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Lump and interaction solutions to
the (3+1)-dimensional Burgers equation∗
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The (3+1)-dimensional Burgers equation, which describes nonlinear waves in turbulence and the interface dynamics,
is considered. Two types of semi-rational solutions, namely, the lump–kink solution and the lump–two kinks solution, are
constructed from the quadratic function ansatz. Some interesting features of interactions between lumps and other solitons
are revealed analytically and shown graphically, such as fusion and fission processes.
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1. Introduction
The balance between nonlinearity and dispersion leads

to various localized waves. Among them, soliton is a clas-
sic type of nonlinear wave which preserves its shape during
space–time evolution. It arises as a fundamental phenomenon
in diverse physical systems, such as plasma physics, nonlinear
optics, and hydrodynamics.[1] Unlike solitons localized in cer-
tain direction, lumps are rational function solutions localized
in all directions in space.[2] Systems in which lumps occur in-
clude the ferromagnetic slab,[3] supermembrane,[4] and thin
fluid layer.[5] Recently, the study of lump solution to nonlin-
ear partial differential equations has attracted more and more
attention. Based on the Hirota bilinear formulation, lump solu-
tions to the integrable systems are obtained from the quadratic
functions ansatz, such as the Kadomtsev–Petviashvili (KP)
equation,[6] the generalized KP equation,[7] and the Sawada–
Kotera equation.[8] Hinted by these results, a wide diversity of
interaction solutions between lumps and other types of solitons
are studied by combining an exponential function in quadratic
functions.[9–22]

This work deals with the well-known (3+1)-dimensional
Burgers (3DBG) system[23–25]

ut = α(uxx +2vux)+β (uyy +2uuy)+ γ(uzz +2wuz),

ux = vy,

uz = wy, (1)

which describes the propagation of nonlinear waves in turbu-
lence and the interface dynamics.[23] The elastic interactions
among different types of nonlinear waves, such as the embed-
ded ring-soliton on a periodic wave background, are studied by
using the modified mapping method.[23] Furthermore, abun-
dant localized excitations in (3+1)-dimensions, such as the

paraboloid-type camber soliton and a dipole type dromion, are
revealed via the multi-linear variable separation approach.[24]

Obviously, if u is z independent, the system (1) will degenerate
to the known (2+1)-dimensional Burgers equation.[26,27]

This paper is organized as follows. In the next section,
the lump solution of the 3DBG system is obtained by apply-
ing a direct method based on Hirota bilinear formulation. In
Section 3, the interaction solution between one lump and a sin-
gle kink are obtained by adding an exponential function in the
quadratic function. The second type of semi-rational solution,
which contains the lump and the coupled stripe soliton pair, is
revealed in Section 4. The last section gives a short summary
and discussion.

2. Lump solution
The 3DBG system (1) can be transformed to the follow-

ing Hirota bilinear form:

f fyt − fy ft +α [ fy fxx− f fxxy +2v0( fx fy− f fxy)]

+β
[

fy fyy− f fyyy +2u0( f 2
y − f fyy)

]
+γ [ fy fzz− f fyzz +2w0( fy fz− f fyz)] = 0, (2)

through the Cole–Hopf transformation

u = (ln f )y +u0, v = (ln f )x + v0, w = (ln f )z +w0, (3)

where u0, v0, and w0 are real constants.
In order to construct lump solutions to the 3DBG sys-

tem (1), we assume that the function f takes the following
quadratic form:

f = g2 +h2 +a11,

g = a1x+a2y+a3z+a4t +a5,
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h = a6x+a7y+a8z+a9t +a10, (4)

where ai (i = 1,2, . . . ,11) are the real parameters to be deter-
mined later. Substituting Eq. (4) into the bilinear equation (2)
and setting to zero all the coefficients of the space–time vari-
ables x, y, z, and t, we obtain a set of algebraic equations in
ai. Solving these equations yields many classes of solutions,
we choose the following one with the least parameters deter-
mined:

a1 =
√
−A/α, a4 = αv0a1 +βu0a2 + γw0a3,

a9 = αv0a6 +βu0a7 + γw0a8,

A = [αa2
6 +β (a2

2 +a2
7)+ γ(a2

3 +a2
8)]. (5)

Obviously, the parameters {a2,a3,a5,a6,a7,a8,a10,a11} are
left as arbitrary and {a4,a9} are relevant to the seed solution
{u0,v0,w0}.

By using the transformation (3), the explicit solution of
system (1) in rational form can be expressed as

u =
2(a2g+a7h)
g2 +h2 +a11

+u0, v =
2(a1g+a6h)
g2 +h2 +a11

+ v0,

w =
2(a3g+a8h)
g2 +h2 +a11

+w0, (6)

where

g =
√
−A/αx+a2y+a3z

+

(
αv0
√
−A/α +βu0a2 + γw0a3

)
t +a5,

h = a6x+a7y+a8z+(αv0a6 +βu0a7 + γw0a8)t +a10.

To ensure the solution (6) rationally localized in all directions
in space, one notes that the constant a1 in Eq. (5) must be real

and postive. Hence, we introduce the constraint condition

αA = α[αa2
6 +β (a2

2 +a2
7)+ γ(a2

3 +a2
8)]< 0.

Now, let us analyze the characteristics of space–time evo-
lution of the lump structure. For simplicity, we take the lump
solution u in x–y plane with z = 0 as an example. The location
of a lump solution is defined at the point where the max |u| is
attained and can be traced out by assuming the partial deriva-
tives ux and uy to be zero. From ux = uy = 0, it is found that
the extreme values locate at the two critical points[

(a2a9−a4a7)t +(a2a10−a5a7)

a1a7−a2a6
,

(a4a6−a1a9)t +(a5a6−a1a10)

a1a7−a2a6

±

√
(a1a7−a2a6)2a11

a2
2 +a2

7

]
. (7)

Choosing u0 = 0, the amplitude of u is

|u|max =

√
(a2

2 +a2
7)(a1a7−a2a6)2

a11[1+(a1a7−a2a6)2]
. (8)

From Eq. (7), we know that the lump peak/valley moves along
the route line

y =
a4a6−a1a9

a2a9−a4a7
x+

a4a10−a5a9

a2a9−a4a7

±

√
(a1a7−a2a6)2a11

a2
2 +a2

7
, (9)
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Fig. 1. Plots of the lump structures in solution (6) with parameters α =−2, β = γ = a3 =−w0 = 1, −a2 = a7 = a11 = 0.5, a5 = a10 = u0 =
v0 = 0, and a6 = 0.25. (a) The three-dimensional plot of u. (b) The contour plot of u in x–y plane at different time. (c) The three-dimensional
plot of v. (d) The three-dimensional plot of w.
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which implies that the lump’s peak and valley are symmet-
ric to each other with respect to the straight line y = [(a4a6−
a1a9)x+(a4a10−a5a9)]/(a2a9−a4a7). To illustrate the lump
structure more clearly, let us look at some figures. Figure 1(a)
exhibits the three-dimensional lump structure of solution u in
x–y plane with z = t = 0. From Eq. (8), the amplitude of u can
be approximately calculated as 0.836 which is in accordance
with the figure. Figure 1(b) shows the contour plots of u at
different time. It is obvious that the locations of lump’s peak
and valley are symmetric to the straight line y = −x/2. Fig-
ure 1(c) shows the lump structure v in x–z plane with y= t = 0.
Figure 1(d) displays the lump structure of w in y–z plane with
x = t = 0 on a constant background w0 =−1.

3. Lump interacting with one stripe soliton
As is well known, one can always take the function f in

the exponential form to obtain single or multiple soliton solu-
tions. Based on this fact, the exponential function is added to
quadratic function f , which reads

f = g2 +h2 +a11 eξ +a12,

g = a1x+a2y+a3z+a4t +a5,

h = a6x+a7y+a8z+a9t +a10,

ξ = k1x+ k2y+ k3z+ωt, (10)

with ai, ki, and ω being real parameters to be determined later.
Substituting Eq. (10) into the bilinear equation (2) yields, after
elimination of the coefficients of polynomials x, y, z, and t, a
set of more algebraic equations. From these equations, a non-
trivial solution of four wave parameters {a1,a4,a9,ω} can be
determined as

a1 =
√
−A/α, a4 = αv0a1 +βu0a2 + γw0a3,

a9 = αv0a6 +βu0a7 + γw0a8,

ω = α(k2
1 + v0k1)+β (k2

2 +u0k2)+ γ(k2
3 +w0k3),

A = [αa2
6 +β (a2

2 +a2
7)+ γ(a2

3 +a2
8)]. (11)

The expression of a1 leads to the constraint condition α[αa2
6+

β (a2
2 +a2

7)+ γ(a2
3 +a2

8)]< 0. Through the transformation (3),

the lump-kink solution of the 3DBG system (1) is obtained as

u =
2(a2g+a7h)+a11k2 eξ

g2 +h2 +a11 eξ +a12
+u0,

v =
2(a1g+a6h)+a11k1 eξ

g2 +h2 +a11 eξ +a12
+ v0,

w =
2(a3g+a8h)+a11k3 eξ

g2 +h2 +a11 eξ +a12
+w0, (12)

where

g =
√
−A/αx+a2y+a3z

+(αv0
√
−A/α +βu0a2 + γw0a3)t +a5,

h = a6x+a7y+a8z+(αv0a6 +βu0a7 + γw0a8,)t +a10,

ξ = k1x+ k2y+ k3z+[α(k2
1 + v0k1)

+β (k2
2 +u0k2)+ γ(k2

3 +w0k3)]t. (13)

The semi-rational solution (12) describes the interaction
between the lump and one stripe soliton due to the appearance
of both exponential terms and quadratic functions. Its asymp-
totic behaviors of propagation implies two types of interesting
nonlinear phenomena, namely, fusion and fission. To figure
out this, we take u in solution (12) as an example, with the as-
sumption that x, y, and z are constants and ω < 0. As t→−∞,
it is obvious that the exponential term eξ is the dominant one
and u→ u0 + k2, which exclude the existence of lump struc-
ture. On the contrary, the rational function g2 + h2 + a12 is
the dominant term and u→ u0 +2(a2g+a7h)/(g2 +h2 +a12)

as t → +∞. The whole process is the fission phenomenon as
presented in Fig. 2 with ω = −0.09 < 0. At time t = −100,
only the single-kink structure can be observed in Fig. 2(a). As
time approaches zero, the lump structure trends to appear and
thrive. In Fig. 2(b), one can observe that one stripe soliton has
split into one lump structure and one kink soliton at time t = 0.
Figure 2(c) shows that the lump structure tends to depart from
the soliton line as time goes on. Figure 3 is the correspond-
ing contour plot. One can also observe the fusion process with
parameters α = a12 = 2, β = γ = −1, a2 = a7 = 0.25, a3 =

−a6 = a8 = 0.5, a5 = a10 = u0 = v0 = k3 = 0, a11 = w0 = 1,
and k1 = k2 = 0.3. Here we omit the plot.
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Fig. 2. The three-dimensional plots of the lump–kink solution u in Eq. (12) with z = 0 at different time: (a) t =−50, (b) t = 0, (c) t = 20. The
free parameters are select as−α = a12 = 2, β = γ = a11 =w0 = 1,−a2 = k1 = k2 = 0.3,−a3 = a6 = a7 = 0.4, and a5 = a10 = u0 = v0 = k3 = 0.
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Fig. 3. The contour plots of the lump-kink solution u in Eq. (12) with z = 0 at different time. The free parameters selection are the same as
Fig. 2. (a) t =−50; (b) t = 0; (c) t = 20.

4. Interaction between the lump and a pair of
stripe solitons
In this section, we focus on the interaction solution be-

tween the lump and a pair of stripe solitons. To this end, we
assume

f = g2 +h2 +a11 eξ +a12 e−ξ +a13,

g = a1x+a2y+a3z+a4t +a5,

h = a6x+a7y+a8z+a9t +a10,

ξ = k1x+ k2y+ k3z+ωt, (14)

where the real parameters ai, ki, and ω are to be determined
later. Substituting Eq. (14) into Eq. (2) and proceeding as in
the previous section, we obtain a nontrivial solution of five de-
termined wave parameters {a1,a4,a9,k1,ω}

a1 =
√
−A/α, a4 = αv0a1 +βu0a2 + γw0a3,

a9 = αv0a6 +βu0a7 + γw0a8,

k1 =

√
−

βk2
2 + γk2

3
α

, ω = αv0k1 +βu0k2 + γw0k3,

A = [αa2
6 +β (a2

2 +a2
7)+ γ(a2

3 +a2
8)], (15)

with constraint conditions α[αa2
6+β (a2

2+a2
7)+γ(a2

3+a2
8)]<

0 and α[βk2
2 + γk2

3]< 0.
Using the transformation (3), we have the following ex-

plicit interaction solution to the 3DBG system (1):

u =
2(a2g+a7h)+ k2(a11 eξ −a12 e−ξ )

g2 +h2 +a11 eξ +a12 e−ξ +a13
+u0,

v =
2(a1g+a6h)+ k1(a11 eξ −a12 e−ξ )

g2 +h2 +a11 eξ +a12 e−ξ +a13
+ v0,

w =
2(a3g+a8h)+ k3(a11 eξ −a12 e−ξ )

g2 +h2 +a11 eξ +a12 e−ξ +a13
+w0, (16)

where

g =
√
−A/αx+a2y+a3z

+(αv0
√
−A/α +βu0a2 + γw0a3)t +a5,

h = a6x+a7y+a8z+(αv0a6 +βu0a7 + γw0a8)t +a10,

ξ =

√
−

βk2
2 + γk2

3
α

x+ k2y+ k3z+(αv0k1 +βu0k2 + γw0k3)t.
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Fig. 4. The three-dimensional plots of the lump–two kinks solution u in Eq. (16) with z = 0 at different time: (a) t = −25, (b) t = −5, (c)
t = 0, (d) t = 5, (e) t = 25. The free parameters are selected as α = a11 = a12 = 1, β = γ = w0 = −1, a2 = a3 = a7 = a8 = v0 = 0.5,
a5 = a10 = a13 = u0 = k3 = 0, and a6 = 0.1.
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Fig. 5. The contour plots of the lump–two kinks solution u in Eq. (16) with z = 0 at different time: (a) t = −25, (b) t = −5, (c) t = 0, (d)
t =−5, (e) t = 25. The free parameters are the same as those in Fig. 4.

The semi-rational solution (16) depicts the interactions
between the lump and a pair of stripe solitons. Then, some
interesting asymptotic behaviors of the solution should be
pointed out. Similarly, we take the solution u as an exam-
ple. As t→±∞, the solution u approaches the resonant stripe
soliton limit[28]

u =
k2(a11 eξ −a12 e−ξ )

(a2
4 +a2

9)t
2 +a11 eξ +a12 e−ξ

+u0, (17)

while for t→ 0, the rational lump thrives and attains its peak.
Such kind phenomenon is illustrated in Figs. 4 and 5 by giving
three-dimensional and corresponding contour plots.

5. Discussion and conclusion
In this work, the 3DBG system is studied by employing a

direct method based on Hirota bilinear formulation. The lump
solution and two types of semi-rational solutions are obtained
from the quadratic function ansatz. Some interesting features
of wave interaction are revealed. The first type of semi-rational
solution describes the interaction between the lump and one
stripe soliton, which leads to two opposite processes of fission
and fusion. The second type of semi-rational solution con-
tains the lump and the coupled stripe soliton pair. As shown in
Figs. 4 and 5, one can observe that a lump arises from the
resonant stripe soliton and is swallowed by it finally. It is
hoped that the result can be helpful for understanding non-
linear waves in turbulence and interface dynamics.
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