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Fractional variant of Stokes–Einstein relation in aqueous ionic
solutions under external static electric fields∗
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Both ionic solutions under an external applied static electric field E and glassy-forming liquids under undercooled state
are in non-equilibrium state. In this work, molecular dynamics (MD) simulations with three aqueous alkali ion chloride
(NaCl, KCl, and RbCl) ionic solutions are performed to exploit whether the glass-forming liquid analogous fractional
variant of the Stokes–Einstein relation also exists in ionic solutions under E. Our results indicate that the diffusion constant
decouples from the structural relaxation time under E, and a fractional variant of the Stokes–Einstein relation is observed
as well as a crossover analogous to the glass-forming liquids under cooling. The fractional variant of the Stokes–Einstein
relation is attributed to the E introduced deviations from Gaussian and the nonlinear effect.
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1. Introduction

Ionic solutions play a significant role in many areas in-
cluding chemical engineering[1–3] and biological systems.[4,5]

The microscopic structure and transport properties of ions are
two classical topics in chemical physics. The Debye–Hückel
theory[6] describes ions as fully decomposed and solvated in
solutions. However, recent studies suggested that ions tend to
form clusters even in diluted solution.[7–10] The microscopic
structures of ions are essential for many processes, includ-
ing nucleation,[11,12] battery performance,[13–15] and biolog-
ical systems.[16–18] Moreover, ion transport properties usu-
ally dominantly determine the performance of ionic solutions
working in a non-equilibrium processes, e.g., driven by an ex-
ternal electric field E.

The transport properties, including diffusion and vis-
cosity, are significantly influenced by the microscopic struc-
ture of solvation shells. Many works have been carried out
to explore transport properties of ion under E. Lee and
Rasaiah[19] systematically studied the extremely dilute solu-
tions by molecular dynamics simulations. The relation be-
tween solvation structure and viscosity was also explored in
extremely dilute solutions with real or virtual particles.[20]

The frictional coefficients of ion were investigated under the
ambient condition.[21] It was found that the charge trans-
port and ion-ion correlation are different for different ionic
solutions.[22] In addition, the concentrated NaCl solution un-
der E was studied by several groups.[23,24] Kerisit et al. ex-
ploited the dynamic and transport properties of alkali ions in
dimethyl sulfoxide solutions under E.[25]

The diffusion and viscosity are closely connected by the
Stokes–Einstein relation D ∼ T/η in the linear response re-
gion. However, the Stokes–Einstein relation is invalid when
external applied force is large, such as under a strong E.[24,25]

Ionic solution is in a non-equilibrium steady state for the
steady flux caused by E. The glass-forming liquids under un-
dercooled state are also out of equilibrium for the slow dy-
namics. The Stokes–Einstein relation is observed to break
down in glass-forming liquids and liquid metal.[13,14,26–32] Be-
cause of the difficulty to accurately determine shear viscosity
η via simulation, the structural relaxation time τ is usually
adopted as a substitute to evaluate the shear viscosity,[27,33–36]

and the corresponding variant of the Stokes–Einstein relation
is D∼ τ−1.[34,35] As glass-forming liquids undergo supercool-
ing, D ∼ τ−1 is breakdown and follows a fractional form as
D∼ τξ with ξ 6=−1. Since both glassy-forming liquids under
undercooled state and ionic solution under strong E are out
of equilibrium, but different forms of Stokes–Einstein relation
are adopted in the two cases, an interesting question arises: is
there an analogous fractional variant of Stokes–Einstein rela-
tion D ∼ τξ or dynamic heterogeneity existing in ionic solu-
tion under strong E?

In this work, we take three aqueous alkali chloride so-
lutions (NaCl, KCl, and RbCl) to explore the variant of the
Stokes–Einstein relation in ionic solution under strong E. The
paper is organized as follows: Section 2 contains a brief de-
scription of the simulation details. The simulation results are
described in Section 3. Section 4 includes our conclusions and
discussion.
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2. Simulation details
To explore the variant of the Stokes–Einstein relation in

ionic solution under E, we choose three aqueous alkali chlo-
ride (NaCl, KCl and RbCl) solutions. Each system contains
128 ion pairs and 3072 water molecules, the concentration
is ∼ 2.2 mol/L. Fourteen different E’s uniformly distributed
among 0–1.3 V/nm are applied in the X direction. The diffu-
sion and viscosity of alkali ions have been studied by Lee et
al.[20] In this work, we choose the same model for alkali ions
and SPC/E water model. The related force field data are listed
in Table 1. All our simulations are carried out with the GRO-
MACS package,[37,38] in which the external electric field took
effect on a charged atom or ion (with a partial charge q) by ap-
plying an additional electric force Fe = qE in the X direction
besides the routine MD forces in equilibrium, and the equation
of motion for atom or ion i with mass mi and charge qi is

mi
d2ri

dt2 =−
∂V
(∣∣ri− r j

∣∣)
∂ ri

+qiE.

The system temperature is kept to be a constant by the Nosé–
Hoover thermostat.[39,40] The periodic boundary conditions
are applied in all three directions of the Cartesian space and
the particle mesh Ewald algorithm[41] is employed to calcu-
late the long-range electrostatic interactions with a cutoff of
1.2 nm in the real space. The van der Waals (VDW) interac-
tions are calculated directly with a truncated spherical cutoff of
1.2 nm. The ion pairs including Na+–Cl−, K+–Cl−, Rb+–Cl−

and water molecules are put in a cubic box with side lengths
of 4.61 nm, 4.65 nm, 4.66 nm, respectively, which was deter-
mined by a 3-ns constant NPT MD simulation at temperature
T = 300 K and pressure P= 1 atm. After a 3-ns NVT MD sim-
ulation equilibrating the system, to improve statistic, another
seven 2-ns MD simulation with different initial configurations
under the same condition is carried out to sample data. The
time step for all the MD simulations is 1 fs and the configura-
tions are sampled every 10 steps for further data analysis.

Table 1. The force field parameters for the Na+, K+, Rb+ and SPC/E
water model.

Atom/ion σio/nm εio/(kJ/mol) Charge/e
Na+ 0.2876 0.5216 +1
K+ 0.325 0.5216 +1
Rb+ 0.3348 0.5216 +1

O 0.3169 0.6502 −0.8476
H – – +0.4238

3. Results and discussion
Ions exists as solvated ions in aqueous ionic solution. To

characterize the influence of E on solvation structure, we adopt
the radial distribution function (RDF).[19] The RDF is defined
as g(r) = 〈δ (r− r1)〉, where r1 is the position of the central
ion. The RDFs for Na+–Cl−, K+-Cl−, and Rb+–Cl− solu-
tion show almost the same changes under E. We only plot the
RDFs for Na+–Cl− solution to illustrate the influence of E and
the related results are shown in Fig. 1.
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Fig. 1. Radial distribution functions (RDFs) of solvation shells under different E: (a) Na+–Cl− shell, (b) Na+–H2O shell, (c) Cl−–H2O shell.

Figure 1(a) shows that the main peak of the Na+–Cl−

shell has a large increase with increasing E, whereas the sec-
ond peak get a small decrease. The main peak is corresponding
to the ion atmosphere, which mainly determines the dynamics
of ions. The results suggest that Na+ and Cl− get more strong
spatial correlation in the ion atmosphere. It is resulted from the
decrement of dielectric constant as the dipole of water tends
to get a same orientation under E.[42] The main peaks of the
Na+–H2O shell and the Cl−–H2O shell have a little decrease
with increasing E as shown in Figs. 1(b) and 1(c). Ion and
water molecules get less spatial-correlated under a stronger E.

The variant of the Stokes–Einstein relation D ∼ τ−1 is
based on the exponential relaxation of the self-intermediate

scattering function Fs (k, t) ∼ e−t/τ in simple liquids, which
can be described by Fs (k, t) = exp

(
−k2Dt

)
if the displace-

ments of particle follow Gaussian distribution.[28] To evaluate
the variants D ∼ τ−1, the diffusion constant of ions is calcu-
lated via the mean square displacement as

D = lim
t→∞

〈
|ri (t)− ri(0)|2

〉
6t

, (1)

where ri (t) is the position of the i-th ion at time t, 〈 〉 denotes
the ensemble average. Ions get a unidirectional velocity under
E. The displacements of ion r (t) consists of two parts:[43]

random diffusive displacement rr(t) due to thermal motion
and unidirectional drift displacement vt. For the randomness
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of rr(t) lim
t→∞
〈rr(t)〉= 0, the unidirectional drift velocity can be

calculated by

v = lim
t→∞
〈r(t)〉/t. (2)

The self-diffusion of ions is introduced by random thermal
motion, so we have to deduct the unidirectional velocity in
the calculation of the diffusion constant as

D = lim
t→∞

〈|ri(t)− ri(0)− vt|2〉
6t

. (3)

The unidirectional drift velocity v measures how far the sys-
tem away from the equilibrium state.[44] The drift velocities
of Na+, K+, Rb+ and their corresponding Cl− are plotted in
Fig. 2. The magnitude of the velocities for each ion increases
as E increases. However, because of the viscosity differences
among Na+, K+, and Rb+,[45] the magnitude and increas-
ing rate of velocity for Na+, K+ and Rb+ increase in an or-
der Na+ <Rb+ <K+. Because the electrostatic interaction
decreases in the order Na+–Cl− >Rb+–Cl− >K+–Cl−, the
magnitude and increasing rate of Cl− increase in a reverse or-
der. The velocities for each ion show the same changes as E
increases. To quantify the variation, we redraw the velocities
of Na+ and its corresponding Cl− in Fig. 3. The velocity in-
creases linearly with E when E ≤ 0.6 V/nm, and follows a
nonlinear relation v ∼ E + a ·E2 when E > 0.6 V/nm, where
the quadratic term starts to play a role. The phenomenon is
the Wien effect[46] that ions follow nonlinear response under
strong E.

The mean square displacements (MSDs) of Na+, K+,
Rb+, and their corresponding Cl− are calculated. To illus-
trate the MSDs under E, the results of NaCl solution is plotted
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Fig. 2. The drift velocities v for Na+, K+, Rb+, and their correspond-
ing Cl− as a function of E: (a) v for Na+, K+, Rb+, (b) v for alkali
ion corresponding Cl−. The v of alkali ion corresponding Cl− in (b) is
plotted in the same color as shown in (a).

in Fig. 4. The variation of MSDs for Na+ and Cl− with time
can be separated to three regimes similar as in undercooled
liquids.[28] The ballistic regime is at short times (∼ 0.1 ps) so
that MSD is a quadratic function in time. The diffusive regime
is at long times (> 1 ps) so that MSD is a linear function in
time. The cage regime is between the ballistic and the diffu-
sive regime (0.1–1 ps), and the logarithm of MSD increases
nonlinearly with logarithm of time. The MSD in the cage
regime is not a plateau like undercooled liquids. The ion is
not so strongly trapped in the cage as in undercooled liquids.
The cage regime shortens with increasing E, and the rate of in-
crease of MSD with time is greater under a stronger E for both
Na+ and Cl−. This is due to fact that the unidirectional drift
velocity caused ion becomes more easily to get out of the trap
of solvation shell. The diffusion constants of Na+, K+, Rb+

and their corresponding Cl− calculated by Eq. (3) are plotted
in Fig. 5. The diffusion constant D for each ion increases with
increasing E. The tendency is almost the same for all ions and
the only difference is the rate of increase.
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Fig. 3. The drift velocities v for Na+ and its corresponding Cl− versus
E. The symbols are the simulated data. The solid lines are fitted by
v∼ E and the dotted lines are fitted by v∼ E +a ·E2.
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Fig. 4. The logarithm of mean square displacements for Na+ and Cl− as a
function of the logarithm of time t under different E’s: (a) Na+, (b) Cl−.
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Fig. 5. The diffusion constants D of Na+, K+, Rb+ and their corre-
sponding Cl− as a function of E. (a) D for Na+, K+, Rb+, (b) D for
alkali ion corresponding Cl−. The D of alkali ion corresponding to Cl−

in (b) is plotted in the same color as shown in (a).

The structural relaxation of ion is described by the self-
intermediate scattering function, namely,

Fs (k, t) =
1
N

N

∑
j

〈
exp
{

ik · [r j(0)− r j(t)]
}〉

, (4)

where N is the number of ions, r j (t) is the position vector
of j-th ion, k is a wavevector which is always chosen as the
first maximum of the structure factor. If the ion displacement
δ r j (t) = r j (t)− r j(0) is Gaussian, one can express Fs (k, t) in
terms of the MSD as

Fs (k, t) = exp
{
−1

2
k2
〈
[δ r(t)]2

〉}
= exp

(
−k2Dt

)
, (5)

where D is the diffusion constant. In simple liquids Fs (k, t)
decays exponentially like e−t/τ , and D ∼ τ−1. Since the cal-
culation of the diffusion constant has the unidirectional dis-
placements deducted, it is also deducted in the calculation of
Fs (k, t). The structure factor S(k) for each ion under E = 0 is
plotted in Fig. 6. We choose wavevector k as the first maxi-
mum of S(k). Here k is 21.6nm−1, 16.0nm−1, and 15.0 nm−1

for Na+, K+, and Rb+, respectively, and the k values for their
corresponding Cl− are 14.0, 15.5 and 14.5 nm−1. Fs (k, t) for
Na+ and Cl− in NaCl solution as an illustration is plotted in
Fig. 7. It is shown that the applied E’s accelerates the struc-
tural relaxation of Na+ and Cl−, and the ion gets a faster re-
laxation under a stronger E. The structural relaxation time τ

for Na+, K+, Rb+ and their corresponding Cl− determined
by Fs (k,τ) = e−1 with the chosen k is plotted in Fig. 8. The
structural relaxation times for each ion all decrease with the
increasing E.
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Fig. 7. The self-intermediate scattering function Fs (k, t) for Na+ and
Cl− as a function of time t under different E’s: (a) Na+, (b) Cl−.

The simulation can be well fitted by log(D) , log
(
τ−1
)
∼

a+bE + cE2. The fitted a, b, and c are listed in Table 2. Sim-
ilar to the variation of velocity with E plotted in Fig. 3, the
non-linear effect also plays a role in the changes of diffusion
and relation. For small E, the linear item plays a more impor-
tant role E in relaxation, but the quadratic item starts to play a
role with increasing E. The linear item plays a more important
role than the quadratic item in diffusion for all E considered.
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(
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Figures 5 and 8 show that the diffusion constant or relax-
ation times has similar changes with increasing E for all ions.
To quantify the variation, the logarithms of the diffusion con-
stant and relaxation time for Na+, Cl− as a function of E are
plotted in Fig. 9.

To examine the existence of the fractional variant of the
Stokes–Einstein relation in ionic solution under E, the variant

D ∼ τ−1 is evaluated by D ∼ τξ . It will be valid if ξ = −1,
otherwise it will follow a fractional form. The logarithms of
τ−1 and D for Na+, K+, Rb+ and their corresponding Cl−

are plotted in Fig. 10. The fitted ξ are not equal to −1 for
all ions under E. The data for all ions can be well fitted by
D ∼ τ−ξ with different ξ , and a crossover is observed for all
ions with increasing E. The crossover Ex is around 0.7 V/nm,
0.5 V/nm, 0.5 V/nm for Na+, K+and Rb+, respectively, Ex

for their corresponding Cl− is around 0.7 V/nm, 0.6 V/nm,
0.5 V/nm. The similar phenomenon is also observed in water
under supercooling.[27] The exponents ξ for each ion are all
different from 1 and in a fraction, which show that the frac-
tional variant of the Stokes–Einstein relation exists in ionic
solution under E.

Table 2. Fitting data of the logarithm of the diffusion constant D and
structural relaxation time τ by log(D) , log

(
τ−1)∼ a+bE + cE2.

DNa+ DCl− τNa+ τCl−

a −7.020 −6.878 −0.448 −1.328
b 1.702 2.180 0.144 0.151
c −0.119 −0.358 0.237 0.341
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Fig. 10. Test of the variant of the Stokes–Einstein relation described
by D ∼ τ−1 for Na+, K+, Rb+ and their corresponding Cl−: (a) Na+,
K+and Rb+, (b) data for alkali ion corresponding Cl−. The symbols are
the simulated data and the solid lines are fitted by D∼ τ−ξ . The colored
exponent ξ is corresponding to the same colored solid line. The data of
alkali ion corresponding to Cl− in (b) is plotted in the same color as
shown in (a).

The variant of the Stokes–Einstein relation D ∼ τ−1

will be a strict result if the displacements of particle fol-
low Gaussian distribution. It is proposed that the fractional
form is resulted from dynamic heterogeneity in glass-forming
liquids.[47] The dynamic heterogeneity can be characterized by
the deviations from Gaussian distribution in particle displace-
ment. We calculate the self van Hove function Gs(r, t) and its
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first-order approximation G0(r, t) to describe the deviation.[48]

Gs(r, t) is the Fourier transformation of Fs (k, t) and G0(r, t)
takes the Gaussian form. If the distribution of ion displace-
ment takes a Gaussian form, G0(r, t) and Gs(r, t) are the same,
otherwise Gs(r, t) deviates from G0(r, t). The calculated re-
sults for Na+ and Cl− in NaCl solution at t∗ = 10 ps are shown
in Fig. 11. Gs(r, t∗) deviates from the G0(r, t∗) under E. The
results indicate that the dynamic heterogeneity appears under
E.
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Fig. 11. Self van Hove function Gs(r, t∗) and its first-order approxima-
tion G0(r, t∗) for Na+ and Cl− in NaCl solution at t∗ = 10 ps under
different E’s. Gs(r, t∗) and G0(r, t∗) are plotted in the same color with
the dotted lines for Gs(r, t∗) and the solid lines for G0(r, t∗).

To explore the reasons for the crossover and the frac-
tional form observed in D∼ τ−ξ , as data plotted in Fig. 9 and
listed in Table 2, the logarithms of the diffusion constant and
structural relaxation time vary with E as log(D) , log

(
τ−1
)
∼

a+bE + cE2. The a item in diffusion is much larger than the
a item in relaxation. The b item in diffusion is much greater
than the c item for all E considered. Thus the response of
the diffusion to E is mainly determined by the linear term in
E. However, the b and c items are in the same magnitude in
relaxation for all E considered. For small E, the b item is
greater than the c item in relaxation but it is reverse at a large
E. If we make bE = cE2 in the relaxation, we can calculate
the crossover Ex: Ex = 0.607 for Na+, Ex = 0.450 for Cl−. Ex

is roughly equal to the observed linear–nonlinear crossover Ex

in velocity and the crossover Ex observed in D∼ τ−ξ . There-
fore, the fractional D∼ τ−ξ and the crossover are mainly due
to the linear and nonlinear effect caused by E: at small E, the
linear term plays an important role and the quadratic term play
a more important role at large E.

4. Conclusions
The atomistic MD simulations for aqueous NaCl, KCl

and RbCl solutions have been carried out to exploit the frac-
tional variant of the Stokes–Einstein relation in ionic solutions
under strong E. Alkali ion and Cl− get more spatially strongly
correlated under a stronger E but the hydration shell is weaker.
Ion gets a larger velocity with a larger E that leads the system
further away from the equilibrium state. E accelerates the dif-
fusion and structural relaxation of ion, and ion gets a greater
diffusion constant and smaller relaxation time under a stronger
E. The variant of the Stokes–Einstein relation is found to be
breakdown under E, a fractional form and a crossover are ob-
served as E increases. The fractional form and crossover are
resulted from nonlinear response introduced by E. The frac-
tional form and crossover are caused by the dynamic hetero-
geneity of ion and the linear–nonlinear response under E. Our
results indicate the similarities between ionic solutions under
E and glass-forming liquids, which may help us to improve
our understanding and applications of ionic solutions. More-
over, the fractional variant of the Stokes–Einstein relation is
caused by E in our work. Actually, some evidences have
shown that both the dynamics and structures of glass-forming
liquids are heterogeneous. Thus our results may make some
hints on how to explain the fractional variant and crossover in
glass-forming liquids under cooling, such as the heterogeneity
cause molecular mean field.
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