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Abstract

Quantum channels that break CHSH nonlocality on all input states are known as CHSH-breaking
channels. In quantum networks, such channels are useless for distributing correlations that can violate
the CHSH Inequality. Motivated by previous work on activation of nonlocality in quantum states,
here we demonstrate an analogous activation of CHSH-breaking channels. That is, we show that
certain pairs of CHSH-breaking channels are no longer CHSH-breaking when used in combination.
We find that this type of activation can emerge in both uni-directional and bi-directional
communication scenarios.

1. Introduction

The mystery of quantum mechanics involves many counter-intuitive phenomena absent in classical mechanics.
The most celebrated method for revealing the nonlocal features of quantum theory was proposed by John Bell in
1964, in what is now known as violating a Bell Inequality [ 1, 2]. In recent years, nonlocality has been identified as
aresource in quantum information theory [3], with applications in quantum cryptography [4, 5], quantum key
distribution [6] and quantum randomness [7].

In the general case of mixed states, entanglement and nonlocality appear to be different resources [8]. It has
been shown that quantum entanglement is required to generate nonlocal correlations [9], but entanglement is
not sufficient for a quantum state to violate a Bell Inequality. That is, there are examples of entangled states
admitting local hidden variable (LHV) models [10]. In some cases, nonlocal behavior can still be exhibited after
local filtering operation [11-13]. This reveals that nonlocal correlations are subtle in form, and they can become
manifest in different scenarios.

In particular, nonlocal correlations are capable of being activated. In general, activation means that two
quantum objects can be combined to retrieve a particular quantum resource that was absent before the
combination. Activation has been studied in the case of quantum channel capacities [14, 15] and quantum
entanglement [16, 17]. Recently, this idea was also applied to quantum nonlocality. As shown by Navascués and
Vértesi[18], two states p, and p,, which cannot individually exhibit nonlocality in the so-called Clauser—-Horne—
Shimony—Holt (CHSH) scenario (i.e. two dichotomic observables per site), can nevertheless violate the CHSH
Inequality when measured jointly. A more general result was demonstrated by Palazuelos [19] in which two
copies of a Bell local state p can become nonlocal, a phenomenon known as ‘super-activation’. Other examples
of nonlocality activation and super-activation can be found in [20-24].

These previous works only considered activation of nonlocality on the level of quantum states. This analysis
can be understood from a resource-theoretic perspective in which nonlocality is regarded as a static quantum
resource, manifesting in different multipartite quantum states in different extents [3]. Activation then describes
a particular way of harnessing this resource among two or more quantum states. Alternatively, one could
consider a dynamical resource theory of quantum nonlocality in which nonlocality is a distinctive feature of
dynamical quantum objects, i.e. quantum channels. Quantum channels are of primary importance in many
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quantum information protocols such as quantum network communication [22], quantum key distribution [7]
and quantum teleportation [25]. While there are many ways in which a a dynamical resource theory of
nonlocality could be formulated [26, 27], one approach involves identifying the nonlocality of a channel in terms
of its ability to transmit nonlocal correlations. In its simplest form, a point-to-point quantum channel £4'~8
distributes nonlocal correlations by sending one-half of an entangled state p44’ through the channel and locally
measuring the joint state 747 = id* @ &4'~F(p44") where idX is the identity map on subsystem X. If the
channel £2'~8 is too noisy then 4% will only be able to generate correlations that can be simulated by an LHV
model. If this holds for every possible input state pA4’, then £4'~F is called a nonlocality-breaking channel, as
originally introduced by Pal and Ghosh [28]. Such channels are analogous to the well-studied entanglement-
breaking channels, which are those that break the entanglement between sender and receiver whenever they are
used to distribute a quantum state [29]. While every entanglement-breaking channel is necessarily nonlocality-
breaking, the results of [30] imply that the converse is not true.

In this paper, we focus on the family of CHSH-breaking channels £. These are channels whose output states
id ® E(p*"") only generate local correlations when both parties choose between a pair of dichotomic
observables. In section 2 we present the CHSH-breaking conditions for several channels. In section 3 we
demonstrate activation by combining two CHSH-breaking channels and analyze this phenomenon as a
nonlocality distribution task in two different situations. The results are summarized and discussed in section 4.

2. Nonlocality and CHSH-breaking channels

Consider Hilbert spaces H* and H? whose density matrices form the sets D (H*) and D (H?). Mathematically, a
quantum channel is a completely-positive, trace preserving map &£: D(H*) — D(H®) from D(H*) to D(HP).
Asaresult of Chois theorem [31], a quantum channel acting on a density matrix p can be expressed as follows:
E(p*) = > Exp’E], (1
k

where the operators { E;} are known as Kraus operators which must satisfy the trace-preserving
constraint ), E,JL E. =1

A channel £4'~8 is called nonlocality-breaking if the output state 048 = id4 @ £4'~B(p44") is Bell local for
every input p44’ state; i.e. o4F admits a LHV model for all local measurements. This means that for any family of
positive operator-valued measures (POVMs) {114, } , . and {Zfl 1 b,y onsystem A and B, respectively, there exist

alx

conditional distributions p(alx, A\)and p(b|y, A) and shared variable A such that
tr[(IL), ® Xp,)04] = f dA\p(N)p(alx, Np(bly, N). )

Since the distributions p(ab|xy) admitting such a decomposition form a compact, convex set, we can
characterize the distributions by a collection of confining hyperplanes. These hyperplanes correspond to the so-
called Bell inequalities, and their violation in the measurement statistics p(ablxy) = tr[(Hﬁx ® Z,ﬁ ) 048]
indicates that o7 is not a Bell local state [32]. It is not difficult to show that £A'~ is nonlocality-breaking if and
onlyif 048 = id4 ® E4~B(|¢) (p|*") is Bell local for all pure-state inputs | )44’ with system A having
dimension equaling A’ [28].

Nonlocality-breaking channels are a generalization of the well-studied entanglement-breaking channels
[29]. The latter refers to channels £4'~% such that o4 = id4 @ £A'~B(pA4")is separable for every input p44',
Since every separable state is necessarily Bell local, it follows that every entanglement-breaking channel is
nonlocality-breaking. However, the converse is not true. In [30], an LHV model was constructed for states
having the form

B

I
ot = ple) (el + (L = p)pj @ =, 3
B

which corresponds to sending | )44’ through the partially depolarizing channel £4'~5(X) = pX + tr[X] dLHB.

Itis known that this channel is entanglement-breaking whenever p < d;ﬂ [33]. However, under projective
‘B
measurement the local model of [30] holds for values of L < p < ;(— 1+ % l) —y los dB. In the
dg+1 dg—1 k=1 large dp

‘B
case of qubits (dy = 2), the depolarization channel is entanglement breaking when p < 1/3,andyetitis
nonlocality breaking aslongas p < 1/2. A similar difference in the nonlocality and entanglement breaking
conditions exist even for POVMs. Thus, even on the level of channels, entanglement and nonlocality emerge as
distinct quantum resources.

Given the complexity in deciding whether a given bipartite state is Bell local, in this paper we restrict our
attention to the CHSH Inequality, which is the only Bell inequality corresponding to the scenario of binary
inputs and binary outputs [34]. Recall that for any set of observables { M, M5, N, N2} with spectrum
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{—1, 1}, the CHSH Inequality says that | Tr(Bp“8)| < 2, where
B=M'® N +N)+M @O —N) (4)

is called the Bell operator. As in the general case, a channel £4'~% is called CHSH-breaking if 045 =
id* @ &A'~B(pA") cannot violate the CHSH Inequality for any input state p4’, and we will refer to such states
as being CHSH local.

To demonstrate activation phenomenon, it suffices to consider qubit channels, i.e. HA" = HE = C2. States
of a qubit system can be expressed as p = %(]I + v - o) where v € R3is called the Bloch vector of the state and
o = (0y, 0y, 0,)is the Pauli vector. In the two-level case, a channel can be characterized as an affine
transformation T on the Bloch vector of the input state [35, 36]. Explicitly, we have

(10
T_(t A)’ ©)

so that
8(%(]1 +v- a)) = %(JI +({t+ Av) - 0), (6)

where tisareal 1 x 3vectorand Aisareal 3 x 3 matrix. Furthermore, A canbe diagonalized under a proper
unitary map on the input and output state U, o £ o U; [28]. For the purposes of deciding whether or nota
channel is CHSH-breaking, the unitaries U;and U, above can be absorbed by the state and measurements in the
CHSH Inequality respectively. Hence, the CHSH-breaking conditions only need to be derived for diagonal A..

A special class of quantum channels called unital channels have the property that £(id) = id. The following
lemma says that for unital qubit channels, one only needs to consider a maximally entangled input to determine
ifitis CHSH-breaking.

Lemma 1. A unital channel £ is CHSH-breaking if and only ifits output state id @ E(|D) (P ") does not violate the
1

CHSH Inequality, where |9T) = —2(|OO> + |11)) is the maximally entangled state.

A proof oflemma 1 is provided in appendix A. For a unital channel represented by the affine transformation
T in the Bloch vector picture, it can be readily seen that ¢ = 0 and the diagonalized A is parametrized by three
real parameters { \;, A, \3}. Ithasbeen previously shown by Pal and Ghosh in [28] that id ® E(|®T) (D)
cannot violate the CHSH Inequality for a unital channel £ if and only if

AN+X<TL @)
assuming | Aj| > |Ay| = | As]. Combining with lemma 1, we thus conclude that equation (7) provides the
CHSH-breaking condition for any unital qubit channel.

For a general nonunital channel, we know of no analytical criteria for determining whether or not it is
CHSH-breaking, and one typically obtains results by numerically searching over all input states and
measurement settings [28]. Nevertheless, in appendices B and C, we provide analytical conditions for when

special classes of nonunital channels are CHSH-breaking.
We now summarize our results of the CHSH-breaking conditions for certain families of qubit channels.

* Depolarizing channel &, ,: The depolarizing channel & , perfectly transmits its input with probability p; with
probability 1 — p it throws away its input and outputs a completely mixed state. On a two-qubit state, & , acts
as:

. I, ’ HB
idh @ 5,7 (M) = ppt® + (L= ppt @ ®)
where pA = Tr,/(pA4"). Kraus operators for this map are easily seen to be

Elzqf#ﬂ, E,:,/I;palq @ <i<A). ©)

From lemma 1, it follows that &; , is CHSH-breaking ifand onlyif p < %

* Amplitude damping channel &, ,: The amplitude damping channel &, , shrinks the x and y components of an
input Bloch vector by a factor ,/p while driving the zcomponent toward +1. It has Kraus operator

Er = 10)(0] + JpI1){(1l, E,= J1— plo)(1]. (10)

Note that this is a nonunital channel. Yet, the amplitude damping channel is CHSH-breaking for p < %, as
calculated in appendix B.
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Figure 1. (a) Original protocol: Alexis sends one particle to Bobby viaa CHSH-breaking channel, no nonlocality can be retrieved
under a two-setting-two-outcome scenario; (b) unidirectional protocol: alexis sends two particles to Bobby via two CHSH-breaking
channels; () bidirectional protocol: Bobby sends one particle to Alexis, and Alexis sends one particle to Bobby via two CHSH-
breaking channels.

* Losschannel &) ,: Theloss channel & , perfectly transmits its input with probability p whereas with probability
1 — pitthrowsaway its input and outputs the state |0). On a two-qubit state, & , acts as:

id* ® &7 (0 = pp*® + (1 — p)p* @ [0) (0], (11)

and it has Kraus operators

= =
E = /pl, E= /TP|0><1|, B — Tp|1><1|. (12)

V5 -1
2

This is a nonunital channel with a CHSH-breaking condition p < ,as shown in appendix B.

* Erasurechannel &, ,: The erasure channel &, , perfectly transmits its input with probability p; with probability
1 — pitthrows away its input and outputs a flag state |e), which is orthogonal to both |0) and |1). On a two-
qubit state, &, , acts as:

id @ €27 = pp + (1 — p)p* @ le) (el®, (13)

and it has Kraus operators

Ei=pL, E=1-ple){0l, Es=1-ple)ll. (14)

The CHSH-breaking conditionsis p < %, as calculated in appendix C.

3. Channel activation of CHSH nonlocality

In [18] it was shown that there exist two CHSH local states p*® and p#® such that pA® @ p*P’ canviolate the
CHSH Inequality. We now show a similar nonlocality activation from the perspective of quantum channels.
Unlike quantum states, which are static resources, quantum channels are dynamical resources that can be used
in different ways. Two specific scenarios are discussed in this work.

Unidirectional protocol. Figure 1(b) depicts a unidirectional way for using two quantum channels to
distribute nonlocality between Alexis and Bobby. Alexis locally prepares a four-qubit state pA44'4” and sends

systems A and A’ through two different qubit channels, £ {g‘ﬂB and £ f =B This produces the state

GABAE = id @ E07B @ id @ £477 B (pAdaA), (15)
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CHSH activation is achieved if this state can violate the CHSH Inequality along the AA: BB cutwhen & and &,
are both CHSH-breaking channels.

Bidirectional protocol. Figure 1(c) shows a bidirectional method for distributing nonlocality between Alexis
and Bobby. Unlike a unidirectional protocol, both Alexis and Bobby locally prepare a two-qubit state, and they
each send one of their qubits to the other party through a channel. The final shared state will have the form

4B @ oA =id @ EX 7B @ 8 @ id(pM @ pPP). (16)
Again, CHSH activation is achieved if this state can violate the CHSH Inequality along the AA": BB’ cut when &

and &, are both CHSH-breaking channels.
In both of these scenarios, CHSH nonlocality of the output state can be detected using the Bell operator:

B =M™ @ (NP + NFB'y + MM @ (NPB' — NPB, (17)

where {MIAA/, M2AA/, NP /, NP '} are joint observables for party AA’ and party BB'. The observables have
spectrum { —1, 1}, and the CHSH Inequality reads Tr(BoA4"#8") < 2. We now describe our general approach
for optimizing the value of Tr(BoA4":B8"),

3.1. The see-saw optimization algorithm

The maximum CHSH-value for given channels & ® &, can be obtained by maximizing observables { M, N, }
and input states p using algorithms like the ones in [18, 37]. For example, consider a unidirectional protocol
using channels & ® &,. For a fixed input state p and observable choices N, on Bobby’s side, one can define

F = Trgp([I*" @ (N; + Np)]o4BA'E),
Fy = Trpp([I* @ (N} — Np)]o4BA'E",

where 0484’8 is given by equation (15). As shown in [ 18], the optimal observables M, for Alexis are given by

M, = Y ;sgn( Ay |ex,i) (ex|where E. = 3, Ay iley ;) (ex,il is the diagonal representation of F,. Optimal
observables N, can be likewise obtained for a fixed input state p and observables M, on Alexis’s side. Finally, for
fixed local observables { My, N, } (and hence fixed Bell operator B), the optimal input state can be determined by
observing that

tr(BoMB8) = w[BEI"E @ £1F)[pArad])
= ulp*Mi (gl @ E)IBI,
where £} denotes the adjoint CP map of &;. Thus we can maximize tr(Bo44"¥5") by choosing the input state to

be the outer product of the eigenstate associated with the largest eigenvalue of £ @ E3[B].
We have just observed how for any two of the three problem variables { My, N,, p}, we can always choose the

(18)

third so as to maximize the value of tr(Bo44"“¥5"). This suggests we perform a ‘see-saw’ algorithm in which we
alternate optimizing tr(Bo44"*B5") over one of the three variables [18]. For channels & ® &,, the algorithm is
then as follows:

(i) Randomly initialize M,, N,,and p.

(i)) Update each of the variables {M,, N,, p} in the order M, — p — N, — p repeatedly by applying the
optimization procedures described above.

(iii) In step 2, it is possible that after reaching a local maxima in the CHSH-value, the algorithm is not able to
improve on the CHSH-value. When the same CHSH-value is reached, say, 10 times after consecutive
updates of My, N,,and p, we suddenly change the stateto p — (1 — €)p + €p™ with certain probability ¢
where p* is some previously fixed state. Meanwhile, we also store the maxima that was reached before the
sudden change.

(iv) Steps2and 3 are repeated until the same maximal is reached repeatedly.

Although we tried different states p* for each channel, we highlight that using a random entangled pure state
sufficed. To do this, we picked p* = U'|\) (\|U where Uand X € (0, 1) are arandom unitary and real

parameter, and |\) = /X[10) 4+ /1 — X|01).

3.2.Results

For both protocols, we are able to see activation for several combinations of quantum channels. Some of the
activation results can be found in table 1, and the full numerical code we used can be found in [38]. Our largest
violation is obtained for two amplitude damping channels in a bidirectional protocol, in which we obtain a
CHSH value of 2.011 91. Remarkably the maximal violation is obtained with two pure states which are partially.
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Table 1. Activation results for both protocols. All of these violations are
calculated in the case where the channels are CHSH-breaking.

Maximum
Protocol Channel 1 Channel 2 violation
Unidirectional Eap=1/2 Eap=1/v7 2.005 41
5e,p:1/z gd,pzl/ﬁ 2.004 84
Bidirectional Eap=1/2 Eap=1/2 2.01191
Eopiy Eopmifa 2.001 64
Sa,pzl/z gl,p:(ﬁ—l)/z 2.002 11
Eap=1/2 Eip1)2 2.000 31

Our numerics give states with concurrences in the range [0.45, 0.67]. Although surprising, it’s not unexpected
that the maximum violation does not correspond to one using maximally entangled states with a concurrence of
1 since, generally speaking, maximally entangled states are not the most robust states against CHSH-breaking
noises. Specifically, for the amplitude damping channel there are partially entangled states with the same
robustness against noise as the maximally entangled one. For a more in depth discussion see appendix B.

Itis important to note that every instance of channel activation in a bidirectional protocol provides an
instance of state activation. Indeed, if £ fVHB and &5 ~4are CHSH-breaking channel such that
id ® 78 @ 574 ® id(p2 ® pBP') violates the CHSH Inequality, then the states o/*f =
id ® EMB(pMyand 04'F = 574 ® id(pPP') are both CHSH local, but they can be activated when put
together.

From the aforementioned result of the amplitude damping channel in the bidirectional protocol, we thus
have a state CHSH activation of 2.011 91. In comparison, the maximal activation value found by Navascués and
Vértesi [18] is 2.023 24, and it was obtained by considering a subset of CHSH-local states that are two-
extendable. In our analysis, we do not have a greater violation, yet our method has led to finding state activation
results for some symmetric states which were not found in [18]. Specifically, for two CHSH-breaking amplitude
damping channels, we have found a violation of 2.011 72 using CHSH-local states o{*Z and o4 satisfying the
condition alAB = Fup05PF,p, where Fyj is the SWAP operator between Alexis and Bobby’s systems. This
violation is only slightly smaller than our maximal violation, and it can be very useful for demonstrating super-
activation of a symmetric CHSH-local state. Namely, by introducing ancillary qubits, we define a new state of the
form:

FabAB — %(|o> 01 @ 1) (1P @ o 4+ 1) (1] @ |0) (0] @ o4B), (19)

By construction, this state is invariant under the permutation aA « bB (i.e. symmetric), and it does not violate
the CHSH Inequality since 0y and o, are CHSH-local. On the other hand, a CHSH super-activation can be easily
shown (i.e. (5°4B)#2 violates the CHSH inequality) according to the following scheme: Alexis and Bobby both
perform measurements on their ancilla qubits in the {|0), |1)} basis;

+ Ifboth ancilla qubits are in |0) or | 1), Alexis (Bobby) measures on the A A; (B, B,) subsystem with 44 (I5i52);

+ Ifthe measurementresultis [0) ® [1)% (1)" ® |0)"2), Alexis (Bobby) measures on the A A, (B, By)
subsystem with M4 ( NszZ);

+ Ifthe measurementresultis |1)% ® |0)% (0)% ® |1)%2), Alexis (Bobby) measures on the A A, (B;B,)
subsystem with Fy, AZM)?‘AZIE‘Al 4, (Fp,5,N, yBlBZ Fg,5,),

where {M,, N, } is the optimal measurement strategy for the state oB @ ¢42P2, Clearly,a CHSH violation of
(2 x 2.01172 4+ 2 x 2)/4 = 2.005 86 can be obtained. Hence, we have a four-qubit state 545 that is CHSH-
local and invariant under party permutation, yet it can be super-activated. By comparison, this scheme uses
fewer ancillary qubits than the analogous example presented in [18].

As another remark, we have obtained a fairly robust activation result with a CHSH violation of 2.000 31 for
theloss channel at p = 1/2; however the channel becomes CHSH breaking for p < (+/5 — 1)/2.1tis
interesting to place this result alongside the findings of [39], where the state 045 = %I\Ifﬁ (U] + i]I ® |0) (0|
has been shown to be Bell local under all projective measurements. That is, the loss channel & , cannot violate
any Bell Inequality at p = 1/2 using projective measurements when the maximally entangled state |9 ~) (7| is
the input state. Whether the channel is nonlocality breaking at p = 1/2 for all inputs is unknown; yet, if this

6
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Figure 2. Channel activation of CHSH nonlocality with two amplitude damping channels &, , and &,,p,. The maximal CHSH
violation of 2.011 91 is obtained at p; = p, = 0.5, where both channels just become CHSH-breaking.

were true, the CHSH violation here would demonstrate channel activation of general nonlocality (rather than
just CHSH nonlocality) under projective measurements. We leave this as an important open problem to resolve.

3.3. Robustness of activation

Most of our activation results can be obtained even when the channel parameters are larger than the critical
values at which they become CHSH-breaking. This highlights a certain robustness to noise in our activation
results, which is crucial for experimentally demonstrating activation of CHSH-breaking channels. Additionally,
the mapping of the CHSH-activation region shows that the see-saw algorithm indeed converges for alarge
number of points.

To illustrate this activation robustness to noise, we take the case of two amplitude damping channels in the
bidirectional scenario as an example. By tuning the noise parameter p, ,, for the two amplitude damping
channels, we calculate the CHSH violation in the region p, o € [0.4, 0.5] with an interval of 0.002, as shown in
figure 2. Since the amplitude damping channel is CHSH-breaking when p < 0.5, the CHSH violation here
signifies a valid CHSH activation, and it is seen to persist in a small region around p, ,) = 0.5. Thisin turn,
confirms and supports our activation result in table 1. However, when adding more noise, there is no guarantee
that our algorithm will continue to converge. As can be seen from figure 2, some points indicating no activation
are surrounded by points of activation. By a convexity argument, these points of ‘no activation’ can indeed be
activated; however, the figure merely indicates that the see-saw algorithm failed to converge there.

4. Conclusion

In this paper, we have investigated different qubit channels that prohibit the distribution of CHSH-violating
quantum states. On their own, such channels are useless for any quantum information task that involves CHSH
nonlocality. We provide simple criteria for determining the CHSH-breaking condition for all unital channels,
and we perform analytical calculations that determine the CHSH-breaking conditions for some special channels
that naturally arise in scenarios with experimental noise. Our main result is that two CHSH-breaking channels
may no longer be CHSH-breaking when used in parallel. We demonstrate this result in two different scenarios.
Interestingly, in the bidirectional scenario, our activation and super-activation results do not use states that are
entangled across both input systems. This is in contrast to other channel activation results in which the input
states are entangled.

The activation findings presented here show that certain channels can be used to distribute nonlocality over
long distances only when used in parallel with other channels. These results are particularly useful in instances of
long-distance and noisy quantum communication. However, it remains an open question as to whether there
exist complete nonlocality-breaking channels that can nevertheless be activated. This requires producing local
models for all channel outputs and testing the breakage of all Bell Inequalities.
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Appendix A. Proof of lemma 1: CHSH-breaking condition for all unital channels

For two qubits, the CHSH operator can be written as a correlation operator, which is some linear operator lying

in the linear span of {0; ® 0} ¥ :_ . Explicitly, we have

ij=10

B:a1~a'®(b1+b2)'0'+a2-0'®(b17bz)-o', (Al)

where a;, bj are spin directions for Alexis and Bobby’s measurements and the corresponding correlation matrix
isgivenas B = a; ® (b, + b,) + a, ® (b; — b,), with rank not greater than two, which indicates that we can
always diagonalize it as:

B= d]O'] & o + d30'3 & 03. (A.Z)

The proof of theorem 1 then follows from the following proposition.

Proposition 1. Let T = Z? j—11i,0i @ 0 be any correlation operator having correlation matrix t;; with rank less
than 3. Then the expectation value Tr(Tp) is maximized by a maximally entangled state.

Proof. Clearly the expectation value is maximized by some pure state |1)). It then suffices to prove the
proposition for diagonal correlation operators, T = dj0y ® 01 + d303 ® 03, since any Bell correlation operator
can be converted into this form by local unitaries, and the latter does not change the entanglement of the
maximizing state. Write an arbitrary pure state as [t)) = R @ I|&*), where |®+) = (]00) + |11))~/2 and Ris
some matrix satisfying ¢4 := Try/(|9b) (1)|) = RR" with Tr()*) = 1. Then an application of the Cauchy—
Schwartz Inequality gives

(Y|TI) = d, Tr[RTo1RoT] + ds Tr[Rfo3Ro ] (A.3)
< (dy + d3)Tr[R'R] = d, + ds. (A.4)

This upper bound is attained by taking R = /2, which corresponds to a maximally entangled state. L1

Corollary 1. If £ is a unital channel and B is any CHSH operator, the CHSH value Tr[B(id ® E(|v) (¢)]is
maximized by a maximally entangled state.

Proof. We have Tr[B(id ®@ £(|®+)(®"|))] which is equivalent to Tr[|®T){(®F|(id @ £7(B))] where £ is the
dual map of £.1f £ is unital, then Tr[£7(0;)] = 0, which means that T = id ® £7() s still a correlation
operator having correlation matrix with rank less than 3. From the previous proposition, the corollary

follows. O

Appendix B. CHSH-breaking conditions for the amplitude damping and loss channels

As we have shown in the previous section, for a unital channel to be CHSH-breaking it is sufficient to show that
the channel is CHSH-breaking for the maximally entangled state. However, this is usually incorrect for general
quantum channels; some counterexamples can be found in [28].

For anonunital channel, there is no such simple test. Here we analytically find the CHSH-breaking
condition for a specific class of channels where

100 0
0N O O

T=lo o x ol (B.1)
5 0 0 s

As can be checked, both the amplitude damping channel and the loss channel belong to this class.
Forapurestate |¢)) = (UW, VT @ T)|®+) where Wy = /X 10) (0] + /1 — X[1) (1| with X\ > 1/2,the
correlation function can be expressed as [28]:
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aRiyN —aR N Rz A3
T =|aRuM —aRpX Rz A3 , (B.2)

RisA  —Rsh Rz + V1 — ot

where a = 2,/A(1 — )\) and R € SO(3) is areal rotation matrix corresponding to VI € SU (2); hence, by
using the orthogonality Y i RijRyj = ik, we have H = TT™:

100
H=ao*)|o 1 o|+ H, (B.3)
001

where H' is not full rank and not positive semi-definite when A\ < A}. Hence, it will have at most one positive
eigenvalue.

Based on the Horodecki criteria [40], the CHSH-breaking condition is determined by A; + A; < 1where
Ais Aj(i = j) are the two largest eigenvalues of H. Therefore, from (B.3), the CHSH-breaking condition is given

by 2a2X] + A; < 1, where )\, is the largest eigenvalue of H' over all choices of R.
For the case of the amplitude damping channel with \y = A\, = \/p, s =p, s =1 — p,

H = —p(1 — p)a’a+ (1 — a?)b'b, (B.4)
where a = {aRs3;, aRs;, Rss — (1 — o)} ,and b = {0, 0, 1} . Thelargest eigenvalue of H'is \; = 1 — o?
obtained when a L b. Hence the CHSH-breaking condition will be given by
20p+1—at=a?2p—-1)+1< 1. (B.5)

Asaresult, p < % is the CHSH-breaking condition for the amplitude damping channel. Remarkably, |¢) will
not be CHSH-local when passing through an amplitude damping channel when p > 1/2aslongas o = 0 and
R33 = 1 — a?. Therefore, the maximally entangled state is not more robust against the noise of the amplitude
damping channel than some other partially entangled state. It stands to reason that CHSH activation of the
amplitude damping channel occurs using partially entangled states.
Similarly, for theloss channel with \y = A\, = A\ = p, t; = 1 — p, H isgivenby:
0 0 ap(l — p)Rs;
1 — a? 0 0 ap(l — p)Rs; , (B.6)

ap(l — p)Rs; ap(l — p)Rs 2p(1 — p)Rss + V1 — a?[p* + (1 — p)?]

the largest eigenvalue \; = 241 — o?p(1 — p) + (1 — a®)[p? + (1 — p)*]isachieved when R;; = 1. We
have the CHSH-breaking condition

_ 2
1+20 - V1-a)|a —p>2—<z+J1—a2><1—p)+—“;‘““ <1, (B.7)

(@t s/ ica

2

which gives p < L

V5 -1
pPs—

passing thorough aloss channel at p = % Hence, in this case, nearly product states with & — 0 are much more
robust than the maximally entangled state.

; therefore, the CHSH-breaking condition for the loss channel is

,which is attained when @ — 0. Notably, maximally entangled state | &) becomes CHSH local when

Appendix C. CHSH-breaking conditions for the erasure channel

Since the erasure channel in (13) maps a qubit system to a qutrit system, the Horodecki criterion [40] cannot be
directly applied. However, since the channel is basis-independent, we only need to check the CHSH-breaking
condition of state [¢) = A|00) + /1 — X|11)with A > 1/2.
Consider the measurement M}, M;*, N, N with spectrum {1, —1}, where Ml“(‘z) acton the qutrit system
and N/}, act on the qubit system. We can assume M, to be of the following form:
my mp 0
mypy Myy 01 (C 1)
0 0 =1
Without loss of generality, we take 71233 = 1for both M;* and M;". This gives us
Tr(Bp*B) = p Tr(B'p'*8) + 2(1 — p)Tr(NE pp), (C.2)

where B = M* @ (N? + NP) + M @ NE — NPyand B = m* @ (NF + NP) + mf* @ (NE — NF)
with mf(*z) beingthe 2 X 2 block matrix of Ml?2>' In (C.2) we have defined

9
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p/AB = [V (D], pB = Tryp8 = (3\ . _0 )\). (C.3)

The maximum possible value of the first term in (C.2) given by the Horodecki criterion is
241 4+ 4A(1 — A).This maximum can be achieved by the measurement settings N; = o,, N, = 0y,
m; = cosfo, + sin fo,, m, = cosfo, — sin fo,, where cos = 1//1 + 4X(1 — \).Notice that this choice of
measurements also maximizes the second term with the value 2\ — 1. Hence, the CHSH violation is given by

2T+ 401 -2 + (1 —p@r—1) <2 (C.4)

One can check that when p < 1/2, the CHSH Inequality holds for all quantum states |1)). Therefore, the erasure
channel is CHSH-breaking for p < 1/2.
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