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Abstract

Variational hybrid quantum-classical algorithms (VHQCAs) are near-term algorithms that leverage
classical optimization to minimize a cost function, which is efficiently evaluated on a quantum
computer. Recently VHQCAs have been proposed for quantum compiling, where a target unitary Uis
compiled into a short-depth gate sequence V. In this work, we report on a surprising form of noise
resilience for these algorithms. Namely, we find one often learns the correct gate sequence V (i.e. the
correct variational parameters) despite various sources of incoherent noise acting during the cost-
evaluation circuit. Our main results are rigorous theorems stating that the optimal variational
parameters are unaffected by a broad class of noise models, such as measurement noise, gate noise,
and Pauli channel noise. Furthermore, our numerical implementations on IBM’s noisy simulator
demonstrate resilience when compiling the quantum Fourier transform, Toffoli gate, and W-state
preparation. Hence, variational quantum compiling, due to its robustness, could be practically useful
for noisy intermediate-scale quantum devices. Finally, we speculate that this noise resilience may be a
general phenomenon that applies to other VHQCAs such as the variational quantum eigensolver.

1. Introduction

Obtaining accurate answers from near-term quantum computers is a challenge with major scientific and
technological implications. In these so-called noisy intermediate-scale quantum (NISQ) computers [1], errors
arise, for example, due to decoherence processes, gate noise, and measurement noise. Clearly, error mitigation
techniques will be necessary to make use of NISQ devices. Several promising error mitigation strategies have
recently emerged, including zero-noise extrapolation [2], quasi-probability decomposition [2], post-selection
[3, 4], noise-aware compiling [5], and machine learning for circuit-depth compression [6]. Let us consider two
other strategies for error mitigation in what follows.

Hybridizing a quantum algorithm by pushing some of the complexity onto a classical computer allows one
to only run a portion of the computation on the (error-prone) quantum computer. Excellent examples of this
strategy are variational hybrid quantum-classical algorithms (VHQCAs) [7]. VHQCAs only employ a quantum
computer to evaluate a cost function that depends on the parameters of a quantum gate sequence and then
leverage a classical optimization routine to minimize the cost and hence train the parameters. The most famous
VHQCA is the variational quantum eigensolver (VQE) [8], where the cost function is the energy for some
Hamiltonian and hence the goal is to prepare the ground state. VHQCAs have been proposed for many other
applications [9-22].

Another strategy for error mitigation is to find quantum circuits or quantum algorithms that are inherently
noise resilient. Circuits for quantum error correction [23, 24], of course, have this property of inherent noise
resilience, and in fact, such circuits are resilient to all types of noise on a subset of the qubits. More generally, one
could ask whether a circuit is resilient to a particular kind of noise process. Hence, for every circuit, which aims
to compute some quantity, one could ask what noise models do not affect the output of the circuit.
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The two strategies just mentioned have an interesting intersection: researchers have observed that some
VHQCASs have some inherent noise resilience. McClean et al [ 7] noted that coherent errors (e.g., systematic gate
biases) can lead to a situation where the formal unitary V (e) specified by the parameters « is different from the
actual unitary that is physically implemented V(cv). This error is correctable if there exists a vector 3 such that
one can physically implement the unitary V(o + ) within one’s ansatz, with the condition that
\7(04 + B) = V(o). Ifthis condition is satisfied, then one could still physically achieve the minimum value of
the cost function, where the minimum value would be associated with different parameters than one would have
in the noiseless case. We refer to this kind of noise resilience as Cost Value Resilience, since the value of the cost
function at the global minimum is unaffected by the noise. Cost Value Resilience is important, e.g. if one is
interested in estimating the ground state energy of a Hamiltonian with VQE.

In this work, we report on a different kind of noise resilience for VHQCAs. Instead of considering Cost Value
Resilience, we consider the case where the optimal parameters are noise resilient, which we call Optimal
Parameter Resilience. While Cost Value Resilience is related to coherent noise, we find that Optimal Parameter
Resilience holds for certain kinds of incoherent noise, such as decoherence processes and readout errors. For
certain applications, obtaining the correct optimal parameters is more important than obtaining the correct
value of the cost function.

Quantum compiling [25-27] is one of these applications. Compiling refers to transforming a high-level
algorithm into a low-level machine code. For quantum compiling, it is crucial to do this transformation
optimally, i.e. to keep the low-level code as short as possible, since errors accumulate with circuit depth.
VHQCASs offer a promising framework for (optimal) quantum compiling. Three recent works introduced
VHQCASs for quantum compiling, henceforth referred to as variational quantum compiling (VQC) [19-21]. In
VQC one trains the parameters & of a short-depth gate sequence V («) such that it is close to a target unitary U.
Here, some distance measure between V () and U serves as the cost function and is efficiently evaluated on a
quantum computer, while a classical optimizer adjusts the parameters & to minimize the cost. VQC could be an
important tool for NISQ computing since it could optimally shrink the depth of quantum circuits. However, a
potential issue is that one needs to put the target unitary U on the NISQ device, and hence the target itself is noisy
or defective. Furthermore, there are noise sources in other parts of the cost-evaluation circuit. All of these may
lead to a defective optimal V (), with the noise effectively compiled into V ().

Addressing these concerns, our main results are rigorous theorems stating that many different types of noise
during cost evaluation do not affect the optimal V' (cx). For example, we show that VQC s resilient to
measurement noise (readout error). We also show resilience to incoherent gate noise and decoherence
processes, such as Pauli channels and non-unital Pauli channels, acting at specific times during the cost-
evaluation circuit. In addition to these analytical results, we implement VQC on IBM’s noisy quantum simulator
[28] (which simulates their quantum hardware) for several quantum gates: quantum Fourier transform, Toffoli,
and W-state preparation. In each case, we observed significant noise resilience (even more resilience than what is
explained by our theorems) such that we effectively learned the true optimal values of & despite the noise.

Finally, we speculate that the resilience phenomenon that we demonstrate for VQC may be more general,
potentially applying to other VHQCAs. For example, we discuss the potential for seeing this resilience for VQE,
and as a warm-up for the reader, we give a simple example in the next section where VQE exhibits Optimal
Parameter Resilience. We also establish in the Discussion section that VQC is a special case of VQE, and hence
our main results can be viewed as being relevant to VQE.

2. Warm-up: simple VQE example

Here we show that VQE [8] exhibits Optimal Parameter Resilience (OPR) to uncorrelated measurement noise
for a special class of Hamiltonians. VQE may exhibit OPR more generally, although the proof would certainly be
more involved. Hence we consider here this special case for illustration and leave the more general case for
future work.

Consider a Hamiltonian that is a sum of local Pauli operators

n .
H= =30, M
j=1

where U(sz = U‘g,j() i ol (Uv(vj()j) ) is alocal operator on qubit j that is unitarily equivalent to the Pauli z operator
o' Physically, this Hamiltonian arises for a system of  non-interacting spin-1,/2 particles in a non-uniform
(i.e. j-dependent) magnetic field. Without loss of generality, one can take the ¢’ coefficients to be non-negative
(i.e. absorb any negativity into the definition of the Pauli operator). The ground state |1o) of H has a tensor

product form: [¢hy) = @7_|w(j);), where [w(j), ) is the eigenvector of 052 j with the +1 eigenvalue.
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Now suppose there is measurement noise in the cost- evaluation circuit. In the ideal case, one measures (H) =
> e <a$vfzj)> = Z:j ¢ (UV(V’) Dl w()) byapplying (U (]) ). Y on the jth qubit and measuring it on the standard
basis to estimate (o (Mfz - Then, by performing classical post-processing we compute the weighted sum in (H).
However, with measurement noise, the o'/’ operator gets replaced by 5 = (52 — p)10) (0] — (p — p)I1) (11.
Here, p;; () is the probability to obtain the k outcome when feeding in the |) state on the ]th qubit. Hence, instead of

measuring (o 552 j))» one measures ( V(v]()])> with NV(V’() h = Ul )]) ) (UV(V’()J-) ). In other words, the Hamiltonian H gets
replaced by an effective Hamiltonian:
n
7 — =())
H == c0g),. )
j=1
The ground state of H isatensor product of one-qubit states that are the eigenvectors of &, ~(J ) () with the

largest eigenvalue. Suppose we assume that p(f) + P,y (0 > p(]) + pl(of) for all j, which means that the probability
of getting the correct outcome is greater than the probablhty for getting the wrong outcome. With this
assumption, the largest eigenvalue of 3.7 is associated with the |0) state, and hence the largest eigenvalue of

O'(]() ) is associated with |w (), ). Therefore, despite the measurement noise, one still finds that the ground state is
[v0) = @i_1lw(j)1)- This implies that one would still learn the correct optimal parameters of the state-

preparation circuit if one implemented VQE for this Hamiltonian.

3. Background: variational quantum compiling

Let us now move on to variational quantum compiling (VQC). VQC was first introduced in [19], under the
name of quantum-assisted quantum compiling (QAQC). Two later works further investigated VQC[20, 21]
with slightly different approaches. Since we are attempting to unite these works [19—-21] under one umbrella, we
are proposing the name VQC (instead of QAQC) as a unifying term.

There are two overarching approaches to VQC. One is to compile the full unitary matrix U by considering
the action of U on all input states (or an informationally complete set of states) [19, 21]. The other is to compile
only a particular column of the matrix U by considering the action of U on a fixed input state [19, 20]. The
benefit of the first approach is that it is fully general, applying even when one does not know what the input state
to Uwill be (for example, if U occurs in the middle of one’s quantum algorithm). The benefit of the second
approach is that, when the input state is known, it could lead to a shorter-depth compilation since it does not
require compilation of the entire unitary matrix.

3.1. Full unitary matrix compiling
Full unitary matrix compiling (FUMC) was treated in detail in [19]. This work introduced cost functions based
on the entanglement fidelity and proposed quantum circuits to quantify the cost based on the overlap between
maximally entangled states. A slightly different but equivalent approach was employed in [21]. We focus on the
approach of [19] in what follows.

Two cost functions were considered in [19]. One cost function Cngt quantifies the Hilbert—Schmidt inner
product between the target unitary U and the trainable gate sequence V, as follows:

Chst = 1 — Fyst, with Fyst = |TI‘(VTU)|2/d2, 3)

where d = 2" is the Hilbert-space dimension and 7 is the number of qubits that Uacts on, and where we write V
instead of V () for simplicity. The circuit for computing Cngr is called the Hilbert—Schmidt Test (HST) and is
shown in figure 1(a). First, one prepares a maximally entangled state |P)42 by acting with a depth-two circuit E,
then one applies U followed by V¥ on half of this maximally entangled state. Finally one measures the overlap
with the original maximally entangled state | )48 by applying E* and quantifying the probability of the all-zeros
measurement outcome. One can verify that this probability is equal to Fyst = | Tr(VU)|?*/d?. This cost
function is operationally meaningful since it is equivalent to the average fidelity F (U, V) = f [{(|VTU|Y) Pdep
between states acted upon by Uversus those acted upon by V, as follows [29, 30]:

Cust = %(1 — F(U, V). )

Note that Cygr is faithful in that Cyst = 0iff V = U (up to a global phase).
An alternative cost function [19] is given by

. 1< i
Cinst =1 — Finst,  with  Fiust = ;Z F{ist (5)
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Figure 1. Circuits for cost evaluation in full unitary matrix compiling. (a) The Hilbert-Schmidt test (HST). An entangling gate E,
consisting of Hadamards and CNOTs, prepares a maximally entangled state between systems A and B. Then a target unitary Uis
applied on A, which is followed by a trainable unitary V7. Finally, a measurement in the Bell basis is performed by applying the adjoint
of E, followed by a standard basis measurement. This circuit computes the Hilbert—-Schmidt inner product between Uand V, as the
probability to obtain the measurement outcome in which all 2 qubsits are in the |0) state is Fyst = (1/2%")| Tr(VU)[?. (b) The local
Hilbert-Schmidt test (LHST), which is same as the HST circuit, except the disentangling gate E' is applied only on one A;B; pair of
qubits (depicted here for the A, B pair) and subsequently, the same two qubits are measured in the standard basis. The probability for
the outcome associated with the |00) state is FEQST in (5).

,,,,,,,,,,,,,,,,,,,,

where Flfﬁs-r is the probability of the 00 measurement outcome in the local Hilbert—Schmidt test (LHST), which
is the circuit shown in figure 1(b). Note that Fygr is the entanglement fidelity for the quantum channel defined
by VU. On the other hand, FEQST is the entanglement fidelity for the quantum channel obtained from feeding
into VU the maximally mixed state on A; and then tracing over A;, where A; consists of all qubits in A other
than A;. Asshownin [19]

CLhsT < Chst < nClHsT, (6)

which implies that C ygT is also a faithful cost function, i.e. C yst = 0iff V = U (up to a global phase).
The overall cost function proposed by [19] was a convex combination of Cyst and Ci nsT:

C(q@) = qChst + (1 — @) CihsT- @)

Here, g is a free parameter with 0 < g < 1. The definition of C(q) was motivated in [19] by the fact that Cust has
adirect operational meaning (equation (4)) but it becomes difficult to train for large # due to a vanishing gradient
[31], whereas Ci ysT is trainable but does not have a direct operational meaning. Hence one can take a weighted
average of these two functions, where for small 17 one can choose g ~ 1, while for large # one can choose g ~ 0.

3.2. Compiling with a fixed input state

Fixed input state compiling (FISC) of a unitary matrix was introduced in [20, 19] and treated in significant detail
in [20]. In this case, the goal is to train a gate sequence V'so that it has the same effect as a target unitary U when
acting on a given input state |1),). For simplicity and due to its technological relevance, we will consider the case
where |1)y) = |0) is the all-zero state, so that we are interested in training V to satisfy (up to a global phase):

Ul0) = V]0), or equivalently W]|0) = |0), (8)
with W = VTU. To quantify how far W|0) is from the state |0), one can define the cost function
Cier =1 — GLems ©)
where G gt is the fidelity F(p, o) = (Tr[\/W 1)? between these two states:
Gier = F(|0) (0], W]0) (0[W) = [(0|W]0) | = Tr [Py W1]0) (O|W], (10)

with Py = |0) (0] the projector onto the all-zero state. We employed the LET subscript here since we refer to the
circuit used to quantify (9) and (10) as the Loschmidt echo test (LET), shown in figure 2(a). The Loschmidt echo
[32] refers to a forward and backward time evolution with the intent of recovering the initial state. This is
analogous to the circuit in figure 2(a) where one first evolves forward with U and then attempts to undo that
evolution with V¥, to recover the initial state |0). Hence the probability of the all-zero measurement outcome in
figure 2(a) is precisely G gr.

One can see that compiling with a fixed input state leads to more freedom and hence more solutions than full
unitary matrix compiling. Note that Cyst = 0iff W = €i?l where ¢ is a global phase factor. On the other hand,
CLet = 0iff|(0|W|z)| = |{2|W]|0)| = 6, for all bit strings z. Hence, for W that achieve C g1 = 0, the
(n — 1) x (n — 1) unitary principal submatrix of W with matrix elements (z|W|z’) (such that z, z’ = 0)
remains completely arbitrary. This degeneracy of optima can simplify the optimization of V'as any of these
optimawilllead to C g1 = 0.
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Figure 2. Circuits for cost evaluation in compiling with a fixed input state. (a) The Loschmidt echo test (LET). In this circuit, the
probability of obtaining the measurement outcome in which all n qubsits are in the |0) state is G_gr = |[(0|V TU|0) |2. (b) The local
Loschmidt echo test (LLET), which is the same as the LET but only the A; qubit is measured. The probability that this qubit is in the |0)
state is GIEIJ_)ET in(12).

Analogous to the LHST cost for full unitary matrix compiling, one can define a cost function for fixed input
state compiling that involves local observables:

1< i , -
Cuer=1- Guer=1— ;E G, with G = Tri(Py @ 1) W0) (0| W], (11)
j=1

Here, POA /is the projector onto the zero state on the A; qubit, and 14 denotes the identity on all qubits except Aj
and n is the number of qubits. We call the circuit used to compute C; | g1 the local Loschmidt echo test (LLET),
and this circuit is shown in figure 2(b). Note that

Gkt = Tra Py p@] = (0]pP]0) = F([0) (0], p7), (12)

where p/) = Trz[W]0) (0|W]. Hence G {7 corresponds to the probability of the zero outcome for the circuit
in figure 2(b). With a proof similar to that of (6) one can show that

Crier < Crer < nCLieT (13)
and hence C | gt = 0iff C g1 = 0. Furthermore, one can define an overall cost function analogous to
Ag)in(7)

C'(q) = qCer + (1 — @) CuieT (14)

which again is motivated by the fact that C, g1 has a direct operational meaning but is difficult to train for large ,
whereas the opposite is true for C | g1. Hence one can take g ~ 1for small nand g ~ 0 for large .

4. Noise processes

In this work, we consider three different types of noise [33, 34]: (1) decoherence noise, (2) gate noise, and (3)
measurement noise. We now discuss how we mathematically model these three types of noise.

Let us start with decoherence. Physical models of decoherence often refer to T, and T, processes, which
respectively pertain to thermal relaxation (energy dissipation) and dephasing (loss of phase coherence). These
processes are typically modeled as local quantum channels acting independently on individual qubits. However,
mathematically it is easier to deal with classes of quantum channels that act globally on sets of qubits (which can
contain the independent local channels as a special case). In what follows, we define three types of global
quantum channels: depolarizing noise, Pauli noise, and non-unital Pauli noise. It is worth noting that Pauli
noise includes T, processes as a special case (i.e. the dephasing channel is a Pauli channel), and non-unital Pauli
noise includes T processes as a special case (i.e. the amplitude damping channel is a non-unital Pauli channel).
Consider the following precise definitions.

Definition 1. We define depolarizing noise (DN) as a completely positive trace-preserving (CPTP) map that
maps an n-qubit state p to the state pp + (1 — p)1/(2").

Definition 2. We define Pauli Noise (PN) as a CPTP map P whose superoperator is diagonal in the Pauli basis.
In other words, its action on a Pauli operator X/'Zk:= X7k @ ...® X" Zk is given by P(X'Z¥) = ¢ X'ZK,
where cgo = 1. Furthermore, we assume that ¢ > 0 forall I and k, wherel,, ..., 1, k;, ..., k, € {0, 1}.

Definition 3. We define non-unital Pauli noise (NUPN) as a CPTP map Pyy whose action on the identity is
Pao =1+ Z(Lk#(o,o)dlkXIZ", and whose action on all other Pauli operators X'Z* with (1, k) = (0, 0) is
given by Pyu(X'Z¥) = ¢y X'Z*. Furthermore, we assume that ¢y > 0 forall l and k.

5
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Next, we consider gate noise. While gate noise can involve coherent errors such as systematic gate bias, such
errors are hardware-specific, and hence we focus on incoherent gate noise. We consider a simple model for gate
noise in which every time a gate is implemented, a Pauli channel acts both before and after this gate.
Furthermore, for generality, we allow these Pauli channels to act globally on all qubits, which serves as a model
for cross-talk (where gates affect qubits on which they are intended to act trivially).

Definition 4. We define Pauli gate noise (PGN) as a simple noise model in which all gates are preceded and
followed by global Pauli channels. In other words, for a gate G, instead of its action on a state p being GpG', we
model its action as P'(GP(p) G") where P and P’ are Pauli channels. Note that these Pauli channels act on all
qubits, including qubits on which G acts trivially.

Finally, we consider measurement noise, also known as readout error. For a single qubit, we model
measurement noise as a classical bit-flip channel, where feeding in the standard basis state |I) leads to the k
outcome with probability py;. We allow for asymmetry in that one can have p,, = p,,, which is an important
generality, e.g. when T} noise occurs during the measurement process. For multiple qubits, our measurement
noise model is a tensor product of the aforementioned bit-flip channels, corresponding to uncorrelated
measurement noise.

Definition 5. We define measurement noise (MN) as a modification of the standard-basis POVM elements,
which are { Py = 0) (0|, P, = |1) (1]} for a noiseless single qubit. With measurement noise, this POVM gets
replaced by { B, P}, with Py = py,|0) (0] + py,l1) (1land Py = p,,|0) (0] + p,,1) (1], where py, + p,y = 1,
Poy + py; = 1,and py; is the probability of getting the k outcome given the / input. Furthermore we assume that
P > Py for I = k. Hence, for an #7-qubit standard-basis measurement with measurement noise, we write the
POVM element associated with the bit string z = (z, ..., z,,) as

E = @ (p{}10) (0l + p 1) (1)), (15)
j=1

with 2 Pz(jjo) = land sz pz(jJ? = 1,and we assume that pZ(JJZ)] > pz(j? forl = z;.

5. Main results

Before proceeding to the main results we first define two versions of optimal parameter resilience (OPR), i.e. of
learning the correct gate sequence V despite various sources of noise, which we refer to as strong-OPR and
weak-OPR.

Definition 6. Let V; be the setof d X d unitary matrices. Let Coc (V') be a cost function of V with V € ¥, and
suppose that Coc (V') can be evaluated using a quantum circuit denoted QC. Let Cqc (V) denote the noisy
version of Cqc (V), i.e. the corresponding function whenever the circuit QC is run in the presence of some noise

process N Let V& and Vzpt respectively denote the sets of unitaries that optimize Cqc (V) and Coc (V), i.e.

Vit = (V' € Vit Cac(V!) = min Cac(V)), (16)
vey

V;Pt = {V' € Vz: Cac(V") = min Cqc(V)}. (17
vey;

We say that Cqc (V) exhibits strong-OPR to N if Vzpt = V. We say that Cac (V') exhibits weak-OPR to
itV C v,

5.1. Noise resilience of full unitary matrix compiling
Let us begin with full unitary matrix compiling (FUMC). Figure 3 shows the two noise models that we will
consider for FUMC. As shown in this figure, 7, and 7, are respectively defined as the times just before and just
after the application of V'U. We note that the noise models considered in figure 3 capture fairly well the physical
noise that is present in, e.g. superconducting-qubit quantum computers, with the exception that only
depolarizing noise is allowed during the action of V U. We make this simplification for ease of analysis,
although our numerics in section 6 relax this assumption.

Consider the following definition for the noise model depicted in figure 3(a).

Definition 7. We define noise Model 1 to be the following noise process during the HST circuit: (1) global
depolarizing noise acting continuously throughout the circuit, (2) global Pauli noise at times 7; and 7, (3) global
depolarizing noise on system A acting continuously in between 7 and 7, (4) global non-unital Pauli noise on

6
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Figure 3. Schematic diagram of: (a) Noise Model 1 of definition 7, and (b) Noise Model 2 of definition 8. The following acronyms are
employed: depolarizing noise (DN), Pauli gate noise (PGN), Pauli noise (PN), non-unital Pauli noise (NUPN), and measurement
noise (MN). Red dashed boxes indicate the time period and the qubits on which the noise process acts. Time 7 (7,) corresponds to the
time immediately before (after) the action of the unitary VU . While both panels show the HST, these noise models are also applicable
to the LHST, provided one replaces Et with (E?)'.

system B acting continuously in between 7; and 7, (5) Pauli gate noise during E and E, and (6) measurement
noise. We also use the term Noise Model 1 when the same noise model acts during the LHST circuit, provided
onereplaces ET with (ED)f,

We now state our first main result. The proof of this result is given in appendix D, with some useful
preliminaries and lemmas given in appendices A—C.

Theorem 1. The cost functions Cyst and C st exhibit strong-OPR to Noise Model 1 in definition 7.

Note that this theorem also implies that C(q) = qCgt + (I — q) C st exhibits strong-OPR to Noise

Model 1, for all values of g. This is because the set V;pt = V;pt defined in (16) and (17) is the same for Cygt and
CLnsT functions. Hence this same set is optimal for C(g).

Consider the implications of theorem 1. First, this theorem implies that FUMC is resilient to the
measurement noise model in definition 5. Second, FUMC is completely resilient to Pauli gate noise during the
entangling and disentangling gates, Eand E'. Note that this Pauli gate noise is global and hence accounts for
cross talk. Third, FUMC is resilient to global depolarizing noise acting continuously throughout the circuit, as
well as global Pauli noise acting at the specific times 7; and 7,. Fourth, FUMC is resilient to depolarizing noise
acting on system A and non-unital Pauli noise acting on system B, provided that each of these process act
(possibly continuously) during the time interval between 7, and 7,. We emphasize that Pauli noise includes
dephasing channels (T, noise) as a special case, while non-unital Pauli noise includes the depashing channel
(17 noise) as a special case. Importantly, theorem 1 states that FUMC is resilient to the general case where all of
these noise processes occur together.

We now state our second main result (proven in appendix E), which deals with the noise model in
figure 3(b).

Definition 8. We define Noise Model 2 to be the following noise process during the HST circuit: (1) global
depolarizing noise acting continuously throughout the circuit, (2) global Pauli noise at times 7; and 7, (3) global
non-unital Pauli noise on system A at time 7, (4) global depolarizing noise on system A acting continuously in
between 7 and 7, (5) global Pauli noise on system B acting continuously in between 7; and 7, (6) Pauli gate
noise during E and E', and (7) measurement noise. We also use the term Noise Model 2 when the same noise
model acts during the LHST circuit, provided one replaces ET with (E()',

Theorem 2. The cost functions Cyst and C st exhibit strong-OPR to Noise Model 2 in definition 8.

The implications of theorem 2 are similar to those of theorem 1. The main difference is that theorem 2 allows
for non-unital Pauli noise on system A at time 7, at the expense of only allowing Pauli noise to act continuously
on system B between 7, and 7,. The other aspects of the noise models treated by these two theorems are identical.

The above two theorems immediately imply several corollaries below. These corollaries establish resilience
to noise models that are different and in some cases more general than the noise models previously considered,
at the expense of possibly specializing the form of the unitary W = V'U. See appendix G for the proofs of all
corollaries.




10P Publishing

New J. Phys. 22 (2020) 043006 K Sharma et al

Corollary 1. The cost functions Cyst and CLusT exhibit strong-OPR to a noise model that includes the
following: (1) all noise processes in Noise Model 1, as well as (2) a noise process during the implementation of
W= Wi o oW = Vol (ie.inthetimeinterval between 1 and T,) in which global Pauli channels
(PL, ..., P} act on system A, such that the overall channel on A is Pito W --- o Pito W), provided that the
following condition is satisfied:

(PfoWi - o PloWD() = Wio Wi_1 -+ o Wio PH(. (18)

Here P" is also a Pauli channel, and the channels U, V7, and VW correspond to conjugating the state by the unitaries
U, VT, and W, respectively.

The condition in (18) implies that the overall channel consisting of global Pauli channels acting on system A
during the implementation of WV is mathematically equivalent (although physically inequivalent) to a Pauli
channel followed by W. Therefore, corollary 1 follows from theorem 1.

Consider the following implications of corollary 1. Unitaries corresponding to the Clifford group necessarily
satisfy the condition in (18), as shown in appendix A. Therefore, corollary 2 below holds for any Clifford unitary
W. Moreover, tensor-product unitaries satisfy this same condition provided that the noise is local depolarizing
noise, and hence corollary 3 below also follows from corollary 1.

Corollary 2. Let the W = VU gate sequence have the form W = W5 Wi with W;* composed only of Clifford gates.
Then the cost functions Cust and Cnst exhibit strong-OPR to a noise model that includes the following: (1) all noise
processes in Noise Model 1, as well as (2) a noise process during the implementation ofo‘ =Wyko - o Wyy,in
which global Pauli channels {P3., ..., P4} act on system A, such that the overall channel on A

isProWy g - o Pt o Wy,

Corollary 3. Let the W = VU gate sequence have the form W = W3 WA with W = WlAl ® WA" being a tensor
product, i.e. W is a tensor product up to a particular time. Then the cost functions Cust and CnsT exhibit strong-OPR
to a noise model that includes the following: (1) all noise processes in Noise Model 1, as well as (2) a noise process during the
implementations of Wi = Wf LO 0 WIA; and W' = Wf;/ 0.0 WIA;/ in which local depolarizing channels
{Dﬁ o Dﬁ W) and {Dﬁ;’, o DIA,;} act on subsystems A’ and A", respectively, such that the overall channel on A=
A'A" is (D1 o Wik .. D o W) @ (D1 o Wi .. DY} o Wi

The following corollary follows from theorem 2 and is analogous to corollary 1.

Corollary 4. The cost functions Cust and CiusT exhibit strong-OPR to the following noise model: (1) all noise
processes in Noise Model 2, as well as (2) a noise process during the implementation of

W =W o0 .- 0o Wy = Vol (i.e.in thetime interval between 7 and 1) in which global non-unital Pauli
channels { PRy, --.» PRk} acton system A such that the overall channel on Ais Py o Wi -+ o PRy,0 Wi
provided that the following condition is satisfied:

(Phuro Wi 0 Py oW () = WioWi_; -+ WioPa0) (), (19)

A . . .
where Pyy is also a non-unital Pauli channel.

Finally, we present a simple corollary of theorem 1 based on the ricochet property of the standard Bell state.
Note that the noise model in the following corollary is fairly simple but nonetheless physically distinct from
those considered in figure 3, since it allows for global non-unital Pauli noise to occur during the implementation
of W.

Corollary 5. The cost functions Cysr exhibits strong-OPR to the following noise model: (1) global depolarizing noise
acting continuously throughout the circuit, (2) global non-unital Pauli noise on system A at a fixed time in between 7
and 7.

5.2. Noise resilience of fixed input state compiling

Let us now consider fixed input state compiling (FISC). Recall that the cost-evaluation circuits, shown in

figure 2, have less structure than the circuits in figure 1. As a result, the noise model that we consider in the FISC
case is simpler than the previously considered noise models. In particular, we define the following noise model,
which is depicted in figure 4. Note that, in this context, 7; is defined as the time just before the application of
VU, and there is no need to consider a noisy quantum channel occurring after VU since the measurement
occurs immediately after VU,
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Figure 4. Schematic diagram of Noise Model 3 of definition 9 for: (a) the LET circuit, and (b) the LLET circuit. Global depolarizing
noise (DN) acts continuously throughout the circuit, global Pauli noise (PN) acts at time 7, and measurement noise (MN) occurs
during readout.

Definition 9. We define Noise Model 3 to be the following noise process during the LET or the LLET: (1) global
depolarizing noise acting continuously throughout the circuit, (2) global Pauli noise acting at time 73, and (3)
measurement noise.

We now state our main result for FISC, which is proven in appendix F.

Theorem 3. The cost functions C gt and Cy g1 exhibit weak-OPR, as defined in definition 6, to Noise Model 3 in
definition 9.

This theorem implies that FISC is resilient to the measurement noise model in definition 5. Furthermore, it
is resilient to Pauli noise acting at 7, and global depolarizing noise acting continuously throughout the circuit.

We remark that while FUMC exhibits strong-OPR for the noise models considered (see the previous
section), here FISC exhibits weak-OPR instead. The latter arises from the fact that the optimal set of unitaries
VP for FISC can be highly degenerate (i.e. can contain many unitaries) and the presence of noise could in
general break such degeneracy. The ‘weak’ term in weak-OPR is simply the fact that the number of global optima
is possibly reduced by noise, not that the noise resilience itself is weak. Hence, weak-OPR should still be viewed
as noise resilience, since the global optima in the presence of noise correspond to global optima in the noiseless
case. This implies that training in the presence of noise will lead one to find the correct optimal parameters
for V(o).

Under certain conditions, theorem 3 implies that C’(q) defined in (14) will also exhibit weak-OPR to Noise
Model 3. Let ng’EET and V;ﬁfLET denote the sets of unitaries that optimize C gt and C | g, respectively. In the

. . . . oyopt
absence of noise we have = , while in the presence of noise, theorem 3 implies C
b f have Vifler = Vi ey, whilein th f th 3implies V1 er © Viller

~~vopt ~y ~
and VZ?,_,_ET C Vi er- Hence, if V;TET N VZ?:,_ET = @&, then for anyvalue of g, C'(q) = qC g1 + (1 — @) CLieT
will also exhibit weak-OPR to Noise Model 3, where the unitaries that optimize C’(q) in the noisy case belong

o~~opt o~~opt
OV erNVyer

Theorem 3 implies the following corollaries, which establish resilience to noise models that go beyond Noise
Model 3 at the expense of specializing the form of W. Note that these corollaries are analogous to Corollaries 1-3,
and corollary 6 implies Corollaries 7 and 8. See appendix G for the proofs.

Corollary 6. The cost functions C g1 and C\ | gt exhibit weak-OPR to a noise model that includes the following: (1) all
noise processes in Noise Model 3, as well as (2) a noise process during the implementation of W = Wi o -+ o W, =
V1o U inwhich global Pauli channels { Py, ..., Py} act, such that the overall channelis Py o Wy -+ o Pro W,
provided that the following condition is satisfied:

(Pro Wy -+ 0 Pro W)() = Wio Wiy -+ 0 Wio P)(), (20)
where P is also a Pauli channel.

Corollary 7. Let the W = VU gate sequence have the form W = W;* W/ with Wi composed only of Clifford gates.
Then the cost functions C gt and Cp gt exhibit weak-OPR to a noise model that includes the following: (1) all noise
processes in Noise Model 3, as well as (2) a noise process during the implementation of W{* = Wy ;o --- o Wy 1, in
which global Pauli channels {P3., ..., P4} act on system A, such that the overall channel on A

isPLoWiy - o PoW, .
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Figure 5. Quantum circuits for: (a) Toffoli Gate, (b) three-qubit quantum Fourier transform, and (c) three-qubit W-state preparation.

Here, R, stands for the controlled phase gate with a phase shift of ¢) = e27/2", and V;(3y) is given by (21). For the three-qubit
W-state preparation circuit we have 3; = (2arccos(+/1/3), 0, 0)and 3, = (7/2, 0, 0).

(a)

Figure 6. (a) The dressed CNOT is composed of a CNOT preceded and followed by single-qubit gates Vi (cx), where Vi () is given
by (21). (b) Two layers of the alternating-pair ansatz in the case of four qubits. Each layer is composed of dressed CNOTs acting on
alternating pairs of neighboring qubits. (c) Schematic representation of the target-inspired ansatz. In this approach, the gate sequence
of dressed CNOTs is obtained from the gate sequence of the target unitary U.

Corollary 8. Let the W = VU gate sequence have the form W = Wi W with WA = WIA’ ® WA beinga tensor
product, i.e. W is a tensor product up to a particular time. Then the cost functions C gt and C | g1 exhibit weak-OPR
to a noise model that includes the following: (1) all noise processes in Noise Model 3, as well as (2) a noise process
during the implementations of Wi = Wf‘;{ o0 WIA; and W' = WIA,; 0.0 Wf: in which local
depolarizing channels {DIA, b ’Df v} and {DIA,;/, o ’Df:;} act on subsystems A’ and A", respectively, such that the
overall channelon A = A’A" is (DlA’,; o Wf‘;( Dﬁ; o Wﬁi) @ (D} o W .. Dt o WY

6. Implementations

In this section, we present the results of implementing VQC on the following three-qubit unitaries: the Toffoli
gate, the three-qubit quantum Fourier transform (QFT), and a W-state preparation circuit. Each of these
unitaries is of interest, e.g. the Toffoli gate when combined with the Hadamard gate provides a universal gate set
for quantum computing [35], the QFT is a subroutine in Shor’s algorithm [36], and W-state preparation is useful
for the quantum approximate optimization algorithm [37, 9]. Figure 5 shows gate sequences corresponding to
these unitaries obtained from the literature. The Toffoli gate in figure 5(a) is decomposed into a gate sequence
that contains nine one-qubit gates and six CNOT's [38]. For the QFT we employ its textbook circuit [33] in

figure 5(b), while the circuit for W-state preparation in figure 5(c) was derived from [39, 40].

Our VQC implementations were performed using IBM’s noisy quantum simulator [28] with a noise model
built from the reported noise parameters and connectivity of IBM’s 14-qubit Melbourne quantum computer
[41]. We remark that for VQC, we must have a target unitary U that is written as a gate sequence in the native gate
language and the native connectivity of the hardware. IBM’s simulator for the Melbourne device has a square
lattice connectivity and native gate alphabet of CNOTs, arbitrary rotation around Zand 7 /2 rotation around X.
Hence, transforming the gate sequences in figure 5 for the native device will typically add an overhead of
additional gates. Therefore, the target gate sequences in our implementations actually correspond to IBM’s
compilation (with this overhead included) of the circuits in figure 5.

In IBM’s noise model [28, 42], one-qubit gate errors are modeled as a single-qubit depolarizing error
followed by a thermal relaxation error, where thermal relaxation refers to both T} and T, channels. Similarly,
two-qubit gate errors consist of a two-qubit depolarizing error followed by single-qubit thermal relaxation
errors on each qubit. Finally, the noise model includes single-qubit readout errors.

We employ two different ansatzes, shown in figure 6, and (as described below) we employ gradient-based
optimization algorithms to train the gate sequence V (cv). In figures 78, we plot the results of implementing
VQC with IBM’s noisy simulator for the three-qubit gates in figure 5. In each plot, we show the value of the noisy
cost functions versus the number of iterations of the optimization algorithm. Additionally, we plot the
corresponding value of the noiseless cost functions evaluated for the variational parameters & obtained from the
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Figure 7. VQC implementations for the Toffoli gate (top) and three-qubit QFT (bottom). The ansatz for V () is: (a) one layer of the
alternating-pair ansatz, (b) two layers of the alternating-pair ansatz, (c) the target-inspired ansatz. The blue and green curves
respectively plot the values of Chst and Ci st obtained by training V (cv) in the presence of noise. The green and pink curves
respectively plot the values of Chst and C_HsT evaluated at the variational parameters o obtained from the noisy optimization of

V (av). Curves are plotted as a function of the number of iterations in the gradient-descent algorithm, and the y-axis is in log-scale. The
blue and red dashed lines in (a) and (b) correspond to the minimum value of Cyst and Ci HsT, respectively, determined by optimizing
V () in a noise-free environment. Top: in both (a) and (b), the green and pink curves converge to the dashed blue and red lines,
respectively. Bottom: While in (a) the green and pink curves converge to the dashed lines, in (b) the termination condition for the
optimization algorithm was reached before the pink curve could achieve convergence. The number of shots per iteration was

N = 50 000 for (a) and (b). For (c) we employed the iCANS optimizer [44], where the total number of shots was 1.4 x 107 and the
minimum number of shots per iteration was initially Ny, = 2. The thick dashed vertical line in (c) indicates the point where we set
Nmin = 250, which helped to further reduce the cost function.
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Figure 8. VQC implementations for the three-qubit W-state preparation circuit for (a) the FUMC approach, and (b) the FISC
approach. The trainable gate sequence V () is given by the target-inspired ansatz. In the left (right) panel the blue and green curves
plot respectively the values of Chst (Crer) and Cuust (CpieT) obtained by noisy training of V (cv). Similarly, in the left (right) panel
the green and pink curves give respectively the values of Cnst (CLeT) and Cipst (CLLeT) evaluated at the variational parameters o
obtained from the noisy optimization of V (cx). Curves are plotted as a function of the number of gradient-descent iterations, with the
y-axis in log-scale. Via noisy training, the noiseless cost functions go down to ~10~%. Initially we set Nypi, = 2, and the thick dashed
vertical lines shows the point where we increased this value to Ny, = 250. Increasing the minimum number of shots iCANS employs
to compute each partial derivative leads to smaller cost function values in both cases.

noisy optimization. These results allow us to verify if the parameters obtained from the noisy optimization are
indeed minimizing the noiseless cost functions. Before discussing the results, we first give details for our ansatzes
and optimization methods.

6.1. Ansatzes and optimization methods
As previously mentioned, to implement VQC we consider two ansatzes for the trainable unitary V (c). The
building block of our ansatzes is a dressed CNOT gate, which is a two-qubit gate composed of a CNOT preceded
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and followed by single-qubit gates V() acting on each qubit, as shown in figure 6(a). Each single-qubit gate
Vi (ay) is decomposed (up to a global phase) into three elementary rotations parameterized by three angles in the
vector oy, = (O, 1, Q2> %,3) aS

Vk(ak) — efia'k,wz/267iak,2(ry/zefia'k,1(72/2_ (21)

Let us now introduce our ansatzes. We note that our two ansatzes are fairly similar to the ones introduced in
[19]. In our first ansatz, each layer is composed of # dressed CNOTs, where # is the number of qubits (in the
special case of n = 2 each layer consists of one dressed CNOT), with the precise structure defined as follows.

Definition 10. We define the alternating-pair ansatz as a layered ansatz in which each layer consists of
(parameterized) dressed CNOT gates acting on alternating pairs of neighboring qubits as illustrated in
figure 6(b).

We remark that it is useful to distinguish between a complete ansatz, in which an exact compilation for Uis
contained inside the ansatz, versus an incomplete ansatz, where exact compilation is not possible. In general, a
small number of layers can lead to an incomplete ansatz, where one can only reach approximate compilation.
Hence, increasing the number of layers / could allow one to obtain better compilations of U. Note however that
while alarge number of layers can achieve a complete ansatz, it can also be harder to train and can lead to a
longer-depth circuit.

The alternating-pair ansatz may not lead to the optimal depth compilation for U, particularly in the
complete ansatz case. Our second ansatz attempts to fix the issue of introducing unnecessary depth by having a
structure that depends on U.

Definition 11. We construct the target-inspired ansatz by taking the gate sequence for the target unitary U,
expanding this gate sequence into single-qubit gates and CNOTs, removing all single-qubit gates that precede or
follow a CNOT, and replacing each remaining CNOT in the gate sequence with a (parameterized) dressed
CNOT. Finally, each remaining single-qubit gate is replaced by a parametrized single-qubit gate.

As schematically depicted in figure 6(c), each layer is now composed of one dressed CNOT. This ansatz will
always be complete since its structure is inspired by U. While this ansatz is not useful to compress the number of
CNOTsin V (ev), itis useful as a proof-of-concept to demonstrate OPR for complete ansatzes. We remark that a
simple modification of this ansatz, where the placements of the dressed CNOTs are optimized over instead of
fixed, would actually be useful for circuit-depth compression. Furthermore, we have implemented this dressed
CNOT placement optimization, and we find that we obtain similar noise resilience results as those for the target-
inspired ansatz.

Let us now discuss the optimization methods. As previously mentioned, the trainable gate sequence V () is
afunction of a set of parameters & corresponding to the collection of the internal gate angles in each dressed
CNOT. To optimize these parameters, we employ a gradient-descent approach. This approach exploits the fact
that the gradient with respect to & of CysT, CLHsT, CLeT, and Cy | g7 can be computed by using the circuits for
HST, LHST, LET, and LLET, respectively [43, 19]. We remark that we used different gradient-based approaches
for the shallow and deep ansatz cases, since the latter requires a more sophisticated and efficient optimizer.

Specifically, for the shallow ansatz cases where there are few parameters, we employ the simple gradient-
based approach outlined in [19, appendix 4] . In this approach, the number of shots N per iteration is fixed. (We
choose N = 50 000.) On the other hand, for deep ansatzes with larger numbers of parameters, we employ a
more sophisticated gradient-based approach that improves efficiency by reducing the number of shots required
[44]. This approach is the individual coupled adaptive number of shots (iCANS) algorithm of [44], which isa
measurement-frugal method that often outperforms other optimizers in the presence of noise. The iCANS
optimizer frugally adjusts the number of shots both for a given iteration and for a given partial derivative in a
stochastic gradient descent. When employing iCANS, one sets as input: (1) the total number of shots employed
during the optimization, and (2) the minimum number of shots (denoted Ny,,;,) employed to estimate the
gradient for a given iteration. We set the latter to initially be Ny,;, = 2 and then later increase this to Ny, = 250,
which empirically leads to good convergence.

6.2. Toffoli gate

The top panels in figure 7 show results of implementing VQC for the Toffoli gate. Figure 7 (top, a) corresponds
to V (a) being given by a single layer of the alternating-pair ansatz of definition 10. Here, the noisy cost
functions Cnst and C nst (blue and red curve, respectively) tend to decrease as the number of iterations
increases and converge to non-zero values. We remark that the number of iterations can be different for ChsT
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and C| st since the termination condition of the optimization algorithm can be reached for a different number
of iterations.

Figure 7 (top, a) also depicts the cost functions Cyst and Ci ysT evaluated for the variational parameters &
obtained from the noisy optimization (green and pink curve, respectively). These curves show that as the
number of iterations increases, both Chst and Cj st tend to decrease too, indicating that the noisy training is
indirectly training the noiseless cost functions, i.e. the adjustments to the parameters & made by noisy training are
reducing the noiseless cost functions. Note that Cyst and C ysT do not converge to zero since a single layer of
three dressed CNOT's forms an incomplete ansatz for the Toffoli gate.

In order to determine if the algorithm is reaching the minimum value achievable with just one layer, we have
also implemented VQC to compile the Toffoli gate in a noise-free simulation. The minimum values achieved for
Chst and C| st are shown as a blue and red dashed curve, respectively. Surprisingly, the cost functions
evaluated with the parameters from the noisy training (green and pink curves) converge to the dashed lines. This
suggests that the optimal parameters are noise resilient since noisy training reaches the minimum value obtained
by noise-free training. As a caveat, however, we note that it is not clear whether the minima reached are global or
local optima.

Figure 7 (top, b) plots the VQC results for Toffoli with V (a) given by two layers of the alternating-pair
ansatz. In this case, Cyst and Ci HsT converge to values which are smaller than the ones obtained in the one-layer
case. The latter indicates that two layers allow for a more complete compilation of the Toffoli gate, albeit it
appears that the ansatz is not yet complete. Note that both the decomposition of the Toffoli gate in figure 5, as
well as two layers of the alternating-pair ansatz, consist of six CNOTs. However, the placement of the dressed
CNOTs does not seem to be optimal. Finally, let us remark that the green and pink curves converge to the dashed
blue and red lines, respectively. Hence, this once again shows that the optimal parameters are noise resilient.
Similar to the previous case, it is not clear whether the minima reached are global or local minima.

Figure 7 (top, ¢) shows results for the target-inspired ansatz of definition 11. As the number of iterations
increases, all curves tend to decrease, with the green and pink curves converging to values of the order of 10™*.
We remark that we have verified that W = VU ~ 1 for the parameters obtained. In this case, we do not plot
dashed blue and red curves since the ansatz is complete and the minimum of the noiseless cost functions is zero.

These results indicate that optimizing V («) in the presence of noise yields the correct variational
parameters &, which minimize the noiseless cost function. Hence, both Cpst and C ys1 appear to exhibit OPR
for the realistic noise model considered.

6.3. Quantum Fourier transform

We now discuss the VQC results for the three-qubit QFT. Figure 7 shows the results for V («) consisting of: a
single layer of the alternating-pair ansatz of definition 10 (bottom, a), two layers of the alternating-pair ansatz
(bottom, b), and the target-inspired ansatz of definition 11 (bottom, ). As shown in these plots, most of the
results for QFT are similar to the results for the Toffoli gate. In all cases the noiseless cost functions tended to
decrease with iterations, indicating that noisy training indirectly trains the noiseless costs.

For the one-layer case of figure 7 (bottom, a) the green and pink curves (noiseless cost functions evaluated at
the parameters obtained from noisy training) converge to the value obtained by training in a noise-free
environment (dashed curve). Here, the non-zero value of the dashed curve indicates that a one-layer ansatz is
incomplete. This is in contrast to figure 7 (bottom, b), where the dashed red line of C; ysT is of the order of 1074
implying that the ansatz is complete. Once again, in figure 7 (bottom, b), the green and pink curves
approximately converge to the dashed lines (noiseless training), indicating noise resilience. Finally, figure 7
(bottom, ¢), shows that that both Cyst and C| HsT appear to exhibit OPR, as we can indirectly train the
parameters in V («) in the presence of noise.

6.4. W-state preparation

Finally, we discuss the results of implementing of VQC for both FUMC and FISC of a W-state preparation
circuit. We remark here that we did not perform FISC for the Toffoli gate and the QFT since those unitaries act
trivially on the |0) state. Moreover, we are only interested in comparing the FUMC and the FISC approach with a
complete ansatz, meaning that we only considered the target-inspired ansatz of definition 11.

As shown in figure 8, all cost functions Cnst, CiHsT, CLeT, and C g1 can be optimized indirectly via noisy
training of V (a). Both for FUMC and FISC the cost functions go down to ~107%, while for FUMC one can even
reach values of ~107> when employing the LHST. Hence, our numerics indicate that Cyst, C_HsT> CLET, and
CyLeT appear to exhibit OPR to IBM’s realistic noise model.
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7. Discussion

7.1.VQC in the NISQ era

Our analytical and numerical results suggest that variational quantum compiling (VQC) could be a useful tool
for near-term noisy quantum computing. While there are several intended uses for VQC [19], the main purpose
is for circuit-depth compression of quantum algorithms. This depth compression arises because VQC could
achieve optimal compiling, whereas classical methods for quantum compiling either scale exponentially (if they
are aiming at optimal compiling) or are sub-optimal when they are restricted to local (instead of global)
compiling of the circuit.

Suppose one is able to achieve depth compression with VQC. This implies that the target unitary U has a
longer depth than the trained gate sequence V (). Prior to our work, one may have been concerned that this
depth compression might not reduce noise, because perhaps the noise occurring during U is somehow compiled
into the gate sequence V (). However, our work shows that this is not the case. Despite various sources of
incoherent noise (e.g. see the noise model in figure 3), we find that one learns the correct optimal parameters &
for V (a). This means that, after performing VQC, if one was to implement the gate sequence V (&) instead of
U, then one should see that V () really does achieve less noise than U, since the depth of V () is shorter.

7.2. Summary of results

In this work, we treated two different forms of VQC: Full Unitary Matrix Compiling (FUMC) and Fixed Input
State Compiling (FISC). Our main analytical results were stated in theorems 1-3. We found that both FUMC
and FISC are resilient to measurement noise. In addition, they are both resilient to global depolarizing noise
acting continuously throughout the circuit and global Pauli noise occurring just prior to the implementation
of W= VTU.

For FUMC, we were able to prove resilience to additional sources of noise, such as Pauli gate noise during the
entangling and disentangling gates as well as non-unital Pauli noise occurring at particular times in the circuit.
The fact that our noise resilience results are more extensive for FUMC than for FISC may simply be due to the
fact that the cost-evaluation circuit for FUMC is more complicated than that for FISC. Hence it is possible that
this additional resilience is needed to make the two approaches have similar levels of noise resilience.
Alternatively, it could be possible that either FUMC or FISC is more noise resilient than the other, although this
remains to be established. (Note that our numerics did not see a significant difference in the noise resilience of
FUMC versus FISC.)

In addition, Corollaries 1-8 stated resilience results for noise models that go beyond the noise models
considered in theorems 1-3, at the expense of possibly specializing the form of the unitary W = VU (for
example, to Clifford unitaries or tensor-product unitaries). In particular, these corollaries considered noise that
occurs during the implementation of W, which is certainly practically relevant.

Our numerical results were presented in figures 7-8. Generally speaking, these numerics agreed with our
theoretical expectations and hinted at resilience beyond what is stated in our theorems, which we discuss in the
next subsection. We emphasize that our implementations employed the noise model of IBM’s 14-qubit
Melbourne device, and hence this shows that VQC exhibits resilience for currently available hardware.

7.3.Noise resilience beyond our theorems

There are two senses in which VQC might exhibit resilience beyond the results stated in our theorems. The first
sense is that VQC may be resilient to more general noise models than the ones we considered. The second sense
is that VQC may be resilient even for the incomplete ansatz case, on which we elaborate below. Both of these
possibilities appear to be supported by our numerical implementations.

For evidence supporting the idea that VQC may be resilient to more general noise models, consider the
following. The noise model associated with IBM’s 14-qubit Melbourne device is more general than the noise
models depicted in figures 3 and 4, and the unitaries we considered in figure 5 do not fall into the special cases
(e.g. Clifford or tensor product) treated by Corollaries 1-8. For example, IBM’s noise model has non-unital
Pauli noise associated with each gate and hence occurring throughout the implementation of W = V'U. Thus,
our theorems and corollaries do not cover all of noise processes occurring in IBM’s noise model. Despite this, we
were able to reduce the noiseless cost (via noisy training) to ~10~* for the Toffoli gate (figure 7 (top, ¢)) and QFT
(figure 7 (bottom, c)), and to ~ 107> for W state preparation (figure 8).

Naturally, our theorems and corollaries have a bias towards noise models that are mathematically easy to
work with, such as Pauli noise or depolarizing noise, since this makes it easier to formulate proofs. It is therefore
important for future work to attempt to show resilience beyond these noise models.

As noted above, VQC may also have resilience beyond the complete ansatz case. Recall that we say an ansatz
for V (a) is complete (incomplete) if it contains (does not contain) an exact compilation of U. Our theorems and
corollaries are restricted to the complete ansatz case, whereas our numerics in figure 7 also consider the
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incomplete ansatz case. Interestingly, figure 7 showed that typically one can obtain the same value for the
noiseless cost with either noisy or noiseless training. This surprising result suggests that perhaps the optimal
values for & may be resilient to noise even for the incomplete ansatz case, and future work should investigate this
possibility.

In addition, it will be important to investigate the effect of noise on the parameter landscape and parameter
trainability (e.g. [45]). Our work indicates that the global optimum of VQC may not change with noise, but does
not address the difficulty of finding this optimum.

7.4. Coherent versus incoherent noise

In the Introduction, we emphasized the distinction between OPR and cost value resilience [7]. The latter is
relevant to coherent noise, whereas OPR is relevant to incoherent noise. Intuitively, we anticipate that coherent
noise (e.g. systematic gate biases) in VQC will often shift the location of the global minimum in parameter space,
and hence we expect coherent noise to have a non-trivial effect on the optimal parameters in VQC. Because of
this intuition, we have focused our paper and our definition of OPR solely on incoherent noise. We remark that
our definition of OPR, which is stated in terms of unitaries (rather than parameters), would need to be modified
if one is interested in studying parameter resilience for coherent noise. However, as noted, we do not anticipate
resilience to coherent noise to hold. We also remark that other strategies exist to correct coherent noise [46].
Nevertheless, an interesting question for future work will be see whether OPR holds partially whenever both
coherent and incoherent noise are present. In addition, it will be interesting to combine the ideas of OPR and
cost value resilience into a single framework.

7.5. Noise resilience of VQE
Finally, let us consider VHQCAs more generally. In particular, let us revisit the variational quantum eigensolver
(VQE) that we discussed in section 2. As we now show, VQC is a special case of VQE. This idea was noted for
FISCin [20]. However, the argument is more subtle for the FUMC case.

The key observation is that the various cost functions can be rewritten as the expectation values for some
effective Hamiltonians:

Cier = (Y(@)|HieTlY (o)),  CLier = (Y (@) |HieTlY (o)),

Chst = (X (@) [Hustlx (@),  Cinst = (X (@) [HinsTlX (V). (22)
Here [¢)(ar)) € HAand |y () € HAPare n-qubitand 2n-qubit states, respectively, given by
[¥(a) = V()]0), X (@) = (V(e) @ 17)]®), (23)

where H* denotes the Hilbert space of system X, and [®) = E|0) is the standard maximally entangled state on
AB.Weremark that |y (a)) is simply the Choi state associated with V (cv).
For the cost functions associated with FISC, the effective Hamiltonians are given by

1& ; T
Hier = 14 — UJ0) (0|U", Hyer =14 — =S U(P) @ 1)U, (24)
=1
where POAj is the projector onto the zero state of A;. For the cost functions associated with FUMC, the effective
Hamiltonians are given by

Hyst = 148 — (U @ 18)|®) (®|(U* @ 18),
Hipst = 1% — lZ?ZI(U ® ) (120) (0] @ WD) (UT @ 1), (25)
n

where [§()) is the standard maximally entangled state on A; B;. With these Hamiltonians, one can verify that the
expressions in (22) are equal to the original cost function definitions in section 3. Hence, we have just shown that
VQCis a special case of VQE, where the goal is to prepare the ground state of one of the Hamiltonians in (24)

or (25).

The fact that VQC is a special case of VQE implies that, for specific Hamiltonians, VQE is noise resilient.
Namely, we have shown that VQE exhibits OPR when the Hamiltonian has the form in either (24) or (25). This
naturally points to the question of whether VQE is resilient more generally. It is therefore a very interesting
direction for future research to extend our noise resilience to Hamiltonians other than the ones we considered.

8. Conclusions

In this work, we discovered a novel kind of noise resilience for variational hybrid quantum-classical algorithms
(VHQCASs). We introduced the idea of optimal parameter resilience (OPR), where the variational parameters
corresponding to the global optimum are unaffected by various types of incoherent noise. We showed that
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variational quantum compiling (VQC) exhibits OPR. This paves the way for VQC to be used in the era of noisy
intermediate-scale quantum computing as a tool for circuit-depth compression. Important future research
directions include: (1) extending our theorems to show resilience to more general noise models than the ones we
considered (which our numerics suggest may be possible), (2) exploring noise resilience for the incomplete
ansatz case (which our numerics indicate may also be resilient), (3) analyzing approximate noise resilience, (4)
studying the effect of noise on the parameter training process, and (5) generalizing our resilience results to other
Hamiltonians for the variational quantum eigensolver and exploring resilience for other VHQCASs (for example,
some evidence of noise resilience was recently reported in [47]).

Acknowledgments

We thank Lukasz Cincio and Mark M Wilde for helpful discussions. KS acknowledges support from the US
Department of Energy (DOE) through a quantum computing program sponsored by the LANL Information
Science & Technology Institute. SK acknowledges support from the National Science Foundation and the
National Science and Engineering Research Council of Canada Postgraduate Scholarship. MC was supported by
the Center for Nonlinear Studies at Los Alamos National Laboratory (LANL). PJC acknowledges support from
the LANL ASC Beyond Moore’s Law project. MC and PJC also acknowledge support from the LDRD program at
LANL. This work was also supported by the US DOE, Office of Science, Office of Advanced Scientific
Computing Research.

Appendix A. Preliminaries

The main goal of the appendix is to provide the proofs of theorems 1-3 and Corollaries 1-8. For these proofs, we
will need to first review some definitions and properties. We point readers to [33, 34] for additional background.

Pauli Basis. In our proofs, we will work in the Pauli product basis, involving a tensor product of one-qubit
Pauli operators. This is a natural basis to choose, given the qubit structure of quantum computers. Let

Xl:202®0£§®-~-®0£g, Z"::U];1 ®O’§z®"-®0’§”, (A1)
wherel}, b, ..., 1, € {0, 1}, ki, kg, ..y ky € {0, 11,1 = (I, ..., 1),and k = (ky, ... k,,). The following properties
are satisfied by the Pauli operators:

Xhxh = xhol, zhkzk — zkok - xlzk — (—1)tkzkx1, Tr[X1Z¥] = 2610, 6k0, (A2)

which follow from the properties of the single-qubit Pauli operators.
Pauli group. The Pauli group of n qubitsis G,,:={£1, +i} x {I, o, 0y, 0;}*".
Clifford group. The Clifford group on n qubits is the set of unitaries that normalize the Pauli group, i.e.

C,:={U: UG,U' € G,}. (A3)

Maximally entangled states. In what follows, we consider the following maximally entangled states
|BH) (D] = |¢t) (¢H]2", where |¢7) = (|0, 0) + |1, 1)) /~/2. The aforementioned tensor product of
maximally entangled states can be written in the Pauli basis as follows:

1 1
|BH) (DF|4p = ﬁz xX\zk o xlzk = ﬁz zkxt @ zkx]. (A4)
Lk Lk

All-zero state. Noting that |0) (0] = (1 4 ;) /2, then in the Pauli basis the all-zero state [0) (0] = |0) (0]®" is

0)(0] = 1+ ) = 57 21 (A35)
1

Pauli channels. A Pauli noise channel corresponds to the action of random Pauli operators on a quantum
state p according to a probability distribution. Let P4 denote an n-qubit Pauli channel acting on system A = A,
...A,,. Then the action of P on the state pis given by

PAp) = 3 pRXaZhp(X4Z4 ), (A6)
Lk

where 0 < p{}( < Land Z,)kplAk = 1. Using the properties in (A2), we find that
PAXAZY = p,j‘,(xgzgxgz,’;zgxg = Z(—l)wk(—l)b-'p,f‘kxgzj; = p;}hxgz/’;, (A7)
Lk Lk
where p, =37 (= 1)**(—D)¥p/ and —1 < p?, < 1foralla, b € {0, 1}". Similarly, the action of a global
Pauli channel P48 actingon systems A = A; --+ A,and B = By --- B,, respectively, is defined as
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PABX T Zb @ Xzl = pAB  xmzh g xazh (A8)

a5,axb,b;

Non-unital Pauli noise channels. The action of a non-unital Pauli channel Pyy on an #-qubit Pauli
operators is

Prnu(X?ZP) = 3 X°ZY YV a=0,b=0, (A9)
PauX0Z% = Py =1+ > dapX°Zb. (A10)
(a,b)=(0,0)

We now prove the following lemma based on Clifford unitaries and Pauli channels.

Lemma 1. Let W be a Clifford unitary and let ‘P be a Pauli channel. Then for any state p, the following holds:

W o P)(p) = (Q o W)(p), (A1D)

where Q is another Pauli channel.

Proof. From (A6) it follows that
WoP(p) = W (Z pl)lekaZle) W =" p  (WX'ZFWH) (WpW ) (WZEXTWT) (A12)

Lk Lk
— Z pl kxm(l,k)zn(l,k)pr”rzn(l,k)Xm(l,k) (A13)
Lk
=(Q o W)(p). (AL9)
The third equality follows from the definition of a Clifford unitary (A3), while the last equality follows from

(A6). O

Appendix B. Noisy entangling and disentangling gates in FUMC

For the proofs given in appendices D—G, we will make use of some properties of the noisy versions of entangling
Eand disentangling E' gates that appear in FUMC. Hence, it is helpful to first state these properties in this
appendix. Recall that, for Pauli gate noise acting during E or E*, we assume that global Pauli channels act before
and after each Hadamard, as well as before and after each CNOT. This noise model incorporates the case when
there could be correlated Pauli noise acting on different qubits during E and E'. We note that the noisy
entangling gate is the same for both the HST and the LHST.

Let E = E*® denote the ideal entangling gate, which can be split into a tensor product of two qubit
entangling gates E4i% as

[AB — EABI g 4B ... @ EABr — éEA]-B]. (B1)
=1
Moreover, each E4/% consists of a Hadamard gate acting on A; followed by a CNOT gate acting on both A;and B;.
In the quantum channel notation we write thisas £4/% = C ?{ 5o (HA @ TB), where HA are the quantum
channels that implement the Hadamard gates and C ?{ B are the quantum channels that implement the CNOTs.
The noisy version of £48, which we denote by &8 s

V= QRPoCy o QQ)F o (MY ® IB) o PYY, (B2)
j=1 j=1
where ’P]AB , Q?B ,and R?B are 2n-qubit global Pauli channels forall i € {1,...,n}, as defined in (A8). Since both
Hadamard and CNOT gates are Clifford unitaries, by using lemma 1 we find that

EY = M8 o QCY 0 Q(HA ® TB), (B3)
=1 =1
where MA8 is another Pauli channel.
We now apply £ % on the all-zeros state |0, 0) (0, 0|45. Consider the following chain of equalities:

1

£%%(10, 0) (0, 0]4B) = ?AB[W

1
Yzt ® Z};] = ﬁz maB X4zt @ X§ 28, (B4)
a,b a,b
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where we used (A5), (A8), and the following identities forallj € {1, ... n}:

(MY © TP)(Z5 @ Z)) = X © Zy), (CYHXY @ 1y
= X7 @ Xy, CY")Ua® Z) =2 © Z;). (B5)

The noisy disentangling channel for the HST is given by the adjoint of the noisy entangling channel, as
defined in (B2). On the other hand, since in the LHST only two qubits A;B; are measured for a given run of the
experiment, the disentangling channel is applied only on the A;B; pair. However, we assume that global Pauli
channels act on 2# qubits before and after the Hadamard and CNOT gate. For eachj € {1,...,n},the
disentangling channel is given by the adjoint of the following channel:

#IAB

T =R o (€YY @ TAP) 0 QM o (HA ® TP @ THB) o P45, (B6)

= Mo (Y% @ TAB) o (MM © T8 @ T45), (B7)
where P;‘B, Q?B) R]AB ,and /\/lfB are 2n-qubit global Pauli channels, as defined in (A8), and we used lemma 1.
We remark that the Pauli channels are defined with a j subscript in (B7) to emphasize that for different runs of
the experiment the Pauli channels that act could be different.
From arguments similar to those used to derive (B4), we find that
1

~/AB
E; (10, 0)(0, 014" @ 13,5) = %

1
b b:
> milh s (K371 © X173 © 135, 9

aj,j 0

Appendix C. Measurement noise in FUMC

For the proofs given in appendices D—G, we will make use of some properties of measurement noise in FUMC.
Hence, it is helpful to first state these properties in this appendix.

Let Py denote the POVM element associated with getting the all-zeros outcome in the noiseless HST, which
can be expressed as Py:=|0) (0] = ?le0> (0]. We consider the measurement noise as follows. For each qubit j,
wherej € {1,...,2n}, the ideal projector |0) (0] gets replaced by p'?’0) (0] + p/’|1) (1]. Moreover, we assume
that for all j the following strict inequality holds: péé) > pélj ),

Let Py denote the noisy POVM element. Then the following equalities hold:

Py = @ (p10) (014 + pyI1) (11%) @ @ (pegl0) (OB + piln) (11B) (CD)
j=1 j=1
=>"pA(a)p®(b)|a, b) (a, b, (C2)
a,b

with pA(a) — (p(ﬁl)al (p(ﬁn)an(po/?)l)lfal (pofzn)lfan and pB(b) — (p(ﬁl)bl (p(ﬁn)bﬂ(p(%)lfhl (po%x)lfbn.

C.1. Effective noisy measurement operator for the HST

In the noiseless HST, the measurement is preceded by the disentangling unitary (EAB)f, where E** is defined in
(B1). In the Heisenberg picture, this corresponds to the evolution of the measurement operator with respect to
the unitary E*®. We now derive the effective noisy POVM element as the evolution of Py under the noisy

entangling channel & % (defined in section B).
Using (A5), |a, b) (a, b|*® can be expressed as follows:

a 1 a
la, b) (a, bI"* = (X1 ® Xg)(ﬁzhk Zy @ Zf;)(XA ® X)
1
= T (DD @ 2, (C3)

where we used the properties of the Pauli operators as defined in (A2). Then, from (B4) and the linearity of
quantum channels, it follows that

~ 1
E*%(|a, b) (a, b"B) = ﬁz mif  (— e (—1)PRx, Zk @ XL ZK, (C4)
Lk
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Therefore, from (C2) and (C4) it follows that

5 (P()) = ﬁz ma a,b, bpa bZAXA X ZBXB’ (CS)

where ﬁ;)‘b = (= D* (=D pA M) p®(k),and p*(l) and p® (k) are probability distributions as in (C2).

C.2. Effective noisy measurement operator for the LHST
In the LHST, a noisy measurement on two qubits A;B; is preceded by the disentangling unitary (E4%)' acting on
the same two qubits. Similar to section C.1, we now derive the effective POVM element as the evolution of the
operator Qéé) (defined below) under the adjoint of the noisy disentangling channel, as defined in (B7). The noisy
POVM for the qubits A;B;is given by
1
Qo = X pH@)pP®)Ia, b) (@, BT, (C6)
a',b'=0

which follows from (C2). Moreover, the overall noisy POVM for the LHST is defined as

1 ~(j)
=130 e 175, (C7)
mj=1
By using arguments similar to those used in (C3), (C4), and (C5), we find that
~/AB ~(j) 1
(Qoo ® 1z5) = ?Z a]a)hbpg]])Z]X](g)ZJXJ@ﬂAB) (C8)

aj,b
where E;AB is given by (B7) and ﬁa%j = Z;r,br:o(— D% (=15 pAi(a") pBi(b').
Therefore, the overall effective noisy POVM for the LHST is defined as
/AB(Qoo)———Z 2 Mt b Bar ZAXA @ 29X @ Vx5, (C9)

]lajj

Appendix D. Proof of theorem 1
Before providing a proof of theorem 1, we prove the following lemma.

Lemma 2. Let Cqc (V') be a cost function of V with V € 'V, and V; the set of d x d unitary matrices. Additionally
suppose that Cqc (V') can be evaluated using a quantum circuit denoted QC as follows:

Cac(V) :=Tr[A&v(p)], (D1)

where p is a quantum state, A denotes a POVM element and Ey denotes the noisy unital quantum channel describing
the evolution of the state throughout the computation, which depends on the unitary V. Then Cqc (V) exhibits
strong-OPR to a noise model composed of &, and a global depolarizing channels acting continuously throughout the
computation.

Proof. Without loss of generality let us decompose &y as k noisy unital quantum channels: & = 5 o ... o &
In the presence of global depolarizing noise acting throughout the computation, the cost function can now be
expressed as

Cac(V) = Tr[A(D* o &K o ... 0 D20 £, 0 DY(p)], (D2)

where we have interleaved the channels £, with global depolarizing channels D’. From definition 1 and from
the fact that £,(l) = 1, it follows that

Cac(V) = Tr[A(D}logl o ... 0 D20 E,oDY)(p)] = pTr[AES o ... €0 EV)(p)] + (1 — p)Tr[Al] /2"

(D3)
=pCqc(V) + (1 — p) /2", (D4)

where p = p,, ... p;. Let VP denote the sets of unitaries that optimize Coc (V) i.e.
VP = {V' € Vi Cac(V)) = {/Ig% Cac(V)}. (D5)

Then, from (D4) we have that any unitary in V¥ " will also optimize Cqc (V). Hence Cqc (V) exhibits strong-
OPR to a noise model composed of &, and a global depolarizing channels acting throughout the
computation. O
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By means of lemma 2 we know that if we show that a quantity exhibits OPR to a noise model N which does
not include global depolarizing noise acting continuously throughout the computation, then said quantity will
also exhibit OPR if we include global depolarizing noise to A/.

We now provide a proof for theorem 1.

Theorem 1. The cost functions Cust and CHsT exhibit strong-OPR to Noise Model 1 in definition 7.

Proof. We begin by breaking up the HST circuit into three time intervals. In the first time interval, the noisy
entangling channel £ ABis applied. In the second time interval, the quantum channel V' o I/ implements the
unitaries Uand V. Finally, in the third time interval (£ APy is applied. We assume that the global depolarizing
noise occurs on systems AB during all three time intervals and the global depolarizing noise occurs on system A
during the implementation of V' o I/. Moreover, suppose that two different global Pauli channels Q4% and @AB
actat times 7; and 75, respectively, and global non-unital Pauli channels act continuously on system B in between
71 and 7.

Let p© denotes the initial state of the HST circuit and is given by p©@ = |0, 0) (0, 0]*E. At the state is

P = QDAL 0 87 DA 0 E (), (D6)

. o =AB =AB . .
where we have broken up the 7, into k time incrementsand £, o ... £,  is the channel that implements the

noisy entangling channel £ AP as defined in (B2). Moreover, each & l-AB is followed by a global depolarizing
channel D?}E »»where p("9 denotes the depolarizing probability for the sth time increment of the rth time

interval. Then p( reduces to

p(l) — QAB(D?(]%]{) ° Z’;\BmE?B(p(l,l)glf\B(p(o)) +(1 - p(l,l))ll/22n) (D7)

— p QABEMB(pO) 4 (1 — pM)1/d = p» Z_inz AEX4ZE @ X;;Z};] + (1 — pM1/2%n, (D8)
a,b
where p» = p(D _ p(1b) The second equality follows from lemma 2 as £** consists of only unitary and Pauli
channels, and thus each £ ?B is a unital channel, wherei € {1, ..., k}. Thelast equality follows from (B4) and
(A8), where ,‘21?, = m,ff)b,bq:f,b)h.
Similarly, the state at 7, is given by

p® = QDA 0 DAy 0 W ® PRy, .. DAE, 0 Dibyo W, © Py, ) (p ). (D9)
We first find the action of the channel W, ® Py, on pV. Consider that
1
W@ PRud(pV) = =M @ PRu| pP] Y0 BabXiZi @ XEZg| + las (D10)
2 (a,b)=(0,0)
1 a a
= p(“( > BabcapWiXGZEw! @ XBZE’] s+ 3 gl @ XfZp, (D11)
2 (a,6)=(0,0) (g.h)=(0,0)

where we used the definition of a non-unital Pauli channel from (A9) and (A10). We note that the terms that are
independent of W; do not affect the global optima. Therefore, the only relevant term in (D9) is

N @s@pM __p mo
po = L2 P oM s pa ([T wxszwt @ xgzb), (D12)
2 (a,b)=(0,0) i=1
where p@ = p®D | p@Dand s@ = sV s@D and where we have used (A9) and lemma 2.
Finally, the relevant term after the action of the noisy disentangling channel is

PO = DAyo(E, ) DA EY (5) = pO @YY (52) + (1 - p)1/2, (D13)

where p® = pGm __ p3D Thelast equality follows from the fact that the channel (") consists of unitary

channels and Pauli channels, and thus each (€ ,AB)"' is a unital channel. Therefore, the term that decides the global
optima in the HST is given by

~AB

o0 = @ o0 ¥ as] iy wxiZiw @ xg2b), (D14)

(a,b)=(0,0) i=1
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where we have omitted the scaling factors. Let Fyst(V) o f (V) :=Tr[Py0c®]. Then

[ m
) =T (@ V@) S BRI YWXSZEWT © X528 (D15)
(a,b)=(0,0) i=1
=Te| S wAB ZEXSWXSZEWT @ ZEXEXEZE (D16)
@b)=0,0 “*7
| ab
=To| > w28, ZiXGWXGZEw . (D17)
(a,b)=(0,0)
The second equality follows from (C5), where we set Iﬁ:":%)b, ;= / 22" i3 ;g, E,Eﬁ:ﬁ (jﬁ“}g) 3 j:‘f, (I, c;f)b). The

last equality follows from (A2). Let V;’pt denote the sets of unitaries that optimize Fys7(V) (and hence
ChsT(V)) such that

VP =(V' e Vi W= (VU =¢€"l, forsome ¢ € [0,27]}. (D18)

We remark that this set of unitaries also optimizes F, ys1(V') (and hence C yst(V)). Then, for V' € V; we find
FOV) = Y a)=0,0 Faabb Let

T(Vy= S e, XiZEWi@la,b), S(Vyi= S et oWXiZE @, b). (D19)

(a,b)=(0,0) (a’,b")=(0,0)

Consider the following inequality:

FOV) = [(S(V), T(V)| < TrSVY SOV THT VT (V) = 3 w28 4 (D20)
(a,b)=(0,0)

where we used the Cauchy—Schwarz inequality. Moreover, note that the inequality in (D20) is saturated for any
matrix V' € V, if we assume that the coefficients mﬁ,ﬁ) ».p Characterizing the noise satisfy KZ;:IZ) by = 0.Therefore,

the set of unitaries that optimize Fys7(V) (and hence Cyst(V))is %‘” =VY !. According to definition 6, the
latter means that Cygt exhibits strong-OPR to Noise Model 1 in definition 7.

We now show that the cost function Ci yst exhibits strong-OPR to Noise Model 1. The LHST corresponds
to the optimization of the following function:

Finst(V) o g(V) = Tr[(@AE o E’AB)(@)O)[ S BBl pwxiziwt e X§Z§]], (D21)
(a,b)=(0,0) i=1

where we replaced the disentangling and measurement channels in (D15) with (C9). Consider the following:

1 ’ ’ ’ /
_ 11 u ~ AB ~A; A b, a; b . a.
_— ] ) ) ] 7 —_ =
g(V)=Tr [ > > M) al bl Pty qa]_r)a]_r)b]/’b]{ZAjXAj ® Zy Xp ® 175

A s s cé’;L)WXzZXW*Mgzg)]

(a,b)=(0,0) i=1
(D22)
[ n 1 ’ ’ / ’ —
. b, ! v ! b a b
=1 Y Y g;{i],,b)bj,(z/gjxjj ®Jlgj)WX;§ZA’?WT®ZB;X§;X;]{ZBﬁX£]{ZB;] (D23)
| j=1(a,b)=(0,0)a),bj=0

[ n 1 / ’ ’ ’ —
— () b 595 _ arsb i b ;a8 by T b
=To|d > Z Caavy CaXa, @ I WXRZIW' @ Trp(Zy Xy X Z) Tra(X5 Z5)
| j=1(a,b)=(0,0)a),bj=0

(D24)
[ n
. b. . b: .
=Tl >0 D0 &0, ZA X5 @ ln) (WX Z) @ 15) W) (D25)
_j:l(aj,bj)z(0,0)
n
()
< Z Z gui,uj,b],bj’ (D26)

j=1Uaj,b))=(0,0)
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where in (D24) we have split Trp into a contribution from qubit B;and a contribution on all qubits except B;, and
- ~ ~A A ; o . :
where £ El’))uj,)b’bj, = (1/4n)m a/?f;, oy puj,jbj, Q)01 ﬂaAfZ (I1, C‘Ef)h). The first equality is derived from (C9), while the
inequality follows from the arguments similar to (D20).
Here we remark that the inequality (D26) is saturated for any unitary matrix in the set of unitaries that
optimize Fyst(V') (and hence Ciyst(V)) given by (D18). Hence, Ci HsT exhibits strong-OPR to Noise Model 1

in definition 7 if we assume that the coefficients £ Ganbiby characterizing the noise satisfy £ Ganbiby > 0. .

Appendix E. Proof of theorem 2
Theorem 2. The cost functions Cyst and C st exhibit strong-OPR to Noise Model 2 in definition 8.

Proof. We break up the HST circuit into three time intervals similar to section D. We again assume that the
global depolarizing noise occurs on system AB during all three time intervals and the global depolarizing noise
occurs on system A during the implementation of V' o . Moreover, suppose that a global Pauli channel Q45
followed by a global non-unital Pauli channel P4 acts at time 7. Furthermore, a global pauli channel 0" acts
at time 7, while a global Pauli channel acts continuously on the system B in between 7; and 7,.

The state at 7, is given by

P = pV Pl 0 QUPEM(p®) + (1 — pV)Phu(1/27) (ED)
ol 1 %AB b a b 1 1 ¢ h
= p ﬁ Z ﬁu,bXAZA ® XBZB + ﬁ}l + ﬁ Z dg,hXAZA ® JlB. (EZ)
(a,b)=(0,0) (g,h)=(0,0)

The first equality follows from arguments similar to those used to derive (D6)—(D8). The last equality follows
from (B4), (A9), and (A10), where B:f = m,ff, bb q:‘i bbb
At 7, the state is
= AB ~B ~B

P(z) =0 (D?g,l)opﬁz,ho(wl ® Pp)... D?(lzg.l) o D?Z,I)O(WI ® P )(/)(1)))- (E3)
The term that depends on Win (E3) is given by
~ 1 =48 AB 1 ; a a .
PO = Q0 psPp 5 By ([Pay) WXAZKWT @ XEZ5+ 30 dgaWXEZEWT © L),

(@b)=(0,0) i (@h)=(0,0)
(E4)

where we used the definition of Pauli channels from (A6) and (A8). By omitting the scaling factors, the relevant
term after 73 is given by

. ~ —~ ~AB ~(i a a
7 — @ o QAB(pmS(z) POE wby-0.0) Bay (L) WXEZEWT @ X Zg)
+ @™ 0 Q"L y-00 dhWXEZAWT @ 1p). (E5)
Let Fyysr(V) o< f (V) :=Tr[Pyp®]. Then
~A ~ ~ ~AB ~(i a T a
FOV) = Tr[(Q B SAB)(PO) (p(2)5(2) P(l)Z(a,b)i(o,O) Bas (Hﬁps’;’)WXAZXW‘ ® Xp Zg)]
+ Tr[(@AE o ) (Po)(Lig - 00 FenWXS ZEWT ® IIB)]. (E6)

Moreover, for simplicity we denote

[ I

£ =Tt (2" o EAB)(I%)( S B (1Y) wxizZbwi ngz]], (E7)
| (a,b)=(0,0) i

V) =T (0" o ?AB)(P“O)[ S dgaWXSZhwT JlB”. (E8)
| &h=0.0)
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Letusfocuson f;(V)and £, (V) individually. Consider the following:

fOV)=Tr ( b>Z< )ﬁf,ﬁ/,b,b/zﬁ’xg’wxgzgwf ® ZYXExpzb
a,b)=(0,0
a',b’
=Tr| > 928 ZhxswxizZiwt
| (a.5)=(0,0)

AB
< Z 19a,u,b,h' (E9)
(a,b)=(0,0)

~A ~ e
The first equality follows from (C5), where 1921;%&/ = (1/2%7) ﬁiﬁi/,h/,h/ﬁa, W qu/}i, b ﬁ:f (Hﬁ p;’;’). The
inequality follows from the arguments similar to (D20). Here, the last inequality in (E9) is saturated for any
matrix Vin the set Vgpt of unitaries that optimize Fyst (V') (and hence Crpst(V)) given by (D18).

On the other hand

£(V) = Tr (ghz )g?i/,h,h/ZX’Xz/ wxszhwt o zg x¥ (E10)
,h)=(0,0

a b’

=T > iy Zi XA WXSZAWT @ Trp(Zg X5 (E11)
(8,1)=(0,0)

a b’

= X <tomeTuX§zh=o. (E12)
(8,:1)=(0,0)

where g?i/,h‘h/ = (1/2*) %ﬁi/,b/,hfj’b, qA'L}i,’b,’b/dg,hB:f (IT; ﬁ‘%) From the last equality it follows that f, (V')
is independent of W (and hence of V') and thus does not affect the global optima. Therefore, from (E9) it follows
that the set of unitaries that optimize Fyyst(V) (and hence Chgt(V))is Vzpt = V. From definition 6 this
implies that Cst exhibits strong-OPR to Noise Model 2 in definition 8 if we assume that the coefficients V25 , ,
characterizing the noise satisfy 955 ; , > 0.

We now show that the cost function Ci yst exhibits strong-OPR to Noise Model 2. In particular, in the LHST
we want to optimize the following function:

Fiust(V) o g(V)
~A ~ ~ ~AB ~@ a F a
:Tr[(Q o 5’A3>(Qoo>(p<2>s<2> POY =00 Fus TIPS WXEZEWT @ XBZ£)]

+Tr[ (@™ 0 Q) (S -0 ded WXEZAW' 113)] , (E13)
where we replaced the disentangling and measurement channels in (E6) with (C9). We now break up g(V') into
two different functions.
[ !
g =T (@Yo E"Qw| X AndIpHwxiziw' e stg]], (E14)
| (a,b)=(0,0) i
&) =T (@Yo 8 Q)| 3 deaWXSZiw' e ﬂB]]. (E15)
| ©m=(0,0)

By using arguments similar to those used to derive equations (E10)—~(E12) and from (C9), it follows that g, (V) is
independent of W (and hence of V). Therefore, to prove the noise resilience of the LHST, we focus only on
(V). We then get:

n 1 ’ / ’ ’ —

i b; ; b. ; b <@ b

g =Tr|> S 2 Tflj’ij,)b)b],(Zf(szfj®ij)WXXZzWT®ZB;X§;X§]¥ZB;X§;Z§;}, (E16)
j=1(a,b)=(0,0)a;,b;=0

6) _ ~ AB =Aj . AB Z2AB 1l ) il
where T bl = (1/4n) Ml al b Pttt 1! Bap (I1; p,)- Wenote that (E16) is similar to (D23). Therefore,

from the proofin section D it follows that
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n .
sM<Y, > Tii,)aj,bj,hj’ (E17)

i=1ajb))=(0,0)

where the inequality is saturated for unitaries V' in the set V;Pt of unitaries that optimize F_ys7(V) (and hence
CrusT(V)) given by (D18). This further implies that

g(V)<g(Vh, forall V' e VP =7 (E18)
Thus C_HsT exhibits strong-OPR to Noise Model 2 if we assume that the coefficients Ti}i’)aj) by characterizing the

noise satisfy Ta apbyb, = 0 0

Appendix F. Proof of theorem 3

Theorem 3. The cost functions C gt and Cy g1 exhibit weak-OPR, as defined in definition 6, to Noise Model 3 in
definition 9.

Proof. Let us remark that in order to show weak-OPR to Noise Model 3 we just need to consider Pauli noise
acting at 7; and measurement noise, since noise resilience to global depolarizing noise follows from lemma 2.

We first consider the C gt cost function. From equations (A5) and (A6) we get that the action of the Pauli
channel acting at time 7 is given by

P(0) (0]) = Zq, X' Z4)0) (0] 2K = Z qll) (1 (F1)
where q; = 37 q; .- Similarly, we can express the noisy measurement POVM from definition 5 as
®U”Mm+wme=ZmMm (F2)

withi = 43, ... i, abitstringand p, = pélll) pélzz) pé?). For the present noise model we are interested in
determining the optimum of the function

GLer(V) = Tr [Py o P)([0) (0])], (F3)
with W = V7 o U the channel that implements U followed by V . Then, by means of (F1) and (F2) we find

Gler(V) = Trl[Z pili) <il)(2 qaWII) <I|W+]} = > v (F4)
i [ il

where wy = |(i|W|]) |* are the matrix elements of a doubly stochastic matrix such that >, wy = >, wy = 1.

Let us now denote by g! the vector with elements g; ordered in decreasing order. Similarly, we denote by p!
the vector with elements p; ordered in decreasing order. Additionally, let {|g,) } and {| ) } be the basis in which
q'and p' are ordered, respectively, i.e.

PU0)(0) =>"q'lg,) (g,  and  Po=>_pp)(pl (F5)

Then, from the permutation inequality (or the rearrangement inequality) [48] we have

Ger(V) = > pigywa < p' - q“ (F6)

The inequality in (F6) is saturated for matrices W € S, where S is the subset of the Permutation Group which
maps {|p)} to {|q,) }. We remark here that if the vector q' (or p!) has components of equal magnitude, then the
set S is degenerate. Moreover, note that

Py Z P> and do = 95 Vi=0, (F7)
where the second inequality follows from definition 2, while the first inequality always holds since
po =1I- p(f), and since we have assumed that péé) > po(lf) V.

We now recall that VP denotes the set of unitaries that optimize C g (V) and C gr(V),ie. VV/ € V¥
we have W’|0) = (V/)'U|0) = |0) (up to a global phase), which entails wjy, = wg; = &;9,and hence
equation (F4) becomes
GLer(V)) = pody + D piayWir (F8)
i,1=0

Since p, > p;and q, > g, Vi then the first term in (F8) corresponds to the first term in the summation

pl-qt=Y, q, prl. Hence, in order to saturate (F6) we now need that W’ € S,i.e.the(n — 1) x (n — 1)
principal submatrix of W’ with matrix elements (z| W’|z’) (such that z, 2/ = 0) mustmap {|p)} to {|g,)}
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(where s = 0 and r = 0). Combining this result with (F6) we have that for any matrix Vin V; (the setofd x d
unitary matrices)

GLeT(V) < p! - gt = GLer(V)), (F9)

o~~opt
where V! € V; and where

(Y]

VP = (Vv eV W= (V)Ue S} (F10)

Evidently, not all matrices in V"pt arein S, which then entails that A d C V"Pt and further means that C gt
exhibits weak-OPR to Noise Model 3 according to definition 6.

Let us now consider the noise resilience of LLET to Noise Model 3 of definition 9. We are now interested in
the optimum of

GLieT(V) = ZTr[( D10y (0] + piP11) (1) @ 1%)(WeP)(10) (0])] (F11)

=—2Tr[( D10y (0] + p11) (1) @ 143 q,W|l><l|W*>]. (F12)

1

Forany matrix V' € VP wehave W’|0) = (V/)'U|0) = |0) (up to global phase) and
ST WL (W' = q,10) (0] + 37, g, W/II) (II(W')', which leads to

Guer(V) = %Z P ae + %Z Trl (pP10) (0l + pP11) (1)) ® J@))[Z q,W’|l><l|(W’>*)]. (F13)
j=1

j=1 1=0

On the other hand, for any unitary matrix V € Vj;
Guer(V) = —z] LT I(p)10) (0] + py 1) (1) @ 1%) g, W10) (O] W]

+ 12] Te[(pQ@10) (01 + p 1) (1D @ 18)(Sy g WIL (IW) ]

%Z?Zl(Tr[pmquIW|0> (OIW T + Tr[ (p210) (01 + p11) (1) © 1)(Spg g, WIE) (IWH ])

N

= S0+ 2 T (10) 01 4+ 10 (1D @ ) (g I (W ]

(F14)
where the inequality follows from the fact that p(j) > p(j), and hence
(g 10) (01 + g 11) (1D @ 1% < (pi10) (01 + g 11) (1) © 1% < pif'L (F15)
We can then simplify equation (F14) as
GLer(V) < Z pPa, + Z S ap wa = Z pPag+ > abwi (F16)

] 11=0,k=0 10,k=0

where we have p,:j) = po(é) if k = 0,and plgj) = po(lj) ifk; = 1. On the the other hand, in the second equality of

(F16) we have defined p, = Z -1 ka ). Finally, the following inequality follows again from the rearrangement
inequality

Griet(V) < Z g+ Y a/'B, (F17)
1=0,k=0
which is saturated for matrices W € S/, where S’ is a subset of the Permutation Group such that
Yleok=odiPr WK = Zlio,kioqll ﬁkl Here q' and p' are vectors with components g and p, in decreasing order,
respectively. Hence, we can define the set of matrices which saturate (F17) as

V= (vevw=wyves). (F18)
While any matrix in V" saturates the inequality in (F14), only a subset will also saturate (F17). Hence,
Vzpt C V', and C, gt exhibits weak-OPR to Noise Model 3 according to definition 6. O

Appendix G. Proof of corollaries 1-8

Corollary 1. The cost functions Cust and CiusT exhibit strong-OPR to a noise model that includes the following: (1)
all noise processes in Noise Model 1, as well as (2) a noise process during the implementation of
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W =W, o - oW, = Viold (ie.in the timeinterval between 1 and 1) in which global Pauli channels {Pf, e
P{) act on system A, such that the overall channel on A is P o Wy - o P o W\, provided that the following
condition is satisfied:

(Plo Wi o Po W)() = Wio Wiy 0 Wio PH(. (GD

Here P" is also a Pauli channel, and the channels U, V', and W correspond to conjugating the state by the unitaries
U, VT, and W, respectively.

Proof. This follows from the fact that the overall noisy channel acting during the implementation of W is
mathematically equivalent to a Pauli channel followed by the unitary W, as described in the condition (G1) and
by invoking theorem 1, which allows for Pauli channel noise at time 7,.[]

Corollary 2. Let the W = VU gate sequence have the form W = W2 W with Wi be composed only of Clifford
gates. Then the cost functions Cust and C st exhibit strong-OPR to a noise model that includes the following: (1)
all noise processes in Noise Model 1, as well as (2) a noise process during the implementation of

Wit = Wi o --- o Wy, in which global Pauli channels { Py, ..., P{} act on system A, such that the overall
channelon Ais P o Wiy - o P{t o W, .

Proof. From lemma 1 it follows that Clifford unitaries satisfy the condition in (G1). Therefore, corollary 2 isa
special case of corollary 1. O

Corollary 3. Let the W = VU gate sequence have the form W = W5 W with W = WIA, @ W beingatensor

product, i.e., W is a tensor product up to a particular time. Then the cost functions Cust and C| nsT exhibit strong-

OPR to a noise model that includes the following: (1) all noise processes in Noise Model 1, as well as (2) a noise process
. . . ! ! / I/ " . .

during the implementations of W{* = Wﬁk 0.0 WlA,l and W' = Wf‘; 0.0 WIA/I/ in which local

depolarizing channels {Dﬁ b Df v} and {DIA,;/, o Df:;} act on subsystems A’ and A", respectively, such that the

overall channel on A’A” is (DlA’;< ° WIA,/(DIA/I o Wﬁ/l) ® (Df; o Wf};...Dfl{ ° WlA/l/ .

Proof. Let p denote a quantum state. Consider the following chain of equalities:

(D) @ DYV @ WA (p) = (T @ DI YpWA @ WA (p) + (1 — p)a? Tra WA @ W) (p))

(G2
=@ @ DY (pWVY @ WA () + (1 — p)m Tra((ZTV @ WA (p))

(G3)
= (T @ DYYOVY @ WA (pp + (1 — p)m Tra(p)) (G4)
=@ ® DY YOV @ WA (D4 (p)) (G5)
= WA @ WD, ® D) (p), (G6)

where 74" is a maximally mixed state on system A’. Therefore, the result follows by applying (G6) several times
and invoking corollary 1. O

Corollary 4. The cost functions Cyst and Cnst exhibit strong-OPR to the following noise model: (1) all noise processes
in Noise Model 2, as well as (2) a noise process during the implementation of VW = Wy o --- o W, = Vol (i.e. inthe
time interval between 11 and T,) in which global non-unital Pauli channels { PRy 1, ..., Piu.x} acton system A such

that the overall channel on A is PQU, Wy -+ o ’Pffm)l o W, provided that the following condition is satisfied:
A
(P © Wi -+ 0 Plui 0o W) = Wko Wiy -+ Wie P) (), (G7)
where 73§U is also a Pauli channel.

Proof. This follows from the fact that the overall noisy channel acting during the implementation of W is
mathematically equivalent to a non-unital Pauli channel followed by the unitary WV, as described in the
condition (G7) and by invoking theorem 2, which allows for non-unital Pauli noise at time 7;.[]

Corollary 5. The cost functions Cys exhibits strong-OPR to the following noise model: (1) global depolarizing noise
acting continuously throughout the circuit, (2) global non-unital Pauli noise on system A at a fixed time in between 7
and 7.
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Proof. Let us decompose YW as W = W} o W) such that the non-unital Pauli channel Py acts at time 7/
between W, and W,, with the overall channel between 7, and 7, given by W, o P{fIU o W,. The state at
time 7 is

pV = pW B (SF| + (1 — pM)1/d, (G8)

where p) = p®D ... p(LD corresponds to the continuous depolarizing channel as discussed in appendix D.
We break up the time interval in between 7/ and 7, into I steps. The state at time 7’ is given by

P = PRueD oWy -+ o Dk, oWi(p) (G9)
=PRu(pVa@Wi(24) () + (1 — pPg*)1/d) (G10)
—p D gOPAWAD) (D) + (1 — pOg)1/d + (1 — pg®) L S dX$Zl @l (G1D)

(&:m=(0,0)

where g@ = ¢@b ... g@D and W, = W, ... WL Similarly, we break up the the time interval between 7, and
7’ into m steps. The term that depends on W at time 7, is given by

7 = pg@r@W, o Pﬁu o Wy(|®H) (D)) + r@a — p(l)q(Z))l Z dg’hwzxgzg W; ® 1z (G12)

(8,1)=(0,0)
Let
Frst(V) o< £ (V) :=Tr[|®*) (@*|5)]. (G13)
Moreover, for simplicity we denote
£V i=Tr[|F) (BF| (W) 0 Pyo W) (197) (7)), (G14)
f(V) =Tr[|&F) (2| (WoXE ZE W] @ 1p)]. (G15)
Consider the followings:

V) = Tr[|0F) (@F V] o Piw) (Za @ V)P (D) (9 ]4p))] (G16)
=Tr[(Zy @ OVHHIST) (DTN 0 Py) (191) (@7])] (G17)
=Tr[(WD* ® Zg)(|DH) (DT OV 0 Plp) (197) (@F])] (G18)
= Tr[|®+) (D] (Wi 0 W5 0 Pp) (197) (2H))] (G19)
<V, (G20)

where V/ € V', and where V3" denote the sets of unitaries that optimize Fyst(V') (and hence Cyst(V)) as
defined in (D18). The first and third equalities follow from the ricochet property. The last equality corresponds
to the case when there is non-unital Pauli noise at time 7, and no other noise in the HST circuit, which is a special
case of theorem 2. Therefore, the inequality follows from theorem 2. Moreover, by using the arguments similar
to (E10)-(E12), we find that f, (V') is independent of W. This completes the proof. O

Corollary 6. The cost functions C gt and Cy gt exhibit weak-OPR to a noise model that includes the following: (1)
all noise processes in Noise Model 3, as well as (2) a noise process during the implementation of

W = W; o --- o W, = V'oll inwhich global Pauli channels { P,, ..., Py} act, such that the overall channel is
Pro Wy -+ o ProW,, provided that the following condition is satisfied:
(Pio Wy -+ 0 ProWD() = Wio Wiy - 0 Wio P)(-). (G21)

where P is also a Pauli channel.

Proof. This follows from arguments similar to corollary 1 and by invoking theorem 3. O

Corollary 7. Let the W = VU gate sequence have the form W = Wi Wi with W be composed only of Clifford gates.
Then the cost functions C_gt and C\| gt exhibit weak-OPR to a noise model that includes the following: (1) all noise
processes in Noise Model 3, as well as (2) a noise process during the implementation of W{* = W\ i o --- o W), ,, in which
global Pauli channels { Py, ..., P} act on system A, such that the overall channelon A is P o Wiy - o Pit o Wi 1.

Proof. This corollary is a special case of corollary 6, since lemma 1 implies that Clifford unitaries satisfy
(G21). O
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Corollary 8. Let the W = VU gate sequence have the form W = W{* WA with W = W' @ W" being a tensor
product, i.e. W is a tensor product up to a particular time. Then the cost functions C gt and Cy g1 exhibit weak-
OPR to a noise model that includes the following: (1) all noise processes in Noise Model 3, as well as (2) a noise process
during the implementations ofoV = VV{“;< ) WIA; and W' = Wﬁ; 0.0 WIA/I/ in which local
depolarizing channels {’Df;, oo Df,/c} and {Df}/l/, oo D{f;/} act on subsystems A’ and A" respectively, such that the

"

. ’ ! ! ! " " .
overall channel on A’A" is (D1} o Wf}k...Dfl o Wi ® (DY o W D o WD.

Proof. This follows from arguments similar to the proof of corollary 3 and by invoking corollary 6. O
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