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Abstract

Real quantum heat engines lack the separation of time and length scales that is characteristic for
classical engines. They must be understood as open quantum systems in non-equilibrium with time-
controlled coupling to thermal reservoirs as integral part. Here, we present a systematic approach to
describe a broad class of engines and protocols beyond conventional weak coupling treatments
starting from a microscopic modeling. For the four stroke Otto engine the full dynamical range down
to low temperatures is explored and the crucial role of the work associated with the coupling/de-
coupling to/from reservoirs as an integral part in the energy balance is revealed. Quantum correlations
turn out to be instrumental to enhance the efficiency which opens new ways for optimal control
techniques.

1. Introduction

Macroscopic thermodynamics was developed for very practical reasons, namely, to understand and describe the
fundamental limits of converting heat into useful work. In ideal heat engines, components are always in perfect
thermal contact or perfectly insulated, resulting in reversible operation. The work medium of real macroscopic
engines is typically between these limits, but internally equilibrated, providing finite power at a reduced
efficiency. Any reduction of engine size to microscopic dimensions calls even this assumption into doubt.

Atatomic scales and low temperatures, quantum mechanics takes over, and concepts of classical
thermodynamics may need to be modified [ 1-5]. This is not only of pure theoretical interest but has immediate
consequences in the context of recent progress in fabricating and controlling thermal quantum devices [6—9].
While the first heat engines implemented with trapped ions [10, 11] or solid state circuits [12] still operated in
the classical regime, more recent experiments entered the quantum domain [13—16]. In the extreme limit, the
work medium may even consist of only a single quantum object [17].

Theoretically, one is thus faced with the fundamental challenge that a separation of time and length scales on
which conventional descriptions of thermal engines is based, may no longer apply. This has crucial
consequences: first, the engine’s operation must be understood as a specific mode of the cyclic dynamics of an
open quantum system with the coupling/de-coupling processes to/from thermal reservoirs being integral parts
of the time evolution; second, thermal coupling strength and thermal times 7 /kg T atlow temperatures T'may
match characteristic scales of the work medium. The latter requires a non-perturbative treatment beyond
standard weak-coupling approaches [17-31] to include medium-reservoir quantum correlations and non-
Markovian effects [32—38]. The former implies the introduction of two distinct sources of work. While typically
only exchanged heat Q and work for compression/expansion of the medium (driving work) W, is addressed, a
complete dynamical operation of any quantum thermal machine requires finite-time coupling/de-coupling
processes to/from the respective thermal reservoirs that inevitably lead to an additional time-dependence of the
system-reservoir interaction and, hence, to an additional source of work, see figure 1. This coupling work W;
may turn into an essential ingredient in the energy balance as will be discussed in section 5 of this manuscript.
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Figure 1. Top: energy-frequency diagram of the work medium in a quantum Otto heat engine with frequency w(f) varying around wy.
A cycle includes two isochore (A— B, C— D) and two isentropic strokes (B— C, D—A). Bottom: thermal contact to hot (cold)
reservoirs is controlled by A, (f) [A(#)] and expansion (compression) is due to w(t). The cycle is specified by three characteristic time
scales T, T4, TR

Roughly speaking, while in a classical engine the cylinder is much bigger than the valve so that |[W,| > |W|, fora
quantum device this separation of scales may fail and |W;| ~ |Wj|. This is particularly true for scenarios to
approach the quantum speed limit in cyclic operation [39—41]. Can a quantum engine under these conditions be
operated at all?

To address this question, in this paper we provide a non-perturbative treatment and apply it to a finite-time
generalization of the Otto cycle (figure 1). It is based on an exact mapping of the Feynman—Vernon path integral
formulation [42, 43] onto a SLN equation [44] which has been successfully applied before [45-50]. Here, we
extend it to accommodate time-controlled thermal contact between medium and reservoirs and thus to arrive at
asystematic treatment of quantum heat (QH) engines at low temperatures, stronger coupling and driving. Work
media with either a single harmonic or anharmonic degree of freedom are discussed to make contact with
current experiments. We demonstrate the decisive role of the coupling work W;which inevitably must enter the
energy balance. In general, its impact turns out to be detrimental for the efficiency, however, its dependence on
quantum correlations opens ways to improve the situation, e.g. using optimal control techniques [46].

2.Modeling

A quantum thermodynamic device with cyclic operation involving external work and two thermal reservoirs is
described by the generic Hamiltonian

H(t) = Hy(t) + He + Hi,c(t) + Hy, + Hp (1), ey

where H,,, H,/;, denote the Hamiltonians of the work medium and the cold /hot reservoirs, respectively, with
interactions Hj . /5. Not only the working medium is subject to external control, but also the couplings—this is
required in a full dynamical description of the compound according to specific engine protocols. We consider a
particle in a one-dimensional potential, H,,(t) = p*/(2m) + V (g, t),also motivated by recent ion-trap
experiments [10, 11]. Reservoirs are characterized not only by their temperatures T, < T}, butalso by spectral
densities J./,(w) [43, 51], related to the dynamical response functions x,,,(t) of the reservoirs through

Je/n(w) = fo > dex, /n(t)sin(wt). Assuming the free fluctuations of each reservoir to be Gaussian, these can be

modeled in a standard way [43] as a large collection of independent effective bosonic modes with bilinear
coupling terms of the form
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. 1
Hye/n(t) = =Ae/n(D)q) ke/n(by pp + breyn) + qu)\g/h(l‘)ﬂc/h (2)
p

with coupling constants ¢ ./, and dimensionless coupling functions A,/ (t) which are varied between zero and
one to close and open thermal contact to the respective reservoirs. In terms of creation and annihilation
operators of the bosonic excitations, the harmonic reservoir Hamiltonians for the cold and hot bath,
respectively, read
Hep =) Wiesh b;j,c/h bic/n. 3)
k
The terms ./, = = f * dwk) f * dt X,/n(t) are conventionally chosen such that no static force arises
T J0 w 0
from the medium-reservoir coupling for constant g and A [51]. Equivalently, this guarantees translationally
invariant medium-reservoir interactions and the dynamical stability of the model for V(q) = 0.In a quasi-
continuum limit the reservoirs become infinite in size; thermal initial conditions are therefore sufficient to
ascertain their roles as heat baths.

The dynamics of this setting will be explored over sufficiently long times such that a regime of periodic
operation is reached, without limitations on the ranges of temperature, driving frequency, and system-reservoir
coupling strength. The nature of the quantum states encountered, either as QH engine or refrigerator (QR), is
notknown a priori.

In order to tackle this formidable task, we start from the Feynman—Vernon path integral formulation
[42,43, 51]. It provides a formally exact expression for the reduced density operator p,, (t) = Tr{p,,(t)} of the
working medium. The the reservoir quantum correlation functions L., (t — t') = (X, /5 (t) X./5(¢")) with
Xesh = 2 Che/h (b,i o T b c/n) are memory kernels of a non-local action functional, representing the effective
impact of the reservoir dynamics on the distinguished system as a retarded self-interaction. They can be
recovered from the spectral density through

Lo(n) = % fo Oo dw}c/h(w)[coth(’%‘T/’“w) cos(wt) — isin (wt)]. (4)

This formulation can be exactly mapped onto a stochastic Liouville~von Neumann equation (SLN) [44], an
approach which remains consistent in the regimes of strong coupling, fast driving, and low temperatures
[45-50], where master equations become speculative or inaccurate.

Without detailed microscopic knowledge of the reservoirs, the assumption of an ohmic reservoir
[J (w)  w]is commonly made; in a classical limit of equation (4), this results in white thermal noise and
memoryless friction. For a quantum reservoir, however, ohmic dissipation results in colored noise with a long-

2
time limit L (t) o (;—3) exp(—mt/7(3) for finite temperatures and an algebraic decay L(f) o< 1/  at zero

temperature. Thus, non-Markovian dynamics inevitably appears for the ohmic case at lower temperatures
Weue I8 B> 1 withatypical reservoir high frequency cut-off w,,, significantly larger than any other frequency
scale of the problem.

Here we substantially extend an SLN-type method for ohmic dissipation [52], i.e. spectral densities of the
form J(w) = myw/(1 + w?/wl,)? to the highly non-trivial time-dependent control of the system-reservoir
couplings. This includes a concise mapping of key reservoir observables and system-reservoir correlations to
their respective stochastic representation. The resulting dynamics is given by

pe(r) = —}E[Hma), pel + Lalpl + Lelp] )

which contains terms known from the conventional SLN equation and further parts that result from a careful
handling of the explicit time-dependence of the system-reservoir coupling control and the finite-memory
quantumnoise §

Lo = 2N P pe) + 2 Talgy o]
i MY ¢ ) ©)
O ZE A0l o - €. 0la. p .

Averaging over samples of the operator-valued process p.(f) yields the physical reduced density
p,(@) = E[ pe ()] The independent noise sources £,(f) are related to the reservoir correlation functions through

(€D &) = RLa(t — 1) = 6t — 1),

The time local equations (5) and (6) thus provide a non-perturbative, non-Markovian simulation platform for
quantum engines with working media consisting of single or few continuous or discrete (spin) degrees of
freedom; different protocols can be applied with unambiguous identification of per-cycle energy transfers to
work or heat reservoirs. Next, we will apply it to a four stroke Otto cycle.

3
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Figure 2. Quantum dynamics for an Otto engine with w70, = 0.25, wy /40, = 3. Time scales are wy 7y = 10, wery = 5,woT = 60
with reservoir coupling y/wy = 0.05; here and in the sequel wey/wy = 30. (a) Harmonic and (d) anharmonic (k = 0.15) work
medium: Approach of a PSS for the variances in position, momentum and the cross-correlations (gp + pq). (b) Harmonic Fock state
populations pj(t) at frequency w, and (c) off-diagonal elements %pij () (coherences) of the reduced density p,,,(t), see text for details.

3. Engine cycle

For this purpose, steering of both the time-dependent potential V' (g, ) and time-dependent couplings A/ (1)
in an alternate mode is implemented, see figure 1. For simplicity, ohmic reservoirs with equal damping rate yare
assumed. A single oscillator degree of freedom represents the working medium as a particle moving in

Vg, t) = %muﬂ(t)q2 + im/@q“ )

with a parametric-type of driving w(#) and anharmonicity parameter > 0. We consider w(f) varying around a
center frequency wy between wy + % , (Aw > 0), within the time 7, during the isentropic strokes of expansion
(B — C)and compression (D — A); itis kept constant along the hot and cold isochores (A — Band C — D)
(see figure 1). The isochore strokes are divided into an initial phase raising the coupling parameter A /; from
zero to one with duration 7, a relaxation phase of duration 7, and a final phase with A/, — 0, also of
duration 7.

The cycle periodis thus T = 47; + 27; + 27, asindicated in figure 1. The total simulation time covers a
sufficiently large number of cycles to approach a periodic steady state (PSS) with g, (t) = p,,(t + T).
Conventionally, one neglects what happens during 7;; one assumes that modulating the thermal interaction has
no effect on the energy balance (see also [32]). In the quantum regime, such effects may, on the contrary, play a
crucial role as will be revealed in the sequel.

4. Periodic steady state

In figures 2(a)—(c) results are shown for a purely harmonic system, for which analytical results have been derived
in limiting cases [10, 33, 53]. We use it as a starting point to refer to the situation in ion trap experiments [11] and
to identify in (d) the role of anharmonicities. After an interval of transient dynamics (a), the elements of the
covariance matrix settle into a time-periodic pattern with damped oscillations near frequencies wy + e

the time to reach a PSS typically exceeds a single period. The presence of gp-correlations manifests broken

4
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time-reversibility which implies that a description in terms of stationary distributions with effective
temperatures is not possible. Indeed, the PSS substantially deviates from a mere sequence of equilibrium states.
Further insight is gained by taking the oscillator at its mean frequency wy as a reference and employ the
corresponding Fock state basis to monitor populations p, (t) = (n|p(t)|n) and coherences

Pum () = (nlp(t)|m), n = m (b), (c). Population from the ground and the first excited state is transferred to
(from) higher lying ones during contact with the hot (cold) bath. In parallel, off-diagonal elements p,,,,,(t) are
maintained. These are dominated by py,(#) contributions according to the parametric-type of driving during the
isentropic strokes. While this Fock state picture has to be taken with some care for dissipative systems, it clearly
indicates the presence of coherences associated with gp-correlations in the medium [26, 54]. The impact of
anharmonicities for stiffer potentials in (7) is depicted in (d). In comparison to the harmonic case, dynamical
features display smoother traces with enhanced (reduced) variations in {p?) ({(g?)). Non-equidistant energy level
spacings may in turn influence the efficiency (see below).

5. Work and heat

The key thermodynamic quantities of a QH are work and heat per cycle. Note that even though we operate the
model with a medium far from equilibrium, these quantities have a sound and unique definition in the context
of fully Hamiltonian dynamics involving reservoirs of infinite size. An assignment of separate contributions of
each stroke to heat and work is not needed in this context. Moreover, any such assignment in a system with finite
coupling would raise difficult conceptual questions due to system-reservoir correlations [36, 55].

In the context of full system-reservoir dynamics, heat per steady-state cycle is uniquely defined as the energy
change of the reservoir

T
Qun = — fo dt Tr{He /i proy(D)}. 8)

Within the SLN the integrand can be transformed into computable expressions involving system-reservoir
correlation functions. We can thus determine the transferred heat without the use of generating functionals
[56, 57]. Similarly, work is obtained as injected power, i.e.

T OH
w:f0 dr Tr{%ptot(t)}, ©)

where separate driving and coupling work contributions W;and Wraffect power output and efficiency of the
cyclic operation.

5.1.Energy balance and first law
We first consider the energy balance of our engine in the context of the full system-reservoir model. Any changes
in the energy of the global system as defined in equation (1) are due to work terms

d iy — <8Hm<t>> N <8Hf,c(t>> . <6H1,h(t>>, (10

dr ot ot ot

with separate terms indicating the different modes of performing work associated with the parameter w(f) and
Ae/n(t). Heatis identified as energy transferred into the reservoirs over a cycle

T 1 T
Q= — fo At Tr(Hoppo) =~ fo dt Tr{[H (1), Henl prog)

i T
= _gﬁ dt Tr{[HI,c/h(t)) Hc/h]ﬂmt}- (11)

Atthe end of a period of cyclic operation, the microstate of the medium reverts its initial state,
p,(t + T) = p,,(t). Moreover, the collective response function of the reservoirs decays in time sufficiently fast
that the collective reservoir coordinate entering Hj /4 shows periodic behavior atlong times. We thus have

(Hu(t + T)) = (Hu(1)), (Hie/n(t + T)) = (Hye/n()). (12)
Defining per-cycle work terms through
T [ OHu(t) > T OH; (1) OH; (1)
Wy = dt , W= dt > + : , 13
¢ ‘/; < ot ! fo ot ot (13)
itis easily verified that these quantities obey the first law of thermodynamics
Wi+ W+ Q + Qp=0. (14)
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Table 1. Work and heat expressed in terms of the unitary evolution of system and reservoir and in terms of SLN propagation
of a periodic steady state.

Hamiltonian dynamics SLN dynamics
Work Wy = [ dr (2 Wy = E[fOT dr w(t)o'.;(t)(qz)]
OH (¢ OHL (¢ T ‘ ‘
W :foT dt[< aﬂg?<)> i < )HI@',( >>] W = E[j; dt { -0 + AOE 1) {q)

+ ARO A (@) + AADAD) (p + pq) /2

+ A0 + %xf(t»m<q2)}]

T ,
Heat Qun = —fo dt Tr{H/h o} Q= E[fT dt{)\f w4 (O(p) /m
0 :

i T
==k df< (Frc/n(®), Hf/h]> — AL O (P?) [+ e AL (D T
— Yernden® Aen(®) (gp + pq)

F A0 0) — il 0ml) |

Itis instructive to note that equation (12) can be used to give an alternative expression for the heat terms per
period

15)

i T T OHp,c/n(t)
Qc/h:/iZ fo dt Tr{[Hy,e/n (1), Hurl prog) — fo dt<IT;”>.

The first term of (15) is an energy flow from the system due to the coupling; the second is the work performed
through changes of A, /;. Viewing this equation as a continuity equation, we conclude that the work described by
the second term is completely dissipated (which has been previously shown for a Markovian classical heat engine
model [58]).

5.2. Work and heat in the probabilistic SLN context

The work terms W, and Wras well as the expression (15) for the heat transfer Q. have equivalent
representations in the SLN dynamics (5), even for those terms involving Hj /. In order to obtain this stochastic
equivalent, the equal-time correlations (¢X ) and (pX ), (o« = ¢, h), involving system coordinate/momentum
and the reservoir operator X, = > ¢k (b,i o + bio) are needed. In simpler SLN approaches [44], the noise
variable £ can serve as a direct substitute for X [48]. Here we need to treat the terms which have been contracted
to delta terms in the more complicated SLN equation (5) separately. A careful consideration of short-time
dynamics on timescales of order 1/we before taking the limit of large w,, leads to the results

Tr{gX, proe} = BIE D (@) + A1, (42 — XD lap + pg) /2 — Aa(®)my(g?)], (16)
Tr{pX, pioc} = BIE, (D) (p) + MY Aa(Dks Ty + Aa(D) 1, (gp + q) /2 — Ao (D70 (p?)
- }\a(t)m’7a<q_p +P‘i>/2], (17)

where o = ¢, h. Table 1 summarizes expressions for work and heat using either the full Hamiltonian dynamics
or the SLN framework. All quantities appearing in the SLN column can be extracted from simulation data. The
expression for Q. is based on equation (15), thus avoiding expressions involving momenta or velocities of the
reservoir. Having now access to the derived probability space representations of the crucial thermodynamic
quantities at any point during the cyclic operation, their impact on the heat engine’s efficiency and power output
can be analyzed and compared across a multitude of parametric regimes.

6. Net work, efficiency, and power output

The cyclic operation of the QH engine according to a specific finite-time coupling/de-coupling and driving protocol
can be evaluated with respect to its characteristic thermodynamic quantities. Figure 3(a) displays the strong coupling
dependence of the net work W,; + W,. It turns from negative (net work output) to positive, thus highlighting the
coupling work Wras an essential contribution in the work balance. The SLN approach allows to reveal two distinct
components, i.e. W; = W yar + W corr- The first one, determined by (g2), also exists at high temperatures and close
to the adiabatic limit (equilibration), while the second one, depending on (qp + pq)-correlations, becomes especially
relevant at finite cycle times and in the deep quantum regime. Since (gp + pq) only contains a”and (a")* when
expressed in annihilation and creation operators of corresponding Fock states (while (%) also contains occupations

6
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Figure 3. Thermodynamic quantities of the quantum Otto cycle versus thermal coupling y/wy at wy 3. = 3. Process times are
woTr = woTa = 5,wpT = 40 with compression Aw/w, = 1 (solid), 0.5 (dashed). (a) Net work W,; + W;and (b) contributions of
couplingwork Wy = W yar + Wi cors () absorbed heat Qy; (d) efficiency nyaccording to (18) (orange), ignoring W (black), and with
only W y,, included (violet); the dissipator phase is the dashed area; (b), (d) at fixed wy 728, = 0.25.

a'a), particularly these correlations are created during the isentropic strokes (parametric driving) and even survive the
contact to thermal reservoirs. One can show that W y,, > 0 dominates while, with increasing compression rate 2

Wi, corr contributes substantially with a sign depending on the phase of the gp-correlations relative to the timing of the
coupling control. By choosing 7, 77 asin figure 3, one achieves W} .., < 0, thus counteracting Wy, (b). In turn,
control of gp-quantum correlations opens ways to tune the impact of W;on the energy balance as will be discussed in
section 8. Heat Qy, see (¢), follows a non-monotonous behavior with -, also a genuine quantum effect that cannot be
captured by standard weak coupling approaches. Its decrease beyond amaximum can be traced back to enhanced
momentum fluctuations due to damping,

We are now in a position to discuss the ratio

Wi+ W

= (18)
7 Qn

which describes the efficiency ofa QHif W; + W; < 0.

In regimes where 77is nominally negative, the system is not a QH, but merely a dissipator in the sense that
driving work adds to the energy flow from hot to cold reservoir. The theory of the adiabatic Otto cycle and its
extension using an adiabaticity parameter predicts some regimes of pure dissipation (see equation (6) of [10]),
however, without recognizing the coupling work W as an essential ingredient. As seen above, its detrimental
impact can be soothed by quantum correlations, see (d).

The combined dependence on yand thermalization adiabaticity parameter w77 yields a phase diagram
pointing out QH phase (1 > 0) and a dissipator phase () < 0) over a broad range of thermal couplings up to
v/wo ~ 1, figure 4. A QH is only realized if 7 exceeds a certain threshold which grows with increasing medium-
reservoir coupling. To make this more quantitative, progress is achieved for small compression ratios to estimate
W, and W;as we will show in the next section.

As expected, in figure 4 values obtained for 1) are always below the Curzon—Ahlborn and the Carnot
efficiencies, but yet, even beyond weak coupling, they do exceed ) ~ 0.2. The coupling work appears as an essential
ingredient also to predict for the power output the optimal cycle time and correct peak height, figure 5(a). Ifitis

7
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0.4

0.3

10.2

0.1

Figure 4. The PSS’s operating phases asa QH (1 > 0) and as a dissipator (7 set to 0) versus medium-reservoir coupling and
adiabaticity parameter. Other parameters are wy 20, = 0.5, wo /0. = 3, woTy = wWoTr = 5.

P /h1072)

Figure 5. (a) Engine net output power P = —(W; + W;) /T asafunction of the period Tfor woh3, = 3,7/w, = 0.5 and time scales
71 = T/6,74 = T/12 compared to the respective output power ignoring W; (black dotted) and (b) efficiency versus y for various
anharmonicity parameters x; here wym; = woTy = 5, wy T = 40 and other parameters are as in figure 2.

ignored, misleading data are obtained. Beyond the harmonic case, i.e. for stiffer anharmonic potentials, dynamical
features discussed in figure 2(d) reduce the efficiency, figure 5(b). They have a similar impact as enhanced thermal
couplings, both having the tendency to suppress (increase) fluctuations in position (momentum).

7. Analytic estimates for driving and coupling work

In order to achieve a better insight into the numerical results at least in certain regimes, we start from the
formulation of the driving and the coupling work in the SLN context as specified in table 1. The driving work

8
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provides contributions along the isentropic strokes of length 7, with w(¢) < 0 during B—Cand w(t) > 0
during D—A. The coupling work provides contributions within time intervals of length 77 at the beginning
(Ao > 0)and theend (A, < 0) of the isochoric strokes.

To estimate the above integrals we now assume the following: (i) w(t) = const. during 7;and A(t) = const.
during 7y, (ii) the contribution of the variances dominates in W;and (iii) within 7, the variances change linearly
for Aw/wy < 1. We then obtain

(@4 + (@2 — (4P — (g7

0T (@24 + (@0 — (4P — (42)), (19)

~ mw

where Q. = 3/2 + (Aw/2w,) ~ 3/2and (¢*)x = E[(q*(tx))] with tx corresponding to point X in the cycle.
The coupling work can be approximated by

Wi~ mym A (9% + (@%b + (@%c + (g2)8), (20)

where we considered {(q?) ~ const. during switching the coupling off or on for sufficiently short ;.
Due to the general relations

(q%)c > (q*)p(contact to cold bath), (q?)s > (q?)a (contact to hot bath) (21)
for~y > 0, one first concludes that W,; < 0 while apparently W; > 0. Further, one finds for the total net work
Wi+ Wi = a_((¢%c + (4%)8) + a1 ({(g%a + (a°)p) (22)

with ay. = my7y A4+ mTywo|w| / 2. Now, to qualify for a heat engine, the condition W,; + W; < O needsto be
fulfilled which implies

_ 2
woTt Aw — 2 S R= (@4 + (q 2>D (23)
woTT Aw + 2 (q%c + (4%)s
with 74|w| = Awand 77)\ =1 / 77.Dueto (21) onealwayshas 0 < R < 1. The above relation can be easily
solved for 7 to read
2y 1+ R
woT > —— 24
0> TR (24)

asa condition on the minimal time 7; consistent with heat engine operation. Qualitatively, since
Wy~ w(t)my ~ Awand W, ~ }\z(t)TI ~1 / 71, for short cycle times Wralways dominates. Further, for the
parameters in figure 4, very weak coupling y7g, y77 < 1leadsto (1 — R) /7 ~ const. and thus w77 &~ const.;
for larger coupling with more efficient heat exchange, the -y dependence of R is less relevant so that
woT ~ v/Aw asin figure 4.

Several other situations can now also be considered analytically.

(1) In the classical regime (high temperature) we assume quasi-equilibrium throughout the cycle with
(¥4 = 1/(mB.w})etcwhichyields Ry = T, /T,

(ii) In the quantum regime (lower temperatures) in quasi-equilibrium onehasR > R.

(iii) For low temperatures and sufficiently large 73 to allow for states close to thermal equilibrium, the variances
in position depend only weakly on  for v/ < 2. Accordingly, the y-dependence of the threshold of 7;is
predominantly given by v/ Aw.

(iv) For 8w, > 1 while hfBywy, < 1 and y7r > 1 to allow for approximate equilibration with (q*)x ~ 7 /mwy,
(¥ ~ 1/mw} By etc, one finds R = /i3,wy. For the parameters in figure 4 of the main text we then have
woTy > 127/wy which, for the given value of T, describes the minimal 77 sufficiently accurate for all v/w, > 0.1.

8. Role and control of the coupling work

As we have seen above, the overall impact of the coupling work is detrimental to the efficiency of QH engines.
However, it can be reduced by gp-correlations if they are properly controlled. To see this in detail, we realize that
according to table 1, the coupling work consists of the contributions Wy = W, yay + W corr: the first part which
survives the adiabatic limit is determined by the variance (g?); the second part, breaking time reversal symmetry,
vanishes for adiabatic driving and is determined by the £ (g) average and the contribution of the correlations

(qp + pq)- The contribution W} ., is dominated by the part depending on the gp-correlations. It is this part
which we want to consider in the following in more detail:
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Figure 6. The dominant contribution to Wl(qp) is provided by gp-correlations at stage C of the cyclic operation, i.e. before coupling to
the cold reservoir. Its damped oscillatory pattern can be approximated by equation (26) (black crosses). Likewise, the inset shows good
qualitative agreement between numerically obtained values for W,(‘“’ ) (green dashed) and the prediction according to equations (25),
(26). Parameters are wy /20, = 0.25,wohf3), = 3,7y/wy = 0.1; other process time scales are as in figure 3.

T . .
W) = % fo At M) (ap + pa) + A Ac() (ap + pa)). (25)
Now, following the above arguments we assume that

((qp + pg) (D)) =~ (qp + pqg)a cosQuwyt)e "
((ap + pa) (1)) = (qp + pq)a cos[2wy (1 + Tr + £)]e 7D (26)

where (qp + pq)a = ((qp + pq)(t = t4)),0 < t < Trand wy, = wy + Aw/2; the first (second) relation holds
for switching on (off) the hot isochore. For the cold isochore we replace A—Cand wy, — w, = wy — Aw/2.
Together with A\, (f) = t/7;when the coupling is switched on, and A, = (1 — t/7;) when the coupling is
switched off, this then allows to estimate W% from (26). Results are shown in figure 6 and exhibit an excellent
agreement with full numerical data, in particular a scaling of the form |W{%"| o ~y/7;, where the sign depends
on the sign (phase) of the gp-correlations at the beginning of the medium-reservoir coupling segments. Its
dominant contribution is provided by (qp + pq)c, i.e. after expansion and before coupling to the cold reservoir.
For the parameters chosen in figure 3, one always has (gp + pq)c > 0 which implies W} ¢,y < 0, thus
counteracting W v,, > 0tolead toareduced Wr.

An instructive example is shown in figure 7. By extending the unitary time evolution after expansion/
compression such that the system evolves for about half a period 7/w,, at constant frequency, the phase of the
qp-correlations at C turns from positive to negative: coupling work is further enhanced and the efficiency further
suppressed. By applying more advanced techniques, e.g. from optimal control, one could be able to shape the
impact of the coupling work properly.

We note that experimentally a direct time dependent medium-reservoir coupling as considered here, is often
difficult to implement. In recent developments for superconducting devices [59], for example, one instead uses
cavities interfacing medium and reservoir with strong thermal contact to the respective broadband reservoir and
tunable resonance frequency. The effective spectral distribution seen by the medium is thus Lorentzian which
allows to continuously vary between weak and strong spectral overlap and thus between no and maximal
thermal coupling. Qualitatively, this scenario is captured by our model.

9. Summary and outlook

In conclusion, by simulating non-perturbatively and within a systematic formulation the dynamics of
quantum thermal machines with single degrees of freedom as work medium, we have obtained a complete
characterization of their properties. The medium-reservoir boundary appears as an internal feature of the
model so that full control over the medium as well as its thermal contact to reservoirs is possible. The example
of the four stroke Otto engine demonstrates the decisive role of the coupling work that must be considered
asan integral part of the total energy balance. Its overall impact is detrimental to the efficiency of QH engines,
however, can be reduced by gp-correlations if they are properly controlled. This sensitivity of QH engines to

10
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Figure 7. The gp-correlation part W; .., of the coupling work explicitly depends on the phase of gp-correlations during the de-/
coupling procedure. In (a), (c) a segment is added to allow after the expansion stroke for a unitary time evolution at fixed frequency so
that W corr > 0 while W cop < 0 for the standard (b), (d). Parameters are woh3, = 0.25, wohiB, = 3,7/wy = 0.1; other process time
scales are as in figure 3.

changes in the driving protocol can be exploited by optimal control techniques in future devices. The presented
approach provides the required tools to follow theoretically these activities.
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Appendix. Details about the numerical implementation

The numerical solution of the dissipative SLN leads to one single trajectory of the reduced system density. This is
realized by moving to position representation using symmetric and antisymmetric coordinates, i.e.

pe(r, y) = (r — %l Pelr + g) This representation allows an efficient split-operator technique. In addition to the
commonly used FFT method (alternating between diagonal potential and kinetic terms) we employ a third step
related to the operator [¢q, {p, -}], which can be understood to be the generator of a re-scaling operation. For
typical parameters, e.g. parameters woh 3, = 0.25, wy20: = 3, Weur/Wo = 30,7/wy = 0.25 and characteristic
cycle time scales wym; = 10, weTy = woTr = 5, wpT = 60 up to the first three cycles of a periodic steady-state
takes approximately 72 CPU core hours on a Intel Xeon CPU (Sandy Bridge architecture). A typical number of
samples 1g,m, ~= 500; the resulting statistical errors are less than the line width or symbol size used in our figures.
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