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We numerically solve the time-dependent Ginzburg–Landau equations for two-gap superconductors using the finite-
element technique. The real-time simulation shows that at low magnetic field, the vortices in small-size samples tend to
form clusters or other disorder structures. When the sample size is large, stripes appear in the pattern. These results are
in good agreement with the previous experimental observations of the intriguing anomalous vortex pattern, providing a
reliable theoretical basis for the future applications of multi-gap superconductors.
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1. Introduction
Conventional superconductors can be divided into two

types (type-I and type-II) according to their different responses
to an external magnetic field. Both the types of superconduc-
tors expel weak magnetic fields. In bulk type-I superconduc-
tors, the superconductivity abruptly disappears when the mag-
netic field exceeds a certain critical value. However, in type-
II superconductors, the superconductivity and magnetism can
coexist when the magnetic field is between two critical values.
In this case, the magnetic field penetrates into the material, re-
sulting in the formation of microscopic magnetic vortices, and
the regions outside these microscopic vortices will remain in
the superconducting state. This kind of coexistence also oc-
curs in type-I superconducting thin films when the magnetic
field is strong enough but smaller than the critical field.[1,2] In
the Ginzburg–Landau (G–L) theory, these two types of super-
conductors are differentiated by the G–L parameter, κ = λ/ξ ,
where λ is the penetration depth of the magnetic field and ξ

is the coherence length.[1,3,4] The G–L parameters also de-
termine the interaction between the vortices.[5] In type-I su-
perconductors, the G–L parameters are smaller than 1/

√
2.

When the type-I superconducting sample is a thin film, the
vortices generated by the magnetic field will attract each other
and form the macroscopic normal magnetic domains.[2] On
the contrary, for type-II superconductors, the G–L parameters
are larger than 1/

√
2, and the vortices repel each other, lead-

ing to the presence of vortex lattice. If the G–L parameters
are exactly equal to 1/

√
2, there is no interaction between the

vortices.
Recently, a novel type of superconductors called multi-

gap superconductors have attracted a great deal of atten-
tion from researchers.[6–9] In the multi-gap superconduc-
tors, the interaction between vortices becomes more com-

plicated. The multi-gap superconducting states are charac-
terized by multiple coherence length, ξ1, ξ2, . . ., ξN , and
only one penetration depth λ . It is possible that ξ1 <

ξ2 < · · · <
√

2λ < ξM < · · · < ξN . In other words, type-I
and type-II superconducting states coexist in the same sam-
ple. It is proposed theoretically that the vortices may re-
pel each other at short distance and attract in long range.
This nonmonotonic inter-vortex interaction could lead to
novel magnetic responses in the superconductors.[10–13] The
novel magnetic responses, including unconventional disor-
dered magnetic vortex patterns, cluster-like structures in
small-size samples and stripes/gossamers in larger ones, were
firstly experimentally observed in a two-gap superconductor,
MgB2,[14–16] and then in Sr2RuO4, LaPt3Si and many other
materials.[17–26] Moshchalkov et al. termed this phenomenon
as type-1.5 superconductivity.[14] Meanwhile, extensive the-
oretical investigations have been carried out on this novel
phenomenon.[6,7,10–13,27,28] However, to the best of our knowl-
edge, no theoretical results are in good agreement with the ex-
perimental data, especially in vortex scale. This means that it
is necessary to find a new method to calculate the novel vor-
tex pattern in such superconducting systems. It is lucky that
another important method, time-dependent Ginzburg–Landau
theory (TDGL), which is normally used to investigate the dy-
namics of the vortices in superconductors, has been wildly ac-
cepted to understand the formation mechanism and time evo-
lution of vortex states in single-gap samples.[29–34] This is be-
cause the TDGL is consistent with an equation of the order
parameter similar to the Schrödinger equation in quantum me-
chanics, and can be derived from the microscopic BCS theory,
and thus it is more reliable than other simulation methods.

In this paper, we aim at providing a theoretical un-
derstanding of the formation of above-mentioned unconven-
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tional vortex patterns by solving TDGL equations using finite-
element techniques for multi-gap superconductors. Our real-
time simulation of the formation and evolution of magnetic
vortex patterns is in very good agreement with the previous
experimental observations,[14–16] which has not been reported
before. The theoretical method as well as simulation results
presented here may have important implications for the future
design of superconductor vortex-based devices. The paper is
organized as follows. In Section 2, we present the details of
our numerical formalism. In Section 3, the simulation results
are discussed and compared to the experimental ones. All find-
ings are finally concluded in Section 4.

2. Theoretical model
Unlike a single-gap superconducting system, in two-gap

situation, one must consider two order parameters to describe
the superconducting properties. One of the first Ginzburg–
Landau descriptions of multi-gap superconductors was de-
veloped by Zhitomirsky and Dao, starting from microscopic
theory.[35] Combining with the consideration of the Josephson
coupling between the two gaps, resulting from the tunneling of
the Cooper pairs from one gap to the other, the free Ginzburg–
Landau energy functional is expressed as[35,36]

F = α1|ψ1|2 +
β1

2
|ψ1|4 +

1
2m∗1

∣∣∣∣(− ih̄∇− e∗

c
A
)

ψ1

∣∣∣∣2
+α2|ψ2|2 +

β2

2
|ψ2|4 +

1
2m∗2

∣∣∣∣(− ih̄∇− e∗

c
A
)

ψ2

∣∣∣∣2
+

(∇×A)2

8π
− γ(ψ∗1 ψ2 +ψ1ψ

∗
2 ), (1)

where αi and βi are the phenomenological Ginzburg–Landau
coefficients, and i = 1,2 is the gap index, m∗1, m∗2 and e∗, re-
spectively, are the effective mass and charge of the Cooper
pairs, c is velocity of light in vacuum, A is the vector potential
associated to the external applied field, ψi are the order param-
eters of the two gaps, and γ is the Josephson coupling strength.
For MgB2, γ > 0, while for iron-based superconductors, γ is
presumably negative.[37] To make the equations dimension-
less and then to minimize the F with respect to the ψ1, ψ2,
and A, we obtain the GL equations as follows:[28]

−ψ1 + |ψ1|2ψ1 +

(
∇

iκ1
−A
)2

ψ1− γψ2 = 0, (2)

−α2

α1
ψ2 +

β2

β1
|ψ2|2ψ2 +

m∗1
m∗2

(
∇

iκ1
−A
)2

ψ2− γψ1 = 0, (3)

∇×∇×A =
1

2iκ1
(ψ∗1 ∇ψ1−ψ1∇ψ

∗
1 )−|ψ1|2A

+
m∗1
m∗2

[
1

2iκ2
(ψ∗2 ∇ψ2−ψ2∇ψ

∗
2 )−|ψ2|2A

]
. (4)

The single-gap TDGL equations and their solutions have
been well discussed in Refs. [29,30]. The equations are

h̄2

2m∗D

(
∂

∂ t
+ i

e∗

h̄
φ

)
ψ +

1
2m∗

(
− ih̄∇− e∗

c
A
)2

ψ

= α|ψ|−β |ψ|2ψ, (5)
4πσ

c

(
1
c

∂A
∂ t

+∇φ

)
=

4π

c
Js−∇×∇×A, (6)

where D is the diffusion constant, σ is the normal conductiv-
ity, φ is the applied electric potential, and Js is the supercurrent
density with Js = (ψ∗∇ψ−ψ∇ψ∗)/iκ−2|ψ|2A. The dimen-
sionless forms are as follows:(

∂

∂ t
+ iκφ

)
ψ =

(
∇

κ
− iA

)2

ψ +ψ−|ψ|2ψ, (7)

κ
2
∇×∇×A = Js−σ

(
∂

∂ t
A+∇φ

)
. (8)

Similarly, for the two-gap TDGL, we can also have the dimen-
sionless forms as(

∂

∂ t
+ iκ1φ

)
ψ1 =

(
∇

κ1
− iA

)2

ψ1 +ψ1−|ψ1|2ψ1 + γψ2, (9)
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Fig. 1. Configuration of the lattice used in simulations. The lattice
points are denoted by i, j,k, . . . and the lattice constants in x and y direc-
tions are the ax and ay, respectively.

It is obvious that equations (9)–(11) are difficult to
solve directly. In order to integrate them, we general-
ize the numerical method developed for single-component
superconductors[29,30] to two-component superconductors and
solve the TDGL equations numerically. We use the link vari-
able defined as[28–30]

Uµ(x,y) = exp
(
− iκ1

∫
µ

µ0

Aµ(ξµ)dξµ

)
, (12)

with µ = x,y. Here the magnetic field H is in the z direc-
tion. In order to use the finite-element technique we must first
discrete the system. Figure 1 is the configuration of the lattice
used in simulations. The lattice points are denoted by i, j,k, . . .
and the lattice constants in x and y directions are the ax and ay,
respectively. Suppose ax = ay, then the TDGL equations can
be rewritten as

∂ψ
j
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x ψk
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Um j

y ψm
1

κ1a2 +
Ug j

y ψ
g
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j
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κ1a2
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x Unk
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y U i j

x .

3. Simulations and result discussion
In this work we configurate the sample grid as 64× 64,

128× 128, or 256× 256, and the lattice constants ax = ay =

0.1ξ . We choose the time step ∆t = 0.0002 and the Josephson
coupling coefficient γ = 0.3 and set the simulation tempera-
ture at T = 4.2 K. The values of the parameters coincide to the
experiments in Refs. [14–16]. We drop the calculation results
in the early 15000 steps and start to record the effective data
after that slot.

It should be known that the thermal fluctuation must be
considered during simulations. The random force at each point
site is independently selected from a Gaussian distribution
with a zero mean. The standard deviation σd is given by[30]

σd =

√
πE0∆t

6
T
Tc
, (17)

where ∆t is the time step and E0 is the ratio of the thermal en-
ergy to the free energy of a vortex with E0 = kBTc/ε(0)ξ (0).
Here ε(0) is the free energy of a vortex per unit length at T = 0
and is defined by ε(0) = 4πξ (0)2[Hc(0)2/8π].

By using Eqs. (13)–(17) we calculate the vortex patterns
at different sample sizes with different magnetic fields. Fig-
ures 2(a) and 2(b) are the vortex states we simulate at H/Hc1 =

0.4 and T = 4.2 K for the single- and two-gap superconduct-
ing systems, respectively. The Ginzburg–Landau parameter κ

we select in Fig. 2(a) is κ = 3.68, which means that the system

is pure type-II; while in Fig. 2(b) we choose the two parame-
ters as κ1 = 3.68 and κ2 = 0.68 indicating that the system is
type-1.5. In the following, we compare Fig. 2(a) with the vor-
tex patterns of NbSe2 (type-I superconductor) observed by the
scanning Hall probe microscopy (SHPM) at T = 4.2 K after
performing an field-cooling with 1 Oe magnetic field,[16] and
compare Fig. 2(b) with the vortex patterns of MgB2 (type-1.5
superconductor) observed by the scanning SQUID microscope
at T = 4.2 K with 10 µT magnetic field.[15]

(a) (b)

Fig. 2. Vortex patterns at T = 4.2 K. (a) Single-gap for κ = 3.68, and (b)
two-gap for κ1 = 3.68 and κ2 = 0.68 with γ = 0.3. The higher values of the
Cooper pair density are shown in red.

From Figs. 2(a) we can see that the vortex lattices exhibit
nearly perfectly long-range ordered, in good agreement with
the experimental result of NbSe2,[16] due to the repulsive inter-
action between vortices. The only difference we can see is that
the pattern in Fig. 2(a) is not a well-known triangular lattice as
shown in the previous experiment[16] but a square one. This
is because our simulation is a serious time consuming work
and we cannot choose a large enough sample to overcome the
confinement effect from the surface. We believe that one can
obtain a triangular lattice if only he increase the sample size
to a critical value. Thus, we can still speak that our simulation
data are in good agreement with the experimental data in this
situation.

On the other hand, for the two-gap superconducting sys-
tem with κ1 = 3.68 and κ2 = 0.68, due to the fact that both
the Josephson coupling condensates influence each other, vor-
tices may attract at large separation and repel at short distance.
Both the numerical [Fig. 2(b)] and the previous experimental
vortex patterns[15] are different from the single-gap case. They
form disordered lattices. Some local clusters and islands of
magnetic flux (or vortices) and the semi-Meissner regions ap-
pear, which definitely indicate that the system is type-1.5. Our
simulation also shows that if we continue increase the exter-
nal magnetic field, the small vortex clusters merge with each
other, to grow into bigger clusters until the whole system loses
its superconductivity.

If we further increase the sample size to 25.6ξ × 25.6ξ ,
as it can be see in Fig. 3, besides the vortex clusters, some
vortex stripes may be found in the sample. This also attributes
to the competition of the short-range attraction and long-range
repulsion between vortices. Here we compare the result with
the vortex distribution of MgB2 (type-1.5) single crystal ob-
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served by the SHPM at T = 4.2 K after performing an field-
cooling with 2 Oe magnetic field. Our numerical result and the
previous experimental result[16] are in great agreement with
each other. We notice that the vortex stripes in two-gap su-
perconducting system are not straight but rather curved, i.e.
they cannot be related to any crystallographic orientations of
the atomic lattice. This zigzag vortex structure is quite simi-
lar to that seen in narrow superconducting ribbons with weak
pinning.[38,39] Furthermore, one can also find vortices with
sixfold coordination, as in an Abrikosov lattice. These fea-
tures strongly suggest that the vortex clustering is not a conse-
quence of an inhomogeneous vortex pinning. It is the nature
of type-1.5 superconductors.

Fig. 3. Vortex state at H/Hc1 = 0.4 and T = 4.2 K with large sam-
ple sizes 25.6ξ ×25.6ξ for the two-gap (κ1 = 3.68 and κ2 = 0.68 with
γ = 0.3) superconducting system.

4. Summary
Using the finite-element technique we theoretically

model and numerically integrate the time-dependent
Ginzburg–Landau equations for two-gap superconducting
systems. Due to the fact that both the Josephson coupling
condensates influence each other, vortices appear an interest-
ing property that repel each other at long-range but attract at
short-lange. At small magnetic field, vortex matter can be
local clusters, islands, stripes, sixfold ordered lattices, or com-
bination of them, which definitely indicate that the system is
type-1.5. With further increase of magnetic field, the small
local patterns merge with each other, to grow into bigger ones
till the whole system loses its superconductivity. Compared to
the experiments reported in Refs. [14–16], to the best of our
knowledge, our simulation results are the closest work so far.
This provides evidence to support that the anomalous vortex
distributions observed in MgB2 are in nature, which further
supports the application of the type-1.5 superconductivity sce-
nario to clean crystals of the two-gap superconductor.
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