.33 0.49
7 —0.43 £0.13 0.45 —0.07 £ 0.08 0.11 0.07 £ 0.08 0.11 0.11 £0.13 0.17
8 —0.32 £0.12 0.34 —0.13 £0.10 0.16 —0.12 £0.13 0.17 —0.30 £0.20 0.36
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Table A5. The accuracy of the foot clearance features between different subjects using two-IMU estimators in ataxic gait.

MaxHC (cm) MaxTC1 (cm) MinTC (cm) MaxTC2 (cm)
Subject Mean + SD RMSE Mean + SD RMSE Mean + SD RMSE Mean + SD RMSE
1 —-033£0.14 0.35 —0.35+0.17 0.39 0.05 +0.33 0.33 0.06 + 0.41 0.41
2 —0.08 £0.25 0.26 —-0.22+0.24 0.33 —0.01 £0.24 0.24 —0.06 £ 0.34 0.34
3 —0.11 £0.34 0.36 —0.22£0.28 0.36 —0.11 £0.22 0.25 —0.27 £0.34 0.43
4 —0.35£0.15 0.38 —0.39 £0.21 0.44 —0.05 £0.38 0.38 —0.20 £+ 0.49 0.53
5 —0.32£0.29 0.44 —0.38 £0.24 0.44 —0.25 £ 0.21 0.33 —0.43 +£0.38 0.57
6 —0.31 £0.30 0.43 —0.39 £0.20 0.43 —0.18 £0.22 0.28 —0.22+£0.28 0.35
7 —0.25£0.28 0.37 —0.34 £0.29 0.45 —0.13 +£0.26 0.28 —-0.23+£0.34 0.41
8 —0.27£0.24 0.36 —0.30£0.25 0.39 —0.20 £0.19 0.27 —0.32+£0.16 0.36
Table A6. The accuracy of the foot clearance features between different subjects using two-IMU estimators in waddling gait.
MaxHC (cm) MaxTC1 (cm) MinTC (cm) MaxTC2 (cm)
Subject Mean + SD RMSE Mean + SD RMSE Mean + SD RMSE Mean + SD RMSE
1 —0.28 £0.11 0.30 —0.22 +£0.09 0.24 0.05 £+ 0.18 0.19 0.10 £ 0.22 0.23
2 —0.29 £0.11 0.31 —0.30+0.11 0.31 0.02 +0.17 0.17 0.04 £0.20 0.20
3 —-0.29£0.12 0.31 —0.26 £0.18 0.32 —0.03 £0.45 0.44 —0.01 £0.58 0.57
4 —0.34 £0.10 0.36 —0.52 £0.10 0.53 —-0.22£0.17 0.28 —0.42 £0.20 0.46
5 —0.40 £ 0.09 0.41 —0.44 £0.09 0.45 —0.33 £0.15 0.37 —0.53 +£0.20 0.57
6 —0.30 £0.10 0.31 —0.42 +0.13 0.44 —0.20+£0.23 0.30 —0.24 +£0.30 0.38
7 —0.38 £0.11 0.40 —0.50 +£0.14 0.52 —0.25+0.30 0.39 —0.36 £ 0.38 0.52
8 —0.28 £0.06 0.28 —0.40 £0.10 0.41 —-0.27 £0.27 0.39 —0.33 £0.32 0.45
Table A7. The accuracy of the foot clearance features between different subjects using two-IMU estimators in Parkinsonian gait.
MaxHC (cm) MaxTC1 (cm) MinTC (cm) MaxTC2 (cm)
Subject Mean + SD RMSE Mean + SD RMSE Mean + SD RMSE Mean + SD RMSE
1 —0.31 £0.08 0.32 —0.24 £0.07 0.25 —0.00 £0.13 0.13 0.00 + 0.18 0.17
2 —0.11 £0.07 0.13 —0.16 £ 0.04 0.17 —0.10 £ 0.07 0.12 —0.08 £+ 0.09 0.12
3 —0.24 £0.07 0.25 —0.11 £0.04 0.12 —0.04 £ 0.06 0.07 —0.01 +£0.09 0.09
4 —0.15 £ 0.06 0.16 —0.24 £ 0.07 0.25 —0.09 £+ 0.07 0.11 —0.18 £0.10 0.20
5 —0.18 £ 0.08 0.20 —0.26 £0.10 0.27 —0.18 £0.10 0.20 —0.36 £0.15 0.39
6 —0.11 £0.05 0.12 —0.21 £0.06 0.21 —0.09 £ 0.07 0.12 —0.16 £ 0.11 0.20
7 —0.17 £0.07 0.18 —0.17 £0.09 0.20 —0.07 £0.12 0.14 —0.09 £0.18 0.20
8 —0.10 £ 0.07 0.13 —0.19 £ 0.05 0.20 —0.12 £ 0.08 0.14 —0.16 £ 0.15 0.22
ORCID iDs [5] Schulz B W 2017 A new measure of trip risk integrating min-
imum foot clearance and dynamic stability across the swing
Bingfei Fan @ https://orcid.org/0000-0002-9531-3549 . prltlase Tlf galt ;{' ﬁ%ogechcﬁ 110;—13 Ctvlos A K 2014
. . . ] ; } ortmueller , Lindner G and Exadaktylos
Tao Liu © hitps://orcid.org/0000-0002-2797-0264 Reducing fall risk in the elderly: risk factors and fall
prevention, a systematic review Minerva Med. 105
275-81
[7] Kearney F C, Harwood R H, Gladman J R F, Lincoln N and
References Masud T 2013 The relationship between executive function
and falls and gait abnormalities in older adults: a systematic
[1] Tao W, Liu T, Zheng R and Feng H 2012 Gait analysis using review Dement. Geriatr. Cogn. Disord. 36 20-35
wearable sensors Sensors 12 2255-83 [8] Lu T, Chen S and Chiu H 2012 Best-compromise between
[2] Alcock L, Galna B, Lord S and Rochester L 2016 Character- mechanical energy expenditure and foot clearance predicts
isation of foot clearance during gait in people with early leading limb motion during obstacle-crossing Gait Posture
Parkinson’s disease: deficits associated with a dual task J. 36 552-6
Biomech. 49 2763-9 [9] Telonio A, Blanchet S, Maganaris C N, Baltzopoulos V and
[3] Pirker W and Katzenschlager R 2017 Gait disorders in adults McFadyen B J 2013 The detailed measurement of foot
and the elderly: a clinical guide Wien. Klin. Wochenschr. clearance by young adults during stair descent J. Biomech.
129 81-95 46 1400-2
[4] Lai D T H, Taylor S B and Begg R K 2012 Prediction of foot [10] Begg R, Best R, Dell’Oro L and Taylor S 2007 Minimum foot
clearance parameters as a precursor to forecasting the risk clearance during walking: strategies for the minimisation of

of tripping and falling Hum. Mov. Sci. 31 271-83 trip-related falls Gait Posture 25 191-8


https://orcid.org/0000-0002-9531-3549
https://orcid.org/0000-0002-9531-3549
https://orcid.org/0000-0002-2797-0264
https://orcid.org/0000-0002-2797-0264
https://doi.org/10.3390/s120202255
https://doi.org/10.3390/s120202255
https://doi.org/10.1016/j.jbiomech.2016.06.007
https://doi.org/10.1016/j.jbiomech.2016.06.007
https://doi.org/10.1007/s00508-016-1096-4
https://doi.org/10.1007/s00508-016-1096-4
https://doi.org/10.1016/j.humov.2010.07.009
https://doi.org/10.1016/j.humov.2010.07.009
https://doi.org/10.1016/j.jbiomech.2017.02.024
https://doi.org/10.1016/j.jbiomech.2017.02.024
https://doi.org/10.1159/000350031
https://doi.org/10.1159/000350031
https://doi.org/10.1016/j.gaitpost.2012.05.012
https://doi.org/10.1016/j.gaitpost.2012.05.012
https://doi.org/10.1016/j.jbiomech.2013.02.013
https://doi.org/10.1016/j.jbiomech.2013.02.013
https://doi.org/10.1016/j.gaitpost.2006.03.008
https://doi.org/10.1016/j.gaitpost.2006.03.008

Meas. Sci. Technol. 31 (2020) 055106

B Fan et al

[11] Graci V, Elliott D B and Buckley J G 2009 Peripheral visual
cues affect minimum-foot-clearance during overground
locomotion Gait Posture 30 3704

[12] Mariani B, Hoskovec C, Rochat S, Buela C, Penders J and
Aminian K 2010 3D gait assessment in young and eld-
erly subjects using foot-worn inertial sensors J. Biomech.
43 2999-3006

[13] Mariani B, Rochat S, Buela C J and Aminian K 2012 Heel
and toe clearance estimation for gait analysis using wireless
inertial sensors IEEE Trans. Biomed. Eng. 59 3162-8

[14] Kitagawa N and Ogihara N 2016 Estimation of foot trajectory
during human walking by a wearable inertial measurement
unit mounted to the foot Gait Posture 45 1104

[15] McGrath D, Greene B R, Walsh C and Caulfield B 2011
Estimation of minimum ground clearance (MGC) using
body-worn inertial sensors J. Biomech. 44 1083-8

[16] Yun X P, Calusdian J, Bachmann E R and McGhee R B 2012
Estimation of human foot motion during normal walking
using inertial and magnetic sensor measurements /[EEE
Trans. Instrum. Meas. 61 2059-72

[17] Hannink J, Ollenschlaeger M, Kluge F, Roth N, Klucken J and
Eskofier B M 2017 Benchmarking foot trajectory estima-
tion methods for mobile gait analysis Sensors 17 1940

[18] Arami A, Saint Raymond N and Aminian K 2017 An accurate
wearable foot clearance estimation system: toward a real-
time measurement system /EEE Sens. J. 17 2542-9

[19] Kanzler C M, Barth J, Rampp A, Schlarb H, Rott F, Klucken J
and Eskofier B M 2015 Inertial sensor based and shoe size
independent gait analysis including heel and toe clearance
estimation 37th Annual Int. Conf. IEEE Engineering in
Medicine and Biology Society (EMBC) (Milan, Italy) pp
5424-7

[20] Mills P M, Barrett R S and Morrison S 2008 Toe clearance
variability during walking in young and elderly men Gait
Posture 28 101-7

[21] Qiu S, Wang Z, Zhao H, Liu L, Li J, Jiang Y and Fortino G
2019 Body sensor network-based robust gait ana-
lysis: toward clinical and at home use /EEE Sens. J.

19 8393-401

[22] Santhiranayagam B K, Lai D T H, Sparrow W A and
Begg R K 2015 A machine learning approach to estimate
minimum toe clearance using inertial measurement units J.
Biomech. 48 4309-16

[23] Pham Duy D and Suh Y S 2015 Foot pose estimation using
an inertial sensor unit and two distance sensors Sensors
15 15888-902

[24] Wahab Y, Bakar N A and Mazalan M 2014 Error correc-
tion for foot clearance in real-time measurement. Int.
Conf. on Science and Engineering in Mathematics,
Chemistry and Physics (ScieTech) (Jakarta, Indonesia)
vol 495

[25] Fan B, Li Q and Liu T 2018 Improving the accuracy of wear-
able sensor orientation using a two-step complementary
filter with state machine-based adaptive strategy Meas. Sci.
Technol. 29 115104

[26] Madgwick S 2014 AHRS algorithms and calibration solutions
to facilitate new applications using low-cost MEMS PhD
Thesis University of Bristol, Bristol, UK

[27] Fan B, Li Q and Liu T 2018 How magnetic disturbance
influences the attitude and heading in magnetic and
inertial sensor-based orientation estimation Sensors
1876

[28] Yun X, Bachmann E R, Moore H and Calusdian J 2007
Self-contained position tracking of human movement
using small inertial/magnetic sensor modules /EEE
Int. Conf. on Robotics and Automation (Rome, Italy)
p 2526

[29] Skog I, Handel P, Nilsson J-O and Rantakokko J 2010 Zero-
velocity detection—an algorithm evaluation /EEE Trans.
Biomed. Eng. 57 2657-66

[30] Li Q, Young M, Naing V and Donelan J] M 2010 Walking
speed estimation using a shank-mounted inertial measure-
ment unit J. Biomech. 43 1640-3

[31] Dadashi F, Mariani B, Rochat S, Buela C J,
Santos-Eggimann B and Aminian K 2014 Gait and foot
clearance parameters obtained using shoe-worn inertial
sensors in a large-population sample of older adults Sensors
14 443-57


https://doi.org/10.1016/j.gaitpost.2009.06.011
https://doi.org/10.1016/j.gaitpost.2009.06.011
https://doi.org/10.1016/j.jbiomech.2010.07.003
https://doi.org/10.1016/j.jbiomech.2010.07.003
https://doi.org/10.1109/TBME.2012.2216263
https://doi.org/10.1109/TBME.2012.2216263
https://doi.org/10.1016/j.gaitpost.2016.01.014
https://doi.org/10.1016/j.gaitpost.2016.01.014
https://doi.org/10.1016/j.jbiomech.2011.01.034
https://doi.org/10.1016/j.jbiomech.2011.01.034
https://doi.org/10.1109/TIM.2011.2179830
https://doi.org/10.1109/TIM.2011.2179830
https://doi.org/10.3390/s17050968
https://doi.org/10.3390/s17050968
https://doi.org/10.1109/JSEN.2017.2665624
https://doi.org/10.1109/JSEN.2017.2665624
https://doi.org/10.1016/j.gaitpost.2007.10.006
https://doi.org/10.1016/j.gaitpost.2007.10.006
https://doi.org/10.1109/JSEN.7361
https://doi.org/10.1109/JSEN.7361
https://doi.org/10.1016/j.jbiomech.2015.10.040
https://doi.org/10.1016/j.jbiomech.2015.10.040
https://doi.org/10.3390/s150715888
https://doi.org/10.3390/s150715888
https://doi.org/10.1088/1361-6501/aae125
https://doi.org/10.1088/1361-6501/aae125
https://doi.org/10.3390/s18010076
https://doi.org/10.3390/s18010076
https://doi.org/10.1109/TBME.2010.2060723
https://doi.org/10.1109/TBME.2010.2060723
https://doi.org/10.1016/j.jbiomech.2010.01.031
https://doi.org/10.1016/j.jbiomech.2010.01.031
https://doi.org/10.3390/s140100443
https://doi.org/10.3390/s140100443

	Accurate foot clearance estimation during level and uneven ground walking using inertial sensors
	1. Introduction
	2. Methods
	2.1. Measurement system
	2.2. Sensor orientation estimation
	2.2.1. Basic sensor fusion algorithm.
	2.2.2. The adaption of the filter gain.

	2.3. Toe and heel trajectory estimation and feature extraction
	2.3.1. 3D sensor trajectory estimation.
	2.3.2. Toe and heel clearance calculation.
	2.3.3. Feature extraction.


	3. Experimental validation
	3.1. Experimental protocol
	3.2. Data analysis

	4. Results
	4.1. Foot clearance estimation using different estimators
	4.2. Influence of walking speed on foot estimation
	4.3. The intra-subject variability in foot clearance accuracy

	5. Discussion
	5.1. The accuracy of the estimated foot clearance
	5.2. Orientation estimation and its effects on foot clearance calculation
	5.3. Necessary factors for accurate foot clearance estimation
	5.4. The method of using two independent IMUs

	6. Conclusions
	Acknowledgments
	Appendix
	References


