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Optical enhanced interferometry with two-mode squeezed
twin-Fock states and parity detection∗
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We theoretically investigate the quantum enhanced metrology using two-mode squeezed twin-Fock states and parity
detection. Our results indicate that, for a given initial squeezing parameter, compared with the two-mode squeezed vacuum
state, both phase sensitivity and resolution can be enhanced when the two-mode squeezed twin-Fock state is considered as
an input state of a Mach–Zehnder interferometer. Within a constraint on the total photon number, although the two-mode
squeezed vacuum state gives the better phase sensitivity when the phase shift ϕ to be estimated approaches to zero, the
phase sensitivity offered by these non-Gaussian entangled Gaussian states is relatively stable with respect to the phase shift
itself. When the phase shift slightly deviates from ϕ = 0, the phase sensitivity can be still enhanced by the two-mode
squeezed twin-Fock state over a broad range of the total mean photon number where the phase uncertainty is still below the
quantum standard noise limit. Finally, we numerically prove that the quantum Cramér–Rao bound can be approached with
the parity detection.
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1. Introduction
Optical interferometers are important devices in quan-

tum metrology. Mach–Zehnder interferometers (MZIs) and
SU(1,1) interferometers[1–6] are two kinds of basic optical in-
terferometers, which are widely used to measure an unknown
phase shift in the two arms of an interferometer and its phase
sensitivity ∆ϕ . In general, the precision of phase estimation
within these settings crucially depends on the input states as
well as the detection schemes. It is well known that nonclas-
sical quantum states, such as the squeezed state and the Fock
state, are the most key resources to improve the precision of
phase estimation in an interferometer. In a lossless MZI, a
few decades ago Caves[2] demonstrated that the sensitivity of
phase estimation using the coherent light together with the
squeezed vacuum one could beat the standard quantum noise
limit (SNL), namely, ∆ϕ = 1/

√
n̄, where n̄ is the total pho-

ton number of input states. Actually, the so-called Heisenberg
limit (HL),[7,8] ∆ϕ = 1/n̄, can also be achieved when the co-
herent light and the squeezed vacuum one are mixed in roughly
equal intensities.[5,6]

In recent years, many other nonclassical states have been
studied to improve the precision of phase estimation based
on an MZI.[9–18] For example, an MZI with the N00N state
can offer the HL limit in principle.[9,10] Unfortunately, ideal
N00N states are challenged to generate in experiments and
these states are extremely fragile.[11,12] Another way to ap-

proach the HL limit is through the injection of the twin-Fock
state |n,n〉 into the first beam splitter of an MZI.[13] Compared
with the N00N state, the twin-Fock state is easier to gener-
ate and more robust against photon loss.[6,14–17] Therefore, the
twin-Fock state is traditionally used to approximate the N00N
state. Especially, in the case of the input twin-Fock state |n,n〉
with two photons (n= 1), the state inside the interferometer af-
ter the first beam splitter is just a N00N state. In addition, it has
been proved that the twin-Fock state with six photons can be
prepared in experiments using photon pairs from spontaneous
parametric down conversion.[15,16] As continuous-variable su-
perpositions of twin-Fock states, it is found that an MZI with
a two-mode squeezed vacuum state (TMSVS) and parity de-
tection can offer the sub-Heisenberg sensitivity.[19] However,
it is difficult to prepare these Gaussian entangled states with a
large mean photon number. In experiments, the largest achiev-
able total photon number of the TMSVS so far is about 4 in
a stable optical configuration, and the corresponding squeez-
ing parameter is about r ≈ 1.15 (i.e., about 10 dB).[20] On the
other hand, Gerry and Mimih[21] showed that the phase sen-
sitivity for these entangled Gaussian states is very unstable
with respect to the phase shift itself. When the phase shift
moderately deviates from the optimal values of the phase shift
(for example, ϕ = 0), the phase sensitivity will rapidly be-
comes worse, even above the SNL. To remedy these problems,
the non-Gaussian entangled states, such as photon-subtracted
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TMSVS[22,23] and photon-added TMSVS,[24] have been used
to improve the precision of phase estimation based on an MZI
with parity detection.

Besides the photon-subtracted or photon-added TMSVS,
two-mode squeezed number states are also a broad and mean-
ingful class of continuous-variable non-Gaussian entangled
states. Such states were originally introduced by Chizhow,[25]

where the photon number statistics and the phase properties
have been investigated. The analysis of their inseparabili-
ties was also carried out via the Neumann entropy.[26,27] It
has shown that, for a given initial squeezing, the two-mode
squeezed number state with a higher number state has a larger
amount of entanglement. Very recently, non-Gaussianity dy-
namics of such states has also been studied.[28] In this work,
we investigate the applications of the two-mode squeezed
number states on the quantum enhanced metrology. In many
applications, pair creation occurs starting from the vacuum.
Therefore, here we mainly consider the two-mode squeezed
twin-Fock state (TMSTFS) as the input state of an MZI, and
investigate the performance of the TMSTFS on phase estima-
tion via both quantum Fisher information and parity detection.
Theoretically, a TMSTFS is obtained by applying a two-mode
squeezed operator S2 (ξ ) = exp

[
ξ â†b̂†−ξ ∗âb̂

]
with ξ = reiθ

to a twin-Fock state, which is given by[25]

|TMSTFS〉= S2 (ξ ) |n,n〉 , (1)

with the total mean photon number

N̄ = 2ncosh(2r)+2sinh2 r. (2)

Obviously, for a given squeezing parameter r, the total pho-
ton number increases with the value of the n. Mathemati-
cally, the scenario under our consideration covers two spe-
cial cases of significance. (i) When n = 0, |TMSTFS〉 is an
TMSVS, and it reduces to the input state in Ref. [19]. (ii)
When r = 0, |TMSTFS〉 is a twin-Fock state, and the applica-
tions of this state in quantum metrology have been considered
in Refs. [7,13].

The remainder of this paper is organized as follows. Sec-
tion 2 introduces a brief review about the TMSTFS, as well as
their entanglement. In Section 3, we study the quantum Fisher
information FQ of the TMSTFS and the quantum Cramér–
Rao bound (QCRB). In Section 4, we present the parity-based
phase estimation scheme with calculations of its signal and
phase sensitivity. Our results show that the phase sensitiv-
ity for these non-Gaussian entangled Gaussian states is rela-
tively stable with respect to the phase shift itself. The QCRB
expressed by ∆ϕmin = 1/

√
FQ can also be reached by imple-

menting the parity detection. Our main results are summarized
in Section 5.

2. Two-mode squeezed twin-Fock and its entan-
glement
Following the work in Ref. [29], the TMSTFS can be con-

sidered as the TMSVS excited by the Laguerre polynomials
operator, i.e.,

|TMSTFS〉 =
(
−e−iθ tanhr

)n

coshr
Ln

(
2â†b̂†eiθ

sinh(2r)

)
× exp[â†b̂†eiθ tanhr] |0,0〉 , (3)

where the generating function of Ln is

Ln (z,z∗) =
(−1)n

∂ 2n

n!∂ tn∂τn exp [−tτ + tz+ τz∗] |t=τ=0. (4)

Equation (3) indicates that the TMSTFS can be considered as
a superposition of photon-added TMSVS.[24]

Although entanglement is not a critical resource for
quantum-enhanced metrology,[30,31] entangled photon num-
ber states are indeed helpful for phase estimation.[9,10,32] For
our purpose, let us review the von Neumann entropy of the
TMSTFS.[27] For a pure state in the Schmidt decomposed
form, the quantum entanglement is characterized by the par-
tial von Neumann entropy.[33] Based on Eq. (3), the Schimdt
decomposed form of the TMSTFS can be easily obtained, i.e.,

|TMSTFS〉=
∞

∑
m=0

Cm (n,r) |m,m〉 , (5)

where the Schmidt coefficient Cm is given by[25]

Cm (n,r) =
min[m,n]

∑
k=0

(−1)n−k m!n! sinh−2k r

(k!)2 (m− k)!(n− k)!

× tanhm+n r
coshr

ei(m−n)θ . (6)

Similar to the TMSVS, the TMSTFS also remains a superpo-
sition of twin-Fock states. From Eq. (5), the von Neumann
entropy of the TMSTFS can be directly obtained,[27]

E (|TMSTFS〉) =
∞

∑
m=0
|Cm|2 log2 |Cm|2 . (7)

In the case of n = 0, equation (7) reduces to E =

cosh2 r log2
(
cosh2 r

)
−sinh2 r log2

(
sinh2 r

)
, the amount of the

entanglement of the TMSVS. For the TMSTFS with different
values of n, it can be evaluated numerically by their Schmidt
coefficients. As pointed out in Ref. [27], the entanglement of
the TMSTFS becomes larger when the value of n increases for
a fixed value of squeezing parameter r as shown in Fig. 1(a).
This may be because the TMSTFS contains more photons
with the increasement of n as indicated by Eq. (2). On the
other hand, it may be interesting to investigate whether or not
the TMSTFS holds the larger entanglement than the TMSVS
within a constraint on the total mean photon number. From
Fig. 1(b), we can clearly see that, for a fixed total mean pho-
ton number, the TMSVS holds the larger entanglement in this
scenario than the TMSTFS.
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Fig. 1. Entanglement entropy of the TMSTFS with some different val-
ues of n. (a) Entanglement entropy as a function of the squeezing pa-
rameter r. (b) Entanglement entropy as a function of the total mean
photon number.

3. Quantum Cramér–Rao bound
Here we consider an balanced MZI interferometer whose

two input ports are fed by the TMSTFS as shown in Fig. 2.
For such an interferometer, it is mainly composed of two beam
splitters and two phase shifters. Then, according to the work
in Ref. [1], the unitary transformation operator associated with
such a balanced MZI can be written as

Û (ϕ) = ei π
2 Ĵ1e−iϕ Ĵ3e−i π

2 Ĵ1 = e−iϕ Ĵ2 , (8)

where ϕ is the unknown phase shift between the two modes of
the MZI to be estimated. Those angular momentum operators
in Eq. (8) can be expressed in terms of two sets of Bosonic
operators,

Ĵ1 =
1
2
(
â†b̂+ âb̂†) , Ĵ2 =

1
2i
(
â†b̂− âb̂†) ,

Ĵ3 =
1
2
(
â†â− b̂†b̂

)
. (9)

They satisfy the commutation relation
[
Ĵi, Ĵ j

]
= iεi jkĴk

(i, j,k = 1,2,3) and commute with the Casimir operator Ĵ0 =
1
2

(
â†â+ b̂†b̂

)
. Here â† (b̂†) and â (b̂) are the Bosonic creation

(annihilation) operators in mode A (B) of the MZI, respec-
tively. When a pure state propagates through such an MZI,
the resulted output state is given by

|out〉MZI = e−iϕ Ĵ2 |in〉 . (10)

Applying the following unitary transformations

e−iϕ Ĵ2 â†eiϕ Ĵ2 = â† cos
ϕ

2
+ b̂† sin

ϕ

2
,

e−iϕ Ĵ2 b̂†eiϕ Ĵ2 = b̂† cos
ϕ

2
− â† sin

ϕ

2
, (11)

and the relation e−iϕ Ĵ2 |0〉a |0〉b = |0〉a |0〉b, in general, one can
derive the explicit form of the output state of the MZI.
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Fig. 2. The Mach–Zehnder interferometer used for the detection of the
phase shift when the TMSTFS is injected into the first beam splitter.

In this section, we investigate the QCRB, which gives
an ultimate limit to the precision of phase sensitivity for
all possible locally unbiased estimators and the most gen-
eral measurements, which is expressed by the quantum Fisher
information,[34] i.e.,

∆ϕQCRB =
1√
FQ

. (12)

For a pure state considered as an input state of the MZI, the
quantum Fisher information FQ simply reads[35]

FQ = 4
[
〈in| Ĵ2

2 |in〉−
∣∣〈in| Ĵ2 |in〉

∣∣2] . (13)

Therefore, for the TMSTFS as an interferometer input state,
we derive the quantum Fisher information as follows:

FQ =
(
2+3sinh2(2r)

)(
n+n2)+ sinh2(2r). (14)

On the other hand, in terms of the total mean photon number
N̄, equation (14) can also be rewritten as

FQ =
3
4

N̄2 +
1
4

(
N̄ +1
2n+1

)2

+
3
2

N̄−
(

n2 +n+
1
4

)
. (15)

Based on Eqs. (12) and (14), one can clearly see that the
QCRB can be enhanced by increasing the values of n for a
given initial squeezing parameter r. Thus, the TMSTFS indeed
can give the better phase sensitivity. On the other hand, based
on Eqs. (12) and (15), we can also see that, within a constraint
on the total mean photon number, the TMSVS gives the higher
phase sensitivity. In addition, one can see from Eqs. (12), (14),
and (15) that the properties of the QCRB offered by the TM-
STFS are similar to that of its entanglement.

4. Parity detection on an MZI interferometer
In the above discussion, we have investigated the phase

sensitivity limit based on direct calculation of the quantum
Fisher information. In the following, we show that the QCRB
∆ϕmin can be reached with the parity detection in the case
ϕ → 0. Actually, for a certain type of path-symmetric states,
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the detection of photon number parity can achieve the QCRB
at particular values of phase shift ϕ .[36] For the TMSTFS con-
sidered as an interferometer state, we can prove that both ho-
modyne detection[37–39] and intensity detection[40–43] are not
suitable for the phase estimation. Therefore, in the work we
mainly consider the parity detection as our measuring scheme.

4.1. The signal of the parity detetion

For the convenience of the calculation, it is useful to ex-
pand the TMSTFS in the basis of the coherent state,

|TMSTFS〉 = tanhn r
coshr

∫ d2
αd2

β

π2 Ln

(
2α∗β ∗

sinh(2r)

)
× exp

[
− 1

2

(
|α|2 + |β |2

)
+α

∗
β
∗ tanhr

]
|α,β 〉 , (16)

where |α〉 (|β 〉) is a coherent state with complex quadrature
amplitude α (β ). Here, we have ignored the phase θ of
the TMSTFS light, because this parameter has no effect on
the phase estimation. From Eqs. (10), (11), and (16), when
the TMSTFS propagates through the MZI, the resulted output
state reads

|out〉MZI = sechr
∂ 2n

n!∂xn∂yn

∫ d2
αd2

β

π2

× exp
[
−|α|2−|β |2 +α

∗
β
∗ tanhr

−xy tanhr+α
∗xsechr+β

∗ysechr
]

× exp
[(

α cos
ϕ

2
−β sin

ϕ

2

)
â†

+
(

α sin
ϕ

2
+β cos

ϕ

2

)
b̂†
]∣∣∣∣

x,y=0
|0,0〉 , (17)

which is the state of light at the output of the MZI. Based on
Eq. (17), it is convenient to present the parity-based phase es-
timation scheme with calculations of its signal and phase sen-
sitivity.

Parity detection is actually to perform photon number par-
ity measurements on just one of the output modes of the MZI.
The parity operator for the b mode can be expressed by[44]

Π̂b = (−1)b̂†b̂†
=
∫ d2

γ

π
|γ〉〈−γ| , (18)

where |γ〉 is a coherent state. Thus, the expectation value of
the parity operator in the output state is

〈
Π̂b (ϕ)

〉
= MZI 〈out|

∫ d2
γ

π
|γ〉〈−γ |out〉MZI . (19)

Different from the work in Ref. [19], now we directly calculate〈
Π̂b (ϕ)

〉
. Substituting Eq. (17) into Eq. (20), and applying the

integral formula[45]

∫ d2z
π

eζ |z|2+ξ z+ηz∗+ f z2+gz∗2 =
e
−ζ ξ η+ξ 2g+η2 f

ζ 2−4 f g√
ζ 2−4 f g

, (20)

whose convergent conditions are Re(ζ ± f ±g) < 0 and
Re
(

ζ 2−4 f g
ζ± f±g

)
< 0, after performing straightforward calcula-

tion, we can obtain the signal of the parity detection as fol-
lows:

〈
Π̂b (ϕ)

〉
=
〈
Π̂b (ϕ)

〉
0

∂ 4n

(n!)2
∂xn∂yn∂ tn∂τn

× exp
[ (

x2 + t2− y2− τ2
)

tanhr sin(2ϕ)

2cosh2 r
(
1−2tanh2 r cos(2ϕ)+tanh4 r

)
−

(xy+ tτ)(1− cos(2ϕ))
(
tanhr+ tanh3 r

)
1−2tanh2 r cos(2ϕ)+tanh4 r

+
(yτ− xt)sinϕ cosh(2r)sech4r
1−2tanh2 r cos(2ϕ)+ tanh4 r

− (xτ + yt)cosϕsech4r
1−2tanh2 r cos(2ϕ)+tanh4 r

]∣∣∣∣
x,y,t,τ=0

, (21)

where
〈
Π̂b (ϕ)

〉
0 is the signal of the parity detection when the

TMSVS is considered as an input state of the MZI,

〈
Π̂b (ϕ)

〉
0 =

sech2r√
1−2tanh2 r cos(2ϕ)+ tanh4 r

, (22)

which is just that result in Ref. [19] with N̄ = 2sinh2 r. Follow-
ing the work in Ref. [19], we have also made a shift transfor-
mation ϕ −→ϕ+π/2 in Eq. (21). Eq. (21) is the central result
of this work, in what follows, it will be used to investigate the
phase resolution and the phase sensitivity of the TMSTFS with
the parity detection. Particularly, in the case of r = 0, we can
obtain the signal of the parity detection with the twin-Fock
state considered as the interferometer state, i.e.,

〈
Π̂b (ϕ)

〉
r=0 =

1

(n!)2
∂ 4n

∂xn∂yn∂ tn∂τn exp[(yτ− xt)sinϕ

−(xτ + yt)cosϕ]|x,y,t,τ=0, (23)

which is just the result in Ref. [46]. Equation (23) can be writ-
ten in a simple form

〈
Π̂b (ϕ)

〉
r=0 = Pn (−cos(2ϕ)),[13] where

Pn (x) is the Legendre polynomial. Based on Eq. (21), we draw
Fig. 3 to show that the signal of the parity detection changes
with the phase shift. For a given initial squeezing parameter r,
Fig. 3(a) indicates that the central peak of Π̂b (ϕ) at ϕ = 0 nar-
rows when the values of n increases, which represents that the
phase resolution can be enhanced in this scenario. However,
if one gives the same total mean photon number, the TMSVS
will exhibit the better phase resolution as shown in Fig. 3(b).
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Fig. 3. Plots of the signal values of the parity detection against the phase
shift: (a) for a given initial squeezing parameter, r = 0.7; (b) for a given
total mean photon number, N̄ = 8.

4.2. Phase sensitivity of parity detection

Now we turn to investigate the phase sensitivity (or phase
uncertainty) of the parity detection based on the classical
Fisher information. For the parity detection, there are only
two outcomes, e for even and o for odd. According to the con-
cept, the classical Fisher information FC for parity detection is
given by[36]

FC =
1
Pe

(
∂Pe

∂ϕ

)2

+
1
Po

(
∂Po

∂ϕ

)2

, (24)

with the probabilities of even and odd counts

Pe =
1
2
(
1+
〈
Π̂ (ϕ)

〉)
, Po =

1
2
(
1−
〈
Π̂ (ϕ)

〉)
. (25)

It is a difficult task to write out the explicit form of Eq. (24) for
the TMSTFS with general values of n. However, in the case of
n = 0, one can obtain the simple form of FC as follows:

FC|n=0 =
sinh2(2r)cos2 ϕ(

1+ sinh2(2r)sin2
ϕ
)2 . (26)

From Eqs. (14) and (26), one can see clearly that the classical
Fisher information achieves the quantum Fisher information
in the case of ϕ → 0. In addition, we also numerically realize
that this is valid for general values of n. Therefore, the QCRB
can be achieved in the limit ϕ → 0 by parity detection. Sub-
stituting Eq. (25) into Eq. (24), and according to the classical
Cramér–Rao bound, the phase sensitivity of parity detection is

bounded by

∆ϕ =
1√
FC

=

√
1−
〈
Π̂ (ϕ)

〉2∣∣∂Π̂ (ϕ)/∂ϕ
∣∣ . (27)

In terms of the above calculations, we investigate the perfor-
mance of the TMSTFS on the parity-based phase estimation
scheme. Figure 4 shows that the phase sensitivity changes
with the phase shift for some different values of n. For a given
initial squeezing parameter r, one can see that the phase sen-
sitivity at the optimal phase (ϕ = 0) can be enhanced by in-
creasing the value of n. On the other hand, under energy con-
straint, we can see clearly that the TMSTFS provides a fairly
constant phase sensitivity over a much broader range of accu-
mulated phases as shown in Fig. 4(b). When the phase shift
somewhat deviates from ϕ = 0, the TMSTFS can also offer
the better phase sensitivity than the TMSVS for a given mean
photon number. This is the second advantage of the TMSTFS
for the phase estimation. Of course, under energy constraint,
the TMSVS has the better phase sensitivity than the TMSTFS
when the phase shift ϕ approaches to zero.
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Fig. 4. Phase sensitivity ∆ϕ as a function of the phase shift ϕ for some
different values of n: (a) for a given initial squeezing parameter, r = 0.7;
(b) for a given total mean photon number, N̄ = 8.

In Fig. 5, we plot the phase sensitivity versus the initial
squeezing parameter r at ϕ = 10−3. Figure 5 shows that the
phase sensitivity can be improved by increasing the value of n
for any values of r. Under energy constraint, figure 6(a) indi-
cates that the TMSVS gives the better phase sensitivity when
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the phase shift approaches to zero. In addition, figure 6(a)
shows that the difference among the phase sensitivity offered
by the TMSTFS with different values of n is very small, espe-
cially for the large total mean photon number. However, when
the phase shift slightly deviates from ϕ = 0, figure 6(b) indi-
cates that the TMSTFS can still give the better phase sensitiv-
ity over a broad range of the total mean photon number where
the uncertainty is still below the SNL, which is also consistent
with Fig. 4(b).
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Fig. 5. Phase sensitivity ∆ϕ as a function of the initial squeezing pa-
rameter r for different values of n at ϕ = 10−3.
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Fig. 6. Phase sensitivity ∆ϕ as a function of the total mean photon
number for different values of n: (a) ϕ = 10−3, (b) ϕ = 0.02.

5. Conclusions
In this work, we have investigated theoretically the per-

formance of the TMSTFS on the quantum enhanced metrol-
ogy. Via parity detection and quantum Fisher information, our
results show that, compared with the TMSVS, both phase res-
olution and phase sensitivity can be enhanced by the TMSTFS
for a given initial squeezing parameter. On the other hand,
within a constraint on the total photon number, the TMSVS

gives the better QCRB. These results are similar to the prop-
erties of the quantum entanglement of the TMSTFS. How-
ever, via parity detection, the phase sensitivity offered by the
TMSVS will rapidly becomes worse, even above the SNL,
when the phase shift moderately deviates from ϕ = 0. This
is in marked contrast to what happens for the TMSTFS, which
are relatively stable in that sense. That is to say, when the
phase shift slightly deviates from zero, the TMSTFS can give
the better phase sensitivity over a broad range of the total pho-
ton number where the phase uncertainty is still below the SNL,
even under energy constraint. Therefore, compared with the
TMSVS, the phase sensitivity can be indeed enhanced by the
TMSTFS on some different occasions. These results are useful
towards a complete understanding of quantum non-Gaussian
states for quantum informatics. Finally, we show that the
QCRB can be approached via the parity detection for the TM-
STFS when the phase shift comes nearly to zero.
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