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Abstract
Wederive a set of ptychography phase-retrieval iterative engines based on proximal algorithms
originally developed in convex optimization theory, and discuss their connections with existing ones.
The use of proximal operator creates a simple framework that allows us to incorporate the effect of
noise from amaximum-likelihood (ML) principle.We focus on three particular algorithms, namely
proximalminimization, alternating directionmethod ofmultiplier and accelerated proximal gradient
(APG).We benchmark their performance with numerical simulations, and discuss their optimal
conditions for convergence and accuracy. An experimental dataset is used to demonstrate their
effectiveness as well, inwhich case an array of cubic Aunanoparticles with a size of 50 nm is imaged.
We show that with the presence of Poisson noise, a dataset with photon counts up to 104 at one
detector pixel already requiresML-basedmethods to achieve a stable convergence. Among the three
algorithms derived in this work, APGmethod is reported first time for its application in ptychographic
reconstruction and shows superior performance in terms of both accuracy and convergence rate with
a noisy dataset.

1. Introduction

Ptychography is a powerful scanning imaging technique that utilizes advancedmathematical tools to retrieve the
missing phase information of thewave-field from a sequence of intensitymeasurements [1–3]. The attraction of
this technique comes from its capability of recovering both the complex-valued probe and object functions, a
blind deconvolution, as well as its ability of breaking the resolution barrier set by the focusing optics. It gains
increasing popularity in recent years for its robustness in practice andwas used successfully formany imaging
applications in different fields [4–9]. Themajor challenge of this technique resides in the fact that the
mathematical problem is non-convex and ill posed. Particularly for real-world problems, the experimental data
always contains noise and other types of errors, therefore finding a solution optimized globally is extremely
difficult, if not completely impossible. A great deal of efforts have been devoted to developing robust
ptychographic iterative engines, either based on alternating-projection or gradient-descentmethods [3, 10–18].
More complex algorithms that can handlemixed states [19], positioning errors [20, 21], diffraction effect
[22, 23] and instability of the probe [24]were developed as well.

For convex optimization problems, a class of algorithms called proximal algorithms have been studied
extensively [25]. They turn out to bewell-suited for constrained, large-scale and distributed optimization
problems, and ptychography falls into this category. In these techniques, the solving process is divided into sub-
problems involving the evaluation of the proximal operator, which usually has a closed-form solution. Inspired
by these developments, here we propose to combine proximal algorithms andWirtinger derivatives to create a
simple framework for solving ptychography problems, where either alternating-projection or gradient-descent
algorithms can be derived straightforwardly.

Wewant to emphasize that proximal algorithms are originally developed for convex problems dealingwith
real-valued numbers, and ptychography problems are non-convex and involves complex-valued numbers. The
Wirtinger derivative allows us to use the common rules for differentiation known from real-valued analysis [26],
so the developed solving techniques in proximal algorithms can be readily applied.We show some previously
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reported ptychography algorithms can be derived in this framework.Herewe do not attempt to provide a
rigorous theoretical proof of the overall convergence, but rather offer a heuristic for future work by
demonstrating the effectiveness of these algorithmswith numerical simulation and real-world applications. As
have been shown thatmany phase-retrieval algorithms can find their counterparts in convex optimization
theory [27], so can ptychography. In this paper, we focus on ptychographic reconstructionwith noise and
round-off errors, a commonproblem encountered in allmeasurements. Threemaximum-likelihood (ML)
based algorithms, namely proximalminimization (PM), alternating directionmethod ofmultiplier (ADMM)
and accelerated proximal gradient (APG) are derived and benchmarkedwith both simulation and experiment
data. Among them,APG,which has not been reported before, exhibits a superior performance. Although
currentmodel only considers noise and round-off errors, it is not difficult to extend it to amore complex case.

This paper is organized as follows. In themodel section, wefirst build themathematicalmodel for the
optimization problem in ptychography, and then discuss how different solving algorithms can be derived from
proximal operators. Connections with existing techniques are discussed. Two statisticalmodels for the noise,
intensity Poisson and amplitudeGaussian, are considered throughout the paper. In the numerical simulation
section, we benchmark performance of the derived algorithms at different signal-to-noise ratios (SNRs), and
discuss the optimal conditions for convergence and accuracy in respective cases. In the experimental data
section, PM,ADMMandAPG are testedwith an experimental dataset takenwith x-rays. The result confirms
that APGoutperforms the other two and achieves the state-of-the-art performance.

2.Model

In a ptychographic scan, a probe, p, impinges on different parts of an object, o. The transmittedwave is assumed
to be simply a product of the probe and object function, and propagates to a farfield detector. Thewave-field at
the object plane is linked to thewave-field at detector plane by Fourier transform. Because a physical detector
onlymeasures intensity (or amplitude in other words), the phase of thewave-field is lost in an experiment. A
phase-retrieval algorithm intends to recover this set ofmissing information based on themeasured amplitude
under certain conditions. Assuming that we collect farfield diffraction patterns atK different positions,We now
have two constraints for themeasured data to satisfy. One is in real space (sample plane). Thewave-field has to be
written as a product of a probe and an object functionwith known translations. The other is in reciprocal space
(detector plane). Themodulus of its Fourier transformhas to agreewith themeasurement

∣ [ ( ) ( )]∣ ( )= - = ¼y F p o i Kr r r , 1, 2, , 1i i

where yi is themeasured amplitude of the ith image and F is the two-dimensional Fourier transformoperator. In
equation (1), another set of known information is the probed position, ri. The goal here is tofind complex-
valued functions p and o that satisfy both the amplitude and translation constraints.We discretize the problem
and rewrite equation (1) into a vector formby concatenating an image along its columndirections

∣ ∣ ( )= =y x x FPS o, . 2i i i i

Here the lower-case bold letter represents a column vector and a capital bold one corresponds to amatrix. The
absolute operator is element-wise. In the above equation, Î ´yi

N 1 is themeasured amplitude, Î ´F N N is
the Fourier transformmatrix, Î ´p N 1 is the probe vector,P= diag(p) is a diagonalmatrix, Î ´Si

N M is a
sparsematrix containing only zeros and ones that selects the illuminated elements of the object vector,
Î ´o M 1, at the ith probed position. The resulting vector is Î ´oi

N 1. Problemdescribed by equation (2) can
be turned into an unconstrained optimization problem

( ) ( ) ( )+f gx xmin , 3i i
x i

where f and g are indicator functions corresponding to the two constraints respectively
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2.1. Alternating projection (AP)
The classicalmethod of solving the above problem is AP algorithm that projects the solution into two
domains,
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HereΠf andΠg are Euclidean projection operators. By iteratively projecting into these two domains, we hope
that an initial guess can converge to a solution fulfilling both constraints.

A proximal operator of a function f is defined by

( ) ( ( ) ) ( ) 
l

= + -l fprox v x x vargmin
1

. 6f
x

2
2

Herewe use 1/λ instead of 1/2λ for convenience because we need to deal with complex-valued variables. For the
two indicator functions in equation (3) their corresponding proximal operators are simplified to
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Based on the definition, these proximal operators are just Euclidean projections. Therefore, the classical AP
method can also bewritten as
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The solution to thefirst projection is simply to replace the amplitude of viwith yiwhile retain its phase
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The divide is an element-wise operation. The solution to the second projection can be obtained bymany
different ways. The probe and object functions can be updated sequentially [16], collectively [3] or jointly [14].
Herewe choose the usual collective update
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where superscriptH denotes conjugate and transpose operation.Πg defines another projection satisfying the
second constraint. Specifically, we back-propagate thewave-field to the sample plane using inverse Fourier
transform. Thenwe update probe and object functions collectively based on the probed positions. One can run
the iteration once ormultiple times for high accuracy. Lastly, we replace thewave-field at the sample plane by the
product of the probe and object functions and propagate it to the detector plane. Thismethod is often referred as
error reduction (ER) algorithm.

From a statistical point of view, if we assume aGaussian likelihood function of the amplitude and use its
negative log as our cost function, we arrive at
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TheirWirtinger derivatives with respect to the probe and object are
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At a stationary point the derivatives have to be zero
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They can be solved iteratively by afixed-point algorithm that seeks afix point of the equation, z=q(z). In this
case, the unknown variables are o andp. If they are solved in sequencewe arrive at
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This is no different from the classical ER algorithm shown in equation (10). Therefore, we can also interpret ER
algorithm for ptychography as some sort offix-point algorithm that seeks the stationary point of the amplitude
Gaussian likelihood functionwith respect top and o.

Algorithm1.ER

Data: Î ´yi
N 1, Î ´Si

N M , i=1, 2,KK

Result: probe function p and object function o

initialization:p0, o0, x i
0, tmax;

Repeat

 ( ) ( )J=+z y xdiagi
t

i i
1 ;

 ( )=+ +o p zupdate_o ,t t
i
t1 1 ;

 ( )=+ + +p o zupdate_p ,t t
i
t1 1 1 ;

 ( )=+ + +x F p S odiagi
t t

i
t1 1 1;

until t>tmax;

2.2. Alternating directionmethod ofmultiplier
For real-world phase-retrieval problems, ER is known to suffer from slow convergence and stagnation issues. A
farmore robust and popular algorithm is ADMM.One special variant of its form isDouglas–Rachford splitting
method, also known as differencemap (DM), which is widely used for ptychography reconstructions. ADMMis
usually derived fromargumented Lagrangianmethod. In the framework of proximal algorithms, it can be
written in a very concise form. An in-depth discussion of ADMMcan be found in themonography by Boyd et al
[28], and its application for ptychographywere reported in previous publications [12, 18]. Recently it was
applied for joint ptycho-tomography reconstruction [29]. Thus, herewe skip the derivation process.We change
our optimization problem (equation (3)) slightly
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For two indicator functions defined in equation (4), the ADMMalgorithm is,
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If we define a new variable = +w z ui
t

i
t

i
t and substitute it into equation (16), we arrive at
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Variable +x i
t 1 is not independent and can be replaced. Rearrange terms and use Euclidean projection operators

derived in equations (9) and (10), we have,
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This is thewell-knownDMalgorithm [3].
For a noisy dataset, DM is known to have stability problembecause it attempts tofind a solutionwith its

amplitude exactly equal to themeasured value. A simple remedy is to replace the indicator function, f, with a
negative log likelihood function, . In such a case, xiupdate in equation (16) ismodified to
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Here ‘G’ and ‘P’ refers to amplitudeGaussian and intensity Poisson, respectively. Onemay notice that the
update scheme for xi is now parameter-dependent. FromBayes’ theorem, the proximal operator can be
interpreted asmaximum-a-posterior (MAP) probability estimate, where the prior probability follows a
normal distribution. The parameter,λ, controls how close the new update should be to its prior value, and
plays an important role in determining the performance of the algorithm.Wewill have amore detailed
dissuasion in the following section.

Algorithm2.mADMM

Data: Î ´yi
N 1, Î ´Si

N M , i=1, 2,KK

Result: probe function p and object function o

initialization:p0, o0, zi
0, ui

0,λ,β, δ, tmax;

Repeat

 ( )l= -+x y z uE , ,i
t

i i
t

i
t1

MAP ;

 ( )= ++ +o p x uupdate_o ,t t
i
t

i
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i
t
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t t

i
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i
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If    d- <+ +u u ut t t1
2

1
2 then

λ=βλ;
end
until t>tmax

2.3. Proximalminimization
Thefixed point of a proximal operator is also theminimizer of the original function. This leads to a simple
proximal iterative algorithm
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Again, we can interpret the update as aMAP estimate. The difference fromADMMdiscussed above is that xi and
zi are forced to be equal here. In ADMM, the splitted variables belong to their individual domains and are not
necessary the same. Similar to the derivation of equation (14), wemake two-step update
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Compared to ER, the only difference is that themeasured amplitude is replacedwith aMAP-estimated value.
Thismethod isfirst proposed byKatkovnik et al [13]. Herewe show it is equivalent to PMalgorithm and provide
an alternative perspective.
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Algorithm3.PM

Data: Î ´yi
N 1, Î ´Si

N M , i=1, 2,KK

Result: probe function p and object function o

initialization:p0, o0, xi
0,λ, tmax;

Repeat

 ( )l=+z y xE , ,i
t

i i
t1

MAP ;

 ( )=+ +o p zupdate_o ,t t
i
t1 1 ;

 ( )=+ + +p o zupdate_p ,t t
i
t1 1 1 ;

 ( )=+ + +x F p S odiagi
t t

i
t1 1 1;

until t>tmax

2.4. Accelerated proximal gradient
Let’s consider the optimization problem

( ) ( ) ( )+ gx xmin . 23i i
x i

Wirtinger derivative allows us to derive the gradient of the real-valued likelihood functionwith respect to the
complex-valued variable xi,
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Here ε is a small real-valued constant introduced to avoid the discontinuity at zero, as suggested in [18]. The
negative of the gradient is also the steepest descent direction of the function. The proximal gradient algorithm is
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x
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Hereλ t is a positive step size that can vary at each iteration.We use a simplemethod to determine its value [30].
The step size remains the same unless the following condition is violated
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In such a case, we reject the update andmultiply the step size by a factorβä(0, 1). The process is repeated until
the above condition is satisfied and then the iteration is completed, =+x zi

t
i

1 . The proximal gradient algorithm
can be understood from a point of view of localized optimization. For completeness, we give an explanation due
to Beck andTeboulle [30]. The function, ( )l z x,i i

tt , is an upper bound to ( ) x i
t that is tight at x i

t , i.e.
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* .
This function can be considered as anfirst-order approximation to with a regularization term.Wemay rewrite
it as
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In the vicinity of x i
t , we replace the original optimization problemwith an approximate one
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Dropping constant terms in equation (27) does not affect the solution to equation (28). As a result we arrive at
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Consequently, we can interpret each iteration as a proximal operator of g along the steepest decent direction of
, as the name proximal gradient suggests. By definition
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+ + + +   g g gx x x x x x x x, , . 30i
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t
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In this particular case g is an indicator function, thus

( ) ( ) ( )= =+g gx x 0. 31i
t

i
t 1

Wecan simplify the inequality as

( ) ( ) ( ) ( ) ( )=l l
+ +    x x x x x x, , . 32i

t
i
t

i
t

i
t

i
t

i
t1 1t t

Therefore, each iteration decent the negative log likelihood functionmeanwhile satisfying the constraint g. For a
faster convergence, the accelerated version of the proximal gradientmethodwhich includes an additional
extrapolation step can be used
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Wenote that Xu et al [15] recently proposed acceleratedWirtingerflow (AWF)method for ptychography,
which stems from the popularWirtinger flow algorithm for phase-retrieval problems [31]. It shares some
similarity withAPG.However, they differ fundamentally inmany aspects. AWF can be considered as a steepest
decentmethodwith a constant step size, while APGhere is a projected gradientmethodwith a varying step size.
Wemay consider APG as a hybrid algorithm combining gradient descent and projectionmethods.Wefirst
decent the cost function in reciprocal space with a small step, and then project it to the domain in real space
which satisfies the translation constraint. The update is completed onlywhen such amovewouldmake the cost
function smaller. For aGaussian amplitude likelihood function, ifλ t is equal to one, as can be seen the updating
scheme is no different fromER algorithm. Therefore, we can choose one as the initial value of the step size.

Algorithm4.APG

Data: Î ´yi
N 1, Î ´Si

N M , i=1, 2,KK

Result: probe function p and object function o

initialization:p0, o0, x i
0,λ0=1,β, tmax;

Repeat

w =
+

t t

t 3
;

 ( )w= + - -w x x xi
t

i
t t

i
t

i
t 1 ;

Repeat
 ( )l= -  z w wi i

t t
i
t

xi* ;

 ( )=+o p zupdate_o ,t t
i

1 ;

 ( )=+ +p o zupdate_p ,t t
i

1 1 ;

 ( )= + +z F p S odiagi
t

i
t1 1;

if ( ) ( )l z z w,i i i
tt then

Return =+x zi
t

i
1 ;

else
λ t=λ tβ;

end
untilλ t is sufficiently small;

λ t+1=λ t;

ifλ t+1<δ then
λ t+1=λ0;
end
until t>tmax

3.Numerical simulation

In this sectionwewill compare the performance of differentmethods using simulation data. The test object
function is shown infigure 1. The image ‘Cameraman’ is used as its amplitude and ‘Barbara’ as its phase. The
pixel size of the image is assumed to be 5 nm.A probe of size 37 nm is produced by a Fresnel Zone plate and a
special fermat scan that follows the equation (in polar coordinates) [32]

( )q= = =r c i i i K, 2.4 , 1, 2... 34i i
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is performed to illuminate the different parts of the sample. c is chosen to be 20 nm (4 pixels) and a total of 1261
far-field diffraction patterns are collected. Themaximumdetector intensity is scaled to the range of 102–106 and
a Poisson noise is added to each pixel accordingly. The ‘measured’ intensity contains two different types of
errors. One is the round-off error since themeasured intensity are integers. This approximation reduces the
dynamical range of the signal. Particularly in the detector regionwhere the intensity drops below 0.5 count, they
are all set to zero. Two is the Poisson noise, which adds backgroundfluctuation to the signal. To bemore
quantitative, we calculate the SNRof the intensity as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ˆ
ˆ

( )
 

 
=

å

å -
=

=

y

y y
SNR 10 log , 35i

K
i

i
K

i i
10

1
2

2
2

1
2 2

2
2

where yî are the ground-truth values.
Wefirst study the case with SNR=32.25 dB (max. detector pixel intensity=104 counts). The

reconstruction results obtained fromdifferent algorithms discussed in the preceding section are shown in
figure 1. All ofML-basedmethods yield a high-quality reconstructionwith nearly indistinguishable difference. If
we pay close attention on the reconstructed amplitude, a very faint cross-talk from the phase image can be seen
in the background. In contrast, the phase reconstruction does not show any visible artifacts. As a comparison, we
also plot results from the non-statistical algorithm,DM. Strong cross-talk in the reconstructed amplitude image
can be observed. In addition, the reconstructed phase image is less sharp than the others and contains some
visible artifacts. This suggests that even at this level of signals, onemay still need to useML-based algorithm to
achieve the best result.

To quantify the error for a systematic study, we use a rootmean square error (RMSE) defined as

ˆ
ˆ

( ) 
 

=
- ao o

o
RMSE , 362

2

where ô is the ground-truth and a is a complex-valued constant to account for the ambiguity in ptychography
reconstruction.Herewe choose RMSEover other image quantificationmethods (such as the popular structural
similarity index [33]) because the reconstructed quantity is a complex-valued number. RMSE allows the
calculation of a singlemetric without evaluating the amplitude and phase images separately. The assessment
under different conditions is presented infigure 2. For PM (figure 2(a)), its convergence rate isλ-dependent,
while the resultant RMSE is not; they all converge to the same value. The Poissonmodel leads to a smaller RMSE,
which is not a surprise since a Poisson noise is added.When the amplitudeGaussian is used, PM is no better than
ER. Aswe discussed earlier, ER can also be considered as aML-basedmethod.

ForADMM (figure 2(b)), weobserve that a larger value ofλ leads to a faster convergence. In the limit of
infinity,ML-basedADMMbecomesDM,which shows the fastest convergence rate at thebeginning.However, a
large value ofλ can cause a stability issue, which canbe seen in the plot. In this casewhenλ>5, they donot tend to
converge to a stable solution after initial fast convergence, but ratherfluctuate as iteration goes. Also, a largeλ
results in a higher RMSE.Therefore the solution is less accurate. This suggests amulti-stage strategy forADMMto
optimize both the convergence rate and accuracy.We can startwith a largeλ for fast convergence.Whena stable

Figure 1.Comparison of reconstruction results obtained fromdifferent algorithmswith a noisy dataset. Themaximumnumber of
photons received at one pixel of the detector is scaled to 104 counts, and a Poisson noise is added accordingly. This corresponds to
SNR=32.25 dB for the collected diffraction patterns. Top panel: amplitude image. Bottompanel: phase image.
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solution is reached (   - <-u u u thresholdt t t1 ), we reduce the value ofλbymultiplying itwith a constant
βä(0, 1), and then use the solution obtained from the last stage as the initial guess and continue the iteration.
Todistinguish it froma regular ADMMalgorithm,we call itmADMMthereafter,where ‘m’ refer tomulti-stage.

For APG (figure 2(c)), we always choose the initial value ofλ0 as one and it is adjusted automatically in the
update. Similar to the cases in PMandADMM, intensity Poissonmodel outperforms amplitudeGaussian. It is
worth noting thatwhen the initial guess of the probe is bad,λ t can quickly becomes very small, particularly for
intensity Poissonmodel. This will cause a stagnation problem. A remedy is to resetλ t to its initial valuewhen it
becomes too small, but a price to pay ismore computation time.

To assess performance across algorithms, infigure 2(d)weplot their RMSE variations as a function of
iteration number. For a fair comparison, all start with a disk-like probe and a square object as the initial guess.
Poissonmodel is used in all algorithms. Among them, APGhas the best performance. Not only its overall
convergences rate is higher, but also the resultant RMSE is smaller.

With current SNR, though quantitative analysis shows the difference in the reconstruction, visually the
results look almost the same (figure 1). In amore extreme case, we consider amaximumdetector intensity of 100
counts (SNR=12.77). Compared to the previous case, the diffraction intensity is reduced by 100-fold.
Figure 3(a) shows a typical diffraction patternwith limited counts in logarithmic scale, and a comparisonwith
the ground-truth (figure 3(b)). The error-free data has a dynamical range over seven orders ofmagnitude, while
that for the limited counts is reduced to less than two due to the round-off to integers. The added noisemakes the
situation evenworse. Such a noisy dataset poses a significant challenge to ptychographic reconstruction.We
present infigure 3(c) the reconstructed results obtained fromPM,APG andmADMMalgorithms. BecauseDM
does not converge at all in this case, its result is not shown here. Again a disk-like probe and a square object as the
initial guess are used. All three algorithms lead to a converged solution. As is clear, their results however differ
considerably from algorithm to algorithm. PM recovers high-frequency features well, but the reconstructed
images lookmore grainy. There are also strong cross-contamination between the amplitude and the phase

Figure 2.RMSE variations as a function of iteration numbers with (a)PM, (b)ADMM, (c)APGalgorithms under different conditions.
A comparisons across algorithms is shown in (d), where amulti-stage strategy is employed for ADMM (namedmADMM) to achieve
the best result, δ=10−5,β=0.7. The simulated dataset used for reconstruction is the samewith that infigure 1.
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images. In contrast,mADMMyields smooth images, but the high-frequency details are lost. APGbalances the
twowell and produces the best overall results. The quality of the obtained phase image is still very acceptable,
without having visible artifacts and losing toomuch details.

Figure 4 depicts the achieved RMSEof the reconstructed complex image at various levels of signal. In
general, the log–log plot shows a close-to-linear relationship, suggesting that they all follow a power law
approximately. Inmost circumstances, APGoutperforms the other two.Unlike PMandmADMMalgorithms
forwhich the value ofλ has to be chosen accordingly with the noise level to achieve the best performance, there is
no need to tune any parameter for APGwhen SNR changes.

4. Experimental data

The simulation data only take into account round-off errors and Poisson noise. The real-world problem can be
muchmore complicated. In order to assess the robustness of these algorithms, we perform reconstruction on an
experimental dataset that was taken at the hard x-ray nanoprobe beamline ofNational Synchrotron Light Source
II, BrookhavenNational Laboratory. The nanobeamwith a size of∼13 nm2 at 12 keVwas produced by two

Figure 3.A typical diffraction pattern of the noisy dataset (SNR = 12.77) (a) and the corresponding error-free one (b). Intensity plot in
logarithmic scale. (c) reconstruction amplitude and phase images using PM (λ=1), mADMM (λ=1, δ=10−5,β=0.7) andAPG
(δ=0.1,β=0.5) algorithmswith the noisy dataset seen in (a).
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crossedmultilayer Laue lenses. The beamline layout is shown infigure 5(a). Details about the experimental setup
can be found elsewhere [34]. The sample consists of cubic Au nanoparticles with a size of 50 nmdeposited on a
Si substrate [35]. They form an ordered arraywith gaps between them as small as 10 nm, as seen in the scanning
electronmicroscopy image (figure 5(b)). The sample was placed at a downstreampositionwith a distance of
25 mmto the focal plane. A fermat scanwith c=20 nm (equation (34))was performed to avoid periodic aliasing
effect, and a total of 792 frameswere collected. The diffraction pattern collected on a far-field pixel-array
detector (Merlin, QuantumDetectors)has over 4×104maximumdetector counts at one pixel.

Infigure 5(c) reconstructed complex-valued imageswith different algorithms are presented. For a fair
comparison, they all start with the same initial guess of the probe function, which is obtained by inverse Fourier
transforming themeasured far-field amplitude and then propagating 25 μmto the sample plane. In otherwords,
the initial guess assumes a lens with no phase aberration. BecauseDMdoes not converge to a stable solution, we
have to choose an intermediate reconstruction result that looks the best. Nevertheless, the phase image is a bit
noisy, and the amplitude part is barely recognizable. PMyields a smoother result, but both the phase and
amplitude exhibit some ghost image around the boundary of the array.mADMMproduces a further improved
result, but the ghost image can still be seen, particularly in the amplitude image. Not surprisingly, the best result
is achievedwithAPG. It has no apparent artifacts seen in the reconstruction.We can clearly resolve the shape of
individual 50 nmnanoparticles and their sharp edges in the phase image, even though the amount of the phase
variation of one layer is in the order of∼0.05 radian. Because the sample has a very low absorption contrast
(∼1.7%), the amplitude image usually is too fuzzy to be useful. However in the one obtained fromAPGwe can
still recognize the particle array. For this dataset, we conclude that APG leads to a reconstruction result with
overall image quality noticeably better than that of others.

There are a few remarkswe’d like to point out. Among all the algorithms tested in this paper, DM takes the
least number of iterations to arrive at a plausible solution, particularly when the initial guess of the probe is far
from the ground truth.However, with the presence of noiseDMcan become unstable and diverge. On the
contrary,ML-based algorithms converge slower, but are stable. The reason is that their iteration processes
usually involves aMAP-based sub-optimization stepwhich requires the updated solution to be close to its prior
value. As a result, a good guess of the initial probe ismore important for theseML-based algorithms. In addition,
for the experimental data tested in this case we do not see visible difference between Poisson andGaussian
models. This suggests that the difference in reconstruction between two statisticalmodels diminishes as intensity
increases.

5. Conclusion

In summary, we presented several solving techniques for ptychographic imaging derived in the framework of
proximal algorithms. The separable nature of the proximal operatormakes it well-suited for dealingwith large-
scale ptychography reconstruction problemswhere its evaluation can be parallelized. The optimization problem

Figure 4.RMSE variations at different levels of signal strength using PM,mADMMandAPG algorithms.

11

New J. Phys. 22 (2020) 023035 HYan



is usually divided into sub-optimization steps involving proximal operators for which often a closed-form
solution can be found. Therefore, the problembecomesmore tractable.We derived ER, PM,ADMM,DMand
APGalgorithms and benchmarked their performancewith noisy datasets. Among them,APGdepicted the best
reconstruction result not only in numerical simulation but also in experiment.

In the current work, we only consider a noisemodel and round-off errors. In the same framework, it is not
difficult to enablemodes to deal with partial coherence [19] and bluring effect in fly-scan [36, 37]. In such
cases, contribution fromdifferentmodes will add up incoherently and the likelihood function has to be
modified accordingly.We can also consider to incorporatemore constraints on probe or object function. For
example, adding a regularization termwith denoiser has shown suppressed noise in the reconstructed object
function [13, 38].With an additional constraint on the probe, it was demonstrated that the periodic aliasing
effect seen in grid scans could bemitigated [18]. There is still a lot of room for improvement, and theywill be
the future work.

Figure 5. (a) Schematic of the beamline layout. An energy-dispsersive and two pixel-array detectors can be used to collect fluorescence,
diffraction and transmission signals simultaneously. In thiswork only the transmission data are used for ptychography reconstruction.
(b) SEM image of the sample, where an order array of Au nanoparticles can be seen. (c)Ptychography reconstruction of the sample
using different algorithms.λ=5 for PMandmADMM,λ=1 for APG. Top panel: amplitude. Bottompanel: phase. Scale bar in (b)
and (c) is 250 nm.Note the imaged area in (b) and (c) is different.
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