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The optical nonreciprocal response based on
a four-mode optomechanical system
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We propose a scheme for realizing the optical nonreciprocal response based a four-mode optomechanical system,
consisting of two charged mechanical modes and two linearly coupled optical modes. Two charged mechanical modes are
coupled by Coulomb interaction, and two optical modes are coupled to one of mechanical modes by radiation pressure. We
numerically evaluate the transmission probability of the probe field to obtain the optimum optical nonreciprocal response
parameters. Also, we show that the optical nonreciprocal response is caused by the quantum interference between the
optomechanical couplings and the linearly coupled interaction that breaks the time-reversal symmetry.
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1. Introduction
Cavity optomechanical systems have attracted a great

deal of attention from both theorists and experimental-
ists in recent years.[1–36] The systems demonstrate the in-
teraction between the movable mechanical resonator and
the optical field in the cavity by radiation pressure, and
becomes a platform for studying optomechanically in-
duced transparency (OMIT),[2–12] optomechanically induced
amplification,[13,14] ground-state cooling of the mechani-
cal resonator,[15–18] normal-mode splitting,[19] parity-time-
symmetry-breaking chaos,[20] and so on. Recently, OMIT has
been studied in various cavity optomechanical systems.[6–12]

For example, Zhang et al. proposed a potentially practi-
cal scheme to precisely measure the charge number of small
charged objects using OMIT in an optomechanical system,
where the charged mechanical mode is subject to the Coulomb
force due to the charged body nearby.[34] Wu investigated
the properties of the tunable ponderomotive squeezing by
Coulomb interaction in a cavity optomechanical system.[22]

In the past decades, a phenomenon called nonreciproc-
ity effect has been predicted theoretically and observed
experimentally.[37–41] The nonreciprocity effect is the basis
of directional amplifiers, isolators, circulators,[37] and an im-
portant device for information processing. This effect is usu-
ally caused by breaking the time-reversal symmetry of pho-
tons. There are four main ways to break the time-reversal
symmetry of photons: (i) using magneto-optical effects,[37]

(ii) using non-magnetic strategies of optical nonlinearity,[38,39]

(iii) using dynamic modulation,[40] and (iv) using angular mo-
mentum biasing.[41] Recently, it is noteworthy that some re-
searchers have used the radiation-pressure-induced optome-
chanical coupling to break the time-reversal symmetry and to

realize the nonreciprocal effects for light.[42–56] The signifi-
cant achievements have been made in this field, including non-
reciprocal amplification,[42] nonreciprocal transmission,[43,44]

nonreciprocal single-photon effects,[45] and nonreciprocal
slow light,[9,47] etc. Jiang et al. proposed a scheme for re-
alizing optical directional amplification between optical and
microwave fields based on an optomechanical system with op-
tical gain.[48] They found that the direction of amplification
can be controlled by the phase differences between the ef-
fective optomechanical couplings. Xu et al. showed the op-
tical nonreciprocal response in a three-mode optomechanical
system consisting of two optical modes and one mechanical
mode.[53] They proved that the optical nonreciprocal response
is achieved by adjusting the phase difference between the op-
tomechanical coupling rates to cause breaking of time-reversal
symmetry of the system. Xu et al. demonstrated the possibility
of a three-port circulator in a three-mode optomechanical sys-
tem, which is referred to as an optomechanical circulator.[51]

Li et al. studied a three-mode optomechanical system, where
the mechanical mode is subject to the additional mechanical
drive.[46] When the driving frequency of the mechanical mode
is equal to the frequency difference between the optical probe
and pump fields, the system will get directional amplification
of an optical probe field.

Inspired by Ref. [48], we naturally ask whether the op-
tical nonreciprocity can be realized by Coulomb interaction
in optomechanical system or not. If possible, what are new
insights that the Coulomb interaction will bring about for the
optical nonreciprocal response? Based on the above problems,
we theoretically study how to realize the optical nonreciprocal
response based on a four-mode optomechanical system. As
shown in Fig. 1, two charged mechanical mode are coupled by
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Coulomb interaction. One mechanical mode is coupled with
two directly coupled optical modes respectively. In addition,
two optical modes are driven by two coupling fields respec-
tively. The optical nonreciprocal response can be achieved
when the four-mode optomechanical system works under cer-
tain conditions. We will also clarify the role of each phys-
ical quantity in the system. The main differences between
our work and Ref. [48] are: (1) The systems that form the
optical nonreciprocal response are different. The system in
Ref. [48] consists of two optical modes and one mechanical
mode. The system we consider contains two optical modes
and two charged mechanical modes coupled by Coulomb in-
teraction. As far as optomechanically induced transparency is
considered, there have been schemes utilizing charged objects
in cavity optomechanical systems.[22,33,34] However, no pro-
posals have been found to combine both mechanical modes
and Coulomb interaction for studying the optical nonrecipro-
cal response in quantum optomechanics though much richer
nonlinear phenomena are expected. (2) We will discuss the
optimal parameters of observing the optical nonreciprocal re-
sponse. Furthermore, Compared with Refs. [46,51], there is
no additional mechanical drive in the mechanical mode of our
system, so our system is more stable.

b4

b3

c1 c2

g02

EL2EL1

g01

θ

V

J

Fig. 1. The schematic of the four-mode cavity optomechanical system
consisting of two optical modes (c1 and c2) and two charged mechan-
ical modes (b3 and b4). The optical modes and the mechanical mode
b3 are coupled via radiation pressure. The mechanical modes b3 and b4
are coupled via Coulomb interaction.

The paper is organized as follows. In Section 2, we in-
troduce the theoretical model, the detailed analytical expres-
sions of the optomechanical system, and obtain the transmis-
sion probability of the probe field. In Section 3, we discuss
in detail the effect of the phase difference, the Coulomb cou-
pling, and the effective optomechanical coupling strengths on
the optical nonreciprocal response. Finally, in Section 4, we
summarize our work.

2. Model and equations
The four-mode optomechanical system under consider-

ation is schematically shown in Fig. 1, including two opti-
cal modes (ci, frequency ωci, length Li (i = 1,2)) and two
charged mechanical modes (b j, effective mass m j, frequency

ωm j and damping rate γm j ( j = 3,4)). Two optical modes
couple directly with coupling strength J. Furthermore, the
two optical modes couple with the charged mechanical mode
b3 respectively, and the optomechanical coupling strength is
g0i =

√
1/2m3ωm3ωci/Li (i = 1,2). The charged mechanical

mode b3 is coupled to the other charged mechanical mode b4

by a tunable Coulomb interaction V . The b3 and b4 take the
charges Q3 = C3V3 and Q4 = C4V4, with C3 (C4) and V3 (V4)
being the capacitance and the voltage of the bias gate,[22] re-
spectively. The two optical modes are driven by the strong
coupling field ELi =

√
2Piki/ωLi with frequency ωLi = 2πc/λi

(λi (i = 1,2) represents the wavelength, c is the speed of light
in vacuum), in which Pi (i = 1,2) denotes its power and κi is
the total damping rate of optical mode ci (i = 1,2). Without
loss of generality, here we have assumed that J, g0i, V and ELi

(i = 1,2) are real numbers. The Hamiltonian of the four-mode
optomechanical system is (h̄ = 1)

H = ∑
i=1,2

ωcic
†
i ci + ∑

j=3,4
ωm jb

†
jb j

+ ∑
i=1,2

g0ic
†
i ci(b

†
3 +b3)cos(θ/2)

+J(c†
1c2 + c†

2c1)+V (b†
3b4 +b†

4b3)

+ ∑
i=1,2

i(ELic
†
i e−iωLit −E†

Lici e iωLit), (1)

where the first and second terms denote the free energies of
two optical modes and two mechanical modes, respectively,
the c†

i (ci) is the creation (annihilation) operator of the op-
tical mode ci satisfying the commutation relation [ci,c

†
i ] = 1

(i = 1,2), b†
j (b j) is the creation (annihilation) operator of

the mechanical mode b j satisfying the commutation relation
[b j,b

†
j ] = 1 ( j = 3,4). The third term denotes the nonlinear op-

tomechanical interactions between the two optical modes and
mechanical mode b3, and θ is the angle between the incident
light and the reflected light at the surfaces of the mechanical
mode b3. The fourth term describes the interaction between
the c1 and c2. The Coulomb interaction between the b3 and b4

is given by the fifth term. The last term gives the interaction of
the optical modes with the strong coupling fields. In a frame
rotating at the Hrotating = ∑i=1,2 ωcic

†
i ci +∑ j=3,4 ωm jb

†
jb j and

neglecting the counterrotating and higher-order terms with
|ci| � 1 (i = 1,2), the Hamiltonian of the whole system takes
the form

Hrotating = G1(c1b†
3 e iφ1 + c†

1b3 e−iφ1)cos(θ/2)

+G2(c2b†
3 e iφ2 + c†

2b3 e−iφ2)cos(θ/2)

+J(c†
1c2 + c†

2c1)+V (b†
4b3 +b†

3b4). (2)

Here we have set ωLi−ωci =−ωm3 (red sideband) and g0ici =

g0i |ci| e iφi = Gi e iφi with Gi being the effective optomechani-
cal coupling strengths between the mechanical mode b3 and
optical mode ci (i = 1,2). The phases φi (i = 1,2) can be
absorbed by redefining the operators ci, and only the phase
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difference φ = φ2−φ1 has physical effects.[48] Consequently,
equation (2) becomes

Hrotating = G1(c1b†
3 + c†

1b3)cosθ/2

+G2(c2b†
3 e iφ + c†

2b3 e−iφ )cos(θ/2)

+J(c†
1c2 + c†

2c1)+V (b†
4b3 +b†

3b4). (3)

In Eq. (3), interaction of “beam-splitter”, such as G1(c1b†
3 +

c†
1b3)cos(θ/2) or G2(c2b†

3 e iφ + c†
2b3 e−iφ )cos(θ/2), leads

to optomechanically induced transparency and quantum state
transfer.[50]

Starting from the Heisenberg equation of motion i ˙̂O =[
Ô, Ĥ

]
, taking into account the dissipations of the optical

modes and the mechanical modes, and adding quantum noise
and thermal noise, we can give the time evolutions of the ex-
pectation values of the system operators as follows:

ċ1 = −κ1

2
c1− iG1b3 cos

θ

2
− iJc2

+
√

κex1cin1 (t)+
√

κ01c0
in1 (t) ,

ċ2 = −κ2

2
c2− iG2b3 e−iφ cos

θ

2
− iJc1

+
√

κex2cin2 (t)+
√

κ02c0
in2 (t) ,

ḃ3 = −γm3

2
b3− iG1c1 cos

θ

2
− iG2c2 e iφ cos

θ

2
− iV b4 +

√
γm3bin3 (t) ,

ḃ4 = −γm4

2
b4− iV b3 +

√
γm4bin4 (t) , (4)

with κi = κexi + κ0i, where κexi and κ0i (i = 1,2) are the
external coupling rate and the intrinsic dissipation rates,
respectively.[48] Equation (4) can be cast into a matrix form

u̇(t) = Au(t)+Luin(t), (5)

where the two column vectors are

u(t) = (c1,c2,b3,b4)
T,

uin = (cin1 (t) ,cin2 (t) ,c0
in1 (t) ,c

0
in2 (t) ,bin3 (t) ,bin4 (t))T. (6)

The damping matrix is given by

L=


√

κex1 0
√

κ01 0 0 0
0

√
κex2 0

√
κ02 0 0

0 0 0 0
√

γm3 0
0 0 0 0 0

√
γm4

 ,

(7)

and the coefficient matrix A is given by

A=


−κ1

2 −iJ −iG1 cos θ

2 0

−iJ −κ2
2 −iG2 e−iφ cos θ

2 0

−iG1 cos θ

2 −iG2 e iφ cos θ

2
−γm3

2 −iV

0 0 −iV −γm4
2

 .

(8)

The stability conditions of the system require all the real
parts of the eigenvalues of matrix A to be negative, which can
be analyzed by the Routh–Hurwitz criterion.[57,58] The push-
ing process is too complicated, so we omitted it here.

The Fourier transform of the operators are given by

f (ω) =
1√
2π

∫ +∞

−∞

e iωt f (t) dt,

f (t) =
1√
2π

∫ +∞

−∞

e−iωt f (ω) dω. (9)

According to Eq. (9) and using the properties of Fourier trans-
formation, the solution to Eq. (5) in the frequency domain is

u(ω) = −(A+ iωI)−1Luin(ω), (10)

where I denotes the identity matrix.
The input-output theorem is[2]

uout(ω) = uin(ω)−LTu(ω). (11)

Substituting Eq. (10) into Eq. (11), we can obtain

uout (ω) = T (ω)uin (ω) , (12)

where the output field vector uout (ω) is the Fourier transform
of

uout = (cout1,cout2,c0
out1,c

0
out2,bout3,bout4)

T, (13)

and the transmission matrix is given by

T (ω) = I +LT(A+ iωI)−1L. (14)

Here the matrix element Ti j(ω) represents the transmission
probability of the probe field from cavity c j to cavity ci (i, j =
1,2). We can obtain the transmission matrix elements T12 and
T21 as

|T12| =
√

κex1
√

κex2(iV 2J−A4(−iJA3 +G1G2 cos2 θ

2 e iφ ))

V 2(J2−A1A2)+A4[A3(J2−A1A2)+ i cos2 θ

2 (G
2
1A2 +2G1G2J cosφ +G2

2A1)]
,

|T21| =
√

κex1
√

κex2(iV 2J−A4(−iJA3 +G1G2 cos2 θ

2 e−iφ ))

V 2(J2−A1A2)+A4[A3(J2−A1A2)+ i cos2 θ

2 (G
2
1A2 +2G1G2J cosφ +G2

2A1)]
, (15)
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where A1 = iκ1/2+ω , A2 = iκ2/2+ω , A3 = −γm1/2+ iω ,
A4 = −γm2/2+ iω . Based on the transmission probability of
the probe field Ti j(ω) (i, j = 1,2), we can investigate the the
optical nonreciprocal response in the four-mode optomechan-
ical system.

3. The optical nonreciprocal response
In this section, we numerically evaluate the transmission

probability of the probe field to prove the possibility of the op-
tical nonreciprocal response in the four-mode optomechanical
system. According to the numerical results, the optimum pa-
rameters for observing the optical nonreciprocal response are
obtained. Relevant parameters are taken as κ01 = π×106 Hz,
κ02 = 2π × 106 Hz, κex1 = κex2 = 4π × 106 Hz, γm3 = γm4 =

4π×106 Hz, G1 = 4π×106 Hz, G2 = 6π×106 Hz, θ = π/3,
J = (2κ1κ2)

1/2, V = 0.1γm3.[48]

In Fig. 2, we plot the transmission probability of the probe
field

∣∣Ti j
∣∣2 (i, j = 1,2) as a function of the ω/2π with φ = π/2

(red dashed lines) and φ =−π/2 (green solid lines), where the
parameters are κ1 = 5π × 106 Hz, κ2 = 6π × 106 Hz, γm3 =

γm4 = 4π × 106 Hz, G1 = 4π × 106 Hz, G2 = 6π × 106 Hz,
θ = π/3, J = (2κ1κ2)

1/2, V = 0.1γm3. Under the condition of
the phase difference φ = ±π/2, there are two peaks near the
two frequencies with the probe detuning ω ' ±5π × 106 Hz
and dip near the frequency with the probe detuning ω ' 0 in
the spectrum line of

∣∣Ti j
∣∣2 (i = j = 1,2). At the same time,

|T12|2 is always not equal to |T21|2 in the process of probe de-
tuning ω from −8π × 106 Hz to 8π × 106 Hz, that is to say,
transmission probability of the probe field does not satisfy the
Lorentz reciprocal theorem, and there appears the optical non-
reciprocal response. When the phase difference φ = −π/2,
we have |T12|2 < |T21|2. When the phase difference φ = π/2,
we have |T12|2 > |T21|2. For example, when the phase dif-
ference φ = −π/2, |T21|2 ' 0.3 while |T12|2 = 0 at ω = 0.
This shows that the probe field can be transmitted from cavity
c1 to cavity c2, but the transmission from cavity c2 to cavity
c1 is almost prohibited. The optical nonreciprocal response
arises due to interference between two possible paths, where
one path is along c1 → b3 → c2 and the other path is along
c1→ c2. When φ =−π/2, constructive interference between
the two paths leads to the optical transmission from cavity c1

to cavity c2, but oppositely the optical transmission cavity c2

to cavity c1 is forbidden due to destructive interference.[48]

The case of φ = π/2 is exactly opposite to that of φ =−π/2,
|T12|2 ' 0.3 whereas |T21|2 = 0 at ω = 0. Consequently, the
optical nonreciprocal response can be realized based on the
four-mode optomechanical system.

Figure 3 shows the transmission probability of the probe
field |T12|2 (blue dashed line) and |T21|2 (red solid line) as a
function of the phase difference φ/π . As shown in Fig. 3,

the transmission probability of the probe field shows regu-
lar periodic oscillation. The |T12|2 = |T21|2 when ω = 0 and
φ =±nπ (n is an integer). When φ 6=±nπ (n is an integer), the
|T12|2 6= |T21|2, the time-reversal symmetry is broken, and the
four-mode optomechanical system presents the optical nonre-
ciprocal response. The optimal optical nonreciprocal response
is obtained as φ = −π/2± 2nπ [|T12|2 ' 0 and |T21|2 ' 0.3]
and φ = π/2±2nπ [|T12|2 ' 0.3 and |T21|2 ' 0] (n is an inte-
ger).
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Fig. 2. The transmission probabilities |Ti j|2 (i, j = 1,2) as a function of
the ω/2π . (i) The red dashed lines show the φ = π/2, (ii) green solid
lines show the φ =−π/2. The values of the other parameters are set as
κ01 = π × 106 Hz, κ02 = 2π × 106 Hz, κex1 = κex2 = 4π × 106 Hz,
γm3 = γm4 = 4π × 106 Hz, G1 = 4π × 106 Hz, G2 = 6π × 106 Hz,
θ = π/3, J = (2κ1κ2)

1/2, V = 0.1γm1.
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Fig. 3. The transmission probabilities |T12|2 (blue dashed line) and
|T21|2 (red solid line) versus φ/π with ω = 0. The other parameters
are the same as those in Fig. 2.

The Coulomb interaction is also an important parame-
ter. Therefore, the transmission probability of the probe field
|T12|2 (blue dashed lines) and |T21|2 (red solid lines) plotted
as a function of the ω/2π are shown in Fig. 4 for different
Coulomb interaction at the phase φ = −π/2: (a) V = 0.1γm3,
(b) V = 0.5γm3, (c) V = γm3, (d) V = 12γm3. We can see
that the Coulomb interaction has a significant influence on
transmission probability of the probe field |T12|2 and |T21|2.
When the Coulomb interaction is much smaller than the me-
chanical damping rate γm3, e.g., V = 0.1γm3 [see Fig. 4(a)],
|T12|2 6= |T21|2, and the optical nonreciprocal response is pro-
nounced with the ω = 0. However, as the Coulomb interaction
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increases, the optical nonreciprocal response becomes invisi-
ble with the ω = 0 [see Figs. 4(b) and 4(c)]. When V = 12γm3,
|T12|2 is equal to and |T21|2, as shown in Fig. 4(d), the opti-
cal nonreciprocal response disappears. From Figs. 4(a)–4(d),
we can see that the smaller the Coulomb interaction, the more
obvious the optical nonreciprocal response. The optimal op-
tical nonreciprocal response is obtained as V = 0.1γm3. From
Eq. (1), we can obtain the steady-state mean value of mechan-
ical mode b3 as follows:

bs3 =
−i
(

g1 |cs1|2 +g2 |cs2|2
)

cosθ/2

γm3/2+ iωm3 +
V 2

γm4/2+iωm4

=
−i
(

g1 |cs1|2 +g2 |cs2|2
)

cosθ/2

γ ′m3/2+ iω ′m3
,

with

γ
′
m3/2 = γm3/2+

V 2γm4/2

(γm4/2)2 +ω2
m4

,

ω
′
m3 = ωm3−

V 2ωm4

(γm4/2)2 +ω2
m4

,

where γ ′m3 and ω ′m3 are the effective damping and the effective
detuning, cs1 and cs2 are the steady-state mean values of opti-
cal modes c1 and c2, respectively. Because of the existence of
Coulomb interaction, the γm3/2 adds a term V 2γm4/2

(γm4/2)2+ω2
m4

. We

can see that the γ ′m3 increases with Coulomb interaction. The
interaction between b3 and other modes are decoupled with the
increase of the effective damping. We also know that the opti-
cal nonreciprocal response arises due to interference between
two possible paths, where one path is along c1→ b3→ c2 and
the other path is along c1 → c2. Therefore, if the Coulomb
interaction becomes larger, the interference effect between the
two paths will become weaker. This is the reason why the
optical nonreciprocal response gradually disappears when the
Coulomb interaction is greatly enhanced.
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Fig. 4. The transmission probabilities |T12|2 (blue dashed lines) and
|T21|2 (red solid lines) versus ω/2π with φ = −π/2. (a) V = 0.1γm3,
(b) V = 0.5γm3, (c) V = γm3, (d) V = 12γm3. The other parameters are
the same as those in Fig. 2.

To further understand the effect of the Coulomb interac-
tion on the transmission probability of the probe field, we plot
the probability of the transmission |T12|2 (blue dashed line)
and |T21|2 (red solid line) as a function of Coulomb interaction
V/γm3 in Fig. 5. We assume that the parameters φ = −π/2,
ω = 0 and other parameters are the same as those in Fig. 2. It
can be seen from Fig. 5 that |T21|2 is a decreasing function of
V/γm3, whereas |T12|2 is opposite. It can be easily observed
that the optical nonreciprocal response only exists in a limited
value range of V ≤ 5γm3. When the Coulomb interaction V
is stronger than 5γm3, the transmission probability from cavity
c2 to cavity c1 is the same as the transmission probability from
cavity c1 to cavity c2, |T12|2 ≈ |T21|2. The values of |T12|2 and
|T21|2 tend to be closer and closer to 0.21 as the Coulomb in-
teraction is gradually increased, and the optical nonreciprocal
response cannot be observed.

V/γm

0 2 4 6 8 10 12
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T122 T212

Fig. 5. The transmission probabilities |T12|2 (blue dashed line) and
|T21|2 (red solid line) versus V/γm3 with φ = −π/2, ω = 0. The other
parameters are the same as those in Fig. 2.
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Fig. 6. The transmission probabilities |T12|2 (blue dashed line) and
|T21|2 (red solid line) versus G2/G1 with φ =−π/2, ω = 0. The other
parameters are the same as those in Fig. 2.

The effective optomechanical coupling strengths Gi (i =
1,2) are also a critical parameters in the optomechanical sys-
tem. Next, we discuss the effect of the effective optome-
chanical coupling strengths Gi (i = 1,2) on the transmission
probability of the probe field. The transmission probability of
the probe field |T12|2 (blue dashed line) and |T21|2 (red solid
line) plotted as a function of the G2/G1 are shown in Fig. 6.
When G2/G1 < 1.5, |T21|2 increases with increasing G2/G1,
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and |T12|2 is suppressed by the increasing G2/G1. By con-
trast, when G2/G1 > 1.5, with the further increase of G2/G1,
|T21|2 gradually decreases and |T12|2 gradually increases. In
the neighborhood of G2/G1 = 1.5, |T21|2 reaches the maxi-
mum |T21|2 = 0.33, |T12|2 reaches the minimum |T12|2 = 0,
the optical nonreciprocal response is the most obvious. The
results show that G2/G1 can influence the optical nonrecip-
rocal response, which agrees with our theoretical prediction.
The optimal optical nonreciprocal response is obtained as
G2/G1 = 1.5.

4. Conclusions
In summary, we have investigated the optical nonrecip-

rocal response in a four-mode optomechanical system. This
system involves the Coulomb interaction and the optomechan-
ical interaction. Under the condition of the strong coupling
field, the phase difference between the optomechanical cou-
plings, the Coulomb interaction, the effective optomechani-
cal coupling strengths on the optical nonreciprocal response
are analyzed. The results show that the optical nonreciprocal
response is caused by the quantum interference between the
optomechanical couplings and the linearly coupled interaction
that breaks the time-reversal symmetry. In addition, we can
obtain the optimum parameters for observing optical nonre-
ciprocal response. We also see that the Coulomb effect has a
negative effect on the optical nonreciprocal response.
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