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Geometric phase of an open double-quantum-dot system detected by
a quantum point contact∗
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We study theoretically the geometric phase of a double-quantum-dot (DQD) system measured by a quantum point
contact (QPC) in the pure dephasing and dissipative environments, respectively. The results show that in these two en-
vironments, the coupling strength between the quantum dots has an enhanced impact on the geometric phase during a
quasiperiod. This is due to the fact that the expansion of the width of the tunneling channel connecting the two quantum
dots accelerates the oscillations of the electron between the quantum dots and makes the length of the evolution path longer.
In addition, there is a notable near-zero region in the geometric phase because the stronger coupling between the system and
the QPC freezes the electron in one quantum dot and the solid angle enclosed by the evolution path is approximately zero,
which is associated with the quantum Zeno effect. For the pure dephasing environment, the geometric phase is suppressed
as the dephasing rate increases which is caused only by the phase damping of the system. In the dissipative environment,
the geometric phase is reduced with the increase of the relaxation rate which results from both the energy dissipation and
phase damping of the system. Our results are helpful for using the geometric phase to construct the fault-tolerant quantum
devices based on quantum dot systems in quantum information.
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1. Introduction

The quantum state, after undergoing adiabatic and cyclic
evolution, acquires a phase that contains a component which
is only related to the geometry of the path traced by the sys-
tem called the geometric phase.[1] The conception of geomet-
ric phase has been extended to diverse directions.[2–5] In the
realistic implementations of quantum computation, it is neces-
sary to consider the environmental effect on the evolution of
the quantum systems, which is driven by the coupling of the
system and the surrounding environments.[6–17] Moreover, the
experiments about the geometric phase have proved that its
intrinsic fault-tolerate feature is significant for implementing
quantum information processing.[18–34] Thus, it is important to
study the geometric phase in different environments for inves-
tigating quantum phase transition, quantum error correction,
and so on.

With the rapid development of quantum information, a
large amount of attention has been focused on exploiting
the feasible programs so as to develop quantum comput-
ing. In these schemes, the double-quantum-dot (DQD) sys-
tem is a promising candidate in quantum information pro-
cessing on account of its long coherent time and powerful
controllability.[35–39] Meanwhile, the quantum point contact
(QPC) is widely used to measure the transport properties of
electrons due to its high sensitivity. The extensive theo-
retical and experimental works associated with it have been

done,[40–43] which has inspired us to study further the physical
phenomenon in the quantum dot system.

The study of the geometric phase in different situations
has made great progresses,[44–65] such as a two-level system
coupled to a radiation field at zero temperature[66] and a spin-
1/2 particle interacting with N independent spins.[67] There
are also many achievements on the geometric phase of the
quantum dot systems, including the influence of the temper-
ature on the geometric phase in two coupled quantum dots[68]

and the current method to obtain the geometric phase in the
DQD system.[69,70] The geometric phase of the DQD system
measured by a single-electron transistor (SET) has been re-
ported, in which an electron inside the quantum dot of the SET
would cause the fluctuations in the coupling strength between
the quantum dots and the energy level in the nearest quantum
dot.[71–75] However, there are still many valuable questions in
the study of the geometric phase in quantum dot systems. For
example, when we use the QPC as a detector, how the geomet-
ric phase of the DQD system evolves during a quasiperiod in
the pure dephasing or dissipative environment and what is the
physical mechanism of the QPC and the environmental effect
on it? Solving these questions provides some reference for
taking advantage of the DQD systems to construct geometric
quantum logic gates.

In this paper, we employ the QPC as a detector to study
the properties of the geometric phase in a DQD system and
then analyze its effect on the geometric phase. We calculate
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the geometric phase of the DQD system coupled to a QPC in
two kinds of environments according to the Bloch-type rate
equations and the kinematic approach of the geometric phase
given in mixed states under nonunitary evolution. It is shown
that the coupling strength between the two quantum dots has
an enhancement on the geometric phase. Moreover, there is
a notable near-zero region in the geometric phase due to the
coupling between the system and the QPC. Additionally, the
influences of the pure dephasing environment and the dissipa-
tive environment on the geometric phase are analyzed. The
geometric phase is reduced with the increase of the dephas-
ing rate which is generated only by the phase damping of the
system in the pure dephasing environment. In the dissipative
environment, the geometric phase decreases as the relaxation
rate increases, which results from both the energy dissipation
and phase damping of the system.

2. Theoretical framework
We consider a DQD system measured by a QPC as shown

in Fig. 1. The Hamiltonian of this model, H, is given by

H = HS +HPC +HI,

HS = Ela
†
l al +Era†

r ar−Ω(a†
l ar +a†

r al),

HPC = ∑
i=α,β

Eib
†
i bi + ∑

α,β

(Ωαβ b†
β

bα +H.c.),

HI = ∑
α,β

δΩαβ a†
r ar(b

†
β

bα +H.c.), (1)

where HS represents the Hamiltonian of the DQD system. We
assume that only one electron can occupy the DQD system due
to the strong inner and interdot Coulomb repulsions and there
is also only one energy level in each quantum dot El,r

[76] with
Er−El = ε . Ω and a†

l,r (al,r) stand for the coupling strength
between the two quantum dots and the creation (annihilation)
operator of electrons in the DQD, respectively. The Hamilto-
nian for the QPC is expressed as HPC, where b†

α,β (bα,β ) is the
creation (annihilation) operator of the left and right reservoirs
and Eα,β is the left and right reservoir states in the QPC. Ωαβ

represents the hopping amplitude between states Eα and Eβ of
the QPC. The last term HI describes the interaction between
the DQD system and the QPC, which leads to a change in the
hopping amplitude of the QPC, δΩαβ = Ωαβ −Ω

′
αβ

, due to
the location of the electron in the DQD. When the electron
oscillates from the left quantum dot to the right quantum dot,
the tunneling barrier of the QPC changes, causing the hopping
amplitude to change from Ωαβ to Ω

′
αβ

. Eventually, there is
a variation in the current through the QPC. Thereby, the QPC
can measure sensitively which quantum dot the electron is in.

The dynamical evolution of the reduced density matrix
for the system satisfies the Liouville equation

ρ̇(t) =− i
h̄
[HS,ρ(t)]+L ρ(t), (2)

where the first term on the right-hand side describes the uni-
tary evolution of the system and the second term represents the
decoherence caused by the interaction of the system coupled
to a detector and the environments.

Ωαβ

Ω

′Ωαβ

µα

µβ

El Er

Fig. 1. The model of the DQD system coupled with a QPC. The chem-
ical potentials of the left and right reservoirs are µα , µβ and µα > µβ .

Firstly, we consider that the DQD system is only coupled
to the QPC, and the evolution of the reduced density matrix
elements of the electron is written as[40]

ρ̇ll =−iΩ(ρlr−ρrl),

ρ̇lr = iερlr− iΩ(ρll−ρrr)−
Γd

2
ρlr, (3)

where ρll(t) + ρrr(t) = 1, and ρ∗lr(t) = ρrl(t). The diagonal
terms ρll(t) and ρrr(t) are the probabilities of finding the elec-
tron in the left or right quantum dot, respectively. The off-
diagonal terms ρlr(t) and ρrl(t) have an exponential decay with
the decoherence rate Γd = (

√
D−
√

D′)2, which is caused by
the effect of the QPC. D = 2π|Ωαβ |2ρα ρ

β
(µα − µβ ), D′ =

2π|Ω ′
αβ
|2ρα ρ

β
(µα − µβ ), where ρα and ρ

β
are the densities

of states in the reservoirs. When t → ∞, the reduced density

matrix is in the statistical mixture, ρ(t)→
(

1/2 0
0 1/2

)
.

Given that this DQD system is an open system which is
affected by the QPC and the environments, the formulation of
the geometric phase in the mixed states under nonunitary evo-
lution is used[5]

γg(τ) = arg
{ 2

∑
k=1

√
εk(0)εk(τ)

〈
φk(0)|φk(τ)

〉
×exp

[
−
∫

τ

0

〈
φk(t)|φ̇k(t)

〉
dt
]}

, (4)

where εk(t) and φk(t) are the corresponding k-th eigenvalues
and eigenvectors of the reduced density matrix ρ(t) in the
DQD system, and τ is the time after the system completes a
cyclic evolution when it is not affected by the environments.
However, as the system is open due to the external influences,
we define a quasiperiod τ = 2π/ε̃ , where ε̃ =

√
ε2 +4Ω 2 is

the frequency at which the electron oscillates between the two
dots.
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The instantaneous eigenvalues of the reduced density ma-
trix are given by

ε1,2(t) =
1±
√
(ρll−ρrr)

2 +4|ρlr|2
2

. (5)

Correspondingly, the time-dependent eigenvectors are ex-
pressed as

|φ1(t)〉 = c1l|al〉+ c1r|ar〉,
|φ2(t)〉 = c2l|al〉+ c2r|ar〉, (6)

with the coefficients

c1l =
1√

1+ |ρrl|2
(ε1−ρrr)

2

, c1r =
ρrl

ε1−ρrr
c1l,

c2l =
ρlr

ε2−ρll
c2r, c2r =

1√
1+ |ρlr|2

(ε2−ρll)
2

. (7)

For simplicity, we consider the condition where the sys-

tem is prepared in a pure initial state with |φ1(0)〉 =
(

1
0

)
,

|φ2(0)〉 =
(

0
1

)
. Obviously, ε1(0) = 1, ε2(0) = 0 and hence

|φ2(t)〉 does make no sense for the geometric phase. We sub-
stitute Eqs. (5)–(7) into Eq. (4) and finally the geometric phase
γg is written as

γg(τ) = i
∫

τ

0

〈
φ1(t)|φ̇1(t)

〉
dt

= i
∫

τ

0

ρ∗rlρ̇rl−
1
2

∂

∂ t |ρrl|2

|ρrl|2 +(ε1−ρrr)
2 dt. (8)

To associate with the geometric feature of the evolution,
we can express ρ(t) in the Bloch sphere representation as
ρ(t) = 1

2 [1+𝑟(t) ·𝜎(t)], where 𝜎 = (σx,σy,σz) is the vector
of Pauli matrices and 𝑟(t) = (rx(t),ry(t),rz(t)) is the Bloch
vector with[50]

rx(t) = ρlr +ρrl,

ry(t) = i(ρlr−ρrl),

rz(t) = ρll−ρrr. (9)

When ρ(t) is a pure state, |𝑟(t)| = 1; whereas as |𝑟(t)| < 1,
it represents a mixed state. Based on the above initial condi-
tion, the eigenvalues and time-dependent eigenvectors which
contribute to the geometric phase are expressed as

ε1(t) =
1
2
[1+ |𝑟(t)|],

|φ1(t)〉 =
|𝑟(t)|+ rz(t)√

[|𝑟(t)|+ rz(t)]2 + r2
x(t)+ r2

y(t)
|al〉

+
rx(t)+ iry(t)√

[|𝑟(t)|+ rz(t)]2 + r2
x(t)+ r2

y(t)
|ar〉. (10)

Then the geometric phase in Eq. (8) can be rewritten as

γg(τ) =
∫

τ

0

ry(t)ṙx(t)− rx(t)ṙy(t)
[|𝑟(t)|+ rz(t)]2 + r2

x(t)+ r2
y(t)

dt. (11)

3. Results and discussion

In this section, we will discuss the properties of the ge-
ometric phase of the DQD system when we use a QPC as a
detector in the presence of two kinds of environments, namely,
the pure dephasing and dissipative environments, and investi-
gate numerically the influences of the detector and these two
environments on the phase.

3.1. Geometric phase in the pure dephasing environment

Firstly, we consider only the interaction between the
DQD system and the pure dephasing environment. Then
we use the rotation operation, aL = sin θ

2 al − cos θ

2 ar, aR =

cos θ

2 al + sin θ

2 ar, θ = arctan(2Ω/ε), to diagonalize the sys-
tem’s Hamiltonian.[40,77,78] As a result, HS =

ε̃

2 (a
+
L aL−a+R aR)

with ε̃ =
√

ε2 +4Ω 2 and this system is transformed into a
parallel two-level system. The corresponding reduced density
matrix is presented as[41]

ρ̇LL(t) = 0, ρ̇LR(t) = iε̃ρLR(t)−Γφ ρLR(t). (12)

From this equation, we can see that in the pure dephsing en-
vironment, the off-diagonal terms of the system are destroyed
and finally disappear due to the damping of the phase with the
dephasing rate Γφ , whereas the diagonal terms remain in the
initial state. Then together with the role of the QPC, we return
to the initial basic states a+l,r|0〉 and the reduced density ma-
trix ρ(t) is written by tracing out both the QPC and the pure
dephasing environment from the entire system. According to
Ref. [41], the elements of the reduced density matrix satisfy

ρ̇ll = −iΩ(ρlr−ρrl)−2Γφ

Ω 2

ε̃2 (ρll−ρrr)+Γφ

Ωε

ε̃2 (ρlr +ρrl),

ρ̇lr = iερlr−
(

iΩ −Γφ

Ωε

ε̃2

)
(ρll−ρrr)−

Γφ

2

(
1+

ε2

ε̃2

)
ρlr

+2Γφ

Ω 2

ε̃2 ρrl−
Γd

2
ρlr. (13)

We calculate the numerical results of the geometric phase γg

during a quasiperiod τ according to Eqs. (8) and (13).

Figure 2 shows that the geometric phase γg increases with
the coupling strength Ω for different decoherence rate Γd and
finally tends to be stable because ρ(t) that determines γg be-
comes gradually steady from Eq. (8). Simultaneously, the
curves show an interesting area where γg is almost equal to
zero for Γd� 8Ω . For the sake of simplicity, we call this area
as the near-zero region. In this region, the larger Γd is, the
wider the range of the near-zero region is. This is because that
the stronger coupling between the DQD system and the QPC
causes the electron to be localized in a quantum dot for a long
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time, which is related to the quantum Zeno effect.[40] As a con-
sequence, the quantum state in the Bloch sphere hardly evolves
and the solid angle enclosed by the evolution path is approx-
imately zero after a quasiperiod τ . However, in the case of
weaker coupling, such as Γd� 8Ω , the probabilities of finding
the electron in the left or right quantum dot exhibit significant
damped oscillations with the increase of Ω and the change of
the trajectory becomes large. Then the geometric phase is not
zero. Therefore, as we use the QPC to detect the geometric
phase of the DQD system, it is necessary to consider its influ-
ence on the geometric phase and avoid the near-zero region in
order to obtain the desired geometric phase in constructing a
quantum logic gate.[39,79,80]
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Fig. 2. Geometric phase γg of the DQD system versus the coupling
strength Ω between the two quantum dots in the quasiperiod τ with the
fixed dephasing rate Γφ = 0.1ε for different decoherence rate Γd.
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Fig. 3. Bloch sphere representation of the DQD system in the
quasiperiod τ for different coupling strength Ω : Ω = 0.5ε (the dashed
curve), Ω = 1.5ε (the solid curve), Ω = 2.5ε (the chain curve). Other
parameters are chosen as Γd = 1ε and Γφ = 0.1ε .

In order to better understand the relation between the ge-
ometric phase γg and the coupling strength Ω , we show the
evolution path of the open system in the Bloch sphere repre-
sentation for different Ω in Fig. 3. As Ω increases, the width
of the tunneling channel connecting the two quantum dots is
expanded, which accelerates the oscillations of the electron
between the two quantum dots. Meanwhile, the spiral radius
and the length of the path in the Bloch sphere become large

with increasing Ω , showing an augment of γg. This means
that the expansion of the width of the tunneling channel con-
necting the two quantum dots could enhance γg. Besides, the
trend of γg with Ω is influenced by Γd, i.e., it is steeper with
an increase of Γd. So we may manipulate this change of the
geometric phase with the coupling strength by adjusting the
intensity of the interaction of the DQD system with the detec-
tor in practice.

In Fig. 4, the geometric phase γg as a function of the
coupling strength Ω for different dephasing rate Γφ is plot-
ted graphically. The figure shows that the slope of γg with Ω

is distinct for different dephasing rate Γφ . For a small Γφ , γg is
rised rapidly with Ω , whereas if Γφ is large, such as Γφ = 5ε ,
γg is increased slowly. As Γφ departs from zero, the effect of
the pure dephasing environment on the DQD system becomes
strong, which causes the damping of the off-diagonal terms of
ρ(t) and destroys the oscillations of the electron in the DQD.
With the phase damping of the system, the path in the Bloch
sphere is short enough to approach a line from its initial point
to the final point, resulting in a decay of γg.[74] As pointed
out in Refs. [44,67], the open DQD system has no geometric
phase as the dephasing rate tends to infinity. To some extent,
the geometric phase could reflect the strength of the interaction
between the system and the environment.
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Fig. 4. Geometric phase γg of the DQD system versus the coupling
strength Ω between the two quantum dots in quasiperiod τ with the
fixed decoherence rate Γd = 0.01ε for different dephasing rate Γφ .

3.2. Geometric phase in the dissipative environment

In the subsection, we introduce the dissipative environ-
ment into the DQD system coupled to a QPC. In the case
of the DQD system and the dissipative environment, the re-
duced density matrix proceeded by the same rotation opera-
tion, aL = sin θ

2 al− cos θ

2 ar, aR = cos θ

2 al + sin θ

2 ar, is given
by

ρ̇LL(t) =−ΓrρLL(t), ρ̇LR(t) = iε̃ρLR(t)−
Γr

2
ρLR(t). (14)

In this process, ρ̇LL(t) = −ΓrρLL(t) with the relaxation
rate Γr indicates that the system relaxes from its initial energy
state to the lower energy state by emitting photons or phonons,
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and ρLR(t) decays with time. Then we include the interac-
tion of the QPC, the reduced density matrix has the following
forms:[40]

ρ̇ll = −iΩ(ρlr−ρrl)−
Γr

2
Ωε

ε̃2 (ρlr +ρrl)

− Γr

4

[(
1− ε

ε̃

)2
ρll−

(
1+

ε

ε̃

)2
ρrr

]
,

ρ̇lr = iερlr− iΩ (ρll−ρrr)−
Γr

2
ε

ε̃
(ρll−ρrr)

+Γr

[
Ω

ε̃
− 1

2
ρlr−

(
Ω

ε̃

)2

(ρlr +ρrl)

]
− Γd

2
ρlr. (15)

Figure 5 presents the effect of the coupling strength Ω on
the geometric phase γg for various decoherence rate Γd. On the
whole, γg is increased with increasing Ω and then tends to be
stable until the reduced density matrix ρ(t) is stabilized. Simi-
larly, we can see that γg exhibits an obvious near-zero region as
well, which is attributed to the stronger decoherence between
the system and the QPC, freezing the electron in the DQD sys-
tem and making the evolution path shorter. Moreover, its range
is also constantly expanded as Γd increases. These phenomena
are also reflected in Fig. 2, which indicates fully that whether
the system is in a pure dephasing environment or a dissipa-
tive environment, it is supposed to consider the influence of
the decoherence caused by the QPC on the geometric phase
when we use it as a detector to study the geometric phase of
the DQD system.
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γ
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/
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0.4

0.6

0.8

1.0

0 1 2

Ω/ε

3

Fig. 5. Geometric phase of the DQD system versus the coupling
strength Ω between the two quantum dots in quasiperiod τ with the
fixed relaxation rate Γr = 0.1ε for different decoherence rate Γd.

As shown in Fig. 6, we show the evolution path of the
open DQD system in the Bloch sphere representation for dif-
ferent coupling strength Ω . Clearly, the larger values of Ω im-
ply a bigger radius of the spiral trajectory and a larger geomet-
ric phase after quasiperiod τ .[49] In this situation, an increase
of the coupling strength would accelerate the oscillations of
the electron between the quantum dots and affect the evolu-
tion of the quantum state in the Bloch sphere, which leads to
an increase of γg. This implies that enhancing the quantum
coherence of the system could acquire the larger geometric

phase. Moreover, the increasing relationship of the geometric
phase with the coupling strength is different for various deco-
herence rates. Specifically speaking, it will gradually become
steep as the decoherence rate increases. We can note that it
is important to choose a proper value of the decoherence rate
aroused from the QPC for the purpose of obtaining a robust
geometric phase during the measurement.
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Fig. 6. Bloch sphere representation of the DQD system in a quasiperiod
τ for different coupling strength Ω : Ω = 0.5ε (the dashed curve),
Ω = 1.5ε (the solid curve), Ω = 2.5ε (the chain curve). Other parame-
ters are chosen as Γr = 0.1ε and Γd = 1ε .
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Fig. 7. Geometric phase of the DQD system versus the coupling
strength Ω between the two quantum dots in the quasiperiod τ with
the fixed decoherence rate Γd = 0.01ε for different relaxation rate Γr.

In Fig. 7, we show the evolution of the geometric phase
γg with the coupling strength Ω for different relaxation rate Γr.
It can be seen from this figure that the changing trend of γg as
a function of Ω is significantly different for various Γr. Ex-
plicitly, for a given Ω , γg will be reduced with the augment of
Γr, which could induce a strong dissipation and a short relax-
ation time. As Γr deviates from zero, the relaxation time is de-
creasing and the system will dissipate energy and phase to the
environment in a single direction.[81] When Γr is large, such
as Γr = 5ε , the relaxation time would be close to or even less
than the quasiperiod τ . Under the circumstances, the energy
dissipation and phase loss of the system towards the environ-
ment become more and more obvious, so the geometric phase
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becomes small.[52,54,66,75] Namely, the energy dissipation and
the phase damping of the system could decrease the geometric
phase. If Γr is a very small value, then the relaxation time is
much longer than τ . In this case, the environmental effect can
be ignored and thus the geometric phase shows a large value
within τ . This behavior of γg against the environmental dis-
turbance can be used to deal with certain types of errors in the
geometric quantum information.

4. Conclusions
We study the geometric phase of an open DQD system

coupled with a QPC in the pure dephasing and dissipative en-
vironments and focus on analyzing the influences of the detec-
tor and the two kinds of environments on it. It is demonstrated
that the coupling strength between the two quantum dots has
an enhanced impact on the geometric phase. Because the ex-
pansion of the width of the tunneling channel connecting the
two quantum dots accelerates the oscillations of an electron
between the quantum dots and increases the length of the evo-
lution path in the Bloch sphere. Moreover, the geometric phase
shows a near-zero region due to the quantum Zeno effect that
stronger coupling between the system and the QPC leads to
the electron to be frozen in one quantum dot and the solid an-
gle enclosed by the evolution path is close to zero. In the pure
dephasing environment, the geometric phase is decreased with
the increase of the dephasing rate which originates from the
phase damping of the system. In the dissipative environment,
it is illustrated that the geometric phase is reduced as the relax-
ation rate grows which results from both the energy dissipation
and phase damping of the system. The results provide a the-
oretical reference for using the geometric phase to construct
quantum logical gates based on quantum dot systems. More
researches on the geometric phase in the DQD system can be
carried out, such as the relationship between the current and
the geometric phase in different environments.
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[8] Tong D M, Sjöqvist E, Filipp S, Kwek L C and Oh C H 2005 Phys. Rev.

A 71 032106
[9] Wu B, Liu J and Niu Q 2005 Phys. Rev. Lett. 94 140402

[10] Carollo A, Fuentes-Guridi I, Franca S M and Vedral V 2003 Phys. Rev.
Lett. 90 160402

[11] Cai X J and Zheng Y J 2016 Phys. Rev. A 94 042110
[12] Cai X J and Zheng Y J 2017 Phys. Rev. A 95 052104
[13] Cai X J and Zheng Y J 2018 J. Chem. Phys. 149 094107
[14] Cai X J 2019 Entropy 21 1040

[15] Cai X J 2020 Sci. Rep. 10 88
[16] Wang Y M, Du G and Liang J Q 2012 Chin. Phys. B 21 044207
[17] Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z and Wang C K

2017 Chin. Phys. B 26 098508
[18] Chiao R Y and Wu Y S 1986 Phys. Rev. Lett. 57 933
[19] Tomita A and Chiao R Y 1986 Phys. Rev. Lett. 57 937
[20] Jones J A, Vedral V, Ekert A and Castagnoli G 2000 Nature 403 869
[21] Ekert A, Ericsson M, Hayden P, Inamori H, Jones J A, Oi D K L and

Vedral V 2000 J. Mod. Opt. 47 2501
[22] Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94
[23] Fuentes-Guridi I, Girelli F and Livine E 2005 Phys. Rev. Lett. 94

020503
[24] Wang X B and Keiji M 2001 Phys. Rev. Lett. 87 097901
[25] Huang Y Y, Wu Y K, Wang F, Hou P Y, Wang W B, Zhang W G, Lian

W Q, Liu Y Q, Wang H Y, Zhang H Y, He L, Chang X Y, Xu Y and
Duan L M 2019 Phys. Rev. Lett. 122 010503

[26] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
[27] Falci G, Fazio R, Palma G M, Siewert J and Vedral V 2000 Nature 407

355
[28] Xie H, Li H C, Yang R C, Lin X and Huang Z P 2007 Chin. Phys. 16

3382
[29] Jin X R, Zhang Y Q, Zhang S and Jin D Z 2007 Chin. Phys. 16 1220
[30] Zhang Y Q, Jin X R and Zhang S 2008 Chin. Phys. B 17 424
[31] Yang R C, Li H C, Lin X and Huang Z P 2008 Chin. Phys. B 17 180
[32] Zhang L B, Song C, Wang H and Zheng S B 2018 Chin. Phys. B 27

070303
[33] Zhu A D, Zhang S, Yeon K H, Yu S C and Um C I 2007 Chin. Phys. B

16 1559
[34] Zhou H, Li Z K, Wang H Y, Chen H W, Peng X H and Du J F 2016

Chin. Phys. Lett. 33 060301
[35] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[36] Burkard G, Loss D and DiVincenzo D P 1999 Phys. Rev. B 59 2070
[37] Zanardi P and Rossi F 1999 Phys. Rev. B 59 8170
[38] Zanardi P and Rossi F 1998 Phys. Rev. Lett. 81 4752
[39] Brum J A and Hawrylak P 1997 Superlattice. Microst. 22 431
[40] Gurvitz S A, Fedichkin L, Mozyrsky D and Berman G P 2003 Phys.

Rev. Lett. 91 066801
[41] Kang L S, Zhang Y H, Xu X L and Tang X 2017 Phys. Rev. B 96

235417
[42] Levinson Y 1997 Europhys. Lett. 39 299
[43] van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha

S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1
[44] Yi X X, Wang L C and Wang W 2005 Phys. Rev. A 71 044101
[45] Lombardo F C and Villar P I 2010 Phys. Rev. A 81 022115
[46] Rezakhani A T and Zanardi P 2006 Phys. Rev. A 73 052117
[47] Luo D W, You J Q, Lin H Q, Wu L A and Yu T 2018 Phys. Rev. A 98

052117
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