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We consider a modified Noguchi network and study the impact of the nonlinear quadratic dispersion on the dynamics
of modulated waves. In the semi-discrete limit, we show that the dynamics of these waves are governed by a nonlinear
cubic Schrödinger equation. From the graphical analysis of the coefficients of this equation, it appears that the nonlinear
quadratic dispersion counterbalances the effects of the linear dispersion in the frequency domain. Moreover, we establish
that this nonlinear quadratic dispersion provokes the disappearance of some regions of modulational instability in the
dispersion curve compared to the results earlier obtained by Pelap et al. (Phys. Rev. E 91 022925 (2015)). We also find
that the nonlinear quadratic dispersion limit considerably affects the nature, stability, and characteristics of the waves which
propagate through the system. Furthermore, the results of the numerical simulations performed on the exact equations
describing the network are found to be in good agreement with the analytical predictions.

Keywords: Noguchi network, nonlinear quadratic dispersion, modulational instability, soliton

PACS: 05.45.–a, 05.45.Yv DOI: 10.1088/1674-1056/ab696a

1. Introduction

During the last decades, the transmission electrical lines
are increasingly used to study the behavior of the nonlinear
dispersive media. Indeed, since the pioneering work of Hirota
and Zuzuki[1] on electrical lines simulating the propagation of
solitons in the atomic lattice of Toba,[2] the nonlinear transmis-
sion lines (NLTLs) have created passion and debate. There-
fore, several models have been proposed in order to explain
various physical phenomena in different branches of science.
Indeed, Nejoh proposed a new type of nonlinear transmission
line to describe the density depression and the collisionless
shock wave in plasmas.[3] Twenty years later, Enjieu et al.
modeled the nonlinear dynamics of plasma by using an anhar-
monic oscillator.[4] In the same spirit, Ainamon et al. studied
the nonlinear dynamics of polarization oscillations of certain
materials when they are subjected to the action of an electro-
magnetic wave modeled by the multi-frequency forced Duff-
ing equation.[5] More recently, Makenne et al. exploited elec-
trical lines to simulate periodic and chaotic motions of plants
under the action of the wind.[6] Ndzana et al. also studied
the dynamics of ionic waves in a microtubule modeled by a
nonlinear resistor, inductor, and capacitor transmission line.[7]

These few investigations partially justify the interest given to
the electrical transmission lines since the first line of Hirota
and Suzuki.

On the other hand, Noguchi built a new type of elec-

trical transmission line to study experimentally the propa-
gation of the first-order KdV solitons.[8] This network was
also exploited to examine experimentally the properties of the
second-order KdV solitons by using a new potential that gen-
eralized the Toda potential.[9] Based on the modified Noguchi
line with linear dispersion, Pelap and Faye established a gen-
eralized criterion for the Benjamin–Feir instability and de-
termined the exact solutions of the wave equation that gov-
erned the dynamics of the network.[10] Ndzana et al. consid-
ered a discrete dissipative Noguchi network for investigating
the modulational instability (MI) phenomenon as well as the
chaotic behavior of this dispersive medium.[11] Recently, the
dynamics of elliptical waves in the same line was checked
by other authors.[12] While examining the Noguchi network
with nonlinear dispersion, Yamgoue et al. proposed exact soli-
tary wave solutions of a nonlinear Schrodinger equation model
with saturable-like nonlinearities.[13] More recently, Deffo et
al. introduced a new model of two-dimensional Noguchi non-
linear electrical network and showed that the dynamics of
small amplitude signals are described by a (2+1)-dimensional
Zakharov–Kuznetsov equation type.[14] Several other variants
of Noguchi nonlinear electrical transmission lines have also
been proposed in the literature.[15,16]

The models studied above have led to very interesting and
encouraging results. However, these models largely consider
a linear dispersion in NLTLs, which limits the applicability
of the established results to only a few physical phenomena.
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For example, the NLTLs with linear dispersion give a good
description of the dynamics of the classical soliton while they
fail to describe the compact soliton.[17] Likewise, several inter-
esting phenomena in NLTLs cannot be produced by the linear
dispersion alone.[18] In addition, the few studies reported on
NLTLs with nonlinear dispersion overlook the effects of this
nonlinearity.[13,17]

In this work, we consider a modified Noguchi electrical
transmission line with a nonlinear quadratic dispersion and
examine the new features of this factor on the dynamics of
modulated waves traveling in the network. This paper is or-
ganized as follows. In Section 2, we give a brief description
of the model under consideration and find the differential dif-
ference equations governing its dynamics. Then, we call the
semi-discrete approximation to establish that the dynamics of
the modulated waves is described by an equation of the NLS
type. In Section 3, we discuss the impact of the nonlinear
quadratic dispersion both on the frequency domain of the dis-
persion curve and on the appearance of the modulational in-
stability phenomenon. Numerical simulations are carried out
in Section 4 to verify the accuracy of the analytical predictions
built within this paper. Concluding notes are given in Section
5.

2. Model description and equation of the motion
2.1. Model description and basic equations

The physical model considered within this paper consists
of many identical LC blocks connected as illustrated in Fig. 1.
Each block contains a linear inductor Ls and a nonlinear ca-
pacitor Cs(V ) mounted in parallel in the series branch, and a
nonlinear capacitor Cp(V ) in the shunt branch. We assume that
the capacitance–voltage relationships are[19,20]

Cp (Vn +V0) =C0p
(
1−2αVn +3βV 2

n
)
,

Cs(Vn) =C0s(1−2ηV ), (1)

where C0s and C0p are the respective limiting values of these
capacitances when the voltages across them are infinitesimally
small. The grandeurs α and η are the nonlinear quadratic co-
efficients, while β defines the cubic coefficient of nonlinearity.
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Fig. 1. Schematic representation of a unit cell. The dispersive nonlinear
electrical transmission line is made of n identical units.

By applying the Kirchhoff’s law to the circuit of Fig. 1,
we obtain the following set of fundamental equations that de-
scribes the propagation of the voltage Vn(t) in the network:

d2

dt2

(
Vn−αV 2

n +βV 3
n
)
+ω

2
0Vn

=

(
u2

0 +C0r
d2

dt2

)
(Vn−1 +Vn+1−2Vn)

+ηC0r
d2

dt2

[
(Vn−Vn+1)

2− (Vn−1−Vn)
2
]
,

n = 1,2, . . . ,N, (2)

where N and C0r = C0s/C0p represent, respectively, the num-
ber of cells considered and the dimensionless constant, while
ω2

0 = 1/LpC0p and u2
0 = 1/LsC0p designate the characteristic

frequencies of the system.
In the linear domain of Vn, i.e., neglecting the terms of

power greater than 1, and assuming a sinusoidal wave in which
Vn is proportional to exp(i(kn−ωt)), we get a linear disper-
sion relation of the following form:

ω
2 =

ω2
0 +4u2

0sin2 (k/2)
1+4C0rsin2 (k/2)

, (3)

in which ω and k are, respectively, the angular frequency
and wave number of the carrier wave. This dispersion re-
lation is plotted in Fig. 2 for k chosen in the first Brillion
zone (0 6 k 6 π). This representation clearly shows that
our network is a pass-band filter with the lower cut-off fre-
quency f0 = ω0/2π and the upper cut-off frequency fc =√
(ω2

0 +4u2
0)/(1+4C0r)/2π which deals with the discrete na-

ture of the line. Let us stress that fc is inversely proportional
to the reduced capacitance C0r. Thus, the cut-off frequency
fc decreases with the growth of C0r. This result means that the
band-pass frequency of the nonlinear dispersion Noguchi filter
decreases with the increase of C0r and becomes more selective
in terms of frequency. We could also note that the upper gap
zone increases for nonzero values of C0r. Therefore, the model
is also appropriate for the investigation of the upper gap soli-
ton dynamics.[19]
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Fig. 2. The linear dispersion curve of the network with wave vec-
tor k (rad/cell) for C0r = 0.3, u0 = 2.5786× 106 rad/s, and ω0 =
3.7689×106 rad/s.
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The corresponding linear group velocity associated to the
wave packet is defined below

µ =
dω

dk
=

1
ω

(
u2

0−C0rω
2
)

sin(k)

1+4C0rsin2 (k/2)
, (4)

and drawn in Fig. 3 for the parameters of Fig. 2. It appears
in the curve that the growth of C0r induces a decrement of this
velocity.[19]
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Fig. 3. Group velocity obtained for the parameters defined in Fig. 2.

2.2. Derivation of the cubic nonlinear Schrödinger equa-
tion

In this subsection, our attention is focused on the deriva-
tion of the cubic nonlinear Schrödinger equation describing
the propagation of the modulated waves in the network. Dur-
ing this derivation, we assume that the envelope of the wave
varies in time and space with regard to a given carrier wave
with angular frequency ω and wave number k. To achieve this
end, we call the reductive perturbation method in the semi-
discrete limit to expand the voltage in the general form[19]

Vn (t) = εV11 e iθ + ε
2(V 20 +V22 e iθ )+ · · ·+ cc, (5)

where θ defines the phase, ε is a small parameter, and “cc”
stands for the complex conjugate of the preceding expression.
Expression (5) includes the fast local oscillation through the
dependence of the phase on θ = kn−ωt and then preserves
the discrete character of the system, while the dependence of
the envelope part described by the function Vi j (x,τ) of the
slow variables τ = ε2t and x = ε(n− µt) takes care of the
slow variation in amplitude. Substituting Eq. (5) into Eq. (2),
we derive different equations as power series of ε . Therefore,
the coefficients proportional to ε2 exp(2iθ) and ε4 exp(0iθ)
respectively give

V20 =C20 |V11|2 , V22 =C22V 2
11, (6)

with

C22 =
4ω2

[
16iC0rηsin3 ( k

2

)
cos
( k

2

)
−α

](
4u2

0−16C0rω2
)

sin2 (k)+ω2
0 −4ω2

, C20 =
2αµ2

µ2−u2
0

.

Using the above relations together with the coefficients pro-
portional to ε3 exp(iθ) leads to the following equation gov-
erning the slow envelope evolution:

i
∂A
∂τ

+P
∂ 2A

∂x2 +Q |A|2 A = 0, (7)

where

P=
M1−M2−µ2M0

2ωM0
, Q=

N1

N0M0
+

N2

N0M0
(
µ2−u2

0

)+ 3βω

2M0
,

with M0 = 4C0rsin2 (k/2) + 1, M1 =
(
u2

0−C0rω
2
)

cos(k),
M2 = 4C0rωµ sin(k),

N0 = (4u2
0−16C0rω

2)sin2 (k)+ω
2
0 −4ω

2,

N1 = 256ω
3C2

0rη
2sin4(k/2)sin2 (k) ,

N2 = 4ω
3
α

2 (
µ

2−u2
0
)
−2ωµ

2
α

2N0.

Equation (7) is a nonlinear cubic Schrödinger equation in
which the parameters P and Q define the linear group velocity
dispersion and the self-phase modulation (SPM), respectively.
Physically, the first measures the wave dispersion while the
second determines how the wave frequency is amplitude mod-
ulated. Setting η = 0, the first term of the SPM equals zero
and one recovers the NLS equation established in Ref. [15].

3. Modulational instability phenomenon
3.1. Generalities

Modulational instability (MI) is a phenomenon that re-
sults from the interplay between nonlinearity and either the
dispersion in the time domain or the diffraction in the spa-
tial domain. It has been studied in various fields of science,
namely, nonlinear optics,[21] condensed matter physics,[22]

plasma physics,[23] and biophysics,[24] just to name a few.
These investigations indicate that the MI phenomenon is an
underlying physical mechanism which has several advantages.
For instance, it is indispensable for understanding the relevant
dynamic processes in the Bose–Einstein condensates systems
which include domain formation, generation and propagation
of soliton waves.[25] Similarly, MI is an indicator of the pres-
ence of discrete solitons in discrete dissipative systems and
can be exploited to generate a soliton train at high repetition
rate.[26] In inhomogeneous nonlinear systems, MI may be con-
sidered as the leading mechanism for energy localization as
well as the formation of traveling intrinsic localized modes.[27]

In the NLS models, this phenomenon occurs if the prod-
uct PQ is positive. In fact, the nonlinear dispersion relation is
given by

Ω
2 = K2P2(K2−K2

cr), (8)

with K2
cr = 2QA2

0/P. The grandeurs K and Ω designate, re-
spectively, the wave number and the angular frequency of the
perturbation. The plane wave is unstable against small modu-
lation if the perturbation diverges with time, that is K2−K2

cr <
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0. In this case, the angular frequency of the perturbation is
complex and its imaginary part is considered as a measure of
the growth rate of the perturbation defined as

g0 =
[
K2P2(K2

cr−K2)
]1/2

. (9)

Equation (8) shows that, for a wave propagating in the system
to become unstable, it is necessary that K2

cr > K2. K2
cr is an

explicit function of P and Q, and depends implicitly on the
network parameters. Hereafter, according to the wave number
K, we will investigate numerically the role played by the non-
linear dispersion parameter η on the modulational instability
phenomenon. Let us remind that any plane wave propagated
in the line will be unstable if PQ > 0 and its wave number
included in the fundamental gain band K ∈ ]0,Kcr].

3.2. Effects of the nonlinear quadratic dispersion

To clearly establish the effect of the nonlinear quadratic
dispersion parameter η on the dynamics of waves in the net-
work, we check the evolution of the coefficients of Eq. (7)
and their product for the wave number of the signal cho-
sen in the first Brillouin zone. This exam is done for null
and non zero values of the nonlinear quadratic dispersion pa-
rameter. In fact, it is well-known that if PQ < 0, the plane
wave remains stable during its motion in the system and equa-
tion (7) admits a dark soliton solution. On the other hand,
when PQ > 0, the network can exhibit an instability that leads
to a self-induced modulation of an input plane wave and the
solution of Eq. (7) is a bright soliton. Since the dispersion
coefficient P does not depend on η , we only draw the nonlin-
ear coefficient Q and the product PQ with the parameters[16]

α = 0.21 V−1, β = 0.0197 V−2, Ls = 470 µH, Lp = 220 µH,
C0s = 96 pF, C0p = 320 pF and for various values of parameter
η picked in the literature,[28,29] namely, 0.16 V−1, 0.21 V−1,
and 0.25 V−1.

Figure 4 displays the behavior of Q versus the wave num-
ber k for four values of η . These curves indicate that, by ne-
glecting the effects of the nonlinear quadratic dispersion and
the linear capacitor (Fig. 4(a)), Q remains negative indepen-
dently of the value of k. If the effect of the linear capacitor
is checked alone (Fig. 4(b)), Q vanishes for wavelengths k =

1.125 and k = 2. It is negative in the domains 0 < k < 1.125
and 2 < k < π and positive in the region 1.125 < k < 2. For
nonzero nonlinear quadratic component of the capacitor, the
SPM is negative for all values of the wave number (Fig. 4(c)).
This result is similar to that of Fig. 4(a) with low values of Q
otherwise the parameter η does not greatly impact the SPM.

Figure 5 displays the plots of the product PQ (left plots)
as a function of the signal frequency and the corresponding
dispersion relation (right plots) that include the different re-
gions of modulational stability/instability phenomenon. In-
deed, three cases appear from our finding: the upper panel

that links with C0s = 0 and η = 0, the middle panel that corre-
sponds to C0s 6= 0 and η = 0, and the bottom panel that deals
with C0s 6= 0 and η 6= 0.
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Fig. 4. Nonlinear coefficient Q in terms of the wave number for the pa-
rameters of Fig. 2 with α = 0.21 V−1 and β = 0.0197 V−2: (a) without
capacitor Cs in series branches, (b) and (c) with Cs 6= 0 for η = 0 and
η 6= 0, respectively.

First, we start with the case C0s = 0 and η = 0 dealing
with the absence of the capacitor in the series branch of Fig. 1.

Here, there exist two domains in which the product PQ
can be positive or negative (Figs. 5(a) and 5(b)):

(i) f ∈ [ f0, f01], PQ < 0, the wave plane remains stable
under modulation and the solutions of the NLS equation are
dark solitons;

(ii) f ∈ [ f01, fc1], PQ > 0, the wave plane is unstable un-
der modulation and the solutions of the NLS equation are en-
velope solitons.
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in terms of the frequency f = ω/2π and the wave number k, respec-
tively. These graphs are obtained with the given parameters of Fig. 4
for different input parameters: (a) and (b) without the capacitor Cs in
the series branch, (c) and (d) the nonlinear quadratic component of the
capacitor Cs is neglected (η = 0), (e) and (f) with the effects of the non-
linear quadratic component of Cs (η 6= 0). Panel (g) is the zoomed view
of the curve in (c).

Next, we consider the case where the capacitor in the se-
ries branch of Fig. 1 is linear, that is η = 0. Then, there exist
four domains in which the product PQ is either positive or
negative (Figs. 5(c) and 5(d):

(i) f ∈ [ f0, f1], PQ < 0, the wave plane is modulationally
stable and the solutions of Eq. (7) are hole solitons;

(ii) f ∈ [ f1, f2], PQ > 0, the wave plane is modulationally
unstable and equation (7) admits the bright solitons solutions;

(iii) f ∈ [ f2, f3], PQ < 0, the wave plane remains stable
under modulation and the solutions of Eq. (7) are dark soli-
tons;

(iv) f ∈ [ f3, fc], PQ > 0, the wave plane is unstable under
modulation and the solutions of Eq. (7) are envelope solitons.

Finally, when the capacitor in the series branch of Fig. 1 is
nonlinear, that is, the nonlinear quadratic dispersion is consid-
ered (η 6= 0), there exist only two frequency domains where
the product PQ is positive or negative (Figs. 5(e) and 5(b)),
that is,

(i) f ∈ [ f0, f1], PQ < 0, the wave plane remains modu-
lationally stable and equation (7) possesses the hole solitons
solutions;

(ii) f ∈ [ f1, fc], PQ > 0, the wave plane is unstable under
modulation and the NLS equation admits envelope solitons so-
lutions.

From the above-mentioned cases, it is clear that the nature
of the capacitor in the series branch of Fig. 1 strongly affects
the properties and the dynamics of the waves in a modified
Noguchi electrical transmission line. In particular, we recover
that the network has two frequency regions in the absence of
the capacitor Cs in the series branch. When we consider the
effect of the linear component of the capacitor Cs and neglect
that of the nonlinear quadratic component, there appear four
frequency domains in which the network can exhibit modu-
lational stability or instability. Therefore, the linear compo-
nent of the capacitor contributes to increase the number of the
stability and instability domains in the network.[15,19] More-
over, when the nonlinear component of the capacitor (i.e.,
the quadratic nonlinearity) is included, the number of the fre-
quency domains in the network decreases to two and equals
the results obtained for the case where the capacitor Cs in the
series branch is neglected. This last result induces the possi-
bility that the nonlinear quadratic component can be used to
balance the effect of the linear component of the capacitor Cs

with suitable values of considered network parameters. An-
other striking and important result of this analysis is the possi-
bility to obtain two different solitary (one bright and one dark)
signals at the same frequency by a judicious choice of the non-
linear quadratic dispersion parameter.

4. Numerical investigation
We intend to perform numerical simulations on the exact

discrete Eq. (2) governing the wave propagation in the network
in order to test the veracity of the analytical computations pre-
viously made. To this end, the fourth order Runge–Kutta algo-
rithm is called for the direct integration of Eq. (2). Our analy-
sis is carried out on a discrete nonlinear electrical transmission
line (Fig. 1) made of 1200 cells and fixed boundary condi-
tions. The parameters of the nonlinear capacitor in the shunt
branch are β = 0.0197 V−2, α = 0.21 V−1, C0p = 320 pF, and
Lp = 0.22 mH. For the characteristic parameters of the capaci-
tor in the series branch, we use C0s = 96 pF, Ls = 0.47 mH,
η = 0.21 V−1 and two values of the quadratic parameter,
that is, η = 0 V−1 and η = 0.21 V−1. With these numeri-
cal values, the following characteristics of the network are ob-
tained: ω0 = 3.7689×106 rad/s and u0 = 2.5786×106 rad/s,
C0r = 0.3 f0 =ω0/2π = 599.84 kHz, and fc =ω(k = π)/2π =

685.39 kHz. We will examine numerically the modulational
instability phenomenon and the propagation of the envelope
soliton in the network.
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4.1. Behavior of plane waves in the network

We start by reminding that a plane wave introduced in
the line becomes unstable in the focusing media (PQ > 0) and
remains stable in the defocusing media (PQ < 0). To numer-
ically check it, the following signal is applied at the input of
the line:

V (t) =Vm [1+mcos(2π fmt)]cos(2π fpt), (10)

where fm = 8 kHz is the modulation frequency, Vm = 0.5 V
is the amplitude of the wave, m = 0.01 is the modulation rate,
and fp is the carrier frequency whose value is taken in a given
frequency domain. For the effectiveness of these simulations,
the cells 1, 250, and 450 are arbitrary chosen to observe the be-
havior of the wave during its progression in the system. Two
different cases are considered.
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Fig. 6. Modulational stability behavior of the plane wave with the fre-
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the dispersion curve (Fig. 5(d)).
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curve (Fig. 5(f)). We observe a modulation during the motion of the wave.

As a first example of the outcome of these experiments,
figure 6 displays the evolution of a plane wave with the fre-
quency fp = 667.30 kHz chosen in the domain III of Fig. 5(d)
where the analytical analysis predicted a modulational stabil-
ity. These curves show that the solution (10) remains stable
under modulation, agreeing perfectly with the analytical pre-
dictions.

For further illustrations, the same carrier frequency fp =

667.30 kHz of the plane is chosen but in domain II of Fig. 5(f)
where the analytical investigation predicted a modulational in-
stability phenomenon induced by the presence of the nonlin-
ear quadratic dispersion. The motion of the plane wave in the

line under such conditions is depicted in Fig. 7 that allows ob-
serving the modulation instability behavior of the plane wave.
These results which agree with the analytic prediction confirm
the impact of the nonlinear quadratic dispersion on the prop-
erties of the network considered in this paper.

4.2. Propagation of envelope solitons

To experience the transmission of the envelope soliton
through our model for several bands of frequencies dictated
by Fig. 5, we excite one extremity of the line with an envelope
solution of the NLS equation[30]

Vn (t) =V0 sech [γ (n−µst)]cos(Ksn−ωst) , (11)

where γ = (V0/2)
√

Q/2P, µs = µ+vePε2, Ks = k+ve/2, and
ωs = ω + ve(µ + vcPε2)/2. Here, ve and vc are the amplitude
and phase velocities of the soliton, respectively.

In order to avoid signal reflection that disturbs the accu-
rate observation of the wave propagation in the network, the
voltage across the other extremity is set to zero and the ex-
periment is run for a sufficiently long time. Results of the
numerical simulations are given in Figs. 8 and 9.

In the first case (Fig. 8), the signal with the frequency f =
635.13 kHz is taken in the focusing domains II of Figs. 5(d)
and 5(f). It appears that data can be carried out through the
network of Fig. 1 without distortion. Nevertheless, one ob-
serves that the nonlinear quadratic dispersion influences the
width of the solitary wave during its propagation. Hence, this
parameter can be used to control the shape of this wave.
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Fig. 8. Propagation of the bright soliton solution of Eq. (2) in the network
with f = 635.13 kHz taken in the focusing domains II of Figs. 5(d) and 5(f)
which correspond respectively to the case with (red curves) and without (blue
curves) nonlinear quadratic dispersion: (a) the initial signal voltage is located
at cell n0 = 200 with amplitude V0 = 0.2 V, (b) and (c) explain the signal at
given time of propagation: t1 = 0.556 ms and t2 = 1.1 ms, respectively.

On the other hand, figure 9 presents the behavior of the
bright soliton with the frequency f = 648.66 kHz (taken in the
focusing domain II of Fig. 5(f)) in the nonlinear transmission
line. These curves show that the initial electrical signal voltage
propagates with constant amplitude and without distortion of
its shape. This result corroborates with the analytical predic-
tion. At this frequency, the modified Noguchi network without
the nonlinear quadratic dispersion cannot support the envelope
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solitons (Fig. 5(d)), but this result exposes once again, the im-
pact of this nonlinear dispersion on the dynamic of this system.
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Fig. 9. Propagation of the bright solitary wave through the network
with f = 648.66 kHz taken in the focusing domain II of Fig. 5(f) with
nonlinear quadratic dispersion: (a) the initial signal voltage is located at
cell n0 = 200 with amplitude V0 = 0.2 V, (b) and (c) show the signal at
given time of propagation: t1 = 0.6 ms and t2 = 1.2 ms, respectively.

5. Conclusion
We have studied analytically and numerically the ef-

fects of the nonlinear quadratic dispersion on the dynam-
ics of modulated waves in a modified Noguchi transmission
line. We have demonstrated through the reductive pertur-
bation approach that the propagation of modulated waves in
the network is described by the nonlinear cubic Schrödinger
equation. The analytic expressions of its various coefficients
were established and their analyses revealed that the nonlinear
quadratic dispersion has profoundly modified the dynamics of
the system, results which contrast with the case of linear dis-
persion previously obtained. For instance, our investigations
have shown that this nonlinear quadratic component counter-
balances the effects of the linear component. Moreover, we
have found that the quadratic nonlinear dispersion reduces the
MI domains to two regions, unlike four in Ref. [12] and allows
the possible propagation of bright and dark solitary signals
at the same frequency through the network. Numerical sim-
ulations performed in the framework of the nonlinear lattice
equation have led to outcomes that are in perfect agreement
with the analytical predictions. In addition, our study can be

useful to make a better choice of the quadratic parameter and
to help a better understanding of the results of experiments of
the propagating modulated wave in the transmission lines with
nonlinear dispersion.
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