
Abstract. Manmade media (MMMs) consisting of uniaxial
photonic crystals with inserts of layers (films) or cylinders
embedded in a periodic way into a dielectric substrate with
dielectric permeability (DP) are considered. Approximate mod-
el-based and accurate electrodynamic methods for describing
such MMMs, which are referred to in the case of metal (con-
ductive) or ferrite (metaatom) inserts as a `hyperbolic metama-
terial' (HMM), are analyzed. Homogenization methods, the
role of dissipation, spatial dispersion (SD), and slow plasmon-
polaritons are reviewed. The feasibility of obtaining the hyper-
bolic dispersion law in a macroscopic description of DP of
inserts using the Drude±Lorentz model is studied. In the gen-
eral case with dissipation and SD, the surface of the Fresnel-
equation isofrequencies is shown to differ from a rotation
hyperboloid and to be bounded. The ambiguity of a description
based on effective material parameters, the effect of dissipation
and SD on hyperbolicity, currently observable and possible
physical phenomena, and HMM applications are discussed.

Keywords: hyperbolic metamaterial, photonic crystal, plasmon,
permittivity, dispersion, band structure, homogenization, volume
integral equations

1. Introduction.
Electromagnetic (photonic) crystals
and metamaterials

The wide theoretical study and fabrication of artificial media
(AMs) in the form of electromagnetic crystals or photonic
crystals (PCs) began on the eve of the 21st century and was
largely initiated and stimulated by the idea of obtaining
negative (left-handed) metamaterialsÐartificial media with
both permittivity e�o� < 0 and permeability m�o� < 0 nega-
tive at a given frequency. This coincided with new technolo-
gical possibilities of creating AMs, due to which considerable
progress in this field has been achieved. However, multiple
publications on metamaterials are based on simplified model
approaches. In the present review, we make an attempt to
overcome a number of model simplifications. Everywhere
below, we consider spectral fields and quantities with the
dependence exp �iot�; real parts of complex quantities are
labeled with a prime and imaginary parts with double prime.
The negative permittivity is characteristic for metals in the
dissipation-free approximation with the spatial dispersion
e�o� � eL ÿ o2

p=o
2. In this case, the condition o < op=

�����
eL
p

must hold, where the term eL describes the Lorentz dispersion
of the crystal lattice and the contribution to permittivity from
interband transition, and op is the plasma frequency. From
the middle of the 20th century, plasmons in metal-dielectric
structures became a subject of extensive study, and from the
beginning of the current century a boom began in the study of
metallic, metal-dielectric PCs, andmetamaterials with carbon
(in particular, graphene) and semiconductor structures [1±
53]. To consider the dissipation, it is necessary to introduce
the collision rate by the replacement o2 ! o2 ÿ iooc. Then,
e 0�o� < 0, if o < �o2

p=eL ÿ o2
c�1=2.

It should be noted that the issue has a long history that
developed over the entire 20th century (see, e.g., reviews [50,
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55]. Practical demands initiated the study and fabrication of
AMsÐartificial dielectrics that could also possess magnetic
properties (wave-induced magnetism) [1±4]. The first such
papers appeared in the late 1940s±early 1950s [56±65]. Worth
mentioning is the pioneering work by L Levin [56] (see also
[59]), in which the homogenization of a PC with spherical
inclusions forming a cubic lattice was carried out. We would
also like to mention the work by S M Rytov, who performed
homogenization of a uniaxial PC in the form of a periodic
planar layered AM. Rayleigh (1887) and Brillouin (1943) had
already considered the propagation of waves in periodic
structures. M L Levin [65] investigated the case of wave
propagation normal to the layers. Nonlocal properties of
such metamaterials with the spatial dispersion (SD) taken
into account were demonstrated, e.g., in [66±69]. Such metal-
dielectric planar layered AMs, demonstrating specific disper-
sion properties at not too high frequencies [16, 25±48], as well
as wire media [1±9, 13, 15, 17±21, 24±28, 49], were called
`hyperbolic metamaterials' (HMMs). In ideal HMMs (in
which the components of permittivity or the permeability
tensor have different signs and do not depend on the wave
vectors), the isofrequency surface of the Fresnel equation is a
hyperboloid of revolution [27, 40]. This means the absence of
spatial dispersion and dissipation, while frequency dispersion
is possible. Wire media and planar layered AMs were called
HMMs of the first and the second type, respectively.

The theoretical and experimental promotion of the left-
handed material idea was mainly based on proposals
concerning their multiple configurations, which were studied
using the universal packages of electrodynamic modeling that
have appeared in recent decades, or experimentally within a
number of simplified models. Less frequently, approximate
analytical and numerical-analytical mathematical models
were used. The difficulty of constructing an exact model lies
in the high complexity of the structures and configurations to
be investigated. Attention was focused on the study of
backward waves and obtaining negative refraction. How-
ever, negative refraction and backward waves are different
phenomena [50±53]. Thus, there can be negative refraction
without a backward wave and vice versa, a backward wave
without negative refraction.

Examples of positive refraction for a backward wave and
negative refraction without a backward wave are presented in
[50], where the essential dependence of the refraction type on
the angle of incidence and the environment (its optical density
and structure), as well as the boundary orientation relative to
the dispersion (isofrequency) surface, are also shown.
Commonly left-handed metamaterials are associated with
negative group velocity (GV) [70±75]. However, such AMs
are characterized, at least, by strong frequency dispersion (the
structures are resonant), spatial dispersion, and high losses,
just in the spectral region considered.

The negative GV can be associated with the velocity of the
energy motion in model nondissipative problems (Leonto-
vich±Lighthill±Rytov theorem [73]) or, approximately, far
from the frequency regions of dissipation and resonances, like
bandgaps in PCs, plasmon resonance frequencies, etc., with
strong dispersion and losses. From the Kramers±Kronig
relations [76], the appearance of a narrow band (or bands)
with huge losses follows, if beyond this band dispersion
without dissipation takes place. In a number of papers, the
values e < 0, m < 0 were merely postulated, and the waves in
structures with such parameters were considered, commonly
even without the dissipation allowed for (see, e.g., [76±78]). In

some papers, e.g., [79, 80], weak dissipation was then taken
into account. In an overwhelming majority of such publica-
tions, metamaterials are considered isotropic and homoge-
neous media having scalar permittivity and permeability
together with a negative refractive index. However, the
permittivity and permeability cannot be negative simulta-
neously due to the presence of dissipation. It is necessary to
take this into account, since left-handed metamaterials imply
strong frequency dispersion.

In the considered AM or PC structures, strong spatial
dispersion is also present, and they cannot be described by
scalar e and m [6±13, 81±90]. Moreover, AMs (in particular,
PCs) can be described without using permeability at all, i.e.,
only by permittivity, generally tensorial and having spatial
dispersion [83±90]. This is because there are several forms of
Maxwell equations for continuous media, in particular, the
Landau±Lifshitz and Casimir forms [89, 90], and the material
parameters are defined ambiguously [75, 83±95]. This state-
ment is valid for homogenization of an infinite AM. At the
interfaces, generally, surface closed currents can be present,
described by a jump of the magnetization or the normal
component of B, which requires the introduction of m.

The homogenization operation itself is also ambiguous.
For media with polarization coupling, constitutive equations
in the Boys±Post, Condon±Tellegen, Drude±Born ±Fedorov,
or Casimir forms are known [89±95]. In the general case of a
bianisotropic AM, their equivalence is not proven. If the
polarizations are independent, it is possible to use the
symmetric Casimir form, introducing ê and m̂, or only ê, into
the equations in the Landau±Lifshitz form [89]. The refrac-
tion in a PC depends on the wave vector, its orientation
relative to the boundary, and the orientation of the boundary
relative to the isofrequency surface [50±54]. Therefore, it is
impossible to introduce only a refractive index, especially a
scalar one, and even more so a negative one [81, 82]. In PCs,
the problem of unambiguous definition of wave impedances
also exists.

A metamaterial in the general (wide) sense is an AM that
can be either periodic or a heterogeneous mixture of particles
consisting of different sorts of substances. In chaotic
mixtures, solid particles can touch each other (statistical
heterosystems) or be chaotically embedded in a certain
matrix medium [96]. Below, we consider only periodic linear
metamaterials. Frequently, metamaterials are understood as
PCs in a low-frequency limit far from Bragg resonances [51±
53]. We will use the general meaning including the resonance
region, too. In a periodic PC, Floquet±Bloch electromagnetic
waves exist, which differ from electron Bloch waves in that in
a solid the number of particles is conserved (without
considering the creation and annihilation of electrons and
holes) and in a PC it is not conserved. Photons are absorbed
by matter. Even in the case of weak absorption, photons
escape through the boundaries of the PC (radiative damping).
This damping can be ignored if the PC has many periods in
each of the directions.

J C Maxwell can be considered a founder of the effective
media theory (mix formulas) [96]. At present, the effective
parameters can be found based on the percolation theory, the
statistical theory of multiple scattering, the method of
compact groups in the permittivity theory, and a number of
other approaches [95±97]. PC homogenization based on mix
formulas is possible in the low-frequency limit using depolar-
ization coefficients, which allows deriving the tensorial
effective permittivities [97]. A metamaterial in a narrow
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sense is treated as a homogeneous AM [52] which implies a
small lattice constant and size of meta-atoms (and all
characteristic sizes) compared to the wavelength. In optics,
this ratio is of the order of 10ÿ4. For the PC lattice constant
a � 100 nm, the minimal wavelength in the metamaterial
turns out to be of the order of 1mm (millimeter range). At low
frequencies, such a periodic AM behaves like a homogeneous
anisotropic mixture with spatial dispersion, possessing no
resonance properties. This is one of the reasons why isotropic
left-handed metamaterials are still not produced, either in the
optical range or in the microwave range. A simplified
approach to HMMs implies postulating real-valued and
different-sign diagonal components of the permittivity
tensor in a uniaxial PC.

If we consider a metamaterial isotropic and nondissipa-
tive, the Fresnel equation for it has the form k 2 � k 2

0 em > 0
[76, 98]. This is amediumwith definite (positive) metrics in the
k-space. In a model nondissipative medium, for a wave with
a real-valued wave vector, the quantity �k; ik0 �����

em
p � is a wave

4-vector that transforms similarly into �r; ivt�, v � c=
�����
em
p

[98].
Here, it is important that the condition

�����
em
p

> 0 must hold.
The group velocity vector vg � cHkk0 transforms similarly
into the velocity of a material particle and is bounded:
jvgj4 c. However, such media cannot exist in nature; the
dissipative k-space becomes six-dimensional and the quantity�����
em
p

becomes complex-valued. The group velocity defined via
the real part of vector k loses the boundedness property and
the property of a polar vector.

Note that the hypothetical Veselago's medium with e �
m � ÿ1 (antivacuum) is described by the same metrics as the

vacuum: k 2 � k 2
0 > 0. An isotropic medium with indefinite

metrics arises, e.g., at m � 1, e < 0 (cold collisionless plasma),
which corresponds to the presence of imaginary components
and damping waves. Anisotropic magnetized plasma is
already an example of an anisotropic medium with indefinite
metrics, where large-magnitude components of wave vectors
are possible. An HMM is commonly understood just as a
uniaxial PC (Fig. 1) with unlimited values of wave vector
components and the isofrequency surface in the form of a
hyperboloid of revolution:

k 2
?
ek
�
k 2
k
e?
� k 2

0 > 0 : �1�

It is assumed that ek and e? are real-valued constants having
opposite signs: eke? < 0. At ek < 0, only HMMs of the first
type exist whose isofrequency surface is doubly connected,
and at e? < 0 HMMs of the second type with a single-
connected surface [38±40] (see Fig. 1). Note that in real
AMs, ek and e? cannot be real-valued and constant as well,
because of spatial dispersion. The frequency also enters the
left-hand side of Eqn (1), and such frequency dispersion
changes the asymptotes of the hyperboloid. Taking the
spatial dispersion into account leads to the fact that the
above components depend on the complex wave vector
k � k 0 ÿ ik 00. Therefore, the question arises as to when the
properties of the PC (1) are close to the properties of an ideal
HMM. This question is considered below.

2. Fresnel equation and media
with indefinite metrics.
Ideal hyperbolic metamaterials

Wedefine the indefinite metrics in the k-space as usual, via the
scalar product �x; y� � gklx

k �y l using the Hermitian metric
tensor ĝ [99±101] (assuming summation over the repeated
indexes, the asterisk denoting the complex conjugate).
Assume that x � k, k 2

0 � �k; k�, and kk � kz, i.e., the PC
axis is directed along the z-axis, and the indices of k are
lowered. For Eqn (1), the metric tensor is diagonal:
g11 � g22 � 1=e?, g33 � 1=ezz. For isotropic plasma,
gkk � 1=e < 0. The Fresnel equation is obtained considering
the dispersion of the wave E � E0 exp �iotÿ ikr� with
amplitude E0 in a crystal described by some effective material
parameters. The propagation of a plane wave instead of
Floquet±Bloch waves already implies homogenization; there-
fore, the Fresnel equation (1) comprises homogenized
material parameters. In the Landau±Lifshitz concept, a PC
is described only by the tensor of effective permittivity ê�o; k�
[75, 84±88]. Writing down the wave equation for E and
substituting the above wave into it, we get the Fresnel
equation in the form

det
ÿ
k̂ 2 ÿ k 2

0~êe
� � 0; det

ÿ
k̂êÿ1k̂ÿ Îk 2

0~e
� � 0 : �2�

Here, for convenience, we introduced the permittivity ~e of a
certain base (matrix) in which meta-atoms (in our case
conducting cylinders or layers) are embedded. Without loss
of generality, we can assume ~e � 1, including the above
permittivity into ê. Equation (2) incorporates the matrices

k̂ � ÿi
0 ÿkz ky
kz 0 ÿkx
ÿky kx 0

0@ 1A;
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Figure 1. (Color online.) Structures of planar layered (a) and wire HMM

formed by long �l4 l�wires (b), a unit cell (c), structure of a PC formed by

metallic cylinders with radius r and length l (d), isofrequency surfaces for

an isotropic dielectric (e), and HMM of the first (f) and second (g) type.
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k̂ 2 �
k 2
y � k 2

z ÿkxky ÿkxkz
ÿkxky k 2

x � k 2
z ÿkykz

ÿkzkx ÿkzky k 2
x � k 2

y

0B@
1CA: �3�

These matrices (3) are equivalent to the action of the curl
operator H� E � k̂E and H� H� E � k̂ 2E on the field of a
plane wave. The first matrix is singular; therefore, the `curl'
operator is defective (has no inverse operator), and the matrix
k̂ÿ2 exists. Two forms of the Fresnel equation (2) result from
two wave equations for E and H. They are seen to be
equivalent. In the symmetric Casimir approach [89] with the
introduction of permittivity ê and permeability m̂ tensors, the
Fresnel equations take the form

det
ÿ
êÿ1k̂m̂ÿ1k̂ÿ Îk 2

0~e
� � 0 ; det

ÿ
m̂ÿ1k̂êÿ1k̂ÿ Îk 2

0~e
� � 0 : �4�

Finally, describing a PC as a linear medium with the response
of the electric polarization P e and magnetic polarization
Pm � m0M (M being the magnetization) to the fields in the
form

P e � e0�̂eÿ Î �E� cÿ1x̂H ; P e � m0�m̂ÿ Î �H� cÿ1&̂E ; �5�

we arrive at the following Fresnel equations [102]:

det
��kÿ10 k̂� x̂�m̂ÿ1�kÿ10 kÿ &̂� � ê

� � 0 ; �6�
det
��kÿ10 kÿ &̂�ê�kÿ10 k̂� x̂� � m̂

� � 0 :

Here, the effects of cross-polarization are taken into account,
i.e., the effect of the magnetic field on the electric polarization
and the effect of the electric field on the magnetic one, which
required introducing two more tensor quantities. The
bianisotropy property for HMMs having an inversion axis is
not characteristic and will not be considered.

In contrast to hypothetical isotropic left-handed materi-
als, HMMs are anisotropic and really implementable, which
has led to great interest in their fabrication and application. A
nonmagnetic �m̂ � Î � HMM (see Eqn (1)) is described by the
permittivity tensor

ê�k0; k� �
exx 0 0
0 exx 0
0 0 ezz

 !
: �7�

Assume that the permittivity ~e is included in Eqn (7). In the
literature onHMMs, Eqn (7) is commonly consideredwithout
spatial dispersion and dissipation, assuming exxezz < 0 [38±
41]. On the one hand, this assumption corresponds to small
k � jkj; on the other hand, in this approximation the waves in
an HMM possess an unlimited value of k.

First, let us consider anisotropic media and structures, in
which the diagonal components of the permittivity and
permeability tensors can have opposite signs in nondissipa-
tive models. Plasma presents an example of such a natural
medium. From the first equation (2), we get Eqn (1) for an
extraordinary wave and the equation eÿ1? k 2 � k 2

0 for an
ordinary wave [76, 98]. In our case, k 2

? � k 2
x � k 2

y , kk � kz,
e? � exx, and ek � ezz. This follows from the fact that the
Fresnel equation is a fourth-order equation with respect to
the components of the wave vector. In crystal optics, the
dissipation is considered weak or not considered at all. In this
case, one can introduce the metric tensor gkl � g �lk. As an
example, let us also consider the permittivity tensor of cold

magnetized (magnetoactive) plasma, ignoring dissipation and
thermal motion in a constant magnetic fieldH0z [84±87, 98]:

ê �
exx ÿib 0
ib exx 0
0 0 ezz

 !
; �8�

where exx � 1ÿ o2
p=�o2 ÿ o2

0�, ezz � 1ÿ o2
p=o

2, and b �
o0o2

p=�o�o2 ÿ o2
0��. Here, op is the Langmuir or plasma

frequency (the plasma may be multicomponent) and the
cyclotron frequency for single-component electron plasma is
o0 � m0�e=m�H0z. In this case, the condition exxezz < 0 can be
fulfilled, similar to that in HMMs. The difference is that
plasma is a gyrotropic medium, and the propagating waves
are generally elliptically polarized.

Let us consider the longitudinal and the transverse waves.
For longitudinal propagation, k 2

z � k 2
0 �exx � b�, where the

signs � correspond to left-handed and right-handed rotation
of the polarization plane. For the extraordinary wave
transverse propagation, k 2

? � k 2
0 �e 2xx ÿ b 2�=exx. If in the

transversely propagating wave the magnetic field is not
perpendicular to the z-axis, then the ordinary wave does not
exist. Considering either one-dimensional or two-dimen-
sional k-space, it is possible to introduce metrics with
diagonal tensors. In the first case, it is a scalar,
g� � �exx � b�ÿ1. In the case of propagation at an arbitrary
angle, let us specify kz and k?. Let us rotate the coordinate
system to make the equality k? � kx valid. It is more
convenient to use the first of Eqns (2) and the biquadratic
equation

k 4
z ÿ 2k 2

z

�
k 2
0 exx ÿ

k 2
x �exx=ezz � 1�

2

�
ÿ �exx�k 2

x ÿ k 2
0 exx� � k 2

0 b
2
��

k 2
0 ÿ

k 2
x

ezz

�
� 0 ;

which cannot be factorized, so that it is impossible to
introduce a metric tensor in the k-space that would define
the scalar product as a quadratic form.When k0 ! 0, we have
ezzk 4

z � k 2
z k

2
x �exx � ezz� � k 4

x exx � 0. If the coefficients in this
equation have different signs, the squares of components are
not bounded. Therefore, for waves in an ideal plasma, the
unbounded values of the components kl are also possible (if
the dissipation is not taken into account).

Depending on the type of plasma and plasma waves, there
are several models of linear response that lead to plasma
permittivity [84±87], both with account for spatial dispersion
and without it, as well as considering or not the effect of
temperature and the magnetic field. The dependence of
permittivity on the spatial dispersion, in particular, means
that the form of tensor (8) depends on polarization. Con-
sidering only circularly polarized waves propagating along
the z-axis, we can represent the tensor in the diagonal form:
e11 � exx � b, e22 � exx ÿ b, and e33 � ezz. In many cases, it is
possible to ignore the gyration vector and to consider the
diagonal tensor (8) [84, 86].

If we consider the dissipation, in the simplest case, it is
reduced to the replacement o2 ! o�oÿ ioc� in all compo-
nents of ê (8). Here, oc is the rate of collisions (pulse
relaxation). For HMMs (7), the introduction of dissipation
means the replacements exx ! e 0xx ÿ ie 00xx, ezz ! e 0zz ÿ ie 00zz,
kz � k 0z ÿ ik 00z , k? � k 0? ÿ ik 00?, and from Eqn (1) it follows
that �k; k� � dl j�g 0l � ig 00l �klkj. Therefore, it is impossible to
introduce a Hermitian metric tensor, and it is possible to
introduce only a diagonal complex-valued tensor with the
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components

g 01 � g 02 �
e 0zz

e 0 2zz � e 00 2zz

; g 03 �
e 0xx

e 0 2xx � e 00 2xx

;

g 001 � g 002 �
e 00zz

e 0 2zz � e 00 2zz

; g 003 �
e 00xx

e 0 2xx � e 00 2xx

:

However, to ensure the condition of positive definiteness
k 2
0 � �k; k�5 0, such a tensor cannot be arbitrary, since it is

related to the wave vector as

g 001 �k 0 21 � k 0 22 ÿ k 00 21 ÿ k 00 22 � � g 003 �k 0 23 ÿ k 00 23 �
� 2g 01�k 01k 001 � k 02k

00
2 � � 2g 03k

0
3k
00
3 : �9�

Rigorous consideration of dissipation in plasma requires
the solution of the kinetic integro-differential equation with
the Landau collision integral [87] taken into account and the
determination of anti-Hermitian part of the permittivity
tensor. It is important that the permittivity tensor and the
metric tensor become non-Hermitian. As shown in Sections 2
and 4, the dissipation and, especially, the spatial dispersion
bound the components kl, so that in nonideal HMMs the
isofrequency surfaces are no more hyperboloids of revolution
and become closed. In common uniaxial (elliptic) crystals,
the components are always bounded: jkzj < k0

��������je?jp
,

jk?j < k0
��������jezzjp

. Therefore, it is reasonable to consider
HMMs in the generalized sense as AMs, in which the
opposite inequalities for the real parts of the wave vector
components are possible. In this sense, plasma and ferrite in a
magnetic field can also be considered HMMs. Plasma is a
particular case of gas of oscillators, not bound elastically, i.e.,
of free charged particles. It follows that all resonance
frequencies in the Lorentz dispersion formula can be simply
put equal to zero. For an isotropic nondissipative gas of
oscillators with one resonance frequency o0, the classical
permittivity is given by the Lorentz formula e�o� �
1� o2

p=�o2
0 ÿ o2�, according to which the permittivity can

be negative.
A rigorous approach requires considering all resonances

and the internal field. Near a resonance frequency, it is
usually assumed that e�o� � e1� o2

p=�o2
0 ÿ o2�, where e1

is the permittivity at the frequencieso4o0, but substantially
lower than the next first resonance, so that e�0� �
e1 � o2

p=o
2
0. The quantum-mechanical approach is based

on calculating matrix elements dkl � ehckjrEjcli of electric
dipole±dipole transitions and oscillator strengths [75, 98, 103,
104]. In the first approximation of the perturbation theory for
quantum transition probabilities, the quantum-mechanical
approach yields the formulas of the same type as the classical
Lorentz approach. It is important that there be a frequency
region where e�o� < 0. Quadrupole and higher multipole
contributions, if there are any, are commonly disregarded
under the condition that there is an electric dipole transition.
The permittivity is obtained from a linear response of all
transitions to the field. The dissipation and small oscillator
strengths, proportional to the transition matrix elements, can
lead to the violation of the condition e�o� < 0. If dkl � 0 or
when it is also desirable to take the magnetic properties into
account, then for the probability of a magnetic dipole
transition the first-order approximation of the perturbation
theory is used:

pm
kl �t� �

�
t
h

�2

�mklH�2 sinc2
��oÿ okl�t

�
;

where mkl � hckjmHjcli, m is the magnetic moment of the
atom, and the function sinc x � �sin x�=x is introduced. For a
meta-atom in an AM, m is related to an induced closed
current. Similar to rarified matter, for a rarified AM the
formula for m can be derived. However, it should be kept in
mind that the magnetic moment is affected by the internal
field, which in an isotropic magnetic medium is equal to
B=�m0m� [98]. Therefore, for a condensed medium or con-
densed metamaterial (with the mutual influence of meta-
atoms taken into account), a Lorentz-type formula can be
derived, generally, only for m̂ÿ1. Reference [75] presents an
example of a contribution to the tensor ê�o; k� frommagnetic
dipole and electric quadrupole transitions and shows the
limited nature of introducing m̂ at high frequencies, which is
also mentioned in [105].

The negative effective permittivity can also be obtained by
calculating the dipole moment of a periodicity cell near the
resonance, where the current density phase changes sign
relative to the field phase. Indeed, the density of the meta-
atom polarization current in a PC is related to the field by the
equality Jp � ioe0�e�o� ÿ ~e�E, where e�o� and ~e are the
permittivity values for the inclusion and the dielectric base,
respectively. The above current density gives rise to the charge
density r � iHJp=o, which determines the polarization
Jp � ioP. In the frequency region, where e�o� > 0, the
quantities P and E are in phase. In the region where
e�o� < 0, a negative component of the effective permittivity
is possible, which can be obtained based on the mix formulas
of the effective medium model [94, 95] as proposed by
D K M Garnett, D A G Bruggeman, and many others. To
determine the permittivity tensor, depolarization coefficients
are introduced in these formulas to allow for the shape and
orientation of the particles [90, 97]. A greater wavelength than
the characteristic dimensions is a necessary condition of the
effective medium theory. The condition e�o� < 0 for the
macroscopic meta-atom permittivity also relates to struc-
tures in the resonance region in it. The resonance frequency
should be smaller than the frequencies of the Bragg
resonances. The polarization P should be defined as the
average dipole moment per unit volume, hPi � hr�r�ri. The
integration is performed over the cell of periodicity. For
e�o� < 0, it is necessary that P and E in a meta-atom be in
antiphase, and for an HMM this should be so for the
components hPli and hEli along one of the coordinate axes.

To obtain negative permittivity in an AM, metallic
constructions supporting induced closed currents are con-
sidered [3, 4, 106±108]. The simplest of them is a loop current
(a conducting ring) [108]. In this case, it is often assumed that
a relation like m�o� � 1� o2

m=�o2
0 ÿ o2� is valid, if the

current loop is affected by the field H of an electromagnetic
wave, considering the loop with current as a magnetic dipole
in a vacuum. However, the electrons are affected by the
Lorentz force, depending on the magnetic induction B that
determines the internal field in a rarefied AM. Therefore, the
presented formula is valid for mÿ1�o�. The magnetism
induced by the field in such structures is diamagnetism: the
induction current in the loop gives rise to a field that opposes
the change of magnetic flux. It is easily shown that in the low-
frequency (nonresonance) region it is always 0 < m�o� < 1
[109]. In the high-frequency region, the general meaning of
permeability, even an induced one, is lost [75, 76, 105]. The
permeability cannot be isotropic, since the PC, on the one
hand, should be cubic and rarefied, and, on the other hand,
the metallic particle (meta-atom) should be a resonance one.
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Cubic PCs consisting of resonance spirals are bianisotropic,
and PCs consisting of split-ring meta-atoms are anisotropic.
Losses restrict the possibility of obtaining negative real parts
of the permittivity and permeability components. This is one
of the main reasons for the impossibility of left-handed
isotropic materials. For them, the resonances must cause
electric and magnetic polarizations, cross-polarization being
absent, the PC should be cubic and rarefied, and the meta-
atoms should be resonant. Even hypothesizing that all these
conditions are satisfied, a spatial dispersion takes place that
leads to anisotropy [75]. In the optics of homogeneous media,
it is possible to ignore the spatial dispersion, but in crystal
optics, it is not possible. The condition a5 l should hold,
where a is the lattice constant. HMMs do not require
fulfillment of the isotropy condition or the condition of
`simultaneous negativity' of the permittivity and permeabil-
ity components, their technological implementation being
easy; therefore, they are of great interest. In connection with
the study of metamaterials, publications appeared that
`disprove' the conclusion of Ref. [76] on the impossibility of
observing essential magnetic properties in the optical range.
We do not present the appropriate references, because all the
appropriate infinite AMs can be described without introduc-
ing magnetic properties.

Thus, a magnetic PC with the Fresnel equation

k 2
?

mkek
�

k 2
k

m?e?
� k 2

0 > 0 �10�

will also be an HMM, for which the permittivity can be a
scalar. In the presence of dissipation, we assume that
e � e 0 ÿ ie 00, e 0> 0, mk � m 0k ÿ im 00k , and m? � m 0? ÿ im 00?,
where all quantities with a double prime are positive, and
for the HMM the condition m 0km

0
? < 0 should be valid. Such

an HMM is easily implementable in the microwave range in
the form of a few ferrite layers, periodically arranged between
layers of an insulator (see [110±113]). The case of scalar
permittivity is realized when the insulator and ferrite
permittivities coincide. The external magnetic field H0z and
the z-axis should be directed across the layers. In this case,
slow magnetostatic waves (SMWs) can propagate in ferrite
films [97, 110±113]. Using tangent magnetization makes such
a PC biaxial, while still supporting waves at large k. For a
ferrite without dissipation [98, 114],

m̂ �
mxx ÿia 0

ia mxx 0
0 0 mzz

0@ 1A; �11�

where mxx � 1ÿ oMo0=�o2 ÿ o2
M�, a � oo0=�o2 ÿ o2

M�,
o0 � m0gM0, oM � m0gM0�ak 2 � b�H0z=M0�, M0 is the
saturation magnetization, a is the constant of inhomoge-
neous exchange interaction, and b is the constant of magnetic
anisotropy for the spin magnetic moment g � e=m [114]. The
terms a and b are often disregarded [111]. The component mxx
in Eqn (11) can be positive or negative. In the case of a planar
layered PC with ferrite and metallic layers and the magnetic
field perpendicular to them (see [115]), it is possible to
implement an AM, described by both the permittivity tensor
(8) of the metallic layer and the permeability tensor (11) of the
ferrite films. In such an AM, hybrid forward and backward
bulk plasmon-magnonic polaritons are possible. In this case,
a backward wave is possible if khSi < 0, which is not directly
related to simultaneously negative permittivity and perme-

ability (or their components). Here, hSi is the Poynting vector
averaged over the period.

At the HMM boundary, Dyakonov-type plasmon polar-
itons (PPs) are possible, which can also be forward or
backward. For example, in Refs [110±112], surface backward
magnetostatic waves (MSWs) along the ferrite films under
tangent magnetization are considered. For a biaxial planar
layered PC consisting of ferrite and metallic films with
tangent magnetization, one should consider the general
Fresnel equation (4) leading to fourth-order equations for
the components of wave vectors. Waves with large k are
possible in such a PC.

Thus, in the anisotropic case, it is easy to implement AMs
in which the real parts of the tensor components can be
independently changed. It is worth noting that frequently
tensor (11) is obtained based on the solution of the linearized
equation of Landau±Lifshitz magnetization precession in a
weak (relative to H0z) magnetic field H of a monochromatic
wavewithout the internal field taken into account [111]. In the
case of a single thin ferrite film with a slow surface MSW, the
field strongly decays in the film, making it possible to suppose
that the internal field is the fieldH of thewave in the structure.
In the case of a bulk ferrite sample and magnetic HMM, the
magnetic moments affect each other, and the internal field
should be taken into account [115] (defined as a variational
derivative of the free energy with respect to the magnetic
moment) which changes the frequency oM. Damping is
usually taken into account phenomenologically by adding a
few relaxation terms [115], which leads to a non-Hermitian
permeability tensor. The properties of the waves and the form
of the tensors depend on k, i.e., for such HMMs spatial
dispersion is essential.

The properties of ideal HMMs can be considered
regarding both the waves in an infinite sample and the
diffraction of plane waves by a finite sample. In the latter
case, the sample should contain many periods in every
direction and be extended along the axis, so that the
transmitted wave can acquire the properties of a Bloch
wave, formed by multiple reflections. The main property of
an extraordinary wave in an ideal HMM lies in the
unboundedness of the wave vector components. For a wave
in an isotropic dielectric, gkl � ~eÿ1dkl and k 2 � ~ek 2

0 . For a
biaxial crystal reduced to principal axes, gkl � eÿ1kk dkl and
k 2
0 � kk � eÿ111 k

2
1 � eÿ122 k

2
2 � eÿ133 k

2
3 . If all three components

of the permittivity tensor are real-valued and positive, it is a
triaxial ellipsoid in the real k-space degenerating into a sphere
in the isotropic case. The unboundedness arises when one of
the components is negative. At k0 > 0, this hyperboloid of
one sheet �eÿ133 < 0� degenerates at k0 ! 0 into a second-order
cone. The unclosed surface means unbounded k. In the
literature, just such a uniaxial PC is understood as an HMM.

In view of the foregoing, by HMMs in the generalized
sense we will mean weakly dissipative uniaxial PCs, in which
the condition k 2 4 k 2

0 is fulfilled. Since the wave vector is
related to the quasi-photon (polariton) momentum p � �hk,
the hyperbolicity leads to its unlimited (actually large
compared to �hk0) magnitude and related possible effects,
e.g., the Compton effect [116, 117] in the optical range.

In an HMM, slow plasmon polariton bulk waves [40±49,
118±121] are possible. In a dissipative wire HMM, a bulk
plasmon polariton has both longitudinal and transverse
components of the wave vector, i.e., it propagates obliquely
and with damping [47, 49]. In planar layered HMMs, the
same situation takes place [69, 118±121], in which case the

1178 M V Davidovich Physics ±Uspekhi 62 (12)



bulk plasmon polariton is like a surface one, the only
difference being that the dispersion equation of the latter is
determined by the equality of the p-wave s-wave impedance in
the vacuum and the corresponding input impedance of a
semi-infinite periodic structure [69, 122, 123]. The dispersion
equation will be different depending on whether the HMM is
terminated by a metallic layer or a dielectric one. The
dispersion equation for a bulk plasmon polariton is deter-
mined based on the Floquet±Bloch equation from the
condition of the input impedance periodicity in the sections
shifted by a period [69], or using other equations, e.g.,
describing the averaged Poynting vector and the wave
vector, or in the form of coupling the averaged field
components via averaged impedances. In this case, both E-
and H-plasmon polaritons exist. The excitation of a surface
E-plasmon polariton can be implemented by a plane wave
with p-polarization or by an electron beam, while the
H-plasmon polariton can be excited by an s-polarized wave.

One more effect observed in HMMs is related to the
enhanced spontaneous emission of an atom or a dipole [14,
16, 22, 38±42, 124±160]. This effect, discovered by Purcell for
the radiation of an atom in a cavity [124], consists of an
increase in the spontaneous emission rate (Einstein's coeffi-
cient) by fP � 3�4p2�ÿ1QL3=V times, where fP is the Purcell
factor, Q is the Q-factor, V is the cavity volume, and L is
the wavelength in the cavity. The expression for fP shows
that the Purcell effect should strongly manifest itself in
high-Q nanostructures, such as HMMs. Since Q � a=d,
where a is the characteristic size and d is the penetration
depth, to increase fP it is important to increase the
conductivity of metallic structures, i.e., reduce the colli-
sion rate. In plasmonics, where e 0 < 0, disregarding oc, we
have d � c=�o2

p ÿ eLo2�1=2.
The Purcell effect is characteristic of general-type struc-

tures, including small metallic cavities [128,129, 133], metal-
dielectric metamaterials [137], extremely anisotropic elliptic
metamaterials [138], photonic quasicrystals [140], nanodia-
mond crystallites doped with nitrogen [146, 160], quantum
emitters near silicon nanoparticles [147], fully dielectric
structures [148], metamaterials with epsilon-near-zero (ENZ)
permittivity [152], PCs [126], and multiperiodic hyper-PCs
[153, 155]. In the last case, the PC has two essentially different
periods, i.e., there is a small-scale periodic structure within the
large period. Both electric and magnetic dipoles are consid-
ered. The closeness of a component of the permittivity to zero
(ENZ) manifests itself in different effects, e.g., in a change in
the source directional pattern (Fig. 2). For waveguides made

of HMMs the effect manifests itself in a sharp change in the
wave properties. The diffraction by an HMM layer also
changes substantially in the ENZ region. Two ENZ regions
are possible: exx � 0 and ezz � 0. When the real part of the
permittivity passes zero, losses play an essential role.

The maximal Purcell effect is achieved in AMs consisting
of resonance nanoparticles, when fP � L3=�ad 2�. The prob-
ability pif of a transition from the initial state jii to the final
sate jf i of a quantum oscillator in the presence of structures in
an ideal HMM (1) in the first-order perturbation theory,
according to the Fermi Golden Rule, has the form

pif � 1

t
� 2p

�h

X
k;s

���
 f ��H 0�k; s���i����2d��hoÿ �hok; s� :

Here, H 0�k; s� is the Hamiltonian of interaction between the
oscillator and the field,



f
��H 0�k; s���i� is the transition matrix

element, and the summation (integration) is performed over
all wave vectors and polarizations s of quasi-photons. In the
case under consideration, the density of states (DOS) rs of
quasi-photons as a sum over the quasi-momenta of delta
functions d��hoÿ �hok;s� diverges for a hyperboloid of
revolution, since the delta function reduces the volume
integral to the integral over an infinite surface. In the case of
electric dipole, H 0 � edE, and in the case of a magnetic one,
H 0 � ÿm0mH.

In real HMMs the isofrequency surface is always
bounded. In review [40], four reasons for DOS rs bounded-
ness are pointed out: the finiteness of the period a, which
restricts k by a value of the order of k � 1=a in the first
Brillouin zone; the spatial dispersion of permittivity; the finite
source size d that determines the overlap of thewave functions
of the states; and the possibility of a finite distance h from the
dipole to theHMM. In these cases, themaximal Purcell factor
has the order of fP � �l=a�3, fP � �c=vF�3, fP � �l=d�3,
fP � �l=h�3, respectively, where vF is the Fermi velocity in
the metal. In the second case, the magnitude of k was
considered to be bounded by the Fermi momentum. How-
ever, the limitation forHk-quasi-photons is also related to the
appearance of k 2 in the components of the permittivity in (1).
The dissipation also bounds the isofrequency surface and
DOS and leads to dissipative damping alongside with the
spontaneous radiative decay. The sum of the above prob-
abilities of emission is determined using the tensor Green's
function (GF) as fP � �3=2�nĜss�0�n=k 3. Note that this GF
describes an individual point source in a medium with
permittivity (7) [131]. Due to the singularity of the GF, the
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Figure 2. (Color online.) Radiators with a wire medium and the ray paths in the ENZ layer (with the permittivity close to zero) for a wire HMM.
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Purcell factor of a point source diverges. In Ref. [131], the
Purcell factor is obtained for a finite source described by a
wave packet F�r� satisfying the unit normalization. For a
Gaussian packet F�r� � � ������2p

p
a�ÿ3 exp �ÿr 2=�2a 2�� and an

HMM free of dissipation with e? > 0, ek < 0 for the dipole
orientation along the axis in the approximation of small
source size ka5 1, it was found that

fP � �����
e?
p ÿ 3

��������
pe?
p ÿ

2e? � jekj
�

8ka
ÿ
e? � jekj

�3=2 � 3
��������
pe?
p

8�ka�3ÿe? � jekj�3=2 :
Here, the main contribution comes from the third term on the
right-hand side. To determine the oscillator radiation char-
acter more precisely, it is necessary to solve the electro-
dynamic problem considering the real microstructure and
real radiator. In the case of a quantum oscillator, the problem
should be consistent with the electrodynamic one, i.e., this is a
problem of the quantum theory of radiation of interacting
particles with the thermal fluctuations taken into account.

An effect close to the Purcell one consists of super-Planck
anisotropic thermal radiation and radiation heat transfer,
including that through small gaps, as well as to the far-field
zone with the possibility of almost full absorption [18, 22, 27,
31, 36±48, 141, 142]. In Section 3, the main effects in HMMs
are considered in more detail. It should be noted that such
effects as negative refraction, spatial dispersion, waves with
large k components (High-k), the Purcell effect, and a number
of others are also inherent in biaxial metallic and dielectric
PCs, bianisotropic PCs, and plasmon polariton structures.
The HMMs here act like the most vivid and simple
representatives of AMs clearly demonstrating the above
effects. In particular, the negative refraction is largely
dependent on the direction and magnitude of the wave vector
in the medium, from which a wave is incident on the PC
relative to the normal to the interface (Fig. 3), as well as on the
direction of this normal and the normal to the isofrequency
surface in the k-space vg=vg.

The negative refraction manifests itself in AMs both with
magnetic properties and without them. For example, if the
axis of anHMM is directed obliquely to the interface, then, in
the case of normal incidence of a plane wave, the transmitted
wave declines towards the axis. A displacement of the incident
ray towards the axis leads to positive refraction and a
backward displacement to a negative one (see Fig. 3 and
Ref. [8]). In this case, backward waves are possible in a
nonideal HMM. In the presence of dissipation, one should
consider the Poynting vector as a direction of the ray. For
plane wave incidence, the component kx in the environment
and in the HMM is similar, so that the direction of the
transmitted wave is determined by the crossing of the line
kx � const and the hyperboloid. For the incidence from an
optically dense medium, k 2

x � k 2
z � k 2

0~e.
In an ideal HMM, kvg > 0, and kvg ! 0 at k0 ! 0, i.e.,

there are no backward bulk waves. However, at the HMM
boundary there can be Dyakonov-type backward surface
plasmon polaritons. If dissipation is present, then the
isofrequency surface is not a hyperboloid, and the direction
of the transmitted ray is determined by the Poynting vector,
but the component kx tangent to the boundary is real and
coincides with its value in a plane wave in a vacuum. In the
absence of reflection, the input impedance of an HMM at
the boundary plane must coincide with the impedance of an
E-wave (for p-polarization) or H-wave (for s-polarization) in
a vacuum, where it is real-valued.

Generally, the incidence of a wave with one polarization
excites waves with both polarizations. It is clear that due to
this reason the dissipation of total absorption is impossible,
since the dissipative AM has a complex impedance. A small
reflection coefficient can occur at a certain incidence angle
and small dissipation, when the impedances are close to each
other (e.g., as shown in Fig. 4). For the fulfilment of the
Ewald±Oseen principle in the far-field zone, the PC should
have many periods. The dispersion equation for Dyakonov
plasmon polaritons should be derivedwith this fact taken into
account using the effective êmatching method. Generally, the
normal component kz and the tangent one kx are complex-
valued, the latter component determining the plasmon
polariton. The situation here is similar to that for Zenneck
plasmon polaritons and the incidence of a plane wave at the
Brewster angle. When a p-polarized wave is incident on a
dielectric at such an angle that the reflected ray makes a right
angle with the transmitted one, the Brewster angle is absent
(David Brewster, 1815). Since at least a weak dissipation is
always present, a fast surface Zenneck wave �k 0x < k0� is
rapidly excited. In a metal, the same Zenneck dispersion
equation kx � k0�e=�e� 1��1=2 leads to a slow wave, k 0x > k0,
in the case of e 0 < ÿ1; therefore, its efficient excitation is
possible only from an optically denser medium, and it is
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Figure 3. (Color online.) (a) Positive (a, b) and negative (c) refraction for a

hypothetical asymmetric (45% cut) planar layered HMM with

ezz � ÿexx � 1 under the incidence of a pane wave from a vacuum and

(b) a k-diagram. The thick solid hyperboloid corresponds to the isofre-

quency surface in the k-space, and the dashed hyperboloid in the k-space

rotated byÿ45% (for a symmetricHMM); the dashed circle 1 corresponds

to the diffraction from the vacuum, the solid circle corresponds to the

diffraction from an isotropic dielectric with~e � 1:44. Thick blue arrows in

the diagram show the directions of the transmitted wave.
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necessary to use the Otto orKretschmann excitation schemes.
A plasmon polariton can also be excited from a vacuum at the
HMM boundary by means of prisms or matching layers.

3. Fabrication and properties
of ideal hyperbolic metamaterials

The simplest HMMs have a planar layered structure of 1D
periodic PCs, which can contain two or more layers per
period. The alteration of a metallic or semiconductor layer
(film) and a dielectric layer is used most frequently. Since a
large number of periods is needed, the manufacturing of
micro- and nanostructures requires multiple technological
operations and is a long and expensive process of sequential
deposition of layers.

Metallic films are deposited using electrolytic methods,
electrophoresis, electric arc-discharge and gas-plasma sputter
deposition, magnetron sputtering in low-pressure plasma,
chemical metallization, vacuum metallization on cold and
heated substrates, cathode sputtering, laser sputtering, deposi-
tion of puremetals from carbonyl compounds in the gas phase,
and a number of other methods. It is possible to obtain
metallic films having a thickness from 2 nm to a few hundred
micrometers and thicker. Thin films of a few nanometers, the
most interesting of HMMs, are easily implemented using the
methods of magnetron sputtering from low-pressure plasma.
The HMMs were implemented using bilayer doped InGaAs/
AlInAs semiconductor PCs [161] and metal-dielectric and
metal-semiconductor two-layer and three-layer PCs, such as
Ag=Al2O3, Ag/polymethyl methacrylate, Ag=LiF, Si=Ge,
Au=Al2O3, Si=SiC=SiO2, and many other structures [40, 66,
67, 162±171].

As dielectric layers, SiO2, SiO, Al2O3, BeO, BN, and a
number of other materials are used. The most often used
material is SiO2, obtained by forming epitaxial layers of
silicon followed by their oxidation in dry oxygen, aqueous
vapors, humid oxygen at high pressure, and thermal
oxidation in dry and humid oxygen. Using oxidation, it is
easiest to obtain films 3±7 nm thick. Silicon layers are
usually obtained by gas phase epitaxy implemented in two
main ways: hydrogen reduction of silicon tetrachloride

�SiCl4� (chloride method), trichlorosilane �SiHCl3� or
dichlorosilane �SiH2Cl2� (silane method). When using the
silane method, the decomposition occurs at T � 1050 �C,
which slows down the diffusion compared to that in the
chloride method and reduces the harmful effect of autodop-
ing, which makes it possible to produce sharper junctions
between the layers. As HMMs, it is possible to use graphene
sheets between layers of SiO2 or another insulator. Here, it is
possible to use both the micromechanical assembling and
epitaxial growing of graphene sheets on a substrate. The
transfer of graphene and multigraphene (up to 10 sheets),
grown from the gas phase by the method of chemical vapor
deposition (CVD) on SiO2=Si or hexagonal BN substrates, is
executed using polymer films [172]. For the low-frequency
range, it is possible to assemble HMMs from thin sheets of
graphene obtained by mechanical exfoliation.

Another type of HMM is represented by wire media, i.e.,
PCs made of nanowires [2±21, 28±31, 47, 49, 173±179]. The
methods of growing periodic structures of nanowires are
presented in monograph [180, chapter 9]. Template synthesis
of nanowires is a conceptually simple and intuitively clear
method of nanostructure fabrication [181±183]. The tem-
plates, having cylindrical pores or cavities, are filled with a
material that takes the shape of the pore and forms
nanowires. Ref. [180] describes frequently used templates
and methods of their filling for making nanowires. They use
electrochemical deposition and vacuum deposition. Many
modern methods of semiconductor nanowire synthesis are
based on the mechanism of anisotropic growth of crystals
with vapor±liquid±solid (VLS) phases.

For applications requiring homogeneous arrays of
oriented nanowires with size control, methods of controlled
etching are used, such as reactive ion etching and chemical
etching using metals, as well as laser processing. Arrays of
nanowires are made of Ag, Au, Bi, BiSb, Bi2Te3, CdS, CdSe,
Cu, Fe, GaN, GaAs, Ge, InAs, MgO, Mo, Ni, Pb, PbSe, Pd,
Si, W, Zn, and ZnO. Figures 5±9 present a view of some
nanowire HMMs according to [180]. Dissertation [184]
describes technologies of manufacturing nanowire structures
using the methods of pulsed laser sputtering and carbo-
thermal and thermal synthesis. The same paper presents the
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Figure 4.Magnitudes of reflection coefficients versus the angle y. (a) Ag-TiO2 planar parallel HMM:Rp andRs versus the incidence angle for type I and II

HMMs based on the effective medium theory. Type I (l � 360 nm) and II (l � 750 nm) hyperbolic regimes take place for structures of 40 periods with

50% filling bymetallic fraction 320 nm thick with the period of 8 nm. (b)Rp andRs versus the incidence angle for type I (l � 850 nm) and II (l � 390 nm)

wire Ag-Al2O3 HMMs 500 nm thick at 15% filling with metallic fraction. (Data from [39].)
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results of creating planar layeredHMMs. The technologies of
growing arrays of oriented ZnO nanorods and ZnO films, as
well as lattices of ZnO, ZnO:Mg, ZnO:Co, ZnO:Mn nano-
rods are being developed (see Figs 8, 9). To obtain HMMs,
metallic films of nanoscale thickness, e.g., of silver, are
sputtered on the above arrays of semiconductor rods.

Carbon nanotubes are also used in HMMs [15, 17, 26, 31],
which can be arranged in arrays [185, 186]. Using photo-
lithography, HMMs are obtained in the form of periodic

metallic strips on thin dielectric substrates with sequential
layer-by-layer growth. In such HMMs, the use of graphene
strips is also possible. HMMs consisting of graphene sheets
and nanostrips were considered in Refs [34, 36, 187±191].
Commonly, the length of nanowires and nanostrips is
assumed to be very large compared to the wavelength.
However, short nanowires, periodically translated in the
transverse plane and along the axis, also form an HMM
[69]. Such a uniaxial crystal is 3D periodic. HMMs are
possible in the form of cylindrical cavities in a metal
(semiconductor) or multilayer meshes [40]. To satisfy the
condition exx � eyy, the mesh should be fine. Sometimes
curved layered metal-dielectric structures are considered to
be HMMs [38±40], which do not support plane waves but are
used as lenses. Although in such structures large values of
wave vectors are possible, they are not 1D-periodic uniaxial
PCs.

To obtain a magnetic HMM, the excitation of ring
currents is necessary to create a magnetic moment along
the axis, for which it is convenient to use layered structures
with 2D periodic ring strip resonators on substrates, made
using photolithography, with a subsequent 1D periodic
arrangement of the layers. In the low-frequency region,
such structures exhibit diamagnetism, since the ring current
opposes the magnetic field change. For negative mÿ1zz , current
resonance is necessary, for which the contribution to
polarization is in antiphase with the field. In this case, an
electric polarization in the plane of the ring also arises. The
losses hamper the occurrence of negative mzz. To get large
mzz, it is reasonable to apply periodically arranged planar
spirals or strongly coupled double rings. In this case, it is
possible to ignore the components exx and eyy, since they are
small compared to mzz. Split-ring resonators create a long-
itudinal magnetization and two transverse components of
electric polarization, i.e., the PC is described by diagonal
tensors ê and m̂. The PC of volume spirals is a strongly
bianisotropic AM.

HMM properties were first considered in monograph
[192] in application to a source (point dipole) in an infinite
medium like plasma with a diagonal permittivity tensor (7), in
which exx � 1, and the values of ezz � e can be negative. For
the dipole radiation, the solution to the problem is obtained in
the form of a Green's function. In the case of ezz < 0, it is
shown that the radiation power and impedance are infinite,
the radiation is anisotropic, and there is a conical surface of a
shadow, at the boundary of which the fields turn into infinity,

1 mm 100 nm

Â b

Figure 5. (a) Cross-sectional scanning electron microscopy (SEM) image

of an array of Bi2Te3 nanowires, demonstrating a relatively high porosity

factor. (b) SEM image of a nanowire Bi2Te3 array along the axis of the

wires. (From [180].)

2 mm

Figure 6. Examples of patterned reactive ion etching (RIE) of nanowires.

In these examples, RIE was executed by electron lithography using a

template [180].

1 mm 1 mm 100 nm

Â b c

Figure 7. SEM images of an array of ZnO nanowires grown on a sapphire substrate. Image (a) shows patterned growth, image (b) demonstrates high

resolution and parallel equalizing of nanowires, image (c) shows faceted sidewalls and a hexagonal cross section of nanowires. For the growth of

nanowires on sapphire substrates, a drawing was formed by a layer of Au catalyst 1.0±3.5 nm thick, the role of a shadow mask played by the grid of a

transmission electron microscope. (From [180].)
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and inside which there is no radiation. The dipole orientation
along and across the axis are considered. The directional
pattern in the first case is given by the formula

A�y� � sin2 y
N 5�y� ; N�y� �

��������������������������������
cos2 y� e sin2 y

p
:

The Helmholtz wave equation becomes hyperbolic at
negative permittivity components. The characteristics of
hyperbolic equations are known to have discontinuities.
Particularly, in the process of propagation of pulses (wave
packets) in a dispersive medium, the discontinuity surfaces
move with the speed of light. In HMMs, there are static
spatial discontinuity surfaces. For nonstationary processes,
the HMM behavior is complex. It is necessary to study the
spectral integrals involving ê�o; k�. The considered properties
manifest themselves under the long-term action of a quasi-
monochromatic pulse. Analogous properties are inherent in a
gyrotropic mediumwith the permittivity tensor (8). Reference
[192] considers linear sources. In the presence of losses and for
distributed sources, infinity is shown to be eliminated.

3.1 Super-Planck radiation, channeling
and stimulation of radiation, and image processing
The change in photonic DOS is an important property. The
radiation becomes anisotropic with the possibility of a spacial
increase in photonic DOS. This phenomenon is investigated
in [18, 27, 35±46, 48, 127, 141, 175±180]. The increasing
number of quasi-photons with High k (Hk-states) giving rise
to an increase in their DOS and a reduction in the lifetime of
excited atoms causes an increase in the radiative heat
conductivity, thermal radiation [194±198], and heat flow
from a unit area substantially exceeding that determined by

the Stephan±Boltzmann law at certain orientations [27, 193].
This is due to the increase in DOS (ideally, up to infinity) and
the anisotropy. Actually, the maximal density of photon
states r�o� is bounded and increases compared to that of a
black body by a � k 2

max=k
2
0 times, where the quantity

kmax � p=a is bounded by the lattice constant. For the energy
flux density along the HMM symmetry axis, the excess
coefficient b was found in [193] for the observed radiation,
as opposed to the Stephan±Boltzmann radiation: ST � bSSB

T ,
where b � 5�kpa�2=�4pkT�2 for HMMs of the first type �here,
kT � kBT=��hc�� and b � �a=2�2ed=�1ÿ p� for HMMs of the
second type, where p is the factor of filling with a conductor,
and kp is the plasma wave number. At a � 10 nm, an estimate
of b � 103ÿ105 has been obtained.

The emission rate (Einstein's spontaneous emission
coefficient) for the dipole d oriented normally to the layers
of an HMM and placed at a distance d0 < l (in the near field)
is given by the expression [38, 41]

pHk � jdj2 ��������������jexxjezz
p

16pe0hd 3
0 �1� jexxjezz�

:

The effective medium approximation for the radiation of a
dipole was considered also in [16, 38, 40, 135±137]. For the
energy density of the thermal radiation in the near-field zone
at a distance z5 l in the approximation of the effective
medium [38], the following expression is found:

u�z;o;T � � UBB�o;T �
8

�
2
��������������je 0xxe 0zzj

p
�k0z�3

ÿ
1� je 0xxe 0zzj

�
ÿ e 00

2�e 0xx � e 0zz�
�k0z�3

ÿ
1� je 0xxe 0zzj

�2 � ;
in which the dissipation is taken into account, e 00 � e 00xx � e 00zz,
UBB is the radiation energy density for an absolutely black
body. The approach proposed by S M Rytov for the
generation of electromagnetic radiation by thermal fluctua-
tions, the fluctuation-dissipation theorem, and the tensor
Green's function of the HMM from [27] were used.

In Ref. [48], the effect of a DOS increase in a complex
cavity with an asymmetric HMM (see Fig. 3) is evaluated. In
such an HMM, the axis does not coincide with the normal to
its surface, and the permittivity matrix [7] is transformed by a
rotation of axes into a nondiagonal symmetric one. Direct
calculations of the modal field and dispersion equation were
carried out allowing for the anisotropy of the hyperbolic
medium layer. The Berreman transfer matrix method (4� 4
transfer matrix method) was used. The super-Planck emission
is due to anisotropy. The directed thermal radiation exceeds
the radiation from a black body, either within a certain angle
along the axis or in a perpendicular direction, depending
upon the HMM type. The effect is used in photovoltaics (in
solar batteries for the transfer of radiation from the matching
structure to rectifying elements [18, 28]), for control of the
density of optical states and radiation switching in nanos-
tructured optical schemes[194±198], for channeling radiation
with an increase in its aperture [163, 179, 199], for transferring
radiation and images over small distances, for creating
waveguide structures, for subwavelength resolution, and for
enhancing evanescent modes [200±219].

Physically, HMMs of the first type operate like multiwire
lines and those of the second type like sets of plane-parallel
waveguides. The fabrication of HMMs with diverging nano-

Â b

300 nm 300 nm

Figure 8. (a) SEM image of ZnO nanocrystals on (1120) sapphire

(Par � 100 mbar, Tw � 580 �C, L � 20 mm) at the frequency ffoll � 1 Hz.

(b) The growth of nanorods (Par � 100 mbar, Tw � 580 �C, L � 20 mm)

at the frequency ffoll � 10 Hz. (Results from [184].)

Â b

500 nm500 nm

Figure 9. (a) SEM image of ZnO nanorods (manufacturing parameters:

laser pulse energy Ep � 500 mJ, repetition rate ffoll � 10 Hz, pressure

Par � 100 mbar, L � 20 mm) at Tw � 580 �C (diameter of nanorods 30±

35 nm). (b) SEM image of ZnO nanorods (Ep � 500 mJ, ffoll � 10 Hz,

Par � 100 mbar, L � 20 mm) at Tw � 550 �C and nanorod diameter of 8±

15 nm. (Results from [184].)
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Figure 10. Optical density (OD) as a function of wavelength for p- and s-polarizations in (a) an Au-Al2O3 HMM and (b) an Ag-Al2O3 HMM at 10%

metallic filling in both and the layer thickness of 500 nm. Resonances take place (a) at l � 500 nm and l � 900 nm, as well as (b) at l � 400 nm and

l � 775 nm. Low-frequency resonances occur only for p-polarization; the resonances are stronger in silver, since the dissipation is smaller. Such

resonances are absent in a planar layered structure. (Results according to [39].)
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Figure 11. Local density of states (DOS) in HMMs. (a) The isofrequency surface at slightly different energies for an isotropic dielectric and type I HMM.

The closed volume between two isofrequency surfaces is ameasure of photonic density of the system states. An ideal HMMhas a diverging closed volume

and, thus, in the ideal limit has an infinite photonic density of states. (b) Lifetime of a dipole, normalized to the lifetime in free space, versus the distance d

above the HMM surface. An Ag-TiO2 structure with 35% filling in the regions for type I HMM (l � 350 nm) and type II HMM (l � 645 nm). For

comparison, we also show the results for a thick silver film (l � 372 nm). LDOS versus the wave vector for a 200-nm layer of Ag-TiO2 (with 35% filling)

and 200-nm silver film for the radiators, placed at the distance of (c) 20 nm and (d) 3 nm from the structure. High-k regimes exist in both (c) and (d) cases,

but in case (c), a distinct broad peak is seen. (Results according to [39].)
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wires or a fan arrangement of conducting planes or stripes
allows magnifying images and overcoming the diffraction
limit [279, 217].

Figure 10 presents the results of calculating the DOS for a
layer of a nanowire medium under the incidence of p- and s-
polarized waves in a layer of HMM. Figures 11 and 12 show
the results of calculating theDOS and Purcell effect inHMMs
of both types according to the data in [39]. The calculations
were carried out for an effective size of the source a � 0:1kÿ10 ,
Im ek � Im e?� 0:1, Re e?� 1 (Fig. 12a), and Re ek � 1
(Fig. 12d). In Fig. 12b, c, curve 1 corresponds to a dye over a
pure aluminum membrane, curve 2 to a dye over a gold film
on glass, curve 3 to a dye on a silver film on glass, and curve 4
to a dye over a silver coating of an aluminum membrane.
Figure 12e shows the dye photoluminescence kinetics in a
layered metal-dielectric HMM. Curves 1 and 2 correspond to
control samples, in which the dye is applied on the glass and
silver substrates, respectively. Curves 3±6 correspond to
different samples of metamaterials and different conditions
of excitation. Figure 12f shows the enhancement of photo-
luminescence of a dye applied on a layered metal-dielectric
metamaterial with respect to photoluminescence of the dye on
homogeneous films of gold and glass.

3.2 Absorbers, screens, lenses, and metasurfaces
AnHMMcomprisingmetallic layers 20±40 nm thick between
layers of SiO2 or SiO 50±300 nm thick deposited on glass is an
electromagnetic thermal screen, i.e., it reflects more than 90%
of the energy of infrared and terahertz radiation and
transmits visible light waves well [27]. The optical reflection
coefficient oscillates from small values corresponding to the
plasmon-polariton excitation to values of the order of 0.1±
0.2; therefore, from the side of the incident light, the surface

gradually changes colors as the view angle varies. Applied to
window glass, such a thermal screen prevents cooling of a
dwelling in winter and heating in summer.

HMMs are anisotropic absorbers whose reflection coeffi-
cient strongly depends on the orientation of the axis with
respect to the surface, so that almost complete absorption is
possible [22, 25, 43±46, 48, 132, 187], as is the electric and
optical control of impedance properties, absorption, and
reflection. This is possible in HMMs based on graphene by
changing the chemical potential [187] or optical pumping, as
well as in HMMs based on semiconductor structures. Besides
control using an external electric field, control using a
magnetic field is convenient, leading to the occurrence of
Landau levels and a change in the energy spectrum.
Spherically curved layered HMMs and their other config-
urations acquire the properties of controllable lenses [40,
163, 164, 204, 206, 219] with subwavelength resolution and
image transfer to the far-field and near-field zones. In
principle, incomplete focusing in the near field by planar
layered and curved PCs using evanescent modes is possible.

The HMM surface is an anisotropic impedance surface,
along which the propagation of Dyakonov plasmon polar-
itons is possible. The properties of such a metasurface, in
particular, the diffraction of light by it, depend on the cut. If
the surface normal to the cut makes an arbitrary angle with
the HMM axis, then the tensor (7) is transformed by the
rotation matrix. The surfaces of HMMs and other PCs are
considered a new class of structureÐmetasurfacesÐwith
which a new class of devices is associated [220]. Thin two-
dimensional metasurfaces are also possible [221]. HMM-
based metasurfaces were considered in [36, 37, 222, 223]. In
Refs [36, 37, 45, 46], approximate homogenization was
carried out based on the Kubo model formula for conduc-
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Figure 12. (Color online.) Enhancement of spontaneous emission inHMMs. The Purcell factor in the transition from the elliptic to hyperbolic regimewith

(a) ek > 0 and (d) e? < 0. Experiments on spontaneous emission enhancement: (b) dependence of radiation lifetime on wavelength near the transition

from the elliptic to hyperbolic regime in a planar layered HMM; (c) photoluminescence kinetics for a dye applied above a silver wire HMM;

(e) photoluminescence kinetics for a dye in a layered metal-dielectric HMM; (f) enhancement of photoluminescence kinetics for a dye applied above a

layered metal-dielectric material relative to that of a dye on homogeneous films of gold and glass. (Results presented according to [40].)
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tance and the Bloch equation for the graphene-dielectric
HMM. The model calculation of diffraction of p- and
s-polarized plane waves by interface and a layer of asym-
metric HMMs is carried out. For homogenization, the
transverse wave vector was specified to be real-valued. The
approximate method of 2� 2 transfer matrices was applied,
and the possibility of almost complete absorption was shown.
The absorption corresponds to the excitation of bulk
plasmons along the layers that are almost completely
absorbed in a sufficiently thick plate of an HMM, the axis
of which is rotated with respect to the surface normal. The
considered layer should be described using the 4� 4 transfer
matrix. If the incident wave is s- or p-polarized, the reflected
wave possesses both polarizations.

In the case of bulk plasmon polaritons in an Hk PC, the
longitudinal propagation constant is determined, generally,
from the Fresnel equation of the fourth order, and only in
uniaxial PCs is it separated into two equations, when it is
possible to get simple equations for bulk plasmon polaritons
[40±49, 118±121]. Note that the Fresnel equation involves
two other components and the permittivity tensor that
depends on k. Therefore, to determine the bulk plasmon-
polariton equations, additional conditions are required. To
determine Dyakonov-type plasmon polaritons along an
HMM surface, its input tensor impedance should be known
[221]. Such plasmon polaritons are considered in Refs [224,
225].

3.3 Sensors, nanoantennas, waveguides,
and control of fluorescence and Raman spectroscopy
The property of image transfer by nanowire lenses [200±219]
was proposed for use in sensors [158], including biosensors
[226]. When a nanoobject is placed on an HMM surface and
exposed to laser radiation, the surface allows `finger-printing'
of the object image and identifying the object. Hk structures
with plasmon polaritons were used to enhance fluorescence
and Raman spectroscopy response in high-sensitivity phase
measurements [154, 194], near-field microscopy, and
enhanced resolution photolithography. Layered and wire
periodic structures have been used as elements of antennas,
controlling the directional pattern, and they are promising.

Recently, a number of waveguiding structures withHMM
elements have been considered. There is an analogy with
terahertz and optical waveguides having a layered cladding
and a PC cladding. Instead of a dielectric PC, an HMM is
used for the cladding. In themicrowave range, wiremedia and
metallic grids were used to manipulate the directional pattern
and the polarization (see Fig. 2) in phased array antennas. It is
interesting that, beginning in the 1960s, wire AMs were used
to simulate the plasma generated by space rocket engines for
ground-based optimization of antenna parameters. In Sec-
tion 5, we will consider a number of applications used and
those showing promise in more detail.

4. Methods of analyzing hyperbolic metamaterials

For the structures considered, it is necessary to solve eigen-
value (eigenwave) problems with the dispersion equation in
the form F�o; k� � 0 or the dispersion band structure; the
homogenization problem, i.e., determination of effective
permittivity ê�o; k�; as well as the problem of plane wave
diffraction and excitation of the structures by point and other
sources. Of importance are the problems of dipole radiation
in HMMs and the problems of oscillations in resonators

made of HMMs. The explicit form of ê�o; k� is necessary for
solving problems of diffraction, excitation, and oscillation,
since their direct solution for nanostructures is often unreal
and unproductive. Note that the simplest diffraction prob-
lems were directly applied to homogenization [56, 57].

4.1 Electrodynamic dispersion equations
Rigorous methods of electrodynamic analysis of PCs (and,
in particular, HMMs) can be divided into a few categories
(approximate methods are not considered). The first
category is based on the solution of Maxwell's differential
equations. Commercial packages of applied software are
directly used, a few types of which are currently available.
These software packages commonly use the finite element
method or finite difference method in space-time or the
space domain. For PCs described by a periodic permittivity,
the plane wave method is convenient, based on the Floquet±
Bloch condition and the Fourier decomposition of permit-
tivity. Indeed, a PC without inclusion of ferromagnetic
particles (ferrites) can be described by a periodic permit-
tivity e�r�. The dispersion equation F�o; k� � 0 reduces to
the calculation of the determinant of a homogeneous system
of linear algebraic equations, obtained by projecting the
Fourier transform of Maxwell's equations.

The second category of programs is based on matrix
methods. For one-dimensional PCs representing planar
layered HMMs, the method of transfer matrices is rather
convenient [23, 69, 123]. For two- and three-dimensional
PCs, the formulas can be derived based on the Green's
function method, but they are rather complicated. The
Helmholtz wave equation takes the same form as the
steady-state Schr�odinger equation if we perform the replace-
ments E! C and k 2

0 e�o; r� ! �2m=�h 2��EÿU�r��. This
allows applying the methods used to calculate the electronic
band structure in crystals, in particular, the Corringa±
Kohn±Rostoker Green's function method [227, 228].

Here, we will consider in detail the methods of integral
equations based on electrodynamic periodic tensor Green's
functions [33, 229]. Such methods, like the Green's function
methods, can be considered to belong to the third category.
Actually, in general, these are integro-differential equations,
in which the desired fields are subjected to the action of both
differential and integral operators. The reason why this
approach is quite convenient is that the homogenization on
its base is carried out in the simplest, most efficient, and
clearest way, and the analytical results can be obtained by
integration. In particular, the dispersion equation derived
using the transfer matrix method in a one-dimensional PC
follows from the integral equation [229]. The scalar Green's
function for the dielectric base is described by the expression

~G�rÿ r 0; k0; k� � 1

O

X1
n�ÿ1

exp
�ÿi��k� vn��rÿ r 0��	
�k� vn�2 ÿ k 2

0~e
: �12�

Here, al are the vectors of primitive translations (direct lattice
vectors), albm � 2pdlm, where bl is the reciprocal lattice
vector, vn � n1b1 � n2b2 � n3b3, n � �n1; n2; n3�, and O �
�a1a2a3�. This is a Green's function of periodically arranged
point sources with a phase shift. 2D and 3D HMMs of the
first type can have a cubic lattice with the rotation axis C4,
and HMMs of the second type can be 1D with the rotation
axis C1. Wire media with a hexagonal lattice and rotation
axis C6 (point group C3v, as in graphene), with the axis C2

(rectangular section of a wire arrangement) and other
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arrangements of wires along the principal dielectric axis z can
have the value e 0zz < 0, but they are not HMMs, because they
have two optical axes and a more complex Fresnel equation
(2). However, they can be considered Hkmedia. In the case of
a 3DHMMconsisting of finite-length wires, l < b=2, we have

~G�r; k0; k� � 1

a 2b

X1
n; l;m�ÿ1

exp
�ÿi�kxnx� kyly� kzmz�

�
k 2
xn � k 2

yl � k 2
zm ÿ k 2

0~e
: �13�

Here, a is the transverse size of a cell, and b is the longitudinal
size. In the case of infinite-length wires �b!1�, the sumover
m transforms into an integral. For a one-dimensional PC, we
get

~G�r; k0; k� � 1

�2p�2a

�1
ÿ1

�1
ÿ1

X1
m�ÿ1

1

k 2
xn � k 2

yl � k 2
zm ÿ k 2

0~e

� exp
�ÿi��kx � w1�x� �ky � w2�y� kzmz

�	
dw1 dw2 :

�14�
Such a Green's function is convenient for planar layered PCs
and allows, in particular, considering nonuniform layers. In
the above relations, kxn � kx � 2np=a, kyl � ky � 2lp=a,
kzm � kz � 2mp=b, and ~e corresponds to the permittivity of
the base substance. This Green's function satisfies the
inhomogeneous wave Helmholtz equation

�H 2 � k 2� ~G�rÿ r 0� � ÿd�rÿ r 0� exp�ÿik�rÿ r 0�� ;
and for a delta-source at the point r 0 determines the vector
potential A with the phase shift k�rÿ r 0� at the observation
point r. It can also be obtained by periodic continuation of the
phased Green's function G � �4pR�ÿ1 exp �ÿikR�, R �
jrÿ r 0j, k � k0

��
~e
p

. The equivalence is obtained by Poisson
summation. It is sufficient to solve the integral equation
within the only (zero) cell (Fig. 1c).

Let us place the origin of the coordinate system at the
center of a cylinder. The electric vector potential satisfies the
equation �H 2 � k 2�A � ÿJ e

p, and the fields are presented as
E � ÿiZ0�k� kÿ1H
 H�A,H � H� A, where

A�r� �
�
V

~G�rÿ r 0; k0; k�J e
p�r 0� d3r 0 ; �15�

Z0 �
�����������
m0=e0

p
, H
 H � grad �div�, and d3r 0 is the volume

element. For 2D pillar HMMs, the integration is executed
over the pillar volume. For a PC, the electric polarization
current density J � J e

p � ioe0�eÿ ~e�E acts as the most
general source. This is an additional current density, as
opposed to the displacement current density in a dielectric of
the matrix. The integral representation (15) will be written for
brevity as A � ~G�J e

p�, where ~G is the integral operator in
Eqn (15). Then, the electric field will take the form
E� �k 2� H
H� ~G�wE�, where w�r 0�� e�r 0�=~eÿ 1. This
hypersingular volume integral equation can be transformed
into a number of forms, loaded with surface integrals [230].
Such forms are not convenient in the case of complex-shaped
boundaries. We assume that the pillars are homogeneous and
use the volume integral equation for the electric field [230],

E �
�
1� w

3

�ÿ1
�k 2 � H
 H� ~GV:p:�wE� ; �16�

as well as the equation for the magnetic field. Equation (16)
follows from the previous one by extracting a spherical

d-vicinity of the source point r 0 and calculating the integral
over it analytically at d! 0. As a result, the integrated term
ÿwE=3 is extracted, and the integral is calculated in the
Cauchy principal value sense, which is denoted by the upper
index V.p. (Valeur principal) of the integral operator. For a
magnetic field, we have H � ioe0H� ~G��eÿ ~e�E�. Inside the
pillar, according to the Maxwell's equation H�H � ioe0eE,
so that the equation takes the form

H � H� ~G

��
1ÿ ~e

e

�
H�H

�
: �17�

Equation (16) cannot be solved for e � ÿ2~e. This condition
at ~e � 1 determines the accumulation point of the frequen-
cies of localized plasmons [231, 232]: e � eLÿ o2

p=o
2� ÿ2,

from where we get the accumulation frequency o �
op=

�������������
eL � 2
p

. Therefore, in this case, from a Fredholm
equation of the second kind, Eqn (16) turns into a
Fredholm equation of the first kind for the frequencies of
localized plasmons. In this case, it is better to use the
equation in the form of (17) or in another form. The electric
field is presented in the form of (15) with replacements
A! E, J e

p !M e � ÿiom0J e
p � �ioe0~e�ÿ1H
 HJ e

p [233].
Such equations give rise to a surface integral due to the
jump in permittivity at the boundary of the body from the
value e inside to ~e outside, namely

H
�
e
~e
ÿ 1

�
E � Emd�n�

�
1ÿ e

~e

�
� e

~e
HE :

Here, m is the external normal, and n is the coordinate along it,
counted from the surface.

The expansion of the field E in (16) or the field H in (17)
using N basis functions followed by application of the
Galerkin method allows solving the problem. Namely, a
homogeneous system of equations ÂE � 0 arises, where the
matrix Â � Îÿ Ĝ is defined according to (16), Î is the unit
matrix, the matrix Ĝ is determined by the right-hand side of
Eqn (16), and E is a column of the coefficients of the field
expansion. The matrices have a block form with the blocks
Â nn 0

nn 0 . The superscripts take the values x, y, z, and the
subscripts 1; 2; . . . ;N. Due to (12)±(14), the determinant
depends on k and k � k0

��
~e
p

. We have the dispersion
equation O�k; k0� � det Â�k; k0� � 0. A more detailed con-
sideration can be found in [49, 122]. When solving Eqn (17)
numerically, it is necessary to use differentiable volume finite
elements.

The task of determining the fields is related to the
dispersion problem. When the dispersion is determined, an
arbitrary value of the field at some point (or one of the
expansion coefficients) is specified, one of the equations is
removed, and the field is calculated using the resultingmatrix.
Such an approach is not very convenient for analytical
studies.

Let us consider an approach based on deriving the
dispersion equations in the form of functionals. For this
purpose, we perform scalar multiplication of Eqn (16) in the
form E � L̂E by the vector function F � and integrate over the
volume: L�F;E� � �F;E� ÿ �F; L̂E� � 0. In the solution of
Eqn (16), the quantity L�F;E�, i.e., the steady-state value of
the bilinear functional, determines the dispersion equation of
the problem in the form F�k0; k� � L�F;E� � 0. We do not
explicitly present the integrals that enter the dispersion
equation or other forms of dispersion equations based on
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combined integro-differential equations for the magnetic and
electric fields. From Eqn (16), it is possible to express k 2;
however, this quantity nonlinearly enters the integral opera-
tor, and then forF � E the dispersion equation takes the form

k 2 � �E;E��w
ÿ1 � 1=3� ÿ �E;H
 H ~GV:p:E�

�E; ~GE� : �18�

Here, the scalar products of vector functions �F;E� mean
integration over the meta-atom volume of common scalar
products F �E. Obviously, the operator H in (18) can be
transferred to E. Since inside the volume HE � 0, the volume
integral reduces to a surface one. In the low-frequency range,
one can use the model of ideally conducting metallic meta-
atoms [6, 23, 29], which leads to a surface integral equation.
The finite-impedance model also yields a similar equation. In
the presence of metallic and dielectric meta-atoms, combined
volume-surface integro-differential equations generally
appear. An analysis of ferrite inclusions is possible by taking
into account the electric J e

p � ioe0�eÿ ~e�E and magnetic
Jm
p � iom0�m̂ÿ Î �H polarization currents based on either

coupled integral equations for E and H or integro-differen-
tial equations with respect to any of the fields. It should be
noted that analyses of thin films with thickness t is possible by
introducing the electric s � ioe0t�e�o� ÿ ~e� and magnetic
ŝm � iom0t�m̂ÿ Î � surface conductivities.

Planar layered 1D HMMs are most simply and exactly
described based on matrix methods. In the case of isotropic
layers, it is convenient to introduce the normalized transfer
matrix of the layer with thickness t: a11 � a22 � cos#,
a12 � a21=r 2 � ir sin#, # � kzt, kz � �k 2

0 emÿ k 2
?�1=2. These

expressions involve the layer permittivity and permeability, as
well as the wave impedance in the normal direction z. For E-
or H-type waves, r � kz=�k0e� and r � mk0=kz, respectively.
If conducting sheets are present (graphene, etc.), they are
described by the matrix a11 � a22 � 1, a21 � sZ0, a12 � 0,
whereZ0 �

�����������
m0=e0

p
is the vacuum impedance. For each layer,

the matrix âk is introduced, and for several layers matrices âk
are multiplied. Let Â be the result of such multiplication for
an HMM of two or more layers in a period. The Floquet±
Bloch condition yields the dispersion equation cosc � X or
c � arccosX. Here, X � �A11 � A22�=2, and c is the phase
shift by the period d. It is convenient to write kzd �
�i ln �X�

���������������
X 2 ÿ 1
p

�.
Let there be a metallic (d1) and a dielectric (d2) layer, so

that d � d1 � d2. From the dispersion equation, we determine
kz � arccos �X�=d. This is just the component that also enters
dispersion equation (1). Besides it, both dispersion equations
contain k 2

?. However, these are different equations: Eqn (1)
corresponds to a homogeneous medium, i.e., it is macro-
scopic, while the derived equation involves permittivities and
thicknesses of layers, so that it is an exact microscopic
dispersion equation. Given the magnitude of k 2

? determines
the angle y � arctan �k?=kz� of the direction of wave
propagation with respect to the axis, this equation allows
numerical construction of an isofrequency surface (Fig. 13).
Just this surface should be considered the main one. Such a
surface consists of identical closed surfaces periodically
arranged in the k-space, corresponding to Brillouin zones
[50]. It is possible to construct such surfaces in the higher-
frequency zones. At the same time, the surface obtained from
Eqn (1) is a model one, based on homogenization. It
corresponds to low frequencies and the condition a5 l. For
homogenization, one should use the microscopic dispersion

equation. If there is no dissipation, then in Eqn (1) an
arbitrary value of k 2

? can be specified, which corresponds to
the possibility of propagation of very slow plasmon polar-
itons. In this case, by specifying the amplitude and the
propagation direction of the Bloch wave, we get all the
information about the exact fields in the layers, based on
which we can carry out the homogenization, i.e., determine
ê�o; k?; kz� [69]. However, the isofrequency surface based on
themicroscopic dispersion equation for Bloch waves does not
exactly correspond to Eqn (1), since at k?4 k0 we get k

2
zz < 0,

and at k? < k0 the value of k 2
zz is bounded from above.

Indeed, consider an E-plasmon polariton in an HMM
consisting of metallic layers in a base with the permittivity ~e,
corresponding to an extraordinary wave. Let this plasmon be
very slow along the layers: kx > k0

��
~e
p

, e < ÿ1. We have [36,
69]

X � cos#1 cos#2 ÿW sin#1 sin#2 :

Here, #1 � ÿid1�k 2
x � k 2

0 jej�1=2, #2 � ÿid2�k 2
x ÿ k 2

0~e�1=2, and
2W � r1=r2 � r2=r1. In this nondissipative case, X �
cosh j#1j cosh j#2j ÿW sinh j#1j sin j#2j. For propagation
along the z-axis, the condition ÿ1 < X < 1 must hold,
which is possible only if W > 0. However, W < 0, so that kz
is an imaginary quantity and corresponds to a band gap.

Now let the plasmon be slow, but k0 < kx < k0
��
~e
p

. Then,
the metallic medium is nontransparent, and the dielectric
medium, on the contrary, is transparent:

X � cosh j#1j cos#2 � iW sinh j#1j sin#2 ;

2W � i

�
d2j#1j
d1jej#2 ÿ

d1jej#2
d2j#1j

�
:

From the inequality, a condition follows:

1ÿ 1

cosh j#1j cos#2 < jWj tan#2 < 1� 1

cosh j#1j cos#2 :
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Figure 13. (Color online.) First Brillouin zone of a planar layered

dissipation-free HMM based on the rigorous dispersion equation at

d � 200, lp � 100, eL � 10, ed � 3:5, tm � 50 (curves 1±4) and tm � 100

(curve 5) for the wavelengths 680 nm (curve 1), 650 nm (curve 2), 600 nm

(curve 3), 550 nm (curve 4), and 500 nm (curve 5).
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If the dielectric layer in nonresonant, the cosine and the
tangent are positive. If both layers are electrically thin, then

1ÿ 1

1� ÿj#1j2 ÿ # 2
2

�
=2
< jWj#2 < 1� 1

1� ÿj#1j2 ÿ # 2
2

�
=2

:

Now,

2jWj �
���������������������
k 2
x � k 2

0 jej
k 2
0~eÿ k 2

x

s
ÿ

���������������������
k 2
0~eÿ k 2

x

k 2
x � k 2

0 jej

s
:

The maximal deceleration of the plasmon polariton means
that kx � k0

��
~e
p

, jej � 1 [69, 122]; therefore, a region always
exists where the above condition is fulfilled. If the polariton is
fast along the layers, then in the perpendicular direction wave
propagation takes place. This means that Eqn (1) should be
used for homogenized PCs without considering periodic
microstructure, in which the component kz is defined to
2np=d and in this sense can take arbitrarily large values at
k0d5 1, which corresponds to the homogenization. How-
ever, Eqn (1) can be applied to the determination of one of the
components of the permittivity, if another component and the
wave vector are found from independent equations. The
ordinary H-wave for metal-dielectric HMMs is of no interest.

In matrix approaches, it is possible to consider wave
matrices coupling the amplitudes of waves in two directions,
as well as to use the Berreman-type 4� 4 matrices that
appear in the case of anisotropic conducting surfaces, like
graphene, and anisotropic layers. The dimension of this
matrix is due to the presence of four tangent field
components in a general case. The fourth order of the
Fresnel equation generally yields four waves (with both
directions taken into account) for a homogeneous aniso-
tropic layer. The problems of diffraction by finite and semi-
infinite planar layered structures are also easily solved using
the transfer matrices [69, 123]. They allow determining the
input impedance Zin at the HMM boundary. Equating Zin

to the impedance of vacuum, we get the dispersion equation
for surface plasmons k? � k0�1ÿ Z 2

in�1=2 along the HMM.
The strongly reactive (almost imaginary) impedance leads

to slow plasmons. The inductive impedance leads to a
forward surface plasmon polariton, and the capacitive
impedance to a backward one [123].

4.2 Homogenization, methods of averaging,
and isofrequency surfaces
Homogenization is a procedure that determines the material
parameters of a homogeneous (uniform) medium based on
the solution to the electrodynamic problem. Correspond-
ingly, the waves in a homogeneous medium and in a
structured PC should be in some sense equivalent, as should
the corresponding structures with respect to diffraction. For
diffraction, the Ewald±Oseen extinction theorem must hold;
therefore, the structure must havemany periods and the fields
should be considered in the far-field zone (compared to the
period).

Several methods of introducing material parameters are
known [89]. The simplest homogenization of a layered
bilayer-periodic AM including the HMM in the low-
frequency limit without considering the spatial dispersion is
described by the equations [62±69]

e? � exx � e1d1
d
� e2d2

d
; ezz � ek �

�
eÿ11 d1
d
� eÿ12 d2

d

�ÿ1
;

�19�

where e1 is the permittivity of the metal and e2 is the
permittivity of the dielectric. If the layers possess magnetic
properties, then for the permeability tensor equations like
(19) can also be written. With dissipation considered, the
components of (19) are complex-valued.

Figure 14 presents the results of permittivity calculations
based on (19) according to Ref. [39] (where the notations
ek � exx, e? � ezz are accepted). The homogenization with the
spatial dispersion taken into account was considered in [67±
69, 234]. In particular, consideration of the fields in the layers
and the twoFresnel equations for ordinary and extraordinary
waves yields [69]

exx� kÿ20

�
k 2
x� k 2

1zd
ÿ2�d 2

1� d1d2� � k 2
2zd
ÿ2�d 2

2 � d1d2�
�
; �20�

60
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Figure 14. (Color online.) Dielectric permittivities. (a) Planar layered HMM: real parts of permittivity for a planar layered Ag-TiO2 structure with 35%

silver, calculated based on the effective medium theory. (b) Wire HMM: real parts of permittivity for Ag-Al2O3 with 15% silver. Hyperbolic regimes of

type I and II and the ENZ (epsilon near zero) regions are highlighted. (Data from [39].)
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ezz � kÿ20 k 2
x

�
�
1ÿ k 2

1zd
ÿ2�d 2

1� d1d2e2=e1� � k 2
2zd
ÿ2�d 2

2� d1d2e1=e2�
k 2
x � k 2

1zd
ÿ2�d 2

1� d1d2� � k 2
2zd
ÿ2�d 2

2 � d1d2�
�ÿ1

:

�21�

In the simplest case d1 � d2, from both (19) and (20), (21), it
follows that exx � �e1 � e2�=2, ezz � 2e1e2=�e1 � e2�. It is
interesting that the same result with the depolarization taken
into account is obtained by Garnett±Bruggeman homogeni-
zation. The ENZ region for ezz arises at e1 � 0, while for the
component exx the corresponding condition is e1 � ÿe2. For a
dissipative metal with e1 � e�o� and a nondissipative dielec-
tric with e2 � ~e we have

e 0xx �
1

2

eL � ~eÿ o2
p

o2 � o2
c

; e 0zz �
2~e
�
e 0xx�e 0xx ÿ ~e� � e 00 2xx

�
e 0 2xx � e 00 2xx

:

It follows that the condition for the existence of such an
HMM is the inequality e 0xx < 0 oro � �o2

p=�eL � ~e� ÿ o2
c�1=2,

since in this case always e 0zz > 0. The condition e 0zz < 0, e 0xx > 0
is also possible, and it means a transition from an HMM of
the second type to an HMM of the first type. In this case,
ÿ~e < e 0 < 0, which is valid in the region op=

�������������
eL � ~e
p

<
o < op=

�����
eL
p

. It is possible to obtain the hyperbolicity
regions from the general relations (19)±(21), the result
depending on kx, i.e., on the spatial dispersion. The
corresponding results are presented in Fig. 15 for real-valued
kx. In the case of diffraction of a plane wave incident from a
vacuum, kx < k0. For the emission of a dipole in an infinite
HMM, there is no such restriction, and kx is complex-valued.
Since the signs of �kx and �kz can be chosen independently,
bulk plasmon polaritons in four directions take place. The
above components are related by the dispersion equation.
Having calculated the Poynting vector, we can determine the
complex-valued components. In particular, hSxi determines
k 00x . On the other hand, the Green's function for the HMM is
found by expansion in plane waves, where the integration is
performed over real components [131, 233]. Figure 4 presents
the results of the p- and s-polarizedwave diffraction for layers
of wire and planar layered HMMs according to [39].
Analogous results for the diffraction and homogenization in
a wire HMM are presented in Ref. [235].

Consider an approach to homogenization based on the
effective medium theory, determining the permittivity of the
composition in the low-frequency limit [95, 96, 235±238]. The
Maxwell models or formulas (weak scattering approxima-
tion) [96] e eff � ~e

�
1� 3d�eÿ ~e�=�2~e� e�� are often used, as

are the J K M Garnett and D A G Bruggeman models
(effective field model) and a number of other models. In our
case, d � d1ld is the concentration of metallic layers.
Commonly, the rigorous formulas are obtained for spherical
particles in the low -frequency limit, but they can be extended
to ellipsoids and cylinders. Thus, the Garnett formula takes
the form

e eff ÿ ~e
L�e eff ÿ ~e� � ~e

� d
eÿ ~e

~e� L�eÿ ~e� ; �22�

and for the Bruggeman formula we have

d
e eff ÿ e

e eff � L�eÿ e eff� � �1ÿ d� e eff ÿ ~e
e eff � L�~eÿ e eff� � 0 : �23�

Here, L are the depolarization factors (coefficients) that
have different values for different directions of the field.
Therefore, formulas (22), (23) determine the components of
tensor effective permittivities. For a cylinder, Lk � 0,
L? � 1=2. In the case of spherical particles, Lx � Ly �
Lz � 1=3, and formulas (22), (23) turn into formulas well
known in the literature [97]. For a metallic layer, one should
take Lz � 1, Lx � Ly � 0. From the Garnett formula, in the
case of a layered HMM, we have exx � ~e� d1=d�eÿ ~e�,
ezz � ~e�eÿ d~e�=�eÿ d�eÿ ~e��, which coincides with (19). As
can be easily checked, the same result follows from the
Bruggeman formula. For an HMM consisting of metallic
cylinders with length l in a lattice a� a� b �l < b�, from
both formulas it follows that ezz � ~e� d�eÿ ~e�, exx �
~e
�
1� 2d�eÿ ~e�=�e� ~e��. Here, the concentration of the

cylindrical meta-atoms is d � pr 2l=�a 2b�. As above, it is
not difficult to derive the conditions under which such an
AM is an HMM. The Garnett formula that has the
restriction d < 1=3 is seen to be valid in a planar layered
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Figure 15. (Color online.) Spatial dispersion: values of (a) real components

e 0xx (solid curves) and e 0zz (dashed curves) and (b) imaginary components

e 00xx (solid curves) and e 00zz (dashed curves) depending on the normalized

component of the wave vector kxd. Curves 1: k0d � 0:1, d1=d � 0:1;
curves 2: k0d � 0:1, d1=d � 0:4; curves 3: k0d � 0:5, d1=d � 0:4.
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HMM and under the condition 1=3 < d < 1. Figure 16
presents the corresponding results of homogenization
(dependence of permittivity components on frequency) for
an HMM of finite-length wires (see Fig. 1).

If the homogenization is performed, i.e., the tensor
ê�k0; kk; k?� is determined, then, according to (1) and (9), we
have

e 0k�k 0 2? ÿ k 00 2? � � 2k 0?k
00
?e
00
k

e 0 2k � e 00 2k
�
e 0?�k 0 2k ÿ k 00 2k � � 2k 0kk

00
k e
00
?

e 0 2? � e 00 2?
� k 2

0 ;

�24�
e 00k �k 0 2? ÿ k 00 2? � ÿ 2e 0kk

00
?k
0
?

e 0 2k � e 00 2k
�
e 00?�k 0 2k ÿ k 00 2k � ÿ 2e 0?k

0
kk
00
k

e 0 2? � e 00 2?
� 0 :

�25�
Since the tensor êmust be the same for both the ordinary and
the extraordinary waves, the equations

k 0 2k ÿ k 00 2k � k 2
0 e
0
?�k0; kk; 0� ; 2k 0kk

00
k � k 2

0 e
00
?�k0; kk; 0� �26�

should also be valid. Using (26) without dissipation, it is
possible to present Eqn (1) in the form

k 2
?

ek�k0; kk; k?� �
k 2
0 e?�k0; kk; 0�
e?�k0; kk; k?� � k 2

0 : �27�

However, relations (26) follow from (24), (25) when k? � 0,
so that actually we have two real-valued equations, (24), (25),
for four variables, k 0?, k

00
?, k

0
k, and k

00
k . The other two equations

are given by the microscopic dispersion equation in the form
O�k; k0� � 0 or in the form o � o�k�. It is necessary to
separate both functions into real and imaginary parts and
equate them to zero. For four variables, we get four
equations, from which, in principle, these variables can be
determined for given k0, i.e., they cannot be unbounded. In a
nondissipative model, substituting the real-valued function
o � o�k� into (1), we get the isofrequency surface on which
the components kk, k? change independently. However, this
surface is no longer an ellipsoid or hyperboloid of revolution
even with the frequency dispersion taken into account, and
the spatial dispersion bounds the components kk and k?.
Thus, the dissipation and spatial dispersion lead to the
boundedness of the wave vectors. In the first approximation
for the spatial dispersion we have [75, 88]

e?�k; k0� � e?�k0� � a?jl�k0�kjkl ;
ek�k; k0� � ek�k0� � akjl�k0�kjkl ;

where summation over the repeating indices is implied. In the
above-mentioned papers [36, 37], the component kk was
complex and was determined from the complex Bloch
dispersion equation, while k? � kx was considered real-
valued. Let k? > k0

��
~e
p

and the dissipation be absent. Then,
the quantity kz is imaginary. In this case, e? < 0, but the
corresponding term in (1) does not change sign.

Thus, the homogenization for HMMs requires determin-
ing two scalar complex quantities that should be found
based on Maxwell's equations. There are six such scalar
equations. In the general case of a complex symmetric
(elj � ejl) non-Hermitian tensor of a nongyrotropic AM
with six complex components, the number of equations
corresponds to the number of unknown components. In
the symmetric Casimir description, if the tensors ê and m̂ can
be simultaneously diagonalized, there are also six complex
unknowns. For a nondissipative gyrotropic uniaxial med-
ium, the Onsager±Casimir conditions should be taken in the
form elj � e �jl . In the presence of dissipation in such a
medium, the permittivity tensor becomes non-Hermitian;
however, for the off-diagonal elements, the antisymmetry
conditions can be written as elj � ÿejl. Here, four complex
unknowns are present. In the AM, it is possible to introduce
independently the sublattices for meta-atoms contributing
to electric and magnetic polarization (which is impossible in
systems of natural substances). These sublattices can be
rotated (independent of the possibility of technological
implementation of such anAM).Generally, the diagonaliza-
tion of ê and m̂ is impossible, and then the number of
unknowns exceeds the number of equations, which indi-
cates the limited nature of introducing m̂. A substantial
excess occurs in the symmetric bianisotropic model with
four tensors (5). Here, it is necessary to use the symmetry
conditions [238±240].

If we approximate the material parameters in some way,
e.g., by expansion in powers of k0 and k, then the
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Figure 16. (Color online.) Real values of e 0xx and ÿe 0zz (solid curves) and

negative imaginary parts e 00xx and e 00zz (dashed curves) of (a) exx and (b) ezz
for homogenization based on the Garnett formula: r=a � 0:1, l=b � 0:5
(curves 1); r=a � 0:2, l=b � 0:9 (curves2). Theparameters a � b � 100nm,

op � 1:9� 1016, oc � 5� 1013 Hz, eL � 10, ~e � 3 are used.

December 2019 Hyperbolic metamaterials: production, properties, applications, and prospects 1191



homogenization can be executed by determining the expan-
sion coefficients from the solution to the inverse problem,
minimizing the discrepancy between the exact dispersion
and the dispersion determined from the Fresnel equation
[229]. For homogenization of uniaxial PCs, one can use
Eqns (24), (25) and the rigorous microscopic Bloch disper-
sion equation O�k; k0� � 0. However, the latter cannot be
resolved with respect to two components kx�k0� and kz�k0�.
Therefore, it is necessary to formulate two more real-valued
equations or determine one of the components of the
complex permittivity tensor. It is simpler to specify the
real-valued component kx and to determine kz from the
complex Bloch equation [36, 37]. Such homogenization is
possible by solving the inverse problem of plane wave
diffraction.

In the optics of homogeneous magnetodielectric media,
besides the Fresnel equation k 2 � k 2

0 em, the wave impe-
dance Z � Z0

�������
m=e

p
,H � Z�k� E�=k takes place. However,

the introduction of impedances for PCs is ambiguous. It is
also impossible to manage with one impedanceÐ the
matrix of impedances is required, the elements of which
depend on the polarizations and wave vectors. Neverthe-
less, for a planar layered HMM, it is possible to choose the
polarization so that there will be only three components, for
which the wave impedance can be introduced. The use of the
impedance for homogenization in [62] led to the appearance
of magnetic properties in purely dielectric structures and
imaginary permittivities for nondissipative structures. For
such PCs, vg � Hko�k� coincides in the direction with the
averaged Poynting vector hSi � 
Re �E�H ���=2. How-
ever, for dissipative PCs, the coincidence is absent.
Instead, hSi coincides in direction with k 00, since the energy
moves towards dissipation. In this case, k 0=jk 0j 6� k 00=jk 00j,
since the phase and energy move in different directions.

The condition for the existence of a backward wave is the
inequality k 0k 00 < 0. Let us denote nE � hSi=jhSij. This unit
vector becomes known if the dispersion equation is solved:
the fields and the Poynting vector are found (to an arbitrary
factor). Let us introduce the additional condition as
nE�k0; k� � k 00=jk 00j. For E-waves in a planar layered med-
ium, it is always possible to choose such a polarization, for
which ky � 0. Then, the normalized impedance of the layer is
Ex=�Z0Hy�. Let us denote it as rl � �k 2

0 el ÿ k 2
x �1=2=�k0el�.

Obviously, the averaged impedance is expressed as
hri � �r1d1 � r2d2�=d. If we write the fields in the layers,
impose the Floquet±Bloch conditions, and average the fields,
then the averaged impedance can be presented in the form
hri � hExi=�Z0hHyi�. Such an approach was used to derive
Eqns (20) and (21) [69].

Let ezz be determined, e.g., from equations (19) or (21),
and let e 0zz > 0. Then, from the Bloch equation, we determine
kz, and from (1) we have exx � k 2

z ezz=�k 2
0 ezz ÿ k 2

x �. It follows
that at e 0xx < 0 the bulk plasmon along x should be slow, and
k 2
x can be determined from the above relations, thus

determining the component exx that does not coincide with
(19). If the component exx is determined from the homo-
genization relations, then Eqn (1) determines ezz. The results
are different, which again emphasizes the ambiguity of
homogenization.

Let us consider the averaging method and calculation of
polarizations. In planar layered structures, the electric fields
have the formA�l exp �ÿikzlz� � Aÿl exp �ikzl�zÿ dl��, and the
magnetic fields rÿ1l fA�l exp �ÿikzlz� ÿ Aÿl exp �ikzl�zÿ dl��g
(up to Zÿ10 ). The coefficients are related via the wave transfer

matrices. The averaging means

hExi � dÿ1
�� d1

0

Ex1 dz�
� d

d1

Ex2 dz

�
:

In a similar way, hHyi and hEzi are averaged in the case of PCs
described by the Green's function (13). In this case,

hExi � 1

a 2b

� a=2

ÿa=2

� a=2

ÿa=2

� b=2

ÿb=2
Ex dx dy dz :

Actually, in the process of averaging, it is necessary to
calculate integrals of the form� a=2

ÿa=2
exp �ÿikx� dx � 2 sin �ka=2�

ka
� sinc

�
ka

2

�
:

The averaged fields contain sums of products of certain
coefficients with the functions sinc �. . .�. For wires infinite in
the z-axis direction, the domain of averaging over the
coordinate z should be chosen as �ÿL < z < L� at L!1.
To calculate the polarizations in a general case, one should
use volume densities of polarization currents J e

p �
ioe0�̂ea ÿ Î~e�E and Jm

p � iom0�m̂a ÿ Î �E. Here, the meta-
atoms included in a dielectric base with the permittivity ~e
have tensor macroscopic permittivity êa and permeability m̂a.

In the case of thin layers, the above permittivities can be
related to surface conductivities, considering the currents as
surface ones. In the case of impedance integral equations, the
surface currents are introduced, and all the results presented
below differ from those above only by replacing all volume
integrals with surface ones. The use of tensors êa and m̂a in a
planar layered structure or tensor conductivities of the layers
leads to the fact that the PC is generally not uniaxial and is not
described by effective permittivities like (7), but can support
Hk-waves. Although the above densities are directly related
to microscopic polarizations, one should introduce macro-
scopic polarizations, with which the macroscopic (averaged
or effective) AM parameters should be related.

The present method of homogenization is equivalent to
the derivation of macroscopic equations of electrodynamics
by averaging microscopic equations over a physically
infinitely small volume.

Below, for simplicity we do not consider magnetic
particles or quadrupole and higher-order multipole moments
in the polarization and the connection of homogenization
models (see [89, 241]). The permittivity of meta-atoms is
considered isotropic and homogeneous, êa � e. In this
approximation, the charge density has the form r �
ÿe0�eÿ ~e�HE. Since H��eÿ ~e�E� � 0, and inside a homoge-
neous particle HE � 0, we have �eÿ ~e�HE � ÿEH�eÿ ~e�.
Since the particle has a sharp boundary, H�eÿ ~e� �
ÿm�eÿ ~e�d�n�, where m is the external normal and n is the
coordinate along it. Thus, the charge density is a surface one.
However, we will integrate over the volume to allow
considering inhomogeneous particles, as well as because the
fieldE in the numerical implementation will be searched for in
the form of expansions. The functions in the expansions do
not satisfy such conditions separately, but their sum in the
limit satisfies them.

Consider a cell with the volume a 2b. The electric dipole
moment of a unit volume is defined as

P e � 1

a 2b

�
V

rr�x; y; z� dx dy dz :

1192 M V Davidovich Physics ±Uspekhi 62 (12)



The magnetic dipole moment of the unit volume (magnetiza-
tion) is defined as

M � 1

a 2b

�
V

r� J e
p dx dy dz ;

and the magnetic polarization as P e � m0M. The above
quantities should also be averaged. Under homogenization,
the equations have the form

hDli � e0eljhEji � e0~ehEli � hP e
l i ; �28�

hBli � m0mljhHji � m0hHli � hPm
l i :

These are two systems of equations. If we suppose that the
effective permittivity and permeability tensors can be reduced
to a diagonal form, then the components elj and mlj are
determined from each system of three equations. In a general
case of averaging the constitutive equations (5), the number of
unknowns is greater than the number of equations, so it is
necessary to impose symmetry conditions or other additional
conditions.

As an example, consider the homogenization of an HMM
consisting of metallic nanowires (cylinders) with length l and
radius r, embedded in a dielectric matrix and forming a lattice
of parallelepiped cells with the dimensions a, a, b (see Fig. 1).
We consider it following Refs [29, 49, 242]. In the case of
infinite wires, we can finally calculate the limit at b > l!1
or consider the appropriate problem with the transformed
Green's function (13). To derive a dispersion equation, let us
use the volume integral equation method. Consider the field
inside the cylinder in a cylindrical coordinate system. For this
purpose, we take the expansion of the electric field inside the
cylinder and its solution satisfying the Maxwell's equations,
boundary conditions at the cylinder's boundary, and Flo-
quet±Bloch conditions. The solution of Eqn (16) provides the
fulfilment of all these conditions. To avoid the use of a large
number of probe basis functions, it is desirable to subordinate
them to theHelmholtz equation. In the case of a longwire, the
dominant contribution comes from the component Ez. The
component Er barely contributes to the transverse polariza-
tion. The component Ej contributes to Pm

z if the radius of the
cylinders is sufficiently large. Consider the decomposition of
Ez:

Ez �
XN
n�1

Ezn cos

��2nÿ 1�pz
l

�
J0�rkn� : �29�

Here, we have chosen the azimuthally independent decom-
position that is well consistent with the problem. In a general
case, one should use double summation:

Ez�r;j; z� �
XM

m�ÿN

XN
n�0

EznmJm�rkm� cos �knzz� exp �ÿimj� :

The even decompositions with respect to z are considered,
since the odd ones correspond to higher frequencies, and their
contribution to the dipole moment is absent. In these
decompositions, knz � �2nÿ 1�p=l and km � �k 2

0 eÿ k 2
nz�1=2;

therefore, they satisfy the Helmholtz equation. Other compo-
nents are decomposed analogously. An additional condition
that can be imposed on the field inside the cylinder to reduce
the number of unknown components is HE � 0, or
qrEr=qr� qEj=qj� rqEz=qz � 0. Ignoring the azimuthal
dependence, we obtain the relation between the radial

component and the axial one. The azimuthal dependence is
important for large radii. In this case, in addition to Pm

z , it
gives rise to P e

x and P e
y .

In the first approximation, we express the polarization
current as J e

p � ioe0�eÿ ~e�z0Ez�r; z�. For the axial depen-
dence, we take two terms: Ez�r; z� � E0J0�rk0��
E1J0�rk1� cos �k1zz�. The lower the frequency, the better this
approximation. In the low-frequency limit, the polarization
current is determined by the conduction current alone, which
vanishes at the ends of the wire. In the model of ideally
conducting wires, the surface density of current can be
replaced with an axial current, and the boundary conditions
can be imposed on the surface, Ez�r; z� � 0 [24, 29], which is
equivalent to the Pocklington approximation in antenna
theory. However, in real metals at low frequencies,
e � ÿis=�oe0�, the penetration depth d > r, and the field is
distributed following the law J0��1ÿ i�r=d�, where
d � ��������������������

2=�om0s�
p

, i.e., it does not depend much on r. At
frequencies where e � e 0 < 0, the distribution has the form
I0�r�k 2

0 je 0j � k 2
1z�1=2�. In these cases, the volume density of

polarization current can be considered constant and approxi-
mated by a linear axial current. The equation determining the
component Ez�r; z� has the form

Ez�r; z� � w
�

q2

qz 2
� k 2

��
V

~G�r; z;jj r 0; z 0;j 0�Ez�r 0; z 0;j 0�d3r 0:
�30�

Here, the element of volume is d3r 0 � r 0 dr 0 dj 0 dz 0. The
function ~G, obtained from (13) by transition to the cylindrical
system of coordinates, can be represented as [233]

~G�r; z;jjr 0; z 0;j 0� � 1

a 2b

X1
n�ÿ1

X1
j�ÿ1

X1
l�ÿ1

X1
m�ÿ1

1

k 2
jl�k 2

zm ÿ k 2

� exp
ÿÿikzm�zÿ z 0� ÿ in�jÿ j 0��Jn�rkjl�Jn�r 0kjl�: �31�

The integration over j 0 eliminates the angular dependence in
Eqn (30). Therefore, Eqn (30) can be presented in a more
convenient form:

Ez�r; z� � w
� l

ÿl

� r

0

~G0�r; zjr 0; z 0�Ez�r 0; z 0�r 0 dr 0 dz 0 ;

~G0�r; zjr 0; z 0�
�32�

� 2p
a 2b

X1
n�ÿ1

X1
l�ÿ1

X1
m�ÿ1

�k 2 ÿ k 2
zm�J0�rknl�J0�r 0knl�
k 2
nl � k 2

zm ÿ k 2

� exp
�ÿikzm�zÿ z 0�� :

In these relations, knl � �k 2
xn � k 2

yl�1=2. Let us use two
conditions to obtain the dispersion equation. The first one is
found by integrating Eqn (32) over the cylinder volume. The
second one is obtained by multiplying both sides of this
equation by Ez�r; z� and integrating over the volume. The
second-order determinant of the resulting system of equa-
tions should be zero, which yields the desired approximate
dispersion equation. An equivalent dispersion equation is
derived from the same conditions for Eqn (30) using
integration by parts. With the homogeneity kept in mind, to
determine the field, we assume E0 � 1, and E1 is found from
any of the equations of the system. Specifying k0 and kz, we
determine kx from the dispersion equation. In our simplest
case, the effective parameters have the form m̂ � Î,
exx � eyy � ~e, ezz � ~e� eÿ10 hP e

z i=hEzi. To calculate the mean
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values, theGreen's function representation (13) is convenient.
It incorporates functions similar to g�x; kxn� � exp �ÿikxnx�.
We have



g�kxn�

� � 1

a

� a=2

ÿa=2
exp �ÿikxnx� dx � sinc

�
kxna

2

�
;

hP e
z i � 4E1e0�eÿ ~e�rlaÿ3 J1�rk1�

k1
; �33�

ezz � ~e�
4E1�eÿ ~e�rlJ1

� ��������������������������������
k 2
0 r

2eÿ �pr=l �2
q �

a 2bhEzi
��������������������������
k 2
0 eÿ �p=l �2

q :

In the region of very low frequencies, k 2
0 r

2e � ÿsZ0k0r
25

�pr=l �2 and jk 2
0 r

2ej5 �pr=l �2 if k0l5 p2=�sZ0l �. Then,

J1

� ������������������������������
k 2
0 r

2eÿ
�pr
l

�2r �
� iI1

�
pr
l

�
� i

pr
l
:

In plasmonics, oc 5o < op=
�������������
eL � 1
p

with weak dissipation
e � e 0 < 0, and for jk 2

0 r
2ej5 1, the Bessel function equals

i��pr=l �2 � jk 2
0 r

2ej�1=2. The last quantity can be used in a wide
range of frequencies k0r5 1. In the plasmonic range,
e 0zz � ~eÿ 4�E1=hEzi��je 0j � ~e� � r 2l=�a 2b�. Therefore, the
hyperbolicity arises at

ÿe 0 > ~e
�

a 2b

4
ÿ
E1=hEzi

�
r 2l
ÿ 1

�
� ~eg : �34�

We also have e 0 � eL ÿ o2
p=�o2 � o2

c� � eL ÿ o2
p=o

2, so that
the hyperbolicity arises at low frequencieso2 < o2

p=�~eg� eL�,
since g4 1.Moreover, for the hyperbolicity, the losses should
be small. That is why HMMs, strictly speaking, are
implemented at ultralow temperatures, when oc can be
reduced by a few orders of magnitude. The limit transition
l!1, b!1 at l � b in relation (34) makes it valid in the
case of infinitely long wires. For ideally conducting wires, this
problem was first considered in Ref. [6], and with the field
penetration taken into account in Ref. [49]. Increasing r can
soften these requirements, but in this case, a difference
between mzz and unity arises. Consider this case. For this
aim, the componentEj should be taken into account, without
which hMzi � 0. As the simplest approximation, let us take
the component Ej�r; z� � E3J1�rk0�, which corresponds to
Hz�r; z� � iZ0

��
e
p

E3J0�rk0�. We have mzz � 1� hMzi=hHzi
and the averaged component of the magnetic moment

hMzi � 2piloe0�eÿ ~e�E3a
ÿ2bÿ1kÿ30 �rk0�2J2�rk0�

� pr 4lk 2
0 a
ÿ2bÿ1�eÿ ~e�E3

Z0

������ÿep
4

:

The region of hyperbolicity (indefinite metrics) takes place at
hMzi > hHzi. For m 0zz < 0 and e 0zz < 0, the PC is not anHMM.
In this case, it supports backward waves and Hk waves. The
case of large radii r4 l is also possible. Such conducting discs
mainly give rise to mzz and ezz � ~e. Wire ring structures are
simpler to simulate and more exactly correspond to a
magnetic HMM [107, 109]. In the Landau±Lifshitz
approach, an infinite PC is described by the permittivity
tensor ê alone.

The simple relations considered with a few terms in the
field approximation taken into account can be improved to be
more precise. In particular, considering Ej requires the

solution of the approximate equation for this component.
Then, all components of the vector potential should be taken
into account in the cylindrical system of coordinates [233]:

Ar�r; z� �
�
V

~G�r; z;jjr 0; z 0;j 0�Jj�r 0; z 0� sin �jÿ j 0� d3r 0 ;

Aj�r; z� �
�
V

~G�r; zjr 0; z 0�Jj�r 0; z 0� cos �jÿ j 0� d3r 0 ; �35�

Az�r; z� �
�
V

~G�r; z;jjr 0; z 0;j 0�Jz�r 0; z 0� d3r 0 :

Integrating over the angle, we find that the integration in (35)
is executed over the meridional cross section of the cylinder
with the functions ~Gr�r; zjr 0; z 0� and ~Gj�r; zjr 0; z 0� for the
first two relations and with the function ~Gz�r; zjr 0; z 0� for the
last one. Here, ~Gr � ÿi ~G1 and ~Gj � ~G1, and the function ~G1

differs from ~Gz � ~G0 by the fact that, instead of the Bessel
functions J0, it involves the Bessel functions J1.We now arrive
at the following representation of the components:

Ez�r; z� � �ik0~e�ÿ1Z0

�
rÿ1

�
q
qr

��
r
�
qAr

qz

��
�
�
k 2 � q2

qz 2

�
Az

�
;

Ej�r; z� � ÿik0Z0Aj ;

which leads to coupled integral equations for the field
components, since Jz � ioe0�eÿ ~e�Ez, Jj � ioe0�eÿ ~e�Ej.
In an equation like (16), an additional term arises, and an
equation for Ej additionally appears. Disregarding Ez and
Er, we find

Ej�r; z� � k 2w
� l=2

ÿl=2

� r

0

~Gj�r; zj r 0; z 0�Ej�r 0; z 0�r 0 dr 0 dz 0:
�36�

A fully rigorous model corresponds to considering the
angular dependence for all three components of the field E.
It is possible to constructmodels based on integro-differential
equations for the magnetic field as well.

In [243, 244] and a number of other papers, it is proposed
to use meta-atoms of other types in the form of dielectric balls
of two radii, embedded in two cubic sublattices with radius a,
shifted along each of the coordinates by a=2. In the above
papers, it was stated that under the coincidence of the
frequencies of two resonances in two types of balls, when the
first resonance is electric-dipole and the second one is
magnetic-dipole, the metamaterial will exhibit the properties
of a left-handed medium, i.e., will be described by scalar
effective material parameters e eff < 0 and m eff < 0. Here, to
disprove this statement, we consider a simple model PC with
the inclusion of dielectric cylinders with the parameters l5 r,
in which it is possible to ignore all components of the electric
field except Ej. In an isolated ball or cylinder, only this
azimuth-independent component (alongside Hr and Hz) is
present in the fundamental oscillationH01d, which ismagnetic-
dipole [243, 244] and can create a magnetic moment. The field
of such a mode is described by one component of the vector
potential Aj � A0jJ1�r~k� cos �kzz�, ~k � �k 2

0 eÿ k 2
z �1=2. In a

PC, no azimuthal symmetry is possible, but the contribution of
nonsymmetric terms is small and can be disregarded. The
contribution of the component Ar � A0rJ1�r~k� sin �kzz� at
small ratio l=r is smaller than that of the components Aj and
Az � A0zJ0�r~k� cos �kzz�. It is possible to take all three
components or two components into account. In the latter
case, one should putA0z � 0 to ensure the divergence-freedom
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property of the field, and in the former case one can introduce
one amplitude only, since the continuity equation holds.
Indeed, we have

HA � �A0r~kÿ kzA0z�J0�r~k� sin �kzz� ;
and also

Er � ÿiZ0�k0~e�ÿ1
�
A0rk

2
z � 2A0zkz~k

�
J1�r~k� sin �kzz� ;

Ez � ÿiZ0�k0~e�ÿ1
�
A0z�~k 2 ÿ k 2

z � � A0r~kkz
�
J0�r~k� cos �kzz� :

Imposing the condition HE � 0, we find that A0r can be
arbitrary and A0zk

2 � 0, i.e., A0z � 0. If we assume Er � 0,
i.e., take A0rkz � 2A0z~k � 0, then the divergence freedom
condition HE � qEz=qz � 0 leads to the requirement that
Ez � 0, i.e., the existence of only one nonzero component
Ej. In our case, it is convenient to take arbitrary field
amplitudes

Ej � E0jJ1�r~k� cos �kzz� ; Er � E0rJ1�r~k� sin �kzz� ;
Ez � E0zJ0�r~k� cos �kzz�

and impose the divergence-freedom conditionE0r � E0zkz=~k.
In this case, Eqn (36) becomes modified and completed with
two other equations. The independent components E0z and
E0j will determine the components ezz and mzz.

We assume the absence of dissipation, so that it is
necessary to investigate the possibility of satisfying the
condition mzz < 0. In general, Ej�r; z� should be decom-
posed in a series of the form (29)

Ej�r; z� �
X1
m�0

EjmJ1�rkm� cos �kmzz�
sin �kmzz�

� �
;

and the coefficients should be sought. In this expression,
the cosine corresponds to the even oscillations with
respect to z, and the sine corresponds to the odd ones.
The eigenfrequencies of odd oscillations are higher. We
consider a simple approximation of the fundamental
oscillation H01d: Ej�r; z� � Ej0J1�r~k� cos �kzz�. In [245,
246], the problem for an isolated cylindrical dielectric
resonator is solved numerically, and it is shown that this
approximation is in good agreement with the exact
solution. The component Ej�r; z� is related to the
components Hz�r; z�� iEj0~kJ0�r~k� cos �kzz�=�k0Z0� and
Hr�r; z� � ÿikzEj0J1�r~k� cos �kzz�=�~kZ0� by the Maxwell
equations.

Note that the electric field, as well as the magnetic one, is
divergence-free and satisfies Eqn (36). Such a field creates no
electric dipole moment. Due to the homogeneity, we set
Ej0 � 1. The magnetic dipole moment is expressed as

hMzi � 2pioe0�eÿ ~e�lr 2aÿ2bJ2�r~k� sinc
�
kzl

2

�
:

Here, sinc �kzl=2� � 1 if the magnitude of kz is not too large,
i.e., angle y is not too small. Since it is assumed that e > ~e, for
a negative component of the magnetic field, the value of hHzi
should be imaginary and negative. Note that Hz is the
complete internal field, to which the microscopic induction
Bz � m0Hz corresponds (the microparticles possess no mag-
netic properties). The induction hBzi � m0mzzhHzi is macro-
scopic, just like the field hHzi. The model presented in [243,
244] for the action on a single particle of a plane wave with

subsequent summation of the dipole moment of the particles
in the PC, which does not account for the infinite number
of spatial harmonics, leads to an incorrect result, since
the external field is used. Since H � H� A, we have
Hz � rÿ1q�rAj�=qr or, according to (35),

Hz�r; z� � ioe0�eÿ ~e�
� l=2

ÿl=2

� r

0

�
rÿ1 ~G1�r; zj r 0; z 0�

� q
qr

~G1�r; zj r 0; z 0�
�
Ej�r 0; z 0� dr 0 dz 0:

For averaging, we use the Green's function representation
(13). Then,Hz�x; y; z� � qAy=qxÿ qAx=qy.Now, inEqn (15),
it is necessary to keep in mind that

J e
px � J e

pr cosjÿ J e
pj sinj ; J e

py � J e
pr cosjÿ J e

pj sinj :

This corresponds to the relations

J e
px � ÿioe0�eÿ ~e� sinj J1�~kr� cos �kzz� ;

J e
py � ioe0�eÿ ~e� cosj J1�~kr� cos �kzz� :

We have

Hz�r� � ioe0�eÿ ~e�
�
V

J1�~kr 0� cos �kzz 0�

�
�
cosj 0

q ~G�rÿ r 0�
qx

� sinj 0
q ~G�rÿ r 0�

qy

�
d3r 0 : �37�

Let us present the final averaged values (see [242]). For hEzi,
we get

hEzi � w
a 2b

X1
n; j; l�ÿ1

1

k 2
xn � k 2

yj � k 2
zl ÿ k 2

0~e

� ÿk 2 ÿ k 2
zl

�
sinc

�
kxna

2

�
sinc

�
kyja

2

�
sinc

�
kzla

2

�
Injl ; �38�

where Injl denotes the integral

Injl �
�
V

exp
h
i
ÿ
kxnr cosj� kyjr sinj� kzlz

�i
��J0�rk0� � E1J0�rk1� cos �k1zz�

�
d3r 0 :

To calculate this integral, we make use of formulas [233, 247]:

exp
ÿ
ikxnr cosj

� � X1
m�ÿ1

im exp �ÿimj�Jm�kxnr� ; �39�

exp
ÿ
ikyjr sinj

� � X1
m 0�ÿ1

exp �im 0j�Jm 0 �kyjr� ; �40�

which we substitute into Eqn (38). As a result of angular
integration, a factor of 2pdmm 0 appears. The integration over z
yields

Injl � 2pl
X1

m�ÿ1
im
� r

0

Jm�kxnr�Jm�kyjr�Zl�r�rdr ; �41�

Zl�r� � sinc

�
klzl

2

�
J0�rk0�

� E1

sinc
��klz � k1z�l=2

�� sinc
��klz ÿ k1z�l=2

�
2

J0�rk1� :
�42�
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The final averaged component is expressed as

hHzi � ioe0�eÿ ~e�
a 2b

X1
n; j; l�ÿ1

Izl
1

k 2
xn � k 2

yj � k 2
zl ÿ k 2

0~e

� sinc

�
kxna

2

�
sinc

�
kyja

2

�
sinc

�
kzla

2

�
Irnj : �43�

In expression (43), it is necessary to calculate the integrals

Irnj �
� r

0

�
kxnanj�r� � kyjbnj�r�

�
J1�~kr�r dr : �44�

Generally, hHzi depends on kx and kz (for polarization with
ky � 0), so that it is senseless to speak about a negative value
of mzz at a definite frequency, as well as, generally, about
simultaneously negative e eff and m eff: this property for a
certain AM model at a given frequency can appear only in a
certain region of the isofrequency surface. It is more
convenient in this case to use the notion of negative
refraction, proving which requires the calculation of the
averaged Poynting vector and the quantity p � k



S�k0; k�

�
,

which can be called an index of the forward wave. The wave is
forward if p > 0, and backward if p < 0. In the presence of
dissipation, Re p should be used, since k 00



S�k0; k�

�
> 0. If we

take the first approximation

anj�r� � 4pJ1�kxnr� J1�kyjr�
kyjr

; bnj�r� � 2pJ0�kxnr�J1�kyjr� ;

then, even in this case, we have

Irnj � 2p
� r

0

J1�kyjr�
h
kxn
ÿ
J2�kxnr� � J0�kxnr�

�
� kyjJ0�kxnr�

i
J1�~kr�r dr : �45�

The integrals (44) should be calculated numerically. Note that
both in ezz and in mzz the dependence on eÿ ~e vanishes because
of cancellation. However, in Eqn (38), there are quantities
k 2 ÿ k 2

zl � k 2
0 eÿ �kz � 2pl=a�2, which can be negative, in

particular, they are always negative when e < 0. The above
decompositions converge, but clarification of the mzz sign
issue requires significant computational costs to calculate the
integrals (44) in double series. The asymptotic estimates at
great n and j indexes are difficult to obtain, since the
arguments of the Bessel functions vary in a wide range. This
difficulty is related to the cylindrical geometry of the problem.
To overcome this difficulty, we constructed a similar model
with square cylinders, for which the series summation can be
carried out analytically. Calculations based on this model
have shown that the condition of negative mzz is not valid. In
the case of spherical inclusions considered in [243], the PC has
a body-centered cubic lattice. A ball of one sort (size) is
located in the crystal cell center, and in the corners of the cube
are balls of the other size. Each such ball belongs to eight
adjacent cells, while only one eighth of each corner ball
belongs to an elementary cell. As a result, a rather compli-
cated configuration appears, which is difficult for analytical
investigation, while the numerical analysis allows clarifying
the structure of the fields only. The problem is solved much
more simply with cubes. The question about negative
refraction is much more easily answered by constructing
dispersion surfaces (see [248]).

For the averaging procedure, the initial equation is used.
For example, Eqn (38) follows from acting on Eqn (15) by the

operator ÿiZ0�k� kÿ1H
 H�. The averaging leads to
smoothing and singularity reduction, which is due to the
sinc �. . .� function. However, series of the (38) type still
converge slowly. To make use of Eqn (16), it is necessary to
exclude the small ball from the domain of integration over
dashed coordinates (source point coordinates), which is
inconvenient. In the model with ideally conducting particles,
the field does not penetrate into them. Correspondingly, the
model is constructed for a surface current density with the
surface equations [24, 29]. In this case, in performing the field
averaging, one has to omit the domain occupied by the
particle. If the problem is solved with sufficient precision,
the field inside such particles should be obtained as zero or
very small. Commonly, the size of the particles is small, and
the effect of such omitting is small even more so. Solving the
dispersion equation in the dissipative case requires the
calculation of the averaged Poynting vector hSi. Without
dissipation, hSi can be obtained by calculating the total
density of energy stored in the cell and the group velocity
hSi � vg�e0ehE 2i � m0hH 2i�=4. In both cases, it is necessary
to average the quantities EH �, EE �, and HH �. In these
quantities, the oscillating functions associated with spatial
harmonics are mutually canceled, which is why it is important
from the very beginning to use equations that have no
nonintegrable singularities. In the case of dissipation, the
cancellation of complex-valued exponential functions is not
complete: the factor exp �ÿ2k 00r�, which describes the
decrease in the energy flux towards the damping, remains.

4.3 Correspondence between rigorous
and model approaches
The rigorous approach does not allow determining dispersion
and exact isofrequency surfaces, including those in resonance
regions, at higher frequency branches or at any values of k,
including complex ones. The homogenization allows deter-
mining a type (1) model surface. The homogenization results
are valid for small k0d and kd, i.e., they should agree with the
rigorous approach in this limit. A better correspondence is
possible with several terms in the decomposition of permittiv-
ity in k0d and kd taken into account.

One of the homogenization methods consists of solving
the inverse problem of determining the coefficients in such
decompositions by minimizing the discrepancy for the above
surfaces or dispersions. This is also valid for two other
methods of homogenization, based on solving the inverse
diffraction problem and calculating the mean electric and
magnetic polarization. Also of importance is the model of a
homogeneous medium, namely, whether it accounts for the
magnetic permeability, the tensor character of permittivity
and permeability, the spatial dispersion, and cross-polariza-
tion. The last is determined from physical considerations. In
particular, at low frequencies, where e eff and m eff make sense,
the metallic structures of meta-atoms with ring currents
exhibit induced diamagnetism, i.e., 0 < m 0 eff < 1. This result
is demonstrated by the formulas presented in [59], which yield
for a PC of metallic balls having radius r in a cubic lattice at
low frequencies the value of m � 1ÿ 3d=�2� d�, where
d � 4pr 3=�3a 3�5 1.

The conclusion in [75] about the absence of noticeable
magnetic properties in the optical range is disputed in many
recent papers on artificial magnetism of metamaterials. The
introduction of such magnetism is a method of homogeniza-
tion, and if it is not used, an infinite PC is quite describable as
a dielectric AM only. Only some diffraction problems are an
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exception, in which the use of effective permeability is
convenient for describing the jumps of H. One cannot
manage without the tensor permeability (11) when describ-
ing magnon ferrite HMMs (10).

A rigorous description requires special consideration of
the role played by dissipation and spatial dispersion. As
mentioned above, the frequency (temporal) and the spatial
dispersion, as well as the related dissipation, substantially
affect the properties of metamaterials. The first manifests
itself already in the macroscopic properties of meta-atoms.
We will consider the role of spatial dispersion and dissipation
by the example of theHMMof graphene sheets studied in [36,
37, 44], where it was not taken into account. The dispersion
equation has the same form as above, namely, cosC �
X � cos#� irZ0s�sin#�=2. The model of graphene conduc-
tivity without spatial dispersion within the framework of the
Kubo±Greenwood approach and the method of nonequili-
brium Green's functions [249±251] is considered in a number
of publications [252±267]; in HMMmodeling, it was taken in
the form s � sinter � sintra, where the intraband sintra and
interband sinter conductivities depend on the chemical
potential mc and temperature T. For interband conductivity,
the temperature dependence (at kBT5 jmcj) can be ignored,
and then [263±267]

sintra�o; m;oc;T � � ÿie 2kBT
p�h 2�oÿ ioc�

j�mc;T � �
s0 intra

1� io=oc
;

�46�
sinter�o; m;oc; 0� � ÿie

2

4p�h
ln

�
2jmcj ÿ �oÿ ioc��h
2jmcj � �oÿ ioc��h

�
; �47�

j�mc;T � �
mc
kBT
� 2 ln

�
1� exp

�
ÿ mc
kBT

��
� ln

�
2� 2 cosh

�
mc
kBT

��
:

From the Drude-type formula (46), it follows that the
intraband conductivity is inductive, and it corresponds to
the DC conductance

s0 intra � e 2kBT

p�h 2oc

ln

�
2

�
1� cosh

�
mc
kBT

���
: �48�

For kBT5 jmcj in Eqn (46), one should take s0 intra �
�e 2=h��2jmcj=��hoc��, and for kBT4 jmcj, respectively,
s0 intra � 2�ln 2��e 2=h�kBT=��hoc�. Let the frequency not be
very high, joÿ iocj�h5 jmcj, which is true wheno�h5 jmcj and
oc�h5 jmcj. Then, the interband conduction is due to
capacitive susceptance

sinter � e 2oc�1� io=oc�
4pjmcj

�
1� i�1� io=oc�oc�h

jmcj
�

� e 2oc�1� io=oc�
4pjmcj

:

In this case, at low temperatures and low frequencies, we have
the total conductivity

s � e 2jmcj
2p�h 2oc�1� io=oc�

� e 2oc�1� io=oc�
4pjmcj

: �49�

This is inductive susceptance if

o2 < o2
c

ÿ
2m 2

c =�oc�h�2 ÿ 1
�
;

and capacitive otherwise. The real part of s (49) has the form

s 0 � e 2

h

2m 2
c � �oc�h�2�1� o2=o2

c�
2�hocjmcj�1� o2=o2

c�
: �50�

For o=oc 5 1 (high collision rate),

s 0 � e 2

h

2m 2
c � �oc�h�2
2�hocjmcj

� e 2

h

jmcj
�hoc

4
e 2

h
;

and for o=oc 4 1 (low collision rate),

s 0 � e 2

h

2m 2
c � �o�h�2

2�hocjmcjo2=o2
c

� e2

h

jmcj
�ho

oc

o
:

If the frequency is high �jmcj5 joÿ iocj�h�, the interband
conductivity is the inductive susceptance

sinter � e 2

4�h
� e 2jmcj
poc�h

2�1� io=oc�
: �51�

For o=oc 4 1, we have its real part s 0inter � e 2=�4�h�, and for
o=oc 5 1, it increases: s 0inter � �e 2=h��p=2� 2jmcj=�oc�h��.
Thus, in doped graphene at low dissipation in the frequency
band oc�2m 2

c =�oc�h�2 ÿ 1�1=2 < o5 jmcj=�h, the conductivity
is capacitive susceptance, and the slow E-plasmon along the
single film is backward [123]. Adding (46) and (51), we present
the dynamic conductivity in the form

s � e 2

4�h
� s0
1� io=oc

� s 0 � is 00: �52�

The cases of weak and strong spatial dispersion were
considered in [260]. To account for the spatial dispersion,
one should use the tensor conductivity. Such conductivity was
obtained in a general form [259±267], in the approximation of
relaxation time, and in the Bhatnagar±Gross±Kruk approx-
imation [267]. In the last case, we have the component sxx�o�:

sxx�o� � sintra�o�
�
1� v 2F

4�oÿ ioc�2
�
3ÿ 2i

o=oc

�
k 2
x

�
� sinter�o� : �53�

Here, vF � c=300. The component syy�o� is obtained by
symmetric replacement, and for sxy�o� � syx�o� we have

sxy�o� � sintra�o� v 2
F

2�oÿ ioc�2
�
1ÿ i

o=oc

�
kxky :

Now, the dispersion equation should be written using the
4� 4 transfer matrix and imposing the Floquet±Bloch
conditions. In the transfer matrix, both E-waves and H-waves
must be allowed for. We do not present the corresponding
cumbersome result. If the wave is considered to have ky � 0, it
is sufficient to deal with E-waves and the above dispersion
equation cosC � X, in which r � �k 2

0~eÿ k 2
x �1=2=�k0~e�.

According to Eqn (19) and the relation between the
permittivity and conductivity e? � ~e� isZ0, ezz � ~e; there-
fore, e 0? < 0 if the conductivity of graphene is inductive.
Considering Eqn (53), we can see that at large k 0 2x the
quantity ÿe 0? increases, limiting the growth of k 0 2x . However,
here, we have put ky � 0 and simplified the dispersion
equation. Generally, such an AM can no longer be described
by the diagonal tensor (7). The real values of ezz � ~e, kx, and
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under the condition k 2
0~e > k 2

x of r, too, follow from the fact
that the homogenization based on Eqn (19) for them means
the normal motion of a T-wave at an angle of y � p=2 to the
axis, when the electric field is transverse and there is no
longitudinal component of the current and losses. A T-wave
propagates freely (exciting no currents) through a set of
planes perpendicular to the electric field. However, in
reality, a T-wave in a system of such plane-parallel wave-
guides of dissipative conducting sheets possesses dissipation
and becomes a quasi-T wave, which leads to complex kx with
k 00x � 1=�dZ0s 0�.

In the considered models of graphene HMMs, the con-
ductivity of an isolated graphene sheet was used. Actually, it is
necessary to allow for environment (substrate) and adjacent
layers, e.g., in a graphene bilayer or the edges of nanostripes
[181±191, 253±269]. The corresponding quantum problem is
commonly solved numerically within the framework of the
density functional formalism, the molecular dynamics
method, and modifications of the strong coupling method.
In Refs [264, 265], for epitaxial graphene on a metal and
semiconductor, analytical expressions are obtained based on
the Anderson±Newns model Hamiltonian. Note that rela-
tions like (46), (47) are based on the approximate calculation
of integrals in the vicinity of Dirac points of the Brillouin
zone. The conductivity of graphene is studied in external
electric and magnetic fields, e.g., in [252, 253, 261, 265].

In recent times, a new line of research and manufacturing
of controlled metasurfaces [220±223] is being developed,
including hyperbolic ones [222], for which it is important to
consider the spatial dispersion. Metasurfaces are convenient
for easy implementation of backward surface plasmon
polaritons with the possibility of focusing a laser-induced
diverging plasmon polariton, if it appears in the region, where
it is backward. The metasurface impedance, controllable
electrically, magnetically, or optically, allows replacing a
forward plasmon polariton with a backward one. A sample
of several metasurfaces connected in sequence with backward
surface plasmon polaritons allows, in principle, supporting
backward bulk plasmon polaritons. For photonics, the
metasurfaces that support slow Hk-surface plasmon polar-
itons are interesting.

Let us consider the effect of dissipation and spatial
dispersion on the boundedness of the values of wave vector
components and on the change in the isofrequency surface
shape in the k 0-space for HMMs. To construct the isofre-
quency surface (1) in a 3D k 0-space, the two real equations
(24) and (25) are insufficient (the vector k � k 0 ÿ ik 00 has four
real parameters). The situation becomes more complex if
homogenization is not performed. In this case, it is necessary
to determine four more real-valued parameters for ê. One of
the equations may be the Bloch dispersion equation, from
which two real equations follow. Let us write the Bloch
dispersion equation in the form resolved with respect to the
frequency o � o�k�. This dispersion equation can be
obtained as a condition of resonance at a given (generally,
complex-valued) phase shift on the PC faces. The second
equation has the form Imo�k� � 0. If the phase shifts are
specified to be real, then the resonance frequency in the
presence of dissipation will be complex. Expressing in a
general case O�kk; k?; k0� � 0 from the dispersion equation
and the quantities k 00k , k

00
? fromEqn (25) and substituting them

into (24), we get the desired surface. In this case, the
components of the vector k 0 are independent. This is a
consequence of ê being independent of k without the spatial

dispersion taken into account. In the case of a first-type
HMM, its dispersion equation is derived in the form resolved
with respect to kz. Calculating the vector nE � hSi=jhSij �
k 00=jk 00j, we get one more real equation. In this case, the
components of the vector k 0 are coupled, which leads to
their bounding. Imagine that the dispersion equation is
formulated, the Brillouin zones (dispersion diagrams) are
constructed, and the homogenization problem is solved. The
quantities k 0k and k 0? determine the angle y at which the
wave propagates with respect to the z-axis: y �
arctan ��k 0 2x � k 0 2y �1=2=k 0z�. From Eqn (25), it follows that

k 00 2? � 2
e 0k
e 00k

k 00?k
0
? ÿ k 0 2? � w 2 ;

where

w 2 �
�e 0 2k � e 00 2k �

�
e 00?�k 0 2k ÿ k 00 2k � ÿ 2e 0?k

0
kk
00
k
�

e 00k �e 0 2? � e 00 2? �
: �54�

We assume that e 00?=e
0
? > 2k 00k =k

0
k. Since k 00? > 0, the positive

root of the quadratic equation should be taken:

k 00? �
��������������������������������������������
k 0 2?

�
1�

�e 0k
e 00k

�2�
� w 2

vuut ÿ
e 0k
e 00k

k 0? : �55�

As a result of these substitutions, Eqn (24) takes the form

k 0 4? �e 0 2k � e 00 2k � � k 0 2? e 00 2k w 2 � �e 00 2k f �k0; k 0k; k 00k � � e 0kk
0 2
?
�2
;

�56�

where the function

f �k0; k 0k; k 00k ��
1

2

�
k 2
0�

w 2e 0k
e 0 2k � e 00 2k

ÿ
e 0?�k 0 2k ÿ k 00 2k � � 2k 0kk

00
k e
00
?

e 0 2? � e 00 2?

�
:

At large k 0 2? , it follows from (56) that k 0 2? �1� e 00 2k w 2=k 0 2? �=2 �
e 0k f �k0; k 0k; k 00k �, fromwhere the possibility of the boundedness

4

3

2

1

12

k 0z

k 0x

8

4

0 4 8 12

Figure 17.First-quadrant section of isofrequency surface (k 0k and k
0
?, in the

units [107 mÿ1]) for a homogenized planar layered HMM (curves 1±3) and

a wire HMM (4) under the effect of dissipation. Parameter values:

a � d � 100 nm, op � 1:9� 1016 Hz, r=a � 0:1, eL � 10, ~e 0 � 3,

k0d � 0:5. Curve 1: ~e 00 � 0:003, oc � 5� 1013 Hz; curve 2: ~e 00 � 0:03,
oc � 5� 1015 Hz; curves 3 and 4: ~e 00 � 0:3, oc � 5� 1016 Hz.
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of k 0 2? is seen if the function f is bounded. For this function at
small dissipation, we get

2 f �k0; k 0k; k 00k � � k 2
0 � e 0 ÿ2?

�
k 0 2k

�
e 00?
e 00k
ÿ e 0?

�
ÿ
2k 0kk

00
k e
0
?e
0
k

e 00k

�
;

therefore, the expression in square brackets must be bounded.
The left-hand side of (56) is a quadratic function of k 0?. It is
also quadratic in k 0k, as is the function f �k0; k 0k; 0� if the
dissipation is ignored for motion along the axis �k 00k � 0�. For
an HMM of the first type in this approximation, we get an
equation biquadratic in k 0?:

k 0 4? �
k 0 2? e 00k e

00
?k
0 2
k

e 0 2? � e 00 2?
�
�
e 00 2k f �k0; k 0k; 0� � e 0kk

0 2
?
�2

e 0 2k � e 00 2k
;

which allows constructing an isofrequency surface. If kx � 0
(the axial wave), then the propagation in a wire HMM is
analogous to a wave in a dissipative multiwire line with a
quasi-T wave. For a wire HMM, k 00k � ÿIm �k0

�����
e?
p �. This

value can be used as an initial one for iterations. Determining
k 0? from (56), we find k 00k � ÿIm

ÿ
k0�e eff? �1=2

�
cos y and repeat

the iterations (56).
In the case of a layered HMM of the second type, we put

ky � 0, k 00x � 1=�dZ0s 0�, ezz � ~e, kz � dÿ1 arccosX, and
e? � ~e� isZ0. Here, we use the simplest homogenization
based on thin-layer conductivity s � gd1 �d1 5 d2�, where g
is the bulk (specific) conductance. It is also possible to use the
more rigorous relations (20), (21). Using (1) or (24), (25), let
us express k 0x and k 00x (and, therefore kz) as functions of
frequency. The periodicity of k 0z corresponds to different
Brillouin zones; therefore, in the first zone at a given
frequency the vector k is bounded. Imposing additional
conditions like k 00x � 1=�dZ0s 0� or nE � hSi=jhSij � k 00=jk 00j
can lead to unsolvability of the system of equations. If the
HMM has a finite structure and the diffraction problem is
considered for a plane wave penetrating into it, then kz for a
wire HMM and kx for a planar layered one can be taken as
corresponding to the incident wave. In a finite sample under
such excitation, edge waves arise.

Executing homogenization, specifying the values of k 00k
independent of the angle y, determining k 00? from (25), and
substituting everything into (24), one can construct the
isofrequency surface without addressing the rigorous Bloch
dispersion equation and other relations. Using these relations
leads to the fixation of the components, since they can be
considered to be functions of frequency (generally, multi-
sheet). Just this dependence is given by the rigorous micro-
scopic dispersion equation that yields dispersion diagrams.
The quantities in dispersion equation (1) can be considered
independent only in the case of diffraction of waves by HMM
samples in the long-wave approximation. In the first-order
approximation of the spatial dispersion theory, we have [75]

e?�k; k0� � e?�k0� � a? jl�k0�kjkl ;
ek�k; k0� � ek�k0� � ak jl�k0�kjkl ;

where the summation over the repeating indices is implied. In
our case, j and l take the values ? and k. In particular, in a
number of papers [6, 7, 9, 24], for wire HMMs, the results of
homogenization were obtained:

ek�k; k0� � ~eÿ
~k 2
p

k 2
0~eÿ k 2

z

; e? � ~e ;

which at small k 2
z yields

ek � ~eÿ
~k 2
p

k 2
� k 2

z

k 2
;

where k 2 � k 2
0~e, ~k 2

p � 2paÿ2=�ln �a=r� ÿ 1:31� is a square of
some plasma wave number determined by the configuration
of the wire `plasma'. The quantity ek is negative only when the
longitudinal component is bounded: k 2

z < k 2
0~e. Moreover, for

ek < 0 the necessary condition ~k 2
p� k 2

z ~eÿ k 2
0~e 2 > 0 should be

satisfied. Under these conditions, for the transverse compo-
nent we have

k 2
x � k 2

0 �
k 2
z �k 2

0~eÿ k 2
z �

~k 2
p � k 2

z ~eÿ k 2
0~e 2

:

The transverse component is bounded if ~k 2
p > k 2

0~e 2, in this
case k 2

z � 0 and k 2
z � k 2

0~e yield the values k 2
x � k 2

0 . Differ-
entiating this expression with respect to k 2

z and equating the
derivative to zero, we get the value at the maximum,

k 2
x �

������������������������
a 4

~e
� k 2

0~ea 2

r
ÿ a 2

~e
;

where a 2 � ~k 2
p ÿ k 2

0~e 2. The maximal value of k determined
from the equation k 2

x � ~eÿ1k 2
z � k 2

0 � ~eÿ1k 2
pk

2
z =�a 2 � k 2

z ~e� is
bounded. An additional limitation follows from considering
losses. In Ref. [157], as a result of homogenization, an
additional contribution to k 2

z (see also [40]) in the form
k 2
pa=

��������������������������
pr�1ÿ e�o��p

is obtained. In Ref. [49], using the
averaging method, the following expression is obtained for
~k 2
p :

~k 2
p �o; k� �

X1
m�ÿ1
n�ÿ1

1

k 2
0~eÿ k 2

z ÿ k 2
xm ÿ k 2

yn

264
�
�
sinc

�
kxma

2

�
sinc

�
kyna

2

�
ÿ sinc �kxmpr� sinc �kynpr�

�375
ÿ1

;

which depends on the frequency and spatial dispersion. The
frequency dependence can be eliminated by considering the
dispersion law. The above result is obtained in the approx-
imation according to which the field does not penetrate into
the wires. A rigorous result that considers the field distribu-
tion inside the wires is rather cumbersome.

Figure 17 presents the sections of the appropriate surfaces
in the first quadrant under dissipation (~e � ~e 0 ÿ i~e 00 and at
different oc) for a planar layered (curves 1±3) and wire (curve
4) HMM. In the first case, the expressions of ~k 2

p and ezz from
[7] were used, and exx � ~e�1ÿ pr 2=a 2� � epr 2=a 2. A real
value of kz was specified and then replaced with a complex
one, kz ! kz�1ÿ ie 00xx=e

0
xx�, and kx was determined. In the

case of the planar layered HMM, a real kx was specified,
after which the homogenization was performed based on
(20), (21), and then the value was refined by iterations
kx ! kx�1ÿ ie 00zz=e

0
zz� with repeated homogenization. Then,

kz was determined. In Ref. [242] a similar surface was
constructed for an HMM of finite-length wires with spatial
dispersion (33). It is worth noting that for a considerable
domain of large values of k in Fig. 17 the limitation related to
the incorrectness of homogenization comes into effect.

Thus, the spatial dispersion most strongly bounds the
homogenized isofrequency surface. The rigorous isofre-
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quency surface is always bounded (see Fig. 13). In the
examples considered, the real part of one of the components
was considered unbounded. Actually, it is limited by the
maximal deceleration of bulk plasmon polaritons caused by
dissipation. The dissipation leads to the boundedness of both
components. Another physical limitation related to homo-
genization has the form k5 p=a and is determined by the
lattice constant. One more limitation (for metallic HMMs) is
due to the plasma wave number kp.

To construct a homogenized isofrequency surface, it is
convenient to use the iteration approach, since the effective
permittivity is a nonlinear function of k 2. It can be presented
in the form of expansion ê�o; k� � ê�o� � â�o�k 2 � b̂a�o�k 4

with diagonal positive (in the absence of dissipation)
matrices. However, for HMMs of the first and the second
types, expansion in k 2

z and k 2
?, respectively, takes place. The

substitution of this relation into (1) at e?�o�ek�o� < 0 yields a
bounded homogenized isofrequency surface, which at small
k 2 is close to a hyperboloid and at large k 2 is bounded.
Restricting ourselves to two terms, we arrive at an equation of
the sixth order. Disregarding the spatial dispersion for the
positive component of permittivity, we get a biquadratic
equation for k 2

z and k 2
x , respectively. Its real-valued solutions

are bounded; there can be no real solutions at all if the
discriminant is negative. The limitation of the other compo-
nent is due to periodicity and related to dispersion surface
bending. However, the real limitation may occur much earlier
because of the condition k5 p=a, since for small k 2 the
expansion is asymptotic. In particular, for the above homo-
genization of a wire HMM, we take ek � ÿe� k 2

z =�k 2
0~e�,

e? � ~e and get

k 4
z ÿ k 2

z

�
~k 2
p ÿ 2k 2

0~e�~e� 12��� k 2
0~e�~k 2

p � k 2
?~eÿ k 2

0~e 2� � 0 :

For large k 2
?, there are no solutions. It is interesting that in

ideal HMMs the maximal angle between k and S is acute and
tends to p=2, i.e., there are no backward waves. However,
they must be present in any PC, and in the case of the above
limitation take place due to the bending of the surface.

The exact surface is constructed in the first Brillouin
zone (see Fig. 13). From the dispersion equation for a
planar layered HMM, the component kz � kz�k0; kx� is
determined (to 2mp=d ) as kz � ��arccosX�=d. Here,
X � cosh ym cos yd ÿ r sinh ym sin yd. Denoting the permit-
tivity of the metal as em � eL ÿ k 2

p=k
2
0 and the dielectric as

ed with the thicknesses tm � td � d, we have

r � aÿ aÿ1

2
; a � edkmz

kdzjemj ; ym � kmtm ; yd � kdztd ;

kmz � k0
�������������������
n 2 � jemj

p
; kdz � k0

���������������
ed ÿ n 2

p
;

where n � kx=k0 is the coefficient of plasmon polariton
deceleration along the layer. If n >

����
ed
p

, then r �
i�jaj � jajÿ1�=2, sin yd � ÿi sinh jydj. The region ÿ1 < X < 1
corresponds to the waves propagating along the axis, and the
region ÿp=d < kz < p=d corresponds to the isofrequency
surface in the first Brillouin zone (see Fig. 13). The surface
touches the axis kz at a certain frequency. At lower
frequencies, the surface breaks and becomes doubly con-
nected, and with a further decrease in frequency completely
vanishes. This happens because kmz � �k 2

x � k 2
p �1=2, and the

value of jrj � kÿ20 infinitely increases. Although at low
frequencies homogenization (19) yields e? � tmem=d < 0,
ek � edd=td > 0 and the HMM is not realized. To implement

the HMM, slow plasmon polaritons along the layers are
necessary, i.e., the condition n4 1 must be fulfilled. On the
other hand, homogenization based on (20) and (21) allows
obtaining rather complicated expansions in k 2

x . In the
simplest case, td � tm for the transverse component, we get
e? � ÿ

�
k 2
p=k

2
0 ÿ �eL � ed� ÿ k 2

x=k
2
0

�
=2, and the longitudinal

component is independent of k 2
x :

ek �
2ed�k 2

p=k
2
0 ÿ eL�

k 2
p=k

2
0 ÿ �ed � eL� :

The limitation yields the condition k 2
x < k 2

p ÿ k 2
0 �eL � ed�. If

it is violated, there are no solutions, as seen from Fig. 13, i.e.,
HMMs with infinitely decelerated plasmon polaritons do not
exist.

The dispersion equation for a wire HMM is written in the
form of a functional, depending on k0 and k. Having found its
stationary value and resolved with respect to kx, we can also
formally write kx � kx�k0; kz�. Here, kx is defined to 2np=a.
To find the complex waves in a dissipative HMM, one more
equation is necessary. It is not possible to choose one of the
complex components arbitrarily. It is also impossible to use
Eqn (1) for this purpose, since it is derived by primitive
homogenization. However, it is possible to calculate hSi and
used the relation k 00 � k 00hSi=jhSij. The unit vector k 00=k 00

determines the direction of damping, coincident with the
direction of the energy flux hSi. In a dissipative PC, the
direction of the flux hSi does not coincide with that of group
velocity. Specifying the direction of phasemotionwith respect
to the axis (e.g., specifying k 0z), it is now possible to determine
the components k 00z , k

0
x, k

00
x and construct the isofrequency

surface o�k?; kz�. However, it is forbidden to apply the
isofrequency method. In particular, the backward wave is
determined by the condition k 0k 00 < 0 rather than the
condition k 0vg < 0. In uniaxial PCs, one can introduce
averaged wave impedances and use them as additional
relations. Namely, for ky � 0 for a wire HMM,

Z e � hExi
hHyi �

hSzi
2hHyi ; Z e � Z0�~eÿ k 2

z =k
2
0 �1=2

~e
:

In a general case, the spatial dispersion manifests itself in the
dependence of Z e on two angles, j � arctan �k 0y=k 0x� and
y � arctan ��k 0 2x � k 0 2y �1=2=k 0z�. In this sense, dispersion equa-
tion (1) corresponds to the limit a=l! 0 or d=l! 0 with the
possibility of waves with large k. The physical limitations for
the vector k 0 are dissipation [123] and the spatial dispersion
jk 0jd < 1. Therefore, the dissipation and the spatial disper-
sion limit the hyperbolicity. For HMMs of graphene with d of
a few nanometers, the minimal wavelengths appear to be a
few tens of nanometers.

5. Possible effects, applications, and prospects

In real HMMs, the observed waves are bulk Hk plasmon
polaritons with k4 k0, and the dispersion close to the
hyperbolic one takes place at limited k. This is what should
be considered the main property of HMMs. This property,
first demonstrated as early as 1963 for a strongly magnetized
plasma [270], is related to the propagation of very slow bulk
and surface plasmons along metallic or conducting structures
[270]. Slow-light quasi-photons play a crucial role in nano-
image formation by nanolenses in overcoming the optical
diffraction limit [271±291]. Divergent wire and layered fan,
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curved and plane-parallel structures are promising. Fan
HMM structures, which are an analog of the scanning
optical microscope, have already been used to transfer the
near-field image to the far-field zone with great magnifica-
tion, overcoming the diffraction limit [292]. The resolution of
such an optical microscope depends on the manufacturing
capabilities of the nanotechnology and can reach a few
nanometers, while considerable magnification can be
achieved using extensive structures. Extension and decelera-
tion are limited by the dissipation of plasmon polaritons. At
the maximal deceleration frequency (the frequency of
plasmon resonance), the plasmon polariton losses are also
maximum and inversely proportional to the losses in the
material [122, 123]: k 0x � k 00x � 1=

��������
2e 00
p

, which is character-
istic of both the Zenneck plasmon along the metal boundary
and the plasmon polariton along the thin metallic layers and
wires. This universal relation means that the smaller the
dissipation e 00, the higher the plasmon polariton losses near
the resonance. It is valid for waveguides near the cutoff
frequency, for PCs and slow-wave structures near the
nontransmission band edge, for plasmon polaritons near the
bandgap boundary, and for Lorentz dispersion near the
resonance frequency [229]. The physical reason is that in all
such ideal nondissipative structures, the waves in the band
gaps are evanescent and their propagation constants are
imaginary. Small dissipation makes them complex and the
propagation losses greater. This is a resonance effect. There-
fore, one should operate at frequencies slightly lower than the
plasmon resonance frequency op=

�������������
eL � 1
p

and reduce the
collision rate. At the liquid helium temperature, the collision
rate is reduced by nearly 150 times. At ultralow temperatures,
its reduction by several orders ofmagnitude is possible. In this
case, the mean free path substantially exceeds all character-
istic dimensions: layer thicknesses, radii and lengths of
nanowires, wavelength. The transport of carriers becomes
ballistic and quantum mechanical [249±269], the surface
impedance, permittivity, and conductance lose their local
sense, and such notions as kinetic inductance and quantum
capacitance arise.

Dynamical electrophysical parameters of HMM-type
structures should be determined using the methods of
quantum and nonequilibrium statistical mechanics for
quantum wires (nanowires) and quantum wells (thin con-
ducting layers) [293±298]. For calculating DOS and the
number of conductivity modes in a film a few nanometers
thick (2D electron gas), the Landauer model (in which the
number of conductivity modes is equal to the number of de
Broglie half-waves in the dimension) requires specification
based on the solution to the quantummechanical problem.Of
interest are graphene ribbon quantum wires [188±191],
graphene structures, including those strongly coupled to
quantum dots in the form of gold and silver particles [298±
301], and structures consisting of quantum dots [299±303]. A
review of hybrid nanostructures based on metal-2D nanoma-
terial like graphene, boron nitride, and other conducting films
for improved plasmonics is presented in [300, 301]. Such AMs
already require rigorous quantum mechanical calculation
[189±191, 302], as well as the functionalization of graphene
HMMs by atoms [302].

The creation of promising HMMs and Hk-AMs is
associated with loss reduction. One of the ways for loss
compensation is to use atomically smooth surfaces with a
large mirror reflection coefficient and ultrapure materials.
Another method of loss compensation is related to using

active (pumped) semiconductor or graphene structures [117,
303±316]. Optical [310], diffusion [312±316], electric, and
magnetic [311] pumping is possible. Omitting consideration
of the vast literature on such structures (see, e.g., [117]), we
note that in graphene HMMs optical and diffusion pumping
can give rise to the negative real part s 0�o� < 0 of the
dynamic conductivity [310], which is possible in the range
from nearly one to a few THz, and the external slow electric
and magnetic fields change the band structure and the
conductivity [262, 311]. The diffusion pumping implies the
injection of charge carriers from the pumped semiconductor
layer [316]. For graphene, s 0�o� < 0 means an excess of the
negative real part of interband conductivity s 0inter�o� �
�e 2=4�h� tanh ���hoÿ 2eF�=�kBT�

�
over the positive real part

of the intraband conductivity related to scattering by
phonons [310]. For pumped HMMs, 2D monolayer struc-
tures analogous to graphene (borophene, germanene, boron
nitride, etc.) and semiconductor nanofilms (e.g., InSb) are
promising.

Note that, for the implementation of HMMs, compensa-
tion by spasers [117] and directly by pumping should be high-
precision to avoid the appearance of a gain medium.
Otherwise, for the gain medium, similar problems of bound-
edness of the wave vector components arise.

From the point of view of the electrodynamic approach to
the analysis, the quantum calculation of the coupled active
structures of spasers should lead to the determination of their
electrophysical parameters. The simplest models of active and
passive layers or passive nanowires in an active medium can
be based on the inverse negative effective collision rate. If the
structure is completely active, then the index p � khS�k0; k�i
can be calculated as p � k 0k 00, in which case p > 0 corre-
sponds to a backward wave and p < 0 to a forward one.
However, a combination of active and dissipative layers
requires a classification based on the Poynting vector. This
also relates to plasmon polaritons along active-dissipative
meta-surfaces. Consideration of active resonance structures
requires more complex modeling.

As mentioned above, the fields of application of HMMs
and devices based on them are already rather diverse. They
are waveguides (from the microwave to optical range),
microresonators, attenuators, metasurfaces, optical nano-
antennas, ultrasensitive and high-efficiency terahertz and
optical detectors, sensors, focusing and magnifying super-
lenses, solar batteries, switches and absorbers (loads), and
thermal and terahertz screens. Magnetic HMMs [317±325],
strongly exhibiting magnetooptical properties, electrically,
magnetically, and optically controlled HMM-based devices
[319], including nonreciprocal ones [324], graphene-metallic
structures [298], and a number of other ones have interesting
prospects. It is promising to use HMMs in GHz and THz
traveling-wave amplifiers, in transistors and transistor ampli-
fiers, for radiation-based heat transfer, and for heat removal
devices and modulators. Hk-states open the way to obtaining
high-contrast fluorescence images, as well as allowing
creating multifunctional nanophotonic materials for ultra-
fast optical switching and signal processing and instruments
for near-field microscopy and photolithography with
enhanced resolution. HMMs and Hk-AMs are convenient
and have been used to control fluorescence, amplify the
Raman spectroscopy response, and design directed anten-
nas, waveguides, and resonators of the terahertz (THz) and
infrared (IR) ranges (including controllable ones), attenua-
tors, and modulators.

December 2019 Hyperbolic metamaterials: production, properties, applications, and prospects 1201



AMs with metallic layers are described by the permittivity
tensor (8). If a magnetic field is directed at an angle to the
normal, then the tensor transforms by the rotationmatrix and
comprises no zero components. If ferrite layers are added to
such an AM, it will be described by two tensors, the
permittivity and permeability (11). In this case, the simulta-
neous occurrence of negative components in both tensors is
possible. This AM supports bulk spatial waves. To operate
with it in the infrared and visible ranges, it is necessary to
apply strongmagnetic fieldswith induction of the order of 1T.
Hollow THz and IR waveguides with HMM walls and
HMM-layer waveguides that recently became a subject of
study [326, 327] are promising. Unidirectional leaky waves
are possible along a layer of asymmetric HMMs with an
applied magnetic field and noncoincident optical and wave-
guide axes, which allows creating optical leaky-wave narrow-
beam antennas. Plasmon polaritons on both sides of such a
layer are different, so that a plasmon polariton moving to the
right along one side corresponds to the one moving to the left
along the other side with a change of sign of kx and kz. In thick
layers, such coupling vanishes, and the dispersion equation in
the absence of a magnetic field takes the form

kz � �k0
�����������������������������������
exxezz ÿ e 2xz ÿ exx
exxezz ÿ e 2xz ÿ 1

s
:

This equation describes a plasmon polariton along the surface
of a semi-infinite sample in the direction of the z-axis and
comprises components of the effective permittivity tensor of
the asymmetric HMM [36]. In the presence of the ky
component, the equation becomes more complicated. It is
simplified when exz � 0 (the optical axis is parallel or
perpendicular to the surface). In this case, kz �
�k0

������������������������������������������������
exx�ezz ÿ 1�=�exxezz ÿ 1�p

. Slow plasmon polaritons are
possible at exxezz ! 1 or at exx !1; in the latter case, a
region with backward plasmon polaritons exists. This
distinguishes the HMM from a metal, on the surface of
which plasmon polaritons are forward, and offers new
possibilities for designing waveguiding structures. Dipole
radiation near the surface gives rise to bulk and surface
modes; therefore, antennas located near the surface of
controlled HMMs or directly using HMMs are of interest.

Observable effects in HMMs are the super-Planck
radiation, negative refraction, the Purcell effect, enhance-
ment of fluorescence, and the Raman effect in and near the
volume inside the HMM. The Purcell effect manifests itself in
a different way for a source of radiation inside and outside the
HMM sample. Inside, damping is enhanced, because the
Hk-modes do not go beyond the sample boundaries and are
absorbed. Radiation enhancement in the far zone is possible
for a dipole located outside the HMM structures. In the
infrared and terahertz ranges, this fact offers possibilities of
creating materials with anisotropic absorption and emission
properties and anisotropic emissivity. As a possible effect, we
mention the dynamic Casimir effect, experimentally discov-
ered in 2011 in a waveguide with a squid [328], and the optical
Compton effect (direct and inverse). To possibly observe the
former, one should use high-power modulated laser radiation
to switch the elliptic mode of dispersion to the hyperbolic one
in a layered semiconductor-dielectric HMM in a cavity tuned
to the modulation half-frequency. In the second case, the
hyperbolic properties are to be obtained in the ultraviolet
range. In both cases, ultralow temperatures and ultrasensitive
instrumentation are needed. HMMs exhibit the properties of

ENZmaterials, which offer the possibility of using it in image
processing and other fields [329].

From the constructive point of view, multiperiodic PCs
[330] operating in various ranges, hyperlenses operating
based on Dyakonov plasmons [205, 206, 331, 332], instru-
ments of near-field microscopy [291, 292], HMMs based on
Bragg polariton structures [75, 333], plasmon polariton-based
amplifiers and attenuators [334±337], diffraction supergrat-
ings [338], microresonators [339, 340], waveguiding structures
[341±347], almost ideally absorbing surfaces [348], and planar
superlenses [271] are of great interest. Amplification of
plasmon polaritons in Hk-semiconductor and dielectric
grating structures with graphene and resistors in the form of
graphene nanostripes is considered in [312±316].

Apparently, the research and technology of manufactur-
ing the considered structures will develop towards higher

Â

b

Carbon nanotube-graphene composite

100 nm

MWNT/GO

Figure 18. (a) Photograph obtained using an atomic force microscope and

a model of 2D films of a hybrid carbon nanotube-graphene composite

with nanotubes parallel to each other covalently bound to graphene

monolayers [352]. (MWNT/GOÐMulti-Walled carbon NanoTubes/

Graphene Oxide sheets). (b) Multilayer graphene sheets linked by carbon

nanotubes (columnar graphene) [353, 354].
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miniaturization with the progress in nanotechnologies to the
level of a few atoms or even individual atoms, incorporated in
nanostructures, with a reduction in the a=l ratio and
application of quantum-mechanical methods of analysis.
Problems of manufacturing PCs with the size of meta-atoms
of the order of 1 nm or less (i.e., consisting of a few atoms)
arise. The improvement of analysis methods for such
structures with quantum dots requires the development of
quantum mechanics, density functional theory, methods of
molecular dynamics, nonequilibrium statistical mechanics,
and nonequilibriumGreen's function in combinationwith PC
electrodynamics.

ForHMMs operating in different ranges, it is necessary to
measure the plasma frequencies. In perfect metals, they are in
the ultraviolet range, but in semiconductor structures, their
variation in a wide range is possible by doping, optical, and
electric control. Magnetic layered MSW-based HMMs
operate in the microwave range. Graphene and other carbon
structures, as well as n-InSb HMMs, are ideal for the THz
range. From the point of view of application, both traditional
HMM structures and complex 3D PCs are possible, including
those controlled by external fields (magnetic and electric),
layered structures with thin conducting and/or ferrite films,
and structures of semiconductor and dielectric nanowires
coated with metallic films. Graphene HMMs are applicable
in ranges from the terahertz to ultraviolet.

Control by laser radiation allows modifying the film
properties from those typical for high-resistance semiconduc-
tors (dielectrics) to, practically, metal properties, as well as
creating active structures, which changes the frequency
properties and makes amplification possible. Another prom-
ising line of development is using nonlinear properties [3, 177,
340], including harmonic generation. Since the formal HMM
model (1) actually reduces to obtaining large values of the
wave vector components, this property is implemented in
structures with slow plasmons, whose analysis requires
methods of quantum plasmonics. In this sense, HMMs
demonstrate effects that occur in quantum structures, in
particular, the van Hove effect [346].

The van Hove singularities observed in DOSs of the local
near field, mainly related to slow plasmon polaritons, may be
used in quantum defect-based instruments, in sensors, in
photovoltaics, for Raman scattering enhancement on the
HMM surface or in the presence of an HMM, and for
diffraction-grating nanophotolithography [119]. Possible
applications of slow Dyakonov-type plasmon polaritons
along HMM surfaces as waveguiding structures may under-
lie the construction of active devices in the terahertz range,
including solid-state and vacuum traveling-wave amplifiers
with the possibility of electric, magnetic, and laser control. Of
interest is the analogy between HMMs and models of space-
time, also described by indefinite metrics [347±353]. In
particular, Ref. [348] considers a model of the physical
vacuum in magnetic fields of the order of 1016 T and above,
accompanied by the creation of r-mesons from the vacuum
and considering the vacuum to be an HMM. In these papers,
it is proposed to model four-dimensional processes in the
space-time of the early Universe based on the model
consideration of optical 3D HMMs.

Natural graphite also demonstrates HMM properties
[354]. Recently, new carbon structures of oriented carbon
nanotubes and nanotube/graphene hybrid structures
(columnar graphene) have been synthesized [355±357]
(Fig. 18), which can also be considered HMMs. From the

point of view of controlling the modification of properties
in graphene and other HMMs, functionalizing technolo-
gies are possible, such as hydration, oxidation, etching,
and laser polishing. In turn, this requires the development
of methods for energy band calculations, such as the strong
coupling method, density functional theory (including that
allowing for the effect of external fields on the band
structure), and consideration of structure functionaliza-
tion by individual atoms or quantum dots. The appearance
of sp3 hybridized states in graphene under hydration
strongly enriches the spectrum of optical excitation [302].
Electrophysical parameters of thin films and nanowires in
an external magnetic field should be determined using
quantum methods with the Landau levels taken into
account. The quantum-mechanical method of analysis is
also necessary to account for the compensation of losses in
active dissipative HMMs.

Recently, technologies have appeared for gold electro-
deposition into silicon grooves with a submicron width, an
aspect ratio above 35, and a structure area of a few square
centimeters for optical, X-ray, and other applications [358], as
well as a number of other technologies for HMMs.

In the above description, we used electrophysical para-
meters characteristic of bulk samples. Actually, the electro-
physical parameters depend on the dimensions (film width,
radii and lengths of cylinders, etc.) and quantum-dimensional
effects, including the environment [268, 269]. It is promising
to use planar layered structures consisting of lattices of
graphene strips on a layer. In this case, a possibility arises to
control the electrophysical parameters by changing the
topology (width, edge shape, chirality). For example, the
quantization of the strip width leads to sharp variations in
both conductivity and optical transparency; the width
modulation allows obtaining heterostructures and manipu-
lating the electronic parameters [191]. The method of cutting
the strip from a graphene monolayer (shaping of the strip
edges), its bending, and other mechanical deformations
determines the intensity of hydration and thus allows
controlling the electronic properties. Note also that plas-
mon-exciton mixed states [75, 330] arising in strongly
coupled nanosystems can give rise to new unique properties.
The homogenization considered above (see also [271, 359±
362]) is valid in the far-field zone, since in the near-field zone
the Ewald±Oseen theorem does not hold [363], requiring a
rigorous consideration of the near field with the environment
microstructure taken into account. This is the sense in which
one should approach the modeling of HMMs comprising
ultrathin layers.

6. Conclusion

The present review considers an electrodynamic approach to
the analysis of the properties and homogenization of uniaxial
metallic (plasmonic) and magnetic (magnonic) PCs demon-
strating in certain ranges of o and k different-sign real parts
of diagonal components of the effective permittivity and
permeability tensors. The roles of dissipation and spatial
dispersion are investigated. It is shown that both frequency
and spatial ranges are limited. Mutual features of such PCs
are that they support slow bulk Hk-plasmons and on their
surfaces plasmon-polaritons exist. The principle boundedness
of k due to spatial dispersion is determined by the technolo-
gical limit of the obtained thickness of layers, i.e., by the order
of 1 nmÿ1. Practically, to increase k it is also necessary to
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reduce the dissipation using optical or electric pumping and
low temperatures.

Naturally, the review does not cover all papers, a large
number of which demonstrate considerable interest in the
problem considered [364]. The basic properties of HMMs,
their present-day applications, and their prospects are
described. An approach based on macroscopic material
parameters is presented. Promising nanodimension Hk-
HMMs require quantum mechanical methods of analysis.

This study was supported by the Ministry of Education
and Science of Russia within the Project Part of the State
Assignment in the field of research activity no. 3.1155.2014/K
and the Russian Science Foundation (project no. 16-19-
10033).
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