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Abstract

Intravital imaging of brain vasculature through the intact cranium in vivo is based on the evolution
of the fluorescence intensity and provides an ability to characterize various physiological processes
in the natural context of cellular resolution. The involuntary motions of the examined subjects
often limit in vivo non-invasive functional optical imaging. Conventional imaging diagnostic
modalities encounter serious difficulties in correction of artificial motions, associated with fast
high dynamics of the intensity values in the collected image sequences, when a common reference
cannot be provided. In the current report, we introduce an alternative solution based on a
time-space Fourier transform method so-called K-Omega. We demonstrate that the proposed
approach is effective for image stabilization of fast dynamic image sequences and can be used
autonomously without supervision and assignation of a reference image.

1. Introduction

Over the last decades a considerable attention has been given to optical-based imaging microscopy
modalities especially to the intravital microscopy (Hillman et al 2011). To enhance the quality of microscopy
images in visible and near infrared spectral range contrast materials are very often in use (Kalchenko et al
2010, Kalchenko et al 2011). Optical imaging has an ability to acquire data at high speeds; a feature that
enables it to not only observe static distributions of contrast, but to probe and characterize dynamic events
related to physiology (Kalchenko et al 2012, 2014, 2015, 2019a, 2019b), disease progression and acute
interventions in real time (Hillman ef al 2011). For example in vivo intravital microscopy (IVM) has become
the mainstream technology for life science and it is used in various ways in order to extract quantitative
information about essential parameters including cell location, cell motility, cell interactions or blood flow
(Kalchenko et al, 2010, Hillman et al 2011, Kalchenko et al 2011, 2012, 2014, 2015, 2019a, 2019b).

One of the challenges in all live organisms imaging studies is related to the compensation of motion
artifacts. Those motion artifacts should be compensated using active control approach (e.g. mechanical
stabilization or gated/triggered image acquisition schemes) (Vinegoni et al 2015) and if it not possible should
be removed using various types of computation (Dunn et al 2014). Most of the available computation
solutions are dedicated to solve this problem and can do it with different levels of success (Dunn et al 2014,
Vinegoni et al 2015). However, the changes in the illumination distribution caused by the fast dynamic
changes of the forms and patterns over time due to the different flow rate of the fluorophores in veins and
arteries may occur. In this way, the available methods are not efficient in cases where motion artifacts are
accompanied with strong intensity distribution changes inside the region of interest during image
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acquisition (Kalchenko et al 2012, 2014, 2015, 2019a). It is especially relevant to the recently introduced
technique (by our group), the Transcranial Optical Imaging (TOVI). TOVI is dedicated to use dynamic
fluorescence as one of the contrast for imaging characterization and quantification of cerebral blood vessels
through the intact cranium (Kalchenko et al 2012, 2014, 2015, 2019a). This fluorescence imaging technique
is also characterized by fast dynamic changes of the forms and patterns over time related to the flow of the
fluorescent material in the vessels. Nevertheless, natural movements made during the image recording
produce distortions that are unique in each frame. These motions include rapid jerks or saccades, slower
drifts, and high frequency tremors perturbing the temporal analysis.

Image registration is the process in which two or more images acquired at different times, from different
sensors with different resolutions or dimensions, or from different viewpoints/perspectives are matched to
one another (Brown 1992, Dunn et al 2014). This matching is accomplished via a process in which all of the
images in the data set are transformed and aligned into a shared coordinate system. It is often described as
finding an explicit function that performs a mapping of a target image onto a source image (Zitova and
Flusser 2003). Also, variations in the image has been classified by three major types for the better
determination of appropriate transformation (Brown 1992). The first type is the variations due to the
misalignment removed by a spatial transformation when registering. Since the application of an optimal
transformation in this class will remove these distortions, the variations are called distortions. The second
type of variations are also distortions but are not corrected by the registration transformation because that
affects the intensity values. They may also be spatial, such as perspective distortions. Finally, the third type is
called variations of interest, corresponding to the differences between the images that may be spatial or
volumetric but are not removed by registration. The third type variations are due to scene changes for which
it is not possible to use usual algorithms, because no easy-to-find landmark locations in the image can be
found along the time sequence.

Our motivation is to introduce a relevant method that could be applicable for the stabilization of
intra-vital images characterized by fast dynamic changes of the illumination forms and patterns and
significant motion artifacts during acquisition with variations of second and third types. The uncorrected
distortions as well as the variations of interest, which together are called uncorrected variations, are not
removed by registration since an exact match is not possible. The distinction between uncorrected
distortions and variations of interest is important, especially in the case where both the distortions and the
variations of interest are local, because the registration method must address the problem of removing as
many of the distortions as possible while leaving the variations of interest intact (Zitova and Flusser 2003).

The Fourier shift theorem was proposed for registration of translated images (Bracewell and Bracewell
1986). It computes the cross-power spectrum of the sensed and reference images and finds the location of the
peak in its inverse. Fast Fourier Transform can be used for shift detection in 2D and 3D spaces. It has been
demonstrated that the solution to this constrained optimization problem is given by the Lagrange multiplier
method (Araiza et al 2006). The method shows robustness when time varying illumination disturbances
occur (Stone et al 2001). The Fourier Mellin transforms are also used to register the images, which are not
only translated, but also rotated and with a change of scale (Bozek and Pivarciova 2013).

Herein, we proposed an adaptive time-space Fourier method (the kw’ Fourier filtering) that was initially
designed to remove the effect of intensity oscillations of astronomical observations (Tarbell et al 1989) and,
to correct image motions at the limit of detection due to the noise. We also demonstrate that this approach is
able to correct the entire image sequences without supervision and assignment of a reference image. In
section 2, we present briefly the experimental setup to collect a fluorescent temporal sequence. The kw’
method is described in section 3. Current Image Quality Assessments (IQAs) are difficult to interpret in the
particular context of fast dynamic intensity associated to versatile appearance of structures in the region of
interest. Quantitative assessments using both artificially corrupted images and real microscopy (Ferrari et al
2015) or using a dissimilarity index calculated between a reference image and each image in the sequence in
order to detect the presence of artifacts have been recently proposed in intra-vital video microscopy (Soulet
et al 2013). We introduce a useful temporal code color-coding method to perform a quick evaluation of the
image quality of the entire sequence in section 4. The obtained fluorescent images collected during
transcranial mouse brain imaging are shown in section 5, whereas the discussion raised by the results of this
study and other practical implications of the approach are represented in section 6.

2. Experimental setup and data collection

A standard fluorescent zoom microscope SZX12 RFL2 (Olympus, Japan) coupled with a CCD camera
Pixelfly QE (PCO, Germany) are used for the image acquisition. Camera control and image acquisition are
performed through CamWare software (PCO, Germany). A standard fluorescent illumination source was
used, namely, a mercury short-arc discharge lamp. The local IACUC committee approved all experimental
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procedures. The Institutional Animal Care and Use Committee (IACUC) approved all animal procedures.
Anesthesia was performed by intraperitoneal injection of ketamine (10 mg kg™!) and xylazine (100 mgkg™")
mixture, as described previously (Kalchenko et al 2014). BALB/C mice were used in this pilot study in order
to verify the usefulness of the proposed method. As it was also previously described that following
administration of general anesthetics, an initial cut was made, and the skin over the frontal, temporal,
occipital and parietal regions was removed by blunt dissection (Kalchenko et al 2014). The exposed area was
constantly moistened with saline. The mouse was then placed under the microscope lens on a special mouse
holder with a warming plate, which maintained constant body temperature of 37 °C and other vital signs.
For fluorescence imaging, a dose of 0.01 mg fluorescein in a volume of 50 pl was injected into the tail vein.
Experiment duration was less than 1 h, after which all animals were sacrificed by barbiturate overdose. After
contrast material administration, 800 raw images (exposure time: 45 ms per frame) were acquired.

3. Time-space fourier filter kw’

The main objective of the proposed research is to remove as many of the distortions as possible while leaving
the variations of interest intact in order to envision a global mapping of the brain vascularization. For
instance, the temporal distribution of a fluorescent material through the vasculature is different for veins and
arteries. Figure. 1(a) demonstrates color-coded image representing frame of the maximum fluorescence in
each image sequence (first 300 images from the acquired stack) pixel during mouse brain visualization. The
reddish colors correspond to the arteries with the fastest contrast agent administration. The greenish colors
correspond to the veins which has slower contrast agent administration ability comparing to the arteries. The
bluish colors correspond to the vessels with the slowest contrast agent administration (e.g. sagittal sinus).
Thus, it is clearly seen that different vessel types are not observed at the same time and are localized in
different places, so that a reference image to apply usual registration do not match the entire sequence when
trying to compensate the disturbing motions. There exist computational imaging algorithms that are able to
register sets of images, even for super-resolution, but are inaccurate when dealing with fast dynamic changes
of the illumination forms and patterns and significant motion artifacts during the fast dynamic data
collection (Elad and Hel-Or 2001, Nguyen et al 2001, Catlin and Dainty 2002, Farsiu et al 2004).

We propose to apply global motion compensation on the entire sequence using a time-space Fourier
method, initially designed to remove the effect of intensity oscillations of astronomical observations (Tarbell
et al 1989, Molodij et al 2010). The method consists in the determination of a three dimensional filter to
adjust on the Fourier spectra of the raw fluorescent image sequence. Let us consider a single
three-dimensional function of intensity I, I, for space, and time ¢ that defines the fluorescent image
sequences, with the notation r = (x,y) and Kk = (kx, Ky). The filtered time-space intensity is applied in the
kw' space where Kk and w’ are the spatial and temporal frequencies. Let I = (k,w’) be the Fourier transform
for space and time of the Intensity I(r,¢). In the spatio-temporal analysis assumption, the Fourier transform
of the fluorescent signal I(r,t) consists of a projection of the temporal signal onto the orthogonal basis
exp~ 2! and the spatial signal onto the orthogonal basis exp~2"[*] presented as:

I(r,t) = // /f(n,w’)exp_Zi”["‘Jr“’t]W(H,w’)dmdw’ (1)
R R
where the 3D time-space window filter W (k,w’) is defined as
L if [k + k) < “’7/ .

W(k,w') =
0, elsewhere

(2)

Figure. 1(b) shows an illustration of the reciprocal time-space representation of the Fourier analysis of
the fluorescent signal. Fourier time-space is represented taking into account the periodicity and symmetry
properties of the Fourier transform; w’ . appears twice while w’p, is indicated at the center. The total
sequence duration and the time sampling determine, respectively, w’ . and w’ iy The pink cones delimit
the removed frequencies of the Fourier space-time, defined by the velocity V = w’/k. In the presented
example v=3.10" ms~!.

The use of a local spatiotemporal analysis allows the discrepancy of different regions in the Fourier space.
For instance, the time-space filter of equation (2) defines a cone of velocity V = w’/k that determines the
velocity of the motions to discard. All Fourier components inside the kw’ volume are removed. Note that this
velocity parameter V is a mathematical parameter of the underlying geometric transformation law between
space and time. The attempt to relate this velocity to a physical process requires a more difficult and
dedicated experimentation procedure.
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Figure 1. (a) Temporal color code (FIJI/Image J), represented by the color bar (Rainbow RGB code color) is applied along the
frame sequence to distinguish the time-evolution structures (red for the arteries at the initial time, middle green for brain veins
later and blue top for other veins (e.g. sagittal sinus) at the end). (b) Fourier reciprocal time-space The pink cones delimit the
removed frequencies of the Fourier space-time, defined by the velocity V = w’ /k. Anim8or-3D modeling freeware was used to
display the figure.

Figure 2. (a)—(c) The removed volume in the Fourier frequencies is indicated in pink. (d)—(f) Time color-coded images after the
kw' filtering. From left to right the velocity criterion V= w’/k is 0.5 (a), (d), 1(b), (e) and 2(c), (f), respectively. The temporal
color-coding (FIJI/Image J) is applied along the time sequence to distinguish the time-evolution structures from the image
motions when stacking the 300 images.

In figure 2, Filters are displayed for different values of the w’/k ratio. The method acts as a selection of
frequencies distributed in the 3D volume of the Fourier Space.

In figure 2 a linear relationship between space and time has been assumed to determine the values of the
frequencies to remove in the kw’ space. Another quadratic behavior might also be envisaged in the case of a
diffusive law assumption to take into account the localization of the vessels at different depths.

As it was mentioned before, it is not possible to use a reference image for motion artifacts compensation
as far as fast intensity distribution changes such as arteries and veins are collected at different times and
located at different places. Figure 3 shows the result of the processing after applying a stationary signal
detection utilizing a reference image by comparison to the kw’ method. The rigid registration method
computes the cross-power spectrum of the sensed and reference images and finds the location of the peak in
its inverse (implemented in the furnished Matlab code for comparison). The rigid registration method
produces saccades due to the dissimilarities between the selected reference and the current image as indicated
in figure 3(a) where is displayed the blurring coming from the misalignment after the registration.
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Figure 3. Comparison between a stationary detection approach (a) and the kw’ method (b) when fast scene changes occurred. By
comparison, the raw sequence is indicated (c) while (d) shows the effect of the filtering of fundamental frequencies (e.g. when
removing the background). The temporal color-coding (FIJI/Image J) is applied along the time sequence to distinguish the
time-evolution structures from the image motions when stacking the 300 images. On (a) the blurring of red structures (beginning
of the sequence, for instance) is produced by saccades due to the registration misalignment.

4. Time color image distortion method

As a practical tool to obtain a quick look of the efficiency of the described method, we propose to use a
temporal code color to overcome the difficulty due to the blending of the motion effects and the change of
structures along the time. The main idea is to weight each image with a different color before the average in
order to regroup structures appearing with the purpose to distinguish the change of structures from the
motions. Color-coded maps are created using a multicolor merge approach of a full-unprocessed time
sequences using the temporal color code plug-in in Fiji image analysis software (http://fiji.sc) (Schindelin
et al 2012). Briefly, 300 frames are color coded and merged for a qualitative representation of image/time
distortions. A ‘rainbow RGB’ color scheme is chosen to correspond to the different levels of intensity
distribution appearance along the temporal sequence.

By comparison, we evaluated the image quality using methods such as the Similarity Image Assessment
(SIA) (Molodij et al 2014), the entropy (Kersten 1987, Molodij et al 2015), and the sharpness (Molodjj et al
2015) on the final obtained average image to compare with the time color image distortion method. This
effort was first directed toward tuning quickly the w’/k parameter to find the optimum parameter. The lack
of a common reference that fits the entire sequence leads us to adopt absolute assessments such as the
entropy to estimate the quality of information retrieved or from the sharpness metric using the knowledge
provided by adaptive optics in astronomy (Muller and Buffington 1974, Zommer et al 2006, Molodjj et al
2015). Sharpness assessment characterizes the features in the image while the entropy method indicates the
level of information in each frame. An advantage for the entropy assessment is coming from its relative
insensitivity to the intrinsic changes of the features. Optimum value of the filtering velocity parameter V can
be derived and eventually automated.

Moreover, we remarked that the kw' filter acts to remove the ‘background noise’ due to the fluorescence
scattering in the medium for large value of the velocity. As an example in figures 4(b) and (d), hidden
structures emerge for recognition when applying the proposed filtering. Nevertheless, the intensity of the
pixels are modified and maybe not realistic. An accurate study of the image quality assessments to quantify
the reliability has to be studied carefully and is beyond the scope of this paper. In regard only of the IQAs
entropy scores and denoting that the kw’ method depends on the temporal size of the sequence, we propose
to adapt the kw’ depending on the sequence time duration.
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Figure 4. (a) The adaptation of the kw’ filtering for short duration sequences. The frequencies at w’ = w’ i remain intact. (b)
Comparison to the method when the same velocity has been applied. (c), (d) Corresponding time color image distortion renders.
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Figure 5. IQAs (sharpness and entropy) are plotted for different values of the velocity V. Left part of the plot corresponds to the
modified filter presented figure 4(a), while the asterisk symbol mentioned on the velocity (x-axis) correspond to the filtering
indicated in figure 4(b), i.e. for a progressive removal of the ‘background noise’.

As one can see in figures 4(a) and (c) the kw’ filtering is not applied when w’= w’ i, in order to keep the
‘background noise’. In the case of a longer temporal sequence (as indicated in figure 5), the processing leads
to a similar result when determining the best filter, i.e. one obtains the same value of the optimum velocity
from the IQAs.

In the case of short temporal sequences, applying a rigid registration eventually followed by the kw’
would be more adapted, when dynamic changes of the illumination are less prominent. Figure 5 plots the
IQAs values for a long temporal sequence case study (the time sampling is longer than the spatial
dimensions). For the sake of simplicity, the maximum score to display the values on the range from 0 to 1
normalizes all values. IQA indicates a value of V = 0.9 as the optimum value for both types of filtering. The
sharpness of the long duration sequences is significantly decrease at the value of V = 3. Important to notice
that 3D Fourier transform computed with indirect dimension (2 spatial and 1 temporal). Depending on the
size of the 2D spatial image (detector size), the time sequence has to be at least the same dimension. Long
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Figure 6. Dynamic fluorescence temporal sequence stacked over 300 images before and after processing. (a) The mean raw image
sequence. (b) The same sequence, is displayed after applying the k method. Entropy IQA indicates a value of V = 0.9 as the best
quote for the information quality (figure 7). A temporal color coding plug-ins (FIJI/Image J) has been applied along the time
sequence indicated by the color bar. The white bar corresponds to a size scale of 1 mm.

temporal sequences are defined by a time resolution larger than the size of spatial x or y-axis. A value of the
velocity of one of the kw’ method is often the best solution for a cube of sizex =y = T.

We verified the validity of the linear relationship assumption for the kw’ filter by increasing the duration
of the sequence (from 300 up to 800 frames). The corresponding optimum value of the velocity V is then
proportionally shifted.

5. Results

In the experiment related to figure 3, the tissue was grossly immobilized, leaving only minor distortions in
the field resulting from respiration and heartbeat. However, in some cases, a motion can actually shift the
entire field of view. In this close-up image, the temporal sequence was made up 800 images and the growing
factor scale was about 20 by comparison to the following experiment. There is an interest for an accurate
compensation of jerks before any characterization or quantification of cerebral blood vessels through the
entire intact cranium shown in figure 6.

This experiment was also an opportunity to apply the kw’ method on an irregular data cube (x = 696
pix, y = 512 pix, t = 300 x 45 ms). Obviously, a better spatial resolution is obtained when applying the
filtering. But important also, is the accurate recognition of the structures that appear at different moment
and are grossly indicated by the color-coding. For instance, in figure 6(a), due to the involuntary motions,
the discrepancy between veins structures (indicated in blue and green) at different instant becomes difficult.
By comparison, in figure 6(b), one can expect to label the different functional vessels. In the kw’ Fourier
space mixed information is coming from image structures as well as dynamics. The velocity parameter V'
delimits the Fourier time-space corresponding to the undesirable motions faster than the time dynamic scale
of the illumination changes. If the temporal sampling rate of the sequence is high enough, tuning the velocity
parameter can separate both effects. Saccades from jerks are described by velocities larger than characteristic
velocity of illumination pattern modification in the image, are easy to extract.

Figure 8 displays the time color image distortion of the fluorescent sequence when increasing the value of
the velocity. Image quality entropy assessment indicates a value of V' = 0.9 as the optimum value for the
registration (see figure 7). Important to notice that sharpness of the long duration sequences is significantly
decrease for the value of V> 3. Nevertheless, increase the number of frequencies beyond the optimum to
remove totally the jerks is accompanied by a loss of information in relation with the image patterns.

The high spatial resolution structures vanish and complex structures are mixed. Smaller looking vessel
diameter for larger velocity parameter is due to some ‘erosion effect’ related to the loose of corresponding
frequencies. Images look sharp but we remark that details are vanishing. This effect may explain the relatively
low scores of both entropy and sharpness IQAs for large value of the velocity in figure 7. It is important to
notice that both sharpness and entropy IQAs are applied directly on the average sequence image after kw’
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Figure 7. IQAs (sharpness and entropy) are plotted for different values of the velocity parameter v = w’/«. Sharpness assessment

characterizes the features in the image while the entropy method indicates the level of information. Entropy and Sharpness are
absolute IQAs (without calibration reference (Zommer et al 2006)).

®/x=2 Raw data

Figure 8. Comparison of the filtering efficiency on the same temporal sequence for values of the velocity w’/k = 0.7 (a), 0.8 (b),
0.9 (¢), 1(d), 2(e), Raw data (f), 3(g) and 4(h). Image quality entropy assessment indicates a value of V' = 0.9 as the optimum
value for the registration (see figure 7). For this value, the filtering starts to reduce the background noise coming from the
scattering due to fluorescence.

filtering without any correction of the dynamic of the signal that is incompatible with the definition of the
entropy IQA (see the Matlab code, available at stacks.iop.org/PMB/65/075007/mmedia).

6. Discussion

In this section, we discuss first issues related to the definition of the registration. The novelty here is that we
apply the algorithm in a 3D space. Many of the problems arising from the projection of 3D space onto a 2D
image may no be longer relevant (Brown 1992). From 2D studies, it has been accepted that the fundamental
characteristic of any image registration technique is the type of spatial transformation or mapping used to
properly overlay the images (Brown 1992). In this paper, our motivation was to introduce a relevant method
to remove only some of the variations; the effects of illumination changes may be difficult to remove, or we
are not interested in removing them, i.e. there may be changes that we would like to detect. So, the distinction
between uncorrected distortions and variations of interest is important, especially in the case where both the
distortions and the variations of interest are local. Because the registration method must address the problem
of removing as many of the distortions as possible while leaving the variations of interest intact, it becomes
necessary to distinguish between whether certain variations are global or local and whether the selected
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Figure 9. Simulation of a temporal sequence made up 600 images (regular data cube). (a) The time color image distortion
corresponding to the average image is displayed. (b) Three different time variations of intensity are indicated by the three colors
and correspond to the three numbers displayed on the field of view (same respective colors). (c) The motions (rough simulation
of the respiration and heartbeat together with random jerks) graph.

Figure 10. Comparison of the time color image distortion corresponding to the average image before (a) and after (b) the kw’
filter. Entropy IQA indicates a value of v = 0.4 as the optimum value for the correction. Residual blurring is principally coming
from large slow motions characterized by frequencies larger than intensity light variations.

Figure 11. (a) Time color image distortion of the sequence and no motions as a reference. (b) A subfield indicated as red square
on the left image and displayed on a growing scale for a close-up comparison.

transformation is global or local. For example, images may have local variations, but a registration method
may use a global transformation to align them. In the kw’ method, the difficulty to display an explicit
geometric transformation comes from the difficulty to distinguish the frequencies related to the global and
local variations in the kw’ space. Only an underlying geometric transformation law can be suggested.

In the purpose to determine the limitations and optimize the parameters, we applied the kw’ processing
on synthetic data. In the following simulation the results of which are shown in figure 9, the field of view is
parsed with three-colored number of different sizes.
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Figure 12. Comparison of the time color image distortion before (a), (c) and after the kw’ filter (b), (d) for simulated sinusoidal
motions A*sin[27tF*t]. (a), (b) A = 10 and F = 1/300. (¢), (d) A = 5 and F = 1/50.

Figure 13. Close-up comparison of the time color image distortion before (a), (c) and after the kw’ filter (b), (d) for simulated
sinusoidal motions A*sin[27tF*t]. (a), (b) A = 10 and F = 1/300. (c), (d) A = 5 and F = 1/50. The kw’ filter is more efficient for
fastest motions in comparison with the intensity variations.

Each color corresponds to a specific variation of the intensity indicated in figure 9(b). We simulated
distortions such as respiration and heartbeat together with random jerks. Plots of the generated motions are
indicated in figure 9(c). The noise and the scattering effect are not generated. This simulation addresses the
following purposes, in order to:
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e Define spatial patterns for recognition (i.e. the three numbers) that are associated to three different time
behavior (such as the brain vascularization);

e Produce saccades when applying a rigid registration (generating enough dissimilarities between the refer-
ence and the current image);

e Mix frequencies components close to the real case (such as respiration and involuntary random jerks);

e Blend the information coming from the intensity variations and displacement motions in the Fourier space
(that is not the case for a simple moving disk, for instance);

o Show the interest of the time color image distortion method.

In figure 10 simulated images before and after the kw’ method are displayed using the average time color
image distortion. The entropy IQA indicates a value of V = 0.4 as the optimum value for the correction in
agreement with the subjective quality from the time color. The image looks sharper but smallest details are
not resolved. In the following, we show that this residual blurring is coming principally from the large slow
motions characterized by low velocities close to the intensity light variations, fastest jerks being corrected by
the kw’ method.

In the following, we simulate the jerks as a simple sinusoid defined by A*sin[27tF*t] where A is the
amplitude and F the frequency of the sinusoid. We keep the three different time variations of intensity
indicated by both the three color and numbers. Figure 11(a) shows the reference sequence image sharpness
case when no motions are simulated is displayed. Figure 11(b) shows the subfield indicated by a red square
for the purpose of a close-up comparison.

Figure 12 presents a comparison of the time color image distortion before (a), (c) and after the kw’ filter
(b), (d) for two simulated sinusoidal motions A*sin[27tF*t]. It was found that the kw’ method is first
affected by the frequencies and at a second order by the amplitude. For instance, the processing performs
identically for motion amplitudes smaller than 15 pixels when the frequency of the oscillation is 1/300.
Entropy IQA indicates the same optimum value for the kw’ filter velocity (a value of V = 2). By comparison,
in the case of a smaller frequency with a smaller amplitude, the more difficult is to compensate the motion
closer such as the oscillation with A = 5 and F = 1/50. The discrepancy in the Fourier space between motions
and the variations of intensity is more difficult to determine.

Figure 13 shows the corresponding subfield close-up for the two simulated cases. In this simulation, the
sinusoidal frequencies refer to the collection duration time. Longer is the temporal sequence; more efficient
is the kw’ method.

Despite the fact that it is not possible to display a geometric transformation map, the proposed method
addresses the problem of removing as many of the distortions as possible while leaving the variations of
interest intact. At least, usual registration methods face difficulties to correct occasional images motions
when jerks are mixed to the dynamical changes. Image registration technique such as the local image
correlation leads to an unsatisfactory result due to the difficulty to determine a static reference all along
the temporal sequence. Attempts to determine the relative motion of each image in respect with the
previous one in the temporal sequence leads to introduce large saccades that compromise the patterns
recognition.

Another problem which can be potentially solved by the proposed method is removing of artefacts
caused by the highly scattered light from deep layers of tissue. The possible way of image quality improvement
in this case can be application of a diffusion law instead of a velocity in the reciprocal Fourier space for
instance.

In the case of short temporal sequences or at the end of a fluorescent sequence when the dynamic slows
considerably, we applied successfully a rigid registration followed by the kw' filter to improve the spatial
resolution. The kw’ method is able to preserve the movements of tiny illumination patterns of interest, and
complete the correction of usual linear registrations.

7. Conclusions

We presented a time-space kw’ Fourier approach for the stabilization of intravital fluorescence-based
imaging in the presence of fast dynamic changes of the observed imaging patterns, and significant motion
artifacts during their acquisition. The introduced technique is an alternative to correction of variations in
intravital images of brain obtained through the intact cranium in vivo. Despite fast changes of the intensity
patterns with time, the current approach is able to improve the spatial resolution of the entire sequence, and
eventually to reduce the ‘background noise’ emerged during the fluorescence imaging. The proposed
adaptive approach would be highly beneficial when combined with standard rigid registration or
deconvolution methods.
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We also proposed a simple procedure, based on the time visual image distortion method, for a quick
estimation of the compensation quality. The proposed technique can be used autonomously without
supervision and assignation of a reference image, the ideal velocity threshold being determined by testing
different velocities and comparing the entropy.

We developed codes for both the Matlab and IDL (Interactive Data Language) environments with a
similar result although the Fast Fourier Transforms procedures are slightly different. We furnished the
Matlab codes of the adapted kw’ method depending on the duration of the sequence or/and including a rigid
registration step. The time cost to process a sequence of 600 frames is less than a minute for a current laptop
working with Matlab.
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