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Voigt and Alexander Walkov

Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany

E-mail: guido.bartl@ptb.de

Received 23 October 2019, revised 24 January 2020
Accepted for publication 6 February 2020
Published 3 April 2020

Abstract
The absolute length of a single-crystal silicon gauge block was measured by interferometry in
the temperature range between 285 K and 320 K and at different air pressures from atmospheric
conditions down to 10−5 hPa. From the obtained dataset, the coefficient of thermal expansion
(CTE) was determined as well as the compressibility—or the bulk modulus—of single-crystal
silicon in consideration of a systematic correction of the refractometer used. As the choice of
the underlying model for the evaluation is not unambiguous, a Bayesian model averaging
approach was applied to take into account possible model errors in the uncertainty evaluation.
The result of the CTE is not only in agreement with the recommended reference data of
CODATA, but provides a standard uncertainty of less than 1× 10−9 K−1, which is less than half
the uncertainty stated so far in the relevant temperature range.
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1. Introduction

Justified by the need for a reference material for thermal
expansion measurements of high precision (e.g. [1, 2] and oth-
ers), there have been a variety of thermal expansion measure-
ments on silicon over a wide temperature range in the past.
Due to its diamond-like crystallographic structure, single-
crystal silicon provides isotropy with regard to thermal expan-
sion. Moreover, the industry-driven availability of high-purity
material makes silicon an ideal candidate—in contrast to
technical-application specimens as described in [3]. Also the
recent revision of the ‘Mise en pratique for the definition of
the metre in the SI’[4] refers to the lattice spacing of silicon
as a basis for secondary methods of realising the metre on the
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nanometre scale. In this context, knowledge of the CTE can
be used in the secondary realisation of the length as described
in the updated Mise en pratique. Overview reports on ther-
mophysical properties, e.g. [5], usually refer to [6], which
presents a compilation of several measurement results from
different laboratories covering the temperature range from
90 K up to 850 K and has acted as a reference source of
thermal expansion data of silicon ever since its publication1.
Some of the involved data were taken from [8–10], and a
later extension of the temperature range up to 1300 K [11]
was taken into account afterwards [12]. In the scope of a pro-
gramme to establish a thermal expansion standard, part of the
upper temperature range above 600 K has been reinvestigated
after experimental refinements [13]. The results of thermal
expansion measurements between 7 K and 293 K have been
presented in [14] in comparison with data from the National

1 Standard reference data recommended by CODATA [7].
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Metrology Institute of Japan (NMIJ) and the Jet Propulsion
Laboratory (JPL) [15], indicating a systematic deviation from
the CODATA reference data. Data of the highest precision in
quite a limited temperature range close to 20◦C have been
reported earlier in [16], accompanied by the determination of
the material’s compressibility. In contrast to the dilatometric
measurements from other works, the results in [14, 16] are
derived from absolute length measurements. The work is fol-
lowed up by the present study of thermal expansion extending
the temperature range to 320 K with a reduced measurement
uncertainty. Moreover, the simultaneous determination of the
compressibility of silicon resolves the discrepancy of the pre-
vious results stated in [16] and match with data from the liter-
ature [17] (referring to [18, 19]).

The results in this work originate from measurements car-
ried out on a single-crystal silicon sample, the dimensions
of which are 197 mm × 35 mm × 9 mm (see figure 1).
The original high-purity crystal ingot—called #41969/05—
was grown by Wacker Siltronic GmbH, Germany, using the
float-zone technique in an argon atmosphere without any
doping [20]. The gauge block sample was cut from the
dislocation-free ‘0-zone’ region along the ⟨100⟩ direction
between the axial crystal positions at 75 cm and 103 cm
(see figure 2 in [20]). The two small end faces with a
35 mm × 9 mm cross section were lapped to achieve optical
quality and parallel orientation perpendicular to the long axis.
The sample used in [16] was cut from the same crystal ingot
out of the same ‘0-zone’ region and axial position and has the
same dimensions.

The measurement data were analysed using a novel tech-
nique recently presented in [21]. Being a quantity that is com-
puted via a derivative, the coefficient of thermal expansion
turns out to be quite sensitive to the concrete model that is
chosen to fit the thermal expansion measurements. In [21],
a new approach, based on Bayesian model averaging, was
therefore proposed that allows various models to be treated
and compared in one framework. By taking model errors into
account, a more coherent inference can be conducted. Further-
more, via the computation of model probabilities, a more dir-
ect comparison can be performed.

2. Experimental setup

The details of the Twyman-Green-type imaging interferometer
used (figure 2) have already been described comprehensively
in [22]. For the length measurements, the light of three sta-
bilised lasers (wavelengths: 532 nm, 633 nm and 780 nm) is
successively fed into the interferometer beam path. The gauge-
block-shaped sample as well as the refractometer cell, which
is used for the interferometric in-situ determination of the
air refractive index [23–25], are placed on the sample plat-
form (similar to [16]). The mirror behind the refractometer
cell reflects the transmitted light towards the camera so that
the cell is passed twice. The full field of view is imaged
onto the camera, by which a sequence of ten interferograms
is recorded, enabling the averaged five-frame phase-shifting
approach [22, 26] applied for the evaluation of the interference
phase. In the focus of the exit collimator, an aperture stop

Figure 1. Close-up view of the silicon sample. The dimensions of
the gauge-block-shaped body are 197 mm × 35 mm × 9 mm. At the
back end face, the optically flat silicon reference plate is attached by
wringing. At the front end face, a metal frame is softly clamped onto
the gauge block to mask edge damage and to facilitate the edge
detection within the interference pattern recorded by the camera.

Figure 2. Sketch of the interferometer.

blocks parasitic reflections from surfaces in the beam path
(e.g. chamber windows) leaving the interferometer. A wedged
glass plate in the exit beam path compensates for wavelength-
dependent images shifts so that the beam locations are almost
identical for all three wavelengths applied in the measure-
ments [27].

In order to achieve constant thermal conditions, the
interferometer is set up in a pressure-tight/vacuum chamber
enveloped by a tubing system with water from a thermostat
flowing through it. To monitor the temperature of the sample,
three thermocouple sensors [28] are attached to its surface
at different locations. The reference junction of each sensor
couple is fixed to a copper block, the absolute temperature of
which is measured by a Pt-25 resistance thermometer calib-
rated at the fixed points of water and gallium according to
the ITS-902 [29]. This operating principle requires the thermo-
couple sensors to only measure small temperature differences,
i.e. a few tens of millikelvins at maximum. Six additional
thermocouple sensors are positioned around the sample and
the refractometer cell to keep track of the temperature homo-
geneity of the surrounding gas medium when the chamber is
not evacuated. The pressure of the gas, i.e. air, is measured
by traceably calibrated sensors of the MENSOR CPT6100 or
CERAVAC CTR 91 (1 Torr) type, depending on the actual
pressure ranges. The air is kept dry by means of a cooling trap

2 International Temperature Scale of 1990.

2



Meas. Sci. Technol. 31 (2020) 065013 G Bartl et al

Figure 3. Number of measurements distributed within the
parameter intervals of temperature and pressure. The clipped
maximum around T=293.15 K and p< 10−1 hPa amounts to
approximately 500 measurements.

consisting of a tube which is dipped into a Dewar vessel filled
with liquid nitrogen. The vacuum state, i.e. less than 10−4 hPa,
is monitored by a sensor of the type IONIVAC IE 20.

3. Measurement strategy

The investigation of the thermal expansion and the compress-
ibility based on absolute length measurements can be realised
by a convenient temporal sequence of temperature and pres-
sure steps. A specific order is not necessary. Therefore, the
parameter space of temperature T and pressure p has been
sampled adequately within the intervals of 285 K < T < 320 K
and 10−5 hPa < p < 1030 hPa, respectively. The histogram
in figure 3 shows the corresponding distribution of measure-
ments which have arisen from experimental circumstances or
practical constraints. For instance, keeping the chamber at
temperatures above 300 K for something more than a day
leads to condensation liquid appearing on the inner side of the
windows of the chamber. Therefore, the measurement point
density is kept smaller in this temperature region. The data
acquisition took place over a period of approximately three
months. After each change of the temperature or the pressure,
a waiting period of at least half a day was necessary to achieve
thermal equilibrium again. Length measurements were only
carried out when the temperature drift was close to zero. Near
room temperature, i.e. 20◦C, also the measured temperature
differences between the different sensor locations were negli-
gibly small. Away from this reference temperature, however,
spatial temperature differences of up to 10 mK may occur,
which have to be taken into account in the temperature evalu-
ation and the corresponding uncertainty analysis.

4. Data evaluation

The principle of the interferogram analysis, i.e. the evaluation
chain from the camera images to the resulting length val-
ues, has been described in detail in [22]. A typical interfero-
gram is shown in figure 4. The interference phase is calculated

Figure 4. A typical interferogram captured by the camera. The
structure on the right-hand side is the gauge block with its reference
plate. The refractometer cell is located on the left.

from a sequence of phase-shifted interferograms so that the
phase difference ϕ between regions of interest on the sample’s
front surface in relation to the attached reference plate can be
determined. For each wavelength of the light used, the length
of the sample is then calculated by

L=
λ

2n
·
(
N+

ϕ

2π

)
(1)

in terms of the measured integral and fractional orders of inter-
ference N and ϕ/2π, respectively, the vacuum wavelength λ
and the refractive index n of the surrounding (gas) medium. An
estimate for the value of N is obtained from a separate mech-
anical measurement with an uncertainty in the order of 1 µm
in combination with an extrapolation to the actual temperature
and pressure conditions during the measurement. The method
of exact fractions is then applied to the measurement results
from the different laser wavelengths to find the correct order
of interference N [23].

If the pressure is below 1 hPa, the refractive index n is eval-
uated by the modified Edlén formula [30] involving the meas-
ured gas parameters, which yields sufficient accuracy in this
pressure range [31]. At higher pressures, the phase difference
between regions of interest corresponding to the beam path
through the evacuated refractometer cell and the path along the
cell is determined analogously to the described length evalu-
ation. This is done in order to measure the actual refractive
index in situ. In this case, the result from Edlén’s formula
is only considered as the required prior knowledge. As the
windows of the refractometer cell implicate non-uniform geo-
metric conditions depending on the location in the field of
view, a correction of the accompanying optical path length
difference has to be applied. This is realised by determ-
ining the optical path length difference with the evacuated
refractometer cell being in the evacuated vacuum chamber.
The resulting value is considered as a corrective offset for the
measurements in air. As these vacuum measurements were
carried out repeatedly during the entire measurement period,
the correction is monitored continuously and no systematic
dependence on the actual temperature is found. Moreover,
measurements at pressures above 50 hPa require an additional

3
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Table 1. Example uncertainty budget of the contributing quantities’ standard uncertainties at 20◦C and 10−4 hPa. Further contributions
smaller than 0.001 nm are omitted for clarity.

Quantity Standard uncertainty Sensitivity coefficient Contribution to the length uncertainty

Sample phase fraction 0.000 63 rad 4.24× 10−08 mrad−1 0.027 nm
Sample ROI position 0.1 pixel 1.80× 10−10 mpixel−1 0.018 nm
Reference plate deformation 0.012 27 rad 4.24× 10−08 mrad−1 0.520 nm
Gas pressure 2.19E-05 hPa −5.33× 10−08 mhPa−1 0.001 nm
Gas dew point 7.9 K 7.16× 10−12 mK−1 0.057 nm
Laser wavelength 1× 10−17 m 370896.8 mm−1 0.004 nm
Autocollimation 4× 10−11 m 1 mm−1 0.040 nm
Temperature-induced optics deformation 1× 10−10 m 1 mm−1 0.100 nm
Sample temperature 0.000 68 K 5.04× 10−07 mK−1 0.342 nm
(incl. calibration of Pt25 and thermocouples)
Sample temperature inhomogeneity 0.000 20 K 5.04× 10−07 mK−1 0.100 nm

Combined standard uncertainty 0.7 nm

correction due to stress-induced optical path length changes
in the windows of the refractometer cell [24, 25, 32]. This
is because the optical paths through and along the glass tube
are affected differently. Since—unlike the pressure-induced
stress—temperature-dependent changes of the refractive index
of the cell windows are sufficiently homogeneous across
the windows, there is no need for a temperature-dependent
correction.

At this point, the subsequent processing of the collected
length data at different temperatures and pressures combined
with a coherent evaluation of the corresponding measure-
ment uncertainty is in the foreground. The approach used
in the following sections is founded on the absolute length
values and their individual uncertainty budgets, the latter
of which are important due to significant pairwise correla-
tions. Two example uncertainty budgets representing differ-
ent experimental conditions are listed in tables 1 and 2. These
examples represent the ideal case of 20◦C and vacuum, which
provide very stable experimental conditions, and a worse case
at elevated temperature and atmospheric pressure causing lar-
ger temperature gradients. Some of the involved uncertainty
contributions are negligibly small (e.g. the CO2 content of the
air) and, therefore, omitted for clarity, here. Other quantit-
ies contribute significant correlations to the evaluation of the
CTE and the compressibility. These correlations of different
length measurements are, for instance, due to the common
calibration of the temperature sensors or commonly applied
corrections. It is to be noted that the uncertainty contributions
of the corrections considering the influence of surface rough-
ness, optical phase shift and wringing contact are intentionally
set to zero. Even though, in fact, they contribute a dominat-
ing portion (i.e. several nanometres) to the total uncertainty
of each individual absolute length value, the uncertainty vari-
ation within the parameter space of temperature and pressure
become clearer without them. Zeroing these contributions is
justified, because the uncertainty of the results of the thermal
expansion and the compressibility are not affected. The reason
is, that both quantities are differentially deduced from the
length data, which are correlated with regard to the mentioned
corrections.

4.1. Model equation for L(T, p)

In order to consider the two-dimensional parameter space of
the length data L(T, p), an appropriate model function has to be
applied in the evaluation via a least squares regression. There-
fore, we start with the total differential of L(T, p) which is
given by

dL=
∂L
∂T

dT+
∂L
∂p

dp. (2)

Considering a homogeneous material like pure single-crystal
silicon, the coefficient of linear thermal expansion at constant
pressure p is

αl =
1
L

∂L
∂T

, (3)

and the isothermal compressibility κ as the reciprocal of the
isothermal bulk modulus K is defined as

κ=
1
K

=− 1
V
∂V
∂p

=−3
L

∂L
∂p

. (4)

With these relations, equation (2) can be rearranged as

1
L

dL= αl dT−
κ

3
dp. (5)

While αl is assumed to change little with pressure3, the tem-
perature influence on κ is expected to be negligible in the
covered temperature interval. Hence, a linear dependence ofαl
on the pressure is considered by

αl(T,p) = α(T)+ α̃ · p, (6)

where α(T) is the coefficient of linear thermal expansion
at p= 0 and α̃ is a constant parameter. Actually, considering
the temperature dependence of the compressibility [34], the
same approach could also be applied to κ, but the principle of

3 In analogy to Murnaghan’s ansatz for the pressure dependency of the bulk
modulus in the derivation of Murnaghan’s equation of state [33].
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Table 2. Example uncertainty budget of the contributing quantities’ standard uncertainties at 48◦C and 1007 hPa. Although contributing
little to the total uncertainty, the entries ‘gas pressure’ and ‘refractometer compressibility’ are listed due to their key role in the evaluation.
Further contributions smaller than 0.001 nm are omitted for clarity.

Quantity Standard uncertainty Sensitivity coefficient Contribution to the length uncertainty

Sample phase fraction 0.000 63 rad 4.23× 10−08 mrad−1 0.027 nm
Sample ROI position 0.1 pixel 2.01× 10−10 mpixel−1 0.020 nm
Reference plate deformation 0.016 58 rad 4.23× 10−08 mrad−1 0.702 nm
Refractometer tube length 5× 10−07 m 0.00012 mm−1 0.058 nm
Refractometer thermal expansion 3.12× 10−07 K−1 0.001 38 m K 0.431 nm
Refractometer compressibility 1.60× 10−11 Pa−1 −0.00010 m Pa 0.000 nm
Gas temperature 0.0260 K 2.64× 10−11 mK−1 0.001 nm
(incl. calibration of Pt25 and thermocouples)
Gas pressure (incl. sensor calibration) 0.06 hPa 4.51× 10−16 mhPa−1 0.000 nm
Refractometer phase fraction 0.000 63 rad −1.99× 10−08 mrad−1 0.013 nm
Refractometer ROI position 0.1 pixel −4.25× 10−11 mpixel−1 0.004 nm
Refractometer zero correction 5× 10−10 m 0.47 mm−1 0.235 nm
Refractometer window compression 4× 10−10 m −0.47 mm−1 0.190 nm
Laser wavelength 1× 10−17 m 370924.8 mm−1 0.004 nm
Autocollimation 4× 10−11 m 1 mm−1 0.040 nm
Temperature-induced optics deformation 1× 10−10 m 1 mm−1 0.100 nm
Sample temperature 0.002 59 K 5.05× 10−08 mK−1 1.306 nm
(incl. calibration of Pt25 and thermocouples)
Sample temperature inhomogeneity 0.001 54 K 5.05× 10−07 mK−1 0.777 nm

Combined standard uncertainty 1.8 nm

the resulting model equation of L(T, p) would not be affected
apart from a substitution of the corresponding parameter
names. Proceeding with the integration of equation (5) and
introducing the reference length and temperature, Lref and Tref,
respectively, lead to

ˆ L

Lref

1
L′

dL′ =
ˆ T

Tref

αl(T
′,p) dT ′ −

ˆ p

0

κ

3
dp′ (7)

⇔ L= Lref · exp
(ˆ T

Tref

α(T ′) dT ′ + α̃ p (T−Tref)−
κ

3
p,

)
(8)

which can be approximated by a Taylor expansion of the expo-
nential function:

L= Lref ·
(
1+
ˆ T

Tref

α(T ′) dT ′ + α̃ p (T−Tref)−
κ

3
p

)
. (9)

Finally, there remains the choice of a suitable expression
for α(T).

4.2. Model equation for α(T)

As for the selection of an appropriate model for the CTE α(T),
there are two approaches which are considered in the follow-
ing. In [14], the evaluation of the CTE of single-crystal sil-
icon covering a temperature range from 7 K to 293 K has been
reported. Because of the nonlinear behaviour of the CTE of
single-crystal silicon in the respective large temperature inter-
val (particularly at cryogenic temperatures), a simple poly-
nomial fitting was not adequate. Alternatively, a piecewise
evaluation of smaller temperature intervals by polynomials

as used in [22] was at the very least not so pleasant due to
the incoherent treatment of the data. Moreover, the required
polynomial degrees may vary and an extrapolation beyond the
limits of the temperature range covered by the actual meas-
urements is only reasonable based on a physically motiv-
ated model. Therefore, the appropriate approach from [35]—
already introduced in [36]—was applied, in which the CTE
is modelled by an empirical nonlinear function based on so-
called Einstein terms.

However, in the current case of a limited temperature range
between 285 K and 320 K, both model approaches appear to
be applicable, which raises the question of how the uncer-
tainty is affected by the decision for or against one particular
model. Therefore, the method of Bayesian model averaging
has been adapted and applied to the evaluation of the CTE and
its uncertainty based on measured absolute length data [21].
This approach (in contrast to [14] or [37]) does not require a
commitment to a specific model but allows several competing
models to be incorporated and compared in one framework.
Starting from a priori probabilities for each considered model,
which can for instance all be chosen equally, these probabilit-
ies are updated in the light of the data using Bayes’ theorem.
As an outcome, one obtains a posteriori probabilities for each
model, which allow a direct comparison. Moreover, deduced
estimates and uncertainties in Bayesian model averaging
avoid inconsistencies between models and take model errors
into account. This is of particular importance in the context
of CTE determination as the quantity of interest is often
obtained via the derivation of fitted curves—a badly behaved
operation that might lead to distinct discrepancies between
two models yielding practically indistinguishable fits on the
measurement data.

5
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Accordingly, α(T) is represented by the polynomial
expression

αP(T) = ζ1 + ζ2 · (T−Tref)+ ζ3 · (T−Tref)
2 (10)

with the parameters ζ1, ζ2 and ζ3 as well as by the nonlinear
Einstein-term expression

αE(T) = ξ ·
(
θ

T

)2

· eθ/T(
eθ/T− 1

)2 (11)

with the parameters ξ and θ in the evaluation of the results
in the following sections. Here, the explicit proportionality
of α and κ (cf. [36]) is omitted for simplicity and impli-
citly considered by the parameter ξ. The respective number of
polynomial degrees and Einstein terms is chosen so that the
model functions can sufficiently represent the experimental
data without over- or underfitting them.

5. Results and uncertainty

With the two selected variants of α(T), the model proto-
type L(T, p) from equation (9) finally becomes

LP(T,p) = L20 + ζ ′1 · (T−Tref)+ ζ ′2 · (T−Tref)
2

+ ζ ′3 · (T−Tref)
3 + α̃′

P · p · (T−Tref)

− κ′
P

3
· p (12)

and

LE(T,p) = L0 + ξ′ · θ

eθ/T− 1

+ α̃′
E · p · (T−Tref)−

κ′
E

3
· p, (13)

respectively. The reference temperature is set to Tref =
293.15 K and the quantities L20 ≡ L(Tref, 0 hPa) and
L0 ≡ L(0 K, 0 hPa) as well as α̃′

P = L20 · α̃, α̃′
E = L0 · α̃, κ′

P =
L20 ·κ, κ′

E = L0 ·κ, ξ′ = L0 · ξ, θ, ζ ′1 = L20 · ζ1, ζ ′2 = L20 · ζ2
2

and ζ ′3 = L20 · ζ3
3 are treated as fit parameters. The parameters

of both models, (12) and (13), are estimated via a weighted
least squares regression of the measured data to derive the
thermal expansion and the compressibility in a second step.
The resulting fit parameters are

L20 = 197.4246884× 10−3m
ζ ′1 = 504.5518× 10−9m K−1

ζ ′2 = 886.6378× 10−12m K−2

ζ ′3 = −1.6983× 10−12m K−3

κ′
P = 200.8658× 10−12m hPa−1

α̃′
P = 11.2988× 10−15m K−1hPa−1

with the corresponding covariance matrix

CP =


6.5568× 10−20 −1.2090× 10−22 −3.0753× 10−23 1.0780× 10−24 1.3675× 10−23 9.6366× 10−26

−1.2090× 10−22 1.2399× 10−21 −2.6937× 10−24 −3.5859× 10−25 −9.7732× 10−25 −3.7448× 10−25

−3.0753× 10−23 −2.6937× 10−24 4.3391× 10−24 −1.5841× 10−25 3.6623× 10−25 5.8101× 10−27

1.0780× 10−24 −3.5859× 10−25 −1.5841× 10−25 7.7690× 10−27 −1.1194× 10−26 −5.9500× 10−28

1.3675× 10−23 −9.7732× 10−25 3.6623× 10−25 −1.1194× 10−26 6.6939× 10−25 1.6126× 10−27

9.6366× 10−26 −3.7448× 10−25 5.8101× 10−27 −5.9500× 10−28 1.6126× 10−27 1.2110× 10−27



as well as

L0 = 197.3723301× 10−3m
κ′
E = 200.9035× 10−12m hPa−1

α̃′
E = 12.5056× 10−15m K−1hPa−1

ξ′ = 867.6807× 10−9m K−1

θ = 767.8031 K

with the covariance matrix

CE =


8.7040× 10−16 3.8960× 10−21 −1.0459× 10−22 1.6974× 10−17 1.5225× 10−8

3.8960× 10−21 6.5357× 10−25 7.5529× 10−28 7.7558× 10−23 6.8789× 10−14

−1.0459× 10−22 7.5529× 10−28 1.1645× 10−27 −3.8447× 10−24 −2.7061× 10−15

1.6974× 10−17 7.7558× 10−23 −3.8447× 10−24 3.4663× 10−19 3.0450× 10−10

1.5225× 10−8 6.8789× 10−14 −2.7061× 10−15 3.0450× 10−10 0.2700

 .
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Figure 5. The dashed blue and red lines show the fitted curve L(T)
according to equation (13) at 0 Pa and 1000 hPa, respectively.

Please note that the physical units in the entries of the covari-
ance matrices are omitted for simplicity only. Moreover, the
order of the entries is in accordance with the order of the lis-
ted results of the fit parameters. It must be emphasised that
weighting of the optimisation is done based on the full covari-
ance matrix of the entire dataset—in contrast to simply using
the reciprocal squared standard uncertainties as can be found
in most applications. Doing so coherently takes into account
the significant mutual correlation between the data points and
yields the correct output uncertainties of the fit parameters of
both models.

As an example, the result of the Einstein-term model is
shown in figure 5 for the two cases of vacuum and atmo-
spheric pressure. Since the pressure dependence of the length
is significantly smaller compared to the effect of temperature
changes on the chosen scale, the two plotted lines are hard to
distinguish. The corresponding standard uncertainty is shown
in figure 6 together with the related residuals. The present res-
ults have been evaluated based on the measured temperatures
according to the ITS-90. A correction with regard to thermo-
dynamic temperatures [38] has not been applied.

5.1. Thermal expansion

The expression for the thermal expansion can be derived
following equation (3) from both the above-mentioned fits.
As outlined in section 4.2, the method of Bayesian model
averaging, which has been described in [21], is applied in
this evaluation to take into account competing model variants.
Therefore, the two selected models are averaged considering
the corresponding a posteriori model probabilities:

α̂(T,p) = PP ·
1

LP(T,p)
∂LP(T,p)

∂T
+PE ·

1
LE(T,p)

∂LE(T,p)
∂T

,

(14)
where LP and LE are evaluated with the parameters specified
in the previous section. For the computation of posterior prob-
abilities, we followed the same strategy as in [21]. Using
data from [16] as prior knowledge for scaling, we found pos-
terior model probabilities PE = 65.9 % and PP = 34.1 % for

Figure 6. The dark and light grey areas show the standard
uncertainty u(L) of the fitted curve L(T) according to equation (13)
at 0 Pa and 1000 hPa, respectively. The blue dots represent the
residuals of each measured value considered in the weighted least
squares regression. Please note that, although plotted versus
temperature only, the data points represent the entire pressure range
from vacuum to atmospheric pressure.

Figure 7. The purple line shows the course of α̂(T,p) according to
equation (14) at 0 Pa.

the data presented in this work. These are close to the val-
ues found in [21]. The resulting course of the thermal expan-
sion depending on the temperature based on the averaged
model is shown in figure 7 and the difference of the mod-
els αP(T,p) and αE(T,p) is negligibly small compared to the
corresponding uncertainties. These standard uncertainties of
αP(T,p), αE(T,p) and α̂(T,p) are plotted in figure 8. While
in the middle section of the temperature interval, the uncer-
tainties of αP(T,p) and αE(T,p) are almost equal, they differ
clearly at the interval edges. This is taken into account by the
Bayesianmodel averaging in the resulting uncertainty of α̂(T).
For convenience, some values are listed in table 3.

In [6, 7], the compilation of several sources has been pre-
pared which—to our knowledge—presents the lowest uncer-
tainties (in our relevant temperature range mainly based on
the data from [9]). Taking this as a reference for the results
from the current work enables a comparisonwhich is plotted in
figure 9. All data agree well within their corresponding uncer-
tainties over the whole temperature interval, while the cur-
rent data provide a standard uncertainty, which is smaller by
a factor of at least about five compared to the reference data.

7
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Figure 8. The areas contoured by the dashed blue, dot-dashed red
and solid purple lines show the standard uncertainties u(αP), u(αE)
and u(α̂) at 0 Pa, respectively.

Table 3. Tabulated values of the coefficient of thermal expansion of
silicon according to equation (14) at 0 Pa and the corresponding
standard uncertainties.

T90 / K t90/
◦C α / 10−6 K−1 u(α) / 10−6 K−1

283.15 10.0 2.4631 0.0003
285.15 12.0 2.4821 0.0003
287.15 14.0 2.5008 0.0002
289.15 16.0 2.5193 0.0002
291.15 18.0 2.5376 0.0002
293.15 20.0 2.5557 0.0002
295.15 22.0 2.5736 0.0002
297.15 24.0 2.5912 0.0002
299.15 26.0 2.6086 0.0002
301.15 28.0 2.6259 0.0002
303.15 30.0 2.6429 0.0002
305.15 32.0 2.6597 0.0002
307.15 34.0 2.6763 0.0002
309.15 36.0 2.6927 0.0002
311.15 38.0 2.7089 0.0002
313.15 40.0 2.7249 0.0003
315.15 42.0 2.7407 0.0003
317.15 44.0 2.7564 0.0003
319.15 46.0 2.7718 0.0004
321.15 48.0 2.7870 0.0004
323.15 50.0 2.8020 0.0005

It must be noted that the current result is related to the cur-
rent temperature scale, ITS-90, while the reference data refer
to the former IPTS-684. A correction would imply a shift by
less than 10 mK without a significant effect on the evaluated
CTE in the given temperature interval.

The possible pressure dependence of the thermal
expansion α̂ is taken into consideration in the model.
The comparison of the resulting values—for instance
at T = 293.15 K where the uncertainty is smallest—
yields α̂(293.15 K, 0 hPa)= 2.55569(18)× 10−6 K−1 and
α̂(293.15 K, 1000 hPa)= 2.55567(21)× 10−6 K−1. Hence, in
the limited intervals of temperature and pressure covered in

4 International Practical Temperature Scale of 1968.

Figure 9. The light grey area shows the standard uncertainty of the
currently most precisely known reference data of the coefficient of
thermal expansion of silicon in the given temperature range
according to [6]. The dark grey area represents the difference of the
results from the present work according to equation (14) with regard
to these reference data including the corresponding standard
uncertainty.

this work, this example does not reveal a significant pressure
dependence with regard to the relevant measurement uncer-
tainty. As a consequence, in the application of interferometry
on gauge blocks, it is also permissible to apply the coefficient
of thermal expansion determined in vacuum for measurements
in atmospheric conditions without any further correction.

5.2. Compressibility

In [16], the compressibility κ was derived from measured
length data at different pressures between vacuum and atmo-
spheric pressure while keeping the temperature very close to
20◦C. In the present case, the lengthmeasurements are distrib-
uted widely in the parameter space of temperature and pres-
sure, and themodel equations (12) or (13) take both parameters
inherently into account. Proceeding analogously to section 5.1
one gets the model average κ̂ of the compressibility of single-
crystal silicon. The numerical result at 20◦C and atmospheric
pressure is

κ̂= 1.018(5)× 10−11 Pa−1 (15)

or, consequently, noted as the bulk modulus

K=
1
κ̂
= 98.3(5)× 109 Pa. (16)

Obviously this value of κ markedly differs from the previous
result published in [16] and, moreover, is in close agreement
with earlier low-uncertainty results from the literature quoted
there [18, 19]. The suspected explanation that material differ-
ences cause the deviation may not be the real reason. Instead,
from today’s point of view, there might be another main cause.
In the evaluation in [16], the required correction of stress-
induced optical path length changes in the refractometer win-
dows [24, 25] was unknown and could therefore not be taken
into account. This interpretation is supported by the fact that
the result of this work would also be close to the old (wrong)

8
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Figure 10. The dark grey area represents the result of κ̂ at
atmospheric pressure including the corresponding standard
uncertainty.

value, if the correction of the window stress were omitted. A
temperature-dependent change of the bulk modulus (cf. [34])
could not be seen from the present results (figure 10) with suf-
ficient significance.

6. Summary

The absolute length of a silicon gauge block was investig-
ated in a series of measurements at different temperatures and
air pressures. From the collected dataset, the coefficient of
thermal expansion α as well as the compressibility κ of silicon
were derived. The evaluation is founded on a Bayesian model
averaging approach to take different models and their possible
errors additionally into account. While the uncertainties of the
results reported previously [14] were estimated rather con-
servatively, the careful consideration of correlations lead to a
reduction of the uncertainty presented in this work. For the
CTE, standard uncertainties of less than 1× 10−9 K−1 were
achieved. These uncertainties are up to one order of magnitude
smaller compared to the results reported previously [14]. In
view of the data from [14] and this work, an update of the ref-
erence data recommended so far should be taken into consid-
eration. The result of the compressibility is in agreement with
data obtained by different measurement techniques described
in the literature [17–19]. Moreover, it enables the resolution
of the discrepancy in values reported in [16]. Ultimately, con-
sidering the achieved uncertainties, no significant dependence
of the CTE on the actual pressure can be determined in the
covered parameter space of temperature and pressure. As a
consequence, it is permissible to apply the CTE value meas-
ured in vacuum for thermal expansion corrections of length
measurements carried out in atmospheric pressure.
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