
March 2020

EPL, 129 (2020) 58003 www.epljournal.org
doi: 10.1209/0295-5075/129/58003

Laplacian spectrum approach to linguistic complexity:
A case study on indigenous languages of the Americas

J. Vera and W. Palma
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Abstract – How to computationally describe the fascinating diversity of indigenous languages
of the Americas? This work provides a large-scale and quantitative approach to these languages
through the proposal of a novel measure of linguistic complexity based on co-occurrence graphs.
Linguistic complexity is measured using the set of eigenvalues obtained from the Laplacian matrix
of graphs. The results suggest first that our graph-based definition of linguistic complexity is
positively correlated with previous approaches. Second, we were able to describe some structural
differences between indigenous languages. We argue that our approach might suggest another
application of graph-based techniques to the study of language.
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Introduction. – How to computationally describe the
fascinating diversity of indigenous languages of the Amer-
icas? The answer to this intriguing question involves sev-
eral issues. First of all, indigenous languages, particularly
from the Americas, have received little attention from a
computational point of view [1]. This fact is quite sur-
prising because there is an enormous range of language
families spoken approximately by 28 million people who
self-identify as members of an indigenous group in the
Americas [2,3]. Moreover, several statistical linguistic uni-
versals, establishing deep insights into human language,
have been proposed without any consideration of indige-
nous languages. As an example, the complex morphologi-
cal paradigm of Chinantec language [4,5] may allow to ask
for the validity of the Zipf’s law of abbreviation [6].

Secondly, in 2016, the United Nations General Assembly
adopted a resolution proclaiming 2019 as the International
Year of Indigenous Languages1. This resolution was based
on that almost half of the languages spoken around the
world were in danger of disappearing. Crucially, most of
these are indigenous languages and therefore the cultures
and knowledge systems to which they belong are put at
risk. In this sense, computational studies on indigenous
or endangered languages may provide a practical way to
increase their web-based visibility.

1https://en.iyil2019.org/.

With the above discussion in mind, our main goal is
to define a novel computational approach to measure lin-
guistic complexity in order to make global comparisons in
a large-scale set of indigenous languages of the Americas.
In agreement with [7], irrespective of how we want to mea-
sure the complexity of a language, it is essential to keep
complexity as an “objective” notion, in the sense of be-
ing independent of the use to which we put the system.
On this point, we keep complexity apart from user-based
notions such as “cost” or “simplification” (for an example
of this alternative point of view, see [8]).

According to the equal complexity hypothesis, the total
complexity of all human languages is considered equal, as
proposed by Hockett [9]. Interestingly, as stressed in [10]
the equal complexity hypothesis and holistic language ty-
pology are complementary through the following question:
How to define linguistic parameters which describe a lan-
guage as a whole? Our work tries to approach the equal
complexity hypothesis with great caution and consider this
hypothesis as a basic start-point to quantify the compari-
son between indigenous languages of the Americas. Here,
our analyses arise from key questions about linguistic com-
plexity of indigenous languages without any mention of
user-centered notions: Are all these languages of equal
complexity? Does higher complexity of one module (e.g.,
morphology) imply lower complexity of another module
(e.g., syntax )? How can complexity be measured? [11].
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This work proposes a novel linguistic complexity mea-
sure based on the Laplacian spectrum of graph-based
language representations, in order to make global compar-
isons between indigenous languages of the Americas. Fol-
lowing the perspective of Comrie [12], who pointed out the
need to define parameters which describe language from
a holistic and systemic perspective, we describe thus the
organization of maps of connections between word items,
by using the Laplacian spectrum [13,14] of co-occurrence
graphs representing language data. Within this frame-
work, de Lange et al. [15] have revealed, for instance,
global properties of the architecture of neural networks,
describing the organization of maps of connections be-
tween neural elements. The Laplacian spectrum is formed
by the set of eigenvalues obtained from the normalized
Laplacian matrix of a graph. Strikingly, this set of num-
bers captures not only the global properties of a graph, but
also local structures that are produced by graph changes
(like motif or node duplication) [16]. Therefore, the Lapla-
cian spectrum allows us to describe the holistic linguistic
complexity, particularly across indigenous languages of the
Americas.

Recent work on computational approaches to lan-
guage has proposed remarkable unsupervised information-
theoretic measures of linguistic complexity [17,18]. These
measures are mainly based on the average amount of
information encoded in word choice using the concepts
of entropy and Kolmogorov complexity. The approach
developed here is based on the richness of the modeling
capabilities of graphs, added up to the wide offer of graph-
theoretic or graph-mining algorithms. Furthermore, sev-
eral works have remarked the fact that language can be
modeled by graphs [19–22]. In this paper, linguistic com-
plexity [8,11,17,23] is associated to co-occurrence graphs
whose edges capture thus inter-word relationships [24,25].
To structurally characterize languages, we applied a con-
cept defined over the Laplacian spectrum —the Laplacian
energy— as a way to consider a systemic approach to lin-
guistic complexity.

The remaining of the article details the graph-based ap-
proach to linguistic complexity of indigenous languages
of the Americas. We organize this discussion in three
sections. The next section “Materials and methods” de-
scribes language data and our graph-based approach to
linguistic complexity. Section “Results” describes and
illustrates the main results. Section “Discussion” sum-
marizes our work and restates the key challenges of our
approach to the computational representation of (indige-
nous) languages.

Materials and methods. –

Materials. To estimate linguistic complexity, we first
need a comparable text corpora across many languages.
Ideally, text content must be constant in order to avoid
style or genre distortions. To control this constraint across
languages, we use a parallel corpus of the Bible. All the

texts were obtained as XML files from [26]2. A word type is
defined here as a unique string delimited by white spaces.
A word token is then any repetition of a word type. From
each XML file, we only extracted the text of the New Tes-
tament. Details of the considered indigenous languages
are shown in table 1.

Basic concepts on graph theory. We consider an undi-
rected and weighted graph G = (V, E, WE), completely
defined by the vertex set V of size n, the edge set E and
the weight set WE . In our approach, the set V represents
word types for a language, while E is formed by the set
of co-occurrences between word types at distance 1 (that
is, bigrams). The weight w(uv) ∈ WE associated to the
edge uv ∈ E counts the number of co-occurrences of the
bigram uv. The neighborhood of the node u ∈ V is the set
Vu = {v ∈ V : uv ∈ E}. The (unweighted) degree of the
node u ∈ V is simply the size of its neighborhood.

A classical graph-mining tool: clustering coefficient.
The notion of clustering captures correlations between
neighborhoods. In social networks, this notion captures
the fact that when there is an edge between two nodes
(for example, two individuals are friends) they probably
have common neighbors. In mathematical terms, the av-
erage clustering coefficient for the graph G is defined as

C(G) =
1
n

∑

u∈V

Cu, (1)

where

Cu =
2|vw : v, w ∈ Vu ∧ vw ∈ E|

|Vu|(|Vu| − 1)

is the local clustering coefficient for the node u.

Spectral graph theory: an energy function. Spectral
graph theory is mainly focused on discovering graph prop-
erties arising from the eigenvalues of the matrices associ-
ated to the graph [27], such as the adjacency matrix and
the Laplacian matrix.

The normalized Laplacian matrix is defined by the re-
lation L = I − D−1/2AD−1/2, where A is the adjacency
matrix; I is the |V | × |V | identity matrix; and D is a di-
agonal matrix whose entries are (possibly weighted) node
degrees. The Laplacian spectrum of the graph G is the col-
lection of all solutions λ (the eigenvalues), for which there
exist non-zero vectors u (the corresponding eigenvectors)
satisfying the equation Lu = λu.

The normalized Laplacian energy of the graph G is [28]

EL(G) =
1
n

n∑

i=1

|λi(L) − 1|. (2)

The normalization term 1
n allows to compare graphs

of different size. As remarked in the introduction, the
Laplacian spectrum, and therefore EL(G), is a simple and
efficient way to describe languages at a system level.

2https://github.com/christos-c/bible-corpus.
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Table 1: Basic description of the parallel corpus of indigenous languages of the Americas (based on [26,29]).

ISO 639-3 Language Linguistic family Tokens Types Speakers

acu Achuar Jivaroan 176499 19240 5000
agr Aguaruna Jivaroan 150931 24933 38300
ake Akawaio Carib 231633 8631 4500
amu Amuzgo Oto-manguean 200928 14185 23000
cjp Cabecar Chibchan 201346 8293 8840
cak Cakchiquel Mayan 314530 8300 132000
chr Cherokee Iroquoian 116733 25537 16400
chq Chinantec Oto-manguean 306046 11899 8000
jai Jakalteco Mayan 219494 12160 77700
quc K’iche’ Mayan 272692 7206 1900000
mam Mam Mayan 216865 10946 200000
nhg Nahuatl Uto-Aztecan 176717 15476 3500
ojb Ojibwa Algic 142440 36436 20000
kek Q’eqchi’ Mayan 256185 8958 400000
quw Quichua Quechuan 116883 14944 20000
jiv Shuar Jivaroan 138670 23053 46700
usp Uspanteco Mayan 226076 8676 3000

Linguistic complexity measure. To define a graph-
based measure of linguistic complexity, we apply the no-
tion of normalized Laplacian energy EL(G) to propose the
Laplacian-based complexity:

CLaplacian = EL(G). (3)

To compare this measure with a classical measure en-
coding average properties of individual graph elements,
we use the average clustering coefficient (from now,
clustering). Each language is embedded thus into the
two-dimensional space (CLaplacian, clustering) in order to
find clusters of similar languages.

Graph construction and implementation details. For
text preprocessing (whitespace tokenization, punctuation
removal and conversion to lower case), we used NLTK3.
Graph-theoretic techniques were made using NetworkX4

and NumPy5. Source code is available in a public web repos-
itory6.

For each language, the graph G was built along the fol-
lowing steps:

Step 1. Identify the set of bible verses.

Step 2. Preprocess each verse by whitespace to-
kenization, punctuation removal and conversion to
lower case.

Step 3. Define the set of word types Wt of the entire
text.

3https://www.nltk.org/.
4https://networkx.github.io/.
5https://www.numpy.org/.
6https://github.com/javiervz/indigenous-languages.

Step 4. Through an iterative process, inspect each
verse in order to find word type bigrams. Each new
bigram between pairs of word types from Wt defines
an edge of the graph. Repetitions of bigrams increase
the weight of the respective edge.

Despite of language graphs can be defined in a num-
ber of ways (for example, weighted/non-weighted or
directed/non-directed), we based our analyses on a sim-
ple version of graphs. Further work should discuss the
potential influence on the results of graph construction
strategies.

Two previous linguistic complexity measures. To com-
pare our graph-based approach with previously defined
complexity measures, we introduce two notions. Let T
be a text that is drawn from the vocabulary of word
types Wt. Also, we assume that word type probabilities
are distributed according to p(w), w ∈ Wt. The aver-
age information content of word types (or the entropy)
reads [18]

CH = −
∑

w∈Wt

p(w) log(p(w)). (4)

In addition, word type ratio CTTR is viewed as a simple
baseline measure [30]. Higher values of CTTR correspond
to higher morphological complexity [18]. This measure is
defined as

CTTR =
|Wt|
|T | , (5)

where |Wt| and |T | indicate, respectively, the number of
word types and the number of tokens of the text T .
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Fig. 1: Pairwise correlations with CLaplacian. Panels show scat-
terplots with fitted regression lines. The coefficient of deter-
mination is 0.94 and 0.9 for CH and CTTR. Linguistic families
with at least three languages in the corpus are represented by
specific symbols.

Results. –

Correlations between complexity measures. We apply
the non-parametric Spearman rank correlation to eval-
uate relationships between pairs of measures. All cor-
relations reported here are significant at the p < 0.001
level. First, figs. 1 and 2 display pairwise comparisons
between CLaplacian, clustering and CH , CTTR. The cor-
relations between CLaplacian and baselines are strongly
positive: 0.9 and 0.89 for CH and CTTR. On the con-
trary, the correlations between clustering and baselines
are strongly negative: −0.91 and −0.84 for CH and CTTR.
The results illustrate that our graph-based approach corre-
lates with previous computational approaches to linguistic
complexity.

In order to rule out size effects, we describe the corre-
lation between the number of tokens and CLaplacian, as
shown in fig. 3. In this case, the correlation is strongly
negative, −0.88, while the coefficient of determination is
0.63. It is interesting to notice that for languages with
CLaplacian < 0.1 there is a large variability in the number
of tokens (from 1.5 × 105 to 3 × 105). We found that at
least for low-complexity languages corpus size effects can
be rejected.

Indigenous languages in the two-dimensional space.
To quantitatively describe indigenous languages of the
Americas, from each graph-based representation we de-
fine Laplacian-based and clustering axes. Languages

Fig. 2: Pairwise correlations with clustering. Panels show
scatterplots with fitted regression lines. The coefficient of de-
termination is 0.92 and 0.72 for CH and CTTR.

Fig. 3: Correlation between the number of tokens and
CLaplacian. The panel shows a scatterplot with the fitted re-
gression line. The coefficient of determination is 0.63.

were embedded thus into the two-dimensional space, as
shown in fig. 4. Strikingly, this figure illustrated two im-
portant issues. First, language families were clustered
by linguistic complexity values: Jivaroan and Mayan
languages exhibited obvious differences in the complex-
ity space. This result is closely related to the work
in [31], which proposed a method that first builds a co-
occurrence representation of parallel corpora and then
extracts graph-mining measures as features for unsuper-
vised machine learning. Interestingly, the Laplacian spec-
trum (possibly formed by thousand of numbers) can
be used as a vector of features within the mentioned
approach.
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Fig. 4: Complexity space for indigenous languages of the
Americas. Axes indicate values for each graph-based measure:
CLaplacian and clustering. The black line represents a fitted
regression line with coefficient of determination r2 = 0.9.

Fig. 5: Overall complexity for indigenous languages of the
Americas. Languages are associated to a simple measure of
overall complexity: CLaplacian + clustering. The blue line in-
dicates original values. The black line represents the overall
complexity for random versions of each text. Random graphs
are represented by two lines: orange (weighted) and purple
(unweighted). For each measure, values are normalized by the
maximum.

Our evidence suggested also the appearance of a linear
negative relationship between CLaplacian and clustering.
This fact supported positive evidence for the equal com-
plexity hypothesis [9]. In this sense, it is interesting to
remark opposite languages: on the one hand, Chinantec
and, on the other hand, Ojibwa, Aguaruna or Cherokee.

To empirically test the validity of the equal complex-
ity hypothesis, we proposed a simple overall complexity
function defined as the sum of CLaplacian and clustering.
Values are normalized by the maximum: if the hypothe-
sis is true, we expected to find an overall value close to 1.
Figure 5 displays the overall complexity for indigenous lan-
guages of the Americas (including English and Spanish).

Fig. 6: Local clustering coefficient as a function of degree.
For languages with high, middle and low values of CLaplacian,
Kiche, Achuar and Aguaruna, the panel shows the average
value of clustering for each node degree.

We contrast the results with the “null hypothesis” that
CLaplacian and clustering are always negatively corre-
lated whatever the underlying graph is. To do this, we
compare the original results with: a) randomized ver-
sions of texts; b) unweighted random graphs; and c)
weighted random graphs (b) and c) are defined by ex-
pected degree sequence [32]). First, the black line displays
CLaplacian + clustering for randomized versions of texts.
Interestingly, the overall complexity linguistic function be-
haves as in the original texts. We argue that these results
were resilient to text randomization because co-occurrence
counts are strongly related to word frequency distribu-
tions. This may explain the positive correlation between
Laplacian-based complexity and language entropy [18], as
shown in fig. 3. Word choice distribution can be de-
scribed thus by information-theoretic and graph-mining
techniques. Further work should be conducted to estab-
lish relations between these two points of view about lan-
guage. Random graphs display interesting facts. First,
across languages the average value of the overall complex-
ity function is: 1.13 ± 0.09 (original); 1.21 ± 0.07 (a));
1.25 ± 0.08 (b)); and 1.43 ± 0.14 (c)). Second, random
graphs are less resilient than random texts. Third, it
seems that unweighted graphs lose the inverse relation-
ship between CLaplacian and clustering. This suggests
that graph structure is embedded in co-occurrence counts
(that is, graph weights).

Clustering coefficient and linguistic complexity.
Within our approach to linguistic complexity, languages
can be conceptualized as a network of words interrelated
with each other in complex ways. Do they all relate to
each other, or are they maybe separated from each other?
A sketch of answer is provided by a closer analysis of the
linguistic neighborhoods of words. For this, we focused on
the local clustering coefficient Cu defined in eq. (1), mea-
suring the local density of edges in word u’s neighborhood.

To quantitative describe the behavior of local word’s
neighborhoods for each language, we first identify the
set of different values of node degree. Then, for each

58003-p5



J. Vera and W. Palma

value d we calculated 1
|Vd|

∑
u∈Vd

Cu, where Vu is the set
of nodes with degree d. As is shown in fig. 6, we first
observed that the three considered languages, exhibiting
respectively high, middle and low values of CLaplacian,
showed a different behavior for clustering vs. node de-
gree. Indeed, for Kiche the local clustering coefficient
is very large in comparison with the other languages.
For example, for words with 100 neighbors, the average
local clustering is 0.25, 0.11 and 0.07, respectively, for
Kiche, Achuar and Aguaruna. Meanwhile, our analy-
sis also showed that clustering decreases monotonically
with node degree. Particularly, the clustering coeffi-
cient drops linearly (in log − log scale) for words with
more than 103 neighbors, indicating that these words are
likely forming part of the language graph for several non-
necessarily related linguistic mechanisms. Interestingly,
a similar behavior has been previously observed in social
networks [33].

Discussion. –

Graph-based complexity across indigenous languages of
the Americas. In this short paper, we described a novel
computational measure of linguistic complexity, applied
in a large-scale collection of indigenous languages of the
Americas. Our approach was mainly based on the broader
interest to develop computational studies and Natural
Language Processing tools on these languages. In this
sense, we agree with [1] that technological and computa-
tional approaches can have a positive social impact for the
communities which depend on these languages; and in ad-
dition the great diversity of indigenous languages of the
Americas posses fascinating scientific challenges.

Co-occurrence graphs and syntactic dependencies.
Here, we developed a co-occurrence approach to capture
complexity issues of language. A possible criticism of this
approach is that it is mainly based on word frequency mat-
ters: graph edges are defined by repetitions of consecutive
pairs of words. We may ask therefore if this local strat-
egy of capture short-range word relations fulfills the goal
of compare languages at a global level. To shed light on
this problem, we remark that several works have showed
(for example, [34–36]) that 1) average distance between
words is small; and 2) it is a very slowly growing function
of sentence length. The Euclidean distance is defined be-
tween syntactically linked words in sentences. We argue
that these two findings allow us to build co-occurrence
graphs based only on local information about pairs of
words. Despite that some pairs can be spurious, part
of the structure of language is captured by co-occurrence
graphs.

Indigenous languages into the complexity space. In the
subsection “Indigenous languages in the two-dimensional
space”, we embedded indigenous languages of the Amer-
icas into the two-dimensional space formed by CLaplacian

and clustering. We found that linguistic families, for
example Mayan [37] and Jivaroan [38] languages, are

located in separated clusters. This is to be expected, since
both graph-based measures are strongly correlated with
previous approaches, although the appearance of only two
clearly separated clusters requires further typological and
linguistic work. One fact is more surprising. Results sug-
gested that it is a negative linear trend of languages into
the complexity space. In theory, it may be natural to think
in a (linear) relationship between the clustering coefficient
and the Laplacian energy of graphs. However, the overall
complexity (simply defined as the sum of CLaplacian and
clustering) remains approximately constant (and close
to 1) across languages. This suggests a positive evidence
for the equal-complexity hypothesis, establishing that de-
spite their evident structural differences languages exhibit
an equal overall complexity level [10].

Linguistic features and graph-based representations.
The holistic comparison between languages was reflected
by embedding languages into a complexity space, whose
axes are CLaplacian and clustering. These axes are de-
fined using graph-theoretical tools that do not take into
consideration microscopic linguistic features (using, for ex-
ample, [39]). Several interrelated ideas arise from this
linguistically agnostic approach. We stress indeed the
fact that the application of graph-mining techniques on
holistic representations of languages (particularly, using
graphs) opens new research questions about the “mean-
ing” of those techniques. For example, we may ask for
the linguistic interpretation of a large or small average
clustering coefficient: How does this behavior affect mi-
croscopic linguistic features? What happens in indige-
nous languages? Moreover, we should question about
which graph-mining techniques can be used as representa-
tions of linguistic complexity. The answer is not obvious.
In practical terms, there are at least two possible ways:
1) the spectral graph-theoretic point of view extracts sev-
eral (maybe thousands) of eigenvalues to describe a graph-
based representation of language. Linguistic complexity is
therefore a bag of numbers (or a vector) or a number ex-
tracted from this bag (for example, our energy-based ap-
proach). 2) The other way follows the path established by
many popular graph-mining metrics, that encode average
properties of individual graph elements. An interesting
work in this line is [31], in which co-occurrence repre-
sentation of languages allowed the extraction of several
graph-mining measures in order to apply machine learn-
ing models. We argue that linguistic complexity should
be analyzed by complementing approaches 1) and 2).
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[11] Baechler R. and Seiler G., Complexity, Isolation, and
Variation (De Gruyter) 2016.

[12] Comrie B., Language Universals and Linguistic Typol-
ogy: Syntax and Morphology (University of Chicago Press)
1989.

[13] Banerjee A. and Jost J., Linear Algebra Its Appl., 428
(2008) 3015.

[14] Banerjee A. and Jost J., Discr. Appl. Math., 157
(2009) 2425.

[15] de Lange S., de Reus M. and Van Den Heuvel M.,
Front. Comput. Neurosci., 7 (2014) 189.

[16] Banerjee A., Biosystems, 107 (2012) 186.
[17] Ehret K., An information-theoretic approach to language

complexity: variation in naturalistic corpora, PhD Thesis,
Albert-Ludwigs-Universität, Freiburg (2016).

[18] Bentz C., Alikaniotis D., Cysouw M. and Ferrer-

i-Cancho R., Entropy, 19 (2017) 275.

[19] Cong J. and Liu H., Phys. Life Rev., 11 (2014) 598.
[20] Gao Y., Liang W., Shi Y. and Huang Q., Phys. A:

Stat. Mech. Appl., 393 (2014) 579.
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