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Abstract

Recently proposed quantum-chaotic sensors achieve quantum enhancements in measurement
precision by applying nonlinear control pulses to the dynamics of the quantum sensor while using
classical initial states that are easy to prepare. Here, we use the cross-entropy method of reinforcement
learning (RL) to optimize the strength and position of control pulses. Compared to the quantum-
chaotic sensors with periodic control pulses in the presence of superradiant damping, we find that
decoherence can be fought even better and measurement precision can be enhanced further by
optimizing the control. In some examples, we find enhancements in sensitivity by more than an order
of magnitude. By visualizing the evolution of the quantum state, the mechanism exploited by the RL
method is identified as a kind of spin-squeezing strategy that is adapted to the superradiant damping.

1. Introduction

The rise of machine learning [ 1] has led to intense interest in using machine learning in physics, and in particular
in combining it with quantum information technology [2, 3]. Recent success stories include discriminating
phases of matter [4—6] and efficient representation of many-body quantum states [7—9].

In physics, many problems can be described within control theory which is concerned with finding a way to
steer a system to achieve a goal [ 10]. The search for optimal control can naturally be formulated as reinforcement
learning (RL) [11-19], a discipline of machine learning. RL has been used in the context of quantum control [17],
to design experiments in quantum optics [20], and to automatically generate sequences of gates and
measurements for quantum error correction [16, 21, 22].

RL has also been applied to control problems in quantum metrology [2]: in the context of global parameter
estimation, i.e. when the parameter is a priori unknown, the problem of optimizing single-photon adaptive
phase-estimation was investigated [23-25]. There, the goal is to estimate an unknown phase difference between
the two arms of a Mach—Zehnder interferometer. After each measurement, an additional controllable phase in
the interferometer can be adjusted dependent on the already acquired measurement outcomes. The
optimization with respect to policies, i.e. mappings from measurement outcomes to controlled phase shifts, can
be formulated as a RL problem and tackled with particle swarm [23, 24, 26, 27] or differential evolution [25, 28]
algorithms, where the results of the former were recently applied in an experiment [29].

Also in the regime of local parameter estimation, where the parameter is already known to high precision
(typically from previous measurements), actor-critic and proximal-policy-optimization RL algorithms were
used to find policies to control the dynamics of quantum sensors [30-32]. There, the estimation of the
precession frequency of a dissipative spin—% particle was improved by adding a linear control to the dynamics in
form of an additional controlled magnetic field [32].

Recently it was shown theoretically that the sensitivity (in the regime of local parameter estimation) of
existing quantum sensors based on precession dynamics, such as spin-precession magnetometers, can be
increased by adding nonlinear control to their dynamics in such a way that the dynamics becomes non-regular
or (quantum-)chaotic [33, 34]. The nonlinear kicks (described by a ‘nonlinear’ Hamiltonian o< ]y2 compared to
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the ‘linear’ precession Hamiltonian J, where ], Jy» J; are the spin angular momentum operators) lead to a
torsion, a precession with rotation angle depending on the state of the spins.

Adding nonlinear kicks to the otherwise regular dynamics comes along with a large number of new degrees
of freedom that remained so far unexplored: rather than kicking the system periodically with always the same
strength and with the same preferred axis asin [33], one can try to optimize each kick individually, i.e. vary its
timing, strength, or rotation axis. The number of parameters increases linearly with the total measurement time
(assuming a fixed upper bound of kicks per unit time), and becomes rapidly too large for brute-force
optimization.

In this work, we use cross-entropy RL to optimize the kicking strengths and times in order to maximize the
quantum Fisher information (QFI), whose inverse constitutes a lower bound on the measurement precision.
The cross-entropy method is used to train a neural network that takes the current state as input and gives an
action on the current state (the nonlinear kicks) as output. In this way, the neural network generates a sequence
of kicks that represents the policy for steering the dynamics.

This represents an offline, model-free approach which is aimed at long-term performance, i.e. the
optimization is done based on numerical simulations, without being restricted to a specific class of policies, and
with the goal of maximizing the QFI only after a given time and not, as it would be the case for greedy algorithms,
for each time step. We show that this can lead to largely enhanced sensitivity even compared to the already
enhanced sensitivity of the quantum-chaotic sensor with constant periodic kicks [33].

2. Quantum metrology

The standard tool for evaluating the sensitivity with which a parameter can be measured is the quantum
Cramér—Rao bound [35-37]. It gives the smallest uncertainty with which a parameter w encoded in a quantum
state (density matrix) p,, can be estimated. The bound is optimized over all possible (POVM = positive operator
valued measure) measurements (including but not limited to standard projective von-Neumann measurements
of quantum observables), and all possible data-analysis schemes in the sense of using arbitrary unbiased
estimator functions & of the obtained measurement results. It can be saturated in the limit of alarge number M
of measurements, and hence gives the ultimate sensitivity that can be reached once technical noise has been
eliminated and only the intrinsic fluctuations due to the quantum state itself remain.

The quantum Cramér—Rao bound for the smallest possible variance of the estimate & reads

1
Var(®) > —. 1
(@) ML (1)

For a state given in diagonalized form, p,, := Z?: 1 Ple) (1], where dis the dimension of the Hilbert space, the
QFlis given by [38]
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where the sum runs over all #, msuch that p, + p, = 0,and J,,p, =

3. The system

We consider a spin model based on the angular momentum algebra, with spin operators

J = U s 1)s Lljm) = Zjljm)and J*|j, m) = 7#%(j + 1)|j, m), where jand m are angular momentum
quantum numbers. Note that the model can be implemented not only with physical spins but with any physical
system with quantum mechanical operators that fulfill the angular momentum algebra. The Hamiltonian of our
model is given by

2 00
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The first summand describes a precession about the z-axis with precession frequency w. The second summand
describes the nonlinear kicks, i.e. a torsion about the y-axis, see figure 1. This corresponds to a precession about
the y-axis with a precession angle proportional to the y-component. The time 7 defines a time scale such that ¢
and t, measure time in units of 7. The #th kick is applied at time ¢, where x, quantifies its kicking strength (in
units of a frequency).

In an atomic spin-precession magnetometer, as discussed in [33], the first summand corresponds to a

Larmor precession characterized by the Larmor frequency w = gu, B/ /7 with Landé g-factor g, Bohr magneton
s, and magnetic field strength B, which is the parameter that one wants to estimate. The nonlinear kicks can, for
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Figure 1. Schematic representation of parameter encoding in quantum metrology. Panel (a) shows the standard protocol: the
parameter wis encoded in the initial state p through the dynamics, the resulting state is measured, and the parameter is inferred by
(classical) post processing of the measurement outcomes. In panel (b), the dynamics is given by the kicked top model: the encoding of
the parameter w through linear precession R (w) about the z-axis is periodically disrupted through parameter-independent, nonlinear,
controlled kicks (green triangles) with kicking strength k that can render the dynamics chaotic. In panel (c), the dynamics is given by a
generalized kicked top model: the kicking strengths k, and times ¢, between kicks are optimized in order to maximize the sensitivity
with which w can be inferred (varying k. are indicated by different sizes of the green triangles). Variation of the kicking axis is possible
but beyond the scope of this work.

example, be generated with off-resonant light pulses exploiting the ac Stark effect. We introduce a dimensionless
kicking strength as ks : = k.7 and, for the sake of simplicity, weset7 = land h = 1.
For a pure state, the unitary time evolution of the system between kicks at time ¢,_; and ¢, is given by

|7/)uj(tzf’)> = Uw(kf)lw(tffl»’ (4)

where the unitary transformation U, (k) propagates the state according to the Hamiltonian (3), from time ¢, _;
[directly after the (£ — 1) thkick] to #, [directly after the £th kick], as indicated by the index # [in order to
simplify notation, the index £ of k not only labels the kicking strength at time ¢, but also refers to the propagation
fromt,_ tot,of U,(k,)]. We have

Us(ke) = Texp[—i ’ dt/HKT(t/)], (5)

te—1
where 7 denotes time-ordering. Since the kicks are assumed to be instantaneous, this leads to

2

U,(ky) = exp| —i exp[—iw(ty — te—) L], 6)

y
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i.e. aprecession for time t, — t,_1 followed by a kick of strength k.. The kick occurs at the end of the time
interval [ty_1, tz].

For the standard kicked top (KT), see figure 1, the kicking strengths are constant, k, = k, and kicking times
aregivenby ty = £7 = ¢, with ¢ € N. Dynamics of the standard KT is non-integrable for k > 0and has a well
defined classical limit that shows a transition from regular to chaotic dynamics when ks increased. In [33] the
behavior of the QFI for regular and chaotic dynamics was studied in this transition regime (for k = 3 and
w = m/2) which manifests itself by a mixed classical phase space between regular and chaotic dynamics.
Quantum chaos is defined as quantum dynamics that becomes chaotic in the classical limit. In contrast to
classical chaos, quantum chaos does not exhibit exponential sensitivity to changes of initial conditions due to the
properties of unitary quantum evolution, but can be very sensitive to parameters of the evolution [39]. The KT
has been realized with atomic spins in a cold gas [40] and with a pair of spin-% nuclei using NMR techniques
[41]. Here, we generalize the standard KT to kicks of strength k. at arbitrary times t, as given in equation (6), see
also figure 1.

Any new quantum metrology method needs to demonstrate its viability in the presence of noise and
decoherence. We study two different versions of the KT which differ in the decoherence model used: phase
damping and superradiant damping. Both can be described by Markovian master equations and are well studied
models for open quantum systems [42—45]. While phase damping conserves the energy and onlyleads to
decoherence in the | j, m) basis, superradiant damping leads in addition to a relaxation to the ground state
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|7, —j)- Its combination with periodic kicking in the chaotic regimes is known to give rise to a non-equilibrium
steady state in the form of a smeared-out strange attractor [45] that still conserves information about the
parameter w, whereas without the kicking the system in presence of superradiant damping simply decays to the
ground state. The master equations for both processes have the Kossakowski-Lindblad form [46, 47], with

p) = vpa(Uz> p(B)J] + hc) (7)
for phase damping, where p(t) = %p(t), and
p(t) = (U=, p()J:+] + h.c) (®

for superradiant damping, where J. := J; & ij, are the ladder operators, and Yod and 7y, denote the decoherence
rates. With the generator A, defined by p(¢#) = Ap(t), one has in both cases the formal solution
p(t,) = D(t, — t,_1)p(t,_ ) with the continuous-time propagator D(t) := e’. The solution of equation (7) in

the|j, m)basis, where p(t) = Ezn e P O m) (j, m'|,isimmediate,
Posont () = Py (0)exp [—pat (m — m')?]. (C)

Also for equation (8) a formally exact solution has been found [48] and efficient semiclassical (for large 5)
expressions are available [49, 50]. For our purposes it was the simplest to solve equation (8) numerically by
diagonalization of A. Combining these decoherence mechanisms with the unitary evolution the transformation
p(tg—1) — p(ty) reads

p(te) = Uy (k) [D(tr — te-1) p(te- D1 U (ke ), (10)

because in both cases the dissipative generator A commutes with the precession.

As initial state we use an SU(2) coherent state, which can be seen as the most classical state of a spin [51, 52],
and is usually easy to prepare (for instance by optically polarizing the atomic spins in a SERF magnetometer).
Also, itis equivalent to a symmetric state of 2j spin—% pointing all in the same direction. With respect to the

| j, m) basis it reads

j H j—m jtm
oo =3 (J.f]m)sin(g) cos(g) UM j, ). an

m=—j

Wechoose ) = X, ¢ = Z.
2 2

4. Optimizing the KT

4.1. The KT as a control problem
We consider the KT as a control problem and discretize the kicking strengths k, and times t,. The precise
parameters of the discretized control problem vary between the following examples and are summarized in
appendix A. In the following, ¢, denotes a discrete time step (measured in units of 7 = 1), kp is a discrete step
ofkicking strength, the RL agent optimizes the QFI at time T, and we bound the total accumulated kicking
strength >~ , k, < 15000 which is never reached in optimized policies though. The frequency w, that we want to
estimate, is set to induce a rotation of the state by t7r/2 (¢is measured in units of 7 = 1).

Possible control policies are simply given by a vector of kicking strengths k = (k;,...,ky) € RN with
ke € {qkstep: q =0, 1, 2,...}. Toeach policy corresponds a QFI value, calculated from the resulting state
p (T,p), which quantifies how well the policy performs. To tackle this type of problem, various numerical
algorithms are available, each with its own advantages and drawbacks [2, 3, 15]. We pursue the relatively
unexplored (in the context of physics) route of cross-entropy RL.

4.2.Reinforcement learning
Figure 2 shows the typical way we imagine RL. There is an agent that interacts with an environment by choosing actions
and receiving an observationand a reward from the environment. One cycle of action and observation/reward is
called a step.

In general, the idea of RL is to reinforce behavior that leads to high rewards. The precise mechanism depends
on the used RL algorithm.

4.3. The KT as a RL problem

The system, the generalized KT as introduced in section 3, represents the RL environment. The agent can choose
between only two actions: (i) increase the kicking strength (by k) or (ii) go on from the current position in
time #ep to (£ + 1) tyep. In this way, the vector k is built up step by step. After each action, the agent obtains an

4



10P Publishing

NewJ. Phys. 22(2020) 035001 J Schuffetal

action: kicking strength

agent: neural network environment:
kicked top

observation: density matrix
reward: QFI (only at the end)

Figure 2. Typical setup of reinforcement learning: the RL agent acts upon the environment which in return gives the RL agent an
observation and a reward. In our case the RL agent is a neural network and the environment is the generalized kicked top.

observation given by the full density matrix of the current state of the environment. Since we simulate the
evolution of the environment, the density matrix is readily available.

Only after the total time Ty, a reward [the QFI of p(T;)] is given to the agent. This concludes one episode,
and the resulting vector k represents a policy. Then, the environment is reset (i.e. the spin is reinitialized with the
coherent state at § = g, ¢ = %, see equation (11)), and the next episode starts.

A neural network represents the RL agent: the observation is given to the neural network’s input neurons
while each output neuron represents one possible action, i.e. we have two output neurons for ‘kick’ and ‘go on’.
The activation of these output neurons determines the probability of executing that action. The policy, however,
is not given by the neural network directly. Since the environment is deterministic (i.e. the state evolves
deterministically for a given policy k of kicking strengths) there is no point in choosing a stochastic policy such
asaneural network. Instead, a single choice of kicking strengths k represents the policy. We obtain this by first
training the neural networks using the cross-entropy method, then generating a few episodes with the trained
neural network, and then picking the episode with the largest QFI. The kicking strengths applied in that episode
represent the policy'.

4.4. Cross-entropy method

The RL cross-entropy method [53] we use works as follows: we first produce a set of episodes (i.e. we obtain
several vectors k) with a neural network that is initialized randomly. Then, we rank those episodes according to
their reward’. We select the best 10% of episodes (with highest reward) for further computations. Every episode
can be split into several pairs of action and observation and we use those pairs to train the neural network with
the stochastic gradient descent method called Adam [54]. As a result of this training, the weights of the neural
network are adjusted, i.e. the agent learns from its experience. Future actions taken by the agent are influenced
not only by randomness but also by this experience. One run of producing episodes, ranking them, and using the
best 10% to train the neural network is called an iteration. Training a neural network consists of several
iterations. See appendix C for pseudocode of this algorithm. For the parameters of the training process see
appendix B. In appendix D we study the learning success for different numbers of episodes and iterations.

5. Results

We compare the QFI for different models: (i) the top (simple precession without kicks), (ii) the standard KT, as
studied in [33], with periodic kicks (period 7 = 1, i.e. a precession angle of 7/2 for one period, and kicking
strength k = 30), and (iii) the generalized KT optimized with RL. In case of superradiance damping (phase
damping) we denote the top by SR-T (PD-T), the standard KT by SR-KT (PD-KT) and the RL-optimized
generalized KT by SR-GKT (PD-GKT). Details on the training and the optimization of the RL results are
provided in appendix B.

Let us first consider superradiant damping with results presented in figure 3. The QFI for the SR-T exhibits a
characteristic growth quadratic in time. However, due to decoherence, the QFI does not maintain this growth

In comparison, Sanders et al [23—25] restricted their policy search for adaptive single-photon interferometry in such a way that their search
space corresponds to points in RN, making it similar to our problem. However, in their case the observations from the environment are
probabilistic measurement outcomes while in our case the observation is the deterministic state p.

2 . . . . . .
We do not give an immediate reward at every step but only at the very end of an episode, and the reward is not reduced with the number of
steps (i.e. the discount factor is 1).
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Figure 3. Examples for the policy adopted by the RL agent for superradiant damping. We plot the accumulated kicking strength k,..(t)
(integrating over the kicks from time 0 to ) on the left axes as red dots and on the right axes in blue the quantum Fisher information for
the top (solid line), the periodically kicked top with k = 30 chosen as in [33] (dashed line) and the QFI that corresponds to the policy
of the RL agent (crosses). We additionally plot red vertical lines in the places, where the RL agent decides to set a kick. The height of the
lines correspond to the kicking strength in arbitrary units and are not on the scale of the left axis. There is a regime where the RL agent
manages to increase the QFI with each time step (panels (a) and (b)), and a regime where the RL agent makes the QFI oscillate (panels
(c)and (d)).

but starts to decay rapidly towards zero. The time when the QFI reaches its maximum was found to decay
roughlyas 1 /(- j) with spin size j and damping rate -y, [33].

The situation changes with the introduction of nonlinear kicks. There, the QFI for the SR-KT shows the
interesting behavior of not decaying to zero for large times. Instead it reaches a plateau value which was found to
take surprisingly high values for specific choices of j and dissipation rates [33], in particular, for j = 2. The
system looses energy through superradiant damping while the nonlinear kicks add energy. This prevents the
state from decaying to the ground state, which is an eigenstate of the precession and would lead to a vanishing
QFI. From this perspective, the plateau results from a dynamical equilibrium established by the interplay of
superradiant damping and kicks.

However, the full potential of exploiting such effects and increasing the QFI with the help of nonlinear kicks
is not achieved with constant periodic kicks. Instead, the RL agent’ finds policies to make the QFI of the SR-GKT
increase further even when the QFI of the SR-T decayed already to zero and the QFI of the SR-KT reached its
plateau value.

Examples forj = 2andj = 3 are presented in figure 3. The QFI of the SR-GKT is optimized for a total time
T,pe Which is the largest time plotted in each example. At T,,,,,, the plateau value of the SR-KT forj = 3is
relatively low and the RL-optimized policy achieves an improvement in sensitivity (associated with 1/./1,,) of
more than an order of magnitude. Panels (a) and (b) show continuous growth of the QFI through an optimized
kicking policy. Only if the time T, (the QFI is optimized to be maximal at T,y is increased further, the
impressive growth of the QFI finally breaks down. Instead of increasing T, we choose to increase superradiant
damping while keeping T, constant, which has a similar effect. In that case, see panels (c) and (d), the RL agent
chooses a policy which makes the QFI oscillate at a relatively high level before the time T, is reached.

The superiority of the policies found by the RL agent can be understood by taking a look at the evolution of
the quantum state, see figure 4: we represent the quantum state in the space of r = (x, ¥, z) = ({)x), <]y> s (1)
where (J;) = tr(pJy) and, due to the conservation of angular momentum, |r| = 1which restricts the space toa

® The training of one RL agent takes about eight hours on a desktop computer.
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Figure 4. [llustration of kicked superradiant dynamics with Wigner functions and its classical limit. The spin sizeisj = 3 and the
dissipation rate is 5, = 0.01. Panels in the left column (a) correspond to the initial spin coherent state at § = ¢ = 7/2. The middle
and right columns correspond to the state at time T, generated with periodic kicks (middle column (b), k = 30) and with kicks
optimized with reinforcement learning (right column (c), the corresponding QFI is shown in panel (b) of figure 3). The top two rows
show the Wigner functions of the density matrix, the bottom two rows show the classical phase space, populated by 10° points initially
distributed according to the Husimi distribution of the initial spin coherent state and then propagated according to the classical
equations of motion.

sphere. This is represented in figure 4 with either a sphere parameterized with x, y, and z, or in a plane (the phase
space) spanned by the z-coordinate and the azimuthal angle ¢ € (—m, w]suchthat ¢ = z = 0 corresponds to
the positive x-axis, ¢ = 7/2,z = 0to the positive y-axis, and z = +1 with arbitrary ¢ to the positive (negative)
z-axis.

The quantum state can be represented in the phase space with the help of the Husimi or the Wigner
distributions which are quasi probability distributions of the quantum state. The first two rows of panels in
figure 4 depict the Wigner distribution of the initial quantum state (left column) and the quantum states of the

7
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SR-KT (middle column, with kicking strength k = 30) and SR-GKT (right column) evolved for a time T, with
damping rate v, = 0.01. The plotted cases for the SR-KT and SR-GKT correspond to the QFI given in panel (b)
of figure 3, where one can also see the corresponding RL-optimized distribution of kicks.

Due to the small spin size of j = 3, we are deep in the quantum mechanical regime which manifests itself in
an uncertainty of the initial spin coherent state that is relatively large compared to total size of the phase space.
The distribution of the states evolved under dissipative dynamics exhibit remarkable differences for periodic and
RL-optimized kicks.

In case of periodic kicks, we find that the initially localized distribution gets distributed over the phase space.
It exhibits a maximum on the negative z-axis, see panels (b;) and (b,) in figure 4. This is reminiscent of the
dissipative evolution in the absence of kicks, where the state is driven towards the ground state | j, —j) which is
centered around z = —1. The ground state | j, —j) is an eigenstate of the precession and, thus, insensitive to
changes in the frequency w we want to estimate. Similarly, we interpret the part of the state distribution of the
SR-KT that is centered around negative z-axis as insensitive. However, the distribution also exhibits non-
vanishing parts distributed over the remainder of the phase space that can be understood as being sensitive to
changes of wand therefore explain the non-zero QFI of the SR-KT.

The state corresponding to RL-optimized kicks looks like a strongly squeezed state that almost encircles the
whole sphere. Similar to spin squeezing, which is typically applied to the initial state as a part of the state
preparation, we interpret the squeezed distribution as particularly sensitive with respect to the precession
dynamics. This is due to the reduced uncertainty along the precession trajectories, i.e. with respect to the ¢
coordinate. We provide clips of the evolution over time of the state distributions that illustrate how the RL agent
generates the squeezed state”. In particular, the squeezed state distribution can be seen as a feature the RL agent is
aiming for with its policy. The distribution of RL-optimized kicks is shown in figure 3 (in appendix F, we provide
afiner resolution of the distribution of kicks): it is roughly periodic with period corresponding to a precession
angle of 7. Also note that for the SR-GKT the Wigner distribution has negative contributions which is associated
with non-classicality of the quantum state [55].

An advantage of the superradiant dynamics lies in its well-defined simple classical limit [45], see also
appendix E. The lower two rows of panels in figure 4 depict the corresponding classical limit where the quantum
state is represented by a cloud of phase space points (distributed according to the Husimi distribution of the
initial spin coherent state) that are propagated according to the classical equations of motion. One of the reasons
why the evolved classical distributions differ from the Wigner distributions is the absence of quantum
uncertainty in the classical dynamics; in principle, over the course of the dynamics all classical phase space points
can be concentrated to an arbitrarily small region of the phase space. In case of the SR-KT, the phase space points
are distributed over the whole phase space, reminiscent of classical chaos. However, the distribution is not
completely uniform but it exhibits a spiral density inhomogeneity. The plots as in figure 4 but for j = 2 are
shown in the appendix F.

Figure 5 shows the gains of the RL-optimized SR-GKT over the SR-T. The gain is defined as the ratio of the
RL-optimized QFI at time T, and the maximum QFI for the SR-T. A broad damping regime is found where
gains can be achieved: in the regime of small decoherence rates ~;,, the RL agent can fight decoherence in such a
way that the QFI exhibits a continuous growth over the total time T, (see panels (a) and (b) in figure 3). In
comparison with the SR-T, the RL agent benefits of stronger damping in this regime and, therefore, the gain
increases with the dissipation rate ~,. For larger decoherence rates, the RL agent can no longer fight decoherence
in the same manner (see panels (c) and (d) in figure 3), which manifests itself in a reduction of gains for large
decoherence rates. In panel (b) of figure 5, we can see the (even larger) gain in QFI compared to the plateau value
reached by the SR-KT.

The RL-optimized QFI is associated with a lower bound on the sensitivity (see equation (1)) for a given
measurement time T, If the measurement time can be chosen arbitrarily, sensitivity is associated with
max; I,(t) /t [33]. This sensitivity represents the standard quantity reported for experimental parameter
estimation because it takes time into account as a valuable resource; sensitivity is given in units of the parameter
to be estimated per square root of Hertz. With RL we try to maximize max, I, (¢) /¢ with respect to policies.

Figure 6 compares the SR-T with the SR-GKT where the latter was optimized with RL in order to maximize
the rescaled QFI. Note, that the initial spin coherent state is centered around the positive y-axis, which means it is
an eigenstate of the nonlinear kicks; kicks cannot induce spin squeezing at the very beginning of the dynamics.
This changes when the spin precesses away from the y-axis. Therefore, it makes sense that the RL agent applies
the strongest kick only after a precession by about 7/2. The actions that the RL agent takes after the rescaled QFI
reached its maximum are irrelevant and can be attributed to random noise generated by the RL algorithm.

As we have seen, the interplay of nonlinear kicks and superradiant damping is very special. However, also for
other decoherence models the QFI can be increased significantly, for instance in case of a alkali-vapor

4 The clips are available at https: / /doi.org/10.6084 /m9.figshare.c.4640051.v3.
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Figure 5. Improvement in the quantum Fisher information due to reinforcement learning for superradiant damping. The
improvement in panel (a) is the ratio I'ypiickeq Of quantum Fisher information at time T, (100 discretized time steps) optimized with
reinforcement learning and the maximum QFI of the top (no kicks). In panel (b) we plot the ratio I jycay 0f the QFI optimized with
reinforcement learning and the plateau values achieved by periodic kicking for spin size j = 2 and kicking strength k = 30. In panel
(b), the case of j = 3 is omitted due to the very small plateau values in that case. The discretization is coarser than in previous examples:
tsep = 1 (i.e.a precession angle of /2 per time step) and kgep = 0.1.
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Figure 6. Examples for the policy adopted by the RL agent for maximizing the rescaled quantum Fisher information with superradiant
damping. We plot the accumulated kicking strength k,..(#) (integrating over the kicks from time 0 to ) on the left axis as red dots and
on the right axis the rescaled quantum Fisher information for the top (blue solid line) and for the generalized kicked top optimized
with reinforcement learning (blue crosses). In case of j = 2 (j = 3) the strongest kick is applied after an initial rotation angle of
137/20 (97/20).

magnetometer [33]. To demonstrate the performance of the RL agent in connection with another decoherence
model, we take alook at phase damping, see figure 7. The behavior of the QFI of the PD-T is qualitatively similar
to superradiant damping. The introduction of kicks, however, has a qualitatively different effect on the QFIL The
RL agent can achieve improvements of the QFI for the PD-GKT at time T, (the highest time plotted in each
panel of figure 7) compared with the QFI of the PD-T at the same time. Compared to the superradiant case,
improvements are rather small. Notably, the policies applied by the RL agent are also different from superradiant
damping; for instance, the RL agent avoids kicks for large parts of the dynamics.

6. Discussion

This work builds on recent results on quantum-chaotic sensors [33]. Our aim is to optimize the dynamical control
that was used in [33] to render the sensor dynamics chaotic. Due to the high dimensionality of the problem we use
techniques from RL. The control policies found with RL are tailored to boundary conditions such as the initial
state, the targeted measurement time, and the decoherence model under consideration. At the example of
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Figure 7. Examples for the strategy adopted by the RL agent for phase damping. All data is for spin j = 2 with increasing damping rates
7Ypd from panel (a) to (d). We plot the accumulated kicking strength k,.() (integrating over the kicks from time 0 to £) on the left axis as
red dots and on the right axis the quantum Fisher information for the top (blue solid line) and for the generalized kicked top optimized
with reinforcement learning (blue crosses). We additionally plot red vertical lines at times when the RL agent sets a kick. The length of
the lines corresponds to the kicking strength in arbitrary units (independent of the scale of the left axis). Note that the RL agent aims to

maximize the QFI for T, = 100 and outperforms the top in all examples.

superradiant damping we demonstrate improvements in measurement precision and an improved robustness
with respect to decoherence. A drawback of RL often lies in the expensive hyperparameter tuning of the algorithm.
However, here we show that a basic RL algorithm (the cross-entropy method) can be used for several choices of
boundary conditions with practically no hyperparameter tuning (there was no hyperparameter search necessary,
solely parameters that directly influence the computation time were chosen conveniently).

In the example of superradiant damping, we unveil the approach taken by RL by visualizing the quantum
dynamics with the help of the Wigner distribution of the quantum state. This reveals that RL favors a policy that
is reminiscent of spin squeezing. However, instead of squeezing the state only at the beginning of the dynamics,
the squeezing is refreshed and enhanced in roughly periodic cycles in order to fight against the superradiant
damping.

In the spirit of [33], these findings emphasize the potential that lies in the optimization of the measurement
dynamics. We are optimistic that RL can be used to tackle other problems in quantum metrological settings in
order to achieve maximum measurement precision with limited quantum resources.
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Appendix A. Control problem and optimization parameters of the examples

Table A1 shows the parameters of the control problem and for the optimization used in each example. We train
Hagents RL agents for #licerations iterations with 71¢pis0des €pisodes in each iteration. Each episode is simulated until a

total time T, is reached. Then we produce #15,mpies sample episodes of each trained RL agent and choose the best
episode to plot the sample policies and gains.

10



10P Publishing

NewJ. Phys. 22(2020) 035001 J Schuffetal

Table Al. Hyperparameters used for the examples in the main text.

Figl.ll‘ ¢ Nagents Miterations Mepisodes Nsamples tstep kstep Topt
Samples with superradiant damping (figure 3) 5 500 50 20 0.2 0.05 100
Gains of superradiant damping (figure 5) 20 300 40 20 1.0 0.10 100
Samples of rescaled QFI (figure 6) 2 500 50 20 0.1 0.10 50

Samples with phase damping (figure 7) 1 1000 100 1 1.0 0.10 100

Appendix B. Hyperparameters of RL

Here we give further information on the neural network and the hyperparameters of the algorithm.

The input layer of the neural network is defined by the observation. The output layer is determined by the
number of actions (two) and we choose 300 neurons in the hidden layer. The layers are fully connected. The
hidden layer has the rectified linear unit as its activation function and the output layer has the softmax function
as its activation function [56]. As a cost function we choose the categorical cross entropy [56]. The share of best
episodes O ypare is always 10%. The number of iterations and number of episodes vary for different settings, see
table A1 for detailed information. For training we use the Adam optimizer [54] with learning rate 0.001.

Appendix C. Pseudocode for cross-entropy RL

This is the pseudocode for the cross-entropy method with discrete actions.

Algorithm: Cross entropy method

Inputs:
Number of iterations njterations
Number of episodes Nepisodes

Share of best episodes ogp 410
Other variables:

Total Reward R

Current Reward r

Observations o

Actions a

Training set S (consists of observations as inputs and actions as labels)

for 1 to njgerations:
for 1 to Nepisodes’
| R,0,a « Play Game
end for
sort, episodes according to R
S « best o4} 4re episodes
train neural network with §
end for

Function Play Game():

while episode not finished do:
put observation into neural network and receive probabilities of action as output
choose action according to probability
add action and observation to a, o
tell the environment the action choice and receive a new observation o and reward r
R«<R+r

end while

return R,0,a

The code implementation is based on an example by Jan Schaffranek’.

Appendix D. Learning curve and stability of the algorithm
At the example of the superradiance decoherence model, we study the learning behavior of the cross-entropy RL
algorithm for different training lengths (i.e. number of iterations) and different numbers of episodes per

iteration. The results are summarized in figure D1. Spin size isj = 2 and dissipation rate is y,, = 0.02.

> https://udemy.com/artificial-intelligence-und-reinforcement-learning-in-python.
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Figure D1. Learning behavior of the algorithm at the example of superradiant damping withj = 2,75, = 0.02, kyep = 0.1, fgtep = 1,
and T, = 100. Panel (a) shows how the mean QFI and its standard deviation with respect to different runs of the algorithm behaves
for various numbers of iterations and fixed number of episodes fixed to 100. In Panel (b) the number of episodes is varied and number
of iterations fixed to 500.

In order to see the influence of the number of iterations, we set the number of episodes to 100 and let 20
different RL agents (with different random seeds) train for various numbers of iterations. The training of a single
RL agent takes about one hour at most (for the higher number of iterations) on a desktop computer. We then use
each RL agent to produce 20 episodes, giving us 400 episodes for each data pointin figure D1. We used those
episodes to calculate mean and standard deviation of the reward. The results are shown in the panel (a) of
figure D1. In order to see the influence of the number of episode in each iteration, we fix the number of iterations
to 500 and do the same procedure as before. The results are shown in panel (b) of figure D1.

We can see that the standard deviation over policies decreases with the number of iterations while the mean
QFlincreases. The same is true for the number of episodes (panel (b)), where for 32 episodes a stable plateau of
the QFl is reached such that increasing the number of episodes does not achieve any further improvements.
Overall, these results demonstrate the stability of the algorithm if the number of episodes and iterations is chosen
sufficiently large.

Appendix E. Classical equations of motion

The KT with superradiant damping has a well defined classical limit. It is obtained from the quantum equations
of motion by taking thelimit j — oo where s = 1and 7 = 1. The rescaled angular momentum operator
2J/(2j + 1) = 2Us, Jy» J2) /(2] + 1) then becomes the classical coordinate vector r = (x, y, z) and with

2
limjﬂoo(%) = 1the unit sphere becomes the classical phase space with azimuthal angle ¢ and

z-coordinate as canonical variables. The equations of motions r — # are found to be [45]

X = x cos(a) — ysin(a), (ED)
7 = xsin(a) + y cos(a), (E2)
Z =z, (E3)
for the precession about the z-axis by an angle v
X = zsin(ky) + x cos(ky), (E4)
y= (E5)
Z = zcos(ky) — xsin(ky), (E6)

for the kicks about the y-axis with kicking strength k, and, with azimuthal angle ¢ (see main text)

1— (i% exp (ZT))

6 = arccos , (E7)
1+ (1;i)exp 27)
% = sin(f)cos(¢), (E8)
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Figure F1. Kicks set by the RL agent for the SR-GKT. Panel (a) shows the case for v, = 0.01 and panel (b) for 75, = 0.1.Inred on the
left axis are the kicking strengths k forj = 2 (crosses) and j = 3 (circles). To show the precession, we plot on the right axis in grey the x
component of an unkicked spin coherent state without decoherence.

7 = sin(0)sin(¢), (E9)
Z = cos(f), (E10)

for the superradiant damping, where
T=Qj + Dyt (E11)

for a time ¢, spin size j, and superradiant decoherence rate ;.

Appendix F. A closer look at the kicks set by the RL agent

Here we take a closer look at the kicks chosen by the RL agent in the examples with superradiant damping,
considered in figure 3 in the main text.

In case of v, = 0.01, for both, j = 2 andj = 3, we find relatively similar distribution of kicks, see panel (a) in
figure F1. The most striking difference between the two policies for j = 2 andj = 3 are the comparatively strong
kicks in the beginning of the sequence. By observing the time evolution of the Wigner function (see footnote 4),
we find that these kicks basically rotate the state by an additional angle 7/2 about the z-axis. This leads to a phase
shift of m/2 between the two policies (see panels (ds) and (dy) of figure F2) compared to the initial state (see
panels (a;) and (a,) of figure F2).

For s, = 0.1 the policies are even more similar with several kicks increasing in strength with a period length
of m, see panel (b) in figure F1.
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Figure F2. Shows the corresponding data as in figure 4 but for j = 2 instead of j = 3: illustration of kicked superradiant dynamics with
Wigner functions and its classical limit. The dissipation rateis v, = 0.01. Panels in the left column (a) correspond to the initial spin
coherent stateat = ¢ = 7/2. The middle and right columns correspond to the state at time To, generated with periodic kicks
(middle column (b), k = 30) and with kicks optimized with reinforcement learning (right column (c), the corresponding QFI is
shown in panel (b) of figure 3). The top two rows show the Wigner functions of the density matrix, the bottom two rows show the
classical phase space, populated by 10° points initially distributed according to the Husimi distribution of the initial spin coherent
state and then propagated according to the classical equations of motion.

Figure F2 is analog to figure 4 in the main text but for j = 2 instead of j = 3. The only qualitative difference
compared to thej = 3, is the periodically KT: the combination of periodic kicks with k = 30 andj = 2 seems to
be a special configuration. The classical phase space is comparable with the j = 3 case, but there is much less
structure in the Wigner function. Instead, the state concentrates on the south pole and exhibits a slightly
squeezed shape (this is difficult to judge from figure F2 though). The rather high value of the QFI for k = 30 and
j = 2,isbest explained by this squeezing. When choosing other kicking strength, we observed a Wigner function
similar to the case of j = 3.
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