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Universidad de La Frontera, Avda. Francisco Salazar 01145, Casilla 54-D Temuco, Chile
bInstitute of Theoretical Physics, School of Physical Science and Technology,
Lanzhou University, No. 222, South Tianshui Road, Lanzhou, Gansu 730000, P.R. China
cInstituto de Astrof́ısica e Ciências do Espaço, Universidade de Lisboa,
Faculdade de Ciências, Ed. C8, Campo Grande, Lisboa 1769-016, Portugal
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Abstract. The concordance model of cosmology suffers from the major theoretical problems
surrounding the observed value and recent emergence of a cosmological constant. In this pa-
per we present a novel approach, which explains more naturally its value than that based on
quantum vacuum energy, in the form of topological invariants characteristic classes, included
as Lagrange multipliers in the action. The approach draws from topological as well as dy-
namical system consideration, generating as a byproduct an effective cosmological constant.
General Relativity is recovered by canceling the torsion in a region containing the observable
Universe, which boundary constraints the invariants, thus yielding the effective cosmological
constant’s form. As that form’s denominator contains the total volume of the average black
hole, calculated from a geometrical mean on the estimated black hole mass distribution and
directly associated to the ratio of the total volume boundary of the space-time manifold and
the dominant term in its Euler characteristic. The constant’s small estimated value com-
pared to the Planck scale is therefore natural and our evaluation fits remarkably well with
the observed value.
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1 Introduction

The need for a cosmological constant, or an equivalent effect, was revived when stronger
than expected fainting in type Ia supernovae, used as standard candles, was detected [1–
3]. This was interpreted as cosmic acceleration and confirmed later from cosmic microwave
background radiation, clusters and baryon acoustic oscillation measurements [4–7].

The first common interpretation of such constant portraits it as quantum vacuum energy.
However this raises more problems, such as that from naive evaluations of the full quantum
vacuum energy, i.e. of order the Planck scale [8], compared with the Λ value extracted from
observed acceleration, offers one of the largest discrepancy in physics, coined the fine tuning
problem [9, 10].

The fine tuning problem proceeds from the dominance at early time of the Planck scale
on the quantum vacuum scale. It should have therefore given initial values for all running
constants, including the cosmological constant. Since Λ is constant, its value is naively
expected to be set from the energy conditions of the Planck era, instead of the hundred order
of magnitude smaller observed value from cosmic dynamics. Moreover, as the cosmological
constant is non-varying, it also entails the coincidence problem [11–14].

That extra problem stems from the apparently unnatural proximity between the present
epoch and the moment of emergence of the cosmological constant as dominant in the cosmic
energy density balance [15, 16]. Such surprising coincidence between values of Λ, expected
to come from the Universe evolution’s initial conditions, and today’s Universe matter energy
density content would require at least an explanation.

The standard understanding of the cosmological constant is review, e.g. in [8].

General relativity’s (GR) curved space-time can be generalised, to include torsion on
the manifold, in Einstein-Cartan theories [17–20]. Their two limiting cases for equivalent
degrees of freedom allow to recover

1. the torsion-less GR limit and

2. the curvature-less Teleparallel Equivalent to GR case [21–23].

This work focusses on the GR limit of Einstein-Cartan theories.

The Gravitational action contains further freedom in the form of boundary terms [24, 25]
and manifold topology [26–28]. We restrain here the latter with an action, built on the
Einstein-Hilbert (EH) and Vielbein-Einstein-Palatini (VEP) equivalence [29], that adds to
GR’s well known features, the spacetime topology-consistent Chern-type topological invari-
ants, as well as the cobordism.

Such approach remarkably gives rise to a topologically related term which, under certain
conditions, acts as an effective cosmological constant.

This very general action allows this paper to argue that the cosmological constant can
have a topological origin rather than being generated at the universe’s formation from quan-
tum vacuum considerations. The restriction of such action, naturally featuring torsion and an
effective cosmological constant related to topology, to the usual GR condition can be effected
by dynamical systems stability considerations. Since the resulting effective cosmological con-
stant connects to the topology of the Universe via a value we argue to be proportional to the
finite inverse average black hole volume, and no longer to the large Planck density, it renders
moot the fine tuning problem. A preliminary discussion of these results can be found in [30].
This paper presents a detailed technical account of this work.
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Topology as a source of cosmology has been considered in the works of [31] and [32].
In those papers, the topological terms are coupled trivially over closed manifolds, contrary
to our approach. This allows for the classical field equations to remain unchanged, only
affecting the quantum equations. This is obtained using the Ashtekar variables formalism,
while we keep our work at the classical level and use Einstein-Cartan formalism.

We begin by introducing the topological invariants articulation with the Vielbein-
Einstein-Palatini action in section 2. We introduce the supplementary dynamics induced
by these invariants in the action, which result, in section 3, in the effective cosmological
constant and, as a byproduct and on a practical ground, in the recovery of GR. Section 4
presents how this topological constant value can be estimated for our Universe. Finally, we
discuss and conclude our findings in section 5.

2 The model motivation and setting

In this section we briefly outline the mechanism in which the torsion-less classical gravi-
tational action inherits torsional degrees of freedom when topological terms are added. By
topological terms we mean the so called characteristic classes well defined for any 4n-manifold,
in this n = 1. This procedure will suggest the natural upgrade of the cosmological constant
term in the Einsteinian tradition of gravitational theories to a functional with degrees of
freedom related to topological information of the space-time manifold. Appendix B provides
a brief account of the formalism and overall notation.

2.1 Motivation: the finite volume space-time manifold with boundary

This subsection closely follows the material appearing in [33]. Given the structure of M as
defined in (B.16), the orthogonal decomposition Ωk (M) = Ek−1

D (M)⊕Ck+1
N (M)⊕Hk (M),

known as the Hodge decomposition, holds. Here Ek−1
D (M) is the set of exact forms of order

k, Ck+1
N (M) is the set of co-exact forms of order k and Hk (M) is the set of harmonic forms

of order k.

Furthermore, as the manifold M has a non-null boundary ∂M, the harmonic forms can
be further decomposed as Hk = Hk

D⊕Hk
co or Hk = Hk

N⊕Hk
ex, where D, N stand for Dirichlet

and Neumann, respectively, while co, ex stand for co-exact and exact, respectively. In this
setting, for any 0 ≤ k ≤ 4, the Dirichlet to Neumann operator Υ : Ωk (∂M) → Ω4−k (∂M)
is characterized as follows: given χ ∈ Ωk (∂M), the boundary value problem:

{

∆ω = 0 , d⋆ω = 0

i∗ω = χ ,
(2.1)

is solvable, where we have written ∆ : Ωk (M) → Ωk (M) for the Laplace-Beltrami operator.
The solution ω ∈ Ωk (M) is unique up to an arbitrary Dirichlet harmonic field λD ∈ Hk

D (M)
and i⋆ : Ωk (M) → Ωk (∂M) is the inclusion in the boundary operator. Therefore, the
Dirichlet to Neumann operator is the form Υ [χ] = i⋆ (⋆dω) = (−1)k+1 i⋆ (d∗ ⋆ ω), a well
defined operator which is independent of the choice of the solution ω. When particularizing
for k = 4, we have:

Proposition 2.1. If the space-time manifold M has a non-null boundary ∂M, the cosmo-
logical constant Λ is proportional to the Dirichlet to Neumann operator Υ [χ].
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Proof. The proof is a re-working of the proof appearing in [33] for an n-manifold. We know
that the space H4 (M) of harmonic fields of highest degree consists of forms Kdµ, where
K = const. It follows that the cosmological constant term in (B.3) is a harmonic form.
Then, we can write Λ

κdµ = dω, with ω a solution to the boundary value problem discussed
above. Thus, we have ⋆dω = Λ

κ , hence Υ [χ] = i⋆ (⋆dω) = Λ
κ . From here, on one side we have:

∫

M

Λ

κ
dµ =

Λ

κ

∫

M

dµ =
Λ

κ
Vol (M) ,

and on the other side, by Stokes theorem we have:
∫

∂M

i⋆ω =

∫

∂M

χ hence, Υ [χ] =
1

Vol (M)

∫

∂M

χ

where the Dirichlet to Neumann operator Υ [χ] ∈ Ω0 (∂M) is constant. Therefore, Λ =
κΥ [χ], a constant, as expected.

Furthermore, if the kernel of the operator Υ [χ] is known, lower bounds for the Betti
numbers can be obtained, which further stresses the connection between this result and the
topology of the manifold M [see 33, for further details].

This proposition enlighten us in two ways:

i. The cosmological constant might be related to topological rather than vacuum energy
considerations. Furthermore, since this result is inversely proportional to Vol (M) it
naturally favors small values for Λ, opening the possibility to alleviate or even solve
the fine tuning problem.

Indeed proposition 2.1 gives a somewhat satisfactory answer to the fine tuning problem for a
manifold with finite volume and non-trivial boundary. Here, it is understood that the order of
magnitude of the topological constant can be attributed to a relation of the Vol (M) ≫

∫

∂M χ.

ii. The cosmological constant can be understood as some type of functional of certain
fields rather than as a fixed parameter of the theory. This functional is known to be
related to the topological content of the manifold in which the theory is defined.

This last observation leads us to consider the upgrade of the cosmological constant Λ
to a cosmological functional λ̃. We expect this new quantity to also be characterized by
topological degrees of freedom such that this new functional defines a well posed variational
problem when the field equations are tackled.

Our strategy is to start from a classical gravitational action, in this case the Einstein-
Cartan presented in (B.3), and generalize it while encompassing two simultaneous points:

• Acknowledging the presence of topological degrees of freedom in the theory.

This amounts to allowing a non trivial torsion on the dynamical data of the theory.
This is basically equivalent to change the connection ω̄ab → ωab (now different from the
Levi-Civita), the curvature 2-form R̄ab → Rab (now defined by the new total connection ωab)
and the newly theorized cosmological functional Λ → λ̃.

• Allowing the theory to be supported in a compact manifold with boundary in order to
not to cancel the topological effects.
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If the standard boundary conditions δωab|∂M = δea|∂M = 0 are considered, it is suffi-
cient to add boundary counter terms at the level of the action in order for the field equations
to be well posed up to first order. This is analogous, in standard GR, to the addition of the
so called York-Gibbons-Hawkins terms at the level of the action. Regarding now this choice,
although Hadamard’s conditions for a well posed problem have not been thoroughly studied
in this case, some remarks about similar systems in the context of GR have been studied. For
instance, a flat universe cosmological solution is known to be well posed [34–36]. However,
the systematic study of this question definitely falls out of the scope of the present work.

2.2 The setting

Throughout the paper we will use the index set J = {N,P,E} with j ∈ J , so as to collect the
subscripts related to the characteristic classes Nieh-Yan, Pontryagin and Euler, respectively.
The model is finally defined by the following family of actions:

S := SG

[

ec, ωab, λ̃
]

+ ST [ec, ωab, ϕj ] + SM [Ψ] . (2.2)

The first term is the pure gravitational action:

SG

[

ec, ωab, λ̃
]

=

∫

M

1

κ

(

R
(∗)
ab ∧ Σ̂ab − λ̃dµ

)

+

∫

∂M

in

(

λ̃dµ

κ

)

, (2.3)

where ec are the tetrad, ωab is the total connection and λ̃ is the yet undefined upgraded
quantity Λ → λ̃, the cosmological functional. Here and subsequently we are inserting the
aforementioned boundary terms à la York-Gibbons-Hawkins in order to have a well posed
variation so that in : Ω4 (M) → Ω3 (∂M) is the interior product in the direction of the
outward unit normal vector field n on ∂M also known as the inclusion in the boundary
operator.

The second term in the right hand side of eq. (2.2), is the topological action:

ST [ec, ωab, ϕj ] := −
∫

M

i

κ
(ϕjCj) +

∫

∂M

i

κ
in (ϕjCj) (2.4)

(summation over j ∈ J is understood, except when indicated), where i :=
√
−1 is inserted

for later convenience. This action is composed of current-like terms, where ϕj ∈ Ω0 (M) for
j ∈ J are the coupling zero-forms, having dimensions of

[

length2
]

for j = E,P and being
dimension-less for j = N . Finally, Cj (j ∈ J) are the characteristic classes consistent with
the space-time manifold M, all of which have been defined in eqs. (B.5)–(B.7).

The last term in Eq; (2.2) stands for an explicit matter action. We are writing the spinor
fields Ψ :=

{

ψ̄, ψ
}

, with ψ̄, ψ ∈ Ω0 (M) ⊗ G with G being the set of complex Grassmann
numbers. Concretely, we have:

SM [Ψ] := −
∫

M

2

κ
LM [Ψ] +

∫

∂M

2

κ
in (LM [Ψ]) with

LM [Ψ] := Re
{

ψ̄γaDωψ
}

∧ ⋆e♭a − V (Ψ) dµ , (2.5)

i.e. basically a mass-less Dirac Lagrangian density with fermion potential V (Ψ) : Ω0 (M)⊗
G×Ω0 (M)⊗G → R. The latter takes γa matrices as being a representation of the Clifford
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algebra
{

γa, γb
}

= 2ηab (with ηab the Minkowskian metric) and ψ̄ := ψ†γ0 with ψ† being the

conjugate transpose of ψ. Spinor fields are naturally endowed with a norm |ψ|2ψ induced by

the inner product 〈ψ1, ψ2〉 := ψ̄1ψ2 ∈ C. Eq. (2.5) used the following definition for the gauge
covariant exterior derivative Dω : Ω0 (M)⊗G → Ω1 (M)⊗G:

Dωψ :=

(

d+
1

4
ωabσ

ab

)

ψ , Dωψ̄ := Dωψ (2.6)

and we have written σa1a2···ak := γ[a1 · · · γ ak], i.e. the complete anti-symmetric product of
the γa matrices.

The total action (2.2) gives the following canonical field equations in the VEP formalism
(see appendix B) for the vielbein ea and connection ωab:

δe : Ξa = −
[

R
(∗)
ab − 2λ̃

3
Σ̂
(∗)
ab

]

∧ eb − idϕN ∧ Ta , (2.7)

δω : τab = i2dϕ̂P ∧Rab − i2dϕ̂E ∧R(∗)
ab − idϕN ∧ Σ̂♭ab + dωΣ̂

(∗)
ab , (2.8)

where we have defined the re-scaled quantities:

ϕ̂E :=
ϕE

(4π)2
, ϕ̂P :=

ϕP

(4π)2
, (2.9)

and we have written the 3-form currents:

δSM
δea

:= Ξa =
2

3

[

3Re

{

ψ̄γbDωψ
}

+ V eb
]

∧ Σ̂
(∗)
ab , (2.10)

δSM
δωab

:= τab =
1

4
ψ̄σabcψ ⋆ e

c . (2.11)

Notice the non-GR terms in the field eqs. (2.7) and (2.8), i.e. the ones that are multiplied by
the coupling zero-forms and/or its exterior derivatives. These are the terms that ultimately
differentiate the current theory with that of the strict GR.

Physically, it will be shown that the couplings zero forms ϕj (j ∈ J) can be naturally
interpreted as scalar matter fields. This becomes clear once the total 2-form curvature Rab
is obtained, as its torsion related part will have terms directly dependant on ϕj with a clear
dynamical interpretation. From another point of view, if we rightly define the cosmological
functional λ̃, we can also understand the couplings ϕj in the topological action terms as
generalized Lagrange multipliers for the characteristic classes Cj . Pointing in that direction,
in order for the variation with respect to the coupling zero-forms ϕj to be well posed up to
first order, the associated field equations must read:

iδϕN
LG = CN , iδϕE

LG = CE , iδϕP
LG = CP , (2.12)

where δϕj
is the Euler-Lagrange derivative with respect to the zero-forms ϕj (j ∈ J).

However, from the definition of the gravitational action (2.3) we can only assume a func-
tional dependency of these zero-forms in the cosmological functional term. Since the spinor
fields are not explicitly interacting with any other field, we then consider the cosmological
functional λ̃ as having this role. We expect the latter to have the form:

λ̃ = λ̃ [ϕj ,Ψ] := ψ̄ λ [ϕj ] ψ (2.13)

– 6 –
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with λ [ϕj ] ∈ Ω0 (M) analytical in ϕj . This is no other than a Yukawa type of interaction
between the coupling zero-forms and the spinor fields. Hence, we can equivalently write the
set (2.12) as:

δϕj : −i δϕj
λ |ψ|2ψ dµ = Cj , j ∈ J , (2.14)

where we have used spinor norm |ψ|2ψ ∈ R
+, left open to be normalized at some point. When

the latter is combined with eq. (2.4) it allows us to write the current like terms as follows:

∫

M

i

κ
(ϕjCj) =

|ψ|2ψ
κ

(

ϕj , δϕj
λ
)

∣

∣

∣

∣

∣

j ∈ J (no summation) ,

where the round brackets are part of the L2-inner product naturally induced by the Hodge
dual operator in M (see its definition in eq. (B.17)). This is in complete analogy with the
Schwinger formalism of current terms as sources of a field theory. In other words, it is explicit
here that the gravitational part of the total action (2.2), through a mechanism in which the
cosmological functional λ̃ is central, becomes a source of the topology of the space-time
manifold M.

An interesting topological feature of the model has arisen with the presented approach,
which is illustrated in the following proposition:

Proposition 2.2. The manifold M of the gravitational theory described by the action (2.2)
is characterized by integer topological numbers nj =

∫

M
Cj, for j = E,P .

Proof. From eq. (2.14) we have:

i De Rham’s theorem allows us to interpret each Ci as diagonal elements of theH2 (M;R)
×H2 (M;R) kind, and thus, as diagonal intersection forms QM .

ii Donaldson’s theorem, regarding the QM intersection forms, ensures that the manifold
M is smooth and simply connected [26, 37].

iii We know that the manifold is oriented, as testified from the existence of the well defined
volume form dµ appearing in eq. (2.2).

Therefore, we fall into the conditions of remark B.1.

In other words, epistemologically, we can turn this last proposition around and justify
the appearance of the functional λ̃, as a way to ensure someminimum topological requirements
for our gravitational theory: smoothness, simple connected-ness and orientation.

Finally, complementing the set of field eqs. (2.7), (2.8) and (2.14), when varying the
action (2.2) with respect to the explicit matter fields we have:

δψ̄ :

[

γaDωψ − λ

4
ψ ea − 1

4
δψ̄V e

a

]

∧ ⋆e♭a = 0 ,

δψ :

[

Dωψ̄γ
a +

λ

4
ψ̄ ea +

1

4
δψV e

a

]

∧ ⋆e♭a = 0 , (2.15)

where as before we write δψ and δψ̄ the Euler-Lagrange derivatives with respect to the spinor
fields ψ and ψ̄, respectively. We notice that we can interpret the functional λ [ϕj ] as being

– 7 –
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responsible for giving mass to the spinor fields Ψ, and thus expected to be naturally greater
than zero.1

3 Obtaining a cosmological constant from topology

A thorough exposition of the detailed calculations is presented in appendix C. We outline
here the general procedure used to solve the field equations. We stress that, given the strong
non-linearities of the field equations, we opted for an approach mixing formal and heuristic
methodologies in which some physical restrictions have been made in order to obtain closed
analytical solutions.

3.1 Managing the non-linearities of the canonical field equations

Basically, due to the form of the topological action, we are allowing for the presence of torsion
in the field equations, so the VEP first order formalism becomes ideal to treat this feature.
We recall that the total connection 1-form ωab can always be written as:

ωab = ω̄ab +Ka
b ∈ Ω1 (M) ,

where ω̄ab is the torsion-less Levi-Civita connection, whileK
a
b is the torsion related contortion

1-form. The latter becomes the only responsible for the torsion 2-form as:

T a = Ka
b ∧ eb ∈ Ω2 (M) .

By means of the same connection decomposition, the total curvature 2-form can then
be written as (see appendix B.1, eq. (B.14) for details):

Rab = R̄ab +Θa
b ∈ Ω2 (M) , (3.1)

where R̄ab is the torsion-less part of the curvature, formally equivalent to that of a GR
curvature 2-form, while the term Θa

b concentrates all the contributions from the torsion
related quantities by means of the contortion Ka

b as:

Θa
b := dωK

a
b −Ka

c ∧Kc
b ∈ Ω2 (M) . (3.2)

Focusing back on the first two field eqs. (2.7) and (2.8), it can be seen that a GR-
like behavior is obtained back if the coupling zero-forms ϕj (j ∈ J) become slowly varying
functions within the torsion-less regions of space-time. The possibility of this behavior for the
coupling zero-forms is related to the existence of stability regions (see appendix D and the
references therein) for a turn around in the dynamical system defined by the field eqs. (2.7)–
(2.8), (2.12), (2.15). We can therefore expect to relate the vanishing of the torsion with
the derivatives of such a slow varying function. This can be equivalently thought of as a
contortion which is at least proportional to the derivatives of the coupling zero-forms ϕj
(j ∈ J). Consequently, this observation plus the natural decomposition of the curvature
2-form Rab (3.1), suggests a contortion 1-form:

Kab = 4i ⋆
(

dϕN ∧ Σ̂♭ab

)

∈ Ω1 (M) . (3.3)

1The fermion potential V (Ψ) turns out to be unimportant for the final calculations, so we will omit it out
of clarity in the subsequent sections.
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This contortion cancels the undesired non-linear terms appearing in the field eqs. (2.7)
and (2.8) via the torsion related part of the curvature Θab (see eq. (3.2)).

It is through Θab also that a term proportional to the inner product |dϕN |2 appears in
the field equations. When interpreted as a kinetic term, the coupling zero-form ϕN inherits
a matter field status. It is then just a matter of rearranging the action (2.2), assuming
the correctness of the contortion (3.3), so that the coupling zero-forms can be gathered in
a canonical scalar matter field action, justifying our claim on the interpretation of them as
matter fields. Moreover, after some algebra and with the help of eqs. (2.15), we obtain the
following expression for the torsion-less curvature 2-form:

R̄ab =
2
(

αψλ [ϕj ] + |dϕN |2
)

3
Σ̂♭ab ; αψ :=

|ψ|2ψ
4

∈ R .

which is formally equivalent to the analogous field equation obtained in a GR-like theory.
The last expression has the right behavior in the limiting case where torsion is turned off, as
expected.

Tackling the second field equation, we see that (2.7) only contains one of the coupling
zero form, i.e. ϕN , while in comparison (2.8) had all three ϕj (j ∈ J). Thus, in order for
the expression Θab, depending only on the coupling zero-form ϕN , to be sufficient to correct
the non-GR terms in (2.8) we should expect some dependency between the coupling zero-

forms. Moreover, when inserting the calculated total curvature Rab and its Lie dual R
(∗)
ab (see

expression C.10) into the second field equation (2.8), we obtain:

τab = dωΣ̂
(∗)
ab − 4i

3
[αψλdϕ̂E + (i2∆ϕN ) dϕ̂P ] ∧ Σ̂

(∗)
ab +

+
4i

3

[

αψλdϕ̂P − (i2∆ϕN ) dϕ̂E − 3

4
dϕN

]

∧ Σ̂♭ab+

+ 2dϕN ∧
[

(dϕ̂E ∧Kab) + (dϕ̂P ∧Kab)
(∗)
]

,

for which we naturally define the quadrature expressions:

dϕ̂E =
3

4

i2∆ϕN

(αψλ)
2 + (2∆ϕN )

2dϕN , dϕ̂P =
3

4

αψλ

(αψλ)
2 + (2∆ϕN )

2dϕN .

We are effectively writing ϕE and ϕP in terms of ϕN . These relations restore the original
eq. (2.8) into the usual generalized spin equation for the analogous GR-like theories in the
VEP formalism. The entire process then is summed up in the transformation λ [ϕj ] → λ [ϕN ].

3.2 Tackling the topological field equations

At this point, we are in position of calculating the characteristic classes either directly
from (2.12) or from the set (B.5)–(B.7). We must ensure that these two approaches are
compatible and, at the same time, we will shed some light on the characterization of the
functional λ [ϕN ].

For the Nieh-Yan characteristic class CN , those two approaches are immediately com-
patible if the expression

λ [ϕN ] = −|dϕN |2

|ψ|2ψ
+

4Λ

|ψ|2ψ
(3.4)
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is satisfied, where the second term is consistent with our assumption that the functional
is constant when torsion is turned off. Hence, we can similarly calculate directly the Euler
characteristic class CE , also completely consistent but not necessarily illustrative for our pur-
poses, as well as the Pontryagin characteristic class CP , which needs the following restriction
for compatibility:

3 (αψλ)
2 = (2∆ϕN )

2 ⇒ ∆ϕN = ±
√
3

2
αψλ . (3.5)

When combined with eq. (3.4) characteristic class, eq. (3.5) yields the second characterization
for the functional λ [ϕN ] as:

δ ln |λ|
δϕN

=

√
3

4
⇒ λ =

4Λ

|ψ|2ψ
exp

(

±
√
3

4
ϕN

)

, (3.6)

where the amplitude of the exponential function has been normalised coherently with (3.4).
If we postulate dynamical stability, then the kinetic term associated to the zero-form ϕN
should behave as a Lyapunov function and we obtain the following expression:

∣

∣

∣

∣

dϕN
4

∣

∣

∣

∣

2

= Λ

{

1− exp

(

−
√
3

4
|ϕN |

)}

,

which can be used to characterize the GR-like regions of the space-time manifold M, via
the condition dϕN = 0, as equivalent to ϕN = 0. We have identified this region as the
submanifold N ⊆ M.

The exact form for the coupling zero-form ϕN must be a result of solving the boundary
value problem stated in proposition C.3, which is out of the scope of this paper.

3.3 The cosmological constant

Calculating now the topological numbers, we obtain:

i) the Nieh-Yan number nN = 0, from eq. (C.15). This might be considered as the
model’s partial answer to the absence of global manifestation of a physical quantity
that accounts for presence of torsion in the observation. In other words, the model
gives no hint of torsion, neither locally, in the GR-like regions, nor globally, since nY
is exactly null.

ii) the Pontryagin number nP = 0, from eq. (C.18). Physically, this prevents the space-
time manifold M to have an orientation reversing diffeomorphism [26]. However this
also prevents the CPT type of symmetry expected from the quantum substructure. At
the same time, having a non-zero Pontryagin number means that M cannot be the
boundary of an oriented compact higher dimensional manifold [26].

iii) the Euler number:

nE = − 16Λ2

3 (4π)2
∥

∥u2ϕ̂N

∥

∥

2

L2 ; uϕ̂N
= exp

(

−
√
3

4
|ϕN |

)

, (3.7)
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from eq. (C.17), which is finite by topology since by construction nE ∈ Z (see theo-
rem B.1). Considering that nE can be written as (see section C.5):

nE = −2k2Eb3 , (3.8)

where we have defined

k2E := 1− 1 + b

b3
. 1 ; (3.9)

here 2b is the number of 2-punctures and b3 is the number of 3-punctures in M, that
is the number of 2- and 3- dimensional holes in M. Since we have not observed 2-
dimensional topological defects but black holes, which induce surface holes in space
slices, i.e. 3-dimensional holes in space-time, are pervasive in observation, we claim
b3 should dominate for any sensible space-time manifold M, and interpret it to be
essentially the number of black holes in the Universe.

We thus obtain from eq. (3.7) the exact result:

Λ2 =
3 (4π)2 k2Eb3

8
∥

∥

∥
u2ϕ̂N

∥

∥

∥

2

L2

, (3.10)

for which we can give the estimate (see also the discussion in section C.5):

0 ≤
∥

∥u2ϕ̂N

∥

∥

2

L2 ≃ Vol (∂N )

C2
<∞ (3.11)

where C2 is the Cheeger or isoperimetric constant [38] with dimensions of [length]. It has
been calculated in certain specific cases. Finally, eq. (C.35), combined with (3.10), (C.24)
and (C.36) we have the topological cosmological constant estimate :

Λ ≈ 2π kE C
〈

2
3Vol (∂M)

〉
1
2

. (3.12)

4 Topological cosmological constant evaluation

The resulting expression (3.12) for the topological value of the cosmological constant can be
then confronted with its observed value. To evaluate it, we need to consider the three key
components:

1. From (3.8), we have that kE =
√

− nE

2b3
, the ratio of the Euler number to what we have

interpreted as the number of black holes (BHs) in the manifold (b3 = NBH). Since
we argue that for any sensible space-time, b3 should dominate the other terms, we
take kE ≈ 1,

2. C, the isoperimetric or Cheeger constant, measures the ratio between the 3-surface of
boundary and the 4-volume of the bulk of the spacetime considered, which is generally
unknown but has been evaluated in some cases [39, 40] to be of order ∼ 101,

3. 〈Vol (∂M)〉, the average volume of the boundary of the space-time.

We shall evaluate it in what follows. This detailed evaluation is presented in appendix A.
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4.1 Average boundary volume

From the assumption on b3, the evaluation of the space-time boundary follows from assuming

1. the boundary is made of BHs,

2. the hypersurface of the boundary is the sum of all their outer horizons. These are
approximated by their Schwarzschild horizons, neglecting Kerr horizons deformations
and merger history variations,

3. the distribution of BH in the Universe is well approximated by the observed distribution
(on our past lightcone),

4. the resulting BH average volume can be approximated by the volume of the average
BH. Given that the available distribution concerns BH masses, we used the volume of
the average BH mass rather than an average volume which distribution we have no
access at all.

We evaluate the average BH volume by first getting the volume for a given mass, then using
knowledge of the Universe’s BH distribution to evaluate the average BH mass. The resulting
volume of the average BH is then taken as BH average volume.

4.1.1 Volume of a given BH

The total volume of the boundary of a BH of given massM until its evaporation is evaluated
considering it appears at creation with initial mass M and evaporates through Hawking
radiation [e.g. 41, 42]. The formation phase is neglected since its dynamical time is expected
to be considerably much less than the formation time, and a simple isolated Schwarzschild
BH is considered. The resulting volume read as

VolBH (M) =1.96× 1087
(

M

M⊙

)5

m3. (4.1)

4.1.2 Evaluation of the average BH mass

We are limited by our present knowledge of the BH mass distribution. We chose to evaluate
it using refs. [43–46]. We used those references to evaluate averages and variances for the
masses of Stellar made, Primordial, Intermediate mass and Super Massive BHs (SMBHs).
Despite being aware of the limits on knowledge about the BH population, we resolved to treat
available information as informed views and indications on it and present the information we
were able to extract as signs of the potential of the model. From the theoretical figure of [45]
(figure 7, indication of shape and proportions), we expect the BH distribution to present 4
peaks: Stellar BHs (SBHs), Primordial BHs (PBHs), Intermediate mass BHs (IMBHs) and
Super Massive BHs (SMBHs). Figure 10 of [44] evaluates the peak of SMBHs, while figures 2
and 6 of [43] assesses astrophysical BHs from gravitational waves (GW), and can be combined
with figure 1 from the theoretical study of [46] to evaluate the peak of SBHs.

The SBHs part of the distribution can proceed from fitting both figure 1 from [46] and
figure 6 of [43], with a power law distribution. Then, taking their geometrical mean while
variance is evaluated from their maximum variations for both standard deviations, yields an

evaluation with standard deviation as MS = 101.09
+0.27
−0.48 .
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The SMBHs distribution can be assessed with figure 10 of [44] as it appears as a dou-
ble power law. An evaluation of that distribution mean and variance for SMBHs provides

MSM = 1011.69
+0.20
−0.39 .

Since knowledge for the two remaining peaks does not exceed that presented in figure 7
of [45], we used it as indication of the relative peak heights and standard deviations of
their Gaußian shapes, since the mass axis is providing numerical values, to obtain estimates

for the remaining peaks for Primordial and Intermediate mass BH, MP = 101.96
+0.14
−0.21M⊙ and

MI = 104.19
+0.14
−0.21M⊙. We are well aware that these estimates are not based on strict modeling

nor observations but, since no possibility was given to evaluate the errors on this method, we
considered the variances obtained as lower estimates of errors and continued to treat them
as mere variances.

As those peaks span several orders of magnitude in mass, we estimated the mean mass
from these evaluations by combining them together in a weighted geometric mean. Putting
together those evaluations with a geometrical weighted average and conservative treatment

of variance yields 〈M〉 =
(

M1.63
S M2.58

P MIM
1.32
SM

)
1

6.53 , an estimate of the average BH mass

〈MBH〉 ∼104.04
+0.49
−0.61M⊙. (4.2)

4.1.3 Boundary volume

Putting together the average mass estimate (4.2) into the BH boundary volume (4.1), one
gets the estimate for the Universe’s boundary volume

Vol (∂M) ∼NBH10
107.5+2.5

−3.1 m3. (4.3)

4.2 Topological cosmological constant

Combining the expression (3.12) with the evaluation of the average volume through the
boundary volume (4.3), we get the final result

Λ ≈ 10−52.9+1.5
−1.3 kEC, (4.4)

which can be further approximated using kE ≈ 1 into

Λ ≈ 10−52.9+1.5
−1.3 C. (4.5)

4.2.1 Confrontation with observed cosmological constant

From Planck observations [47], we currently evaluate ΛO = 10−51.08±0.01m−2. In the case of
a 4-manifold with null sectional curvature, refs. [39, 40] evaluated the isoperimetric constant
C = 11.8. Using it as an evaluation for the topological cosmological constant one obtains

Λ ≈ 10−51.8+1.5
−1.3 m−2, (4.6)

which is compatible with the observed value. The topology of the Universe can therefore be
considered as a serious candidate for the cosmological constant, without raising the usual
cosmological constant fine tuning problem.

We are inclined to believe that since our result is mostly of topological origin it shouldn’t
be affected substantially by quantum fluctuations in the vacuum. But this is a study that
escapes the scope of the present paper.
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4.2.2 Evaluation of the Universe isoperimetric constant

Since the isoperimetric constant of the Universe remains unknown, although its order of
magnitude is expected in the range of ≈ 10, this evaluation (4.5) through the average BH
mass can be combined with cosmological constant observations [47] to appraise its actual
value, and therefore characterise the topology of the Universe with

C = 101.82
+1.31
−1.51 . (4.7)

5 Conclusion

In this work, we have discussed the application to the cosmological constant problem of
the topological invariants examined in [48], introduced as Lagrange multipliers, that are
compatible with GR for cosmological manifolds. At the level of the Einstein-Hilbert action,
this results in the emergence of a topological effective cosmological constant from the Euler
number. To do so we restricted an Einstein-Cartan theory to solutions with GR-like behavior
at the level of the field equations, a sufficient but not necessary condition to recover GR. As
we linked the torsion to the topological invariants, the extremely strong attractor behaviour
of the invariant solutions, fixing the manifold topology, allows to consider gravity as GR for
most of the observable Universe.

The resulting effective topological cosmological constant (TCC), assuming the bare
constant is set to zero by symmetry considerations, can then be computed as founded on the
inverse square root of the volume of the manifold boundary, the volume of all black holes
in the Universe history, and therefore yields an evaluation, that carries the caveats of our
current knowledge on BH distribution in the universe, encompassing the observed value of the
cosmological constant [4–7, 47]. That value can then be considered seriously as sourced by
the topology of the Universe, in particular its Euler number. This also solves the fine tuning
problem of the cosmological constant [9, 10], since the inverse square root of the volume
of the boundary of the Universe is quite naturally much smaller than the Planck density,
and links the coincidence problem with the distribution of BHs in the Universe. Moreover,
we used the observed value of the cosmological constant, combined with our evaluation, to
provide a first evaluation of the isoperimetric constant C2 of the Universe, that is the ratio of
the compact volume domain over its boundary hypersurface volume. In light of these results,
we argue that the dynamical coupling zero-forms act as a kind of topological quintessence
field, effecting the accelerated expansion of the Universe to comply with its BH boundary.

Concerning the behavior of our results in a quantum setting, particularly the robustness
of the cosmological constant (4.6) under quantum fluctuations of the vacuum, more studies
must be carried out. We leave these questions open for future work.

As this result proceeds from BH distribution evaluation that involved GW input, we
can be confident that future GW detections and other improvement in our understanding
of the BH population should improve our determination of the TCC and of the Universe’s
isoperimetric constant. A dynamic theory of the topology of the universe in the line of
emerging geometry [49–52] should provide the framework for understanding this choice of C2

and perhaps for solving as well the coincidence problem [11–14] by producing a mechanism
of selection for the Betti numbers of the space-time manifold.
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A Black Hole boundary of the universe

Since we have made the physically reasonable assumption that a cosmological space-time
boundary should be identified mostly with its 3-punctures (the third Betti number b3 (M)),
i.e. the number of singularities it contains. These are, in turn, essentially the number of black
holes (NBH, where BH stands for black hole from now on). Thus, we have the approximation:

b3 (M) ≃ NBH . (A.1)

Hence, the estimation of the boundary of the universe’s manifold can be obtained sys-
tematizing in the following way:

1. the boundary is mostly made of BHs,

2. the hypersurface of the boundary is made of the sum for all BH of their integrated
horizon surface, this is:

Vol (∂M) =
∑

BH

∫

BH life
dτ4πR2

Sch, (A.2)

3. the third betti number b3, thought of as the number of 3-punctures in the manifold, is
basically equal to the number of BH: b3 = NBH (see eq. (C.32))

We can then deduce the average boundary volume factor to follow from

〈Vol (∂M)〉 = 1

NBH ∼ b3

∑

BH

∫

BH life
dτ4πR2

Sch ≃
∫

〈BH〉 life
dτ4πR2

Sch. (A.3)

Thus, such average represents the volume enclosed by the horizon of an average mass
BH, since its manifold causally disconnected interior can be considered as not part of the
Universe.

We will start by calculating a given BH volume as a function of its mass and then apply
it to the average BH mass. To simplify, we take a Schwarzschild BH, neglect its collapse time
and integrate its horizon over the time it needs to decay through Hawking radiation.

A.1 BH volume

As can be seen in [42, p418], Hawking radiation leads to BH evaporation in a finite time
estimated as

τBH =

(

M

M⊙

)3

1071 s ⇒ cτBH = 3

(

M

M⊙

)3

1079m, (A.4)

so the surface of the boundary from a BH of creation mass M is of order its surface SBH

times its development till evaporation cτBH. The surface being evaluated, approximating the
BH to a Schwarzschild one, with the Schwarzschild radius

rS =2
GM

c2
, (A.5)
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we can find it, the solar mass Schwarzschild radius being

rS⊙ =2
GM⊙
c2

= 2950m, (A.6)

in the form

SBH = 4πr2S = 4πr2S⊙

(

M

M⊙

)2

= 1.09× 108
(

M

M⊙

)2

m2,

and thus estimate the order of magnitude of the volume of the boundary from one BH as

V = SBH × cτBH = 3.28× 1087
(

M

M⊙

)5

m3. (A.7)

Now, as can be seen in [41, p412], this estimate comes from

dM

dτ
∝ − 1

M2
= − 1

CM2
⇔ cdτBH =− cCM2dM. (A.8)

Since the time estimate is given by the integral

τBH =

∫ 0

M

(

−CM2
)

dM =
C

3
M3 ⇒ C =

3× 1071

M3
⊙

, (A.9)

we can then evaluate the total actual volume of the boundary from one BH as

V =

∫ τf

τi

SBH × cdτBH =

∫ 0

M

(

−SBHc
3× 1071M2

M3
⊙

)

dM

=

∫ M

0
9.81× 1087

M4

M5
⊙
dM = 1.96× 1087

(

M

M⊙

)5

m3. (A.10)

A.2 Average BH

Examining the theoretical figure of [45] (figure 7, indication of shape and proportions), fig-
ure 10 of [44], for Super Massive BHs (SMBHs), figures 2 and 6 of [43] for astrophysical BHs
from gravitational waves (GW), and from [46] the figures can be used to evaluate a typical
average BH.

Figure 1 from the theoretical study of [46], combined with the prediction on GW de-
tection from [43], figure 6, allow an evaluation of the stellar made BH distribution by fitting
both with a power law distribution and taking their geometrical mean while variance is eval-
uated from their maximum variations for both standard deviations. The evaluation yields

MS = 101.09
+0.27
−0.48 . Figure 10 of [44] yields the mean and variance evaluation of that distribu-

tion for SMBHs, and, combined with figure 7 from [45], allows for an evaluation of the remain-

ing peaks for Primordial and Intermediate mass BH. The results give MSM = 1011.69
+0.20
−0.39 ,

MP = 101.96
+0.14
−0.21M⊙ and MI = 104.19

+0.14
−0.21M⊙. Putting all these evaluations together in a

weighted geometric mean, 〈M〉 =
(

M1.63
S M2.58

P MIM
1.32
SM

)
1

6.53 , allows one to estimate the aver-
age and standard deviation-generated variances of the typical BH mass, estimating variances
with propagation and uncertainty on our evaluations,

〈MBH〉 ∼104.04
+0.49
−0.61M⊙ (A.11)

and use it to evaluate the corresponding value of the topological cosmological constant
from eq. (C.37).
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A.3 Topological cosmological constant

Combining eqs. (A.11) and (A.10) one gets the average boundary volume

〈Vol (∂M)〉 ∼ 1.96× 1087
(

104.04
+0.49
−0.61

)5
m3 ∼ 10107.5

+2.5
−3.1 m3, (A.12)

which in turns yields the topological cosmological constant from eq. (C.37), using kE ≈ 1,

Λ ≈ 10−52.9+1.5
−1.3 C . (A.13)

It seems that the isoperimetric constant C is in the order of ∼ 101 See for instance [39, 40]
with a calculated C = 11.8 for a 4-manifold with null sectional curvature.2 Then:

Λ ≈ 10−51.8+1.5
−1.3 m−2 (A.14)

which is compatible with the value

ΛO = (4.24± 0.11)× 10−66eV 2 =
(

1.97× 10−7
)−2

(4.24± 0.11)× 10−66m−2

= (8.35± 0.22)× 10−52m−2 = 10−52+0.92±0.01m−2 = 10−51.08±0.01m−2 (A.15)

observed [e.g. 47]. This allows us to conclude that topology can explain the order of magni-
tude and value of the cosmological constant.

As C is actually unknown for our Universe, the topological evaluation of the cosmological
constant (A.13) can be combined with observations from [47] to obtain its measurement: our
Universe’s topology can be characterised with its isoperimetric constant

C = 101.82
+1.31
−1.51 . (A.16)

B Formalism overview

For the following sections and appendices let Ωk (M) be the space of smooth complex exterior
differential forms of degree k over a 4-manifold M and Ωk (M)∗ its dual. Let Ω (M) =
⊕4
k=0Ω

k (M) its graded algebra. The usual operators on Ω (M) are well defined:

Exterior derivative
the differential d : Ωk (M) → Ωk+1 (M) with 0 ≤ k ≤ 3,

Exterior co-derivative
the co-differential d∗ : Ωk (M) → Ωk−1 (M) with 1 ≤ k ≤ 4 and

Hodge dual
the dual ⋆ : Ωk (M) → Ω4−k (M) with 0 ≤ k ≤ 4.

2The calculation goes as follows: C =
{

23 · 4π
3

} 1
2 · (2 · ω4)

−
1
8 ≃ 11.8, where ω4 is the volume of the four

dimensional unit sphere.
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ea ∈ Ω1 (M) 1-form frame basis

(or vierbien)

ea ∈ Ω1 (M)∗ ≃ T (M) 1-vectors frame basis

(or dual vierbein)

gab := g (ea, eb) ∈ Ω0 (M) metric tensor

components

Σ̂ab := 1
2e
a ∧ eb ∈ Ω2 (M) Palatini 2-form

(Normalized)

dµ := 1
3 Σ̂

ab ∧ Σ̂
(∗)
ab ∈ Ω4 (M) the volume 4-form

(⋆ (1) := dµ)

ω̄ab ∈ Ω1 (M) the connection 1-form

(Levi-Civita)

Table 1. VEP geometrical elements.

B.1 Vielbein-Einstein-Palatini (VEP) formalism

The standard General Relativity (GR) is derived from the Einstein-Hilbert action, expressed
in terms of the metric and the Ricci tensor. However, the vacuum GR can equivalently
proceed from the Vielbein-Einstein-Palatini (VEP) action [29]. The field equations are then
obtained through the Einstein-Cartan formalism, for which the basic geometrical ontologies
are shown in table 1.3

In Einstein-Cartan formalism, the curvature 2-form R̄ab ∈ Ω2 (M) and the torsion 2-
form T̄ a ∈ Ω2 (M) are defined as:

R̄ab := dω̄ab + ω̄ac ∧ ω̄cb , (B.1)

T̄ a := dω̄e
a = dea + ω̄ab ∧ eb , (B.2)

where dω̄ denotes the exterior covariant derivative with respect to the connection 1-form
ω̄a b. The field equations are obtained after the variations of the following gravitational
action, defined over a closed manifold M (i.e. ∂M = ∅):

SG[e
c, ω̄ab,Λ] :=

∫

M

1

κ
LG =

∫

M

1

κ

(

R̄
(∗)
ab ∧ Σ̂ab − Λdµ

)

∣

∣

∣

∣

∣

∣

LG ∈ Ω4 (M) , (B.3)

by considering the connection ω̄ab and the vierbein4 ea as independent. In the latter, κ =
8πGc−4 is the Gravitation constant and Λ is a cosmological constant-type term. At this
point, it can take any value. Later on it can describe the source for accelerated expansion.
Variation of (B.3) with respect to the vierbein (δea) gives the Einstein’s field equations,
while the variation with respect to the connection (δω̄ab) gives the null torsion condition.

3We are here introducing the notation A
(∗)
ab := 1

2
ǫabcdA

cd for the Lie dual acting over any Acd
∈ Ω (M)

with two spin indices c, d.
4Recall that a vielbein frame, for an n-dimensional manifoldM designate ea either as vielbein (viel: german,

many) in any dimension, or vierbein (vier: german, four), or tetrad, in the n = 4 case.
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The last field equation, particularly useful, sets the connection to be the Levi-Civita through
the relation:

ω̄a b = −1

2

[

ia
(

de♭b

)

− ib (de
a) + ia b

(

de♭c

)

ec
]

, (B.4)

where ia := iea : Ωk (M) → Ωk−1 (M) is the slant, interior product or contraction with respect
to the dual basis ea. By abuse of notation we are also writing the analogous operation
induced by the metric as ia := g−1

ab ib := gabib. We have also used the so called musical
isomorphisms between differential forms and tangent vectors ♭ : Ωk (M)∗ → Ωk (M) and
♯ : Ωk (M) → Ωk (M)∗.

The action (B.3) is usually understood as mostly a formal device to obtain the local
field equations. We aim to extend this formalism in two ways:

a) We allow for the manifold to be compact but not necessarily closed. We will denote
this change by M 7→ M with a non trivial boundary ∂M 6= ∅.;

b) We need this modified action to define well posed variational expressions. We mainly
understand this well posed-ness naively as a physically sound and unambiguously de-
fined field equations;

It can be easily proven that the first term in the action (B.3) does not contribute with
boundary terms. However, the second must be taken carefully.

B.2 Characteristic classes and some topology

Characteristic classes can be described as global invariants that measure the deviation of a
local product structure from a global product structure. On an oriented space-time manifold
M taken as a compact 4-manifold, the characteristic classes of the tangent bundle available
and consistent with the space-time topology are [26–28, 53–57]:

The Pontryagin class
CP := p1 (TM) ∈ H4 (M;Z) ≃ Z,

The Euler class
CE := e (TM) ∈ H4 (M;Z) ≃ Z, and

The Chern class
CN := c2 (TM) ∈ H4 (M;Z) (Nieh-Yan).

They can be written as exact differentials of 3-forms, or equivalently as the 4-forms:

CP =
1

8π2
d

(

ωab ∧
[

Rba −
1

3
ωbc ∧ ωca

])

=
1

8π2
Rab ∧Rba , (B.5)

CE =
1

16π2
d

(

ǫabdcω
ab ∧

[

Rcd − 1

3
ωcf ∧ ωfd

])

=
1

8π2
Rab ∧R(∗)

ba , (B.6)

CN = d (ea ∧ Ta) = T a ∧ Ta −Rab ∧ Σab , (B.7)

respectively, where we have raised and lowered indices by means of the metric. While the
first two classes are dimensionless and only involve the connection, CN has dimensions of
[

length2
]

and depends explicitly on the torsion and, is thus null in the absence of it.
The following is an important standard result that we give without proof but will be

used in the subsequent appendices:
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Theorem B.1. Denote the integration of the characteristic densities by nj :=
∫

MCj, for
any simply connected oriented smooth 4-manifold, nj ∈ Z (for j = E,P ) [26, 37].

Remark B.2. Since we are allowing Ω (M) to be the graded algebra of smooth complex
exterior differential forms, we are forced to modify the last result to read:

nj = Re

∫

M

Cj ∈ Z ,with j ∈ J , (B.8)

which we subsequently call the topological numbers.

We also provide here the informal definition of the nth Betti numbers of a manifold M,
which are the rank of the nth homology group Hn (M;R). This is:

bn := dim (Hn (M;R)) , n = 0, 1, · · · , dimM . (B.9)

These are also topological invariants of M and, intuitively, they represents the number of
n-dimensional punctures or holes on a topological space.

B.3 Contortion and the first order formalism

When the characteristic classes are included in the action, their presence will allow for a
theory of gravity with non-null torsion. Furthermore, since torsion becomes non trivial when
considering the above topological terms, we make use of the first order formalism [58–64] to
take its effects into account. Here, the contribution from the new terms added at the level
of the action results in a second term added to the Levi-Civita connection. Thus, the new
connection 1-form and torsion yield:

ωab := ω̄ab +Ka
b ∈ Ω1 (M) , (B.10)

dωe
a := T a = Ka

b ∧ eb ∈ Ω2 (M) , (B.11)

where Ka
b is known as the contortion 1-form, which in turn can be inverted using the slant

product to write:

Ka
b = −1

2
{ia (Tb)− ib (T

a)− ia b (Tc) ∧ ec} . (B.12)

In this sense, the contortion Ka
b is responsible for the appearance of torsion T a. Simi-

larly, the curvature 2-form can be written in the following way

Rab = R̄ab +Θa
b ∈ Ω2 (M) , (B.13)

where eqs. (B.1) and (B.10) have been used and the term

Θa
b := dωK

a
b −Ka

c ∧Kc
b ∈ Ω2 (M) , (B.14)

is the contortion related part of the total curvature. To complete the picture, the Bianchi
identities

dωT
a = Rab ∧ eb , dωR

a
b = 0 , (B.15)

hold for any Rab and T
a.

The first order formalism then assumes this new connection 1-form ωab as well as the
vierbein ea to be independent quantities. The independent variation of the latter yield the
field equations of the theory.
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B.4 Further notation and terminology

Since we have assumed that our space-time manifold M is compact but not closed, i.e.
with a non-trivial boundary ∂M 6= ∅. We begin by recalling that, given the Hodge dual5

⋆ : Ωk (M) → Ωn−k (M), the operations (s = −1)

⋆⋆ = (−1)k (n−k) s , ⋆d⋆ = (−1)k sd⋆ , ⋆d = (−1)k+1 sd⋆ on Ωk (M) , (B.16)

are well defined. Therefore, the L2-inner product induced by the Hodge dual for all α, β ∈
Ωk (M) is naturally defined in the following way:

(α, β) =

∫

M

α ∧ ⋆β =

∫

M

〈α, β〉 dµ , (B.17)

while the L2-norm in M will be written as:

‖α‖2L2 = (α, α) =

∫

M

〈α, α〉 dµ , (B.18)

where, the scalar product 〈·, ·〉 : Ω1 (M) × Ω1 (M) → C is defined to be the tetrad metric
gab :=

〈

ea, eb
〉

for the basis, taken to be skew-symmetric as usual and can be naturally
extended to n-forms by linearity. Hence, for any two 1-forms α = αae

a, β = βbe
b ∈ Ω1 (M),

we then have:

〈α, β〉 = 〈β, α〉∗ = gabαaβb , (B.19)

with (·)∗ : Ω0 (M) → Ω0 (M) being the complex conjugate operation. This naturally leads
us to consider the following metric compatibility conditions:

gabgab = δab and dω (gab) = 0 , (B.20)

allowing us the rising and lowering of spin indices.
Under the same context, the Lie derivative over differential forms is defined as usual:

Laω := iadω + diaω , ω ∈ Ω (M) (B.21)

while, induced by the metric, we can also define:

Laω := gabLbω , ω ∈ Ω (M) . (B.22)

On the other hand, we will also refer to the following definition in order to obtain some
analytic solutions for the curvature:

Definition B.3 (Einstein-type symmetry). A Πab ∈ Ω2 (M) such that Πab = − ⋆Π
(∗)
ab is

called Einstein-type 2-form.

Hence, according to the latter, the following immediate results follow:

Remark B.4. The forms uΣ̂♭ab and vΣ̂
(∗)
ab , with u, v ∈ Ω0 (M) are Einstein-type 2-forms.6

5The hodge dual operator is defined over the veirbein basis as ⋆ (ea1 ∧ · · · ∧ ean) := 1
(4−n)!

ǫ
a1···an

a
n+1···a4

· ean+1 ∧ · · · e4 and it extends to the entire space Ω (M) by linearity.
6In fact, for u = v = Λ, the cosmological constant, these solutions are the so called topological instantons

in a space-time manifold M homeotopic to S4 [56, 65].
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C The solution

In this section we focus on finding a consistent solution of the field eqs. (2.7)–(2.12). We
recall the following facts: since the space-time manifold M is assumed to be compact, but
closed, the 0-forms ϕi coupled to the Ci (see eqs. (B.5)–(B.7)), are necessarily bounded.

Summarizing the previous discussions, to allow the manifold M to be compact, but not
necessarily closed, requires the presence of boundary terms at the level of the action. Such
requirement acts as the so called York-Gibbons-Hawking terms in the case of the Einstein-
Hilbert formalism [25], and ensures the well posed-ness of the field equations.

We can justify these boundary terms:

a) from an observational point of view, several astronomical physical objects are described
as space-time singularities,

b) from a theoretical perspective, one can isolate singular regions with closed hyper-
surfaces on which the boundary conditions of physical observables are well behaved.

The latter procedure effectively defines a non-trivial manifold boundary ∂M even if the
volume of the manifold Vol (M) is taken to be infinite.

C.1 An ad-hoc contortion

We begin by clarifying how GR could be recovered from the model presented in eq. (2.2). A
null contortion is a sufficient condition to recover a GR-like behavior and absence of torsion,
as eq. (B.12) defines a one-to-one correspondence between the torsion and contortion. More
concretely, T a = 0 iff Ka

b = 0. Hence, the connection 1-form ωab reduces to the Levi-Civita
ω̄ab. Such constraint result in an effective GR with some further topological restrictions.
Hence, null contortion is at least a sufficient condition for a GR-type theory.

From eqs. (2.7) and (2.8), a GR-like behavior in torsion-less regions of space-time occurs
for slowly varying coupling zero-forms ϕj (j ∈ J). We expect a limiting behavior of the type:

lim
‖T‖

L2→0
dϕj := dϕj |0 = 0 ; j ∈ J , (C.1)

for the coupling zero-forms, where we have written ‖T‖L2 for the L2-norm as defined in
eq. (B.18). The absence of torsion is translated through eq. (C.1) into the vanishing of the
coupling zero-forms exterior derivatives. The sufficiency of this restriction will be apparent
below.

C.2 Solving the VEP field equations

Using the decomposition (B.13) we can write the field eq. (2.7) in the equivalent form:

Ξa = −
{

R̄
(∗)
ab − 2λ̃

3
Σ̂
(∗)
ab +Θ

(∗)
ab + idϕN ∧Kab

}

∧ eb

which allows us to keep track of the torsion related terms. Assuming the existence of solutions
for the system of field equations (2.7)–(2.8), (2.12), (2.15), our main strategy will be to find
a contortion depending on the free parameters of the system, mainly the coupling zero-forms
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ϕj (j ∈ J), so it can be inserted back in the field equations and later particularized. We thus
consider the class:

Kab ∼ ⋆
(

dϕN ∧
[

α Σ̂♭ab + β Σ̂
(∗)
ab

])

, α, β ∈ C

which profiles as a family of possible candidates for the following reasons: a) it can be shown
to be consistent with eq. (2.7) and b) it does not break the symmetries of the field equations,
especially the Einstein-type (see definition B.3). Although we have not proved the non
existence of a solution for a general combination 0 6= α, β ∈ C, it seems that considering both
parameters introduce non-linear terms by means of calculating the torsion related part of
the curvature 2-form Θab that compromise the possibility of obtaining the right torsion-less
behavior for eq. (2.8). Furthermore, a simple heuristic condition such as eq. (C.1) for the
coupling zero-forms profiles is not sufficient to counter balance these non-linearities. However,
the subclass of contortions with β = 0 does. In fact, we can conveniently choose α = 4i to
write explicitly:

Ka
b = − i

3
ǫa c
· b · dLc (ϕN ) ed ∈ Ω1 (M) , (C.2)

where the torsion can be easily obtained by using eq. (B.11) to yield:

T a =
i

3
⋆ (dϕN ∧ ea) ∈ Ω2 (M) . (C.3)

Remark C.1. From the last expression, the restriction expressed in (C.1) is a necessary and
sufficient condition for the null torsion.

Continuing, by means of the following result:

dωLa (ϕN ) = dLa (ϕN ) = −∆ϕNe
♭
a , (C.4)

as well as with eqs. (B.14) and (C.4), we can calculate the torsion related part of the curvature
2-form and its Lie dual to yield:

Θab = idϕN ∧ 1

2
ǫ cd
ab Kcd −

4i∆ϕN
3

Σ̂
(∗)
ab − 2 |dϕN |2

3
Σ̂♭ab

and (C.5)

Θ
(∗)
ab = −idϕN ∧Kab −

4i∆ϕN
3

Σ̂♭ab −
2 |dϕN |2

3
Σ̂
(∗)
ab ,

where we are writing 〈dϕN , dϕN 〉 := |dϕN |2 for short. This is a kinetic term for the coupling
zero-form, effectively turning this elements into a matter scalar field. Thus, once inserting
the second equation from the set (C.5) back in eq. (2.7) we obtain the expression:

Ξa = −







R̄
(∗)
ab −

2
(

λ̃+ |dϕN |2
)

3
Σ̂
(∗)
ab







∧ eb , (C.6)

which is formally equivalent to the GR field equation. Here, the term proportional to the
contortion has been appropriately canceled, as wanted.
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We can further simplify this equation by means of eqs. (2.10) and (2.15), to write:

Ξa =
2

3
ξ [Ψ] Σ̂

(∗)
ab ∧ eb where ξ [Ψ] :=

3

4
λ̃+

3

8

{

ψ̄
δV [Ψ]

δψ̄
+
δV [Ψ]

δψ
ψ

}

+ V [Ψ] . (C.7)

So we can equivalently write (C.6) as:

0 =



R̄
(∗)
ab −

2
(

λ̃+ |dϕN |2 − ξ
)

3
Σ̂
(∗)
ab



 ∧ eb ,

where we have noted ξ := ξ [Ψ] for simplicity. It can be inverted by means of the lemma (B.4)
and the slant product to obtain the preliminary results for the torsion-less curvature R̄ab:

R̄ab =
2
(

λ̃+ |dϕN |2 − ξ
)

3
Σ̂♭ab , (C.8)

or, by means of eq. (C.7):

R̄ab =
2
(

αψλ [ϕN ] + |dϕN |2 − U [Ψ]
)

3
Σ̂♭ab , (C.9)

where αψ :=
|ψ|2ψ
4

and U [Ψ] :=
3

8

{

ψ̄
δV [Ψ]

δψ̄
+
δV [Ψ]

δψ
ψ

}

+ V [Ψ] .

Moving forward, by means of eqs. (B.13), (C.5) and (C.9) in its first form, we can write the
total curvature 2-form as:

Rab =
2 (αψλ− U)

3
Σ̂♭ab −

4i∆ϕN
3

Σ̂
(∗)
ab + idϕN ∧ ǫ cd

ab Kcd

2
.

For definiteness, we take V [Ψ] = 0 or equivalently U [Ψ] = 0, since this is the only term
that explicitly depends on the spinor fields. Thus the final form for the curvature 2-form and
its Lie dual are:

Rab =
2αψλ

3
Σ̂♭ab −

4i∆ϕN
3

Σ̂
(∗)
ab + idϕN ∧ ǫ cd

ab Kcd

2

and (C.10)

R
(∗)
ab =

2αψλ

3
Σ̂
(∗)
ab +

4i∆ϕN
3

Σ̂♭ab − idϕN ∧Kab .

Let us now tackle the field eq. (2.8), which by means of eq. (C.10) can be written:

τab = dωΣ̂
(∗)
ab − 4i

3
[αψλdϕ̂E + (i2∆ϕN ) dϕ̂P ] ∧ Σ̂

(∗)
ab +

+
4i

3

[

αψλdϕ̂P − (i2∆ϕN ) dϕ̂E − 3

4
dϕN

]

∧ Σ̂♭ab+

+ 2dϕN ∧
[

(dϕ̂E ∧Kab) + (dϕ̂P ∧Kab)
(∗)
]

. (C.11)
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When taking the following natural quadratures:

dϕ̂E =
3

4

i2∆ϕN

(αψλ)
2 + (2∆ϕN )

2dϕN , dϕ̂P =
3

4

αψλ

(αψλ)
2 + (2∆ϕN )

2dϕN , (C.12)

we are left with the equation:

τab = dωΣ̂
(∗)
ab . (C.13)

which is formally equivalent to the analogous GR equation with torsion.
Notice that the set (C.12) suggests that we can consider the zero-forms ϕE and ϕP as

being:

dϕj := ϕN
∗ dφj = d (φj ◦ ϕN ) for j = E,P (C.14)

where we have denoted the pullback of ϕN by ϕN
∗ and we expect φj ∈ Ω0 (M) to be a

common diffeomorphism, with j = E,P .

C.3 The topological field equations and the appearance of the cosmological
constant

Since we have obtained a torsion 2-form and a total curvature 2-form, the previous section
put us in a position to directly calculate the characteristic classes. This will allow us to solve
the rest of the field equations. Let us begin by calculating the Nieh-Yan characteristic class
CN . From eqs. (B.7) and eq. (C.2), we obtain:

CN = −2id ⋆ dϕN = −i (2∆ϕN ) dµ , (C.15)

thus, combining the previous with eq. (2.14) for j = N , we get:

|ψ|2ψ
2
δϕN

λ = ∆ϕN ⇒ λ = −|dϕN |2

|ψ|2ψ
+

4Λ

|ψ|2ψ
, (C.16)

where the last expression is obtained when considering the restriction (C.1) on the torsion-less
domain and we identify Λ as being the topological cosmological constant

Remark C.2. We remark that expression (C.16) is completely consistent with eq. (C.8). In
fact when inserting the latter we obtain:

R̄ab =
2

3
ΛΣ̂♭ab −

2

3
U [Ψ] Σ̂♭ab ,

which is analogous to GR with a cosmological constant term and a matter component 2-form:
−2

3ξ [Ψ] Σ̂♭ab.

Similarly, we can directly calculate the Euler characteristic CE using eq. (C.10) and
expression (B.6) to obtain:

(4π)2CE = −Rab ∧R(∗)
ab = −

{

2αψ
3
λΣ̂ab +

4

3
(i∆ϕN ) ⋆ Σ̂

ab+

− idϕN ∧ 1

2
ǫabcdK

cd

}

∧
{

2αψ
3
λΣ̂

(∗)
ab − 4

3
(i∆ϕN ) Σ̂

♭
ab − idϕN ∧Kab

}

= −4

3

[

(αψλ)
2 + (2∆ϕN )

2
]

dµ . (C.17)

– 25 –



J
C
A
P
0
3
(
2
0
2
0
)
0
2
0

When combining the previous equation with eq. (2.14) for j = E and eq. (C.14), we get:

4

3

[

(αψλ)
2 + (2∆ϕN )

2
]

= i

{

∂φ̂E
∂ϕN

}−1
δλ

δϕN
,

which is completely compatible if the same quantity is calculated by means of eqs. (C.16)
and (C.12).

The Pontryagin characteristic class can also be calculated by means of eqs. (B.5)
and (C.10), to yield:

(4π)2CP = −2Rab ∧Rab = −2

{

2αψ
3
λΣ̂ab +

4

3
(i∆ϕN ) ⋆ Σ̂

ab+

− idϕN ∧ 1

2
ǫabcdK

cd

}

∧
{

2αψ
3
λΣ̂♭ab +

4

3
(i∆ϕN ) Σ̂

(∗)
ab − idϕN ∧ ǫ cd

ab Kcd

2

}

= −16i

3
(αψλ) (2∆ϕN ) dµ . (C.18)

thus, when combining the previous equation with eq. (2.14) for j = P and eq. (C.14), we get:

16

3
(αψλ) (2∆ϕN ) =

{

∂φ̂P
∂ϕN

}−1
δλ

δϕN
.

When substituting eqs. (C.16) and (C.12) we obtain the restriction:

(

4 |ψ|2ψ − 1
)

(αψλ)
2 = (2∆ϕN )

2 ⇒ ∆ϕN = ±
(

|ψ|2ψ − 1

4

)
1
2

αψλ . (C.19)

When taking eqs. (C.16) and (C.9) into account, we obtain:

δ ln |λ|
δϕN

= ±
(

|ψ|2ψ − 1

4

)
1
2

αψ ⇒ λ =
4Λ

|ψ|2ψ
exp

(

±
(

|ψ|2ψ − 1

4

)
1
2

αψϕN

)

, (C.20)

where we have chosen the amplitude and the sign of the argument in the exponential function
concomitantly with that of the relation (C.16). In other words, the following expression is
then satisfied:

∣

∣

∣

∣

dϕN
4

∣

∣

∣

∣

2

= Λ

{

1− exp

(

±
(

|ψ|2ψ − 1

4

)
1
2

αψϕN

)}

, (C.21)

and thus can be used to characterize the null torsion domain (i.e. the GR regions) in a
sufficient way: dϕN = 0 ⇒ |dϕN |2 = 0 ⇔ ϕN = 0. It follows from there that the Eikonal
equation (second case)7 characterizes the GR regions coinciding with ϕN = 0. More formally,
we can define the set:

M ⊇ N := {x ∈ M | dϕN (x) = 0} , (C.22)

which by means of restriction (C.1) and remark C.1, is equivalent to the domain with compact
support in which torsion is null. Basically, this is the entire region of space-time manifold
M where gravity is equivalent to GR.

7This equation models the exact propagation of electromagnetic wave fronts, independently of the wave
lengths or wave structure (a result that follows from the theory of partial differential equations of second order
in characteristic manifolds) [66–68].
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C.4 The boundary value problem and stability

To complete the picture, let us write the rescaled quantity ϕ̂N :=
(

|ψ|2ψ − 1
4

)
1
2
αψϕN and

make the reasonable assumptions that N , as defined in eq. (C.22) is simply connected as well
and has a smooth boundary ∂N 6= ∅. It then follows that:

λ [ϕN ] = λ [0] = Λ , ∀ x ∈ N . (C.23)

We can then write:

M = N ⊔M\N (C.24)

and assume that ∂ (M\N ) = ∅.
At the same time, eq. (C.21) does not offer a physical understanding of the stable

behavior of that functional, of the kind defined in eq. (C.23). Here we can interpret the
kinetic term (C.21) as a Lyapunov-type of potential that creates a strong attractor for the
cosmological function λ. With the modification:

∣

∣

∣

∣

dϕN
4

∣

∣

∣

∣

2

= Λ

{

1− exp

(

−
(

|ψ|2ψ − 1

4

)
1
2

αψ |ϕN |
)}

, (C.25)

this potential exactly satisfies the requirements (D.1) of a Lyapunov one, where the domain
N , defined in eq. (C.22), is in this case the domain of attraction for the dynamical system
defined by the field equations (2.7)–(2.12) over the entire manifold M.

The cosmological functional characterization is then equivalent to a boundary value
problem satisfied by the scalar matter field ϕ̂N over the different regions of the M, decom-
posed as in eq. (C.24):

Proposition C.3 (Boundary value problem). The action (2.2) with restrictions (C.14)
defines

- the boundary value problem over the domains N with boundary ∂N :
{

∆ϕ̂N = 3Λ
16 , d⋆ϕ̂N

i∗N ϕ̂N = 0

where i∗N : Ωk (N ) → Ωk (∂N ), and

- the boundary value problem over the domain Mc = M\N o with boundary ∂Mc =
∂N ⊔ ∂M:

{

∆ϕ̂N = 3Λ
16 uϕ̂N

, d⋆ϕ̂N

i∗Mcϕ̂N = 0, with uϕ̂N
:= exp (− |ϕ̂N |)

where i∗Mc : Ωk (Mc) → Ωk (∂N ).

Be that as it may, a boundary value problem such as that of proposition C.3 have an
associated boundary value problem for some harmonic form that remains to be defined, in
which case techniques such as the ones discussed in [33] can be used. However, this is out of
the scope of the present paper. Instead, we will try to obtain reasonable estimates that will
help in connecting these quantities with a cosmological constant measurement.
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C.5 Estimation of the cosmological functional

The rest of the section will follow the notation from eq. (C.22) onward, uϕ̂N
:= exp (− |ϕ̂|),

with ϕ̂N =
√
3
4 ϕN to estimate the functional λ [ϕN ], we start by noticing that the Ricci

(Ric := R) scalar satisfies the following expression:

R

2
= ⋆

[

R
(∗)
ab ∧ Σ̂ab

]

= 2λ |ψ|2ψ ⇔ R = 4λ |ψ|2ψ . (C.26)

Since functions in a compact manifold are bounded, in particular λ and |ψ|2ψ, we can write:

R ∈ 16Λ · [minuϕ̂N
,max uϕ̂N

] . (C.27)

The Ricci scalar R is therefore bounded as well, which will prove to be of importance briefly.
We continue by calculating the topological numbers ni, from eq. (B.8).

i) (nN ) From eq. (C.15) we have:

nN = Re







−2i

∫

M

∆ϕNdµ







= 0 . (C.28)

We can consider this result as a somewhat partial answer to the question of why there
is no global manifestation of a physical quantity that hints for the presence of torsion
in a space-time manifold.

ii) (nP ) From eq. (C.18) we have:

nP = Re







− 16i√
3 (4π)2

∫

M

(αψλ)
2 dµ







= 0 . (C.29)

This result can be combined with the Hirzebruch signature theorem to return:

nP = 3
(

b+ − b−
)

= 0 or b+ = b− := b . (C.30)

where b+, b− are the dimensions of maximal positive H+ and negative H− subspaces
for the form in H2 (M;R) = H+ ⊕H−, respectively.

iii) (nE) Finally, from eq. (C.17) we have

nE = − 16

3 (4π2)
Re

{

∥

∥

∥
(αψλ)

2
∥

∥

∥

2

L2

}

= − 16Λ2

3 (4π)2
∥

∥u2ϕ̂N

∥

∥

2

L2 , (C.31)

independent of the norm |ψ|2.

We remark that this last quantity should be finite by topological arguments, which
includes the squared norm of u2ϕ̂N

. Furthermore, nE can be written in terms of the Betti

numbers bj := bj (M) ≥ 0 for j = 0, . . . , 4 defined in eq. (B.9), as nE :=
∑

j (−1)j bj . At
the same time, by Poincairé duality we have that bj = b4−j for j = 0, . . . , 4. Additionally,
the second Betti number b2 can be expressed as b2 := b+ + b− = 2b by means of eq. (C.30),
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and the fact that M is thought to be simply connected, and thus b0 = 1. Altogether, we can
write nE as:

nE = 2 + 2b− 2b3 = −2k2Eb3. (C.32)

where we have defined:

k2E := 1− 1 + b

b3
. 1 . (C.33)

The last estimation comes from the claim that, b3 should dominate the previous sum (C.32)
for any sensible space-time manifold M, hence its factoring out. This is based on the geo-
metrical interpretation of b3 as the number of 3-punctures in M, which allows us to basically
associate this number with the approximate number of GR singularities, i.e. black holes in
the universe. We notice that these Betti numbers are not in contradiction with a result for
non-positive Ricci curvature manifolds [69, 70]. Among other things this result was obtained
for closed manifolds, i.e. without boundary.

From the previous discussion, it follows that the exact expression for Λ can be ob-
tained as:

Λ2 =
3 (4π)2 k2Eb3

8
∥

∥

∥
u2ϕ̂N

∥

∥

∥

2

L2

, (C.34)

for which we will give some estimates. We begin by citing eq. (C.22) again, it immediately
follows that we can write the following decomposition M = N ⊔ M\N , thus:

0 ≤
∥

∥u2ϕ̂N

∥

∥

2

L2 = Vol (N ) +
∥

∥u2ϕ̂N

∥

∥

2

L2(M\N )
≃ Vol (N ) =

Vol (∂N )

C2
<∞ (C.35)

where we have used the result (C.23) and the hypothesis of the strong attractor for the
domain N and consequently a rapid decay for the function uϕ̂N

in the domain M\N . Thus
the volume Vol (N ) dominates over the complete result. The last expression is obtained
by considering N to be a 4-dimensional Cheeger minimizer so that C2 is the Cheeger or
isoperimetric constant [38], having dimensions of [length]. A less stringent result can also
be obtained via the isoperimetric inequality, valid in general for manifolds with bounded Ricci
curvature [39, 71, 72], as it is argued to be the case in eq. (C.27). The Cheeger constant is
usually not known for general manifolds, but it is proven to be determined by the dimension
of the manifold among other fixed topological parameters.

Eq. (C.35), combined with eq. (C.34) gives:

Λ ≈ 2π kE C
〈

2
3Vol (∂N )

〉
1
2

, (C.36)

where we have written:

〈Vol (∂N )〉 := 1

b3
Vol (∂N ) ,

as it was equivalently defined in eq. (A.3). Notice that, by eqs. (C.24) and (C.36) we have
the final result:

Λ ≈ 2π kE C
〈

2
3Vol (∂M)

〉
1
2

. (C.37)

– 29 –



J
C
A
P
0
3
(
2
0
2
0
)
0
2
0

D On Borel sets and Lyapunov stability of dynamical systems for mani-

folds

This section consist of a very brief and incomplete presentation of the core material com-
plementing section C.4 in order to support the interpretation of the scalar matter term as
a dynamical stabilizer. More concretely, in the case of this paper we want to interpret the
kinetic term of the scalar matter field, i.e. the term proportional to |dϕN |2 as a Lyapunov
function that becomes an attractor for the cosmological functional to drive its value towards
a constant.

We begin by defining what we mean by a dynamical system in this context. The latter is
governed by differential equations on a manifold M that have the local representation [73, 74]

ẋ(t) = f(x(t), t) , x(t0) = x0 ∈ M , t ∈ [t0, tf ] . (D.1)

where f belongs to the space of smooth time varying vector fields X (M× R). The flow
associated with f is a map Φf satisfying

Φf : [t0, tf ]× [t0, tf ]×M → M (s0, sf , x) 7→ Φf (sf , s0, x) ∈ M

and

dΦf (s, s0, x)

ds
|s=t = f (Φf (t, s0, x), t) .

Definition D.1. Suppose that S is an invariant set of the dynamical system (M,Φf ), where
Φf : [0,+∞)×M → M is a continue semi-flow. Let A the domain of attraction defined by
the semi-flow f . A continuous function V :→ R≥0 is a Lyapunov function if:

i) V (x) > 0 for all x ∈ A\S,

ii) V (x) = 0 for all x ∈ S,

iii) V is proper, that is, V −1 (B) is compact for every compact subset B of R≥0,

iv) V satisfies the condition LfV (x) = dV (f) < 0 for all x ∈ A\S and f : M → M

Let us suppose the existence of x̄, a uniformly Lyapunov stable point. This means
that, for any neighborhood Ux̄ of x̄ ∈ M and any initial parameter t0 ∈ R, there exists a
neighborhood Wx̄ of x̄, such that ∀x0 ∈ Wx̄, Φf (t, t0, x0) ∈ Ux̄, ∀ t ∈ [t0,∞). This is the
weakest stability condition we can expect for the dynamical system defined in eq. (D.1).

Now, following [75, 76], the existence of a region such asWx̄µ , or any similarly defined re-

gion due to a stronger stability condition, implies the existence of the region {fµ}−1 (Wx̄µ

)

:=
N (fµ) ⊂ M consisting of Osedelec points or regular points. Such regions have well defined
Lyapunov exponents and represents an invariant Borel set of total measure that possesses a
collection of slowly varying Borel zero-forms Rε : N (fµ) → (1,∞) , ε > 0. Note that the
argument can be reversed, due to the diffeomorphic character of the map fµ. Hence, the exis-
tence of the collection Rε of slowly varying Borel zero-forms, implies at least the existence of
an associate dynamical system who’s flow revolves around a uniform Lyapunov stable point.
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