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Abstract
Variational hybrid quantum-classical algorithms (VHQCAs) are near-term algorithms that leverage
classical optimization tominimize a cost function, which is efficiently evaluated on a quantum
computer. Recently VHQCAs have been proposed for quantum compiling, where a target unitaryU is
compiled into a short-depth gate sequenceV. In this work, we report on a surprising formof noise
resilience for these algorithms.Namely, wefind one often learns the correct gate sequenceV (i.e. the
correct variational parameters) despite various sources of incoherent noise acting during the cost-
evaluation circuit. Ourmain results are rigorous theorems stating that the optimal variational
parameters are unaffected by a broad class of noisemodels, such asmeasurement noise, gate noise,
and Pauli channel noise. Furthermore, our numerical implementations on IBM’s noisy simulator
demonstrate resilience when compiling the quantumFourier transform, Toffoli gate, andW-state
preparation.Hence, variational quantum compiling, due to its robustness, could be practically useful
for noisy intermediate-scale quantumdevices. Finally, we speculate that this noise resiliencemay be a
general phenomenon that applies to otherVHQCAs such as the variational quantum eigensolver.

1. Introduction

Obtaining accurate answers fromnear-term quantum computers is a challengewithmajor scientific and
technological implications. In these so-called noisy intermediate-scale quantum (NISQ) computers [1], errors
arise, for example, due to decoherence processes, gate noise, andmeasurement noise. Clearly, errormitigation
techniqueswill be necessary tomake use ofNISQdevices. Several promising errormitigation strategies have
recently emerged, including zero-noise extrapolation [2], quasi-probability decomposition [2], post-selection
[3, 4], noise-aware compiling [5], andmachine learning for circuit-depth compression [6]. Let us consider two
other strategies for errormitigation inwhat follows.

Hybridizing a quantumalgorithmby pushing some of the complexity onto a classical computer allows one
to only run a portion of the computation on the (error-prone) quantum computer. Excellent examples of this
strategy are variational hybrid quantum-classical algorithms (VHQCAs) [7]. VHQCAs only employ a quantum
computer to evaluate a cost function that depends on the parameters of a quantum gate sequence and then
leverage a classical optimization routine tominimize the cost and hence train the parameters. Themost famous
VHQCA is the variational quantum eigensolver (VQE) [8], where the cost function is the energy for some
Hamiltonian and hence the goal is to prepare the ground state. VHQCAs have been proposed formany other
applications [9–22].

Another strategy for errormitigation is tofind quantum circuits or quantumalgorithms that are inherently
noise resilient. Circuits for quantum error correction [23, 24], of course, have this property of inherent noise
resilience, and in fact, such circuits are resilient to all types of noise on a subset of the qubits.More generally, one
could askwhether a circuit is resilient to a particular kind of noise process. Hence, for every circuit, which aims
to compute some quantity, one could askwhat noisemodels do not affect the output of the circuit.
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The two strategies justmentioned have an interesting intersection: researchers have observed that some
VHQCAs have some inherent noise resilience.McClean et al [7]noted that coherent errors (e.g., systematic gate
biases) can lead to a situationwhere the formal unitary aV ( ) specified by the parametersa is different from the
actual unitary that is physically implemented a~

V ( ). This error is correctable if there exists a vector b such that

one can physically implement the unitary a b+~
V ( )within one’s ansatz, with the condition that

a b a+ =~
V V( ) ( ). If this condition is satisfied, then one could still physically achieve theminimumvalue of
the cost function, where theminimumvaluewould be associatedwith different parameters than onewould have
in the noiseless case.We refer to this kind of noise resilience asCost Value Resilience, since the value of the cost
function at the globalminimum is unaffected by the noise. Cost Value Resilience is important, e.g. if one is
interested in estimating the ground state energy of aHamiltonianwithVQE.

In this work, we report on a different kind of noise resilience for VHQCAs. Instead of considering Cost Value
Resilience, we consider the case where the optimal parameters are noise resilient, whichwe callOptimal
Parameter Resilience.While Cost Value Resilience is related to coherent noise, wefind thatOptimal Parameter
Resilience holds for certain kinds of incoherent noise, such as decoherence processes and readout errors. For
certain applications, obtaining the correct optimal parameters ismore important than obtaining the correct
value of the cost function.

Quantum compiling [25–27] is one of these applications. Compiling refers to transforming a high-level
algorithm into a low-levelmachine code. For quantum compiling, it is crucial to do this transformation
optimally, i.e. to keep the low-level code as short as possible, since errors accumulate with circuit depth.
VHQCAs offer a promising framework for (optimal) quantum compiling. Three recent works introduced
VHQCAs for quantum compiling, henceforth referred to as variational quantum compiling (VQC) [19–21]. In
VQCone trains the parametersa of a short-depth gate sequence aV ( ) such that it is close to a target unitaryU.
Here, some distancemeasure between aV ( ) andU serves as the cost function and is efficiently evaluated on a
quantum computer, while a classical optimizer adjusts the parametersa tominimize the cost. VQC could be an
important tool forNISQ computing since it could optimally shrink the depth of quantum circuits. However, a
potential issue is that one needs to put the target unitaryU on theNISQdevice, and hence the target itself is noisy
or defective. Furthermore, there are noise sources in other parts of the cost-evaluation circuit. All of thesemay
lead to a defective optimal aV ( ), with the noise effectively compiled into aV ( ).

Addressing these concerns, ourmain results are rigorous theorems stating thatmany different types of noise
during cost evaluation do not affect the optimal aV ( ). For example, we show that VQC is resilient to
measurement noise (readout error).We also show resilience to incoherent gate noise and decoherence
processes, such as Pauli channels and non-unital Pauli channels, acting at specific times during the cost-
evaluation circuit. In addition to these analytical results, we implement VQCon IBM’s noisy quantum simulator
[28] (which simulates their quantumhardware) for several quantumgates: quantumFourier transform, Toffoli,
andW-state preparation. In each case, we observed significant noise resilience (evenmore resilience thanwhat is
explained by our theorems) such that we effectively learned the true optimal values ofa despite the noise.

Finally, we speculate that the resilience phenomenon thatwe demonstrate for VQCmay bemore general,
potentially applying to otherVHQCAs. For example, we discuss the potential for seeing this resilience for VQE,
and as awarm-up for the reader, we give a simple example in the next sectionwhereVQE exhibits Optimal
Parameter Resilience.We also establish in theDiscussion section that VQC is a special case of VQE, and hence
ourmain results can be viewed as being relevant toVQE.

2.Warm-up: simpleVQE example

Herewe show thatVQE [8] exhibits Optimal Parameter Resilience (OPR) to uncorrelatedmeasurement noise
for a special class ofHamiltonians. VQEmay exhibit OPRmore generally, although the proof would certainly be
more involved.Hencewe consider here this special case for illustration and leave themore general case for
futurework.

Consider aHamiltonian that is a sumof local Pauli operators

å s= -
=

H c , 1
j

n
j

w j
j

1

( )( )
( )

( )

where s s= U Uw j
j

w j
j
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j

w j
j( )( )

( )
( )

( ) ( )
( )

( ) † is a local operator on qubit j that is unitarily equivalent to the Pauli z operator

sz
j( ) . Physically, thisHamiltonian arises for a systemof n non-interacting spin-1/2 particles in a non-uniform

(i.e. j-dependent)magnetic field.Without loss of generality, one can take the c j( ) coefficients to be non-negative
(i.e. absorb any negativity into the definition of the Pauli operator). The ground state y ñ0∣ ofH has a tensor
product form: y ñ = ñ= +w jj

n
0 1∣ ⨂ ∣ ( ) , where ñ+w j∣ ( ) is the eigenvector of sw j

j
( )

( ) with the+1 eigenvalue.
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Nowsuppose there ismeasurementnoise in the cost-evaluationcircuit. In the ideal case, onemeasures á ñ =H

s så á ñ = å á ñc c U Uj
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( ) † byapplying Uw j

j( )( )
( ) † on the jthqubit andmeasuring it on the standard

basis to estimate sá ñw j
j
( )

( ) . Then, byperforming classical post-processingwecompute theweighted sumin á ñH .

However,withmeasurementnoise, the sz
j( ) operator gets replacedby s = - ñá - - ñáp p p p0 0 1 1z

j j j j j
00 10 11 01( )∣ ∣ ( )∣ ∣( ) ( ) ( ) ( ) ( ) .

Here, pkl
j( ) is theprobability toobtain thekoutcomewhen feeding in the ñl∣ stateon the jthqubit.Hence, insteadof
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( ) †  . Inotherwords, theHamiltonianH gets
replacedbyaneffectiveHamiltonian:
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The ground state of
~
H is a tensor product of one-qubit states that are the eigenvectors of sw j

j
( )

( ) with the

largest eigenvalue. Supposewe assume that + > +p p p pj j j j
00 11 01 10
( ) ( ) ( ) ( ) for all j, whichmeans that the probability

of getting the correct outcome is greater than the probability for getting thewrong outcome.With this
assumption, the largest eigenvalue of sz

j( ) is associatedwith the ñ0∣ state, and hence the largest eigenvalue of

sw j
j
( )

( ) is associatedwith ñ+w j∣ ( ) . Therefore, despite themeasurement noise, one stillfinds that the ground state is

y ñ = ñ= +w jj
n

0 1∣ ⨂ ∣ ( ) . This implies that onewould still learn the correct optimal parameters of the state-
preparation circuit if one implementedVQE for thisHamiltonian.

3. Background: variational quantum compiling

Let us nowmove on to variational quantum compiling (VQC). VQCwasfirst introduced in [19], under the
name of quantum-assisted quantum compiling (QAQC). Two later works further investigatedVQC [20, 21]
with slightly different approaches. Sincewe are attempting to unite theseworks [19–21] under one umbrella, we
are proposing the nameVQC (instead ofQAQC) as a unifying term.

There are two overarching approaches toVQC.One is to compile the full unitarymatrixU by considering
the action ofU on all input states (or an informationally complete set of states) [19, 21]. The other is to compile
only a particular columnof thematrixU by considering the action ofU on afixed input state [19, 20]. The
benefit of thefirst approach is that it is fully general, applying evenwhen one does not knowwhat the input state
toUwill be (for example, ifU occurs in themiddle of one’s quantum algorithm). The benefit of the second
approach is that, when the input state is known, it could lead to a shorter-depth compilation since it does not
require compilation of the entire unitarymatrix.

3.1. Full unitarymatrix compiling
Full unitarymatrix compiling (FUMC)was treated in detail in [19]. This work introduced cost functions based
on the entanglementfidelity and proposed quantum circuits to quantify the cost based on the overlap between
maximally entangled states. A slightly different but equivalent approachwas employed in [21].We focus on the
approach of [19] inwhat follows.

Two cost functionswere considered in [19]. One cost function CHST quantifies theHilbert–Schmidt inner
product between the target unitaryU and the trainable gate sequenceV, as follows:

= - =C F F V U d1 , with Tr , 32 2
HST HST HST ∣ ( )∣ ( )†

where d=2n is theHilbert-space dimension and n is the number of qubits thatU acts on, andwherewewriteV
instead of aV ( ) for simplicity. The circuit for computing CHST is called theHilbert–Schmidt Test (HST) and is
shown infigure 1(a). First, one prepares amaximally entangled state FñAB∣ by actingwith a depth-two circuit E,
then one appliesU followed byV † on half of thismaximally entangled state. Finally onemeasures the overlap
with the originalmaximally entangled state FñAB∣ by applying E† and quantifying the probability of the all-zeros
measurement outcome.One can verify that this probability is equal to =F V U dTr 2 2

HST ∣ ( )∣† . This cost
function is operationallymeaningful since it is equivalent to the average fidelity ò y y y= á ñF U V V U, d2( ) ∣ ∣ ∣ ∣†

between states acted upon byU versus those acted upon byV, as follows [29, 30]:

=
+

-C F U V
d 1

d
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Note that CHST is faithful in that =C 0HST iffV=U (up to a global phase).
An alternative cost function [19] is given by
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where F j
LHST
( ) is the probability of the 00measurement outcome in the localHilbert–Schmidt test (LHST), which

is the circuit shown infigure 1(b). Note that FHST is the entanglementfidelity for the quantum channel defined
byV U† . On the other hand, F j

LHST
( ) is the entanglement fidelity for the quantum channel obtained from feeding

intoV U† themaximallymixed state on Aj and then tracing over Aj, where Aj consists of all qubits inA other
thanAj. As shown in [19]

 C C nC , 6LHST HST LHST ( )

which implies that CLHST is also a faithful cost function, i.e. =C 0LHST iffV=U (up to a global phase).
The overall cost function proposed by [19]was a convex combination of CHST and CLHST:

= + -C q qC q C1 . 7HST LHST( ) ( ) ( )

Here, q is a free parameter with  q0 1. The definition ofC(q)wasmotivated in [19] by the fact that CHST has
a direct operationalmeaning (equation (4)) but it becomes difficult to train for large n due to a vanishing gradient
[31], whereas CLHST is trainable but does not have a direct operationalmeaning.Hence one can take aweighted
average of these two functions, where for small n one can choose »q 1, while for large n one can choose q≈0.

3.2. Compilingwith afixed input state
Fixed input state compiling (FISC) of a unitarymatrix was introduced in [20, 19] and treated in significant detail
in [20]. In this case, the goal is to train a gate sequenceV so that it has the same effect as a target unitaryUwhen
acting on a given input state y ñ0∣ . For simplicity and due to its technological relevance, wewill consider the case
where y ñ = ñ00∣ ∣ is the all-zero state, so that we are interested in trainingV to satisfy (up to a global phase):

ñ = ñ ñ = ñU V W0 0 0 0, or equivalently , 8∣ ∣ ∣ ∣ ( )

with =W V U† . To quantify how far ñW 0∣ is from the state ñ0∣ , one can define the cost function

= -C G1 , 9LET LET ( )
where GLET is the fidelity r s rs r=F , Tr 2( ) ( [ ]) between these two states:

= ñá ñá = á ñ = ñáG F W W W P W W0 0 0 0 0 0 0 0, Tr , 100
2

LET (∣ ∣ ∣ ∣ ) ∣ ∣ ∣ ∣ [ ∣ ∣ ] ( )† †

with = ñáP 0 00 ∣ ∣ the projector onto the all-zero state.We employed the LET subscript here sincewe refer to the
circuit used to quantify (9) and (10) as the Loschmidt echo test (LET), shown infigure 2(a). The Loschmidt echo
[32] refers to a forward and backward time evolutionwith the intent of recovering the initial state. This is
analogous to the circuit infigure 2(a)where one first evolves forwardwithU and then attempts to undo that
evolutionwithV †, to recover the initial state ñ0∣ . Hence the probability of the all-zeromeasurement outcome in
figure 2(a) is precisely GLET.

One can see that compilingwith afixed input state leads tomore freedom andhencemore solutions than full
unitarymatrix compiling. Note that =C 0HST iff = fW ei  wheref is a global phase factor. On the other hand,

=C 0LET iff dá ñ = á ñ =z zW W0 0 z 0,∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ for all bit strings z . Hence, forW that achieve =C 0LET , the
(n− 1)×(n− 1) unitary principal submatrix ofWwithmatrix elements á ¢ñz zW∣ ∣ (such that ¢ ¹z z 0, )
remains completely arbitrary. This degeneracy of optima can simplify the optimization ofV as any of these
optimawill lead to =C 0LET .

Figure 1.Circuits for cost evaluation in full unitarymatrix compiling. (a)TheHilbert–Schmidt test (HST). An entangling gateE,
consisting ofHadamards andCNOTs, prepares amaximally entangled state between systemsA andB. Then a target unitaryU is
applied onA, which is followed by a trainable unitary V †. Finally, ameasurement in the Bell basis is performed by applying the adjoint
of E, followed by a standard basismeasurement. This circuit computes theHilbert–Schmidt inner product betweenU andV, as the
probability to obtain themeasurement outcome inwhich all n2 qubits are in the ñ0∣ state is =F V U1 2 Trn2 2

HST ( )∣ ( )∣† . (b)The local
Hilbert–Schmidt test (LHST), which is same as theHST circuit, except the disentangling gate E† is applied only on one A Bj j pair of
qubits (depicted here for the A B1 1 pair) and subsequently, the same two qubits aremeasured in the standard basis. The probability for
the outcome associatedwith the ñ00∣ state is F j

LHST
( ) in (5).
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Analogous to the LHST cost for full unitarymatrix compiling, one can define a cost function forfixed input
state compiling that involves local observables:

å= - = - = Ä ñá
=

C G
n

G G P W W0 01 1
1

, with Tr . 11
j

n
j j A A

1
0

j jLLET LLET LLET LLET [( ) ∣ ∣ ] ( )( ) ( ) †

Here, P
A

0
j is the projector onto the zero state on theAj qubit, and Aj denotes the identity on all qubits exceptAj

and n is the number of qubits.We call the circuit used to compute CLLET the local Loschmidt echo test (LLET),
and this circuit is shown in figure 2(b). Note that

r r r= = á ñ = ñáG P FTr 0 0 0 0 , , 12j
A

A j j j
0j

j

LLET [ ] ∣ ∣ (∣ ∣ ) ( )( ) ( ) ( ) ( )

where r = ñáW W0 0Trj
Aj

[ ∣ ∣ ]( ) † . Hence G j
LLET
( ) corresponds to the probability of the zero outcome for the circuit

infigure 2(b).With a proof similar to that of (6) one can show that

 C C nC , 13LLET LET LLET ( )

and hence =C 0LLET iff =C 0LET . Furthermore, one can define an overall cost function analogous to
C(q) in (7)

¢ = + -C q qC q C1 , 14LET LLET( ) ( ) ( )

which again ismotivated by the fact that CLET has a direct operationalmeaning but is difficult to train for large n,
whereas the opposite is true for CLLET. Hence one can take »q 1 for small n and q≈0 for large n.

4.Noise processes

In this work, we consider three different types of noise [33, 34]: (1) decoherence noise, (2) gate noise, and (3)
measurement noise.We nowdiscuss howwemathematicallymodel these three types of noise.

Let us start with decoherence. Physicalmodels of decoherence often refer toT1 andT2 processes, which
respectively pertain to thermal relaxation (energy dissipation) and dephasing (loss of phase coherence). These
processes are typicallymodeled as local quantum channels acting independently on individual qubits. However,
mathematically it is easier to deal with classes of quantum channels that act globally on sets of qubits (which can
contain the independent local channels as a special case). Inwhat follows, we define three types of global
quantum channels: depolarizing noise, Pauli noise, and non-unital Pauli noise. It is worth noting that Pauli
noise includesT2 processes as a special case (i.e. the dephasing channel is a Pauli channel), and non-unital Pauli
noise includesT1 processes as a special case (i.e. the amplitude damping channel is a non-unital Pauli channel).
Consider the following precise definitions.

Definition 1.Wedefine depolarizing noise (DN) as a completely positive trace-preserving (CPTP)map that
maps an n-qubit state ρ to the state r + -p p1 2n( ) ( ).

Definition 2.Wedefine Pauli Noise (PN) as aCPTPmap  whose superoperator is diagonal in the Pauli basis.
In otherwords, its action on a Pauli operator = Ä ÄX Z X Z X Z: ...l k l k l kn n1 1 is given by = X Z c X Zl k

lk
l k( ) ,

where =c 100 . Furthermore, we assume that c 0lk for all l and k , where l1,K, ln, k1,K, Îk 0, 1n { }.

Definition 3.Wedefine non-unital Pauli noise (NUPN) as aCPTPmap NU whose action on the identity is
= + å ¹ d X Zl k lk

l k
0 0NU , , ( ) ( ) ( ) , andwhose action on all other Pauli operators X Zl k with ¹l k 0 0, ,( ) ( ) is

given by = X Z c X Zl k
lk

l k
NU( ) . Furthermore, we assume that c 0lk for all l and k .

Figure 2.Circuits for cost evaluation in compilingwith afixed input state. (a)The Loschmidt echo test (LET). In this circuit, the
probability of obtaining themeasurement outcome inwhich all n qubits are in the ñ0∣ state is = á ñG V U0 0 2

LET ∣ ∣ ∣ ∣† . (b)The local
Loschmidt echo test (LLET), which is the same as the LET but only theAj qubit ismeasured. The probability that this qubit is in the ñ0∣
state is G j

LLET
( ) in (12).
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Next, we consider gate noise.While gate noise can involve coherent errors such as systematic gate bias, such
errors are hardware-specific, and hencewe focus on incoherent gate noise.We consider a simplemodel for gate
noise inwhich every time a gate is implemented, a Pauli channel acts both before and after this gate.
Furthermore, for generality, we allow these Pauli channels to act globally on all qubits, which serves as amodel
for cross-talk (where gates affect qubits onwhich they are intended to act trivially).

Definition 4.Wedefine Pauli gate noise (PGN) as a simple noisemodel in which all gates are preceded and
followed by global Pauli channels. In otherwords, for a gate G, instead of its action on a state ρ being rG G†, we
model its action as r¢ G G( ( ) )† where  and ¢ are Pauli channels. Note that these Pauli channels act on all
qubits, including qubits onwhich G acts trivially.

Finally, we considermeasurement noise, also known as readout error. For a single qubit, wemodel
measurement noise as a classical bit-flip channel, where feeding in the standard basis state ñl∣ leads to the k
outcomewith probability pkl.We allow for asymmetry in that one can have ¹p p01 10, which is an important
generality, e.g. whenT1 noise occurs during themeasurement process. Formultiple qubits, ourmeasurement
noisemodel is a tensor product of the aforementioned bit-flip channels, corresponding to uncorrelated
measurement noise.

Definition 5.Wedefinemeasurement noise (MN) as amodification of the standard-basis POVM elements,
which are = ñá = ñáP P0 0 , 1 10 1{ ∣ ∣ ∣ ∣} for a noiseless single qubit.Withmeasurement noise, this POVM gets
replaced by P P,0 1{ }  , with = ñá + ñáP p p0 0 1 10 00 01∣ ∣ ∣ ∣ and = ñá + ñáP p p0 0 1 11 10 11∣ ∣ ∣ ∣ , where + =p p 100 10 ,

+ =p p 101 11 , and pkl is the probability of getting the k outcome given the l input. Furthermorewe assume that
>p pkk kl for ¹l k. Hence, for an n-qubit standard-basismeasurement withmeasurement noise, wewrite the

POVM element associatedwith the bit string = ¼z z z, , n1( ) as

= ñá + ñá
=

P p p0 0 1 1 , 15z
j

n

z
j

z
j

1
0 1j j

⨂( ∣ ∣ ∣ ∣) ( )( ) ( )

with å =p 1z z
j
0j j

( ) andå =p 1z z
j
1j j

( ) , andwe assume that >p pz z
j

z l
j

j j j

( ) ( ) for ¹l zj .

5.Main results

Before proceeding to themain results wefirst define two versions of optimal parameter resilience (OPR), i.e. of
learning the correct gate sequenceV despite various sources of noise, whichwe refer to as strong-OPR and
weak-OPR.

Definition 6. Let d be the set of ´d d unitarymatrices. Let C VQC( ) be a cost function ofV with Î V d, and
suppose that C VQC( ) can be evaluated using a quantum circuit denoted QC. Let C VQC( ) denote the noisy
version of C VQC( ), i.e. the corresponding functionwhenever the circuit QC is run in the presence of somenoise

process  . Let d
opt and

~d

opt
respectively denote the sets of unitaries that optimize C VQC( ) and C VQC( ) , i.e.

= ¢ Î ¢ =
Î

 


V C V C V: min , 16d d
V

opt

d

QC QC{ ( ) ( )} ( )

= ¢ Î ¢ =
~

Î
 


V C V C V: min . 17d d

V

opt

d

QC QC{ ( ) ( )} ( ) 

We say that C VQC( ) exhibits strong-OPR to  if =
~ d d

opt opt.We say that C VQC( ) exhibits weak-OPR to 

if Í
~ d d

opt opt.

5.1. Noise resilience of full unitarymatrix compiling
Let us beginwith full unitarymatrix compiling (FUMC). Figure 3 shows the two noisemodels that wewill
consider for FUMC.As shown in thisfigure, τ1 and τ2 are respectively defined as the times just before and just
after the application ofV U† .We note that the noisemodels considered infigure 3 capture fairly well the physical
noise that is present in, e.g. superconducting-qubit quantum computers, with the exception that only
depolarizing noise is allowed during the action ofV U† .Wemake this simplification for ease of analysis,
although our numerics in section 6 relax this assumption.

Consider the following definition for the noisemodel depicted infigure 3(a).

Definition 7.Wedefine noiseModel 1 to be the following noise process during theHST circuit: (1) global
depolarizing noise acting continuously throughout the circuit, (2) global Pauli noise at times t1 and t2, (3) global
depolarizing noise on systemA acting continuously in between t1 and t2, (4) global non-unital Pauli noise on
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system B acting continuously in between t1 and t2, (5)Pauli gate noise during E and E†, and (6)measurement
noise.We also use the termNoiseModel 1when the same noisemodel acts during the LHST circuit, provided
one replaces E† with E j( )( ) †.

We now state ourfirstmain result. The proof of this result is given in appendixD, with some useful
preliminaries and lemmas given in appendices A–C.

Theorem1.The cost functions CHST and CLHST exhibit strong-OPR toNoiseModel 1 in definition 7.

Note that this theorem also implies that = + -C q qC q C1HST LHST( ) ( ) exhibits strong-OPR toNoise

Model 1, for all values of q. This is because the set =
~ d d

opt opt
defined in (16) and (17) is the same for CHST and

CLHST functions. Hence this same set is optimal forC(q).
Consider the implications of theorem 1. First, this theorem implies that FUMC is resilient to the

measurement noisemodel in definition 5. Second, FUMC is completely resilient to Pauli gate noise during the
entangling and disentangling gates, E and E†. Note that this Pauli gate noise is global and hence accounts for
cross talk. Third, FUMC is resilient to global depolarizing noise acting continuously throughout the circuit, as
well as global Pauli noise acting at the specific times τ1 and τ2. Fourth, FUMC is resilient to depolarizing noise
acting on systemA and non-unital Pauli noise acting on systemB, provided that each of these process act
(possibly continuously) during the time interval between τ1 and τ2.We emphasize that Pauli noise includes
dephasing channels (T2 noise) as a special case, while non-unital Pauli noise includes the depashing channel
(T1noise) as a special case. Importantly, theorem 1 states that FUMC is resilient to the general case where all of
these noise processes occur together.

We now state our secondmain result (proven in appendix E), which deals with the noisemodel in
figure 3(b).

Definition 8.WedefineNoiseModel 2 to be the following noise process during theHST circuit: (1) global
depolarizing noise acting continuously throughout the circuit, (2) global Pauli noise at times t1 and t2, (3) global
non-unital Pauli noise on system A at time t1, (4) global depolarizing noise on system A acting continuously in
between t1 and t2, (5) global Pauli noise on system B acting continuously in between t1 and t2, (6)Pauli gate
noise during E and E†, and (7)measurement noise.We also use the termNoiseModel 2when the same noise
model acts during the LHST circuit, provided one replaces E† with E j( )( ) †.

Theorem2.The cost functions CHST and CLHST exhibit strong-OPR toNoiseModel 2 in definition 8.

The implications of theorem 2 are similar to those of theorem1. Themain difference is that theorem2 allows
for non-unital Pauli noise on systemA at time τ1, at the expense of only allowing Pauli noise to act continuously
on systemB between τ1 and τ2. The other aspects of the noisemodels treated by these two theorems are identical.

The above two theorems immediately imply several corollaries below. These corollaries establish resilience
to noisemodels that are different and in some casesmore general than the noisemodels previously considered,
at the expense of possibly specializing the formof the unitary =W V U† . See appendixG for the proofs of all
corollaries.

Figure 3. Schematic diagramof: (a)NoiseModel 1 of definition 7, and (b)NoiseModel 2 of definition 8. The following acronyms are
employed: depolarizing noise (DN), Pauli gate noise (PGN), Pauli noise (PN), non-unital Pauli noise (NUPN), andmeasurement
noise (MN). Red dashed boxes indicate the time period and the qubits onwhich the noise process acts. Time τ1 (τ2) corresponds to the
time immediately before (after) the action of the unitary V U† .While both panels show theHST, these noisemodels are also applicable
to the LHST, provided one replaces E† with E j( )( ) †.
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Corollary 1.The cost functions CHST and CLHST exhibit strong-OPR to a noisemodel that includes the
following: (1) all noise processes inNoiseModel 1, as well as (2) a noise process during the implementation of

= =    k 1◦ ◦ ◦† (i.e. in the time interval between t1 and t2) inwhich global Pauli channels
A

1{ ,K, k
A}act on system A, such that the overall channel on A is    k

A
k

A
1 1◦ ◦ ◦ , provided that the

following condition is satisfied:

= -        . 18k
A

k
A

k k
A

1 1 1 1( ◦ ◦ ◦ )(·) ( ◦ ◦ ◦ )(·) ( )  

Here 
A is also a Pauli channel, and the channels  , †, and correspond to conjugating the state by the unitaries

U ,V †, andW , respectively.

The condition in (18) implies that the overall channel consisting of global Pauli channels acting on systemA
during the implementation of ismathematically equivalent (although physically inequivalent) to a Pauli
channel followed by . Therefore, corollary 1 follows from theorem 1.

Consider the following implications of corollary 1. Unitaries corresponding to theClifford group necessarily
satisfy the condition in (18), as shown in appendix A. Therefore, corollary 2 below holds for anyClifford unitary
W.Moreover, tensor-product unitaries satisfy this same condition provided that the noise is local depolarizing
noise, and hence corollary 3 below also follows from corollary 1.

Corollary 2. Let the =W V U† gate sequence have the form =W W WA A
2 1 withWA

1 composed only of Clifford gates.
Then the cost functions CHST and CLHST exhibit strong-OPR to a noisemodel that includes the following: (1) all noise
processes inNoiseModel1, as well as (2) a noise process during the implementation of =  A

k1 1, 1,1◦ ◦ , in
which global Pauli channels A

1{ ,K, k
A}act on system A, such that the overall channel on A

is    k
A

k
A

1, 1 1,1◦ ◦ ◦ .

Corollary 3.Let the =W V U† gate sequence have the form =W W WA A
2 1 with = Ä¢ W W WA A A

1 1 1 being a tensor
product, i.e. W is a tensor product up to a particular time. Then the cost functionsCHST andCLHST exhibit strong-OPR
to anoisemodel that includes the following: (1) all noise processes inNoiseModel 1, aswell as (2) a noise process during the
implementations of =¢ ¢ ¢  A

k
A A

1 1, 1,1◦ ◦ and =    A
l

A A
1 1, 1,1◦ ◦ inwhich local depolarizing channels

¢A
1,1{ ,K, ¢ k

A
1, }and A

1,1{ ,K,  l
A
1, }act on subsystems ¢A and A , respectively, such that the overall channel on =A

¢ A A is Ä¢ ¢ ¢ ¢           ... ...k
A

k
A A A

l
A

l
A A A

1, 1, 1,1 1,1 1, 1, 1,1 1,1( ◦ ◦ ) ( ◦ ◦ ).

The following corollary follows from theorem2 and is analogous to corollary 1.

Corollary 4.The cost functions CHST and CLHST exhibit strong-OPR to the following noisemodel: (1) all noise
processes inNoiseModel 2, as well as (2) a noise process during the implementation of

= =    k 1◦ ◦ ◦† (i.e. in the time interval between t1 and t2) inwhich global non-unital Pauli
channels A

NU,1{ ,K,  k
A
NU, }act on system A such that the overall channel on A is    k

A
k

A
NU, NU,1 1◦ ◦ ◦ ,

provided that the following condition is satisfied:

= -        , 19k
A

k
A

k k
A

NU, NU,1 1 1 1 NU( ◦ ◦ ◦ )(·) ( ◦ ◦ )(·) ( )  

where 
A
NU
 is also a non-unital Pauli channel.

Finally, we present a simple corollary of theorem 1based on the ricochet property of the standard Bell state.
Note that the noisemodel in the following corollary is fairly simple but nonetheless physically distinct from
those considered infigure 3, since it allows for global non-unital Pauli noise to occur during the implementation
ofW.

Corollary 5.The cost functions CHST exhibits strong-OPR to the following noisemodel: (1) global depolarizing noise
acting continuously throughout the circuit, (2) global non-unital Pauli noise on system A at a fixed time in between t1

and t2.

5.2. Noise resilience offixed input state compiling
Let us now consider fixed input state compiling (FISC). Recall that the cost-evaluation circuits, shown in
figure 2, have less structure than the circuits infigure 1. As a result, the noisemodel that we consider in the FISC
case is simpler than the previously considered noisemodels. In particular, we define the following noisemodel,
which is depicted infigure 4.Note that, in this context, τ1 is defined as the time just before the application of
V U† , and there is no need to consider a noisy quantum channel occurring afterV U† since themeasurement
occurs immediately afterV U† .
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Definition 9.WedefineNoiseModel 3 to be the following noise process during the LET or the LLET: (1) global
depolarizing noise acting continuously throughout the circuit, (2) global Pauli noise acting at time t1, and (3)
measurement noise.

We now state ourmain result for FISC, which is proven in appendix F.

Theorem3.The cost functions CLET and CLLET exhibit weak-OPR, as defined in definition 6, toNoiseModel 3 in
definition 9.

This theorem implies that FISC is resilient to themeasurement noisemodel in definition 5. Furthermore, it
is resilient to Pauli noise acting at τ1 and global depolarizing noise acting continuously throughout the circuit.

We remark thatwhile FUMCexhibits strong-OPR for the noisemodels considered (see the previous
section), here FISC exhibits weak-OPR instead. The latter arises from the fact that the optimal set of unitaries
d

opt for FISC can be highly degenerate (i.e. can containmany unitaries) and the presence of noise could in
general break such degeneracy. The ‘weak’ term inweak-OPR is simply the fact that the number of global optima
is possibly reduced by noise, not that the noise resilience itself is weak.Hence, weak-OPR should still be viewed
as noise resilience, since the global optima in the presence of noise correspond to global optima in the noiseless
case. This implies that training in the presence of noise will lead one tofind the correct optimal parameters
for aV ( ).

Under certain conditions, theorem3 implies that ¢C q( ) defined in (14)will also exhibit weak-OPR toNoise
Model 3. Let d,

opt
LET and d,

opt
LLET denote the sets of unitaries that optimize CLET and CLLET, respectively. In the

absence of noise we have = d d,
opt

,
opt

LET LLET, while in the presence of noise, theorem 3 implies Í
~ d d,

opt

,
opt

LET LET

and Í
~ d d,

opt

,
opt

LLET LLET. Hence, if Ç ¹ Æ
~ ~ d d,

opt

,

opt

LET LLET , then for any value of q, ¢ = + -C q qC q C1LET LLET( ) ( )
will also exhibit weak-OPR toNoiseModel 3, where the unitaries that optimize ¢C q( ) in the noisy case belong
to Ç
~ ~ d d,

opt

,

opt

LET LLET.
Theorem3 implies the following corollaries, which establish resilience to noisemodels that gobeyondNoise

Model3 at the expense of specializing the formofW. Note that these corollaries are analogous toCorollaries 1–3,
and corollary 6 impliesCorollaries 7 and8. See appendixG for theproofs.

Corollary 6.The cost functions CLET and CLLET exhibitweak-OPR to a noisemodel that includes the following: (1) all
noise processes inNoiseModel 3, aswell as (2) a noise process during the implementation of = =  k 1◦ ◦
 ◦† inwhich global Pauli channels 1{ ,K, k}act, such that the overall channel is    k k 1 1◦ ◦ ◦ ,
provided that the following condition is satisfied:

= -        , 20k k k k1 1 1 1( ◦ ◦ ◦ )(·) ( ◦ ◦ ◦ )(·) ( )  

where  is also a Pauli channel.

Corollary 7. Let the =W V U† gate sequence have the form =W W WA A
2 1 withWA

1 composed only of Clifford gates.
Then the cost functions CLET and CLLET exhibit weak-OPR to a noisemodel that includes the following: (1) all noise
processes inNoiseModel 3, as well as (2) a noise process during the implementation of =  A

k1 1, 1,1◦ ◦ , in
which global Pauli channels A

1{ ,K, k
A}act on system A, such that the overall channel on A

is    k
A

k
A

1, 1 1,1◦ ◦ ◦ .

Figure 4. Schematic diagramofNoiseModel 3 of definition 9 for: (a) the LET circuit, and (b) the LLET circuit. Global depolarizing
noise (DN) acts continuously throughout the circuit, global Pauli noise (PN) acts at time τ1, andmeasurement noise (MN) occurs
during readout.
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Corollary 8. Let the =W V U† gate sequence have the form =W W WA A
2 1 with = Ä¢ W W WA A A

1 1 1 being a tensor
product, i.e.W is a tensor product up to a particular time. Then the cost functions CLET and CLLET exhibit weak-OPR
to a noisemodel that includes the following: (1) all noise processes inNoiseModel 3, as well as (2) a noise process
during the implementations of =¢ ¢ ¢  A

k
A A

1 1, 1,1◦ ◦ and =    A
l

A A
1 1, 1,1◦ ◦ in which local

depolarizing channels ¢A
1,1{ ,K, ¢ k

A
1, }and A

1,1{ ,K,  l
A
1, }act on subsystems ¢A and A , respectively, such that the

overall channel on = ¢ A A A is Ä¢ ¢ ¢ ¢           ... ...k
A

k
A A A

l
A

l
A A A

1, 1, 1,1 1,1 1, 1, 1,1 1,1( ◦ ◦ ) ( ◦ ◦ ).

6. Implementations

In this section, we present the results of implementing VQCon the following three-qubit unitaries: the Toffoli
gate, the three-qubit quantumFourier transform (QFT), and aW-state preparation circuit. Each of these
unitaries is of interest, e.g. the Toffoli gate when combinedwith theHadamard gate provides a universal gate set
for quantum computing [35], theQFT is a subroutine in Shor’s algorithm [36], andW-state preparation is useful
for the quantumapproximate optimization algorithm [37, 9]. Figure 5 shows gate sequences corresponding to
these unitaries obtained from the literature. The Toffoli gate infigure 5(a) is decomposed into a gate sequence
that contains nine one-qubit gates and sixCNOTs [38]. For theQFTwe employ its textbook circuit [33] in
figure 5(b), while the circuit forW-state preparation infigure 5(c)was derived from [39, 40].

OurVQC implementations were performed using IBM’s noisy quantum simulator [28]with a noisemodel
built from the reported noise parameters and connectivity of IBM’s 14-qubitMelbourne quantum computer
[41].We remark that for VQC,wemust have a target unitaryU that is written as a gate sequence in the native gate
language and the native connectivity of the hardware. IBM’s simulator for theMelbourne device has a square
lattice connectivity and native gate alphabet of CNOTs, arbitrary rotation aroundZ and p 2 rotation aroundX.
Hence, transforming the gate sequences infigure 5 for the native device will typically add an overhead of
additional gates. Therefore, the target gate sequences in our implementations actually correspond to IBM’s
compilation (with this overhead included) of the circuits infigure 5.

In IBM’s noisemodel [28, 42], one-qubit gate errors aremodeled as a single-qubit depolarizing error
followed by a thermal relaxation error, where thermal relaxation refers to bothT1 andT2 channels. Similarly,
two-qubit gate errors consist of a two-qubit depolarizing error followed by single-qubit thermal relaxation
errors on each qubit. Finally, the noisemodel includes single-qubit readout errors.

We employ two different ansatzes, shown infigure 6, and (as described below)we employ gradient-based
optimization algorithms to train the gate sequence aV ( ). Infigures 7–8, we plot the results of implementing
VQCwith IBM’s noisy simulator for the three-qubit gates infigure 5. In each plot, we show the value of the noisy
cost functions versus the number of iterations of the optimization algorithm. Additionally, we plot the
corresponding value of the noiseless cost functions evaluated for the variational parametersa obtained from the

Figure 5.Quantum circuits for: (a)Toffoli Gate, (b) three-qubit quantumFourier transform, and (c) three-qubitW-state preparation.
Here,Rm stands for the controlled phase gatewith a phase shift of f = pe2 i 2m

, and bVk k( ) is given by (21). For the three-qubit
W-state preparation circuit we have b = 2arccos 1 3 , 0, 01 ( ( ) ) and b p= 2, 0, 02 ( ).

Figure 6. (a)The dressedCNOT is composed of a CNOTpreceded and followed by single-qubit gates aVk k( ), where aVk k( ) is given
by(21). (b)Two layers of the alternating-pair ansatz in the case of four qubits. Each layer is composed of dressedCNOTs acting on
alternating pairs of neighboring qubits. (c) Schematic representation of the target-inspired ansatz. In this approach, the gate sequence
of dressedCNOTs is obtained from the gate sequence of the target unitaryU.
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noisy optimization. These results allow us to verify if the parameters obtained from the noisy optimization are
indeedminimizing the noiseless cost functions. Before discussing the results, wefirst give details for our ansatzes
and optimizationmethods.

6.1. Ansatzes and optimizationmethods
As previouslymentioned, to implement VQCwe consider two ansatzes for the trainable unitary aV ( ). The
building block of our ansatzes is a dressedCNOTgate, which is a two-qubit gate composed of aCNOTpreceded

Figure 7.VQC implementations for the Toffoli gate (top) and three-qubitQFT (bottom). The ansatz for aV ( ) is: (a) one layer of the
alternating-pair ansatz, (b) two layers of the alternating-pair ansatz, (c) the target-inspired ansatz. The blue and green curves
respectively plot the values of CHST and CLHST obtained by training aV ( ) in the presence of noise. The green and pink curves
respectively plot the values of CHST and CLHST evaluated at the variational parameters a obtained from the noisy optimization of
aV ( ). Curves are plotted as a function of the number of iterations in the gradient-descent algorithm, and the y-axis is in log-scale. The

blue and red dashed lines in (a) and (b) correspond to theminimumvalue of CHST and CLHST, respectively, determined by optimizing
aV ( ) in a noise-free environment. Top: in both (a) and (b), the green and pink curves converge to the dashed blue and red lines,

respectively. Bottom:While in (a) the green and pink curves converge to the dashed lines, in (b) the termination condition for the
optimization algorithmwas reached before the pink curve could achieve convergence. The number of shots per iterationwas
N=50 000 for (a) and (b). For (c)we employed the iCANS optimizer [44], where the total number of shots was ´1.4 107 and the
minimumnumber of shots per iterationwas initially =N 2min . The thick dashed vertical line in (c) indicates the pointwherewe set

=N 250min , which helped to further reduce the cost function.

Figure 8.VQC implementations for the three-qubitW-state preparation circuit for (a) the FUMCapproach, and (b) the FISC
approach. The trainable gate sequence aV ( ) is given by the target-inspired ansatz. In the left (right) panel the blue and green curves
plot respectively the values of CHST (CLET ) and CLHST (CLLET ) obtained by noisy training of aV ( ). Similarly, in the left (right) panel
the green and pink curves give respectively the values of CHST (CLET ) and CLHST (CLLET ) evaluated at the variational parameters a
obtained from the noisy optimization of aV ( ). Curves are plotted as a function of the number of gradient-descent iterations, with the
y-axis in log-scale. Via noisy training, the noiseless cost functions go down to~ -10 4. Initially we set =N 2min , and the thick dashed
vertical lines shows the point wherewe increased this value to =N 250min . Increasing theminimumnumber of shots iCANS employs
to compute each partial derivative leads to smaller cost function values in both cases.
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and followed by single-qubit gates aVk k( ) acting on each qubit, as shown infigure 6(a). Each single-qubit gate
aVk k( ) is decomposed (up to a global phase) into three elementary rotations parameterized by three angles in the

vectora a a a= , ,k k k k,1 ,2 ,3( ) as

a = a s a s a s- - -V e e e . 21k k
i 2 i 2 i 2k z k y k z,3 ,2 ,1( ) ( )

Let us now introduce our ansatzes.We note that our two ansatzes are fairly similar to the ones introduced in
[19]. In ourfirst ansatz, each layer is composed of n dressedCNOTs, where n is the number of qubits (in the
special case of n= 2 each layer consists of one dressedCNOT), with the precise structure defined as follows.

Definition 10.Wedefine the alternating-pair ansatz as a layered ansatz inwhich each layer consists of
(parameterized) dressedCNOTgates acting on alternating pairs of neighboring qubits as illustrated in
figure 6(b).

We remark that it is useful to distinguish between a complete ansatz, inwhich an exact compilation forU is
contained inside the ansatz, versus an incomplete ansatz, where exact compilation is not possible. In general, a
small number of layers can lead to an incomplete ansatz, where one can only reach approximate compilation.
Hence, increasing the number of layers l could allowone to obtain better compilations ofU. Note however that
while a large number of layers can achieve a complete ansatz, it can also be harder to train and can lead to a
longer-depth circuit.

The alternating-pair ansatzmay not lead to the optimal depth compilation forU, particularly in the
complete ansatz case. Our second ansatz attempts tofix the issue of introducing unnecessary depth by having a
structure that depends onU.

Definition 11.Weconstruct the target-inspired ansatz by taking the gate sequence for the target unitaryU ,
expanding this gate sequence into single-qubit gates andCNOTs, removing all single-qubit gates that precede or
follow aCNOT, and replacing each remainingCNOT in the gate sequencewith a (parameterized)dressed
CNOT. Finally, each remaining single-qubit gate is replaced by a parametrized single-qubit gate.

As schematically depicted infigure 6(c), each layer is now composed of one dressed CNOT. This ansatz will
always be complete since its structure is inspired byU.While this ansatz is not useful to compress the number of
CNOTs in aV ( ), it is useful as a proof-of-concept to demonstrateOPR for complete ansatzes.We remark that a
simplemodification of this ansatz, where the placements of the dressedCNOTs are optimized over instead of
fixed, would actually be useful for circuit-depth compression. Furthermore, we have implemented this dressed
CNOTplacement optimization, andwefind that we obtain similar noise resilience results as those for the target-
inspired ansatz.

Let us nowdiscuss the optimizationmethods. As previouslymentioned, the trainable gate sequence aV ( ) is
a function of a set of parametersa corresponding to the collection of the internal gate angles in each dressed
CNOT. To optimize these parameters, we employ a gradient-descent approach. This approach exploits the fact
that the gradient with respect toa of CHST, CLHST, CLET, and CLLET can be computed by using the circuits for
HST, LHST, LET, and LLET, respectively [43, 19].We remark that we used different gradient-based approaches
for the shallow and deep ansatz cases, since the latter requires amore sophisticated and efficient optimizer.

Specifically, for the shallow ansatz cases where there are few parameters, we employ the simple gradient-
based approach outlined in [19, appendix 4] . In this approach, the number of shotsN per iteration is fixed. (We
chooseN=50 000.)On the other hand, for deep ansatzes with larger numbers of parameters, we employ a
more sophisticated gradient-based approach that improves efficiency by reducing the number of shots required
[44]. This approach is the individual coupled adaptive number of shots (iCANS) algorithmof [44], which is a
measurement-frugalmethod that often outperforms other optimizers in the presence of noise. The iCANS
optimizer frugally adjusts the number of shots both for a given iteration and for a given partial derivative in a
stochastic gradient descent.When employing iCANS, one sets as input: (1) the total number of shots employed
during the optimization, and (2) theminimumnumber of shots (denotedNmin) employed to estimate the
gradient for a given iteration.We set the latter to initially beNmin=2 and then later increase this toNmin=250,
which empirically leads to good convergence.

6.2. Toffoli gate
The top panels infigure 7 show results of implementing VQC for the Toffoli gate. Figure 7 (top, a) corresponds
to aV ( ) being given by a single layer of the alternating-pair ansatz of definition 10.Here, the noisy cost
functions CHST and CLHST (blue and red curve, respectively) tend to decrease as the number of iterations
increases and converge to non-zero values.We remark that the number of iterations can be different for CHST
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and CLHST since the termination condition of the optimization algorithm can be reached for a different number
of iterations.

Figure 7 (top, a) also depicts the cost functions CHST and CLHST evaluated for the variational parametersa
obtained from the noisy optimization (green and pink curve, respectively). These curves show that as the
number of iterations increases, both CHST and CLHST tend to decrease too, indicating that the noisy training is
indirectly training the noiseless cost functions, i.e. the adjustments to the parametersamade by noisy training are
reducing the noiseless cost functions. Note that CHST and CLHST do not converge to zero since a single layer of
three dressedCNOTs forms an incomplete ansatz for the Toffoli gate.

In order to determine if the algorithm is reaching theminimumvalue achievable with just one layer, we have
also implementedVQC to compile the Toffoli gate in a noise-free simulation. Theminimumvalues achieved for
CHST and CLHST are shown as a blue and red dashed curve, respectively. Surprisingly, the cost functions
evaluatedwith the parameters from the noisy training (green and pink curves) converge to the dashed lines. This
suggests that the optimal parameters are noise resilient since noisy training reaches theminimumvalue obtained
by noise-free training. As a caveat, however, we note that it is not clear whether theminima reached are global or
local optima.

Figure 7 (top, b)plots theVQC results for Toffoli with aV ( ) given by two layers of the alternating-pair
ansatz. In this case, CHST and CLHST converge to values which are smaller than the ones obtained in the one-layer
case. The latter indicates that two layers allow for amore complete compilation of the Toffoli gate, albeit it
appears that the ansatz is not yet complete. Note that both the decomposition of the Toffoli gate infigure 5, as
well as two layers of the alternating-pair ansatz, consist of six CNOTs.However, the placement of the dressed
CNOTs does not seem to be optimal. Finally, let us remark that the green and pink curves converge to the dashed
blue and red lines, respectively. Hence, this once again shows that the optimal parameters are noise resilient.
Similar to the previous case, it is not clear whether theminima reached are global or localminima.

Figure 7 (top, c) shows results for the target-inspired ansatz of definition 11. As the number of iterations
increases, all curves tend to decrease, with the green and pink curves converging to values of the order of 10−4.
We remark that we have verified that = »W V U † for the parameters obtained. In this case, we do not plot
dashed blue and red curves since the ansatz is complete and theminimumof the noiseless cost functions is zero.

These results indicate that optimizing aV ( ) in the presence of noise yields the correct variational
parametersa, whichminimize the noiseless cost function.Hence, both CHST and CLHST appear to exhibit OPR
for the realistic noisemodel considered.

6.3.QuantumFourier transform
Wenowdiscuss theVQC results for the three-qubit QFT. Figure 7 shows the results for aV ( ) consisting of: a
single layer of the alternating-pair ansatz of definition 10 (bottom, a), two layers of the alternating-pair ansatz
(bottom, b), and the target-inspired ansatz of definition 11 (bottom, c). As shown in these plots,most of the
results forQFT are similar to the results for the Toffoli gate. In all cases the noiseless cost functions tended to
decrease with iterations, indicating that noisy training indirectly trains the noiseless costs.

For the one-layer case offigure 7 (bottom, a) the green and pink curves (noiseless cost functions evaluated at
the parameters obtained fromnoisy training) converge to the value obtained by training in a noise-free
environment (dashed curve). Here, the non-zero value of the dashed curve indicates that a one-layer ansatz is
incomplete. This is in contrast tofigure 7 (bottom, b), where the dashed red line of CLHST is of the order of 10

−4,
implying that the ansatz is complete. Once again, infigure 7 (bottom, b), the green and pink curves
approximately converge to the dashed lines (noiseless training), indicating noise resilience. Finally, figure 7
(bottom, c), shows that that both CHST and CLHST appear to exhibit OPR, aswe can indirectly train the
parameters in aV ( ) in the presence of noise.

6.4.W-state preparation
Finally, we discuss the results of implementing of VQC for both FUMCand FISC of aW-state preparation
circuit.We remark here thatwe did not performFISC for the Toffoli gate and theQFT since those unitaries act
trivially on the ñ0∣ state.Moreover, we are only interested in comparing the FUMCand the FISC approachwith a
complete ansatz,meaning that we only considered the target-inspired ansatz of definition 11.

As shown infigure 8, all cost functions CHST, CLHST, CLET, and CLLET can be optimized indirectly via noisy
training of aV ( ). Both for FUMCand FISC the cost functions go down to~ -10 4, while for FUMCone can even
reach values of~ -10 5 when employing the LHST.Hence, our numerics indicate that CHST, CLHST, CLET, and
CLLET appear to exhibit OPR to IBM’s realistic noisemodel.
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7.Discussion

7.1. VQC in theNISQ era
Our analytical and numerical results suggest that variational quantum compiling (VQC) could be a useful tool
for near-termnoisy quantum computing.While there are several intended uses for VQC [19], themain purpose
is for circuit-depth compression of quantumalgorithms. This depth compression arises becauseVQC could
achieve optimal compiling, whereas classicalmethods for quantum compiling either scale exponentially (if they
are aiming at optimal compiling) or are sub-optimal when they are restricted to local (instead of global)
compiling of the circuit.

Suppose one is able to achieve depth compressionwithVQC. This implies that the target unitaryUhas a
longer depth than the trained gate sequence aV ( ). Prior to ourwork, onemay have been concerned that this
depth compressionmight not reduce noise, because perhaps the noise occurring duringU is somehow compiled
into the gate sequence aV ( ). However, ourwork shows that this is not the case. Despite various sources of
incoherent noise (e.g. see the noisemodel infigure 3), wefind that one learns the correct optimal parametersa
for aV ( ). Thismeans that, after performing VQC, if onewas to implement the gate sequence aV ( ) instead of
U, then one should see that aV ( ) really does achieve less noise thanU, since the depth of aV ( ) is shorter.

7.2. Summary of results
In this work, we treated two different forms of VQC: Full UnitaryMatrix Compiling (FUMC) and Fixed Input
State Compiling (FISC). Ourmain analytical results were stated in theorems 1–3.We found that both FUMC
and FISC are resilient tomeasurement noise. In addition, they are both resilient to global depolarizing noise
acting continuously throughout the circuit and global Pauli noise occurring just prior to the implementation
of =W V U† .

For FUMC,wewere able to prove resilience to additional sources of noise, such as Pauli gate noise during the
entangling and disentangling gates aswell as non-unital Pauli noise occurring at particular times in the circuit.
The fact that our noise resilience results aremore extensive for FUMC than for FISCmay simply be due to the
fact that the cost-evaluation circuit for FUMC ismore complicated than that for FISC.Hence it is possible that
this additional resilience is needed tomake the two approaches have similar levels of noise resilience.
Alternatively, it could be possible that either FUMCor FISC ismore noise resilient than the other, although this
remains to be established. (Note that our numerics did not see a significant difference in the noise resilience of
FUMCversus FISC.)

In addition, Corollaries 1–8 stated resilience results for noisemodels that go beyond the noisemodels
considered in theorems 1–3, at the expense of possibly specializing the formof the unitary =W V U† (for
example, to Clifford unitaries or tensor-product unitaries). In particular, these corollaries considered noise that
occurs during the implementation ofW, which is certainly practically relevant.

Our numerical results were presented infigures 7–8. Generally speaking, these numerics agreedwith our
theoretical expectations and hinted at resilience beyondwhat is stated in our theorems, whichwe discuss in the
next subsection.We emphasize that our implementations employed the noisemodel of IBM’s 14-qubit
Melbourne device, and hence this shows that VQCexhibits resilience for currently available hardware.

7.3. Noise resilience beyond our theorems
There are two senses inwhichVQCmight exhibit resilience beyond the results stated in our theorems. The first
sense is that VQCmay be resilient tomore general noisemodels than the oneswe considered. The second sense
is that VQCmay be resilient even for the incomplete ansatz case, onwhichwe elaborate below. Both of these
possibilities appear to be supported by our numerical implementations.

For evidence supporting the idea that VQCmay be resilient tomore general noisemodels, consider the
following. The noisemodel associatedwith IBM’s 14-qubitMelbourne device ismore general than the noise
models depicted infigures 3 and 4, and the unitaries we considered in figure 5 do not fall into the special cases
(e.g. Clifford or tensor product) treated byCorollaries 1–8. For example, IBM’s noisemodel has non-unital
Pauli noise associatedwith each gate and hence occurring throughout the implementation of =W V U† . Thus,
our theorems and corollaries do not cover all of noise processes occurring in IBM’s noisemodel. Despite this, we
were able to reduce the noiseless cost (via noisy training) to~ -10 4 for the Toffoli gate (figure 7 (top, c)) andQFT
(figure 7 (bottom, c)), and to~ -10 5 forW state preparation (figure 8).

Naturally, our theorems and corollaries have a bias towards noisemodels that aremathematically easy to
workwith, such as Pauli noise or depolarizing noise, since thismakes it easier to formulate proofs. It is therefore
important for future work to attempt to show resilience beyond these noisemodels.

As noted above, VQCmay also have resilience beyond the complete ansatz case. Recall that we say an ansatz
for aV ( ) is complete (incomplete) if it contains (does not contain) an exact compilation ofU. Our theorems and
corollaries are restricted to the complete ansatz case, whereas our numerics in figure 7 also consider the
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incomplete ansatz case. Interestingly, figure 7 showed that typically one can obtain the same value for the
noiseless cost with either noisy or noiseless training. This surprising result suggests that perhaps the optimal
values foramay be resilient to noise even for the incomplete ansatz case, and futurework should investigate this
possibility.

In addition, it will be important to investigate the effect of noise on the parameter landscape and parameter
trainability(e.g. [45]). Ourwork indicates that the global optimumofVQCmay not changewith noise, but does
not address the difficulty offinding this optimum.

7.4. Coherent versus incoherent noise
In the Introduction, we emphasized the distinction betweenOPR and cost value resilience [7]. The latter is
relevant to coherent noise, whereasOPR is relevant to incoherent noise. Intuitively, we anticipate that coherent
noise (e.g. systematic gate biases) in VQCwill often shift the location of the globalminimum in parameter space,
and hencewe expect coherent noise to have a non-trivial effect on the optimal parameters inVQC. Because of
this intuition, we have focused our paper and our definition ofOPR solely on incoherent noise.We remark that
our definition ofOPR,which is stated in terms of unitaries (rather than parameters), would need to bemodified
if one is interested in studying parameter resilience for coherent noise.However, as noted, we do not anticipate
resilience to coherent noise to hold.We also remark that other strategies exist to correct coherent noise [46].
Nevertheless, an interesting question for futureworkwill be see whetherOPRholds partially whenever both
coherent and incoherent noise are present. In addition, it will be interesting to combine the ideas ofOPR and
cost value resilience into a single framework.

7.5. Noise resilience of VQE
Finally, let us consider VHQCAsmore generally. In particular, let us revisit the variational quantum eigensolver
(VQE) that we discussed in section 2. Aswe now show, VQC is a special case of VQE. This ideawas noted for
FISC in [20]. However, the argument ismore subtle for the FUMCcase.

The key observation is that the various cost functions can be rewritten as the expectation values for some
effectiveHamiltonians:

a a a a
a a a a

y y y y
c c c c

= á ñ = á ñ
= á ñ = á ñ

C H C H

C H C H

, ,

, . 22
LET LET LLET LLET

HST HST LHST LHST

( )∣ ∣ ( ) ( )∣ ∣ ( )
( )∣ ∣ ( ) ( )∣ ∣ ( ) ( )

Here ay ñ Î A∣ ( ) and ac ñ Î AB∣ ( ) are n-qubit and n2 -qubit states, respectively, given by

a a a ay cñ = ñ ñ = Ä FñV V0 , , 23B∣ ( ) ( )∣ ∣ ( ) ( ( ) )∣ ( )

whereX denotes theHilbert space of systemX, and Fñ = ñE 0∣ ∣ is the standardmaximally entangled state on
AB.We remark that ac ñ∣ ( ) is simply theChoi state associatedwith aV ( ).

For the cost functions associatedwith FISC, the effectiveHamiltonians are given by
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j is the projector onto the zero state ofAj. For the cost functions associatedwith FUMC, the effective

Hamiltonians are given by
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where F ñj∣ ( ) is the standardmaximally entangled state on A Bj j .With theseHamiltonians, one can verify that the
expressions in (22) are equal to the original cost function definitions in section 3.Hence, we have just shown that
VQC is a special case of VQE,where the goal is to prepare the ground state of one of theHamiltonians in (24)
or (25).

The fact that VQC is a special case of VQE implies that, for specificHamiltonians, VQE is noise resilient.
Namely, we have shown that VQE exhibits OPRwhen theHamiltonian has the form in either (24) or (25). This
naturally points to the question of whether VQE is resilientmore generally. It is therefore a very interesting
direction for future research to extend our noise resilience toHamiltonians other than the oneswe considered.

8. Conclusions

In this work, we discovered a novel kind of noise resilience for variational hybrid quantum-classical algorithms
(VHQCAs).We introduced the idea of optimal parameter resilience (OPR), where the variational parameters
corresponding to the global optimumare unaffected by various types of incoherent noise.We showed that
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variational quantum compiling (VQC) exhibits OPR. This paves theway for VQC to be used in the era of noisy
intermediate-scale quantum computing as a tool for circuit-depth compression. Important future research
directions include: (1) extending our theorems to show resilience tomore general noisemodels than the oneswe
considered (which our numerics suggestmay be possible), (2) exploring noise resilience for the incomplete
ansatz case (which our numerics indicatemay also be resilient), (3) analyzing approximate noise resilience, (4)
studying the effect of noise on the parameter training process, and (5) generalizing our resilience results to other
Hamiltonians for the variational quantum eigensolver and exploring resilience for otherVHQCAs (for example,
some evidence of noise resilience was recently reported in [47]).
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AppendixA. Preliminaries

Themain goal of the appendix is to provide the proofs of theorems 1–3 andCorollaries 1–8. For these proofs, we
will need tofirst review some definitions and properties.We point readers to [33, 34] for additional background.

Pauli Basis. In our proofs, wewill work in the Pauli product basis, involving a tensor product of one-qubit
Pauli operators. This is a natural basis to choose, given the qubit structure of quantum computers. Let

s s s s s s= Ä Ä Ä = Ä Ä ÄX Z: , : , A1l k
x
l

x
l

x
l

z
k

z
k

z
kn n1 2 1 2 ( ) 

where ¼ Îl l l, , , 0, 1n1 2 { }, ¼ Îk k k, , , 0, 1n1 2 { }, =l l1( ,K, ln), and =k k1( ,Kkn). The following properties
are satisfied by the Pauli operators:

d d= = = - =Å ÅX X X Z Z Z X Z Z X X Z, , 1 , Tr 2 , , A2l l l l k k k k l k l k k l l k
l k

n
0 0, ,

1 2 1 2 1 2 1 2 ( ) [ ] ( )·

which follow from the properties of the single-qubit Pauli operators.
Pauli group. The Pauli group of n qubits is s s s=   ´ Ä i I: 1, , , ,n x y z

n{ } { } .
Clifford group. TheClifford group on n qubits is the set of unitaries that normalize the Pauli group, i.e.

= Î  U U U: : . A3n n n{ } ( )†

Maximally entangled states. Inwhat follows, we consider the followingmaximally entangled states
f fF ñáF = ñá+ + + + Än∣ ∣ ∣ ∣ , where f ñ = ñ + ñ+ 0, 0 1, 1 2∣ (∣ ∣ ) . The aforementioned tensor product of

maximally entangled states can bewritten in the Pauli basis as follows:
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All-zero state.Noting that sñá = +0 0 2z∣ ∣ ( ) , then in the Pauli basis the all-zero state ñá = ñá Ä0 0 0 0 n∣ ∣ ∣ ∣ is
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Pauli channels. A Pauli noise channel corresponds to the action of randomPauli operators on a quantum
state ρ according to a probability distribution. Let A denote an n-qubit Pauli channel acting on systemA=A1,
...An. Then the action of A on the state ρ is given by

år r= p X Z X Z , A6
l k

l k
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A A A A

,
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A
,

, andå =p 1l k l k
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, ,
. Using the properties in (A2), wefind that

å å= = - - = X Z p X Z X Z Z X p X Z p X Z1 1 , A7a b

l k
l k

l k a b k l

l k

a k b l
l k

a b
a b

a bA
A A

A
A A A A A A

A
A A

A
A A

,
,

,
, ,

( ) ( ) ( ) ( )· ·

where =å - -p p: 1 1a b l k
a k b l

l k
A A
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A
, for all Îa b, 0, 1 n{ } . Similarly, the action of a global

Pauli channel AB acting on systems =A A An1  and =B B Bn1  , respectively, is defined as
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Non-unital Pauli noise channels. The action of a non-unital Pauli channel NU on an n-qubit Pauli
operators is
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Wenowprove the following lemmabased onClifford unitaries and Pauli channels.

Lemma1. LetW be aClifford unitary and let  be a Pauli channel. Then for any state ρ, the following holds:

r r=    , A11( ◦ )( ) ( ◦ )( ) ( )

where is another Pauli channel.

Proof. From (A6) it follows that
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The third equality follows from the definition of aClifford unitary (A3), while the last equality follows from
(A6). ,

Appendix B.Noisy entangling and disentangling gates in FUMC

For the proofs given in appendices D–G,wewillmake use of some properties of the noisy versions of entangling
E and disentangling E† gates that appear in FUMC.Hence, it is helpful tofirst state these properties in this
appendix. Recall that, for Pauli gate noise acting during E or E†, we assume that global Pauli channels act before
and after eachHadamard, as well as before and after eachCNOT. This noisemodel incorporates the case when
there could be correlated Pauli noise acting on different qubits during E and E†.We note that the noisy
entangling gate is the same for both theHST and the LHST.

LetE=EAB denote the ideal entangling gate, which can be split into a tensor product of two qubit
entangling gates E A Bj j as

= Ä Ä Ä =
=
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n
A B

1
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Moreover, each E A Bj j consists of aHadamard gate acting onAj followed by aCNOTgate acting on bothAj andBj.
In the quantum channel notationwewrite this as = Ä    ,A B

X
A B A Bj j j j j j◦ ( ) whereAj are the quantum

channels that implement theHadamard gates and X
A Bj j are the quantum channels that implement theCNOTs.

The noisy version of AB, whichwe denote by 
AB , is
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AB, andj
AB are n2 -qubit global Pauli channels for all Îi n1 ,...,{ }, as defined in (A8). Since both

Hadamard andCNOTgates are Clifford unitaries, by using lemma 1we find that
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whereAB is another Pauli channel.

We now apply 
AB on the all-zeros state ñá0 0 0 0, , AB∣ ∣ . Consider the following chain of equalities:
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wherewe used (A5), (A8), and the following identities for all jä{1,Kn}:
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The noisy disentangling channel for theHST is given by the adjoint of the noisy entangling channel, as
defined in (B2). On the other hand, since in the LHST only two qubits A Bj j aremeasured for a given run of the
experiment, the disentangling channel is applied only on the A Bj j pair.However, we assume that global Pauli
channels act on n2 qubits before and after theHadamard andCNOTgate. For each jä{1,K, n}, the
disentangling channel is given by the adjoint of the following channel:
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AB, andj

AB are n2 -qubit global Pauli channels, as defined in (A8), andwe used lemma 1.
We remark that the Pauli channels are definedwith a j subscript in (B7) to emphasize that for different runs of
the experiment the Pauli channels that act could be different.

From arguments similar to those used to derive (B4), wefind that
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AppendixC.Measurement noise in FUMC

For the proofs given in appendices D–G,wewillmake use of some properties ofmeasurement noise in FUMC.
Hence, it is helpful tofirst state these properties in this appendix.

Let P0 denote the POVMelement associatedwith getting the all-zeros outcome in the noiselessHST,which
can be expressed as = ñá = ñá=P 0 0: 0 0 .j

n
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2∣ ∣ ⨂ ∣ ∣ Weconsider themeasurement noise as follows. For each qubit j,
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Let P0 denote the noisy POVMelement. Then the following equalities hold:
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C.1. Effective noisymeasurement operator for theHST
In the noiselessHST, themeasurement is preceded by the disentangling unitary EAB( )†, where EAB is defined in
(B1). In theHeisenberg picture, this corresponds to the evolution of themeasurement operatorwith respect to
the unitaryEAB.We nowderive the effective noisy POVMelement as the evolution of P0 under the noisy

entangling channel 
AB (defined in section B).

Using (A5), ñáa b a b, , AB∣ ∣ can be expressed as follows:

ñá = Ä å Ä Ä

= å - - Ä

a b a b X X Z Z X X

Z Z

, ,
1

2
1

2
1 1 , C3

a b
l k

l k a b

l k
a l b k l k

AB
A B n A B A B

n A B

2 ,

2 ,

⎜ ⎟⎛
⎝

⎞
⎠∣ ∣ ( ) ( )

( ) ( ) ( )· ·

wherewe used the properties of the Pauli operators as defined in (A2). Then, from (B4) and the linearity of
quantum channels, it follows that

åñá = - - Ä a b a b m X Z X Z, ,
1

2
1 1 . C4

l k
l l k k

a l b k l k l kAB AB
n

AB
A A B B2

,
, , ,(∣ ∣ ) ( ) ( ) ( )· ·
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Therefore, from (C2) and (C4) it follows that

å= Ä P m p Z X Z X
1

2
, C5

a b
a a b b a b

b a b aAB

n
AB A

A A B B0 2
,

, , , ,
( ) ( ) 

where = å - - l kp p p1 1a b l k
a l b kA A B

, , ( ) ( ) ( ) ( )· · , and lpA ( ) and kpB ( ) are probability distributions as in (C2).

C.2. Effective noisymeasurement operator for the LHST
In the LHST, a noisymeasurement on two qubits A Bj j is preceded by the disentangling unitary E A Bj j( )† acting on
the same two qubits. Similar to sectionC.1, we nowderive the effective POVMelement as the evolution of the
operator Q j

00
( ) (defined below) under the adjoint of the noisy disentangling channel, as defined in (B7). The noisy

POVM for the qubits A Bj j is given by

å= ¢ ¢ ¢ ¢ñá ¢ ¢~

¢ ¢=

Q p a p b a b a b, , , C6
j

a b

A B A B
00

, 0

1
j j j j( ) ( )∣ ∣ ( )( )

which follows from (C2).Moreover, the overall noisy POVM for the LHST is defined as

å= Ä~ ~

=

Q
n

Q
1

. C7
j

n
j

A B00
1

00 j j ( )( )

By using arguments similar to those used in (C3), (C4), and (C5), wefind that

å¢ Ä = Ä Ä~
 Q m p Z X Z X

1

2
, C8j

AB j
A B

a b
a a b b
AB

a b
A

A
b

A
a

B
b

B
a

A B00 2
,

, , , ,j j

j j

j j j j j j

j j j

j

j

j

j
j j ( ) ( )( ) 

where ¢ j
AB is given by (B7) and = å - - ¢ ¢¢ ¢=

¢ ¢p p a p b1 1a b
A

a b
a a b b A B

, , 0
1

j j

j j j j j( ) ( ) ( ) ( )· · .

Therefore, the overall effective noisy POVM for the LHST is defined as

å å¢ = Ä Ä~

= =

 Q
n

m p Z X Z X
1

2

1
. C9AB

j

n

a b
a a b b
AB

a b
A

A
b

A
a

B
b

B
a

A B00 2
1 , 0

1

, , , ,
j j

j j j j j j

j j j

j

j

j

j
j j( ) ( )

AppendixD. Proof of theorem1

Before providing a proof of theorem 1,we prove the following lemma.

Lemma2. Let C VQC( ) be a cost function ofV with Î V d, and d the set of ´d d unitarymatrices. Additionally
suppose that C VQC( ) can be evaluated using a quantum circuit denoted QC as follows:

r= LC V : Tr , D1VQC( ) [ ( )] ( )

where r is a quantum state, L denotes a POVMelement and V denotes the noisy unital quantum channel describing
the evolution of the state throughout the computation, which depends on the unitary V . Then C VQC( ) exhibits
strong-OPR to a noisemodel composed of V and a global depolarizing channels acting continuously throughout the
computation.

Proof.Without loss of generality let us decompose V as knoisy unital quantum channels: = ¼  V V
k

V
1◦ ◦ .

In the presence of global depolarizing noise acting throughout the computation, the cost function can nowbe
expressed as

r= L ¼+    C V Tr , D2k
V
k

V
1 2 1 1

QC( ) [ ( ◦ ◦ ◦ ◦ ◦ )( )] ( )

wherewe have interleaved the channels V
i with global depolarizing channels i. Fromdefinition 1 and from

the fact that =V
i  ( ) , it follows that

r r= L ¼ = L ¼ + - L+       C V p pTr Tr 1 Tr 2

D3

k
V
k

V V
k

V V
n1 2 1 1 2 1

QC ( ) [ ( ◦ ◦ ◦ ◦ ◦ )( )] [ ( ◦ ◦ )( )] ( ) [ ]
( )



= + -pC V p1 2 , D4n
QC( ) ( ) ( )

where = ¼+p p pk 1 1. Let d
opt denote the sets of unitaries that optimize C VQC( ) i.e.

= ¢ Î ¢ =
Î

 


V C V C V: min . D5d d
V

opt

d

QC QC{ ( ) ( )} ( )

Then, from (D4)wehave that any unitary in d
opt will also optimize C VQC( ) . Hence C VQC( ) exhibits strong-

OPR to a noisemodel composed of V and a global depolarizing channels acting throughout the
computation. ,
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Bymeans of lemma 2we know that if we show that a quantity exhibits OPR to a noisemodel  which does
not include global depolarizing noise acting continuously throughout the computation, then said quantity will
also exhibit OPR if we include global depolarizing noise to  .

We nowprovide a proof for theorem1.

Theorem1.The cost functions CHST and CLHST exhibit strong-OPR toNoiseModel 1 in definition 7.

Proof.Webegin by breaking up theHST circuit into three time intervals. In the first time interval, the noisy

entangling channel 
AB is applied. In the second time interval, the quantum channel  ◦† implements the

unitariesU andV †. Finally, in the third time interval 
AB( )† is applied.We assume that the global depolarizing

noise occurs on systemsAB during all three time intervals and the global depolarizing noise occurs on systemA

during the implementation of  ◦† .Moreover, suppose that two different global Pauli channelsAB and
AB

act at times τ1 and τ2, respectively, and global non-unital Pauli channels act continuously on systemB in between
τ1 and τ2.

Let r 0( ) denotes the initial state of theHST circuit and is given by r = ñá0 0 0 0, , AB0 ∣ ∣( ) . At τ1 the state is

r r=     ... , D6AB
p
AB

k
AB

p
AB AB1

1
0

k1, 1,1( ◦ ◦ ( )) ( )( ) ( )
( ) ( )

 

wherewe have broken up the τ1 into k time increments and  ...k
AB AB

1◦  is the channel that implements the

noisy entangling channel 
AB , as defined in (B2).Moreover, each  i

AB is followed by a global depolarizing
channel 

p
AB

i1,( ) , where p r s,( ) denotes the depolarizing probability for the sth time increment of the rth time

interval. Then r 1( ) reduces to

r r= + -    p p... 1 2 D7AB
p
AB

k
AB AB AB n1

2
1,1

1
0 1,1 2

k1, ( ◦ ( ( ) ( ) ) ( )( ) ( ) ( ) ( )
( )

  

år b= + - = Ä + - p p d p X Z X Z p1
1

2
1 2 , D8

a b
a b

a b a bAB AB

n
AB

A A B B
n1 0 1 1

2
,

,
1 2 

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥◦ ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

where =p p p... k1 1,1 1,( ) ( ) ( ) . The second equality follows from lemma 2 as 
AB consists of only unitary and Pauli

channels, and thus each  i
AB is a unital channel, where iä{1,K, k}. The last equality follows from (B4) and

(A8), where b = m qa b a a b b a a b b
AB AB AB
, , , , , , , .

Similarly, the state at τ2 is given by

r r= Ä Ä        ... . D9
AB

p
AB

s
A

l l
B

p
AB

s
A B2

NU, 1 NU,1
1

l l2, 2, 2,1 2,1( ◦ ◦ ( ) ◦ ◦( )( )) ( )( ) ( )
( ) ( ) ( ) ( )



Wefirst find the action of the channel Ä B
1 NU,1on r 1( ) . Consider that

år bÄ = Ä Ä +
¹

    p X Z X Z
1

2
D10

a b
a b

a b a bB
n

B AB
A A B B AB

0 0
1 NU,1

1
2 1 NU,1

1

, ,
, 

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥( )( ) ( ) ( )( ) ( )

( ) ( )

å åb= Ä + + Ä
¹ ¹

p c W X Z W X Z d X Z
1

2
, D11

a b
a b a b

a b a b

g h
g h

g h
n

AB
A A B B AB A B B

0 0 0 0
2

1

, ,
, ,

1
1 1

, ,
,
1 

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥ ( )( )

( ) ( )

( ) †

( ) ( )

( )

wherewe used the definition of a non-unital Pauli channel from (A9) and (A10).We note that the terms that are
independent ofWi do not affect the global optima. Therefore, the only relevant term in (D9) is

å r b= Ä
¹ =


p s p

c WX Z W X Z
2

, D12
a b

a b a b
a b a b

n

AB AB

i

m
i

A A B B
0 0

2
2 2 1

2
, ,

,
1

,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )( )

( ) ( ) ( )

( ) ( )

( ) † 

where =p p p... l2 2,1 2,( ) ( ) ( ) and =s s s... l2 2,1 2,( ) ( ) ( ) , andwherewe have used (A9) and lemma 2.
Finally, the relevant term after the action of the noisy disentangling channel is

r r r= = + -    p p... 1 2 , D13
p
AB

m
AB

p
AB AB AB n3

1
2 3 2 3 2

m3, 3,1 ◦( ) ◦( ) ( ) ( ) ( ) ( ) ( )( ) † † ( ) ( ) † ( ) ( )
( ) ( )    

where =p p p...m3 3, 3,1( ) ( ) ( ) . The last equality follows from the fact that the channel 
AB( )† consists of unitary

channels and Pauli channels, and thus each  i
AB( )† is a unital channel. Therefore, the term that decides the global

optima in theHST is given by

å s b= Ä
¹ =

  c WX Z W X Z , D14
a b

a b a b
a b a bAB AB AB

i

m
i

A A B B
0 0

3

, ,
,

1
,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ◦ ( ) ( )( ) †

( ) ( )

( ) † 
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wherewe have omitted the scaling factors. Let sµ =F V f V P: Tr 0
3

HST ( ) ( ) [ ]( )  . Then

å b= Ä
¹ =

 f V P c WX Z W X ZTr D15
a b

a b a b
a b a bAB AB AB

i

m
i

A A B B0
0 0, ,

,
1

,

⎡
⎣
⎢⎢

⎛
⎝
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⎞
⎠
⎟⎟

⎤
⎦
⎥⎥( ) ( ◦ )( ) ( ) ( )

( ) ( )

( ) † 

å k= Ä
¹

Z X WX Z W Z X X ZTr D16
a b

a b

a a b b
b a a b b a a bAB
A A A A B B B B

0 0, ,

,
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( )
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†


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 


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¹

Z X WX Z WTr . D17
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a a b b
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A
AB

A A A A
0 0, ,

, , ,

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ ( )

( ) ( )

†

The second equality follows from (C5), wherewe set k b= ~
=m p q c: 1 2

a a b b a a b b a b a a b b a b a b
AB n AB A AB AB

i
m i

, , ,
2

, , , , , , , , 1 ,( ) ( )( )           . The

last equality follows from (A2). Let d
opt denote the sets of unitaries that optimize F VHST ( ) (and hence

C VHST ( )) such that

f p= ¢ Î = ¢ = Îf V W V U: e , for some 0, 2 . D18d d
opt i { ( ) [ ]} ( )†

We remark that this set of unitaries also optimizes F VLHST ( ) (and hence C VLHST ( )). Then, for ¢ Î V d we find
k¢ = å ¹f V a b a a b b

AB
0 0, , , , ,( ) ( ) ( ) . Let

å åk k= Ä ñ = Ä ¢ ¢ñ
¹ ¢ ¢ ¹

¢ ¢ ¢ ¢
¢ ¢a b a bT V X Z W S V W X Z: , , : , . D19

a b
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a bAB
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†

Consider the following inequality:

å k= á ñ =
¹

f V S V T V S V S V T V T V, Tr Tr , D20
a b

a a b b
AB

0 0, ,
, , ,( ) ∣ ( ) ( ) ∣ ( ( ) ( )) ( ( ) ( )) ( )† †

( ) ( )

wherewe used theCauchy–Schwarz inequality.Moreover, note that the inequality in (D20) is saturated for any
matrix ¢ Î V d if we assume that the coefficients ka a b b

AB
, , , characterizing the noise satisfy k  0a a b b

AB
, , , . Therefore,

the set of unitaries that optimize F VHST ( ) (and hence C VHST ( )) is =
~ d

opt

d
opt . According to definition 6, the

lattermeans that CHST exhibits strong-OPR toNoiseModel 1 in definition 7.
Wenow show that the cost function CLHST exhibits strong-OPR toNoiseModel 1. The LHST corresponds

to the optimization of the following function:

å bµ = ¢ Ä~

¹ =

 F V g V Q c WX Z W X ZTr , D21
a b

a b a b
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wherewe replaced the disentangling andmeasurement channels in (D15)with (C9). Consider the following:

å å
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where in (D24)wehave split TrB into a contribution fromqubitBj and a contribution on all qubits exceptBj, and
where x b= ~

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ =n m p q c1 4
a b a b a ba b

j
a a b b
A B

a b

A
a a b b

AB
i
m i

, , , , ,
,

, , , , , 1 ,j j j j j j j j

j

j j j j
( ) ( )( ) ( ) . Thefirst equality is derived from (C9), while the

inequality follows from the arguments similar to (D20).
Here we remark that the inequality (D26) is saturated for any unitarymatrix in the set of unitaries that

optimize F VHST ( ) (and hence C VLHST ( )) given by (D18). Hence, CLHST exhibits strong-OPR toNoiseModel 1
in definition 7 if we assume that the coefficients xa a b b

j
, , ,j j j j

( ) characterizing the noise satisfy x  0a a b b
j
, , ,j j j j

( ) .
,

Appendix E. Proof of theorem2

Theorem2.The cost functions CHST and CLHST exhibit strong-OPR toNoiseModel 2 in definition 8.

Proof.Webreak up theHST circuit into three time intervals similar to sectionD.We again assume that the
global depolarizing noise occurs on systemAB during all three time intervals and the global depolarizing noise
occurs on systemA during the implementation of  ◦† .Moreover, suppose that a global Pauli channelAB

followed by a global non-unital Pauli channel A
NU acts at time τ1. Furthermore, a global pauli channel

AB acts
at time τ2, while a global Pauli channel acts continuously on the systemB in between τ1 and τ2.

The state at τ1 is given by

r r= + -   p p1 2 E1A AB AB A n1 1
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Thefirst equality follows from arguments similar to those used to derive (D6)–(D8). The last equality follows
from (B4), (A9), and (A10), where b = m q ca b a a b b a a b b a b

AB AB AB
, , , , , , , ,

 .
At τ2 the state is
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The term that depends onW in (E3) is given by
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wherewe used the definition of Pauli channels from (A6) and (A8). By omitting the scaling factors, the relevant
term after t3 is given by

r b= å  Ä

+ å Ä

¹

¹

 

 

p s p p WX Z W X Z

d WX Z W . E5

a b a b a b
a b a b

g h g h
g h

AB AB AB
i
l i

A A B B

AB AB
A A B

0 0

0 0

3 2 2 1
, , , ,

, , , 

( )
( )

( ) ◦ ( )

( ) ◦ ( )

( ) † ( ) ( ) ( )
( ) ( )

( ) †

†
( ) ( )

†

 







Let rµ =F V f V P: Tr 0HST
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Moreover, for simplicity we denote
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¹
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Let us focus on f V1( ) and f V2 ( ) individually. Consider the following:

å

å
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J
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Thefirst equality follows from (C5), where J b= ~
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢m p q p1 2a a b b a a b b a b a a b b a b a b

AB n AB A AB AB
i
l i

, , ,
2

, , , , , , , , ,( ) ( )( )/   . The
inequality follows from the arguments similar to (D20). Here, the last inequality in (E9) is saturated for any
matrixV in the set d

opt of unitaries that optimize F VHST ( ) (and hence C VLHST ( )) given by (D18).
On the other hand
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where V b= ~
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢m p q d p1 2g a h b a a b b a b a a b b g h a b a b

AB n AB A AB AB
i
l i

, , ,
2

, , , , , , , , , ,( ) ( )( )  . From the last equality it follows that f V2 ( )
is independent ofW (and hence ofV ) and thus does not affect the global optima. Therefore, from (E9) it follows
that the set of unitaries that optimize F VHST ( ) (and hence C VHST ( ) ) is =

~ d d

opt opt. Fromdefinition 6 this
implies that CHST exhibits strong-OPR toNoiseModel 2 in definition 8 if we assume that the coefficients Ja a b b

AB
, , ,

characterizing the noise satisfy J  0a a b b
AB
, , , .

We now show that the cost function CLHST exhibits strong-OPR toNoiseModel 2. In particular, in the LHST
wewant to optimize the following function:

b
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wherewe replaced the disentangling andmeasurement channels in (E6)with (C9).We nowbreak up g(V ) into
two different functions.
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By using arguments similar to those used to derive equations (E10)–(E12) and from (C9), it follows that g V2( ) is
independent ofW (and hence ofV ). Therefore, to prove the noise resilience of the LHST, we focus only on
g V1( ).We then get:
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( ) ( )( ) ( )  .We note that (E16) is similar to (D23). Therefore,

from the proof in sectionD it follows that
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å å t
= ¹

g V , E17
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where the inequality is saturated for unitaries ¢V in the set d
opt of unitaries that optimize F VLHST ( ) (and hence

C VLHST ( )) given by (D18). This further implies that

¢ ¢ Î =
~  g V g V V, for all . E18d d
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Thus CLHST exhibits strong-OPR toNoiseModel 2 if we assume that the coefficients ta a b b
j
, , ,j j j j

( ) characterizing the

noise satisfy t  0a a b b
j
, , ,j j j j

( ) . ,

Appendix F. Proof of theorem3

Theorem3.The cost functions CLET and CLLET exhibit weak-OPR, as defined in definition 6, toNoiseModel 3 in
definition 9.

Proof. Let us remark that in order to showweak-OPR toNoiseModel 3we just need to consider Pauli noise
acting at τ1 andmeasurement noise, since noise resilience to global depolarizing noise follows from lemma 2.

Wefirst consider the CLET cost function. From equations (A5) and (A6)we get that the action of the Pauli
channel acting at time τ1 is given by

å åñá = ñá = ñá l lq X Z Z X q0 0 0 0 , F1
l k

l k
l k k l

l
l

,
,(∣ ∣) ∣ ∣ ∣ ∣ ( )

where = åq ql k l k, . Similarly, we can express the noisymeasurement POVM fromdefinition 5 as

å= ñá + ñá = ñá
=

i iP p p p0 0 1 1 , F2
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i
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n
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0
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with = ¼i i i in1 2 a bit string and = ¼p p p pi i i i
n

0
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0
2

0 n1 2

( ) ( ) ( ). For the present noisemodel we are interested in
determining the optimumof the function

= ñá G V P 0 0Tr , F30LET ( ) [ ( ◦ )(∣ ∣)] ( )

with =  ◦† the channel that implementsU followed byV †. Then, bymeans of (F1) and (F2)wefind

å å å= ñá ñá =i i l lG V p q W W p q wTr , F4
i

i
l

l
i l

i l il
,
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⎞
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⎤
⎦
⎥⎥( ) ∣ ∣ ∣ ∣ ( )†

where = á ñi lw Wil
2∣ ∣ ∣ ∣ are thematrix elements of a doubly stochasticmatrix such thatå = å =w w 1i il l il .

Let us nowdenote by q the vector with elements qi ordered in decreasing order. Similarly, we denote by p
the vector with elements pl ordered in decreasing order. Additionally, let ñqr{∣ }and ñps{∣ }be the basis in which
q and p are ordered, respectively, i.e.

å åñá = ñá = ñá  q q q P p p p0 0 , and . F5
r

r r r
s

s s s0(∣ ∣) ∣ ∣ ∣ ∣ ( )

Then, from the permutation inequality (or the rearrangement inequality) [48]we have

å=   p qG V p q w . F6
i l

i l il
,

LET ( ) · ( )

The inequality in (F6) is saturated formatrices Î W , where  is the subset of the PermutationGroupwhich
maps ñps{∣ } to ñqr{∣ }.We remark here that if the vector q (or p ) has components of equalmagnitude, then the
set  is degenerate.Moreover, note that

" ¹  ip p q q 0, and , , F7i i0 0 ( )

where the second inequality follows fromdefinition 2, while thefirst inequality always holds since
=  =p pj

n j
0 1 00

( ), and sincewe have assumed that >p pj j
00 01
( ) ( ) " j.

We now recall that d
opt denotes the set of unitaries that optimize C VLET ( ) and C VLLET ( ), i.e. " ¢ Î V d

opt

wehave ¢ ñ = ¢ ñ = ñW V U0 0 0∣ ( ) ∣ ∣† (up to a global phase), which entails d¢ = ¢ =w wi i i0 0 0, , and hence
equation (F4) becomes

å¢ = + ¢
¹

G V p q p q w . F8
i l

i l il0 0
0,

LET ( ) ( )

Since p pi0 and q qi0 " i then thefirst term in (F8) corresponds to the first term in the summation

= å   p q q pr r r· . Hence, in order to saturate (F6)wenowneed that ¢ Î W , i.e. the - ´ -n n1 1( ) ( )
principal submatrix of ¢W withmatrix elements á ¢ ¢ñz zW∣ ∣ (such that ¢ ¹z z 0, )mustmap ñps{∣ } to ñqr{∣ }
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(where ¹s 0 and ¹r 0). Combining this result with (F6)wehave that for anymatrixV in d (the set of d× d
unitarymatrices)

= ¢  p qG V G V , F9LET LET( ) · ( ) ( ) 

where ¢ Î
~V d

opt
andwhere
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~  V W V U: . F10d d
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{ ( ) } ( )†

Evidently, not allmatrices in d
opt are in , which then entails that Í

~ d d

opt opt, and furthermeans that CLET
exhibits weak-OPR toNoiseModel 3 according to definition 6.

Let us now consider the noise resilience of LLET toNoiseModel 3 of definition 9.We are now interested in
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On the other hand, for any unitarymatrix Î V d
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where the inequality follows from the fact that >p pj j
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Wecan then simplify equation (F14) as
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which is saturated formatrices Î ¢W , where ¢ is a subset of the PermutationGroup such that
å = å¹ ¹ ¹ ¹

 q p w q pl k l k kl l k l k0 0 0 0, ,˜ ˜ . Here q and p̃ are vectors with components ql and pk˜ in decreasing order,
respectively. Hence, we can define the set ofmatrices which saturate (F17) as

= Î = Î
~ ¢ ¢ ¢  V W V U: . F18d d

opt
{ ( ) } ( )†

While anymatrix in d
opt saturates the inequality in (F14), only a subset will also saturate (F17). Hence,

Í
~ d d

opt opt, and CLLET exhibits weak-OPR toNoiseModel 3 according to definition 6. ,

AppendixG. Proof of corollaries 1–8

Corollary 1.The cost functions CHST and CLHST exhibit strong-OPR to a noisemodel that includes the following: (1)
all noise processes inNoiseModel 1, as well as (2) a noise process during the implementation of
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= =    k 1◦ ◦ ◦† (i.e. in the time interval between t1 and t2) inwhich global Pauli channels 
A
1{ ,K,

k
A}act on system A, such that the overall channel on A is    k

A
k

A
1 1◦ ◦ ◦ , provided that the following

condition is satisfied:

= -        . G1k
A

k
A

k k
A

1 1 1 1( ◦ ◦ ◦ )(·) ( ◦ ◦ ◦ )(·) ( )  

Here 
A is also a Pauli channel, and the channels  , †, and correspond to conjugating the state by the unitaries

U ,V †, andW , respectively.

Proof.This follows from the fact that the overall noisy channel acting during the implementation of is
mathematically equivalent to a Pauli channel followed by the unitary , as described in the condition (G1) and
by invoking theorem1,which allows for Pauli channel noise at time τ1.,

Corollary 2. Let the =W V U† gate sequence have the form =W W WA A
2 1 withWA

1 be composed only of Clifford
gates. Then the cost functions CHST and CLHST exhibit strong-OPR to a noisemodel that includes the following: (1)
all noise processes inNoiseModel1, as well as (2) a noise process during the implementation of

=  A
k1 1, 1,1◦ ◦ , in which global Pauli channels A

1{ ,K, k
A}act on system A, such that the overall

channel on A is    k
A

k
A

1, 1 1,1◦ ◦ ◦ .

Proof. From lemma 1 it follows that Clifford unitaries satisfy the condition in (G1). Therefore, corollary 2 is a
special case of corollary 1. ,

Corollary 3. Let the =W V U† gate sequence have the form =W W WA A
2 1 with = Ä¢ W W WA A A

1 1 1 being a tensor
product, i.e.,W is a tensor product up to a particular time. Then the cost functions CHST and CLHST exhibit strong-
OPR to a noisemodel that includes the following: (1) all noise processes inNoiseModel 1, as well as (2) a noise process
during the implementations of =¢ ¢ ¢  A

k
A A
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Proof. Let ρ denote a quantum state. Consider the following chain of equalities:

r r p rÄ Ä = Ä Ä + - Ä¢  ¢  ¢  ¢  ¢
¢

¢          p p1 Tr

G2
p
A

q
A A A A

q
A A A A

A
A A( )( )( ) ( )( ( ( )) ( ) (( )( ))

( )

r p r= Ä Ä + - Ä¢  ¢  ¢
¢

¢      p p1 Tr

G3

A
q
A A A A

A
A A( )( ( ( )) ( ) (( )( ))

( )

r p r= Ä Ä + -¢  ¢  ¢
¢    p p1 Tr G4A

q
A A A A

A( )( )( ( ) ( )) ( )

r= Ä Ä¢  ¢  ¢     G5A
q
A A A

p
A( )( )( ( )) ( )

r= Ä Ä¢  ¢     , G6A A
p
A

q
A( )( )( ) ( )

where p ¢A is amaximallymixed state on system ¢A . Therefore, the result follows by applying (G6) several times
and invoking corollary 1. ,

Corollary 4.The cost functions CHST and CLHST exhibit strong-OPR to the following noisemodel: (1) all noise processes
inNoiseModel 2, aswell as (2) a noise process during the implementation of = =    k 1◦ ◦ ◦† (i.e. in the
time interval between t1 and t2) inwhich global non-unital Pauli channels 

A
NU,1{ ,K,  k

A
NU, }act on system A such

that the overall channel on A is    k
A

k
A

NU, NU,1 1◦ ◦ ◦ , provided that the following condition is satisfied:

= -        , G7k
A

k
A

k k
A

NU, NU,1 1 1 1 NU( ◦ ◦ ◦ )(·) ( ◦ ◦ )(·) ( )  

where 
A
NU
 is also a Pauli channel.

Proof.This follows from the fact that the overall noisy channel acting during the implementation of is
mathematically equivalent to a non-unital Pauli channel followed by the unitary , as described in the
condition (G7) and by invoking theorem 2,which allows for non-unital Pauli noise at time τ1.,

Corollary 5.The cost functions CHST exhibits strong-OPR to the following noisemodel: (1) global depolarizing noise
acting continuously throughout the circuit, (2) global non-unital Pauli noise on systemA at a fixed time in between t1

and t2.
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Proof. Let us decompose as =  2 1◦ such that the non-unital Pauli channel A
NU acts at time t¢

between1 and2, with the overall channel between τ1 and τ2 given by  A
2 NU 1◦ ◦ . The state at

time τ1 is

r = F ñáF + -+ +p p d1 , G81 1 1 ∣ ∣ ( ) ( )( ) ( ) ( )

where =p p pk1 ,1 1,1( ) ( ) ( ) corresponds to the continuous depolarizing channel as discussed in appendixD.
We break up the time interval in between t¢ and τ1 into l steps. The state at time t¢ is given by

r r=      G9A
q
AB l

q
AB2

NU 1 1
1 1

l2, 2,1◦ ◦ ◦ ◦ ( ) ( )( ) ( )
( ) ( )

= F ñáF + -+ + p q p q d1 G10A
NU

1 2
1

1 2 ( (∣ ∣) ( ) ) ( )( ) ( ) ( ) ( )

å= F ñáF + - + - Ä+ +

¹

 p q p q d p q
d

d X Z1 1
1

, G11
g h

g h
g hA
A A B

0 0

1 2
NU 1

1 2 1 2

, ,
, ( (∣ ∣)) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

where =q q qk2 2, 2,1( ) ( ) ( ) and =  l
1 1 1

1 . Similarly, we break up the the time interval between τ2 and
t¢ intom steps. The term that depends on at time τ2 is given by

ås = F ñáF + - Ä+ +

¹

  p q r r p q
d

d W X Z W1
1

. G12
g h

g h
g hA
A A B

0 0

2 1 2 2
2 NU 1

2 1 2

, ,
, 2 2 ◦ ◦ (∣ ∣) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

†

Let

sµ = F ñáF+ +F V f V : Tr . G132
HST ( ) ( ) [∣ ∣ ] ( )( )

Moreover, for simplicity we denote

= F ñáF F ñáF+ + + +  f V : Tr , G14A
1 2 NU 1( ) [∣ ∣( ◦ ◦ )(∣ ∣)] ( )

= F ñáF Ä+ +f V W X Z W: Tr . G15g h
A A B2 2 2 ( ) [∣ ∣( )] ( )†

Consider the followings:

= F ñáF Ä F ñáF+ + + +   f V Tr G16A A
A

T B
AB1 2 NU 1( ) [∣ ∣( ◦ )(( ( ) )(∣ ∣ ))] ( )

= Ä F ñáF F ñáF+ + + +   Tr G17A
B A A

1 2 NU*[( ( ) )(∣ ∣)( ◦ )(∣ ∣)] ( )

= Ä F ñáF F ñáF+ + + +   Tr G18A
B

A A
1 2 NU[(( ) )(∣ ∣)( ◦ )(∣ ∣)] ( )†

= F ñáF F ñáF+ + + +  Tr G19A A A
1 2 NU[∣ ∣( ◦ ◦ )(∣ ∣)] ( )

¢ f V , G201( ) ( )

where ¢ Î V d
opt, andwhere d

opt denote the sets of unitaries that optimize F VHST ( ) (and hence C VHST ( )) as
defined in (D18). Thefirst and third equalities follow from the ricochet property. The last equality corresponds
to the case when there is non-unital Pauli noise at time τ1 and no other noise in theHST circuit, which is a special
case of theorem2. Therefore, the inequality follows from theorem 2.Moreover, by using the arguments similar
to (E10)–(E12), wefind that f V2 ( ) is independent ofW. This completes the proof. ,

Corollary 6.The cost functions CLET and CLLET exhibit weak-OPR to a noisemodel that includes the following: (1)
all noise processes inNoiseModel 3, as well as (2) a noise process during the implementation of

= =    k 1◦ ◦ ◦† in which global Pauli channels 1{ ,K, k}act, such that the overall channel is
   k k 1 1◦ ◦ ◦ , provided that the following condition is satisfied:

= -        . G21k k k k1 1 1 1( ◦ ◦ ◦ )(·) ( ◦ ◦ ◦ )(·) ( )  

where  is also a Pauli channel.

Proof.This follows from arguments similar to corollary 1 and by invoking theorem3. ,

Corollary7.Let the =W V U† gate sequence have the form =W W WA A
2 1 withWA

1 be composed only ofClifford gates.
Then the cost functionsCLET andCLLET exhibitweak-OPR toanoisemodel that includes the following: (1) all noise
processes inNoiseModel 3, aswell as (2) anoise process during the implementationof =  A

k1 1, 1,1◦ ◦ , inwhich
global Pauli channels A

1{ ,K, k
A}act on system A, such that the overall channel on A is    k

A
k

A
1, 1 1,1◦ ◦ ◦ .

Proof.This corollary is a special case of corollary 6, since lemma 1 implies that Clifford unitaries satisfy
(G21). ,
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Corollary 8. Let the =W V U† gate sequence have the form =W W WA A
2 1 with = Ä¢ W W WA A A

1 1 1 being a tensor
product, i.e. W is a tensor product up to a particular time. Then the cost functions CLET and CLLET exhibit weak-
OPR to a noisemodel that includes the following: (1) all noise processes inNoiseModel 3, as well as (2) a noise process
during the implementations of =¢ ¢ ¢  A

k
A A

1 1, 1,1◦ ◦ and =    A
l

A A
1 1, 1,1◦ ◦ in which local

depolarizing channels ¢A
1,1{ ,K, ¢ k

A
1, }and A

1,1{ ,K,  l
A
1, }act on subsystems ¢A and A ,respectively, such that the

overall channel on ¢ A A is Ä¢ ¢ ¢ ¢           ... ...k
A

k
A A A

l
A

l
A A A

1, 1, 1,1 1,1 1, 1, 1,1 1,1( ◦ ◦ ) ( ◦ ◦ ).

Proof.This follows from arguments similar to the proof of corollary 3 and by invoking corollary 6. ,
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