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Abstract
Real quantumheat engines lack the separation of time and length scales that is characteristic for
classical engines. Theymust be understood as open quantum systems in non-equilibriumwith time-
controlled coupling to thermal reservoirs as integral part. Here, we present a systematic approach to
describe a broad class of engines and protocols beyond conventional weak coupling treatments
starting from amicroscopicmodeling. For the four strokeOtto engine the full dynamical range down
to low temperatures is explored and the crucial role of thework associatedwith the coupling/de-
coupling to/from reservoirs as an integral part in the energy balance is revealed. Quantumcorrelations
turn out to be instrumental to enhance the efficiencywhich opens newways for optimal control
techniques.

1. Introduction

Macroscopic thermodynamics was developed for very practical reasons, namely, to understand and describe the
fundamental limits of converting heat into useful work. In ideal heat engines, components are always in perfect
thermal contact or perfectly insulated, resulting in reversible operation. Theworkmediumof realmacroscopic
engines is typically between these limits, but internally equilibrated, providing finite power at a reduced
efficiency. Any reduction of engine size tomicroscopic dimensions calls even this assumption into doubt.

At atomic scales and low temperatures, quantummechanics takes over, and concepts of classical
thermodynamicsmay need to bemodified [1–5]. This is not only of pure theoretical interest but has immediate
consequences in the context of recent progress in fabricating and controlling thermal quantumdevices [6–9].
While the first heat engines implementedwith trapped ions [10, 11] or solid state circuits [12] still operated in
the classical regime,more recent experiments entered the quantumdomain [13–16]. In the extreme limit, the
workmediummay even consist of only a single quantumobject [17].

Theoretically, one is thus facedwith the fundamental challenge that a separation of time and length scales on
which conventional descriptions of thermal engines is based,may no longer apply. This has crucial
consequences: first, the engine’s operationmust be understood as a specificmode of the cyclic dynamics of an
open quantum systemwith the coupling/de-coupling processes to/from thermal reservoirs being integral parts
of the time evolution; second, thermal coupling strength and thermal times  k TB at low temperaturesTmay
match characteristic scales of theworkmedium. The latter requires a non-perturbative treatment beyond
standardweak-coupling approaches [17–31] to includemedium-reservoir quantum correlations and non-
Markovian effects [32–38]. The former implies the introduction of two distinct sources of work.While typically
only exchanged heatQ andwork for compression/expansion of themedium (drivingwork)Wd is addressed, a
complete dynamical operation of any quantum thermalmachine requires finite-time coupling/de-coupling
processes to/from the respective thermal reservoirs that inevitably lead to an additional time-dependence of the
system-reservoir interaction and, hence, to an additional source of work, see figure 1. This couplingworkWI

may turn into an essential ingredient in the energy balance aswill be discussed in section 5 of thismanuscript.
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Roughly speaking, while in a classical engine the cylinder ismuch bigger than the valve so that W Wd I∣ ∣ ∣ ∣ , for a
quantumdevice this separation of scalesmay fail and ~W Wd I∣ ∣ ∣ ∣. This is particularly true for scenarios to
approach the quantum speed limit in cyclic operation [39–41]. Can a quantum engine under these conditions be
operated at all?

To address this question, in this paperwe provide a non-perturbative treatment and apply it to a finite-time
generalization of theOtto cycle (figure 1). It is based on an exactmapping of the Feynman–Vernon path integral
formulation [42, 43] onto a SLN equation [44]which has been successfully applied before [45–50]. Here, we
extend it to accommodate time-controlled thermal contact betweenmedium and reservoirs and thus to arrive at
a systematic treatment of quantumheat (QH) engines at low temperatures, stronger coupling and driving.Work
mediawith either a single harmonic or anharmonic degree of freedom are discussed tomake contact with
current experiments.We demonstrate the decisive role of the coupling workWIwhich inevitablymust enter the
energy balance. In general, its impact turns out to be detrimental for the efficiency, however, its dependence on
quantum correlations opensways to improve the situation, e.g. using optimal control techniques [46].

2.Modeling

Aquantum thermodynamic device with cyclic operation involving external work and two thermal reservoirs is
described by the genericHamiltonian

= + + + +H t H t H H t H H t , 1m c I c h I h, ,( ) ( ) ( ) ( ) ( )

where H H,m c h denote theHamiltonians of theworkmedium and the cold/hot reservoirs, respectively, with
interactions HI c h, . Not only theworkingmedium is subject to external control, but also the couplings—this is
required in a full dynamical description of the compound according to specific engine protocols.We consider a
particle in a one-dimensional potential, = +H t p m V q t2 ,m

2( ) ( ) ( ), alsomotivated by recent ion-trap
experiments [10, 11]. Reservoirs are characterized not only by their temperaturesTc<Th, but also by spectral
densities wJc h( ) [43, 51], related to the dynamical response functions c tc h( ) of the reservoirs through

òw c w=
¥

J t t td sinc h c h0
( ) ( ) ( ). Assuming the free fluctuations of each reservoir to beGaussian, these can be

modeled in a standardway [43] as a large collection of independent effective bosonicmodeswith bilinear
coupling terms of the form

Figure 1.Top: energy-frequency diagramof theworkmedium in a quantumOtto heat enginewith frequencyω(t) varying aroundω0.
A cycle includes two isochore (A→B,C→D) and two isentropic strokes (B→C,D→A). Bottom: thermal contact to hot (cold)
reservoirs is controlled byλh(t) [λc(t)] and expansion (compression) is due toω(t). The cycle is specified by three characteristic time
scales τI, τd, τR.
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ål l m= - + +H t t q c b b q t
1

2
2I c h c h

k
k c h k c h k c h c h c h, , , ,

2 2( ) ( ) ( ) ( ) ( )†

with coupling constants ck c h, and dimensionless coupling functions l tc h( )which are varied between zero and
one to close and open thermal contact to the respective reservoirs. In terms of creation and annihilation
operators of the bosonic excitations, the harmonic reservoirHamiltonians for the cold and hot bath,
respectively, read

å w=H b b . 3c h
k

k c h k c h k c h, , , ( )†

The terms ò òm w c= =
p

w
w

¥ ¥
t td dc h

J
c h

2

0 0

c h ( )( )
are conventionally chosen such that no static force arises

from themedium-reservoir coupling for constant q andλ [51]. Equivalently, this guarantees translationally
invariantmedium-reservoir interactions and the dynamical stability of themodel forV(q)=0. In a quasi-
continuum limit the reservoirs become infinite in size; thermal initial conditions are therefore sufficient to
ascertain their roles as heat baths.

The dynamics of this setting will be explored over sufficiently long times such that a regime of periodic
operation is reached, without limitations on the ranges of temperature, driving frequency, and system-reservoir
coupling strength. The nature of the quantum states encountered, either asQH engine or refrigerator (QR), is
not known a priori.

In order to tackle this formidable task, we start from the Feynman–Vernon path integral formulation
[42, 43, 51]. It provides a formally exact expression for the reduced density operator r r=t tTrm R tot( ) { ( )}of the
workingmedium. The the reservoir quantum correlation functions - ¢ = á ¢ ñL t t X t X tc h c h c h( ) ( ) ( ) with

= å +X c b bc h k k c h k c h k c h, , ,( )† arememory kernels of a non-local action functional, representing the effective
impact of the reservoir dynamics on the distinguished system as a retarded self-interaction. They can be
recovered from the spectral density through

òp
w w

b w
w w= -

¥ 
L t

h
J t td coth

2
cos i sin . 4c h c h

c h

0

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( ) ( ) ( ) ( ) ( )

This formulation can be exactlymapped onto a stochastic Liouville–vonNeumann equation (SLN) [44], an
approachwhich remains consistent in the regimes of strong coupling, fast driving, and low temperatures
[45–50], wheremaster equations become speculative or inaccurate.

Without detailedmicroscopic knowledge of the reservoirs, the assumption of an ohmic reservoir
w wµJ[ ( ) ] is commonlymade; in a classical limit of equation (4), this results in white thermal noise and

memoryless friction. For a quantum reservoir, however, ohmic dissipation results in colored noise with a long-

time limit p bµ -p
b




L t texp
2( )) ( ( )/ forfinite temperatures and an algebraic decay L(t)∝1/t2 at zero

temperature. Thus, non-Markovian dynamics inevitably appears for the ohmic case at lower temperatures
ωcutÿβ?1with a typical reservoir high frequency cut-offωcut significantly larger than any other frequency
scale of the problem.

Here we substantially extend an SLN-typemethod for ohmic dissipation [52], i.e. spectral densities of the
form w gw w w= +J m 1 2

cut
2 2( ) ( ) , to the highly non-trivial time-dependent control of the system-reservoir

couplings. This includes a concisemapping of key reservoir observables and system-reservoir correlations to
their respective stochastic representation. The resulting dynamics is given by

r r r r= - + +x x x x
 t H t

i
, 5m h c( ) [ ( ) ] [ ] [ ] ( )

which contains terms known from the conventional SLN equation and further parts that result from a careful
handling of the explicit time-dependence of the system-reservoir coupling control and the finite-memory
quantumnoise xc h

g
l r r

l
g

l r x r

= - +

- -

a
a

a x a x

a
a

a x a x




 

m
t q i p k T q

t
m

t q t q

2
, , 2 ,

i

2
, , .

6
2

2
B

2{ }
( )[ { } [ ]]

( ) ( )[ ] ( )[ ]
( )



Averaging over samples of the operator-valued process ρξ(t) yields the physical reduced density
r r= xt tm( ) [ ( )]. The independent noise sources ξα(t) are related to the reservoir correlation functions through
xá a t( ) x d¢ ñ = - ¢ - - ¢a a

g
b

a

a
t L t t t t

m2( ) ( ) ( )R .

The time local equations (5) and (6) thus provide a non-perturbative, non-Markovian simulation platform for
quantum engines withworkingmedia consisting of single or few continuous or discrete (spin)degrees of
freedom; different protocols can be appliedwith unambiguous identification of per-cycle energy transfers to
work or heat reservoirs. Next, wewill apply it to a four strokeOtto cycle.
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3. Engine cycle

For this purpose, steering of both the time-dependent potentialV q t,( ) and time-dependent couplings l tc h( )
in an alternatemode is implemented, seefigure 1. For simplicity, ohmic reservoirs with equal damping rate γ are
assumed. A single oscillator degree of freedom represents theworkingmedium as a particlemoving in

w k= +V q t m t q m q,
1

2

1

4
72 2 4( ) ( ) ( )

with a parametric-type of drivingω(t) and anharmonicity parameterκ�0.We considerω(t) varying around a
center frequencyω0 between w w D >wD , 00 2

( ), within the time τd during the isentropic strokes of expansion
(B→C) and compression (D→A); it is kept constant along the hot and cold isochores (A→B andC→D)
(see figure 1). The isochore strokes are divided into an initial phase raising the coupling parameter lc h from
zero to onewith duration τI, a relaxation phase of duration τR, and afinal phase with l  0c h , also of
duration τI.

The cycle period is thus t t t= + +T 4 2 2I d R, as indicated infigure 1. The total simulation time covers a
sufficiently large number of cycles to approach a periodic steady state (PSS)with r r= +t t Tm m( ) ( ).
Conventionally, one neglects what happens during τI; one assumes thatmodulating the thermal interaction has
no effect on the energy balance (see also [32]). In the quantum regime, such effectsmay, on the contrary, play a
crucial role as will be revealed in the sequel.

4. Periodic steady state

Infigures 2(a)–(c) results are shown for a purely harmonic system, forwhich analytical results have been derived
in limiting cases [10, 33, 53].We use it as a starting point to refer to the situation in ion trap experiments [11] and
to identify in (d) the role of anharmonicities. After an interval of transient dynamics (a), the elements of the

covariancematrix settle into a time-periodic patternwith damped oscillations near frequencies w  wD ;0 2
the time to reach a PSS typically exceeds a single period. The presence of qp-correlationsmanifests broken

Figure 2.Quantumdynamics for anOtto engine with w b = 0.25h0 , w b = 3c0 . Time scales are w t = 10I0 ,ω0τd=5,ω0T=60
with reservoir coupling γ/ω0=0.05; here and in the sequelωcut/ω0=30. (a)Harmonic and (d) anharmonic (κ = 0.15)work
medium: Approach of a PSS for the variances in position,momentum and the cross-correlations á + ñqp pq . (b)Harmonic Fock state
populations pj(t) at frequencyω0 and (c) off-diagonal elements r tij ( )R (coherences) of the reduced density ρm(t), see text for details.
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time-reversibility which implies that a description in terms of stationary distributions with effective
temperatures is not possible. Indeed, the PSS substantially deviates from amere sequence of equilibrium states.
Further insight is gained by taking the oscillator at itsmean frequency w0 as a reference and employ the
corresponding Fock state basis tomonitor populations r= á ñp t n t nn( ) ∣ ( )∣ and coherences
r r= á ñ ¹t n t m n m,nm( ) ∣ ( )∣ (b), (c). Population from the ground and thefirst excited state is transferred to
(from) higher lying ones during contact with the hot (cold) bath. In parallel, off-diagonal elements ρnm(t) are
maintained. These are dominated by ρ02(t) contributions according to the parametric-type of driving during the
isentropic strokes.While this Fock state picture has to be takenwith some care for dissipative systems, it clearly
indicates the presence of coherences associatedwith qp-correlations in themedium [26, 54]. The impact of
anharmonicities for stiffer potentials in (7) is depicted in (d). In comparison to the harmonic case, dynamical
features display smoother traces with enhanced (reduced) variations in á ñp2 (á ñq2 ). Non-equidistant energy level
spacingsmay in turn influence the efficiency (see below).

5.Work andheat

The key thermodynamic quantities of aQHarework and heat per cycle. Note that even thoughwe operate the
model with amedium far from equilibrium, these quantities have a sound and unique definition in the context
of fullyHamiltonian dynamics involving reservoirs of infinite size. An assignment of separate contributions of
each stroke to heat andwork is not needed in this context.Moreover, any such assignment in a systemwithfinite
couplingwould raise difficult conceptual questions due to system-reservoir correlations [36, 55].

In the context of full system-reservoir dynamics, heat per steady-state cycle is uniquely defined as the energy
change of the reservoir

ò r= -Q t H td Tr . 8c h

T

c h
0

tot{ ( )} ( )

Within the SLN the integrand can be transformed into computable expressions involving system-reservoir
correlation functions.We can thus determine the transferred heat without the use of generating functionals
[56, 57]. Similarly, work is obtained as injected power, i.e.

ò r=
¶
¶

W t
H t

t
td Tr , 9

T

0
tot{ }( ) ( ) ( )

where separate driving and couplingwork contributionsWd andWI affect power output and efficiency of the
cyclic operation.

5.1. Energy balance andfirst law
Wefirst consider the energy balance of our engine in the context of the full system-reservoirmodel. Any changes
in the energy of the global system as defined in equation (1) are due towork terms

á ñ =
¶

¶
+

¶
¶

+
¶

¶t
H

H t

t

H t

t

H t

t

d

d
, 10m I c I h, ,( ) ( ) ( ) ( )

with separate terms indicating the differentmodes of performingwork associatedwith the parameterω(t) and
l tc h( ). Heat is identified as energy transferred into the reservoirs over a cycle

ò ò

ò

r r

r

- = -

= -





Q t H t H t H

t H t H

d Tr
i

d Tr ,

i
d Tr , . 11

c h

T

c h

T

c h

T

I c h c h

0
tot

0
tot

0
, tot

≔ { } {[ ( ) ] }

{[ ( ) ] } ( )



At the end of a period of cyclic operation, themicrostate of themedium reverts its initial state,
r r+ =t T tm m( ) ( ).Moreover, the collective response function of the reservoirs decays in time sufficiently fast
that the collective reservoir coordinate entering HI c h, shows periodic behavior at long times.We thus have

á + ñ = á ñ á + ñ = á ñH t T H t H t T H t, . 12m m I c h I c h, ,( ) ( ) ( ) ( ) ( )

Defining per-cycle work terms through

ò ò=
¶

¶
=

¶
¶

+
¶

¶
W t

H t

t
W t

H t

t

H t

t
d , d , 13

T
m

I

T
I h I c

d
0 0

, ,⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( ) ( )

it is easily verified that these quantities obey thefirst law of thermodynamics

+ + + =W W Q Q 0. 14d I c h ( )
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It is instructive to note that equation (12) can be used to give an alternative expression for the heat terms per
period

ò òr= -
¶

¶
Q t H t H t

H t

t

i
d Tr , d . 15c h

T

I c h m

T I c h

0
, tot

0

,{[ ( ) ] }
( )

( )

Thefirst termof (15) is an energyflow from the systemdue to the coupling; the second is thework performed
through changes of lc h. Viewing this equation as a continuity equation, we conclude that thework described by
the second term is completely dissipated (which has been previously shown for aMarkovian classical heat engine
model [58]).

5.2.Work and heat in the probabilistic SLN context
Thework termsWd andWI aswell as the expression (15) for the heat transfer Qc h have equivalent
representations in the SLNdynamics (5), even for those terms involving HI c h, . In order to obtain this stochastic
equivalent, the equal-time correlations á ñaqX and á ñapX , (a = c h, ), involving system coordinate/momentum

and the reservoir operator = å +a a a aX c b bk k k k, , ,( )† are needed. In simpler SLN approaches [44], the noise
variable ξ can serve as a direct substitute forX [48]. Here we need to treat the termswhich have been contracted
to delta terms in themore complicated SLN equation (5) separately. A careful consideration of short-time
dynamics on timescales of order w1 cut before taking the limit of largeωcut leads to the results

r x l m l g l g= á ñ + á ñ - á + ñ - á ña a a a a a a aqX t q t q t qp pq t m qTr 2 , 16tot
2 2{ } [ ( ) ( ) ( ) ( ) ] ( )

r x g l l m l g

l g

= á ñ + + á + ñ - á ñ

- á + ñ
a a a a a a a a a

a a

pX t p m t k T t qp pq t p

t m qp pq

Tr 2

2 , 17

Btot
2{ } [ ( ) ( ) ( ) ( )

( ) ] ( )

whereα=c, h. Table 1 summarizes expressions forwork and heat using either the fullHamiltonian dynamics
or the SLN framework. All quantities appearing in the SLN column can be extracted from simulation data. The
expression forQc/h is based on equation (15), thus avoiding expressions involvingmomenta or velocities of the
reservoir. Having now access to the derived probability space representations of the crucial thermodynamic
quantities at any point during the cyclic operation, their impact on the heat engine’s efficiency and power output
can be analyzed and compared across amultitude of parametric regimes.

6.Network, efficiency, and power output

The cyclic operationof theQHengine according to a specificfinite-time coupling/de-coupling anddrivingprotocol
canbe evaluatedwith respect to its characteristic thermodynamic quantities. Figure3(a)displays the strong coupling
dependenceof thenetworkWd+WI. It turns fromnegative (networkoutput) topositive, thushighlighting the
couplingworkWI as an essential contribution in theworkbalance. The SLNapproach allows to reveal twodistinct
components, i.e. = +W W WI I I,var ,corr. Thefirst one, determinedby á ñq2 , also exists at high temperatures and close
to the adiabatic limit (equilibration), while the secondone, dependingon á + ñqp pq -correlations, becomes especially
relevant atfinite cycle times and in thedeepquantumregime. Since á + ñqp pq only contains a2 and (a†)2when
expressed in annihilation and creationoperators of correspondingFock states (while á ñq2 also contains occupations

Table 1.Work and heat expressed in terms of the unitary evolution of system and reservoir and in terms of SLNpropagation
of a periodic steady state.

Hamiltonian dynamics SLNdynamics

Work ò= á ñ¶
¶

W tdd
T H t

t0

m( )
ò w w= á ñW t t t qdd

T

0
2⎡⎣⎢ ⎤⎦⎥( ) ( )

ò= +¶

¶
¶

¶
W tdI

T H t

t

H t

t0

I h I c, ,⎡
⎣⎢

⎤
⎦⎥

( ) ( )
ò l x l x

g l l g l l

g l g l

= - + á ñ

+ + á + ñ

+ + á ñ

W t t t t t q

t t t t qp pq

t t m q

d

2

I

T

h h c c

h h h c c c

h h c c

0

2 2 2

⎡
⎣⎢

⎤
⎦⎥

{

}

( ( ) ( ) ( ) ( ))

( ( ) ( ) ( ) ( ))

( ( ) ( ))

 

 

 

Heat ò

ò

r= -

= -


Q t H

t H t H

d Tr

d ,

c h
T

c h

T
I c h c h

0 tot

i

0 ,

{ }

[ ( ) ]

 ò l x

g l g l

g l l

l x g l

= á ñ

- á ñ +

- á + ñ

+ á ñ - á ñ

Q t t t p m

t p m t k T

t t qp pq

t t q t m q

dc h

T

c h c h

c h c h c h c h c h

c h c h c h

c h c h c h c h

0

2 2 2
B

2 2

⎡
⎣⎢

⎤
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
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a†a), particularly these correlations are createdduring the isentropic strokes (parametric driving) and even survive the
contact to thermal reservoirs.One can show that >W 0I ,var dominateswhile,with increasing compression rate w

w
D

0
,

WI ,corr contributes substantiallywith a signdependingon thephaseof theqp-correlations relative to the timingof the
coupling control. By choosing t t,d I as infigure 3, one achieves <W 0I ,corr , thus counteractingWI ,var (b). In turn,
control of qp-quantumcorrelationsopensways to tune the impact ofWIon the energy balance aswill be discussed in
section8.HeatQh, see (c), follows anon-monotonousbehaviorwithγ, also a genuinequantumeffect that cannot be
capturedby standardweak coupling approaches. Its decrease beyondamaximumcanbe tracedback to enhanced
momentumfluctuations due todamping.

We are now in a position to discuss the ratio

h = -
+W W

Q
18d I

h

( )

which describes the efficiency of aQH ifWd+WI<0.
In regimeswhere η is nominally negative, the system is not aQH, butmerely a dissipator in the sense that

drivingwork adds to the energyflow fromhot to cold reservoir. The theory of the adiabaticOtto cycle and its
extension using an adiabaticity parameter predicts some regimes of pure dissipation (see equation (6) of [10]),
however, without recognizing the couplingworkWI as an essential ingredient. As seen above, its detrimental
impact can be soothed by quantum correlations, see (d).

The combined dependence on γ and thermalization adiabaticity parameter w tI0 yields a phase diagram
pointing outQHphase (η> 0) and a dissipator phase (η� 0) over a broad range of thermal couplings up to
γ/ω0∼1,figure 4. AQH is only realized if τI exceeds a certain thresholdwhich growswith increasingmedium-
reservoir coupling. Tomake thismore quantitative, progress is achieved for small compression ratios to estimate
Wd andWI as wewill show in the next section.

As expected, infigure 4 values obtained for η are always below theCurzon–Ahlborn and theCarnot
efficiencies, but yet, evenbeyondweak coupling, they do exceed η∼0.2. The couplingwork appears as an essential
ingredient also to predict for the power output the optimal cycle time and correct peakheight,figure 5(a). If it is

Figure 3.Thermodynamic quantities of the quantumOtto cycle versus thermal coupling g w0 at w b = 3c0 . Process times are
w t w t= = 5I d0 0 ,ω0T=40with compressionΔω/ω0=1 (solid), 0.5 (dashed). (a)NetworkWd+WI and (b) contributions of
couplingwork = +W W W ;I I I,var ,corr (c) absorbed heatQh; (d) efficiency η according to (18) (orange), ignoringWI (black), andwith
only WI,var included (violet); the dissipator phase is the dashed area; (b), (d) atfixed w b = 0.25h0 .
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ignored,misleadingdata are obtained.Beyond theharmonic case, i.e. for stiffer anharmonic potentials, dynamical
features discussed infigure 2(d) reduce the efficiency,figure 5(b). They have a similar impact as enhanced thermal
couplings, both having the tendency to suppress (increase)fluctuations inposition (momentum).

7. Analytic estimates for driving and couplingwork

In order to achieve a better insight into the numerical results at least in certain regimes, we start from the
formulation of the driving and the couplingwork in the SLN context as specified in table 1. The drivingwork

Figure 4.The PSS’s operating phases as aQH (h > 0) and as a dissipator (η set to 0) versusmedium-reservoir coupling and
adiabaticity parameter. Other parameters are w b = 0.5h0 , w b = 3c0 , w t w t= = 5d R0 0 .

a) b)

Figure 5. (a)Engine net output power = - + W W Td I( ) as a function of the periodT forω0ÿβc=3, γ/ω0=0.5 and time scales
τI=T/6, τd=T/12 compared to the respective output power ignoringWI (black dotted) and (b) efficiency versus γ for various
anharmonicity parametersκ; hereω0τI=ω0τd=5, w =T 400 and other parameters are as infigure 2.
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provides contributions along the isentropic strokes of length τdwith w <t 0( ) duringB→C and w >t 0( )
duringD→A. The couplingwork provides contributions within time intervals of length τI at the beginning
(l >a 0 ) and the end (l <a 0 ) of the isochoric strokes.

To estimate the above integrals we now assume the following: (i) w =t const.( ) during τd and l =t const.( )
during τI, (ii) the contribution of the variances dominates inWI and (iii)within τd the variances change linearly
forΔω/ω0=1.We then obtain

w
w t

w
w t

» á ñ W + á ñ W - á ñ W - á ñ W

» á ñ + á ñ - á ñ - á ñ

+ - - +W m q q q q

m q q q q

3

2
, 19

d
d

A D C B

d
A D C B

0 2 2 2 2

0 2 2 2 2

∣ ∣ ( )

( ) ( )





whereΩ±=3/2±(Δω/2ω0)≈3/2 and á ñ = á ñq q tX X
2 2[ ( ) ]with tX corresponding to pointX in the cycle.

The couplingwork can be approximated by

gt l» á ñ + á ñ + á ñ + á ñW m q q q q , 20I I A D C B
2 2 2 2 2( ) ( )

wherewe considered á ñ »q const.2 during switching the coupling off or on for sufficiently short τI.
Due to the general relations

á ñ > á ñ á ñ > á ñq q q qcontact to cold bath , contact to hot bath 21C D B A
2 2 2 2( ) ( ) ( )

for γ>0, onefirst concludes thatWd<0while apparentlyWI>0. Further, onefinds for the total net work

+ » á ñ + á ñ + á ñ + á ñ- +W W a q q a q q 22d I C B A D
2 2 2 2( ) ( ) ( )

with gt l t w w= a m m 2I d
2

0∣ ∣  . Now, to qualify for a heat engine, the conditionWd+WI<0 needs to be
fulfilledwhich implies

w t w g
w t w g

D -
D +

> º
á ñ + á ñ
á ñ + á ñ

R
q q

q q

2

2
23I

I

A D

C B

0

0

2 2

2 2
( )

with t w w= Dd∣ ∣ and t l t= 1I I
2 . Due to (21) one always has 0�R�1. The above relation can be easily

solved for τI to read

w t
g
w

>
D

+
-

R

R

2 1

1
24I0 ( )

as a condition on theminimal time τI consistent with heat engine operation.Qualitatively, since
w t w~ ~ DW td d( ) and l t t~ ~W t 1I I I

2( ) , for short cycle timesWI always dominates. Further, for the
parameters infigure 4, veryweak coupling gt gt, 1R I  leads to g- »R1 const.( ) and thus w t » const.;I0

for larger couplingwithmore efficient heat exchange, the γ dependence ofR is less relevant so that
w t g w~ DI0 as infigure 4.

Several other situations can now also be considered analytically.

(i) In the classical regime (high temperature) we assume quasi-equilibrium throughout the cycle with
b wá ñ =q m1A c h

2 2( ) etcwhich yields =R T Tc hcl .

(ii) In the quantum regime (lower temperatures) in quasi-equilibriumone hasR>Rcl.

(iii) For low temperatures and sufficiently large gtR to allow for states close to thermal equilibrium, the variances
in position depend onlyweakly on γ for g b p< 2 . Accordingly, the γ-dependence of the threshold of τI is
predominantly given by γ/Δω.

(iv) For ÿβcωc?1 while ÿβhωh=1 and γτR>1 to allow for approximate equilibration with wá ñ » q mA h
2 ,

w bá ñ »q m1C h h
2 2 etc, onefindsR≈ÿβhω0. For theparameters infigure 4of themain textwe thenhave

ω0τI>12γ/ω0which, for the given value ofτR, describes theminimalτI sufficiently accurate for allγ/ω0>0.1.

8. Role and control of the couplingwork

Aswe have seen above, the overall impact of the couplingwork is detrimental to the efficiency ofQH engines.
However, it can be reduced by qp-correlations if they are properly controlled. To see this in detail, we realize that
according to table 1, the couplingwork consists of the contributions = +W W WI I I,var ,corr: thefirst part which
survives the adiabatic limit is determined by the variance á ñq ;2 the second part, breaking time reversal symmetry,
vanishes for adiabatic driving and is determined by the x á ñq average and the contribution of the correlations
á + ñqp pq . The contribution WI ,corr is dominated by the part depending on the qp-correlations. It is this part
whichwewant to consider in the following inmore detail:
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ò
g

l l l l= á + ñ + á + ñW t t t qp pq t t qp pq
2

d . 25I
qp

T

h h c c
0

( ( ) ( ) ( ) ( ) ) ( )( )  

Now, following the above arguments we assume that

w
w t t

á + ñ» á + ñ

á + ñ» á + ñ + +

g

g t t

-

- + +

qp pq t qp pq t

qp pq t qp pq t

cos 2 e

cos 2 e 26

A h
t

A h I R
tI R

( )( ) ( )
( )( ) [ ( )] ( )( )

where á + ñ º á + = ñqp pq qp pq t tA A( )( ) , 0�t�τI and w w w= + D 2;h 0 thefirst (second) relation holds
for switching on (off) the hot isochore. For the cold isochore we replaceA→C and w w w w = - D 2h c 0 .
Togetherwithλα(t)=t/τIwhen the coupling is switched on, andλα=(1−t/τI)when the coupling is
switched off, this then allows to estimateWI

qp( ) from (26). Results are shown infigure 6 and exhibit an excellent
agreementwith full numerical data, in particular a scaling of the form g tµWI

qp
I∣ ∣( ) , where the sign depends

on the sign (phase) of the qp-correlations at the beginning of themedium-reservoir coupling segments. Its
dominant contribution is provided by á + ñqp pq C , i.e. after expansion and before coupling to the cold reservoir.
For the parameters chosen infigure 3, one always has á + ñ >qp pq 0C which implies <W 0I ,corr , thus
counteracting >W 0I ,var to lead to a reducedWI.

An instructive example is shown infigure 7. By extending the unitary time evolution after expansion/
compression such that the system evolves for about half a periodπ/ωα at constant frequency, the phase of the
qp-correlations atC turns frompositive to negative: couplingwork is further enhanced and the efficiency further
suppressed. By applyingmore advanced techniques, e.g. fromoptimal control, one could be able to shape the
impact of the couplingwork properly.

We note that experimentally a direct time dependentmedium-reservoir coupling as considered here, is often
difficult to implement. In recent developments for superconducting devices [59], for example, one instead uses
cavities interfacingmedium and reservoir with strong thermal contact to the respective broadband reservoir and
tunable resonance frequency. The effective spectral distribution seen by themedium is thus Lorentzianwhich
allows to continuously vary betweenweak and strong spectral overlap and thus between no andmaximal
thermal coupling. Qualitatively, this scenario is captured by ourmodel.

9. Summary and outlook

In conclusion, by simulating non-perturbatively andwithin a systematic formulation the dynamics of
quantum thermalmachineswith single degrees of freedom asworkmedium, we have obtained a complete
characterization of their properties. Themedium-reservoir boundary appears as an internal feature of the
model so that full control over themedium aswell as its thermal contact to reservoirs is possible. The example
of the four strokeOtto engine demonstrates the decisive role of the couplingwork thatmust be considered
as an integral part of the total energy balance. Its overall impact is detrimental to the efficiency ofQH engines,
however, can be reduced by qp-correlations if they are properly controlled. This sensitivity of QHengines to

Figure 6.The dominant contribution to WI
qp( ) is provided by qp-correlations at stageC of the cyclic operation, i.e. before coupling to

the cold reservoir. Its damped oscillatory pattern can be approximated by equation (26) (black crosses). Likewise, the inset shows good
qualitative agreement between numerically obtained values for WI

qp( ) (green dashed) and the prediction according to equations (25),
(26). Parameters are w b = 0.25h0 ,ω0ÿβh=3, γ/ω0=0.1; other process time scales are as in figure 3.
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changes in the driving protocol can be exploited by optimal control techniques in future devices. The presented
approach provides the required tools to follow theoretically these activities.
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Appendix. Details about the numerical implementation

The numerical solution of the dissipative SLN leads to one single trajectory of the reduced systemdensity. This is
realized bymoving to position representation using symmetric and antisymmetric coordinates, i.e.
r r= á - + ñx xr y r r,

y y

2 2
( ) ∣ ∣ . This representation allows an efficient split-operator technique. In addition to the

commonly used FFTmethod (alternating between diagonal potential and kinetic terms)we employ a third step
related to the operator q p, ,[ { ·}], which can be understood to be the generator of a re-scaling operation. For
typical parameters, e.g. parametersω0ÿβh=0.25, w b = 3c0 ,ωcut/ω0=30, γ/ω0=0.25 and characteristic
cycle time scalesω0τI=10,ω0τd=ω0τR=5,ω0T=60 up to thefirst three cycles of a periodic steady-state
takes approximately 72CPU core hours on a Intel XeonCPU (Sandy Bridge architecture). A typical number of
samples nsamp≈500; the resulting statistical errors are less than the line width or symbol size used in ourfigures.
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