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Abstract – In this paper we demonstrate the arising of higher-derivative contributions to the
effective action of electrodynamics on the basis of the generalized Julia-Toulouse mechanism and
explicitly show that the complete effective action arising within this methodology is nonlocal.
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Introduction. – The nonlocality is treated now as an
important ingredient in field theory models. Being ini-
tially introduced in order to take into account finite-size
effects in phenomenology allowing to rule out ultraviolet
divergences [1], it began recently to acquire strong in-
terest within other contexts, especially, within gravity,
where there is a strong hope that a nonlocal extension
could allow to construct a gravity model both renormaliz-
able (or even ultraviolet finite) and ghost-free, see dis-
cussion in [2]. The key idea of nonlocal field theories
looks like as follows. While the quadratic action of usual
higher-derivative theories is described by a polynomial
function of the d’Alembertian operator � which can be
expanded in primitive multipliers, and it allows the aris-
ing of new, ghost degrees of freedom [3], one can con-
sider a class of theories where, instead of the polynomial
function of the d’Alembertian operator, the quadratic ac-
tion is characterized by an essentially non-polynomial, so-
called entire function of �, for example the exponential
one, which does not admit expansion in primitive multi-
pliers and hence does not generate new degrees of freedom,
see [2] and references therein. Various aspects of nonlo-
cal field theories have been studied, including the exact
solutions within the gravitational (mostly cosmological)
context (see, e.g., [4–8]) and explicit calculations of loop
corrections in usual and supersymmetric theories [9–11].
Therefore, it is natural to expect that nonlocality can
imply interesting physical effects within other contexts
as well. As one of the possible applications of nonlocal

field theories, in this paper we propose their application
to condensation of topological defects which is an impor-
tant phenomenon within the condensed matter context
(we note that the application of the quantum field the-
ory approach to the condensed matter is now intensively
developed, giving origin to the methodology of analog
models [12]).

In this letter, we propose a generalization of the Julia-
Toulouse (JT) mechanism to a nonlocal case. Indeed, it
is well known [13] that the Julia-Toulouse mechanism is
based on the coupling of the gauge field to some extra fields
(topological defects) represented by some sources Jμ. The
idea behind the JT mechanism is that a proliferation of
the topological defects in a system, such that they be-
come dynamical fields (condensation), drives the system
to a phase transition. As will be formally presented in the
next section, superconductors can be seen as a good exam-
ple to describe this idea. In the case of a superconductor,
a proliferation of defects (vortices) can drive the system
from a superconductivity state to a free Maxwell theory.
In order to achieve this result we introduce a so-called acti-
vation term JμOJμ, and the integration over the topolog-
ical defects implies the arising of new terms modifying the
original gauge theory. Initially, in [13] and further in [14],
the operator O was suggested to describe only the low-
energy fluctuations, that is, being proportional to a unit
operator thus giving a Thirring-like interaction. In this pa-
per we take into account not only low-energy fluctuations
but we also consider the UV fluctuations and show that
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as a consequence, the condensation of topological defects
drives the Maxwell electrodynamics to a massive nonlocal
Podolsky electrodynamics.

This letter is organized as follows: in the next section,
we, based on [15], provide a general description of the
condensation of topological defects in regular supercon-
ductors; in the third section, we show how the mechanism
used to describe superconductors can be used to obtain
nonlocal Podolsky electrodynamics; in the fourth section,
we show how the nonlocal JT mechanism can also be ap-
plied in the Chern-Simons theory to generate a higher-
derivative CS theory; finally, in the fifth section we present
our comments and conclusions.

Phase transition and the condensation of topo-
logical defects. – In this section we describe the mech-
anism presented in [15] to explain how a condensation of
topological defects can drive a system to a phase transi-
tion. Let us consider a Euclidean action describing the
electromagnetic field interacting with an external source
with electric charge q

Sem =
∫

d4x

(
1
4
FμνFμν − iqAμJμ

)
, (1)

where Fμν = ∂μAν − ∂νAμ and Jμ is a classical current.
The partition function of the system coupled with an ex-
ternal auxiliary current jμ, carrying charge e, summed
over the classical configurations of the external sources Jμ

reads

Z[j] =
∑

J

∫
DAδ[∂μJ

μ]e− ∫
d4x( 1

4FμνFμν−iqAμJμ)

×e−ie
∫

d4x Aμjμ

=
∑

J

∫
DADθe− ∫

d4x( 1
4FμνFμν−iq(Aμ+ 1

q ∂μθ)Jμ)

×e−ie
∫

d4xAμjμ . (2)

In order to maintain explicitly the gauge invariance we
inserted a delta function requiring the classical source to
be conserved and exponentiated it with the help of an
auxiliary field θ. The gauge symmetry is realized as

Aμ → Aμ + ∂μχ,

θ → θ − qχ. (3)

As a consequence of gauge invariance (current conserva-
tion) we have that

Jμ(x) =
∫

dτ
dyμ

dτ
δ4(x − y(τ)). (4)

The summation over J in (2) represents the sum over all
the possible worldlines y(τ) of charges. In (2) we did not
consider dynamics of charges yet, but soon we will sup-
plement the action with the corresponding term given by
S(y(τ)). For many point charges we have a sum over the

worldlines of all the charges. For a continuous distribu-
tion of charges we would have a continuous source, whose
sum over different ensemble configurations is defined by a
path integral weighted by an action S(J). The condensa-
tion is an operation that maps an ensemble of 1-currents
into an ensemble of 1-forms. This operation specifies a
physical process that connects different theories, describ-
ing the system in different phases. For example, in (2) if
we had Jμ = 0 as the only configuration this would give us
the free Maxwell theory. Another example is to consider
Jμ as a continuous field (

∑
J → ∫ DJ), as a result we

have that Jμ turns into a Lagrange multiplier forcing the
gauge field to vanish, which is just the Meissner effect in
a perfect superconductor (with zero penetration length).
Supplementing (2) with contact terms to the classical cur-
rent. The contact terms are on the action SJ . The new
partition function reads

Z[j] =
∑

J

∫
DADθe− ∫

d4x( 1
4FμνFμν−iq(Aμ+ 1

q ∂μθ)Jμ)

×e−ie
∫

d4xAμjμe−SJ . (5)

Following the notation introduced in [15], we have that
the allowed local terms for the current looks like

SJ =
1

2m2 JμJ
μ +

1
2m4 Jμ�Jμ + · · · , (6)

where m is the parameter which determines the elec-
tromagnetic penetration length in the superconductor.
Here we suggest that the effective action of any physical
variable including currents can be represented in the form
of the derivative expansion [16], which effectively means
that the low-energy effective action can be represented as a
power series in �

m2 , or, which is the same, in p2

m2 within the
momentum representation, where the momentum square
p2 is assumed to be small, to ensure the validity of the per-
turbative description. In a whole analogy with the non-
local field theory, we naturally assume all terms in the
derivative expansion to be proportional to various nega-
tive degrees of the same energy scale, as occurs for exam-
ple in nonlocal gravity [2] and other nonlocal field theory
models. In our case, this energy scale is presented by m,
the mass scale inverse to the electromagnetic penetration
length.

From (4), one can express the current as Jμ =
εμνλρ∂

νΣλρ. In this sense JμJ
μ can be treated as a ki-

netic term. Considering only the low-energy fluctuations
in (6), in the condensate phase and integrating (10) in J
we have

Z[j] =
∫

DA
∫

Dθ e− ∫
d4x

(
1
4FμνF μν− q2m2

2 (Aμ+ 1
q ∂μθ)2

)

×e−ie
∫

d4xAμjμ . (7)

We note that some aspects related to the generating
functional in nonlocal theories have been discussed also
in [17,18], where the loop corrections in nonlocal theories
have been discussed. However, unlike these papers, in the
present paper we consider an essentially nonperturbative
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approach. Thus, we have obtained the action for the elec-
tromagnetic response in a superconductor with penetra-
tion length ∼1/m. The condensation of currents drove
the system to a phase transition. In [15], the authors
showed that the dilution/condensation process can also be
described in a dual point of view. The dual of the charge
condensation described here is the dilution of the equiv-
alent defects (vortices) in the superconductor. Meaning
that if the vortices dilute (and charge condensation oc-
curs), the system becomes a perfect superconductor, as
in (7), or if the vortices condensate (and charge dilution
takes place), we recover the free Maxwell theory. As is
known, the superconductivity phase of a material can be
destroyed by proliferation of vortices, and, as is shown
in [15], the picture presented here describes this scenario.
The dual picture of (7) can be obtained by introducing∫

Dη δ[Jμ(x) − ημ(x)] = 1 (8)

in the path integral (10), using the Poisson identity [19]∑
J

δ[Jμ(x) − ημ(x)] =
∑
K

ei2π
∫

d4xημKμ (9)

we have that

Z[j] =
∑
K

∫
DηDADθ

×e− ∫
d4x( 1

4FμνFμν−iq(Aμ+ 1
q ∂μθ+ 2π

q Kμ)ημ)

×e−ie
∫

d4xAμjμe−Sη . (10)

In order to fully understand the role of Kμ we will chose
Sη = 0. In this case, an integration in η gives us

Aμ = −1
q
(∂μθ + 2πKμ). (11)

From this it can be seen that if Kμ dilutes we have the
Meissner effect in a perfect superconductor with zero pen-
etration length and if it condensates we have free Maxwell
theory with K playing the role of the gauge field. Also
from (11), we can see how K represents the vortices of
the system. K is a 1-current, and, as such, it defines a
localized line in space. This means that Aμ is restricted
to flux filaments defined by K (vortices). From that we
have ∮

C

dxμAμ =
2π
q

∮
C

dxμKμ =
2πn
q
, (12)

where
∮

dxμKμ = n ∈ N is a linking number between
the line C and the line defined by K. Equation (12) is
also a link between our approach and the Higgs field in
the Higgs mechanism. The phase of the Higgs fields, as a
phase, presents a discontinuity. It has a 2πn jump every
time it goes around a closed curve. In our approach K
stands for this jump experienced by the phase. In our
formulation θ is a regular field and

∂μθ
′ = ∂μθ + 2πKμ, (13)

where θ′ is the phase of the Higgs field [20]. This analogy
only holds in the diluted phase, where we are summing
over delta functions (localized lines in space) represented
by K [19].

The Poisson identity (9) is the key idea to implement
and to understand the dual scenario: from (9), as an
example, it can be seen that if we have Jμ = 0 as
the only configuration, this identity will be reduced to
δ(ημ) =

∫ DKe2πi
∫

d4xημKμ . This means that for a charge
dilution (Jμ = 0) the result will be that the K condensates
(
∑

K → ∫ DK). If the J proliferates (
∑

J → ∫ DJ) this
makes the l.h.s. of (9) go to 1, forcing K = 0 on the r.h.s.
of the equality. This points to the fact that Kμ are de-
fects which are dual to the charges Jμ. Due to (8), the
dual version of (6) reads

Sη =
1

2m2 ημη
μ +

1
2m4 ημ�ημ + · · · . (14)

By considering the lowest energy fluctuation in η in (14),
as in the previous dual case with J , an integration in ημ

yields

Z[j] =
∑
K

∫
DA

∫
Dθ

×e− ∫
d4x

(
1
4FμνF μν− q2m2

2 (Aμ+ 1
q ∂μθ+ 2π

q Kμ)2
)

×e−ie
∫

d4xAμjμ . (15)

Podolsky electrodynamics as an emergent the-
ory. – From the previous section, it can be seen that by
considering low-energy fluctuations of ημ we are able to
describe the electromagnetic response in a superconduc-
tor. In this section our discussion starts from eq. (14) and
explores what is the gauge emergent system by considering
high energy fluctuations of ημ. Considering high energy
fluctuations of ημ means that

Sη =
1

2m2 ημη
μ +

1
2m4 ημ�ημ + · · ·

=
1

2m2 ημ

[ ∞∑
n=0

(
�
m2

)n
]
ημ

=
1

2m2 ημF (
�/m2) ημ. (16)

The integration in ημ generates

Z[j] =
∑
K

∫
DA

∫
Dθ

×e− ∫
d4x

(
1
4FμνF μν− q2m2

2F(�/m2) (Aμ+ 1
q ∂μθ+ 2π

q Kμ)2
)

×e−ie
∫

d4xAμjμ . (17)

From (17), it is clear that if K condensates, which corre-
sponds to integration over K, Kμ becomes the gauge field
of the theory and the Maxwell theory is recovered. If K
dilutes we have as a result the Podolsky theory for Aμ, as
will be shown.
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By keeping K diluted and using (13), we can define
A′

μ = Aμ + 1
q∂μθ

′. This redefinition leaves the electromag-
netic tensor invariant. In this scenario the action reads

S =
∫

d4x

(
1
4
FμνF

μν −A′
μ

q2m2

2F (�/m2)
A′

μ

)
. (18)

It is interesting to note the following effect. Under an
appropriate change of variables, the nonlocality in the ki-
netic term can be transferred to the vertices (or mass
term), and vice versa. It can be done in the following
manner.

Let us consider the Lagrangian

L =
1
2
∂mφe

�
μ2 ∂mφ− V (φ). (19)

Here, the nonlocality is concentrated in a kinetic term.
Let us do the change of variables

e
�

2μ2 φ → φ̃. (20)

Our Lagrangian takes the form

L =
1
2
∂mφ̃∂

mφ̃− V (e− �
2μ2 φ̃). (21)

So, the potential becomes nonlocal instead of the ki-
netic term (in certain cases when the kinetic term looks
like φ�T̂ φ, and the potential term looks like ((T̂ )1/2φ)n,
where T̂ is an operator introducing the nonlocality, e.g.,
T̂ = e

�
2μ2 as in the example above, we can remove the

nonlocality both from the kinetic and potential term, but
these cases are trivial).

A similar situation takes place for other field the-
ory models, including the electromagnetic field. The
model (18), under the replacement F(�/m2)−1/2A′

μ →
Ãμ becomes

S =
∫

d4x

(
1
4
FμνF (

�/m2)Fμν − q2m2

2
A′

μA
′
μ

)
. (22)

Thus we have obtained the nonlocal generalization of the
famous Podolsky term explicitly looking like [21]

LPodolsky =
1
2
a2∂λF

λμ∂νFνμ � 1
2
a2Fμν�Fμν , (23)

where the sign � denotes the on-shell equivalence. This
Lagrangian has been originally introduced in order to elim-
inate divergences in the electron self-energy and the vac-
uum polarization current, and actually constitutes the
first known example of the higher-derivative regulariza-
tion. We note that within all our replacements by the rule
φ�L̂φ, where L̂ is the nonlocal operator, and the same
rule for Aμ, no extra contributions to the effective actions
are generated. Indeed, when we carry out these trans-
formations, although they are nonlocal, they are linear in
fields, so, in the generating functional we get only the ex-
tra multiplier det L̂1/2, and since it does not depend on

any fields, it yields only a field-independent additive term
in the effective action which clearly can be neglected. So,
we generated the essentially nonlocal Podolsky electrody-
namics with the action

Z[j] =
∑
K

∫
DA

∫
Dθ

×e− ∫
d4x

(
1
4FμνF μν+ 1

4m2 ∂μFμν

[ ∞∑
n=0

( �
m2 )n

]
∂βF βν− q2m2

2 A′
μA′

μ

)

×e−ie
∫

d4xAμjμ , (24)

where an integration by parts was used to obtain the re-
sult. In (16), we can suggest that the energy scale charac-
terizing the derivative expansion is mp. This would have
provided the following action in the exponent of (24):

S =
∫

d4x

(
1
4
FμνF

μν +
1

4m2
p

∂μFμν

×
[ ∞∑

n=0

(
�
m2

p

)n
]
∂βF

βν − q2m2

2
A′

μA
′
μ

)
. (25)

For n = 0, the action (25) is the same as the
Maxwell+Higgs+Podolsky one treated in [22]. It was
pointed out there that, for the case mp = m, the solution
of the equations of motion for (25) reads as A ∼ e±f(m)|x|,
where f(m) is a function of m2, and f(m)−1 is responsible
for the London penetration length as in (7). By consider-
ing higher-order derivatives and suggesting that mp = m,
as we do in (16), we do not vary the form of the solutions
for our equations of motion but f(m) changes. This means
that by considering higher derivatives in (16) we modify
the London penetration value.

It is worth mentioning that if we considered only the
first two terms in the expansion (16), the resulting ac-
tion would be the local Podolsky action, which would be
equivalent to only consider the term n = 0 is the sum
in (24). Therefore we show that the Podolsky electro-
dynamics can be obtained using a mechanism that was
originally used to describe phase transitions due to the
condensation/proliferation of topological defects.

It is interesting to note that the higher-derivative Podol-
sky term can be generated as well within the usual pertur-
bative approach. Let us start with the usual Lagrangian
of the spinor field coupled to the electromagnetic one,

L = ψ̄(i∂/− eA/−m)ψ. (26)

The one-loop effective action of the gauge field is immedi-
ately written in the form of the fermionic determinant,

Γ(1) = iTr ln(i∂/− eA/ −m). (27)

We consider the simplest contribution to it generated by
the two-point function of Aμ,

Γ(1)
2 = −e2

2

∫
d4pAμ(−p)Πμν(p)Aν(p), (28)
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where

Πμν(p) = tr
∫

d4k

(2π)4
γμ 1
k/ −m

γν 1
k/ + p/−m

. (29)

It is well known that the effective action itself is nonlo-
cal being an infinite series in derivatives of the external
fields, or, as is the same, in the external momentum p.
While the contribution of the second order in an external
momentum has become a paradigmatic result in QED de-
scribing the wave function renormalization of the gauge
field, the higher-order results have not been discussed up
to now. So, we expand (29) up to the fourth order and
find

Πμν
4 (p) = tr

∫
d4k

(2π)4
γμ 1
k/−m

γν 1
k/−m

p/
1

k/−m

×p/ 1
k/−m

p/
1

k/−m
p/

1
k/−m

. (30)

The trace and integral can be calculated explicitly. We
arrive at

Πμν
4 (p) =

4p2

15m2(4π)2
(pμpν − p2ημν). (31)

The corresponding contribution to the effective action is

Γ(1)
2,4 = − e2

15m2(4π)2
Fμν�Fμν . (32)

This term is finite as it must be. It has just the desired
Podolsky form. In principle, the contributions to the ef-
fective action involving sixth and higher even orders in
momenta can be obtained as well, so one can write down
the complete one-loop two-point function as

Γ(1)
2 = e2Fμν

( ∞∑
n=0

cn

(
�
m2

)n
)
Fμν , (33)

where the zero order is the known renormalized QED re-
sult. In principle, the function

f(�) =
∞∑

n=0

cn

(
�
m2

)n

can be defined, where cn are some numbers; however, ap-
parently this function can be found only order by order
but not in the closed form.

Higher-derivative Chern-Simons term. – In this
section, we show that by extending the mechanism pre-
sented in the previous section, for a Chern-Simons (CS)
theory, and following the prescription in the second sec-
tion, the corresponding emergent theory, obtained along
the same lines as eq. (22), is a higher-derivative CS theory.
For the CS theory the analog of (1) is

Scs =
∫

d3x
(κ

2
εμνρAμ∂νAρ − iqAμJμ

)
, (34)

and, since the CS action is gauge invariant, (4) still holds.
Following the prescriptions presented in the previous sec-
tions we arrive at

Scs =
∫

d3x
(κ

2
εμνρAμ∂νF (

�/m2
cs

)
Aρ − q2m2

2
A′

μA
′
μ

)
.

(35)

This is the analog of (22) for the CS theory.

Comments and conclusions. – We have succeeded
to generalize the Julia-Toulouse mechanism to a case of
a nonlocal contact term. One should note that, a pri-
ori, there are no restrictions on the form of the contact
term within this approach. We demonstrated explicitly
that in this case one can generate a nonlocal generaliza-
tion of the electrodynamics whose action is an infinite
series in derivatives, so that one has, besides the usual
Maxwell term, also the Podolsky term, and higher-order
terms. We showed explicitly that the Podolsky term can
be generated as a quantum correction as well, being fi-
nite, so we can see that perturbative and nonperturbative
approaches for obtaining new terms are equivalent in a
certain sense as has been claimed in [14]. We showed also
that if we consider that the theory is characterized by only
one energy scale in (16), as is assumed in [15], the solu-
tions of the equations of motion are of the form e±f(m)|x|,
meaning that, by considering high-order derivatives in (16)
we are actually changing London’s penetration length in
the superconductivity phase. Actually, we demonstrated
that the Julia-Toulouse approach opens broad possibilities
for obtaining new effective theories with higher-derivative
operators. It could be interesting to generalize this ap-
proach for Lorentz-breaking case since, earlier, the Julia-
Toulouse methodology has been successfully applied in
the Lorentz-breaking case in the three-dimensional the-
ory [14]. Especially, it is interesting to study the impacts
of the dimension-six terms considered in [23–26], within
the Julia-Toulouse approach. Besides the possible appli-
cations within Lorentz symmetry breaking scenarios, this
approach can also be used to show how magnetic perme-
ability arises from a condensation of topological defects.
We expect to conduct these studies in forthcoming papers.
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