
New J. Phys. 22 (2020) 035001 https://doi.org/10.1088/1367-2630/ab6f1f

PAPER

Improving the dynamics of quantum sensors with reinforcement
learning

Jonas Schuff, Lukas J Fiderer andDaniel Braun
Institute for Theoretical Physics, University of Tübingen, Auf derMorgenstelle 14,D-72076 Tübingen, Germany

E-mail: jonas.schuff@student.uni-tuebingen.de

Keywords: quantummetrology,machine learning, reinforcement learning, quantum-chaotic sensors, control theory, spin squeezing,
superradiancemaster equation

Abstract
Recently proposed quantum-chaotic sensors achieve quantum enhancements inmeasurement
precision by applying nonlinear control pulses to the dynamics of the quantum sensor while using
classical initial states that are easy to prepare. Here, we use the cross-entropymethod of reinforcement
learning (RL) to optimize the strength and position of control pulses. Compared to the quantum-
chaotic sensors with periodic control pulses in the presence of superradiant damping, wefind that
decoherence can be fought even better andmeasurement precision can be enhanced further by
optimizing the control. In some examples, wefind enhancements in sensitivity bymore than an order
ofmagnitude. By visualizing the evolution of the quantum state, themechanism exploited by the RL
method is identified as a kind of spin-squeezing strategy that is adapted to the superradiant damping.

1. Introduction

The rise ofmachine learning [1] has led to intense interest in usingmachine learning in physics, and in particular
in combining it with quantum information technology [2, 3]. Recent success stories include discriminating
phases ofmatter [4–6] and efficient representation ofmany-body quantum states [7–9].

In physics,many problems can be describedwithin control theorywhich is concernedwithfinding away to
steer a system to achieve a goal [10]. The search for optimal control can naturally be formulated as reinforcement
learning (RL) [11–19], a discipline ofmachine learning. RL has been used in the context of quantum control [17],
to design experiments in quantumoptics [20], and to automatically generate sequences of gates and
measurements for quantum error correction [16, 21, 22].

RL has also been applied to control problems in quantummetrology [2]: in the context of global parameter
estimation, i.e. when the parameter is a priori unknown, the problemof optimizing single-photon adaptive
phase-estimationwas investigated [23–25]. There, the goal is to estimate an unknownphase difference between
the two arms of aMach–Zehnder interferometer. After eachmeasurement, an additional controllable phase in
the interferometer can be adjusted dependent on the already acquiredmeasurement outcomes. The
optimizationwith respect to policies, i.e.mappings frommeasurement outcomes to controlled phase shifts, can
be formulated as a RL problem and tackledwith particle swarm [23, 24, 26, 27] or differential evolution [25, 28]
algorithms, where the results of the formerwere recently applied in an experiment [29].

Also in the regime of local parameter estimation, where the parameter is already known to high precision
(typically frompreviousmeasurements), actor-critic and proximal-policy-optimization RL algorithmswere
used tofind policies to control the dynamics of quantum sensors [30–32]. There, the estimation of the

precession frequency of a dissipative spin- 1

2
particle was improved by adding a linear control to the dynamics in

formof an additional controlledmagnetic field [32].
Recently it was shown theoretically that the sensitivity (in the regime of local parameter estimation) of

existing quantum sensors based on precession dynamics, such as spin-precessionmagnetometers, can be
increased by adding nonlinear control to their dynamics in such away that the dynamics becomes non-regular
or (quantum-)chaotic [33, 34]. The nonlinear kicks (described by a ‘nonlinear’HamiltonianµJy
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the ‘linear’ precessionHamiltonianµJz where J J J, ,x y z are the spin angularmomentumoperators) lead to a
torsion, a precessionwith rotation angle depending on the state of the spins.

Adding nonlinear kicks to the otherwise regular dynamics comes alongwith a large number of newdegrees
of freedom that remained so far unexplored: rather than kicking the systemperiodically with always the same
strength andwith the same preferred axis as in [33], one can try to optimize each kick individually, i.e. vary its
timing, strength, or rotation axis. The number of parameters increases linearly with the totalmeasurement time
(assuming afixed upper bound of kicks per unit time), and becomes rapidly too large for brute-force
optimization.

In this work, we use cross-entropy RL to optimize the kicking strengths and times in order tomaximize the
quantumFisher information (QFI), whose inverse constitutes a lower bound on themeasurement precision.
The cross-entropymethod is used to train a neural network that takes the current state as input and gives an
action on the current state (the nonlinear kicks) as output. In this way, the neural network generates a sequence
of kicks that represents the policy for steering the dynamics.

This represents an offline,model-free approachwhich is aimed at long-termperformance, i.e. the
optimization is done based on numerical simulations, without being restricted to a specific class of policies, and
with the goal ofmaximizing theQFI only after a given time and not, as it would be the case for greedy algorithms,
for each time step.We show that this can lead to largely enhanced sensitivity even compared to the already
enhanced sensitivity of the quantum-chaotic sensorwith constant periodic kicks [33].

2.Quantummetrology

The standard tool for evaluating the sensitivity withwhich a parameter can bemeasured is the quantum
Cramér–Rao bound [35–37]. It gives the smallest uncertainty withwhich a parameterω encoded in a quantum
state (densitymatrix) ρω can be estimated. The bound is optimized over all possible (POVM=positive operator
valuedmeasure)measurements (including but not limited to standard projective von-Neumannmeasurements
of quantumobservables), and all possible data-analysis schemes in the sense of using arbitrary unbiased
estimator functions ŵ of the obtainedmeasurement results. It can be saturated in the limit of a large numberM
ofmeasurements, and hence gives the ultimate sensitivity that can be reached once technical noise has been
eliminated and only the intrinsicfluctuations due to the quantum state itself remain.

The quantumCramér–Rao bound for the smallest possible variance of the estimate ŵ reads
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3. The system

Weconsider a spinmodel based on the angularmomentum algebra, with spin operators
( ) ∣ ∣= ñ = ñJ J J J jm j jmJ , , ,x y z z and ∣ ( )∣ñ = + ñj m j j j mJ , 1 ,2 2 , where j andm are angularmomentum

quantumnumbers. Note that themodel can be implemented not only with physical spins but with any physical
systemwith quantummechanical operators that fulfill the angularmomentum algebra. TheHamiltonian of our
model is given by
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Thefirst summand describes a precession about the z-axis with precession frequencyω. The second summand
describes the nonlinear kicks, i.e. a torsion about the y-axis, seefigure 1. This corresponds to a precession about
the y-axis with a precession angle proportional to the y-component. The time τ defines a time scale such that t
and tℓmeasure time in units of τ. Theℓth kick is applied at time ℓt whereκℓ quantifies its kicking strength (in
units of a frequency).

In an atomic spin-precessionmagnetometer, as discussed in [33], thefirst summand corresponds to a
Larmor precession characterized by the Larmor frequency w m= g BB with Landé g-factor g, Bohrmagneton
μB, andmagnetic field strengthB, which is the parameter that onewants to estimate. The nonlinear kicks can, for
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example, be generatedwith off-resonant light pulses exploiting the ac Stark effect.We introduce a dimensionless
kicking strength as ℓ ℓk t=k : and, for the sake of simplicity, we set τ=1 and ÿ=1.

For a pure state, the unitary time evolution of the systembetween kicks at time ℓ-t 1 and tℓ is given by

∣ ( ) ( )∣ ( ) ( )ℓ ℓ ℓy yñ = ñw w -t U k t , 41

where the unitary transformation ( )ℓwU k propagates the state according to theHamiltonian (3), from time ℓ-t 1

[directly after the ℓ( )- 1 th kick] to ℓt [directly after theℓth kick], as indicated by the indexℓ [in order to
simplify notation, the indexℓ of knot only labels the kicking strength at time tℓ but also refers to the propagation
from ℓ-t 1 to tℓ of ( )ℓwU k ].We have
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where  denotes time-ordering. Since the kicks are assumed to be instantaneous, this leads to
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i.e. a precession for time ℓ ℓ- -t t 1 followed by a kick of strength ℓk . The kick occurs at the end of the time
interval [ ]ℓ ℓ-t t,1 .

For the standard kicked top (KT), see figure 1, the kicking strengths are constant, ℓ =k k, and kicking times
are given by ℓ ℓℓ t= =t , with ℓ Î . Dynamics of the standardKT is non-integrable for k>0 and has awell
defined classical limit that shows a transition from regular to chaotic dynamics when k is increased. In [33] the
behavior of theQFI for regular and chaotic dynamics was studied in this transition regime (for k=3 and
ω=π/2)whichmanifests itself by amixed classical phase space between regular and chaotic dynamics.
Quantumchaos is defined as quantumdynamics that becomes chaotic in the classical limit. In contrast to
classical chaos, quantum chaos does not exhibit exponential sensitivity to changes of initial conditions due to the
properties of unitary quantum evolution, but can be very sensitive to parameters of the evolution [39]. TheKT
has been realizedwith atomic spins in a cold gas [40] andwith a pair of spin- 1

2
nuclei usingNMR techniques

[41]. Here, we generalize the standardKT to kicks of strength kℓ at arbitrary times tℓ as given in equation (6), see
alsofigure 1.

Any new quantummetrologymethod needs to demonstrate its viability in the presence of noise and
decoherence.We study two different versions of theKTwhich differ in the decoherencemodel used: phase
damping and superradiant damping. Both can be described byMarkovianmaster equations and arewell studied
models for open quantum systems [42–45].While phase damping conserves the energy and only leads to
decoherence in the ∣ ñj m, basis, superradiant damping leads in addition to a relaxation to the ground state

Figure 1. Schematic representation of parameter encoding in quantummetrology. Panel (a) shows the standard protocol: the
parameterω is encoded in the initial state ρ through the dynamics, the resulting state ismeasured, and the parameter is inferred by
(classical)post processing of themeasurement outcomes. In panel (b), the dynamics is given by the kicked topmodel: the encoding of
the parameterω through linear precessionRz(ω) about the z-axis is periodically disrupted through parameter-independent, nonlinear,
controlled kicks (green triangles)with kicking strength k that can render the dynamics chaotic. In panel (c), the dynamics is given by a
generalized kicked topmodel: the kicking strengths kℓ and times tℓ between kicks are optimized in order tomaximize the sensitivity
withwhichω can be inferred (varying kℓ are indicated by different sizes of the green triangles). Variation of the kicking axis is possible
but beyond the scope of this work.
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∣ - ñj j, . Its combinationwith periodic kicking in the chaotic regimes is known to give rise to a non-equilibrium
steady state in the formof a smeared-out strange attractor [45] that still conserves information about the
parameterω, whereas without the kicking the system in presence of superradiant damping simply decays to the
ground state. Themaster equations for both processes have theKossakowski–Lindblad form [46, 47], with

( ) ([ ( ) ] ) ( )r g r= +t J t J, h.c. 7z zpd

for phase damping, where ( ) ( )r r=t t
t

d

d
, and

( ) ([ ( ) ] ) ( )r g r= +- +t J t J, h.c. 8sr

for superradiant damping, where ≔ J J Jix y are the ladder operators, and gpd and γsr denote the decoherence
rates.With the generatorΛ, defined by ( ) ( )r r= Lt t , one has in both cases the formal solution

( ) ( ) ( )r r= - - -t D t t tn n n n1 1 with the continuous-time propagator ( ) ≔ LD t e t . The solution of equation (7) in
the ∣ ñj m, basis, where ( ) ( )∣ ∣r r= å ñá ¢¢=- ¢t t j m j m, ,

m m j
j

m m, , , is immediate,

( ) ( ) [ ( ) ] ( )r r g= - - ¢¢ ¢t t m m0 exp . 9m m m m, , pd
2

Also for equation (8) a formally exact solution has been found [48] and efficient semiclassical (for large j)
expressions are available [49, 50]. For our purposes it was the simplest to solve equation (8)numerically by
diagonalization ofΛ. Combining these decoherencemechanismswith the unitary evolution the transformation

( ) ( )ℓ ℓr r-t t1 reads

( ) ( )[ ( ) ( )] ( ) ( )ℓ ℓ ℓ ℓ ℓ ℓ
†r r= -w w- -t U k D t t t U k , 101 1

because in both cases the dissipative generatorΛ commutes with the precession.
As initial state we use an SU(2) coherent state, which can be seen as themost classical state of a spin [51, 52],

and is usually easy to prepare (for instance by optically polarizing the atomic spins in a SERFmagnetometer).
Also, it is equivalent to a symmetric state of 2j spin- 1

2
pointing all in the same direction.With respect to the

∣ ñj m, basis it reads
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4.Optimizing theKT

4.1. TheKT as a control problem
Weconsider theKT as a control problem and discretize the kicking strengths ℓk and times ℓt . The precise
parameters of the discretized control problem vary between the following examples and are summarized in
appendix A. In the following, tstep denotes a discrete time step (measured in units of τ=1), kstep is a discrete step
of kicking strength, the RL agent optimizes theQFI at timeTopt, andwe bound the total accumulated kicking
strength ℓ ℓå <k 15000 which is never reached in optimized policies though. The frequencyω, that wewant to
estimate, is set to induce a rotation of the state by tπ/2 (t ismeasured in units of τ=1).

Possible control policies are simply given by a vector of kicking strengths ( )= ¼ Î k k k, , N
N

1 with
{ }ℓ Î = ¼k qk q: 0, 1, 2,step . To each policy corresponds aQFI value, calculated from the resulting state

ρ (Topt), which quantifies howwell the policy performs. To tackle this type of problem, various numerical
algorithms are available, eachwith its own advantages and drawbacks [2, 3, 15].We pursue the relatively
unexplored (in the context of physics) route of cross-entropy RL.

4.2. Reinforcement learning
Figure 2 shows the typicalwaywe imagineRL.There is an agent that interactswith an environmentby choosingactions
and receiving an observationand a reward from the environment.One cycle of action andobservation/reward is
called a step.

In general, the idea of RL is to reinforce behavior that leads to high rewards. The precisemechanismdepends
on the usedRL algorithm.

4.3. TheKT as a RLproblem
The system, the generalizedKT as introduced in section 3, represents the RL environment. The agent can choose
between only two actions: (i) increase the kicking strength (by kstep) or (ii) go on from the current position in
time ℓtstep to ℓ( )+ t1 step. In this way, the vector k is built up step by step. After each action, the agent obtains an
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observation given by the full densitymatrix of the current state of the environment. Sincewe simulate the
evolution of the environment, the densitymatrix is readily available.

Only after the total timeTopt, a reward [theQFI of ( )]r Topt is given to the agent. This concludes one episode,
and the resulting vector k represents a policy. Then, the environment is reset (i.e. the spin is reinitializedwith the
coherent state at q f= =p p,

2 2
, see equation (11)), and the next episode starts.

A neural network represents the RL agent: the observation is given to the neural network’s input neurons
while each output neuron represents one possible action, i.e. we have two output neurons for ‘kick’ and ‘go on’.
The activation of these output neurons determines the probability of executing that action. The policy, however,
is not given by the neural network directly. Since the environment is deterministic (i.e. the state evolves
deterministically for a given policy k of kicking strengths) there is no point in choosing a stochastic policy such
as a neural network. Instead, a single choice of kicking strengths k represents the policy.We obtain this byfirst
training the neural networks using the cross-entropymethod, then generating a few episodes with the trained
neural network, and then picking the episodewith the largest QFI. The kicking strengths applied in that episode
represent the policy1.

4.4. Cross-entropymethod
TheRL cross-entropymethod [53]weuseworks as follows: wefirst produce a set of episodes (i.e. we obtain
several vectors k)with a neural network that is initialized randomly. Then, we rank those episodes according to
their reward2.We select the best 10%of episodes (with highest reward) for further computations. Every episode
can be split into several pairs of action and observation andwe use those pairs to train the neural networkwith
the stochastic gradient descentmethod calledAdam [54]. As a result of this training, theweights of the neural
network are adjusted, i.e. the agent learns from its experience. Future actions taken by the agent are influenced
not only by randomness but also by this experience. One run of producing episodes, ranking them, and using the
best 10% to train the neural network is called an iteration. Training a neural network consists of several
iterations. See appendix C for pseudocode of this algorithm. For the parameters of the training process see
appendix B. In appendixDwe study the learning success for different numbers of episodes and iterations.

5. Results

Wecompare theQFI for differentmodels: (i) the top (simple precessionwithout kicks), (ii) the standardKT, as
studied in [33], with periodic kicks (period τ=1, i.e. a precession angle ofπ/2 for one period, and kicking
strength k=30), and (iii) the generalized KToptimizedwith RL. In case of superradiance damping (phase
damping)wedenote the top by SR-T (PD-T), the standardKTby SR-KT (PD-KT) and theRL-optimized
generalizedKTby SR-GKT (PD-GKT). Details on the training and the optimization of the RL results are
provided in appendix B.

Let usfirst consider superradiant dampingwith results presented infigure 3. TheQFI for the SR-T exhibits a
characteristic growth quadratic in time.However, due to decoherence, theQFI does notmaintain this growth

Figure 2.Typical setup of reinforcement learning: the RL agent acts upon the environment which in return gives the RL agent an
observation and a reward. In our case the RL agent is a neural network and the environment is the generalized kicked top.

1
In comparison, Sanders et al [23–25] restricted their policy search for adaptive single-photon interferometry in such away that their search

space corresponds to points in N , making it similar to our problem.However, in their case the observations from the environment are
probabilisticmeasurement outcomeswhile in our case the observation is the deterministic state ρ.
2
Wedo not give an immediate reward at every step but only at the very end of an episode, and the reward is not reducedwith the number of

steps (i.e. the discount factor is 1).
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but starts to decay rapidly towards zero. The timewhen theQFI reaches itsmaximumwas found to decay
roughly as ( )g j1 sr with spin size j and damping rate γsr [33].

The situation changes with the introduction of nonlinear kicks. There, theQFI for the SR-KT shows the
interesting behavior of not decaying to zero for large times. Instead it reaches a plateau valuewhichwas found to
take surprisingly high values for specific choices of j and dissipation rates [33], in particular, for j=2. The
system looses energy through superradiant dampingwhile the nonlinear kicks add energy. This prevents the
state fromdecaying to the ground state, which is an eigenstate of the precession andwould lead to a vanishing
QFI. From this perspective, the plateau results from a dynamical equilibrium established by the interplay of
superradiant damping and kicks.

However, the full potential of exploiting such effects and increasing theQFIwith the help of nonlinear kicks
is not achievedwith constant periodic kicks. Instead, the RL agent3 finds policies tomake theQFI of the SR-GKT
increase further evenwhen theQFI of the SR-T decayed already to zero and theQFI of the SR-KT reached its
plateau value.

Examples for j=2 and j=3 are presented infigure 3. TheQFI of the SR-GKT is optimized for a total time
Topt which is the largest time plotted in each example. AtTopt, the plateau value of the SR-KT for j=3 is
relatively low and the RL-optimized policy achieves an improvement in sensitivity (associatedwith wI1 ) of
more than an order ofmagnitude. Panels (a) and (b) show continuous growth of theQFI through an optimized
kicking policy. Only if the timeTopt (theQFI is optimized to bemaximal atTopt) is increased further, the
impressive growth of theQFIfinally breaks down. Instead of increasingTopt, we choose to increase superradiant
dampingwhile keepingTopt constant, which has a similar effect. In that case, see panels (c) and (d), the RL agent
chooses a policy whichmakes theQFI oscillate at a relatively high level before the timeTopt is reached.

The superiority of the policies found by the RL agent can be understood by taking a look at the evolution of
the quantum state, see figure 4: we represent the quantum state in the space of ( ) ( )= = á ñ á ñ á ñr x y z J J J, , , ,x y z

where ≔ ( )ℓ ℓrá ñJ Jtr and, due to the conservation of angularmomentum, ∣ ∣ =r 1which restricts the space to a

Figure 3.Examples for the policy adopted by the RL agent for superradiant damping.We plot the accumulated kicking strength kacc(t)
(integrating over the kicks from time 0 to t) on the left axes as red dots and on the right axes in blue the quantumFisher information for
the top (solid line), the periodically kicked topwith k=30 chosen as in [33] (dashed line) and theQFI that corresponds to the policy
of the RL agent (crosses).We additionally plot red vertical lines in the places, where the RL agent decides to set a kick. The height of the
lines correspond to the kicking strength in arbitrary units and are not on the scale of the left axis. There is a regimewhere the RL agent
manages to increase theQFIwith each time step (panels (a) and (b)), and a regimewhere the RL agentmakes theQFI oscillate (panels
(c) and (d)).

3
The training of one RL agent takes about eight hours on a desktop computer.
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sphere. This is represented infigure 4with either a sphere parameterizedwith x, y, and z, or in a plane (the phase
space) spanned by the z-coordinate and the azimuthal angle ( ]f p pÎ - , such thatf=z=0 corresponds to
the positive x-axis,f=π/2, z=0 to the positive y-axis, and z=±1with arbitraryf to the positive (negative)
z-axis.

The quantum state can be represented in the phase spacewith the help of theHusimi or theWigner
distributionswhich are quasi probability distributions of the quantum state. Thefirst two rows of panels in
figure 4 depict theWigner distribution of the initial quantum state (left column) and the quantum states of the

Figure 4. Illustration of kicked superradiant dynamics withWigner functions and its classical limit. The spin size is j=3 and the
dissipation rate is g = 0.01sr . Panels in the left column (a) correspond to the initial spin coherent state at θ=f=π/2. Themiddle
and right columns correspond to the state at timeTopt generated with periodic kicks (middle column (b), k=30) andwith kicks
optimizedwith reinforcement learning (right column (c), the correspondingQFI is shown in panel (b) offigure 3). The top two rows
show theWigner functions of the densitymatrix, the bottom two rows show the classical phase space, populated by 106 points initially
distributed according to theHusimi distribution of the initial spin coherent state and then propagated according to the classical
equations ofmotion.
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SR-KT (middle column,with kicking strength k=30) and SR-GKT (right column) evolved for a timeTopt with
damping rate γsr=0.01. The plotted cases for the SR-KT and SR-GKT correspond to theQFI given in panel (b)
offigure 3, where one can also see the corresponding RL-optimized distribution of kicks.

Due to the small spin size of j=3, we are deep in the quantummechanical regimewhichmanifests itself in
an uncertainty of the initial spin coherent state that is relatively large compared to total size of the phase space.
The distribution of the states evolved under dissipative dynamics exhibit remarkable differences for periodic and
RL-optimized kicks.

In case of periodic kicks, wefind that the initially localized distribution gets distributed over the phase space.
It exhibits amaximumon the negative z-axis, see panels (b1) and (b2) infigure 4. This is reminiscent of the
dissipative evolution in the absence of kicks, where the state is driven towards the ground state ∣ - ñj j, which is
centered around z=−1. The ground state ∣ - ñj j, is an eigenstate of the precession and, thus, insensitive to
changes in the frequencyωwewant to estimate. Similarly, we interpret the part of the state distribution of the
SR-KT that is centered around negative z-axis as insensitive. However, the distribution also exhibits non-
vanishing parts distributed over the remainder of the phase space that can be understood as being sensitive to
changes ofω and therefore explain the non-zeroQFI of the SR-KT.

The state corresponding to RL-optimized kicks looks like a strongly squeezed state that almost encircles the
whole sphere. Similar to spin squeezing, which is typically applied to the initial state as a part of the state
preparation, we interpret the squeezed distribution as particularly sensitive with respect to the precession
dynamics. This is due to the reduced uncertainty along the precession trajectories, i.e. with respect to thef
coordinate.We provide clips of the evolution over time of the state distributions that illustrate how the RL agent
generates the squeezed state4. In particular, the squeezed state distribution can be seen as a feature the RL agent is
aiming forwith its policy. The distribution of RL-optimized kicks is shown in figure 3 (in appendix F, we provide
afiner resolution of the distribution of kicks): it is roughly periodic with period corresponding to a precession
angle ofπ. Also note that for the SR-GKT theWigner distribution has negative contributions which is associated
with non-classicality of the quantum state [55].

An advantage of the superradiant dynamics lies in its well-defined simple classical limit [45], see also
appendix E. The lower two rows of panels in figure 4 depict the corresponding classical limit where the quantum
state is represented by a cloud of phase space points (distributed according to theHusimi distribution of the
initial spin coherent state) that are propagated according to the classical equations ofmotion.One of the reasons
why the evolved classical distributions differ from theWigner distributions is the absence of quantum
uncertainty in the classical dynamics; in principle, over the course of the dynamics all classical phase space points
can be concentrated to an arbitrarily small region of the phase space. In case of the SR-KT, the phase space points
are distributed over thewhole phase space, reminiscent of classical chaos. However, the distribution is not
completely uniformbut it exhibits a spiral density inhomogeneity. The plots as infigure 4 but for j=2 are
shown in the appendix F.

Figure 5 shows the gains of the RL-optimized SR-GKTover the SR-T. The gain is defined as the ratio of the
RL-optimizedQFI at timeTopt and themaximumQFI for the SR-T. A broad damping regime is foundwhere
gains can be achieved: in the regime of small decoherence rates γsr, the RL agent canfight decoherence in such a
way that theQFI exhibits a continuous growth over the total timeTopt (see panels (a) and (b) in figure 3). In
comparisonwith the SR-T, the RL agent benefits of stronger damping in this regime and, therefore, the gain
increases with the dissipation rate γsr. For larger decoherence rates, the RL agent can no longerfight decoherence
in the samemanner (see panels (c) and (d) infigure 3), whichmanifests itself in a reduction of gains for large
decoherence rates. In panel (b) offigure 5, we can see the (even larger) gain inQFI compared to the plateau value
reached by the SR-KT.

TheRL-optimizedQFI is associatedwith a lower bound on the sensitivity (see equation (1)) for a given
measurement timeTopt. If themeasurement time can be chosen arbitrarily, sensitivity is associatedwith

( )wI t tmaxt [33]. This sensitivity represents the standard quantity reported for experimental parameter
estimation because it takes time into account as a valuable resource; sensitivity is given in units of the parameter
to be estimated per square root ofHertz.With RLwe try tomaximize ( )wI t tmaxt with respect to policies.

Figure 6 compares the SR-Twith the SR-GKTwhere the latter was optimizedwith RL in order tomaximize
the rescaledQFI. Note, that the initial spin coherent state is centered around the positive y-axis, whichmeans it is
an eigenstate of the nonlinear kicks; kicks cannot induce spin squeezing at the very beginning of the dynamics.
This changes when the spin precesses away from the y-axis. Therefore, itmakes sense that the RL agent applies
the strongest kick only after a precession by aboutπ/2. The actions that the RL agent takes after the rescaledQFI
reached itsmaximumare irrelevant and can be attributed to randomnoise generated by the RL algorithm.

Aswe have seen, the interplay of nonlinear kicks and superradiant damping is very special. However, also for
other decoherencemodels theQFI can be increased significantly, for instance in case of a alkali-vapor

4
The clips are available at https://doi.org/10.6084/m9.figshare.c.4640051.v3.
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magnetometer [33]. To demonstrate the performance of the RL agent in connectionwith another decoherence
model, we take a look at phase damping, see figure 7. The behavior of theQFI of the PD-T is qualitatively similar
to superradiant damping. The introduction of kicks, however, has a qualitatively different effect on theQFI. The
RL agent can achieve improvements of theQFI for the PD-GKT at timeTopt (the highest time plotted in each
panel offigure 7) comparedwith theQFI of the PD-T at the same time. Compared to the superradiant case,
improvements are rather small. Notably, the policies applied by the RL agent are also different from superradiant
damping; for instance, the RL agent avoids kicks for large parts of the dynamics.

6.Discussion

Thiswork builds on recent results onquantum-chaotic sensors [33]. Our aim is to optimize the dynamical control
thatwas used in [33] to render the sensor dynamics chaotic. Due to thehighdimensionality of the problemweuse
techniques fromRL. The control policies foundwithRL are tailored to boundary conditions such as the initial
state, the targetedmeasurement time, and the decoherencemodel under consideration. At the example of

Figure 5. Improvement in the quantumFisher information due to reinforcement learning for superradiant damping. The
improvement in panel (a) is the ratioΓunkicked of quantumFisher information at timeTopt (100 discretized time steps) optimizedwith
reinforcement learning and themaximumQFI of the top (no kicks). In panel (b)weplot the ratioΓplateau of theQFI optimizedwith
reinforcement learning and the plateau values achieved by periodic kicking for spin size j=2 and kicking strength k=30. In panel
(b), the case of j=3 is omitted due to the very small plateau values in that case. The discretization is coarser than in previous examples:
tstep=1 (i.e. a precession angle ofπ/2 per time step) and kstep=0.1.

Figure 6.Examples for the policy adopted by the RL agent formaximizing the rescaled quantumFisher informationwith superradiant
damping.Weplot the accumulated kicking strength kacc(t) (integrating over the kicks from time 0 to t) on the left axis as red dots and
on the right axis the rescaled quantumFisher information for the top (blue solid line) and for the generalized kicked top optimized
with reinforcement learning (blue crosses). In case of j=2 ( j=3) the strongest kick is applied after an initial rotation angle of
13π/20 (9π/20).

9

New J. Phys. 22 (2020) 035001 J Schuff et al



superradiant dampingwedemonstrate improvements inmeasurement precision and an improved robustness
with respect to decoherence.Adrawback ofRLoften lies in the expensivehyperparameter tuning of the algorithm.
However, herewe show that a basicRL algorithm (the cross-entropymethod) canbeused for several choices of
boundary conditionswithpractically no hyperparameter tuning (therewas nohyperparameter search necessary,
solely parameters that directly influence the computation timewere chosen conveniently).

In the example of superradiant damping, we unveil the approach taken byRL by visualizing the quantum
dynamics with the help of theWigner distribution of the quantum state. This reveals that RL favors a policy that
is reminiscent of spin squeezing.However, instead of squeezing the state only at the beginning of the dynamics,
the squeezing is refreshed and enhanced in roughly periodic cycles in order tofight against the superradiant
damping.

In the spirit of [33], thesefindings emphasize the potential that lies in the optimization of themeasurement
dynamics.We are optimistic that RL can be used to tackle other problems in quantummetrological settings in
order to achievemaximummeasurement precisionwith limited quantum resources.
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AppendixA. Control problem and optimization parameters of the examples

Table A1 shows the parameters of the control problem and for the optimization used in each example.We train
nagents RL agents for niterations iterations with nepisodes episodes in each iteration. Each episode is simulated until a
total timeTopt is reached. Thenwe produce nsamples sample episodes of each trained RL agent and choose the best
episode to plot the sample policies and gains.

Figure 7.Examples for the strategy adopted by the RL agent for phase damping. All data is for spin j=2with increasing damping rates
γpd frompanel (a) to (d).We plot the accumulated kicking strength kacc(t) (integrating over the kicks from time 0 to t) on the left axis as
red dots and on the right axis the quantumFisher information for the top (blue solid line) and for the generalized kicked top optimized
with reinforcement learning (blue crosses).We additionally plot red vertical lines at times when the RL agent sets a kick. The length of
the lines corresponds to the kicking strength in arbitrary units (independent of the scale of the left axis). Note that the RL agent aims to
maximize theQFI forTopt=100 and outperforms the top in all examples.
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Appendix B.Hyperparameters of RL

Herewe give further information on the neural network and the hyperparameters of the algorithm.
The input layer of the neural network is defined by the observation. The output layer is determined by the

number of actions (two) andwe choose 300 neurons in the hidden layer. The layers are fully connected. The
hidden layer has the rectified linear unit as its activation function and the output layer has the softmax function
as its activation function [56]. As a cost functionwe choose the categorical cross entropy [56]. The share of best
episodesσshare is always 10%.The number of iterations and number of episodes vary for different settings, see
table A1 for detailed information. For trainingwe use theAdamoptimizer [54]with learning rate 0.001.

AppendixC. Pseudocode for cross-entropy RL

This is the pseudocode for the cross-entropymethodwith discrete actions.

The code implementation is based on an example by Jan Schaffranek5.

AppendixD. Learning curve and stability of the algorithm

At the example of the superradiance decoherencemodel, we study the learning behavior of the cross-entropy RL
algorithm for different training lengths (i.e. number of iterations) and different numbers of episodes per
iteration. The results are summarized infigureD1. Spin size is j=2 and dissipation rate is γsr=0.02.

Table A1.Hyperparameters used for the examples in themain text.

Figure nagents niterations nepisodes nsamples tstep kstep Topt

Samples with superradiant damping (figure 3) 5 500 50 20 0.2 0.05 100

Gains of superradiant damping (figure 5) 20 300 40 20 1.0 0.10 100

Samples of rescaledQFI (figure 6) 2 500 50 20 0.1 0.10 50

Samples with phase damping (figure 7) 1 1000 100 1 1.0 0.10 100

5
https://udemy.com/artificial-intelligence-und-reinforcement-learning-in-python.
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In order to see the influence of the number of iterations, we set the number of episodes to 100 and let 20
different RL agents (with different random seeds) train for various numbers of iterations. The training of a single
RL agent takes about one hour atmost (for the higher number of iterations) on a desktop computer.We then use
eachRL agent to produce 20 episodes, giving us 400 episodes for each data point infigureD1.We used those
episodes to calculatemean and standard deviation of the reward. The results are shown in the panel (a) of
figureD1. In order to see the influence of the number of episode in each iteration, we fix the number of iterations
to 500 and do the same procedure as before. The results are shown in panel (b) offigureD1.

We can see that the standard deviation over policies decreases with the number of iterationswhile themean
QFI increases. The same is true for the number of episodes (panel (b)), where for 32 episodes a stable plateau of
theQFI is reached such that increasing the number of episodes does not achieve any further improvements.
Overall, these results demonstrate the stability of the algorithm if the number of episodes and iterations is chosen
sufficiently large.

Appendix E. Classical equations ofmotion

TheKTwith superradiant damping has awell defined classical limit. It is obtained from the quantum equations
ofmotion by taking the limit  ¥j where ÿ=1 and τ=1. The rescaled angularmomentumoperator

( ) ( ) ( )+ = +J j J J J j2 2 1 2 , , 2 1x y z then becomes the classical coordinate vector ( )=r x y z, , andwith

( ) =¥ +
lim 1J

j j

2

2 1

2
the unit sphere becomes the classical phase space with azimuthal anglef and

z-coordinate as canonical variables. The equations ofmotions ˜r r are found to be [45]

˜ ( ) ( ) ( )a a= -x x ycos sin , E1

˜ ( ) ( ) ( )a a= +y x ysin cos , E2

˜ ( )=z z, E3

for the precession about the z-axis by an angleα

˜ ( ) ( ) ( )= +x z ky x kysin cos , E4

˜ ( )=y y, E5

˜ ( ) ( ) ( )= -z z ky x kycos sin , E6

for the kicks about the y-axis with kicking strength k, and, with azimuthal anglef (seemain text)
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˜ ( ˜) ( ) ( )q f=x sin cos , E8

FigureD1. Learning behavior of the algorithm at the example of superradiant dampingwith j=2, γsr=0.02, kstep=0.1, tstep=1,
andTopt=100. Panel (a) shows how themeanQFI and its standard deviationwith respect to different runs of the algorithmbehaves
for various numbers of iterations and fixed number of episodes fixed to 100. In Panel (b) the number of episodes is varied andnumber
of iterationsfixed to 500.
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˜ ( ˜) ( ) ( )q f=y sin sin , E9

˜ ( ˜) ( )q=z cos , E10

for the superradiant damping, where

( ) ( )t g= +j t2 1 , E11sr

for a time t, spin size j, and superradiant decoherence rate γsr.

Appendix F. A closer look at the kicks set by theRL agent

Herewe take a closer look at the kicks chosen by the RL agent in the examples with superradiant damping,
considered infigure 3 in themain text.

In case of γsr=0.01, for both, j=2 and j=3, wefind relatively similar distribution of kicks, see panel (a) in
figure F1. Themost striking difference between the two policies for j=2 and j=3 are the comparatively strong
kicks in the beginning of the sequence. By observing the time evolution of theWigner function (see footnote 4),
wefind that these kicks basically rotate the state by an additional angleπ/2 about the z-axis. This leads to a phase
shift ofπ/2 between the two policies (see panels (d3) and (d4) offigure F2) compared to the initial state (see
panels (a3) and (a4) of figure F2).

For γsr=0.1 the policies are evenmore similar with several kicks increasing in strengthwith a period length
ofπ, see panel (b) infigure F1.

Figure F1.Kicks set by the RL agent for the SR-GKT. Panel (a) shows the case for γsr=0.01 and panel (b) for γsr=0.1. In red on the
left axis are the kicking strengths k for j=2 (crosses) and j=3 (circles). To show the precession, we plot on the right axis in grey the x
component of an unkicked spin coherent state without decoherence.
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Figure F2 is analog tofigure 4 in themain text but for j=2 instead of j=3. The only qualitative difference
compared to the j=3, is the periodically KT: the combination of periodic kickswith k=30 and j=2 seems to
be a special configuration. The classical phase space is comparable with the j=3 case, but there ismuch less
structure in theWigner function. Instead, the state concentrates on the south pole and exhibits a slightly
squeezed shape (this is difficult to judge from figure F2 though). The rather high value of theQFI for k=30 and
j=2, is best explained by this squeezing.When choosing other kicking strength, we observed aWigner function
similar to the case of j=3.

Figure F2. Shows the corresponding data as in figure 4 but for j=2 instead of j=3: illustration of kicked superradiant dynamics with
Wigner functions and its classical limit. The dissipation rate is γsr=0.01. Panels in the left column (a) correspond to the initial spin
coherent state at θ=f=π/2. Themiddle and right columns correspond to the state at timeTopt generatedwith periodic kicks
(middle column (b), k=30) andwith kicks optimizedwith reinforcement learning (right column (c), the correspondingQFI is
shown in panel (b) of figure 3). The top two rows show theWigner functions of the densitymatrix, the bottom two rows show the
classical phase space, populated by 106 points initially distributed according to theHusimi distribution of the initial spin coherent
state and then propagated according to the classical equations ofmotion.
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