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Abstract
It is known that a rotating black hole immersed in a magnetic field can selec-
tively accrete charges of one sign and repel charges of the opposite sign. This
gives rise to a magnetic moment of the form MBH = Q

mBH
SBH where Q is the

black hole charge, mBH is the mass and SBH the spin. As a consequence, a black
hole in a binary system with a neutron star is affected by the star magnetic field
as a magnetic dipole. We study the consequence of this fact on the emission of
gravitational waves by a black hole-neutron star binary system.

Keywords: classical black holes, neutron stars, gravitational waves: generation
and sources

(Some figures may appear in colour only in the online journal)

Black holes are usually considered neutral, because the repulsion of electrically
charged particles is so much stronger than the gravitational attraction thus preventing
the accumulation of a significative charge; on the other hand, the attraction of charges
of the opposite sign will easily neutralize any present charge. However, in 1974, Wald
[1] discovered that a rotating black hole immersed in a uniform magnetic field B0,
accretes selectively charges of one sign and repels charges of the opposite sign up to a
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maximum charge Q = 2c2G−1/2B0SBH where SBH is the black hole spin1. In this way,a black
hole acquires a magnetic moment and can interact with an external magnetic field like a
magnetic dipole.

There is a great deal of proofs that black holes immersed in magnetic field exist, such as
black holes surrounded by magnetized accretion disks [3] or binary systems with a black hole
and a companion neutron star [4], therefore the possibility that black holes might be charged
is not purely academical. As discussed in [5] a black hole charge can have visible effects: for
example in a rotating black hole it would generate an electromotive force between the poles
and the equator and the successive accretion of charges of the opposite sign will cause a slow
down of the rotation (the so-called Blandford–Znajek mechanism [6])2; this is considered as
one of the possible origin for relativistic jets [5]. Another effect of a non zero black hole charge
is the displacement of the innermost stable circular orbit (ISCO) in a way that mimics the effect
of the rotation of the black hole [5]. See also [7] for a recent work on the possible effect of a
non negligible black hole charge.

Ground-based (LIGO [8], VIRGO [9], KAGRA [10] and the future Einstein telescope [11])
and space-borne (such as the future LISA, [12, 13]) gravitational waves detectors require high-
accuracy templates for the data analysis of the gravitational waves signal. A great deal of work
has been done in the past decades studying compact binary systems up to 3.5 post-Newtonian
order considering the purely gravitational effects [14–22], spin–orbit effects [23–25] and
quadratic and cubic in spin effects [26–36]. More recently tail contribution [37] and tidal effects
[38] were included. See also the review [39].

In this context, in a recent paper [40], motivated by their strong magnetic field, we have
discussed the effects of the magnetic interaction of two neutron stars in a binary system on the
generation of gravitational waves finding that, considering a system in which a star is young
and has a magnetic field of the order of 1012 G while the other is older and has a magnetic
field of the order of 1010 G (this system is similar to the double pulsar system PSR J0737-3039
[41, 42]), the effect is barely observable by a ground based detector.

In a similar way, motivated by the fact that a possible non negligible charge and magnetic
dipole moment can be present on a black hole in a binary system with a neutron star through
the Wald process thanks to the companion magnetic field, in this paper we shall discuss the
effects on the generation of gravitational waves induced by the magnetic interaction between
the magnetized neutron star and the charged, rotating black hole.

This paper is organized as follows: in section 1 we discuss the Einstein–Maxwell system
and its linearization for small fields and small velocities; in section 2 we calculate the electro-
magnetic potential and the Faraday tensor; in section 3 we discuss the equations of motion of
the bodies in the system; in section 4 we present the evolution equations for the black hole spin
and the neutron star magnetic moment; in section 5 we present the gravitational wave (GW)
and electromagnetic wave (EMW) fluxes; in section 6 we calculate the orbit phase evolution

1 For a charged, rotating black hole, the maximum charge is given by [2].

Q2 =
c4

G

(
G2m2

c4
− S2

m2c2

)
= Gm2(1 − χ2) (1)

where we have used equation (2) in the second equality: if the charge is greater than this value, the black hole becomes
a naked singularity. To fix the idea of the magnitude of this charge, Q ≈ 1.7 × 1021

√
1 − χ2C for a black hole with

mass 10 M� and dimensionless spin χ. If the black hole is immersed in a sufficiently high magnetic field, the maximum
charge Q = 2c2G−1/2B0S can be greater than (1): in this case the maximum charge is given by (1).
2 The maximum charge a black hole can accrete before a breakdown of the vacuum is given by Q

M � 10−13
√

M
a

√
M

M�
(see [6]). This charge is smaller than the maximum charge that can be accreted through the Wald process.
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of the binary system and estimate the effects of our newly calculated electromagnetic terms
on the number of GW cycles in a ground-based detector; in section 7 we calculate the effects
of the EMW on the orbit phase evolution; in section 8 we discuss our results; finally in the
appendix A we report the detailed calculation of the background electromagnetic potential and
in appendix B we report the calculation of the gravitational waves flux.

In what follows NS indicates the magnetized neutron star, while BH indicates the rotat-
ing, charged black hole. Moreover, to make all the factors c explicit we impose (see for
example [39]):

S = cSphysical = Gm2χ 0 � χ � 1 (2)

where χ is the dimensionless spin (we have χ < 0.1 for NS and χ = 1 for maximally rotating
BH [39]). We use the cgs unit system and the convention (−,+,+,+) for the sign of the metric.

1. The Einstein–Maxwell system

A binary system such as the one considered in this work is described by the Einstein–Maxwell
system [40]:

Gμν = Rμν −
1
2

gμνR =
8πG
c4

Tm
μν +

8πG
c4

Telm
μν (3a)

F ν
μ ;ν =

4π
c

Jμ (3b)

where Gμν is the Einstein tensor, Rμν is the Ricci tensor, R is the Ricci scalar, Tm
μν is the mat-

ter stress-energy tensor and Telm
μν is the electromagnetic stress-energy tensor given by (see for

example [40]):

Telm
μν = − 1

4π

[
1
4

gμνFαβFαβ − gαβFμαFνβ

]
. (3c)

where Fμν is the Faraday tensor and gαβ is the inverse of the metric and, finally, Jμ is the
four-current. In terms of the electromagnetic potential Aμ, (3b) can be written as [43]:

�Aμ = −4π
c

Jμ + Rμ
νAν. (3d)

As in [40], we describe the neutron star as a magnetic dipole (in its rest frame) and define
the four-current as [44, 45]:

Jμ = −c∇ν

(
Mνμ

NSδ
3(x − x1(τ ))

)
(4)

where Mνμ
NS is the antisymmetric dipole moment tensor of the NS and x1(τ ) is the star position

at proper time τ . Since we do not want our star to have an electric dipole in its rest frame, we
impose (see [40, 46, 47]):

Mμν
NSuν = 0 (5)

where uν is the star four-velocity.
Since we assume that the black hole has a charge, it also has a magnetic moment proportional

to the spin given by the following equation [1]:

MBH
μν =

Q
mBH

SBH
μν (6)
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The spin tensor SBH
μν has six components, but only three are physical, the ones corresponding

to the spin vector components, while the others could be eliminated by fixing the center of the
body reference frame, therefore, we have to add the supplementary spin condition (see [24, 26,
39, 48–51]):

SBH
μν pν = 0. (7)

To solve the Einstein–Maxwell system we need to add contour conditions [39, 40]: we
assume that the metric was flat and stationary in the far past, so that there is no incoming
radiation at the source position. Mathematically, these contour conditions are given by:

∂tgμν(t,
x) = 0 lim
r→+∞

gμν(t,
x) = ημν ∀ t � T. (8)

where ημν is the flat Minkowsky metric and T is the present time.
As in [40], we can define a background electromagnetic potential and a perturbation,

respectively
0
Aμ and Ãμ, and impose:

Aμ =
0
Aμ + Ãμ. (9)

Following [39] and references therein, we also split the metric into a flat background ημν =
O(1) and a perturbation field hμν = O(G). This post Newtonian (PN) expansion is valid for
systems in which the binary separation d is larger than RS = 2 Gm

c2 where m is the total mass of
the system and for small relative velocities v � c (see [39, 52] and references therein)3.

Assuming that MNS
μν = O(1), the four-current (4) can analogously be splitted into a

background and a perturbation component defined respectively as:

0
Jμ = −c∂ν

(
Mν

NSμδ
3(x − x1(τ ))

)
(10a)

and:

J̃μ = −c
(
Mν

NSμδ
3 ( x − x1(τ )

)(
∂ν ln(

√
−g)

)
(10b)

where g is the determinant of the metric,
0
Jμ is O(1) and will be the source of the back-

ground electromagnetic potential while J̃μ is O(G) and will be the source of the perturbation
electromagnetic potential.

With the above definitions, we can write the linearized Einstein–Maxwell system as (see
also [40]):

�
0
Aμ = −4π

c

0
Jμ (11a)

�hμν =
16π
c4

|g|
[
Tm
μν

]
+

(
16π
c4

|g|
[
Telm
μν

]
+ Λμν

)
(11b)

�Ãμ = −4π
c

J̃μ + Rμν

0
Aμ + RμνÃμ (11c)

3 As discussed in [52], the term small velocities is misleading, since the PN expansion is valid also for velocities v ≈ c
2 :

in this case one should include in the expansion higher order terms in v/c.
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where the tensor Λμν is defined in [39, 53] and contains all the terms at least quadratic in the
metric perturbation. From the third of the above equations, we see that, for consistency, the
perturbation field Ãμ has to be O(G), since the right hand side is O(G). This expansion takes
care of the case in which the backreaction of the gravitational field on the electromagnetic field
is non negligible.

To complete the system (11), we have to define the gauge in which we are working: we use
the harmonic gauge for the gravitational part and the Lorentz gauge for the electromagnetic
part, therefore we impose that all the defined fields are transverse:

∂νhν
μ = 0, ∂ν

0
Aν = 0, ∂ν Ãν = 0. (12)

In what follows, we restrict ourself to the higher order electromagnetic corrections, so only

the background electromagnetic potential
0
Aμ will be important (it could be shown that Ãμ gives

corrections of the order of c−2).

2. Electromagnetic potential and Faraday tensor

Following [26–36, 39], we can define the BH spin vector as:

SBH
μ = −1

2

√
−gεμνρσ

pν

mc
Sρσ

BH (13a)

whose inverse is:

SBH
μν = − 1√−g

εμνρσ
pρ

mc
Sσ

BH. (13b)

With these definitions, equation (7) is automatically satisfied because of the antisymmetry of
the Levi-Civita symbol εμνρσ.4 By analogy, we can define the magnetic dipole vector of the NS
as follows:

MNS
μ = −1

2

√
−gεμνρσuνMρσ

NS (14a)

whose inverse is:

MNS
μν = − 1√−g

εμνρσuρMσ
NS (14b)

where we used uν so that the relation (5) is satisfied at all orders.
From the first equation of the linearized Einstein–Maxwell system, following the derivation

given in the appendix A, we find that the background electromagnetic potential is given by (see
also [54]):

0
Ai = −MNS

ik
nk

1

r2
1

+ O(c−2) (15a)

0
A0 = −MNS

0k
nk

1

r2
1

+ O(c−2). (15b)

4 We define the Levi-Civita symbol by imposing ε0123 = 1, all the other components follow by permutation of the
indices.
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where we have defined:


n1 =

x −
x1

|
x −
x1|
r1 = |
x −
x1|

where 
x1 is the position of the NS. When evaluated at the black hole position and upon using
the definition of the magnetic dipole vector (14a), we find:

(
0
Ai

)
BH

=
εi jkn j

12Mk
NS

r2
12

+ O(c−2) (16a)

(
0
A0

)
BH

=
1
c
εi jkni

12v
j
1Mk

NS

r2
12

+ O(c−2). (16b)

where 
n12 =

x1−
x2
|
x1−
x2| is the direction of the relative position of the NS and of the BH,

r12 = |
x1 −
x2| and v1 is the NS velocity.
With these potentials, the background Faraday tensor evaluated at the position of the black

hole is given by:(
0
Fμν

)
BH

= ∂μ

(
0
Aν

)
BH

− ∂ν

(
0
Aμ

)
BH

(17a)

(
0
Fi j

)
BH

= 2
εi jkMk

NS

r3
12

− 3
ε jklMl

NSni
12 − εiklMl

NSn j
12

r3
12

nk
12 + O(c−1) (17b)(

0
Fk0

)
BH

=
1
c
εslmv

l
1Mm

NS

r3
12

(
δks − 3nk

12ns
12

)
+ O(c−2). (17c)

3. Equations of motion

On the first body of the binary system (the NS) will act only the gravitational force, while on
the second (the BH) will act both the gravitational and the electromagnetic force because of
the interaction of the BH magnetic dipole with the NS magnetic field; therefore, at the higher
order, the accelerations of the two bodies in the binary system are given by:

ai
1 = −GmBH

r2
12

ni
12 + O(c−2) (18a)

ai
2 =

GmNS

r2
12

ni
12 +

1
2mBH

Mαβ
BH∂i

(
Fαβ

)
BH

+ O(c−2)

=
GmNS

r2
12

ni
12 −

1
c

3 Q
2m2

BH

M j
NSSk

BH

r4
12

[(
δ jk − 5n j

12nk
12

)
ni

12 + δikn j
12 + δi jn

k
12

]
+ O(c−2) (18b)

where in the second term in the first line of (18b), we used the acceleration of a magnetic dipole
in a magnetic field reported for example in [40, 46], while in the second line we calculated the
gradient of the background Faraday tensor given in the previous section and used the definition
of the BH magnetic dipole (6).
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Figure 1. In this graphic we represent the triads relevant for this paper: in black {x, y, z}
is the initial triad, in blue {
n, 
�,
λ} is the moving triad and in red {xor, yor, 
�} is the triad
that identifies the orbital plane. The axis 
� is common to the last two triads and is orthog-
onal to the orbit plane; it has been represented in red. The vectors
n and 
λ lie in the orbit
plane. The angle φ, the orbital phase, is also shown.

In the center of mass frame and for circular orbits5, the above equations can be rewritten as
follows (see [39]):


a = 
a1 − 
a2 = −Ω2 r12
n12 + a�

�+ aλ


λ (19)

where
n12, 
�,
λ constitute a triad of orthonormal vectors:
n12 was defined above and is the direc-
tion of the relative position of the NS and the BH, � = 
n12×
v12

|
n12×
v12| is the unit vector normal to the

instantaneous orbital plane (
v12 is the relative speed of the NS and the BH) and 
λ = 
n12 × 
� is
the third unit vector that completes the triad (see [39] and references therein and also figure 1).
In the above equations, we have:

Ω2 = −
a ·
n12

r12
=

Gm
r3

12

+
1
c

3Q
2m2

BH

M j
NSSk

BH

r5
12

(
δ jk − 3n j

12nk
12

)
(20a)

a� = 
a · 
� = −1
c

3Q
2m2

BH

M j
NSSk

BH

r4
12

(
� jnk

12 + �kn j
12

)
(20b)

aλ = 
a · 
λ = O(c−5) (20c)

5 In the approximation of circular orbits, terms proportional to ṙ12 = 
n12 · 
v12 are neglected because they are of the
order O(c−5) [39]. This is a good approximation because gravitational waves tend to circularize the orbit by carrying
away angular momentum from the binary system (see [39]).

7
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where we have defined:

m = mNS + mBH ν =
mNSmBH

m2
Δ =

mBH − mNS

m
+ O(c−2) (21)

where m is the total mass, while ν andΔwill be used later and are respectively the adimensional
reduced mass of the system and mass difference.

The electromagnetic contribution to the energy of the system is given by (see for
example [46]):

Eelm =
1
2
Mαβ

BH

(
0
Fαβ

)
BH

(22)

=
1
2

Q
mBH c

Mi
NSS j

BH

r3
12

(
δi j − 3ni

12n j
12

)
+ O(c−2)

while the gravitational contribution to the total energy of the system is calculated in [39] and
references therein, and is given simply by:

Egrav = −Gm
r12

+ O(c−2). (23)

4. Evolution equation for the spin and the magnetic moment

We report here the equations of evolution for the BH spin and the NS magnetic moment.
On the BH spin will act the magnetic field of the NS and gravity through the spin–orbit

coupling; since the latter is O(c−2) [39, 40] we report here only the higher order electromagnetic
contribution (see also [46]):

dSBH
i

dt

∣∣∣∣elm

=M j
BH

(
Fi j

)
BH + O(c−2) =

Q
mBHc

(
0
Fi j

)
BH

S j
BH + O(c−2)

=2
Q

mBHc
εi jkS j

BHMk
NS

r3
12

− 3
Q

mBHc
ε jskSk

BHM
j
NSni

12 − εiskSk
BH(MNSn)

r3
12

ns
12 + O(c−2)

(24)

where (MNSn) = Mi
NSni

12.
At the higher order, the evolution of the NS magnetic moment is due only to the star

rotation [40]:

dMi
NS

dt
= ωi jMNS

j + O(c−2) (25)

where ωij is an antisymmetric tensor describing the rotation of the star. If I is the moment of
inertia of the star, we have (see [40]):

ωi j =
SNS

i j

I
=

5
2

GmNS

r2
χNSω̂i j (26)

where we have used equation (2) and we have supposed that the star is spherical and with
constant density so that I = 2

5 mNSr2, r is the star radius and χNS is the star dimensionless spin.

8
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5. Flux of gravitational and electromagnetic waves

We can now calculate at the higher order the electromagnetic contribution to the gravitational
waves flux.

As reported in [39, 55], at the higher order, the gravitational waves flux is given by:

F =
G
c5

[
1
5

I(3)
i j I(3)

i j + O(c−2)

]
(27)

where I(3)
i j is the third time derivative of the quadrupole momentum, which is given by:

Ii j = σx<ix j> + O(c−2) (28)

where σ = mNSδ
3(x − x1(t)) + mBHδ

3(x − x2(t)), where x1(t) is the position of the NS and x2(t)
is the position of the BH at coordinate time t. The angular brackets around the indices mean
that we are considering symmetric trace free tensors, i.e. (see [39, 56]):

x<iy j> =
1
2

(
xiy j + x jyi

)
− 1

3
δi j(
x ·
y). (29)

Following the derivation given in the appendix B, we find that the gravitational wave flux
is given by:

FGW =
32c5

5G
ν2x5 − 48

5
c5

G3m2mBH

(
(MNSωw)(SBHn) + (MNSωn)(SBHw)

)
x11/2 (30)

where the first term is the highest order purely gravitational contribution to the GW flux and
the second is our electromagnetic term in which we have defined (MNSωw) = Mi

NSωi jw
j,

(SBHn) = SBH
i ni

12, MNSωw = Mi
NSω

i jw j and (SBHw) = Si
BHwi, while ν was defined in (21)

and 
w is the direction of the relative velocity vector defined in the appendix B, equation (B4).
The detailed calculation of the electromagnetic waves flux was given in [40], here we only

report the final result at the higher order:

FEMW =
5

24
x7c7

G4m4
(Δ− 1)

(
M2

NS + (MNSw)
)
. (31)

where Δ was defined in (21).

6. Orbit phase evolution and number of gravitational waves cycles

We can now estimate the impact of the newly calculated electromagnetic terms on the orbital
phase evolution of the binary system.

The orbital phase is defined as ‘the angle φ, oriented in the sense of motion, between the
separation of the two bodies in the direction of the ascending node within the plane of the
sky’ [39]; see also figure 1. We start from the energy balance (see [33, 35, 36, 39, 40, 57]):

dE
dt

= −F (32)

where E is the total energy given by the sum of equations (22) and (23) and F is the total flux.
Using the chain rule and defining dφ

dt = Ω, we get [36]:

dφ
dx

= −
(

dE
dx

)−1
Ω

F (33)

9
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The right hand side must be expanded in series of x and eventually integrated on x to get φ.
In the usual case (see [39] and references therein) F contains only the GW contribution

FGW, while in our case there is also the contribution of the electromagnetic flux FEMW, so
there are two different contributions to φ: a purely electromagnetic term φEMW and the GW
term φGW:

dφ
dx

=
dφGW

dx
+

dφEMW

dx
= −

(
dE
dx

)−1
Ω(

FGW + FEMW
) (34)

As explained in [40], only φGW is measurable with GW detectors, while φEMW must be inferred
indirectly from the decay of the orbit.

After the integration on x of the GW term, we find that, at the higher order, φGW is given
by:

φGW = − c5

32ν
x5/2

[
1 +

15
8

√
x

(
(Mωw)(SBHn)Q

G2m2mBH
+

(MNSωn)(SBHw)Q
G2m2mBH

)]
(35)

where the first term is the purely gravitational term calculated in [39] and references therein,
while the second term is the electromagnetic contribution calculated in this work.

We can now estimate the importance of the newly calculated electromagnetic corrections
using the number of gravitational waves cycles in a ground based detector [39, 40]:

NGW =
φISCO − φseismic

π
(36)

where φISCO is the orbital phase calculated at the innermost stable circular orbit (ISCO) and
φseismic is the orbital phase calculated at the cut off frequency fseismic = 10 Hz (below fseismic the
detector is blind because of the seismic noise).

We define the vectors Ŝi
BH and M̂i

NS as follows:

Si
BH = Ŝi

BH χBHGm2
BH Mi

NS = MNS M̂i
NS (37)

where MNS is the modulus of the magnetic dipole vector and χBH is the adimensional spin of
the BH (see [39]).

Considering a system in which the neutron star has a radius r = 10 km, mass mNS = 1.4 M�
and a magnetic field of 1012 G (corresponding to a magnetic dipole of the order of MNS =
1030 G cm−3) and the black hole has mass mBH = 10M�, we find that the electromagnetic
contribution to the number of cycles is6:

NGW = 1.1 × 10−14 Q
(

(M̂NSω̂w)(ŜBHn) + (M̂NSω̂n)(ŜBHw)
)
χNSχBH (38)

where ω̂ was defined in (26). It could be shown that this estimate becomes smaller as mBH

grows.
To give an idea of the orders of magnitude involved, the higher order purely gravitational

contribution to the cycle number for the system considered in the above paragraph is 3558.9,
as reported in [39].

6 We remind we use cgs units, so here Q is measured in cm3/2 g1/2s−1, not in Coulombs.
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7. Electromagnetic waves emission

Following the same steps we used for the calculation of the gravitational waves contribution
to the orbit phase evolution, using equation (31), we can estimate the effects of the EMW on
the evolution of the binary system.

The contribution to the orbital phase evolution is given by:

φEMW = −c5x−5/2

32ν

[
125
384

c2

G3m4
(Δ− 1)

(
M2

NS − (MNSw)2
)

x2

]
(39)

where Δ was defined in (21).
Now we can calculate, in a similar way as in the above section, the number of cycles due to

the electromagnetic waves; the result is:

N EMW = −5x−5/2

32ν

[
−98 304

125
c2

G2m4ν3
(Δ− 1)

(
M2

NS − (Mw)2
)√

x

]
(40)

Considering the binary system discussed in the previous section, we find that

N EMW ≈ −2 × 10−9(Δ− 1)χ2, (41)

so we see that the contribution to the orbital phase evolution of the EMW flux is utterly negligi-
ble and therefore, the energy is carried out from the binary system mainly through gravitational
radiation.

8. Discussion and conclusions

Motivated by the fact that a rotating black hole in a magnetic field acquires a magnetic dipole
MBH = Q

mBH
SBH because it selectively accretes charges of one sign and repels charges of the

opposite sign, we have calculated the electromagnetic contribution to the gravitational waves
flux in a black hole-neutron star binary system. We have found that this contribution depends on
the charge Q of the black hole, but the electromagnetic effect on the generation of gravitational
waves is non negligible only if the black hole has a charge Q � 1014cm3/2 g1/2 s−1 ≈ 109 C for
mBH = 10M� (the maximum charge that this black hole can accrete through the Wald process
is about 1.5 × 1015 C). For a black hole in the interstellar medium it seems not possible to
accrete such an enormous charge, therefore the electromagnetic effect on the generation of
gravitational waves in a black hole-neutron star binary system is negligible.
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Appendix A

In this appendix we calculate the components of the background electromagnetic potential
0
A0

and
0
Ai.
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Inverting the first equation of (11), we have:

0
Aμ = −4π

c
�−1

0
Jμ. (A1)

Using the Green function of the D’Alembert operator � given for example in [58], we have:

0
Aμ =

1
c

∫ 0
Jμ(
x′)
|
x −
x′|δ

4(x′0, x0 − |
x −
x′|)dx′0d3x′ (A2)

where x′0 = ct′. We first integrate on x′0 using the property of the Dirac delta∫
f(x)δ(x − x1)dx = f(x1) and then expand in series of c−1 inside the integral as described in

[58], finding that:

0
Aμ =

1
c

∫ 0
Jμ(
x′)
|
x −
x′|d

3x′ − 1
c2

d
dt

∫
0
Jμ(
x′)d3x′ +

1
2c3

d2

dt2

∫
|
x −
x′|

0
Jμ(
x′)d3x′ + O(c−4).

(A3)

retaining only the higher order terms and using our definition of the current (4), we have:

0
Ai =

∫
d3x′

|
x −
x′|
[
MNS

ki ∂kδ
3(
x′ −
x1(t))

]
+ O(c−2) (A4a)

0
A0 =

∫
d3x′

|
x −
x′|M
NS
k0 ∂kδ

3(
x′ −
x1(t)) + O(c−2) (A4b)

We now integrate by parts and use again the properties of the delta function, so we find:

0
Ai = −MNS

ik
nk

1

r2
1

+ O(c−2) (A5a)

0
A0 = −MNS

0k
nk

1

r2
1

+ O(c−2). (A5b)

as reported in (15) where n1 =

x−
x1
|
x−
x1| , r1 = |
x −
x1| and where 
x1 is the position vector of the

NS.

Appendix B

In this appendix we present the calculation of the gravitational wave flux.
As can be seen in equation (27), we need the third time derivative of the quadrupole moment

Iij which is given by:

I(3)
i j =

(
6v<i

1 a j>
1 + 2y<i

1 ã j>
1

)
mNS +

(
6v<i

2 a j>
2 + 2y<i

2 ã j>
2

)
mBH (B1)

where v1 is the velocity of the NS and v2 is the velocity of the BH and 
a1 and 
a2 are given
by (18a) and (18b). In the previous equation the time derivative of the accelerations appears.
For ã2, we have to consider the derivative of the electromagnetic contribution; two terms
appear: one containing Ṡi

BH and one containing Ṁi
NS. Looking at equations (24) and (25),

we see that at the higher order only the second contributes, the other being of the order
O(c−1).

12
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The velocities of the bodies in the binary system can be expressed in terms of the relative
velocity thanks to the relations [39]:

v1 =
mBH

m
v12 v2 = −mNS

m
v12 (B2)

From the first of equations (20), we have that the (square of the) modulus of the relative
velocity is given by (for circular orbits):

v2
12 = (Ωr12)2 =

Gm
r12

+
1
c

3
2

Q
mBH

Mi
NSS j

BH

r3
12

(
δi j − 3ni

12n j
12

)
. (B3)

With this, we can define the unit vector 
w as the direction of the relative velocity:


v = 
w

√
Gm
r12

+
1
c

3Q
2m2

BH

Mi
NSS j

BH

r3
12

(
δi j − 3ni

12n j
12

)
. (B4)

Using the accelerations (18a), (18b), equation (25) and the relations (B2) into (B1), we find,
for circular orbits:

I(3)
i j = I0

i j +
1
c
I1

i j + O(c−2) (B5)

where:

I0
i j = −8

Gm2ν

r2
12

v<i
12 n j>

12 (B6a)

I1
i j =

9
r4

12

mQν

mBH
v<i

12

(
(MNSn)S j>

BH +M j>
NS(SBHn)

)
+ n<i

12n j>
12

[
6

r3
12

mQ
mBH

ν
(

(MNSωSBH) − 5(MNSωn)(SBHn)
)
+

− 15
r4

12

mQ
mBH

ν
(

(MNSv)(SBHn) + (MNSn)(SBHv)
)]

+ n<i
12

[
3

r4
12

mνQ
mBH

(
(MNSv)S j>

BH +M j>
NS(SBHv)

)
+

12
r4

12

mνQ
mBH

(
(MNSSBH) − 5(MNSn)(SBHn)

)
v j>

12

+
6

r3
12

mνQ
mBH

(
(MNSωn)S j>

BH + (SBHn)ω j>kMk
NS

)]
(B6b)

where we have defined (MNSv) = Mi
NSv

i
12, (SBHv) = Si

BHv
i
12, (MNSSBH) = Mi

NSSi
BH,

(MNSωSBH) = Mi
NSωi jS

j
BH, (MNS) = Mi

NSni
12, (SBHn) = Si

BHni
12.

According to equation (27), we need the square of equation (B6). We first introduce the
adimensional parameter [39]:

x =

(
GmΩ

c3

)3/2

=

⎛⎝Gm
c3

√
Gm
r12

+
1
c

3
2

Q
mBH

Mi
NSS j

BH

r3
12

(
δi j − 3ni

12n j
12

)⎞⎠3/2

(B7)

13
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from which we get that, at the higher order:

1
r12

=
c6x3

G3m3
. (B8)

We now square equation (B6), substituting equations (B4) and (B8) and using relations (28).
After some lengthy algebra, Taylor expanding in x the result, we find:

FGW =
32c5

5G
ν2x5 − 48

5
c5

G3m2mBH

(
(Mωw)(Sn) + (MNSωn)(Sw)

)
x11/2 (B9)

as reported in equation (30).
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