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Abstract

Photon indistinguishability plays a fundamental role in information processing, with applications
such as linear-optical quantum computation and metrology. It is then necessary to develop
appropriate tools to quantify the amount of this resource in a multiparticle scenario. Here we report a
four-photon experiment in a linear-optical interferometer designed to simultaneously estimate the
degree of indistinguishability between three pairs of photons. The interferometer design dispenses
with the need of heralding for parametric down-conversion sources, resulting in an efficient and
reliable optical scheme. We then use a recently proposed theoretical framework to quantify four-
photon indistinguishability, as well as to obtain bounds on three unmeasured two-photon overlaps.
Our findings are in high agreement with the theory, and represent a new resource-effective technique
for the characterization of multiphoton interference.

1. Introduction

Photon indistinguishability is a key concept in quantum physics, which can be characterized via two-particle
interference [1]. From the first experimental observation carried out using entangled photons produced by a
parametric down-conversion source [2], the quantum signature of this phenomenon, known as Hong—-Ou—
Mandel (HOM) effect, has proved to be essential for tasks such as characterization of single photon sources,
practical protocols of quantum communication [3-5] and quantum computation. Recent proposals use two-
photon interference for the realization of two-qubit gates, essential elements for photon-based quantum
computing schemes [6]. Multiphoton interference is at the core of the computational complexity of linear
optical networks, as exemplified by the Boson Sampling problem [7-25]. This problem, solved naturally by
multiphoton interference, shows that simulating the dynamics of indistinguishable photons is likely to be hard
for classical computers, which also suggests that certification of genuine multiphoton interference is a difficult
problem [26-41].

Due to the fundamental role of such quantum effects in quantum information and quantum optics, recently
much effort has been devoted to increasing the number of interfering particles, and to the development of new
methods to characterize the amount of indistinguishability of multiphoton states produced by single-photon
sources. These methods aim to find effective strategies in terms both of physical and computational resources
needed to address the problem. Many techniques are based on bosonic coalescence [12, 34], i.e. the tendency of
indistinguishable photons to come out from the same port of an interferometer, which can be viewed as
generalizations of the original two-photon HOM effect to the case of multiple ports and photons [14, 38—46].

Here we present an approach for quantifying indistinguishability in multiphoton experiments. To this aim
we focus on extracting information from sets of two-photon HOM experiments realizable in a single
interferometer with a suitable design. We describe each possible experiment by a graph, with nodes representing
photons and edges representing two-photon HOM tests [47]. As we discuss in the following, this method
provides a simple and efficient design capable of determining bounds for multiphoton indistinguishability. In
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Figure 1. Scheme of the four-photon indistinguishability test. The four input photons (A, B, C, D) are injected in an interferometer
which allows for the simultaneous implementation of three independent Hong—Ou—Mandel (HOM) tests between pairs (A-B), (B-C)
and (C-D). In this circuit, each two-mode gate corresponds to a 50/50 beam splitter (bottom left inset). This interferometer
implements pairwise HOM tests encoded in a linear graph of four nodes (bottom right inset).

this work we experimentally demonstrate the effectiveness of this approach, furnishing an extensive
experimental study of genuine indistinguishability in a four-photon state. We also demonstrate other useful
predictions of the model, which greatly simplifies the experimental effort for the complete characterization of
pairwise overlaps of multiphoton states [48]. Simply put, the theory allows us to infer precise bounds on pairwise
overlaps not accessible or measured directly by the experiment, based on information on the overlaps that were
actually measured. The predictions we obtain on the unmeasured overlaps inferred from experimental data
represent the first application of such techniques for a multiphoton state. By slightly changing the experimental
set-up, we were able to directly confirm the theoretical prediction for one of the previously unmeasured
overlaps.

Our results confirm the feasibility of the method when applied to an actual physical system. In particular, the
special design of the interferometer allows to perform the experiment with a parametric down-conversion
source without the need for heralding. This represents a demonstration of a practical approach to the
characterization of multiphoton sources, which promises to decrease the experimental effort required to
benchmark future deterministic single-photon sources [49-51] in the regime of high number of photons
[16-19,25].

2. Quantifying four-photon indistinguishability

In the recent [47, 48], an approach was theoretically proposed to characterize multiphoton indistinguishability,
based on two-photon HOM tests and constraints imposed by logic and quantum theory. Here we review the
main concepts of this approach, as applied to the case of interest for the experimental implementation we report
in section 3.

Consider a weighted, undirected, linear graph P, with four vertices A, B, Cand D, and three edges 145, 3¢
and rcp (see figure 1). Vertices correspond to single-photon states, and the edge weights to the overlap
rij = Tr(pip;) between the states of photons i and j. Each overlap r;; can be estimated experimentally via the
probability of bunching p, ina HOM test between photons i and j, as they are related by [52]:

1+ 1

i _ 1
Py 5 (D

Moreover, it is possible to experimentally estimate multiple overlaps using a single interferometer, by measuring
the probability of bunching at each output port. In figure 1 we show such an interferometer, which we can use to
estimate the three overlaps for the P, graph.

We now discuss the characterization of multiphoton indistinguishability for states of two different types
undergoing the test represented by the graph of figure 1. These two models allow us to quantify genuine
multiphoton indistinguishability (as defined in [47], and reviewed below), as well as to infer bounds on pairwise
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overlaps that have not been measured, an idea proposed in the recent [48], and which we develop here for the
particular case of the 4-photon states we experimentally create. Note that this method is very general, and can be
applied to any graph structure, where edges represent experimentally measured pairwise overlaps, together with
amodel for the input states generated by a single-photon sources.

The first model we consider consists of (generally mixed) four-photon states of the form:

p=ap +Y cps )
s>1

where p' is a pure state of 4 perfectly indistinguishable photons and psl are pure states where every pair of
photons is either perfectly identical or orthogonal (i.e. distinguishable), and at least two photons are orthogonal.
In the rest of the work we will refer to this model as (i). Following the approach of [47], we identify the degree of
multiphoton indistinguishability of state (2) with the value of ¢, as it is the probability associated with preparing
perfectly indistinguishable photons. As discussed in [47], any value of ¢; > 0 guarantees a non-trivial lower
bound for all two-photon overlaps (or, equivalently, for all Hong—-Ou—Mandel dip visibilities), even those of the
pairs not directly measured experimentally. Moreover, we cannot have ¢c; > 0 for any convex combination of
states having at least one photon orthogonal to the rest. Hence, if c; > 0 all photons must be at least partially
indistinguishable. States of the form (2) above were called ‘classical’ in [48], as each pj only contains pure single-
photon states diagonal in a fixed basis.

In [47] it was shown that the HOM probabilities of bunching could be used, in a suitable family of
interferometers, to obtain non-trivial bounds for ¢;. These interferometers, which perform multiple HOM tests,
can be described as star graphs, where HOM tests are represented by a central vertex connected to all the others.
As shown in appendix A, a similar argument can be made for the interferometer in figure 1, associated with
graph P, (the possibility to find bounds for ¢; is implicit in the more general results of [48]). More explicitly, we
show that ¢; is bounded by:

ra + t8c + fep — 2 < < min(rap, 3¢ fep)- 3)

Then, the measurement of 45, rgc and rcp via the three HOM tests in the interferometer in figure 1 enables us to
quantify the degree of indistinguishability. We are interested in inferring the values of the overlaps which were
not measured by our interferometer: r4¢, rpp, and r4p. In particular, it is easy to check that ¢; in equation (2) isa
lower bound for the estimate of all overlaps r;;, hence the lower bound in equation (3) also applies to them. More
stringent bounds can be found by applying the results of [48] to the four-photon state (2) undergoing
measurements at the output of the interferometer in figure 1, obtaining (see appendix A):

tac € [rap + 3¢ — 1, 1 — |rap — 13cl], (4)

18p € [rc + 1cp — 1, 1 — |r3c — repl], )

rap 2 tap + t8c + 1cp — 2, (6)

rap < 2 + min(rap — 78c — Tcp> TAC — TAB — TcD> TcD — TAB — TBC)- (7)

We will now retrieve corresponding bounds for states described by a second model, which we label (ii). We
assume that our four-photon state is the tensor product of pure single-photon states, i.e. of the form
|A) ® |B) ® |C) ® |D). Wedo not constrain the pure states describing different photons to be either identical
or completely distinguishable. [48] obtains general bounds for unmeasured overlaps of such product states. In
the case of a four-photon state it is possible to show that:

rac < (Vraptse + (1 — rap) (1 — 15¢0))? (8)
and,ifryp + r5c > 1,
rac = (Jrapte — (1 — rap)(1 — 15¢) )%, 9)

otherwise r4c > 0. By permuting indices B — A,C — B,and D — C, the inequalities above also give upper
and lower bounds for rzp. We can then prove bounds on the unknown overlap r4p by applying the same
reasoning above, but using r, g and the inferred range for rpp, (alternatively, using rcp and the inferred range for
rac)- These bounds are discussed in detail in appendix A. For sufficiently indistinguishable N-photon states, in
principle an extension of our method will give non-trivial lower bounds on all N(N — 1)/2 pairwise overlaps,
even having directly measured only N — 1 of them. This represents a quadratic improvement on the
experimental resources required to characterize multiphoton sources.

We stress that the two models (i) and (ii) we consider are different approximations of the possible four-
photon input state generated by a single-photon source. The ideal case of four perfectly indistinguishable
photons corresponds respectively to ¢; = 1 in the state described by equation (2) and to state
[¥) @ |¥) ® |¢) @ [¢)in our product-state model. Furthermore, note that bounds for unmeasured overlaps
can be found for general graphs with arbitrary structure and number of nodes, and not just the P, graph we have
just discussed, by iterating the bounds of equations (8)—(9), see [48] for details.
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Figure 2. Scheme of the apparatus used to quantify four-photon indistinguishability. Four-photon states are generated by a type-1II
parametric down-conversion source in a beta-barium borate crystal, and manipulated to be indistinguishable in polarization,
spectrum and temporal delay. Spatial and temporal walkoffs are compensated by means of half-length BBO crystals. With reference to
figure 1 photons in input modes (B), (C) are split in two beam splitters, implemented here as a sequence of a half-wave plate and
polarizing beam splitter for enhanced control. Photons in (B), (C) separately interfere in single-mode fiber beam splitters with the
other two photons in optical modes (A), (D). Each output mode of the interferometer is connected to a multimode fiber beam splitter
to enable approximate photon-number resolution. Legend: BBO—beta-barium borate crystal, HWP—half-wave plate, BPF—band-
pass filter, PBS—polarizing beam splitter, PC—polarization controller, DL—delay lines, SMFBS—single-mode fiber beam splitter,
MMFBS—multimode fiber beam splitter, APD—avalanche photodiode.

In the following we will use models (i) and (ii) to study the four-photon state produced by a non-
deterministic single-photon source, with the goal of quantifying the indistinguishability and providing
estimations of unmeasured overlaps.

3. Experimental implementation

In this section we describe the experimental apparatus we use to quantify four-photon indistinguishability
(figure 2, see appendix B for more details), and also to obtain bounds for the unmeasured two-state overlaps.

To generate our input states we employ double-pair emission from a Type-II spontaneous parametric down-
conversion (SPDC) source, where all four photons are spectrally filtered by means of 3 nm band-pass filters. In
the first stage after photon generation, photons in input modes (B), (C) propagate through a pair of beam
splitters, implemented as a sequence of a half wave-plate and a polarizing beam splitter. This set of optical
elements implements the first layer of the interferometer shown in figure 1. In the second stage, all 6 modes are
coupled in single-mode fibers, and propagate through polarization control stages and a set of delay lines to
modulate their degree of indistinguishability. In the third stage all photons, in superposition over the six modes,
are coupled to three single-mode fiber beam splitters (SMFBSs), corresponding to the second layer of the
interferometer, where Hong—Ou—Mandel tests are performed. Finally, the output modes of each FBS are
connected to multimode fiber beam splitters to enable approximate photon-number resolving detection. Four-
photon coincidence events are then recorded via 12 single-photon avalanche photodiodes and a coincidence
detection apparatus.

An important experimental characteristic of the interferometer in figure 1 is that it enables four-photon
experiments without the need for heralding. To understand this feature, let us start by considering only the input
states corresponding to the generation of two photon pairs, which are described by the occupation numbers {(1,
1,0,0,1,1),(2,2,0,0,0,0),(0,0,0,0,2,2)}. The structure of interferometer in figure 1 is such that all output
configurations accessible to input state (1, 1,0, 0, 1, 1) are different from those associated to the other two
(double pair) inputs produced by the source. This observation makes it possible to unambiguously post-select
only those output events corresponding to the desired four-photon input state (1, 1, 0, 0, 1, 1) with no need for
heralding (see appendix C for further details). This feature eliminates the dependence from the heralding
efficiency of the unavoidable noise due to multipair emission. This contribution is present also in the post-
selection procedure due to the propagation losses in the apparatus. In appendix D we include a detailed model
and analysis of the noise in our experimental implementation. The complete set of probabilities associated to all
four-photon output configurations is shown in figure 3. We have identified six interesting input configurations,
corresponding to different situations of pairwise indistinguishability, which we labeled as { XXXX, XXXY,
XXYY, XXYZ, XYYZ, XYWZ} (where identical letters denote ideally indistinguishable photons). The XXXX
configuration corresponds to the fully indistinguishable case, while in the other cases the number of
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Figure 3. Experimental results. Four-photon output probability distributions for different degrees of pairwise distinguishability.
Bunching and no-bunching output configurations are marked with orange and blue respectively. Further details on the sequence of
output states reported in the charts are provided in appendix C. The experimental distributions are shown above the expected ones,
reported with transparent colors. The expected distributions take into account multi-pair contributions and residual partial
distinguishability among the pairs. (a) Histograms for the fully indistinguishable scenario (XXXX). The measured TVD between
expected and measured distribution is TVD = 0.099(4). (b) Configuration XXXY, corresponding to photon D distinguishable from
the others [TVD = 0.112(5)]. (¢) Distribution corresponding to state XXYY in which photons A-B and C-D are pairwise
indistinguishable. Such condition is achieved introducing a temporal delay between photons Band C[TVD = 0.099(3)]. (d)
Configuration XXYZ, where photons C-D are distinguishable [TVD = 0.095(4)]. (e) Configuration XYYZ, in which only photons
B-C, belonging to different SPDC pairs, are indistinguishable [TVD = 0.093(4)]. (f) Fully distinguishable case [TVD = 0.110(5)].

distinguishable photons increases up to the fully distinguishable state XYWZ. We obtained fine control over
pairwise distinguishability by fixing the polarization of the photons and tuning the temporal delays.

For each class of input state we collected N > 10* events. Figure 3 shows the values of the distributions
corresponding to the experimental data p™, compared against the expected distributions p® that take into
account partial indistinguishability and multi-pair contributions (see appendix D for more details). In
particular, to estimate p° we considered probabilistic mixtures of states in which pairs of photons can only be
either identical or perfectly distinguishable, as prescribed by model (i). The agreement between measured p™
and expected distributions p° is quantified using the Total Variation Distance (TVD), defined as
TVD = 1/2%|p™ — p|(seefigure 3). The comparison with the data confirms that p° reproduces very well the
distribution associated to the state when projected on the basis of the occupation numbers in the output modes.

3.1. Determining bounds for multiphoton indistinguishability
In section 2 we have seen that for classical states it is possible to use measured overlaps to bound the amount of
genuine multiphoton indistinguishability, as characterized by coefficient ¢; in equation (3). In our experiment,
coefficient ¢; corresponds to the probability associated with a preparation of four perfectly indistinguishable
single-photon states. As we have discussed in section 2, any positive value of ¢; guarantees non-zero lower
bounds for all two-photon overlaps, even those which were not directly measured by our apparatus. We first test
our model for the configuration XXXX which represents the best experimental approximation to an ideal state
of four perfectly indistinguishable photons. For the input configuration XXXX, the bounds for ¢; we obtained
are0.34 £+ 0.01 < ¢ < 0.640 + 0.008. We see that the lower bound is greater than zero by 31 standard
deviations, successfully attesting the presence of genuine four-photon indistinguishability. The upper bound is
not compatible with the ideal value 1, which reflects the residual partial distinguishability of the state produced
by the source, as discussed in appendix E. As further experimental benchmarks of the method, we calculate the
bounds on ¢; for the other five configurations reported in figures 3(b)—(f). As expected, the other input states
different from XXXX do not display any level of four-photon indistinguishability (as c; = 0). The reported data
show that each state with at least one photon distinguishable from the others does not display any statistically
significant component of genuine multiphoton indistinguishability. The resulting bounds for ¢; for these states
arereported in table 1.

In figure 4, each configuration has been represented in the space spanned by the three relative delays
(Axyp, Axpc, Axcp). The plot shows the predicted surfaces corresponding to the lower bound for ¢y, defined in
equation (3), calculated for Gaussian overlaps (745, pc, rcp) with respect to the relative delays in the ideal case
(pink surface) and by considering partial photon indistinguishability corresponding to the adopted source
(green surface). For each of the two scenarios, all points enclosed within the corresponding surface lead to a non-
trivial lower bound for ¢;, which characterizes genuine multiphoton indistinguishability. The parameters
adopted for the calculation of the two surfaces are inferred from the widths and visibilities of the HOM dips
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Figure 4. Surfaces of trivial lower bound for ¢. Input states { XXXX, XXXY, XXYY, XXYZ, XYYZ, XYWZ} are represented in the
space of relative optical delays between photon pairs (3, j) = {(A,B), (B,C), (C,D)}. The pink and green surfaces represent parameter
values yielding a trivial lower bound for ¢y, i.e. ¢; = 0. The pink surface has been calculated for the case of Gaussian shape for the
overlaps r;;(Ax;) (inferred from the HOM dips), considering perfect indistinguishability, r;0) = 1. The green surface takes into
account the actual observed degree of distinguishability in the experiment. Here we have considered r;;(0) = Vi; where Vj;is the
visibility of the corresponding HOM dip.

Table 1. Summary of the measured overlaps and inferred bounds for ¢.
Only state XXXX displays a significant non-zero value for ¢;. For the other
states, in which at least one photon is distinguishable from the others, the
inferred value for c, is statistically compatible with ¢; = 0. For these states
we have reported the value of the upper bound in equation (3). The overlap
values have been retrieved from the distributions shown in figure 3. All the
errors are derived from Poissonian uncertainties associated to photon
counts and then propagated via Monte Carlo methods.

State (5] TAB BC tcp

XXXX [0.34(1),0.64(1)] 0.826(6) 0.640(8) 0.872(4)

XXXY 0.00(2) 0.802(8) 0.780(8) 0.00(2)
XXYY 0.01(1) 0.832(6) 0.01(1) 0.802(6)
XXYZ 0.00(1) 0.834(6) 0.00(1) 0.01(1)
XYYZ 0.01(2) 0.01(2) 0.68(1) 0.04(2)
XYWZ 0.00(2) 0.02(2) 0.00(2) 0.00(2)

(further details on HOM measurements and on the estimation of the surfaces are given in appendices E and F).
The ratio between the volumes enclosed in the two surfaces, V, for the pink one and Vj, for the green, is

Vi/V, ~ 0.525, thus confirming that the region corresponding to a non-trivial lower bound for ¢; is smaller
when experimental imperfections are taken into account.

3.2. Determining unmeasured overlaps

Our experimental apparatus measures a set of three two-photon overlaps: 74, rpcand r¢p. Using this simple
experimental set-up and the theoretical results described in section 2, we can obtain bounds on the unmeasured
overlaps 14, 7gp and 7, p. This allows for e.g. a simpler characterization of all pairwise overlaps of multiphoton
sources. As discussed previously, this can be done assuming two different models, (i) and (ii), for the states we
prepare. The first model assumes that the state is classical, i.e. a coherence-free mixture of states for which every
pair of photons is either distinguishable or identical to each other. The second model assumes that the four
photons are in a tensor product of pure states with any degree of two-photon indistinguishability. It is worth
noting that both models could reproduce well the behavior of the generated four-photon states in the basis of
mode occupation numbers, and can thus be employed to infer predictions on the four-photon state
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Figure 5. Graph C-D-A-B. (a) By swapping photon pairs A/C and B/D, we do measurements corresponding to the linear graph C-D-
A-B. (b) In the experimental set-up, the swap is performed by rotating the half-waveplates in each arm of the source by 45° with
respect to the set-up corresponding to the A-B-C-D graph. In this way, photons A,B,C,D are injected in different input ports of the
same interferometer. (c) Output distribution for the XXXX state of graph C-D-A-B for N ~ 5200 events collected. The TVD with
respect to the expected distribution, reported below the experimental data with transparent colors, is TVD = 0.078(6).

Table 2. Bounding unmeasured overlaps. We report the lower bounds (LBs) and upper
bounds (UBs) for the unmeasured overlaps starting from those observed in the
experiment for each state. We adopt two different models for describing the
multiphoton state, the first expressed in equation (2) and the second in the form

|A) ® |B) ® |C) @ |D).Thebounds reported without uncertainty correspond to the
cases for which the model gives trivial bounds, i.e. 0 for LBs and 1 for UBs.

Mixed classical state model (i)

State

Tac TAD BD
XXXX [0.46(1), 0.81(1)] [0.34(1), 0.94(1)] [0.511(9), 0.768(9)]
XXXY [0.58(1), 0.98(1)] [0, 0.42(1)] [0, 0.22(1)]
XXYY [0, 0.17(1)] [0, 0.37(1)] [0, 0.20(1)]
XXYZ [0, 0.166(7)] [0, 1] [0, 0.99(1)]
XYYZ [0, 0.33(1)] [0, 1] [0, 0.36(2)]
XYWZ [0, 0.98(2)] [0, 1] [0, 1]
State Separable pure state model (ii)

Tac TAD BD
XXXX [0.23(1), 0.955(5)] [0.017(4), 0.976(4)] [0.28(1), 0.925(6)]
XXXY [0.34(1), 0.9991(8)] [0, 0.00(1)] [0, 0.22(4)]
XXYY [0, 0.23(4)] [0, 0.68(4)] [0, 0.27(4)]
XXYZ [0, 0.16(2)] [0, 0.89(3)] [0, 0.992(6)]
XYYZ [0, 0.42(4)] [0, 0.76(6)] [0, 0.51(4)]
XYWZ [0, 0.98(1)] [0, 0.02(3)] [0, 1]

indistinguishability. In table 2 we report the calculated upper and lower bounds for unmeasured overlaps, using
the two models. As we can see, for all cases where unmeasured overlaps were expected to be non-zero, we
obtained lower bounds consistent with this expectation. This includes positive values for the three unmeasured
two-photon overlaps for input XXXX, as well as a positive value for r4 ¢ for input XXXY.

The interferometer we have implemented allows, with a slight change in the set-up, to verify directly the

prediction of table 2 regarding the overlap 7, p. This is possible by swapping photons A with C and B with D at the

input of the interferometer, by acting on the polarization degree of freedom of the source (see figure 5). This
operation results in measurements corresponding to the graph C-D-A-B, all performed with input
configuration XXXX. The new measurements for overlaps r4 3, rcp resulted in values rcp = 0.86(1),

rap = 0.842(8). Interestingly, we can now estimate also the previously unmeasured r,p[rap = 0.65(1)]. The new
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measurements of overlaps r,g and rcp are compatible with the values obtained with the previous set-up, while
the new measured value for r,p is compatible with the previously derived upper and lower bounds.

4. Discussion

Multiphoton indistinguishability is a promising resource for quantum information processing, and so it is
crucial to identify and characterize it efficiently [47, 48]. Here we have experimentally demonstrated an
approach to quantify genuine multiphoton indistinguishability in a four-photon experiment. We also
characterize the degree of two-photon indistinguishability without the need for direct measurements of all two-
photon experiments. A fundamental advantage of our approach is the use of a single interferometric set-up to
effectively implement multiple Hong—Ou—Mandel tests. The experimental data, besides this direct
characterization of the methodology introduced in [47, 48], can be used to bound all the unmeasured two-
photon overlaps. Our interferometer design allows for the use of multiple parametric down-conversion single-
photon sources, without the need for heralding. These features showcase the promise of our approach for the
characterization of future multiphoton sources. In particular, the method could find applications in the case of
deterministic sources [49-51, 53, 54], which have been recently identified as a promising route to obtain larger
photon numbers with high purity [16-19].
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Appendix A. Genuine four-Photon indistinguishability and bounds on unmeasured
overlaps

In this section we show how to extend the results of [47, 48] to obtain the lower and upper bounds on the
unmeasured overlaps, as well as on ¢, (i.e. equations (3)—(9)). In appendix A.1 we focus on the bounds obtained
assuming a classical model for our photonic states, in which we have convex combinations of single-photon
states which are pairwise identical or orthogonal (model (i)). In A.2 we obtain the bounds assuming a pure
product-state model (model (i7)).

A.1. Bounds for classical states
Suppose we have a four-photon state given by a classical model, i.e.

p=ap™+> cpl, (A1)

s=1

where p™is a state of four perfectly indistinguishable photons, and psl are pure states in a fixed basis with at least
one pair of mutually orthogonal photons. We note that the state of equation (F.6) is of this form. Suppose also
that we have, as experimental data, the overlaps 74, 3¢, and r¢p given by

n=2pi — 1, (A2)

where pbij is the probability of bunching in a HOM experiment between photons i and j. We now show how to
obtain bounds for the parameter c; in equation (A.1) (identified in [47] as a measure of genuine four-photon
indistinguishability) and the unmeasured overlaps r4 ¢, rsp, and r,p (as discussed in [48]), in terms of the known
two-photon overlaps. In the formalism of [48], this situation corresponds to known two-state overlaps described
by the P, graph shown in figure A1(a). Suppose initially that we have three logical propositions, a;, a,, and as,
and let p(a;) be the probability that g; is true. Consider the truth table A1 for the AND function of the three
propositions. We can now interpret each row in table A1 as a four-dimensional vector. These vectors are the
extremal points (vertices) of a polytope, and any logically consistent vector corresponds to a point in this
polytope (i.e. a convex combination of the rows of table A1). The faces of this polytope correspond to linear
logical inequalities that must be satisfied by any consistent set of probabilities [48, 55, 56]. It is a simple
computational task to obtain such inequalities, which can be written as:

pla) < 1; (A.3)
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Figure Al. Bounding unmeasured overlaps and ¢, from measurement overlaps. (a) Graph encoding the known experimental data.
Vertices are photons, and edges are measured two-photon overlaps. (b) By using the procedure we describe, we can ‘complete’ the
graph with ranges of possible values for the unmeasured overlaps.

Table Al. Truth table
fora; A ay A as.

ay a as a Nay N\ as
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
pla) < 1; (A.4)
plas) < 1; (A.5)
play A ay A az) 2 05 (A.6)
pla A ay A az) < p(a); (A7)
plar A ay A as3) < p(ay); (A.8)
plar A ay A a3) < p(as); (A.9)
play A ay A as) = pla)) + play) + p(as) — 2. (A.10)

Inequalities (A.3)—(A.6) are trivial. Inequalities (A.7)—(A.9) encode the fact that the joint probability of several
events must be at most the probability of any of the events individually. Inequality (A.10) is a nontrivial bound
on p(a; A ap A as)interms of the three individual probabilities.

Let us now interpret the three propositions as relations between pairs of photons connected by edges in
figure Al(a), ie.,

a=A=B, (A.11)
a=B=C, (A.12)
a3 == C = D. (A.13)

Equalities in the above expressions mean that the two photons are in the same internal state (e.g. A = B
represents 745 = 1). Since the state we consider at this point is of the form of equation (A.1), itis a classical
mixture of states where each photon pair is sure to be either identical or orthogonal. Thus, we can directly
interpret the probabilities of the propositions above as follows:

rap = p(a), (A.14)
tsc = p(a2), (A.15)
tcp = p(as), (A.16)
aq=pl@ A ay N\ as). (A.17)

Note that ¢; is interpreted as the probability that the four photons are identical, which matches its interpretation
in terms of genuine indistinguishability given in [47]. With this interpretation, inequalities (A.7)—(A.10) lead

9
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immediately to
a < min(rap, 15¢> cp)» (A.18)
a 2 1ap + 18c + Top — 2, (A.19)
which corresponds to inequality (3).
We can also bound the values of the unmeasured overlaps. To that end, we can first repeat the argument
above, but for the A-B-C subgraph of figure A1(a). This leads straightforwardly to [47]
tap + 15c — 1 < rac < 1 — [rap — 15cls (A.20)
which corresponds to inequality (4). Equivalently, by looking at the B-C-D subgraph we obtain
msc+ 1ep — 1 < 1gp < 1 — |rse — 1cpl, (A.21)

which is inequality (5).

From the bounds above we can effectively construct a new graph, where the ranges of allowed for values of
racand rgp are added as new edges (i.e. the original graph together with the dashed edges in figure A1(b)). This
new graph has a new 3-chain subgraph, namely A-B-D. If we apply the previous argument for this new subgraph,
we obtain

tap + 18p — 1 < rap < 1 — |rap — 18l (A.22)

To further bound 4 p in terms of known quantities, we just use the inequalities (A.21) to extremize the bounds
above over the full range of rpp. After some algebra, this leads to

TAD 2 tag + 3¢ + Tcp — 2, (A.23)
rap < 2 + min(rap — 3¢ — Tcps
TAC — TAB — TcD> TcD — TAB — 1BC)> (A.24)

which correspond to inequalities (6) and (7). Adding these new bounds to our graph leads to the complete
graph of figure A1(b) (including dashed and dotted—dashed edges).

A.2. Bounds for product pure states
We now obtain a new set of bounds when we model our experimental state as a pure product state. That s,
suppose the state can be written as
[¥) = 14)|B)|C)|D), (A.25)

how can we leverage the known overlaps r;; = |(i| j) |* to infer something about the unmeasured overlaps?

For this, our starting point are the results of [48] for pure product states. There it was shown that, for a 3-state
linear graph (e.g. for states A, B and C in the graph of figure A1(a), though note we label the vertices differently
than [48]), we have the following bounds

rac < (Vraptae + (1 — rap)(1 — 130) )%, (A.26)
rac = (JTaptc — (1 — rap)(1 — 1p0) )2 (A.27)

The upper bound holds always. The lower bounds holds if the systems are qubits. If the systems are of dimension
3 or greater the lower bound only holds when r45 + rpc > 1, otherwise the lower bound is trivial (i.e. 0). It was
also shown in [48] that all of these bounds are achievable—that is, given fixed r, g and rp¢, and given any r,c in the
range allowed by equations (A.26) and (A.27), it is possible to find three pure states |A), | B) and | C) displaying
that set of overlaps.

The above argument can be repeated to provide similar bounds for rgp, namely,

0 < (JTsctep + (1 — 150)(1 — 1ep) )%, (A.28)
p = (JTactep — (1 — me)(1 — 1ep) )2 (A.29)

The bounds for r,cand rzp above correspond to equations (8) and (9).

Finally, we wish to leverage this construction to provide bounds for 7, p. By obtaining bounds for r4cand
rpp, we have effectively constructed a new graph, one represented by the solid and the dashed edges in figure
A1(b). Note that this new graph has a 3-vertex chain as a subgraph consisting of vertices ABD. This mean we can
apply the same argument as above to bound r4p in terms of r4 g and rgp:

rap < (JTaptsp + (1 — rap)(1 — 13p))?, (A.30)
rap = (JTaptsp — (1 — rap)(1 — r5p))?. (A.31)

However, we already know the range of values that rzp can assume, from equations (A.28) and (A.29). Therefore,
the procedure to obtain the range of allowed values for r,, is to maximize equation (A.30) and minimize
equation (A.31) over rpp in the corresponding interval.

10
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For the lower bound, an argument based on the monotonicity of the underlying two-variable function shows
[48] that, if we take the lower bound of rgp, from equation (A.29), and substitute it into equation (A.31), this is an
explicit (but cumbersome) expression for the lower bound of 74 p. However, for the corresponding upper bound
we were not able to find an explicit expression. This is due to the fact, which we verified numerically, that the
upper bound for r,, is obtained by sometimes using the lower bound and sometimes the upper bound for rzp
into equation (A.30).

Itis also possible to bound r4p by considering vertices ACD rather than ABD, but a numerical investigation
suggests that the resulting bounds are the same in both cases.

Appendix B. Experimental implementation

In this section we describe the experimental apparatus used to quantify four-photon indistinguishability, shown
in figure 2.

Let us first discuss the apparatus adopted for single-photon generation. Single photons were generated by
two parametric down conversion (PDC) sources, occurring in a single nonlinear crystals (BBO) injected by a
600 mW pulsed pump field (A = 392.5 nm). The generated two-photon pairs centered at 785 nm were
filtered by 3 nm interferential filters (Semrock). Each photon source generates photons with orthogonal
polarizations [horizontal (H) and vertical (V') polarizations] in two spatial modes L and R, according to the
configuration shown in figure B1. Photons from the different sources are then separated in different spatial
modes by means of polarizing beam splitter (PBS). The output state of each source is:

[%out) = #Ztanh"(g)ln, n), (B.1)
coshg

where 7 is the number of the generated pairs. The quantity gis smaller then 1 (¢ ~ 0.1 in our case), such that the
creation of a large number of photon pairs is negligible. The state employed in our test corresponds to a four-
photon generation event, when each source generates a single photon pair. We use the post-selection to select
the simultaneous generations of a photon pair in each source, and to separate those events corresponding to
different input states (see appendix C). By using this configuration, one source injects photons A and B in modes
1 and 2 of the interferometer, while the other source injects photons C and D in modes 5 and 6 (see figure B2 for a
scheme of the apparatus equivalent to the actual set-up shown in figure 2).

The firstlayer of the interferometer is realized by inserting two beam splitters (BS) on input modes 2 and
5.In this way the four-photon input is probabilistically split to six modes (1, 2, 3, 4, 5, 6). Each BS of the first
layer is realized with a half-wave plate and a PBS. In this way we obtain a BS with adjustable reflectivity,
leading to the capability of setting the transmittivity to 50% for each BS. Then, all 6 modes are coupled to
single-mode fibers.

The second interferometer layer is obtained by connecting mode pairs 1-2, 3-4, and 5-6 to three single-
mode fiber beam splitters (SMFBS), where Hong—Ou—Mandel tests are performed. Before this stage, it is
necessary to control indistinguishability of the photons in all degrees of freedom. In order to control the
input polarization of each incoming photon, we employed a polarization control stage on each mode. This
preliminary operation assures that photons interfering in the last layer of SMFBS have the same polarization
states. This can be achieved by properly compensating the action of the input single mode fibers of each
beam splitter. Time differences between input photon paths are adjusted via delays inserted on one input
mode of each SMFBS. The output modes of each SMFBS correspond to the six output modes of the
interferometer.

Finally, detection is performed by avalanche photodiodes (APD), employed to measure the output state by
counting the coincidences between the detectors. Before the detectors, each output j is connected to a
multimode fiber beam splitter (MMFBS), used to add photon number resolution capabilities to the apparatus.
Indeed, when two photons are injected in the MMFBS on mode j, the latter separates probabilistically the two
photons on the output modes jandj'. A coincidence between modes j and j’ corresponds to the detection of two
photons on output mode j of the interferometer.
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Figure B1. Scheme of the employed photon generation apparatus. Two photon-pair sources (source 1 and source 2) are embedded in
asingle nonlinear crystal, and are separated in different spatial modes by using polarizing beam splitter.
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Figure B2. Scheme of the adopted model for the experimental results. The main stages are described in section D and comprise
photon generation, beam splitters layer 1, losses, beam splitters layer 2, and detection.

One advantage of the described interferometer is the possibility of performing the four-photon tests without
the need for a heralding photon. Indeed, in order to select the desired initial state, we can apply post-selection to
the experimental data. This procedure is described in appendix C.

Appendix C. Identification of the output distribution

In this section we describe the post-selection of the experimental data to identify those events corresponding to
the correct input state. Such post-selection procedure allows us to verify which measured events are related to an
input state with one photon for each mode of the interferometer, without the need for heralding. Given the
photon generation apparatus described previously, three four-photon input states are possible. These three
input states correspond to the following configurations (see figure B1) HRHRV; Vy, VR VrH H; or HRVyV H;. If
we denote the input states as (11, 15, 113, 1y, 115, 1), where 1;is the number of photons in mode i, the three
possible configurations correspond to the input states (2, 2, 0, 0, 0, 0), (0,0, 0,0,2,2) and (1, 1,0,0, 1, 1)
respectively. Post-selection of the experimental data is performed by observing that the output configurations
generated by the these input states are disjoint, as shown in figure C1. By exploiting this property, it is possible to
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Figure C1. Separability of the interferometer output configurations with respect to the four-photon input states. Diagram showing the
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(2,2,0,0,0,0),blue: (0,0,0,0,2,2)). Forbidden output configurations (cyan) cannot be reached with the input states generated by the
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Figure C2. Sequence of the output states of the experiment. We report the output occupation numbers associated to the input state (1,
1,0,0, 1, 1). Orange and blue rectangles correspond respectively to bunching and no-bunching configurations in the output. This is
the same sequence as the one used in figure 3.

uniquely determine the input state if a given output configuration is observed. In other words, there is a one-to-

one correspondence between possible inputs and observed output configurations. In the experiment, we

selected those outputs corresponding to the requested input state (1, 1, 0, 0, 1, 1), that are marked in green in

figure C1. Such Hilbert space is reported in details also in figure C2, in which we have underlined the output

states sequence measured in figure 3.

Appendix D. Model of the experimental distributions

Here we discuss a theoretical model describing the measured distributions. The corresponding experimental
apparatus is shown in figure 2. The main sources of imperfections in the experimental apparatus are partial
photon indistinguishability, higher order photon number emission terms, non-ideal BS transmittivities, losses
and limited detection efficiency. A full scheme of the adopted modelization is shown in figure B2.

The photon source, as discussed in appendix B, corresponds to two independent sources emitting photon
pairs on input ports (1, 2) and (5, 6). The main term is obtained from the emission of one photon pair per source,
thus corresponding to one photon for each of the four injected input form: (1, 1, 0, 0, 1, 1). As discussed in
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appendix E, the emitted photons present a non-unitary degree of indistinguishability, quantified by the visibility
of the HOM interference pattern directly measured after a 50,/50 beam splitter. Hence, the evolution for each
pair of photons (i, j) interfering in layer 2 of the interferometer (see figure B2) can be modeled by a two-photon
density matrix of the form Pij = VijPina + (1 — Vi) py;s- Here, pinq stands for a state with two fully
indistinguishable photons, pg;s stands for a state with two fully distinguishable particles, and Vj;is the two-
photon visibility.

Given the probabilistic nature of the photon source, there is also a non-zero probability that higher order
emission terms are generated. More specifically, while the four-photon state (1, 1, 0, 0, 1, 1) is generated with
probability p(1,1.0,0,1,1) = tanh(g)4/cosh(g)4, six photon contributions (2, 2,0,0, 1,1)and (1, 1,0, 0, 2, 2) are
been estimated from the number of generated photons and detected coincidences, havinga value g ~ 0.1. Given
the presence of losses and non-photon number resolving detectors, those six-photon terms can contribute to the
output distribution from which the bunching probabilities are estimated.

Other sources of imperfections are given by the interferometric structure. Layer 1 of the interferometer has
been implemented by half wave plates and PBSs, as shown in figure 2. Hence, the reflectivies of beam splitter
BSYY and BS{Y, can be considered tobe R ~ 1/2. Layer 2 has been implemented by a set of single-mode fiber
beam splitters, whose reflectivities have been directly measured to be R(BS{)) ~ 0.515, R(BS}) ~ 0.507 and
R(BSY) ~ 0.498 respectively. Losses within the interferometer are mostly localized between layer 1and 2, and
are modeled as a fictitious BS of transmittivity 7);. Losses are due to fiber coupling from the source (n ~ 0.4),
fiber-to-fiber coupling in delay lines ( ~ 0.7), and insertion losses in single-mode fiber beam splitters (n ~ 0.7).
Furthermore, additional losses () ~ 0.625) have been measured in mode 5 due to the presence of an extra fiber-
to-fiber coupling stage.

Finally, the detection apparatus is composed of MMFBS and single-photon avalanche photodiodes (APD).
The latter are non-photon number resolving detectors that click with probability P(n;,,) =1 — (1 — 14,)"
where nis the number of impinging photons and 74, the detection efficiency (7ge; ~ 0.6). MMFBS are employed
to obtain (probabilistically) photon-number resolution capabilities to the apparatus. The measured reflectivities
for the employed beam splitter BS§d) were respectively (0.65,0.77,0.72,0.77,0.47,0.15).

Appendix E. Preliminary characterization of photon indistinguishability

In this section we report the preliminary characterization of the actual degree of indistinguishability in the four-
photon state produced by the source.

The indistinguishability characterization proposed in this work is based on measuring bunching
probabilities p, in Hong—Ou—Mandel (HOM) interference experiments. The bunching probability p,, is related
to the overlap rbetween two photons ( P, = 1%), which in turn corresponds to the visibility V of HOM dips.

To obtain a preliminary characterization of the source we have performed independent HOM interference
experiment for pairs { (A,B), (B,C), (C,D), (A,D)}, by injecting the different photon pair combinations directly in
the input port of a balanced fiber beam splitter. The measured interference fringes, are reported in figure E1. The
pairs {(A,B), (C,D)} are produced by the same pump-photon, so that the HOM dips can be retrieved by
recording two-fold coincidences. Pairs {(B,C), (A,D)}, correspond to one photon from each source, thus
requiring four-fold coincidence detection. The resulting visibilities suggest that the four-photon state has a
residual degree of distinguishability deriving from spatial and spectral correlations present in photons belonging
to the same pair. In particular, such correlations are reflected in the lower visibility (Vzc ap < 0.90) of HOM
dips between photons belonging to different pairs.
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Figure E1. HOM interference patterns measured in a 50/50 beam splitter for different photon combinations. (a)—(b) HOM dip for
photons (A,B) (a) and (C,D) (b) belonging to the same photon pair, as a function of the relative delay Ax. Data are obtained by
measuring two-fold coincidences at the beam splitters output. The measured dip visibilities are respectively V p = 0.944(3) and
Vep = 0.915(3). (c)~(d) HOM dip photons (B,C) (c) and (A,D) (d) belonging to different photon pairs, as a function of the relative
delay Ax. Data are obtained by measuring four-fold coincidences between the beam splitters output and the other two generated
photons acting as a trigger. The measured dip visibilities are respectively Ve = 0.835(7) and Vyp = 0.790(11). In all plots, error bars
are due to the Poissonian statistics of the measured coincidences. Solid lines are best fit of the experimental data according to the
function C(Ax) = A(1 — BAx){1 — V exp[—(Ax — Ax)? /5]}, where Vs the visibility and the term (1 — BAx) takes into
account a decrease (increase) in the input power during the measurement. Shaded regions correspond to 1 standard deviation on the
fit parameters.

Appendix F. Surface of the trivial lower bound for ¢,

In this section we discuss the model for the calculation of the surfaces of figure 4, corresponding to the
conditions thatlead to a trivial bound for ¢,. In particular such calculation provides information on the temporal
delays needed to find a non-zero contribution of genuine multiphoton interference. A simple way to deal with
the multiphoton state for a given set of relative delays is to consider each single-photon state having the same
spectrum, that is, a gaussian function centered at the same frequency wy. Hence the state |1;(¢)) of a photon
arriving at time #in the interferometer can be expressed as follows:
1 e

+00 w
[1i (1)) = j; dw ——— e a2

7 Aw ea.10),

(F.1)

where Awis the spectrum’s width and a’ | is the bosonic creation operator. Then, the overlap between pairs of

photons, in the same spatial mode k, is described by

ﬁj(Atij) = (i) |wk(tj)>|2 — e bt t)PAW _ o~ 1ALIAW? (F.2)
According to this model we can reconstruct the transition from the fully indistinguishable four-photon state
to other configurations with different degree of distinguishability depending on the relative temporal delays.
Consequently, we can also provide an expression for the lower bound of ¢, defined as the quantity
rag + sc + rcp — 2 introduced in equation (3). To this aim, in order to furnish a proper description of the
state for any relative delays, we can express it as a convex combination of all the possible configurations in which
one and more photons in the four-tuple are fully distinguishable from the remaining others, according to the
model (7). For the present interferometer and input state, this complete ensemble includes only 8 configurations
s = {XXXX, XYYY, XYXX, XXYZ, XXXY, XXYY, XYYZ, XYWZ}. Indeed the small number of different output
distributions is due to the symmetry of the logical test that requires photons interfering pairwise. Then we have:
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AB BC _CD

P(AtAB: AtBC) AtCD) = NZ O‘s,-s,- asjsk Qg5 Py (FS)
N

where A is a normalization constant, p, the density matrix associated to each configuration and the as are

quantities related to the pairwise overlaps for a given delay. In particular, for instance considering the pair (A, B),

they have the following expression:

5 = . F.4
5isj 1— rAB(AtAB) if N ( )

AB {TAB(AtAB) if s; = Sj

The pink surface reported in figure 4 shows the resulting condition ¢; in the space of the relatives delays
expressed as a function of Ax;; = cAt;;. Such naive model for the four-photon state captures some features of the
actual state produced by the source and by post-selection of the output states. Indeed the shapes of HOM dips in
figure E1 show that a gaussian spectrum is a good approximation to the actual one, which is in turn the result of
the convolution between the spectra produced in the SPDC process and the narrow-band filters placed in the
apparatus. During the calculation of the surface, we use as Aw the widths of the measured HOM dips. However,
the expression (F.2) for the overlaps does not reflect the experimental dip visibilities V};, obtained during the
preliminary characterization of the state in appendix E. Indeed the model predicts ideal overlaps for zero relative
time delays. A step further in the model is to reformulate the expression (F.2) so that 7;0) = Vj;. A possible
solution is provided by the following expression

(AL = Ve 1, (F5)

which, inserted in (F.3), produces the green surface in figure 4. Note that this new surface explains why the
configurations { XXXY, XXYY} do not lie on the bound as predicted by the model for the pink surface.
Furthermore, in the condition of zero delays, we obtain the following state:

Psource = VaB VBC Vep Pxxxx + (1 — Vas) Ve Veb Pxyyy
+ Vas(1 — Vao) Vep pxxyy + Vas Vec(1 — Vop) pxxxy
+ Vas(1 — Vo)1 — Vep) pxxyz
+ (1 — Vap)(1 — Vi) Vep Pxyxx
+ (1 — Vap) Vec(1 — Vep) pxyyz
+ (1 — Vap)(1 — Veo)(1 — Vep) pxyzws (F.6)

used as a model to obtain the theoretical output distributions for the ‘XXXX state.

The volume enclosed in each surface corresponds to the configurations where the input state is expected to
possess a component of genuine indistinguishability. The ratio between the two volumes amounts to ~0.525.
The actual ratio is even smaller if we take into account also the noise due to multi-pair emission in the SPDC, as
explained in the previous section. However, it is worth noting that this limitation does not exist in the case of
non-probabilistic single-photon sources such as quantum dots.
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