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A new crystal growth theoretical model is established for the low-dimensional nanocrystals on an isotropic and quasi-
free sustained substrate. The driven mechanism of the model is based on the competitive growth among the preferential
growth directions of the crystals possessing anisotropic crystal structures, such as the hexagonal close-packed and wurtzite
structures. The calculation results are in good agreement with the experimental findings in the growth process of the low-
dimensional Zn nanocrystals on silicone oil surfaces. Our model shows a growth mechanism of various low-dimensional
crystals on/in the isotropic substrates.
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1. Introduction
Low-dimensional nanocrystals, including nanowires,

nanorods, nanobelts, nanoplates, and nanosheets, etc., have
triggered numerous fundamental and technological studies for
their unique properties in recent decades.[1–3] Using them as
active components, various types of nanoscale devices have
been fabricated, such as photovoltaic,[4] thermoelectric,[5] and
electromechanical[6] devices. The controllable growth of the
low-dimensional nanocrystals in terms of the morphologies,
sizes and microstructures is urgently desired for their practical
applications.

These requirements have led to a rapidly evolving
research on the preparation methods and growth mecha-
nisms of the low-dimensional nanocrystals. To our knowl-
edge, vapor deposition including physical vapor deposition
(PVD) and chemical vapor deposition (CVD) is one of the
most widespread methods for preparing the low-dimensional
nanocrystals. Most of the vapor growth processes are based
on solid substrates and dominated by the vapor-solid (VS)[2]

or vapor-liquid-solid (VLS)[7] mechanism.
For the VS process, the one- or two-dimensional

nanocrystals may be controllably fabricated on the well-
designed substrates with specific patterns or crystal structures
acting as templates.[3,8,9] However, the removal of the tem-
plates may damage the morphologies and microstructures of
the nanocrystals. The well-known VLS growth method uses
metal nanoparticles that form low-melting point eutectic al-
loys with the targeted materials to serve as the catalytic seeds

for the one- or two-dimensional crystal growth.[7,10] Except
for the VS growth, the VLS and its variants, such as the vapor-
solid-solid (VSS)[11] growth, require the use of suitable cata-
lysts.

Recently, we reported the growth of various low-
dimensional zinc (Zn) nanocrystals (for instance, nanowires,
nanorods, nanobelts and nanoplates) with two main preferen-
tial growth directions of the [0001] and [011̄0] directions on
silicone oil surface by thermal evaporation, which is catalyst-
free and achieved at room temperature.[12,13] Obviously, this
phenomenon can not be explained by the VS and VLS mech-
anism. It is suggested that the growth of the low-dimensional
Zn nanocrystals on the silicone oil surface should be related to
the principle of minimum surface energy of the system.[14]

According to the theory proposed by Bravais and later
modified by Donnay and Harker,[15] the crystal microstruc-
ture and morphology are closely related to its intrinsic crystal
structure. In this case, the growth rates of the crystal planes
are reversely proportional to the reticular densities, i.e., the
number of lattice points per unit surface. In other words, there
is a growth priority among the crystal planes corresponding
to different growth directions, which results in a competitive
growth where the crystal planes along the preferential growth
directions overgrow the others.

Previous researches showed that the anisotropic crystal
structures, such as the hexagonal close-packed (Zn, Be, Mg,
Cd, Ti, etc.) and wurtzite (ZnO, ZnS, CdS etc.) structures,
usually possess preferential growth directions owing to the
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asymmetry of these crystal structures.[16–18] To be more ex-
act, a crystal system with relatively less symmetry operations
exhibits a stronger preferential growth tendency. For exam-
ple, compared with those of the hexagonal close-packed and
wurtzite structure, the characteristics of preferential growth di-
rections of the face center cubic and zincblende structure are
weaker due to their higher symmetry.

On the other hand, the liquid surface can be consid-
ered as an isotropic and quasi-free sustained substrate, where
the deposition atoms diffuse randomly and freely.[19,20] The
mean square displacement of the deposition atoms is given by〈
∆r2
〉
= 4D∆t, where D is the diffusion coefficient and ∆t is

the diffusion time.[21–23] The deposition atoms exhibit larger
diffusion coefficients on the liquid surfaces than those on the
solid substrates at room temperature.[19] Generally, the atomic
diffusion and the growth of nanocrystals on the epitaxial in-
terfaces are strictly guided by the crystal structures of the sub-
strate surfaces. However, there is no need for the nanocrys-
tals grown on the liquid substrate to match the microstructures
of the amorphous isotropic liquid surface. The liquid surface
effects mentioned above may highlight the characteristics of
intrinsic preferential growth directions.

In this paper, we establish a new low-dimensional crys-
tal growth model on the isotropic and quasi-free sustained
substrate. The low-dimensional crystal growth does not de-
pend on templates and catalysts, but is driven by the com-
petitive growth among the preferential growth directions of
the crystals with anisotropic crystal structures. The model
gives a good explanation for the growth process of the low-
dimensional Zn nanocrystals on the silicone oil surface. Fur-
thermore, the model indicates the possibility to prepare various
low-dimensional crystals on/in the isotropic substrates.

2. Model description
We suppose that atoms are deposited on an isotropic and

quasi-free sustained substrate with constant flux f . The low-
dimensional crystal growth model is described as follows:

(1) The deposition atoms diffuse freely and randomly on
the substrate, then they nucleate and form seed crystals. The
morphology of each seed crystal is a cuboid with sizes of
l0 ×w0 × h, where l0 and w0 are the initial length and width,
respectively, and the height h is assumed to be a constant due
to its tiny variation within 10%. The initial aspect ratio l0/w0

equals the priority ratio δ of the two preferential growth direc-
tions along the length and width directions.

(2) In the next growth process, the atoms deposited on
a seed crystal upper surface and the effective diffusion area
πR2 ∼ π

〈
∆r2
〉

around it aggregate to the seed crystal and
continue to diffuse along the crystal surface until the lowest
surface energy is reached. Here R is the average diffusion dis-
placement.

(3) δ > 1 (for the case of δ < 1, the discussion is similar).
In the first growth stage, let us suppose that the aspect ratio l/w
of the crystal is invariable, i.e., l/w = l0/w0 = δ . Both the
width w and length l of the seed crystal increase gradually un-
til w reaches its maximum value w1. Subsequently, the width
of the crystal, i.e., w1, is fixed and the adatoms contribute to
the increment of the crystal length l, which facilitates the one-
dimensional crystal growth.

(4) δ = 1. In this case, it is suggested that the aspect
ratio of the crystal is a constant during the whole growth pro-
cess, i.e., l/w = l0/w0 = 1. Finally, a two-dimensional crystal
forms.

3. Results and discussion
(1) One-dimensional crystal growth model (δ > 1).
According to the above model, the one-dimensional crys-

tals on the isotropic and quasi-free sustained substrates may
go through four growth stages ideally.

Stage I: w0 6 w < w1, δw0 6 l < δw1.

l

w

R

R

dl/

Fig. 1. The schematic illustration of the one-dimensional crystal growth
at stage I.

This stage may be considered as a coarsening process
of the seed crystal, in which l/w = δ . As shown in Fig. 1,
the mass supply to the seed crystal coarsening during time
interval dt consists of two parts: (i) the deposition atoms
on the seed crystal upper surface and in the tint area around
the seed crystal, which is the effective diffusion area, i.e.,(
lw+2lR+2wR+πR2

)
f dt, (ii) the deposition atoms in the

ambient dark area, which will be involved in the effective dif-
fusion area with the seed crystal coarsening during time in-
terval dt, i.e., [(2R+w) dl +(2R+ l) dw] f t. During this pro-
cess, the seed crystal extends (l dw+wdl)h. According to the
law of conservation of mass, one can have the following equa-
tion: (

lw+2lR+2wR+πR2) f dt +
[
(2R+w) dl

+ (2R+ l) dw
]

f t = (l dw+wdl)h. (1)

Due to l/w = δ at stage I, equation (1) can be written as

dw
dt

+

[
δw2 +2(δ +1)Rw+πR2

]
f

(2δw+2δR+2R) f t −2δhw
= 0. (2)
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For convenience, equation (2) is rewritten as

dt
dw

+
2δw+2δR+2R

δw2 +2(δ +1)Rw+πR2 t

=
2δhw

[δw2 +2(δ +1)Rw+πR2] f
. (3)

From Eq. (3), one obtains

t =
δh
f w2 +C1

δw2 +2(δ +1)Rw+πR2 . (4)

Using Eq. (4) under the initial condition of w(0) =w0, we
find C1 =− δh

f w2
0, and inserting Eq. (4) yields

t =
δh
f

(
w2 −w2

0
)

δw2 +2(δ +1)Rw+πR2 . (5)

Rearrangement of formula (5) yields

w =
(δ +1)Rt
δ ( h

f − t)
+
{[ (δ +1)Rt

δ ( h
f − t)

]2
+

πR2t + δh
f w2

0

δ ( h
f − t)

}1/2
. (6)

Thus, the corresponding length l is

l =
(δ +1)Rt

h
f − t

+
{[ (δ +1)Rt

h
f − t

]2
+

δπR2t + δ 2h
f w2

0
h
f − t

}1/2
. (7)

The previous research[19] showed that the diffusion coef-
ficient D of metallic atoms on the silicone oil surface is of the
order of 10−11 cm2/s. Therefore, R is nearly 100 nm. The Zn
crystals exhibit the hexagonal close-packed crystal structure
with two main preferential growth directions, i.e., the [0001]
and [011̄0] directions.[18,24] The priority ratio δ should be ap-
proximately equal to the average aspect ratio of the crystals.
The Zn nanocrystals prepared under the conditions of the de-
position rate f = 0.01 nm/s and the film thickness H = 8.0 nm
possess an average aspect ratio of 12.[13] In this case, it is sug-
gested that δ = 12. Moreover, let us suppose that the initial
size of the seed crystal is w0 = 1 nm and h = 24 nm.
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Fig. 2. The growth behaviors of the length and width of the one-
dimensional Zn nanocrystals with time at stage I for δ = 12.

According to expressions (6) and (7), the dependence of
the length l and width w of the one-dimensional Zn nanocrys-
tals on time t at stage I are plotted on Fig. 2. As a whole, both
the length l and width w of the seed crystal increase gradually
with time t during the coarsening process, as shown in Fig. 2.
In the initial phase, the length l and the width w increase in ve-
locities of about 7.1 and 0.6 nm/s, respectively. Subsequently,
their growth velocities slow down to nearly uniform values of
2.0 and 0.2 nm/s, respectively.

Stage II: w = w1, δw1 6 l < 2λ .
It can be seen that the growth velocity of the width w

has dropped to 0.2 nm/s at the end of stage I. Additionally,
in the case of the deposition rate f = 0.01 nm/s and the film
thickness H = 8.0 nm, the width statistical distribution of the
as-grown one-dimensional Zn nanocrystals on the silicone oil
surface is well fitted by the lognormal distribution, and most of
them are less than 100 nm in width.[12] Therefore, there seems
to be a maximum width w1 = 100 nm. After that, the width
is fixed and all the adatoms are used for the length increment,
i.e., stage II.

w1

l

R

R

Fig. 3. The schematic illustration of the one-dimensional crystal growth
at stage II.

At stage II, as shown in Fig. 3, the mass supply to the
length growth during time interval dt consists of two parts:
(i) the deposition atoms on the crystal upper surface and
in the tint effective diffusion area around the crystal, i.e.,(
lw1 +2lR+2w1R+πR2

)
f dt, (ii) the deposition atoms in

the ambient dark area which will be involved in the effective
diffusion area with the length increment during time interval
dt, i.e., (w1 +2R) f t dl. During this process, the crystal ex-
tends w1hdl. Therefore, based on the conservation of mass,
we obtain the following equation:

(lw1+2lR+2w1R+πR2) f dt+(w1+2R) f t dl=w1hdl, (8)

which can be written as

dl
dt

+
(w1 +2R) f

(w1 +2R) f t −w1h
l =−

(
2w1R+πR2

)
f

(w1 +2R) f t −w1h
. (9)

The general solution to Eq. (9) is given by

l =
C2 −

(
2w1R+πR2

)
f t

(w1 +2R) f t −w1h
. (10)

Using expression (5) for w = w1 yields

t =
δh
f

(
w2

1 −w2
0
)

δw2
1 +2(δ +1)Rw1 +πR2 .
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Inserting this boundary condition to expression (10), one ob-
tains C2 =−δhw2

0. Thus expression (10) can be written as

l =

(
δw2

0
w1

+w2

)
t2

t2 − t
−w2, (11)

where t2 =
w1h

(w1+2R) f and w2 =
2w1R+πR2

w1+2R .
According to expression (11), the relationship of the

length l of the one-dimensional Zn nanocrystals with time t
at stage II is depicted in Fig. 4. At the beginning of stage II,
the nearly uniform velocity growth of the one-dimensional Zn
nanocrystals at the end of stage I continues. Then the one-
dimensional Zn nanocrystals will suffer an accelerated growth
period for the following reasons. On the one hand, the width
w will not increase anymore and all the adatoms are used for
the length growth. On the other hand, the Zn atoms in the am-
bient dark area accumulate gradually with time t. At the end
of stage II, the length l of the one-dimensional Zn nanocrystals
will reach 2λ , where λ is the effective diffusion length on the
crystal surface.[25]
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Fig. 4. The relationship of the length of the one-dimensional Zn
nanocrystals with time at stage II.

Stage III: w = w1, l > 2λ , t < H/ f .

R

R
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l

λ

Fig. 5. The schematic illustration of the one-dimensional crystal growth
at stage III.

When l > 2λ , part of the deposition atoms on the up-
per and side surface of the one-dimensional crystal will have
no chance to move to the emerging tips, as shown in Fig. 5.
Therefore, at stage III, the mass supply to the length growth
during time interval dt consists of the following two parts: (i)

the deposition atoms on the crystal upper surface within the
effective diffusion length and in the tint effective diffusion ar-
eas, i.e.,

(
2λw1 +4λR+2w1R+πR2

)
f dt, (ii) the deposition

atoms in the ambient dark area, which will be involved in the
effective diffusion area with the length increment during time
interval dt, i.e., (w1 +2R) f t dl. During this process, the crys-
tal extends w1hdl. Therefore, we obtain the following mass
conservation equation:(

2λw1 +4λR+2w1R+πR2) f dt

+ (w1 +2R) f t dl = w1hdl, (12)

which can be written as

dl
dt

+

(
2λw1 +4λR+2w1R+πR2

)
f

(w1 +2R) f t −w1h
= 0. (13)

Equation (13) possesses the general solution

l = −2λw1 +4λR+2w1R+πR2

w1 +2R
× ln [w1h− (w1 +2R) f t]+C3. (14)

Using l = 2λ for expression (11) yields

t =
2λw1h−δhw2

0
(2λw1 +4λR+2w1R+πR2) f

.

Based on this boundary condition, one can find

C3 = 2λ +
2λw1 +4λR+2w1R+πR2

w1 +2R

× ln
2Rw2

1h+πR2w1h+δhw2
0w1 +2Rδhw2

0
2λw1 +4λR+2w1R+πR2

and inserting the result to expression (14) yields

l = (2λ +w3) ln
(

δw2
0

w1
+w3)t3

(t3 − t)(2λ +w3)
+2λ , (15)

where t3 = t2 =
w1h

(w1+2R) f and w3 = w2 =
2w1R+πR2

w1+2R .
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Fig. 6. The dependence of the length of the one-dimensional Zn
nanocrystals on time at stage III.
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Previous study[25] showed that the effective diffusion
length λ of the Zn atoms on the Zn crystal surface is about
39 µm. The dependence between the length l of the one-
dimensional Zn nanocrystals and time t given by expression
(15) is drawn in Fig. 6. The atoms from part (i) are constant
during time interval dt at stage III. However, the accumulated
atoms from part (ii) are more and more with time t. Therefore,
the growth velocity of the length l of the one-dimensional Zn
nanocrystals will become faster and faster, as shown in Fig. 6.

Stage IV: w = w1, t > H/ f .

R

R

w1

l

Fig. 7. The schematic illustration of the one-dimensional crystal growth
at stage IV.

After deposition (t > H/ f ), the mass supply to the length
growth during time interval dt comes from the previous ac-
cumulated deposition atoms in the ambient dark area, which
will be involved in the effective diffusion area with the length
increment, i.e., (w1 +2R)H dl. During this process, the crys-
tal extends w1hdl. Therefore, one finds the following mass
conservation equation:

(w1 +2R)Hdl = w1hdl, (16)

with the solution

w1 =
2RH
h−H

. (17)

According to expression (17), w1 is inversely proportional to h.
The morphologies of the one-dimensional crystals are closely
related with w1 and h, i.e., the one-dimensional crystals exhibit
belt-like structure for w1 � h, while they tend to form crystal
rods or wires for w1 ≈ h. As a result, various morphologies of
the one-dimensional crystals can be obtained, which is consis-
tent with our experimental results.[13]

When w1 = h, expression (17) is similar to the previous
computer simulation model,[26] i.e., a0l∆L =W 2

∆L, where
a0 ∼ H and l ∼ (2R+w). The simulation model gives a good
explanation of the one-dimensional growth phenomenon of the
crystals with the preferential growth direction characteristics.
However, it is failed to reveal the detailed growth process of
the one-dimensional crystals on the isotropic and quasi-free
sustained substrate, such as the dependence of the length l and
width w on time t.

In our experiments,[12] the most probable length range
of the one-dimensional Zn nanocrystals is 250–500 nm for
f = 0.01 nm/s and H = 8.0 nm. In this case, most of them are

shorter than 1500 nm and one of the longest one-dimensional
Zn nanocrystals is 3.132 µm. According to our model predic-
tion, the one-dimensional Zn nanocrystals may reach 1200 nm
and 78 µm at the end of stages I and II, respectively. Therefore,
most of the one-dimensional Zn nanocrystals in our experi-
ments are at stage I and only a few can arrive at stage II. Actu-
ally, the nucleation density plays an important role in the mass
supply for the crystal growth, i.e., it may lead to the absorbing
areas around the crystals or seed crystals overlapping or meet-
ing the edges of the substrate.[26] Obviously, the larger the nu-
cleation density is, the smaller the average effective absorbing
area for every crystal or seed crystal is, i.e., the shorter the av-
erage length of the crystals is. The quantitative relationship
between the nucleation density and the average length of the
crystals is systematically discussed in our previous study.[26]

(2) Two-dimensional crystal growth model (δ = 1).
According to the model described above, the aspect ratio

l/w of the crystal is equal to δ during the whole growth pro-
cess in the case of δ = 1. As a result, a two-dimensional crystal
forms in a two-stage growth process, as shown in Figs. 8 and
10.

Stage I: t < H/ f .
In analogy with the stage I of the one-dimensional crystal

growth, using δ = 1 for expressions (6) and (7) yields

l = w =
2Rt
h
f − t

+


[

2Rt
h
f − t

]2

+
πR2t + h

f w2
0

h
f − t


1/2

, (18)

which describes the dependence of the length l and width w of
the two-dimensional crystal on time t at stage I.

R

R

l

w

Fig. 8. The schematic illustration of the two-dimensional crystal growth
at stage I.

The dependence of the length and width of the two-
dimensional Zn nanocrystals on time at stage I for δ = 1 is
depicted in Fig. 9, where the growth behaviors of the one-
dimensional Zn nanocrystals with time at stage I for δ = 12
are supplied for comparison. As shown in Fig. 9, the length
(i.e., width) of the two-dimensional Zn nanocrystals possesses
a growth velocity of 6.4 nm/s first, and then suffers a slow-
ing growth until a nearly uniform velocity (0.3 nm/s), which is
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similar with the growth characteristics of the length and width
of the one-dimensional Zn nanocrystals. However, the growth
velocity of the length of the two-dimensional Zn nanocrystals
is between the length and width growth velocities of the one-
dimensional Zn nanocrystals.
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Fig. 9. The dependence of the length and width of the two-dimensional
Zn nanocrystals on time at stage I for δ = 1 in comparison with the
growth behaviors of the one-dimensional Zn nanocrystals with time at
stage I for δ = 12.

Stage II: t > H/ f .

R

R

l

w

Fig. 10. The schematic illustration of the two-dimensional crystal
growth at stage II.

After deposition (t > H/ f ), the two-dimensional crystal
extends 2hl dl during time interval dt by aggregating the pre-
vious accumulated deposition atoms in the ambient dark area,
i.e., 2H (2R+ l) dl, as shown in Fig. 10. Therefore, we obtain
the following mass conservation equation:

2H (2R+ l) dl = 2hl dl (19)

with the solution

l =
2RH
h−H

. (20)

Expression (20) is similar with expression (17). Analo-
gously, l, i.e., w in the case of δ = 1, is inversely proportional
to h, and their relative size plays an important part in the mor-
phologies of the two-dimensional crystals.

The two-dimensional Zn nanocrystals in our experiments
include various nanoplates with quadrangular, pentagonal and
hexagonal morphologies.[13] In our model, for simplicity, the
quadrangular nanoplate is selected as a representative sample
to reveal the growth characteristics of the two-dimensional Zn
nanocrystals on the silicone oil surface. Actually, the value of
δ is closely related to the morphologies of the seed crystals.
Therefore, δ = 1 is not the only case for the two-dimensional
crystal growth on the isotropic and quasi-free sustained sub-
strate, or rather, those priority ratios which are close to δ = 1
may count. In addition, the crystals may diffuse and rotate
on the isotropic and quasi-free sustained substrate during the
growth process, which leads an unequal mass supply on var-
ious growth directions with the similar priority ratio. These
aspects may be responsible for the morphology diversity of
the two-dimensional Zn nanocrystals.

100 nm

Fig. 11. The scanning electron microscope (SEM) image of the low-
dimensional Zn nanocrystals on the silicone oil surface ( f = 0.10 nm/s,
H = 8.0 nm).

In our experiments, the one- and two-dimensional Zn
nanocrystals are observed on the silicone oil surface simul-
taneously, as shown in Fig. 11. According to the statistical re-
sult, the priority ratio δ of the preferential growth directions of
the Zn crystals is of the order of 100 −101, which is not quite
prominent.[13] The competitive growth among the preferential
growth directions of the Zn crystals on the silicone oil surface
results in the formation of various crystal morphologies.

4. Conclusion
In summary, a new low-dimensional crystal growth model

is established on the isotropic and quasi-free sustained sub-
strate. The driven mechanism of the model is based on the
competitive growth among the preferential growth directions
of the crystals with anisotropic crystal structures, which is dif-
ferent from the conventional VS and VLS mechanism. The
model gives a good explanation of the growth kinetics of the
low-dimensional Zn nanocrystals on the silicone oil surface,
i.e., the dependence of the length and width of the one- and
two-dimensional Zn nanocrystals on time. Furthermore, the
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model may be useful to reveal the growth mechanism of var-
ious low-dimensional crystals fabricated on the liquid sub-
strates, such as perylene,[27] graphene,[10,28–30] and hexagonal
boron nitride.[31,32]

In addition, by means of the intrinsic anisotropic crystal
structures, many low-dimensional crystals have also been pre-
pared in the liquid environment.[33–35] By further considering
the competitive growth in h direction and the mass supply in
three-dimensional space, our model may also account for the
growth mechanism of various low-dimensional crystals in the
isotropic substrates.
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