
Loose Ends for the Exomoon Candidate Host Kepler-1625b

Alex Teachey1 , David Kipping1 , Christopher J. Burke2 , Ruth Angus3,4 , and Andrew W. Howard5
1 Department of Astronomy, Columbia University, 550 W. 120th Street, NY, USA; ateachey@astro.columbia.edu

2 Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA
3 Department of Astrophysics, American Museum of Natural History, 79th Street at Central Park West, NY, USA

4 Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, NY, USA
5 California Institute of Technology, Pasadena, CA, USA

Received 2019 April 30; revised 2019 December 9; accepted 2020 January 23; published 2020 March 5

Abstract

The claim of an exomoon candidate in the Kepler-1625b system has generated substantial discussion regarding
possible alternative explanations for the purported signal. In this work, we examine these possibilities in detail.
First, the effect of more flexible trend models is explored, and we show that sufficiently flexible models are capable
of attenuating the signal—although this is an expected byproduct of invoking such models. We also explore trend
models using x- and y-centroid positions, and show that there is no data-driven impetus to adopt such models over
temporal ones. We quantify the probability that the 500 ppm moon-like dip could be caused by a Neptune-sized
transiting planet to be <0.75%. We show that neither autocorrelation, Gaussian processes, nor a Lomb–Scargle
periodogram are able to recover a stellar rotation period, demonstrating that K1625 is a quiet star with periodic
behavior <200 ppm. Through injection and recovery tests, we find that the star does not exhibit a tendency to
introduce false-positive dip-like features above that of pure Gaussian noise. Finally, we address a recent reanalysis
by Kreidberg et al. and show that the difference in conclusions is not from differing systematics models but rather
the reduction itself. We show that their reduction exhibits, in comparison to the original analysis: (i) slightly higher
intraorbit and post-fit residual scatter, (ii) ;900 ppm larger flux offset at the visit change, (iii) ;2 times larger
y-centroid variations, and (iv) ;3.5 times stronger flux-centroid correlation coefficient. These points could be
explained by larger systematics in their reduction, potentially impacting their conclusions.

Unified Astronomy Thesaurus concepts: Natural satellites (Extrasolar) (483); Irregular natural satellites (Extrasolar)
(2025); Exoplanet detection methods (489)

1. Introduction

Last year, Teachey & Kipping (2018) (TK18 hereafter)
presented evidence for a large exomoon orbiting the gas giant
Kepler-1625b. That work was based on a joint analysis of three
transits of the planet observed with Kepler, and a fourth transit
observed with the Hubble Space Telescope (HST) in 2017
October (GO-15149; PI Teachey). The conclusion was based
on the presence of significant transiting timing variations
(TTVs) in the system, as well as a sustained dip in the star’s
brightness following planetary egress. These two lines of
evidence were interpreted as self-consistent indications that a
large moon is present in the system. A number of alternative
explanations for these two signals were explored, and the
likelihoods of these alternatives were considered. Taken
together, the exomoon hypothesis emerged as the best
explanation for the data in hand.

Since the publication of TK18, discussions with and among
colleagues have highlighted open questions and unresolved
issues emerging from the analysis. In this work, we take the
opportunity to address some of these points and present an
update on the prospects of confirming or rejecting the exomoon
hypothesis for Kepler-1625b.

This paper is structured as follows. In Section 2, we explore
other systematic models to account for the long-term trend seen
in the TK18 light curve and the effects they have on the
interpretation. In Section 3, we address differences between our
work and that of another group (Kreidberg et al. 2019), whose
independent reduction and analysis we became aware of during
the course of writing this paper. In Section 4, we discuss the
possibility that the moon-like dip is in fact caused by a second,

previously undetected transiting planet in the system. In
Section 5, we provide a more detailed assessment of the host
star’s activity and investigate the possibility that it could be
responsible for the moon-like dip. In Section 6, we use forward
propagation of the TK18 solution to determine the location and
probability of seeing exomoon transits in future epochs.
Conclusions are summarized in Section 7.

2. Other Systematic Models

2.1. Overview

TK18 employed three different models to account for the
long-term trend seen in their data. These were broadly
motivated to follow, as closely as possible, the most standard
approaches in the literature for previous WFC3 analyses; see
Wakeford et al. (2016) for an overview of WFC3 systematics.
Most authors have previously elected to use a simple linear
trend for this correction, of the form a0+at (t−t0) (e.g., see
Huitson et al. 2013; Knutson et al. 2014; Ranjan et al. 2014). In
some rarer cases, a quadratic model has been invoked
(Stevenson et al. 2014a, 2014b), and thus both of these models
were attempted. A third exponential model was also attempted,
giving three trend models in total, all with time as the
independent variable.
Gaussian processes (GPs) have also been utilized in, for

example, Evans et al. (2018) to handle WFC3 systematics. In
general, however, GPs are not obviously appropriate for the
moon search unless there is reason to suspect the data are not
drawn from a sequence of independent Gaussians. As we show
later, we see no evidence of time-correlated noise structure.
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However, the flexibility of GPs means they will inevitably fit
out a moon-like dip, and insomuch as less flexible detrending
models explored here are also capable of attenuating or
removing the moon signal, invoking GPs here is neither well-
motivated nor particularly illuminating.

TK18 argued that it was crucial to perform this detrending
simultaneous to the transit fits, repeating for each model
(planet/moon/TTV), to account for the fact that the trend
model appeared highly covariant with the moon-like dip. In
comparing these models, we re-emphasize here that full
Bayesian evidences should be used. As a nonlinear model
(Kipping 2011), the number of degrees of freedom cannot be
estimated, and thus reduced χ2 comparisons are certainly
invalid (Andrae et al. 2010). Another popular alternative to
computing evidences is the Bayesian Information Criterion
(BIC; Schwarz 1978). This was used, for example, in
Kreidberg et al. (2019). Here again, there are serious concerns
about its use for this problem. By invoking a Laplacian
approximation on the posterior, one approximates the posterior
to a Gaussian centered on the maximum likelihood estimator,
which is inappropriate for highly multimodal posteriors such as
those resulting from exomoon fits (Kipping et al. 2012).
Further, the BIC is not guaranteed to yield a Bayes factor that is
close to one computed using priors an observer would consider
appropriate, as it assumes the unit information prior on the
model parameters (Weaklieam 1999). For these reasons, model
comparisons are performed using the Bayesian evidence in
what follows.

The three trend models considered by TK18 allowed for an
offset between the two visits, which was most apparent in the
extreme channels and to a lesser degree in the white light curve.
Clearly, the models explored by TK18 are a small subset of an
essentially infinite number of possible models one could try. In
general, the more flexible the model, the easier it is to fit out the
moon-like dip when assuming no moon to be present. It was for
this reason that more flexible trend models were not explored
by TK18, since any sufficiently flexible instrument model can
fit out interesting astrophysics.

Nevertheless, this was neither demonstrated nor investigated
in detail in that work. For this reason, we revisit the trend
modeling here, exploring: (a) the effect of going to higher-order
polynomials, (b) the effect of allowing for discontinuous trend
models, and (c) the effect of changing the dependent variable.

2.2. Higher-order Polynomials

Although an infinite number of polynomials exist beyond a
quadratic trend, we here perform a cubic model as a simple
extension to illustrate the effects. We reran the moon (M) and
zero-radius moon (Z) models on the TK18 using MULTINEST
(Feroz & Hobson 2008; Feroz et al. 2009) and LUNA
(Kipping 2011), as was done in TK18, except we add an
additional cubic term to the quadratic trend model.

The resulting maximum a posteriori light curve is shown in
the second row of Figure 1. The shape closely matches that of
the exponential model shown above it (and indeed, the
quadratic model from TK18), reflecting the fact that the cubic
term is almost zero. In fact, we can quantify this statement by
evaluating the 1σ credible interval of the marginal posterior of
the cubic coefficient to be -

+630 450
430 ppm, reflecting how the

posterior is only 1.4σ from zero.
It is therefore not surprising that: (a) the cubic fit returns a

similar Bayes factor in favor of the exomoon to the original

models of TK18, and (b) the cubic fit has an overall lower
evidence than the other models ( = log 6311.34 0.16M ),
since it includes effectively wasteful parameter volume. In
other words, the model has been penalized for additional
complexity.

2.3. Discontinuous Polynomials

TK18 only considered models where the function is
continuous across the visit change, except for a flux offset.
This means that the higher-order polynomial coefficients, at
and at2 in the case of a quadratic model, are the same on both
sides of the visit change. The motivation for this was that: (a)
the small trends either side of the visit change did not correlate
with centroid position and thus did not appear to be
instrumental in nature, and (b) the star’s intrinsic variability
should not change dramatically on either side of the visit
change.
We discuss here the effect of relaxing this assumption. As in

the case of higher-order polynomials, this essentially represents
a more flexible model. The simplest discontinuous polynomial
is two independent straight lines (“bilinear” in what follows).
As in TK18, all detrending choices explored in this work are
implemented after the hook correction has been applied.
Because the hook correction minimizes intraorbit rms inde-
pendent of the model under consideration, there is no
covariance between them, and therefore the evidences are not
impacted. We refer readers to TK18 for a more thorough
discussion of this choice.
We find that the fits favor a very pronounced reversal in the

systematic gradient located at the visit change, as can be seen
from the third row of Figure 1. It is unclear how this behavior
could manifest physically, since flux is apparently uncorrelated
with centroids in each individual visit for the comparison star
KIC 4760469; see Figure S10 and Section 1.2.10 of Teachey &
Kipping (2018). That is, while there is no known explanation
for the visit-long trends, we would a priori expect the target
star and the comparison star to display similar systematic
morphologies. The fact that they do not leads us to question
whether a downturn in the target star trend can be attributed to
instrumental systematics. At the same time, we see no reason to
expect the star to exhibit a pronounced reversal coincidental
with HST’s visit change. The second visit slope has a negative
gradient that absorbs the decrease in brightness caused by the
moon-like dip—and for this reason, the evidence is signifi-
cantly attenuated for the exomoon model. Indeed, the moon
solution is quite distinct from the original paper, and can be
immediately dismissed as suspicious because the moon ingress
is nearly coincident with the flux offset associated with the visit
change.
The bilinear model has two free parameters per visit, giving

four in total—the same as the number of free parameters
describing the TK18 quadratic and exponential models. Despite
having the same number of free parameters, it does not
necessarily have the same degrees of freedom. These two
concepts are distinct if the underlying model is nonlinear
(Andrae et al. 2010), which is true here because of the
nonlinear step function occurring at the visit change. In fact, it
can be seen that the bilinear model in fact has more freedom,
because it does not require a continuous gradient across the
boundary, unlike the case of the TK18 quadratic model.
It is therefore perhaps not surprising that this more flexible

model is able to fit out the moon-like dip sufficiently well to
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find no evidence for the putative moon. This analysis does not
particularly add to or detract from the exomoon hypothesis,
since the behavior can be understood as a byproduct of
employing more flexible trend models. Clearly, the attenuation
of the moon-like dip does not necessarily imply that the trend
model is incorrect; strictly speaking the conclusion is simply
that the moon+flexible model is not supported by the data. Put
another way, the moon model and the planet-only model are
essentially equiprobable with this trend model, and therefore
we would not claim evidence for a moon. We find no physical
or data-driven motivation for adopting the bilinear model, nor
is there precedent for doing so in the literature. On the other
hand, the observation is unprecedented in several ways (e.g.,
the faintness of the target, the 40 hr duration, and the objective
itself), so we cannot rule out the possibility that we are
observing unique or heretofore only marginally important
systematic effects.

2.4. Changing the Independent Variable

We now consider a third and final modification to the
systematic model—namely, modeling the systematics as a

function of both time and centroid position, rather than simply
a function of time. We start by taking our simplest model, the
linear-t model, given by

( ) ( ) ( )= + -S t a a t t , 1t0 1 0

and extending it to include a linear dependency on x- and y-
centroid positions:

( ) ( )

( ) ( ) ( )

= + -
+ - + -

S t x y a a t t
a x x a y y

, ,
, 2

t

x y

0 1 0

1 0 1 0

where ai are coefficients to fit for and the subscript 0 variables
represent the median time/centroid positions. Using the same
photodynamical MULTINEST fitting software from TK18, the
resulting maximum a posteriorilight curve is shown in the
fourth row of Figure 1.
The figure, as well as the evidences quoted in the panel,

show that the same moon is again detected. We therefore
conclude that adding x and y as linear independent variables
to the systematic model does not significantly affect the
conclusions of TK18.

Figure 1. Comparison of three different long-term trend models applied to the TK18 data. The left column shows the uncorrected data with the trend model overlaid,
while the right column shows the post-correction data. Systematic models more flexible than those considered by TK18 attenuate the formal exomoon evidence, and
also find alternative modes that are inconsistent with the TK18 candidate signal.
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2.5. Fixing Orbits to Coplanar

The inclined solution for the exomoon candidate K1625b-i is
particularly curious. The fact the posteriors favor an inclined
solution suggests that it should be very difficult to fit the same
moon to the existing data (both Kepler and HST) if one
imposes coplanarity. To investigate this, we repeat the three
trend model fits of TK18 for the M models but fix i=90°.
Comparing the resulting evidences to the original z models
of that work ( = 2 log 17.77 0.33MZ , 3.61±0.33, and
6.38±0.34 for the linear, quadratic, and exponential models,
respectively) indeed show the case for an exomoon is removed
(see Table 1). This highlights the importance of including
inclination in such fits.

2.6. Using the Comparison Star as a Model Benchmark

Since the comparison star is expected to be stable (TK18), it
provides a useful control test for comparing the different
possible systematic trend models. Expanding to quadratic order
in x, y, and t, we fitted nine different models to the comparison
star (assuming an intrinsically flat baseline) using MULTINEST.
The various models and resulting evidences are listed in
Table 2.

In TK18, only three of these models were considered, but it
turns out that none of the other six models proposed here yield
an evidence superior to the simple time models. We conclude
that analysis of the comparison star indicates that systematic
models using x- and y-centroid positions are not supported by
the current data.

3. Comparison to Kreidberg et al. (2019)

During the final preparations of this paper, it came to our
attention that Kreidberg et al. (2019) (henceforth KLB19) had
conducted an independent reduction of the HST WFC3
observations of Kepler-1625 and concluded that there was no
evidence for an exomoon based on the apparent lack of a
moon-like dip following planetary egress. We will compare
the KLB19 reduction and results to that of TK18 in what
follows.

3.1. Raw Photometry Comparison

It is instructive to make a side-by-side comparison of the
raw photometry presented in TK18 and the new reduction
by KLB19 before any hook or trend corrections have been
applied, which is shown in the top panel of Figure 2.

Before any systematic effects have been corrected, the
photometry from both groups is apparently quite similar, yet
important differences are evident. Quick inspection of both
light curves reveals a much more pronounced offset in flux
for KLB19 occurring at the instant of the visit change between
orbits 14 and 15 (marked by the vertical dashed lines in that

figure). As described in TK18, the full guide star acquisition
performed at the beginning of orbit 15 was responsible for the
introduction of this offset. Detailed modeling (described in
Section 3.6) finds that the amplitude of the offset increases in
every case from the TK18 reduction to that found in KLB19:

1. From (20± 110) ppm in TK18 to (−900± 120) ppm
in KLB19, for the linear-t Z model;

2. From (−140± 120) ppm in TK18 to (−850± 130) ppm
in KLB19, for the quadratic-t Z model; and

3. From (−20± 110) ppm in TK18 to (−880± 110) ppm
in KLB19, for the exponential-t Z model.

There is, of course, only one ground truth in terms of the motion
of the telescope and astrophysical variation. Because we can
reasonably assume the star itself is not exhibiting a sudden
change in flux after the 14th HST orbit, the discontinuity there
must be systematic. Thus, a larger discontinuity could be viewed
as being farther from the star’s ground truth, requiring a more
substantial correction that could impact the results of KLB19.

3.2. Hook Correction

We next applied the exact same hook correction algorithm
described in TK18 to the KLB19 reduction. KLB19 also uses
the nonparametric approach of TK18, thereby providing a fair
comparison of the two, and this is shown in the bottom panel of
Figure 2).
The mean intraorbit photometric rms from KLB19 is somewhat

smaller at 360.7 ppm, versus 374.8 ppm for TK18.6 At first
glance, this appears to indicate that the KLB19 reduction is
more precise. However, inspection of Figure 2 reveals that the
22nd HST orbit appears to display an anomalously low scatter
of just 85 ppm. While TK18 also find that this orbit has the
lowest scatter, the rms is much more consistent with the other
orbits, at 210 ppm.
For normally distributed data, the standard deviation of

sample standard deviations equals ( )s -n2 1 . Given that
the mean rms for TK18 is σ=374.8 ppm and the average
number of points per orbit is 8.8, one should expect rms values
with a standard deviation of 94.9 ppm. The actual standard
deviation of rms values is less than one percent larger at
95.5 ppm. This, in turn, means that the 210 ppm smallest rms
value is only 1.7σ from the mean.
For the KLB19 orbits, the expected standard deviation in rms

values is 91.3 ppm and the observed value is 8.6% higher at
99.2 ppm. Critically, the 22nd orbit now appears to be a 3σ
outlier. Strictly speaking, the formula above is only valid for
n?1, so we are at the limit of applicability in the present
case. Thus, a better estimate for how surprising this orbit is can
be obtained by masking the orbit, taking the mean of the other
rms values, and then generating fake Gaussian data for all
orbits and Monte Carlo evaluating the expected distribution of
rms values. This reveals that the 22nd orbit from KLB19 is
anomalously low at the 4.0σ level.
This seems highly implausible from a statistical perspective,

and would make the 22nd orbit intraorbit rms an outlier by
most definitions. In the presence of outliers, a more robust
summary statistic to compare the precision of each reduction is
the median intraorbit rms, rather than the mean. On this basis,

Table 1
The Effect of Enforcing Coplanarity on TK18 Results

reduction ( )- 2 log M Z,coplanar

linear-t 1.05±0.32
quadratic-t −0.28±0.33
exponential-t −0.01±0.33

Note. A repeat of the model fits undertaken in TK18, now forcing the moon to
be coplanar, i.e., is = 90°.

6 TK18 quote 375.5 ppm, but that value is the mean intraorbit rms after 10
rounds of hook correction iterations, whereas the final light curve actually uses
100 rounds.
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the original TK18 reduction is marginally more precise at
360.6 ppm, versus 362.4 ppm for KLB19. That is, they are
essentially indistinguishable from the perspective of their noise
profile. The source of this improbably low scatter in the 22nd
orbit is unknown, but it appears to be present in the data before
the application of the hook correction.

3.3. Centroids

Centroids deserve special attention because KLB19 use the
target’s position on the detector as the basis for their
systematics model correction. TK18 presented their centroid
variability in Figure S10 of that work, for both Kepler-1625
and the comparison star KIC 4760469. Figure 3 directly
compares the centroids of TK18 to those of KLB19 for
Kepler-1625, where morphological similarities are apparent.

As was found in TK18, there is substantial variation of the
apparent centroid position within an orbit, which we attribute to
the hook and/or breathing effects rather than a real variation.
For this reason, long-term behavior (associated with pointing
drift) is best tracked using the orbit median centroid positions,
shown in black in Figure 3.

We find that the range in interorbit y-centroid position is
10% higher for the first visit and 30% higher for the second
visit in the KLB19 reduction than that of TK18, and 2.2 to 2.5
times higher for the x-centroid position. Similarly, the change
in centroid position after the visit change is 2.6 times higher in
x for KLB19 than for TK18.

We tried offsetting the median centroid of each orbit and
then orbit folding (see lowest row of Figure 3) to look at
intraorbit centroid variations, rather than interorbit. As before,
we find higher intraorbit centroid variability for the KLB19
reduction, increased by similar levels.

The origin of these centroid discrepancies is unclear. Systematic
effects such as the hook and breathing effects likely play a role in
the calculated position for each image, as suggested by the
intraorbit centroid variations, which do not appear to be associated
with pointing drift. Different handling of these systematics could
therefore reasonably explain the discrepancy. Due to the image
rotation performed in TK18, it is not possible to apply our

centroid corrections to the KLB19 reduction, nor is it possible to
use the KLB19 centroids for detrending our extracted light curve.
We also point out that the calculation of these centroids

is handled differently in TK18 and KLB19. TK18 simply
calculates the flux weighted centroid of the optimal aperture at
every time step as

( )=
å

å
X

x f

f
, 3i

N
i i

i
N

i

centroid

where xi and fi are the pixel coordinate and flux of pixel i,
respectively. Calculation of the centroid in y is identical. TK18
performed this operation for both the target star and the
comparison star KIC4760469, which showed good agreement.
By contrast, KLB19 perform a more complicated analysis to

compute the motion, with different methodologies for the x and
y directions. For the y (or “spatial”) direction, KLB19 sum the
flux in each column of the image at each time step, perform a
four-pixel Gaussian convolution of the resulting array, and then
an interpolation to compute a best-fitting offset from a template
at each time step. It is not obvious how spatial information is
recovered from this algorithm as described in KLB19, nor
whether comparison to a template could introduce biases.
KLB19 perform a similar operation for the x (or “spectral”)
direction, though now only summing up along the target
spectrum instead of along each row in the image. The result, as
shown in Figure 3 is morphologically similar to TK18, though
with larger systematics.

3.4. Systematic Trend Comparison

KLB19 use systematic models that decorrelate against x and
y centroid position rather than just time. Because the previous
subsection has conducted a like-for-like comparison of this
model, it is instructive to inspect the systematic parameter
posteriors that result. We list these values in Table 3.
As can seen be seen from the table, KLB19 find an overall

stronger dependency between flux and centroid position
than TK18, with almost all of the variability coming in via
the y-direction. It is also worth noting that the sign of ay1
reverses for the KLB19 reduction.

Table 2
Bayesian Evidences from Applying Various Systematic Models to the Comparison Star KIC 4760469

Label Systematics Model log

linear-t* ( ) ( ) [ ]+ - + ¢ - -a a t t a a t tt II0 1 0 0 0 −0.60±0.06

quadratic-t* ( ) ( ) ( ) [ ]+ - + - + ¢ - -a a t t a t t a a t tt t II0 1 0 2 0
2

0 0 0.00±0.06

exponential-t* ( ) ( ) [ ]+ + ¢ - --
a a a a t texpe

t t

a II0 1 0 0
e

0

2
−0.38±0.06

linear-xy† ( ) ( )+ - + -a a x x a y yx y0 1 0 1 0 −0.61±0.06

linear-xy linear-t ( ) ( ) ( )+ - + - + -a a t t a x x a y yt x y0 1 0 1 0 1 0 −4.29±0.06

linear-xy quadratic-t ( ) ( ) ( ) ( )+ - + - + - + -a a t t a t t a x x a y yt t x y0 1 0 2 0
2

1 0 1 0 −3.96±0.07

quadratic-xy ( ) ( ) ( ) ( )+ - + - + - + -a a x x a x x a y y a y yx x y y0 1 0 2 0
2

1 0 1 0
2 −1.27±0.06

quadratic-xy linear-t ( ) ( ) ( )

( ) ( )

+ - + - + -

+ - + -

a a t t a x x a x x

a y y a y y

t x x

y y

0 1 0 1 0 2 0
2

1 0 1 0
2

−4.97±0.07

quadratic-xy quadratic-t ( ) ( ) ( ) ( )

( ) ( )

+ - + - + - + -

+ - + -

a a t t a t t a x x a x x

a y y a y y

t t x x

y y

0 1 0 2 0
2

1 0 2 0
2

1 0 1 0
2

−3.43±0.07

Note. All evidences are quoted with 1334.18 subtracted—the absolute value obtained for the second model listed—“quadratic-t.”Models with an * indicate that this is
one of the original models used by TK18. Models with a † are those used by Kreidberg et al. (2019). The model considered by Kreidberg et al. (2019) is formally
indistinguishable from the systematic models used in TK18, and therefore not favored over those used in that work.

5

The Astronomical Journal, 159:142 (16pp), 2020 April Teachey et al.



We also remind the reader that our earlier comparison of
different trend models applied to the comparison star found
that models including x–y pixel position were disfavored
(Section 2.6) over temporal models. In any case, it is difficult to
determine the degree to which these discrepancies arise from
the different centroiding approach, versus how much is due to
differences in the raw fluxes owing to the reduction itself.

3.5. Model Evidences Comparison

TK18 perform model comparison using the Bayes factor
calculated using Bayesian evidences (marginal likelihoods). In
contrast, KLB19 perform their model selection using reduced
c2 and the BIC. As discussed earlier in Section 2.1, model
comparison using the reduced c2 is invalid for nonlinear
models, and it is thus not appropriate for transit light curve fits.
The BIC is also inappropriate due to the multimodality of
the posterior, which is poorly described by the Laplacian
approximation used by BIC. Further, it is generally not
guaranteed to produce an approximation of the Bayes factor
(Weaklieam 1999), and indeed it has been argued to not even
represent an approximation to any exact Bayesian solution—
including the Bayes factor (Gelman & Rubin 1995). Accord-
ingly, we strongly urge the avoidance of these tools for
exomoon model selection.

To perform a full comparison between the two reductions, it
is instructive to repeat the full photodynamical MULTINEST fits
conducted by TK18 on the KLB19 reduction. This allows us to
evaluate what the Bayes factor would be for the exomoon had
we used this data set instead.

We fit the hook-corrected light curves of KLB19 using the
same three models used by TK18—linear in time, quadratic in
time, and exponential in time—all of which also include a flux
offset parameter at the visit change. Further, we ran the
photodynamical MULTINEST fits for both TK18 and KLB19

adopting a fourth systematics model—one motivated by the
choice of KLB19 to decorrelate against centroid position.
Specifically, this model is linear in time as well as in x- and y-
centroid position, i.e., an example of changing the independent
variable. The results of these fits are summarized in Table 4.
As can be seen from the table, the KLB19 reduction

consistently yields lower Bayes factors for the moon solution
versus that found by TK18. Although a moon dip is favored in
all cases (contrasting with the BIC and reduced c2 testing
of KLB19), the strength of the evidence is diminished to such a
degree that we would not consider it justifiable to claim
evidence for an exomoon. Combined with the investigation
described earlier in Section 2.4, this strongly suggests that the
differing conclusions between TK18 and KLB19 is not due to
the choice of systematic model, but rather due to the reduction
itself. This is the same conclusion reached by KLB19.
However, we do not agree that the moon’s existence has been
ruled out, particularly in light of a second independent
reduction and analysis carried out by Heller et al. (2019),
which also finds evidence for the moon-like dip following the
planet’s transit.
We should point out that Nelson et al. (2020) found, through

an extensive comparison of approaches to computing model
evidences, that uncertainties are likely to be underestimated. As
such, the uncertainties quoted in Tables 2 and 4 may be too
low. For each run, we used 4000 live points, which is twice the
recommended number for accurate evidence uncertainties
(Feroz & Hobson 2008). In any case, artificially low
uncertainties would not invalidate the salient features of our
argument here, namely that (1) we see no strong impetus to
adopt a detrending model based on centroids (see Section 3.3)
and (2) evidence for the moon is considerably weaker based on
the KLB19 light curve.

Figure 2. A comparison of light curves before and after the hook correction from TK18 and KLB19. Compare to Figure 2 in TK18. As in that work, the data are color-
coded by the observation number within each HST orbit (light yellow for the first observation, dark purple for the last). The grey squares in the bottom panel represent
the binned flux for each orbit. Triangles indicate observations from the first orbit, which are left out of the hook correction normalization. The anomalously low scatter
in the 22nd orbit of the KLB19 analysis is highlighted with a rectangle.
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3.6. Model Residuals Comparison

The null hypothesis is that no moon is present around
K1625, and so the obvious place to conduct a residual analysis
is on the no-moon models (model Z).

The original residual analysis conducted by TK18 (see
Figure S17) shows that, without a moon there appears to be
high time-correlated noise when inspecting simple rms versus
bin-size diagrams. However, as shown in that same figure,
the origin of the time-correlated noise excess is apparently
localized in time to the specific point where TK18 claim
evidence for a moon-like dip.
A fairer test of residual noise is then to continue using the

null hypothesis but mask out the region where TK18 claim a
photometric anomaly associated with a possible moon. To
accomplish this, we compute the maximum a posteriori model
residuals for the exponential-t model (since this is the model
used for light curve comparison by KLB19 in their Figures 3
and 4), for both the TK18 and KLB19 reductions, and then
mask out the region t>2458056.1 BJD. This also conveni-
ently removes orbit 22 of KLB19, which is argued to show
anomalously low scatter in Section 3.2.
We then compute an rms versus bin-size diagram, as shown

in Figure 4. We find that both reductions display Gaussian-like
behavior with no clear indications of excess noise. Without any
binning, the rms values are 369.0 ppm for TK18 and 370.3 ppm
for KLB19, i.e., effectively identical.

3.7. Presence of TTVs

The sustained moon-like dip in the HST observation
observed by TK18 is one important element of the case for
the exomoon. However, another critical, self-consistent comp-
onent of the case for the exomoon presented in TK18 is the
presence of TTVs in the system. A large moon like the one
described in TK18 is expected to exert a significant

Figure 3. Comparison of the centroids reported by TK18 (gray) and those of KLB19 (red). In all cases, we find that the KLB19 centroids exhibit larger variations.

Table 3
Comparison of Centroid Gradient Terms

reduction ax1 ay1

TK18, Kepler-1625 + -
+2700 900

910 + -
+4780 450

440

TK18, KIC 4760469 + -
+580 960

970 + -
+3050 620

610

KLB19, Kepler-1625 + -
+830 400

400 - -
+10170 410

410

Note. Using the systematic model “linear-xy” only (which assumes no part of
the trend is dependent on time), we compare here the parameters ax1 and ay1
(i.e., the centroid gradient terms), which result from the three different
reductions. Elements list median and 68.3% credible intervals in units of parts
per million per day.

Table 4
Bayesian Model Evidence Comparisons for Various Systematic Models

model TK18 Kreidberg et al. (2019)

linear-t* 17.77±0.33 1.08±0.32
quadratic-t* 3.61±0.33 1.38±0.32
exponential-t* 6.38±0.34 1.88±0.33
linear-xy linear-t 11.96±0.34 0.56±0.34

Note. Comparing evidences for the four systematic model detrendings, applied to
the TK18 and KLB19 reductions. Each element represents ( )- 2 log M M —the
Bayes factor for the exomoon. *= original fits from TK18.
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gravitational influence on the planet, detectable in the
photometry in the form of timing variations.

As described in TK18, the transit of Kepler-1625b in the
HST observation occurred a full 78 minutes earlier than
anticipated based on a linear ephemeris calculated from the
three transits of the planet observed by Kepler. This indicates
the presence of TTVs to s~3 confidence.

We fit the transit timings for the KLB19 light curve
and find t = -

+58055.5539 0.0012
0.0013, -

+58055.5538 0.0012
0.0013, and

-
+58055.5539 0.0012

0.0013 for the linear-t, quadratic-t, and exponen-
tial-t models, respectively. Comparing this to the value
in TK18 of t = -

+58055.5563 0014
0013, we consider the presence

of TTVs to be validated by the new analysis, and it is worth
noting that the new reduction actually suggests the HST transit
occurred even earlier than was found in TK18.

3.8. Summary

We have executed a detailed comparison of the KLB19
reduction and that of TK18. KLB19 argue that there is, in fact,
no evidence for a moon in their light curve, based on the
absence of the moon-like dip. We also find that their reduction
does not strongly support the presence of the moon-like dip
(although it is still formally favored using a Bayesian model
comparison), after applying the same hook correction and
full Bayesian photodynamical model selection methods used
by TK18 (see Section 3.6). We note, however, that the KLB19
reduction validates the presence of TTVs in the system, though
TTVs alone do not constitute sufficient evidence for a moon.

The question naturally arises as to why the two studies yield
different results—and which one is ultimately correct. We have
argued that there are two major differences between the TK18
analysis and that of KLB19, and so presumably one (or both) of
these is responsible for the discrepancy. The first is the choice

of systematic model and the second is the independent
reduction itself.

3.8.1. Systematic Model?

The first major difference between TK18 and KLB19, as
explored in Section 2.6, is that KLB19 use a systematic model
to correct for the long-term trend correlating flux with x- and
y-centroid position, while TK18 only decorrelate against
time. TK18 found no correlation between flux and centroid
for the comparison star KIC 4760469, and in this work we have
shown that among a broad suite of possible models, some with
and some without such correlations, models including x and
y correlations are consistently disfavored (see Section 2.6).
Even so, this does not address whether this different choice

in detrending is ultimately responsible for the overall differing
conclusions. We conclude that the detrending choice is unlikely
to be the underlying cause, since refitting the original TK18
data including centroid correlation terms still recovers the same
exomoon signal to comparable confidence as before (see
Section 2.4).

3.8.2. Reduction?

With the detrending choice shown to be an unlikely
explanation for the discrepant conclusions, we turn our
attention to the reduction itself. There are certainly differences
between the two reductions, both with respect to the
methodologies (described in their respective papers) and the
results.
With regard to the methodology, the KLB19 pipeline clearly

has a track record that the TK18 reduction does not. Even so,
the present observation is unprecedented in several ways. The
star is significantly fainter than previous HST targets, the
duration of the observation is far longer than typical
transmission spectroscopy observations, and the nature of the
pursued signal is fundamentally different. Therefore, it is
reasonable to ask whether the KLB19 pipeline is guaranteed to
be better than the one we have developed.
We note also that the procedure for selecting an optimal

aperture as described in KLB19 is potentially problematic for
the moon search. Their approach is to explore various apertures
until they find the one that minimizes scatter with respect to
the transit model. This differs from our approach, which does
not assume a model. We can only guess that, given the
computational expense of running a full exploration of
parameter space with an MCMC simultaneous with the
selection of an aperture, a static planet-only model was
assumed and the scatter was minimized with respect to it.
This approach could inadvertently incentivize the selection of
an aperture for which the moon signal is attenuated. Never-
theless, the final aperture selected by KLB19 is quite similar to
that of TK18, the primary difference being a 13% smaller
aperture for KLB19, which probes slightly farther into the blue
and a bit less into the red than the aperture of TK18.
We also identified anomalous behavior with orbit 22 of the

HST observation as produced by the KLB19 pipeline, which
shows suspiciously low photometric scatter. We are unable to
determine the source of that anomaly, however.
KLB19 states that the moon-like signal presented in TK18 is

“likely an artifact of the data reduction.” However, no faults
with the original reduction pipeline were found, nor was any
step in the reduction pipeline identified as being the source of

Figure 4. The rms vs. bin-size diagrams for the exponential-t model regressed
to the TK18 reduction (black) and the KLB19 reduction (red). In both cases,
the model assumes no moon but masks the region >t 2458056.1 BJD where
the moon-like dip is seen by TK18. Both reductions appear consistent with
Gaussian noise properties (the gray 1 and 2σ regions shown).
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the moon-like dip. Therefore, it is perhaps more accurate to
conclude (as we do here) simply that the different pipelines
have produced different results. It is noteworthy that a recent
analysis by Heller et al. (2019), using their own independent
reduction pipeline, also recovered a moon-like signal very
similar to that presented in TK18. As such, the original
interpretation of the data presented in TK18 has now been both
validated and called into question in the literature. We thus
argue that the existence of the moon remains an open question
and additional observations are warranted.

To summarize Sections 3.1–3.3, we find that the product of
the KLB19 reduction:

1. Exhibits marginally higher median intra-orbit rms
(362.4 ppm versus 360.6 ppm) after correcting for the
hooks;

2. Has a ;900 ppm larger flux offset at the visit change;
3. Has2 times larger variations in the y-centroid positions;
4. Has an x-centroid flux correlation coefficient 3.5 times

greater, and with opposite sign to KIC 4760469;
5. Exhibits a marginally higher residual rms (370.3 ppm

versus 369.0 ppm) after fitting out a “no-moon model”
and masking the claimed moon region in both reductions.

Accordingly, we argue that the KLB19 reduction is not
obviously superior in any measurable way.

4. Second Transiting Planet?

4.1. Overview

One possible false-positive scenario for the moon-like dip
that was not discussed in TK18 was the possibility that the dip
is real but caused by a second transiting planet, not a moon.
This scenario was not investigated in the original paper,
because of the location of the dip with respect to the TTV offset
—indicating a strong case for the exomoon hypothesis—as
well as the inherently unlikely possibility that a planet could
have evaded detection by Kepler but appear in this small
segment of HST data. Nevertheless, this is certainly a valid
concern, and the probability of this scenario was not quantified
in the original paper, so we address it here.

We express the probability that the moon-like dip was
caused by a second (hypothetical) transiting planet, K1625c,
with orbital period Pc, as

( ¯ ∣ ) ( )=    PPr , , , 4c cKep HST

where  is shorthand for the probability that b<1 (i.e., that
planet c has the correct geometry to transit), X denotes
“detected by X.” Via Bayes’ theorem, we can express the
probability as

( ∣ ) ( ¯ ∣ ) ( ¯ ∣ ¯ )

( ∣ ) ( ¯ ∣ ) ( ¯ ∣ ) ( )

=

=

     

    

 P P P

P P P

Pr Pr , Pr , , ,

Pr Pr , Pr , , 5

c c c c

c c c

Kep HST Kep

Kep HST

where on the second line we remove the conditional ¯Kep since
there is no causal dependency.

To simplify the analysis, we will assume that any other
planets in the system are coplanar with Kepler-1625b, whose
low impact parameter essentially guarantees that these planets
will be transiting as well. Accordingly, we assume ( ∣ )  PPr c
1 ∀ { }ÎP P P,c min max , where Pmin and Pmax are some yet-to-be-
determined minimum/maximum limits on the period of
planet c.

This optimistic assumption of coplanarity means that we will
tend to overestimate the chance that the moon-like dip is caused
by a second planet—which is the conservative option—and
reduces the overall complexity of the problem.

4.2. Basic Properties of a Hypothetical K1625c

The depth of the moon-like dip varies between the three
different long-term trend models adopted by TK18. In all three
cases, the radius is approximately Neptune-like, yielding

-
+4.90 0.72

0.79 R⊕ for the linear model, -
+3.09 1.19

1.71 R⊕ for the quadratic
model, and -

+4.05 1.01
0.86 R⊕ for the exponential model. The last

value is not only the median of the three but also represents the
favored model by TK18. For this reason, we will assume here
that the hypothetical second transiting planet has a radius of
4 R⊕ in what follows.
The moon-like dip is approximately flat-bottomed, indicat-

ing that if it were due to a transiting planet, the impact
parameter is small, i.e., the planet must be nongrazing. This
means the inferred radius from the depth is a fair estimator of
the true radius.
The duration of the moon-like dip varies between the

models from 8.5 hr for the linear and quadratic models to 7.8 hr
for the exponential (using the T̃ transit duration definition of
Kipping 2010). This therefore establishes that the duration of
the hypothetical K1625c must exceed 7.8 hr. This is still a
relatively long transit duration and implies that the orbital
period is not short.
For any given orbital period, the longest possible duration

corresponds to a zero impact parameter. Therefore, for any
given duration, the shortest allowed orbital period corresponds
to a zero-impact parameter. We can therefore take this duration
value and convert it into a minimum period. Assuming a
circular orbit, one may solve the Kipping (2010) T̃ duration
equation for P in the limit of b 0, and also transform a/Rå

into stellar is density, ρå, using Kepler’s Third Law. Since ρå is
well-constrained from Gaia and isochrone modeling to be

-
+0.29 0.09

0.13 g cm−3 (TK18), we can solve for the minimum period
numerically to find P>16 days, as shown in Figure 5.

4.3. Probability of a Missed TCE

Here, ( ¯ ∣ ) Pr Kep denotes the probability that a Neptune-
sized transiting planet was undetected by the Kepler pipeline—
i.e., a missed threshold-crossing event (TCE). There are no
detected TCEs for Kepler-1625 aside from Kepler-1625b in
DR25 (Thompson et al. 2017), but this fact alone does not
provide a probability that one was missed by the Kepler
pipeline.
The probability of missed TCEs is most directly computed

by using the per target detection contours for DR25 reported by
Burke & Catanzarite (2017). The KeplerPORTs software,
first discussed in Burke et al. (2015), computes detection
completeness contours for a given Kepler target through transit
injection and recovery tests, and provides the most realistic
estimate of completeness available. The stellar parameters used
by Burke & Catanzarite (2017) are the DR25 Mathur et al.
(2017) values, for which Kepler-1625 is reported as a -

+1.79 0.49
0.26

Re—which is approximately the same as the Gaia-based value
found by TK18 of -

+1.73 0.22
0.24 Re. This therefore demonstrates

that the KeplerPORTs detection contours for a given
planetary size do not require any significant update since the
minor revision of TK18.
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After running KeplerPORTs on our target (see Figure 6),
we extracted a slice along the radius axis of 4 R⊕, corresp-
onding to the dip seen in the HST data by TK18. This is shown
in the leftmost panel of Figure 7.

KeplerPORTs natively computes completeness only out to
500 days, and indeed, by this point the probability of missing a
4 R⊕ exceeds 99% and is effectively unity—meaning there is
little point in extending past this period.

4.4. Probability of K1625c Transiting in the HST Window

If the moon-like dip were due to another planet, then within
the HST window of W=38.8 hr, we would have observed a
single transit of our hypothetical planet K1625c. The HST
photometry is approximately four times superior to that of
Kepler, ergo HST is effectively complete to a Neptune-sized
transit of the observed duration. Thus, ( ∣ ) Pr HST then simply
reduces to the probability that the planet will have the correct
phasing to transit within the 38.8 hour observing window.

Consider the possibility that K1625c has an orbital period of
100 yr. The chance of seeing this world transit in a fixed
window of observations is clearly going to be very low. Indeed,
the chance of seeing a planet with period P transit at least once
in a window is ∝1/P. This is known as the window effect. It is
described in detail by Kipping (2018), who shows that

( ∣ )

( ∣ )( ( ∣ )) ( )

=
= -



  
n P W

n P W n P W
Pr 1 , ,

Pr 1 , , 1 Pr 2 , , , 6
c

c c

where n is the number of transits observed in the window of
duration W and the components probabilities are

⎧
⎨⎪
⎩⎪

( ∣ ) ( )= >


n P W
P W

W

P
P W

Pr 1 , ,
1 if ,

if ,
7c

c

c
c

and

⎧
⎨
⎪⎪

⎩
⎪⎪

( ∣ ) ( )= -
<

>





n P W

P

W P

P
P W

P W

Pr 2 , ,

1 if ,

if ,

0 if .

8c

c
W

c

c

W
c

c

2

2

Kipping (2018) shows how a lower limit on the period can be
derived from the relative phase of the transit within the window,
but in our case, a far more constraining lower limit on the period
comes from the duration argument earlier in Section 4.2. Imposing
this as a hard limit simplifies Equation (6) to

( ∣ ) ( )= =n P W
W

P
Pr 1 , , . 9c

This is shown in the middle panel of Figure 7. Finally, we
may write that ( ∣ ) ( ∣ )= =  n P WPr Pr 1 , ,cHST , since we
treat HST as effectively complete to Neptune-sized transits.

4.5. Combining the Constraints

The final step is to combine the probabilities from above
using Equation (5), which is shown in the rightmost panel of
Figure 7. The probability peaks at Pc=133.3 days with

= 0.74c %, and decreases monotonically either side. Given
the presence of TTVs in the system (TK18), the most plausible
scenario to explain both the dip and the TTVs would be an
interior transiting planet close to a mean motion resonance
(e.g., 2:1 would lead to Pc;144 days).
The probability computed above suggests that the existence

of another transiting planet causing the moon-like dip is quite
unlikely, which might lend additional credence to the exomoon
hypothesis. At the same time, this probability should be weighed
against the probability of observing such a large exomoon. This
comparison unfortunately eludes us for the time being, as there
are currently no other verified exomoons in the literature, and
the occurrence rate of such an unanticipated object cannot be
quantified at this time.

Figure 5. The moon-like dip reported by TK18 has a duration of at least 7.8 hr.
Plotting the maximum transit duration (for a circular orbit) as a function of
period for a planet around Kepler-1625, one can see that the period cannot be
smaller than 16 days to explain the dip.

Figure 6. Detection completeness contours plot generated by KeplerPORTs
(Burke et al. 2015; Burke & Catanzarite 2017) for the target Kepler-1625.
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5. Stellar Activity

5.1. Rotation

There is no known rotation period for Kepler-1625 at the
time of writing. The star is included within the autocorrelation
function (ACF) catalog of McQuillan et al. (2014), but no clear
rotation period was found in that work.

We attempted to search for the rotation period using a
Lomb–Scargle (LS) periodogram, applying the algorithm to
each Kepler quarter (PDC data) independently. Since each
quarter is treated independently, and each quarter has a
duration of ;90 days, it is not possible to detect periods
longer than approximately half this value. The results out to
50days are therefore shown in Figure 8.

Consistent with the analysis of McQuillan et al. (2014), we
are unable to identify any clear rotation period from the LS
periodogram. We find that the maximum amplitude of a
periodic signal <50 days must be less than 200 ppm,
significantly lower than the amplitude of the moon-like dip
reported by TK18.

We also attempted to recover a rotation period using
Gaussian process regression. We used the celerite software
package (Foreman-Mackey et al. 2017) to model the light
curve, with the kernel function consisting of a mixture of two

simple harmonic oscillators with periods separated by a factor
of two.7 Exploring the posterior PDF of the star’s rotation
period using PyMC3 (Salvatier et al. 2016) we infer a rotation
period of -

+12.9 0.6
0.7 days. However, for this period, the natural

log of the Q factor (or damping ratio) was −3.1±0.3. This
means that the light curve, when modeled as a damped
harmonic oscillator, is overdamped (Q∼ 0.05), indicating
that the stellar brightness variations are incoherent, which
suggests that the star spot lifetimes are shorter than the rotation
period of the star on average. This, combined with the inability
of both the LS periodogram and the ACF to recover a reliable
period, implies that the signal is aperiodic and non-sinusoidal.
Taken together with the low rms of the light curve (∼200ppm),
this indicates that Kepler-1625 is an inactive star and that there is
little evidence of short-timescale (sub-hour) variability that could
mimic the ingress of a moon.
Although not a direct measure of the rotation period, the v

sin i can also provide some useful information on rotation. We
obtained two Keck High Resolution Echelle Spectrometer
spectra without iodine in 2018 October and November, in order
to attempt to measure the velocity broadening. Using the
SpecMatch pipeline described in Petigura et al. (2017), we

Figure 7. Probability that a Neptune-sized transiting planet evaded detection by Kepler(left), was seen to transit in the HST window of TK18 (middle), and the
probability of both of these statements being true—as a function of the planet’s orbital period.

Figure 8. LS periodogram for the PDC data of Kepler-1625 for 10 quarters. Activity appears lower than 200 ppm for periods <50 days. Dashed lines represent the
p-values of 0.05 for the most active and most quiescent quarters based on bootstrapping. Activity above these limits may be considered real, but a clear rotation period
across all quarters is not detected.

7 See https://exoplanet.readthedocs.io/en/latest/tutorials/stellar-variability/.
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obtain a marginal detection of ( )= v isin 1.9 1.0 km s−1.
Combining this with the isochrone posteriors from TK18 yields
a minimum rotation period of -

+45 15
44 days (a minimum because

we do not know sin i). It is therefore probable that the rotation
period falls within the 50 day range that Kepler is sensitive to,
but that the amplitude of rotational modulations is simply too
small to reliably recover.

5.2. Activity-induced Dips

Stellar activity can produce complex morphological signa-
tures in photometric time series (Dumusque et al. 2014).
Although the photometric periodic behavior of Kepler-1625
appears limited to <200 ppm (see Section 5.1)—too small
to induce an effect comparable to the moon-like transit
reported by TK18—shorter, nonperiodic variations deserve
our attention.

The moon-like dip is characterized by a transit depth of
;500 ppm in the integrated light (white) bandpass of WFC3
(TK18). As a near-infrared instrument, stellar activity is
generally expected to be suppressed by WFC3 versus an
optical bandpass like that of Kepler. To estimate the magnitude
of this effect, we took the isochrone posterior chains for
Kepler-1625 (TK18) and extracted the median effective
temperature of the star, Teff=5563 K. We then assume spots
on the surface with a temperature approximately 2000 K cooler

than the photosphere, typical of sunspots. Integrating a Planck
function multiplied by the bandpass response function for
Kepler and WFC3 reveals that spots would appear 1.3 times
larger in amplitude, as viewed by Kepler than WFC3.
Accordingly, if the moon-like dip is due to spots, then one
should expect to see frequent dips of amplitudes of ;650 ppm
(500×1.3) in the 11 quarters of Kepler data for Kepler-1625.
To test this hypothesis, we extracted a random segment from

a random quarter of the available Kepler PDC time series, with
the segment duration being equal to 26 HST orbits (which was
the time window observed by TK18). Each quarter was first
detrended using a median filter of window size equal to five
times the minimum duration of the moon-like dip, approxi-
mately 7.8 hr (TK18). We then performed a blind search for the
best-fitting box-like transit within this segment, forcing the box
to have a duration equal to that of the TK18 moon-like dip. The
central time and depth were optimized for in a least-squares
sense. An example of this is shown in lower panel of Figure 9.
The best-fitting box was saved and then a new random

segment was picked; this process was repeated 105 times. A
histogram of the best-fitting depths is shown in the upper panel
of Figure 9. Because this is the best-fitting depth within a
segment, these depths always deviate from zero, as the
regression routine is allowed to try many different possible
central times. There is symmetry about zero, with just as many

Figure 9. Bottom: example of a random Kepler segment of Kepler-1625 with a duration equal to that of the TK18 HST observing window. Regressing the best-fitting
box with a duration of 7.8 hr (the same as for the moon-like dip) finds an inverted transit in this case of 422 ppm depth. Top: repeating this exercise on 105 random
segments, we obtain a nearly symmetric distribution of best-fitting box amplitudes (red histogram). For comparison, we repeated the simulations assuming pure
Gaussian noise only (gray histogram), which is nearly identical.
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inverted transits as positive transits being recovered. We find
that 3.8% of the experiments run on the Keplerdata are able to
produce a best-fitting transit of depth exceeding 650 ppm
(and 3.5% produce depths <−650 ppm). Naively, one might
interpret this as indicating that the moon-like dip reported
by TK18 is only 2.1σ significant (3.8%). However, these
simulations were conducted for the 0.95 m Kepler telescope
data—and not the 2.4 m HST data set in which the dip is
actually observed. To interpret this 3.8% number, one must
consider the plausible origin of these spurious (i.e., moon-
mimicking) events.

If indeed the signals are spurious, there are two possible
causes for these random quasi-dips. Either (1) time-correlated
noise structure caused by intrinsic stellar activity is able to
produce >650 ppm dips, or (2) the noise is not significantly
correlated (i.e., white noise) but the noise budget of the Kepler
photometry is sufficiently large that the best-fitting boxes can
infrequently exceed 650 ppm.

If the former were true, then the dip observed by HST could
be explained as one of these 3.8% instances of an activity-
driven false-positive. If the latter were true, then one could
expect it to be highly improbable for the HST moon-like dip
to be a product of Gaussian noise, as the measurement
uncertainties are 3.8 times smaller than that of Kepler.

Clearly this is an important distinction. To distinguish
between them, we can set up another experiment where we
repeat our previously described Monte Carlo experiments—
except we replace the real Kepler photometric fluxes with
artificial fluxes computed assuming pure Gaussian (white)
noise. The artificial data are drawn from a normal distribution
with a mean of unity and standard deviation equal to the
standard deviation of a randomly picked real Kepler segment.

After drawing 105 segments and replacing the photometric
fluxes with white noise, we make a histogram of the best-fitting
box depths as before and find a very similar distribution (shown
in Figure 9). The 650 ppm threshold is exceeded in a similar
number of trials, 2.4%. We interpret the similarity between
these two distributions as evidence favoring the hypothesis that
the spurious, moon-mimicking detections are simply a product
of Gaussian-like noise controlled by photon-counting statistics,
rather than being due to intrinsic stellar activity. Since the HST
data is much more precise, the probability of a white noise–
driven box is far smaller, and is in fact accurately accounted for
in our evidence calculations since we assumed a normal
likelihood function in TK18. We therefore conclude that there
is no evidence from the Kepler analysis that activity is a
plausible explanation for the moon-like dip reported by TK18
in the HST data.

6. Follow-up

6.1. Photometric Follow-up

The best way to confirm the presence of the exomoon
candidate would be to see it transit again. To this end, we have
explored various avenues to observe future transits of Kepler-
1625b. Unfortunately, this is a very challenging target for
transit observations because of its faintness (KP= 15.756) and
the very long duration of the planet’s transit (∼19 hr). These
challenges are exacerbated by the fact that the exact location of
the exomoon cannot be known ahead of time for any given
transit; as we project into the future, our predictions are
naturally degraded as the uncertainties in our posterior samples

propagate. A wide range of times before planetary ingress and
after planetary egress must therefore be monitored in order to
cover as many geometries as possible.
These limitations generally restrict any efforts to detect the

exomoon transit to space-based telescopes. However, targeted
observations of this sort clearly require considerable resources
to be dedicated, to the exclusion of other priorities. While
Spitzer may be a suitable alternative to observing with HST, the
former can only observe ∼35% of the sky at any given time
due to pointing restrictions, and cannot observe the 2019 May
transit as the target falls within the zone of avoidance. Future
observations carried out with a survey (nontargeted) spacecraft
could potentially bear fruit, though we note that the Transiting
Exoplanet Survey Satellite observation of the Kepler field will
occur in 2019 July, missing the 2019 May transit of Kepler-
1625b.
On the other hand, transit timings could potentially be

measured from the ground more easily, and continued
monitoring of the TTVs and (to the extent possible) transit
duration variations would be valuable. A single instrument may
be able to monitor in its entirety either planetary ingress or
egress, but likely not both, due to the time separation of these
two events. Of course, this requires the target to be up at night
long enough for the observation to be made, and the telescope
must be located at a longitude where the event can be observed
in its entirety without sunset or sunrise encroaching. Latitude is
also a consideration; while northern latitudes place the target
above the horizon for longer durations, they also experience a
greater range of night lengths.
Radial velocity (RV) measurements of the system may also

provide additional evidence for or against the moon hypothesis.
On the one hand, RVs could potentially yield evidence for a
second planet in the system, in which case the observed TTVs
might be attributable to that planet and the case for the moon
would be weakened. On the other hand, if an additional
massive planet can be ruled out, or strong constraints can be
placed on the mass and location of an undetected planet, the
moon could emerge as a stronger candidate—insomuch as an
alternative mechanism for the timing variations is weakened or
removed altogether.
Of course, RV measurements should also provide a reliable

measurement of the target planet’s mass. If Kepler-1625b is
revealed to be significantly less massive than anticipated, this
could also weaken the moon case, as it would be more difficult
to support such a large moon. Conversely, a mass measurement
consistent with the inferred mass presented in TK18 could lend
additional credence to the moon hypothesis. Figure 10 presents
our best estimate for the planet’s mass, which may be tested by
the acquisition of RVs.
An additional complication for photometric confirmation

through transit observations arises from the exomoon candi-
date’s inferred large inclination with respect to the planet’s
orbital plane (TK18 found = -

+i 42S 18
15, -

+49 22
21, and -

+43 19
15

degrees for the linear, quadratic, and exponential detrendings,
respectively). This has the effect of sending the moon high
above or below the disk of the star for a significant fraction of
its orbit, precluding the possibility of a transit when the moon is
in these positions. Coupled with the uncertainty in the moon’s
true anomaly, this means that there is no guarantee of seeing
the moon transit at all, for any given transit observation. Thus,
a null detection of the moon for any given epoch cannot be
interpreted as definitive evidence that the moon does not exist.
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Only with many repeated observations, all lacking evidence for
the moon, could the moon truly be ruled out to high confidence
(Martin et al. 2019). Clearly, this has a multiplicative impact on
the telescope requirements, and naturally leads to the conclu-
sion that follow-up transit observations are only worthwhile to
the extent that they are not excessively expensive.

Using the posterior samples from Teachey & Kipping
(2018), it is possible to predict the morphology of the
combined planet and moon system for future transit events—
though as noted, these predictions naturally deteriorate with
every epoch. We elected to consider 10 epochs, including the
original observed epoch for comparison, and calculate 1000
projections of the transit light curve for Kepler-1625b. For this
purpose, we used model and repeated for each of the three
trend models used by Teachey & Kipping (2018). The light
curves can be viewed in Figure 11.

For each epoch, we find the time of transit minimum for the
planet component only and use these times to compute a
median mid-transit time and an associated standard deviation,
which is quoted in the panels of Figure 11. We also consider
the moon component in isolation and count how often the
moon presents any deviation in flux away from unity—the
probability that the moon will transit at all in each epoch. These
probabilities are again added to the panels of Figure 11.
Finally, we use the moon component only, to compute a
probability distribution for the most likely location one should
expect to observe the exomoon (assuming it transits at all).
These curves are shown in gray in Figure 11.

As expected, we find that the uncertainty in the time of
transit grows as we project further into the future. Regressing a
power law to the uncertainties, we find that uncertainty grows
as t2/13, to an excellent approximation. The probability of a
moon transiting oscillates for the first few epochs but then tends
toward slightly less than 50%, which is broadly consistent with
the findings of Martin et al. (2019). Observers can therefore
treat the chances of seeing the moon in a given future transit as
approximately 1 in 2.

We also highlight that epoch 9 (2019 May) appears to be the
most favorable for follow-up. It has the highest probability of
seeing a moon transit out of any future epoch and a clean
prediction for the location of said transit (before planetary
ingress). A proposed observation of this transit with HST was
not awarded—and as pointed out, there are no other viable
space-based options for this event.

In light of these challenges, photometric confirmation of the
exomoon candidate may remain elusive for some time, until
repeated observations may be performed at relatively low cost.
Of course, if the moon is real, eventual confirmation is
probably inevitable, but in the near-term, it will likely remain
merely a candidate.

7. Conclusions

In this work, we have examined a number of alternative
hypotheses put forth by the community to explain the two
critical pieces of the exomoon case for Kepler-1625b: the
presence of significant TTVs, and a sustained flux reduction in
the HST light curve following planetary egress. We have
explored various additional detrending models, employing
more degrees of freedom, and found that while some of these
approaches are able to attenuate the purported moon signal, this
is to be expected given their flexibility. That is, from the
standpoint of their Bayesian evidences, more flexible detrend-
ing models paired with planet-only transit models are in some
cases indistinguishable from simpler detrending models
combined with system models that include a moon. While
we cannot rule out the presence of unprecedented systematic
effects, we also see no evidence for them, and therefore the
adoption of more flexible detrending models that attenuate the
moon signal are not particularly well-motivated.
We have investigated the differences between the light curve

presented in TK18 and a new reduction from Kreidberg et al.
(2019), and find that while the source of the discrepancy is
not readily identifiable, our light curve displays effectively
identical noise properties. Therefore, the KLB19 light curve is
not demonstrably superior. We also highlight once again the
work of Heller et al. (2019); through their own independent
reduction and analysis, they also found evidence of a moon-like
dip following planetary egress.
In terms of a possible additional transiting planet in the

system, we have calculated the probability that such a planet
could have gone undetected in the Kepler data and transit in the
short time window of the HST observation. We find the
maximum probability of this scenario to be <0.75%.
To determine whether the dip in brightness measured with

HST could be due to stellar activity, we have attempted to
measure a rotation period for the star in the Kepler data using a
variety of standard methods. We are unable to recover it,
indicating that the star exhibits negligible periodic variability.
We have also searched for photometric dips that might be
associated with (nonperiodic) star spot crossings. We find that
such dips, while possible to find in the Kepler data, are
consistent with Gaussian noise.
Finally, we discussed the outlook for confirming the

presence of the exomoon using space-based transit monitoring,
RV observations, and ground-based measurement of transit
timings. We find that the system poses a number of substantial
challenges to observational confirmation in the near-term, and
conclude that while modest ground-based observations may be
worthwhile for (1) constraining the mass of the planet, (2)
quantifying the probability of an unseen perturber in the
system, and (3) measuring TTVs, additional targeted observa-
tions from space likely fail a reasonable cost-benefit analysis.
Confirming or refuting the moon to high confidence may
therefore require many years and the advent of additional
space-based time-domain survey data that can be acquired at
minimal cost.

Figure 10. Combined mass posterior distribution for Kepler-1625b.
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