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Abstract

Machine-learning driven models have proven to be powerful tools for the identification of phases of
matter. In particular, unsupervised methods hold the promise to help discover new phases of matter
without the need for any prior theoretical knowledge. While for phases characterized by a broken
symmetry, the use of unsupervised methods has proven to be successful, topological phases without a
local order parameter seem to be much harder to identify without supervision. Here, we use an
unsupervised approach to identify boundaries of the topological phases. We train artificial neural nets
to relate configurational data or measurement outcomes to quantities like temperature or tuning
parameters in the Hamiltonian. The accuracy of these predictive models can then serve as an indicator
for phase transitions. We successfully illustrate this approach on both the classical Ising gauge theory
as well as on the quantum ground state of a generalized toric code.

1. Introduction

Identifying phase transitions is one of the key questions in theoretical and experimental condensed matter physics
alike. For the experimental characterization of thermodynamic phase transitions, there exists an excessive amount of
possible tools, ranging from system specific, like the study of the conductivity in an electronic system, to very generic,
like the specific heat. The latter is particularly appealing as it does not assume any prior knowledge: for example,
structural transitions, the onset of magnetism, or the transition to superconductivity, all show up in this generic
probe. The study of the specific heat is also a standard tool for the theoretician, especially given its generic power.

For quantum phase transitions [1], an equally generic tool as the specific heat for thermal transitions is the
fidelity susceptibility. One investigates the derivative of the overlap ds(¢ (G + €) [ (8)) [2] of two
infinitesimally separated ground states |1 ((3)) as a function of some tuning parameter 5. While this probe is in
principle very powerful [3—6], it is typically hard to evaluate as one has rarely access to the full wave-function. At
least not for most of the approximate numerical techniques and especially not in experimental studies. This
raises the question if one can replace the fidelity susceptibility with a tool that is equally unbiased, generic, and
accessible to typical numerical and experimental techniques.

In arecent publication some of the present authors introduced such an algorithmic method for classical
systems with an order-parameter signaling an (arbitrary) symmetry breaking [7]. Here we demonstrate that one
can successfully generalize this method to problems without alocal order parameter, i.e. systems with a
topological character. Moreover, we show that one can straightforwardly extend [7] to the quantum realm.

The method is based on the analysis of the accuracy of a predictive model. The central idea is to distill a
predictive model that relates input data from numerical or experimental studies to the output in the form of a
known tuning parameter such as the temperature or a parameter in the Hamiltonian 3. Typically, one infers this
predictive model via machine-learning techniques in the form of neural nets. The basic idea, however, is
independent of the specific inference technique. In a next step, the accuracy of the predictive model is analyzed
via the comparison of the predicted to the known value of the tuning parameter 3. In particular, we show the
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Figure 1. Local constraint of Ising gauge theory: upper left panel shows an example ofa T = 0 state where the gauge condition

[1; of = lismetforall plaquettes, lower left panel shows the corresponding dual map, where the spins are mapped on Wilson loops
that are uninterrupted in the case of zero-temperature states. Upper right panel shows an example ofa T = oo state, where the gauge
condition is violated, the lower panel shows the corresponding Wilson loops with breakages at the places the plaquette condition is not
met.

derivative of the prediction accuracy with respect to the tuning parameter to be an equally sensitive indicator of a
phase transition as the fidelity susceptibility.

To illustrate our generalization of the methods of [ 7], we investigate two generic models hosting interesting
thermodynamic phases without a local order parameter. First, we investigate the finite-temperature cross-over
in Wegner’s Ising gauge theory (IGT) [8—10] to show that we can analyze an interesting classical problem
without alocal order parameter. Second, we broaden the scope by taking the step from the IGT to a generalized
toric code problem [11, 12] showcasing the applicability of the method to quantum problems.

2. The Ising gauge theory

Wegner’s Ising gauge theory (IGT) is a spin model defined ona N x N square lattice with spins placed on the
lattice bonds [8-10, 13]. It is described by the Hamiltonian

Hgr = -1Y_ [] o} (D

p icp

where Jis a coupling constant, p refers to plaquettes on the lattice (see figure 1), and o7 is the Pauli matrix
describing a single spin-1/2. Periodic boundary conditions are imposed. The ground state of this Hamiltonian is
ahighly degenerate manifold, an arbitrary superposition of all states that meet the condition that the product of
spins along each plaquette is equal to 1. Ata finite temperature T > 0 the local constraints [[;c, of = lare
violated (see figure 1). The IGT does not have a finite temperature phase transition. However, for finite system
sizes one can find a crossover temperature, T = 1/(k(3") defined by the appearance of one plaquette with

[Tic, 0% = — 1, resulting in the scaling T* ~ 1/1n(2N?) [12, 14]. Matters are further complicated by the fact
that the ground-state manifold cannot be characterized by alocal order parameter [15, 10] owing to alocal gauge
degree of freedom. We come back to this point below.

To check whether a given spin state is in the IGT ground-state manifold, one has to verify that the condition
[Tic, o7 = lismet for all plaquettes in the lattice. Equivalently, one can use the duality map to analyze the phase
transition: we connect the edges of the lattice that contain spins with the same orientation and form loops. The
IGT constrained phase then has the property that all these loops are closed. Whenever the constraint is violated it
results in an open loop [10, 16, 13], see figure 1.

Distinguishing high and low temperature states of the model (1) is a well studied test case for machine
learning recognition of phases of matter [ 14]. As one can see from figure 1, the IGT constitutes an interesting
example where the phases are hard to distinguish visually without being a priori familiar with a local restrictions
or the dual map. While an supervised approach is immediately successful at distinguishing the high and low
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Figure 2. We show the difference of the network prediction of 3.4 and assigned label Biapet Bpred — Brabel as a function of Biapel for
system sizes N = 4to N = 28. The dashed lines denote the position of the crossover inverse temperature 3" as determined by the
density of states method.

temperature phases [14], unsupervised approaches did not succeed without an explicit recipe what type of
restriction to look at. There has been significant progress in this direction, but a fully general approach is yet to be
found [17-24]. While methods like principal component analysis, clustering and variational auto-encoders have
proven to be successful to determine the phase transitions in spin models possessing an order parameter [25],
systems without order parameters still represent a challenge.

Here we show how the method introduced by Schiifer et al [7] can be generalized to systems without alocal
order parameter. One first pre-trains a neural network to relate a spin configuration {S} g, , to the (inverse)
temperature J,pe1, at which the configuration was sampled. After this initial training, the performance of the
estimator is assessed with respect to the true value. The derivative

0
OB1abel

is maximal where the estimator performs worst. In other words, a local maximum in D((},p.) indicates a phase
transition or cross-over temperature (31, While this method does not in principle rely on alocal order
parameter, it has been shown that the network picks up on the magnetization pattern [7]. It was therefore
unclear if one can generalize this strategy to the current problem. Here we show that this approach is valid even
for phases of matter that do not contain an order parameter, or a finite temperature phase transition.

Our approach differs from prototypical unsupervised machine learning techniques, such as, e.g. principal
component analysis, t-distributed stochastic neighbor embedding (t-SNE), or k-means clustering, since a fully
supervised subroutine, namely a regression on the labeled system parameters, is employed. However, we
intentionally refer to the approach as an unsupervised learning scheme, as the method aims ultimately to infer
the phase diagram of the physical system and not its parameters and the algorithm thereby requires no prior
knowledge of the phase labels, the number of different phases or character of the phase transition. In fact, the
derivative (2) has generically a stronger signal when the parameters in the supervised part of the protocol are not
learned up to high precision.

We create sample configurations of the IGT model and label them with 5 = 1/(kT). We traina
convolutional neural network to predict 3 given an IGT configuration as an input. Our neural network consists
of 2 convolutional and 2 dense layers and was trained on 2 x 10° configurations for 100 different values of 3 (for
details see appendix A).

In figure 2 we show how the difference between the true and predicted inverse temperatures Bpreqa — Biabel
behaves as a function of the true 3, for seven different system sizes N = 4, 8, 12, 16, 20, 24, 28 (the total
number of spins is 2N?). We see that the behavior of the prediction is not uniform for all inputs and, in fact, we
observe that for all systems sizes there exists a different finite 3 above which the network has difficulties to
identify the correct Bjape- In figure 3 we show D(S)ape1) which we evaluated as

ﬂpred (S }51:;1) - /Bpred ( S}Si;bil )

Blabel = Blabel
where sampled at discrete 3., ;. For all system sizes we observe a presence of a peak that indicates the position of
the largest change in the difference between true and predicted (3. The peak becomes less recognizable with

increasing system size, which is consistent with the fact that the critical 3" keeps increasing with growing system
size and in the infinite system limit the crossover behavior completely disappears.

D(Brabel) = Bpred({S}5,,,,) 2

D(Brabel) ~

3
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Figure 3. Derivative of the output of the predictive model, D(f}ape1), as a function of assigned labels Fjp for system sizes N = 4 to
N = 28. The dashed lines denote the position of the crossover inverse temperature 3 as determined by the density of states method.
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Figure 4. Positions of critical 3" as a function of a system size N. We show the scaling obtained from the unsupervised learning method

and the scaling obtained from density of states in blue and orange respectively. The shaded areas represent the error bars. Error bars
correspond to standard deviation from the mean * evaluated by averaging over 3" predicted by five separately trained neural nets.

The neural network predicts a continuous parameter (inverse temperature) for our model and we observe a
change of behavior at some critical value. We show in figure 4 the determined crossover temperature 5" asa
function of system size. For the system sizes we were able to test numerically we recover logarithmic scaling as
expected for the crossover temperature [14, 26].

To independently confirm the neural network predictions, we can analyze whether we can identify the
physics of what the network is learning and reproduce its predictions by another physical model. From the
training set, we can construct a density of states distribution, €. In particular, the density of states can be written
asa function of energy, E, and inverse temperature, 3

M
> on=10E.E,03,3,

€(B, E) =
Zanléﬁ,ﬂn

3)

Here, 6, ;,is the Kronecker-delta symbol (6, , = 1fora = band ,;, = 0for a = b), E, (3,) is energy (label) of
the nth configuration in the training set and M is the number of configurations in the training set. We show the
distribution € obtained for the system size N = 8 (128 spins) in figure 5.

We use the distribution (3) to calculate the most likely 3 =: 3eq for each configuration at a given energy,
which immediately allows us to evaluate the relation between the assigned 3 and [,.4. Using the density of states
we are able to reproduce the behavior in figure 3 (see appendix A). We show the detailed calculation and the
dependencies of the predicted Bp,eq and its derivative D(Bipel) as a function of the true By, in appendix A. This
gives us a numerical evidence that the network is learning the density of states distribution shown in figure 5. We
identify the logarithmic scaling (with system size) of the critical 5 predicted from the density of states (shown in
blue in figure 4) analogously to the predictions obtained from the neural net model.
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Figure 5. Density of states distribution € (3, E) of the training set as a function of inverse temperature 3 and energy E. The plot above
has been generated for system size N = 8.

Another unsupervised approach that has proven to be successful for both classical and quantum systems is
the confusion scheme introduced in [18]. We compare both approaches in appendix C and show that the
confusion scheme is not suitable for the example of IGT studied here.

3. The toric code and its generalizations

So far we have analyzed the performance of our method on the cross-over of a classical spin-1/2 model. When
going to quantum models, two complications arise, related to the input and output of our predictive model. For
classical systems, simple spin configurations are the natural input. For quantum systems, generically
entanglement in the form of non-classically correlated configurations plays a key role. Consequently, the choice
of training data needs to either reflect some prior knowledge of the system, or one has to sample over various
classical projections of the entangled wave function. On the output side, one can either target a finite-
temperature transition, or investigate a quantum phase transition at zero temperature. In the former, the output
of the predictive model stays the same: 3,,,.q, the inverse temperature. For zero temperature transitions, one can
still investigate a single-parameter family of Hamiltonians H(/3). The obvious prediction task is then to
reproduce the tuning parameter (3, rather then the temperature.

We now turn to a concrete model of a quantum phase transition in a system without a local order parameter.
The obvious generalization of (1) is the application of a transverse field [9, 13, 27]

HTR:_ZHGf_gZU;C‘ (4)
P 1

icp

The model above is very well studied, has a confinement-deconfinement transition at a critical g*, and is a
working horse for the study of Z, spin-liquids. Instead of directly working with this simple model we go beyond
(4) in two ways: (i) We restrict ourselves to a subset of gauge-invariant ground states by moving to the toric code
[11]. (if) We generalize the transverse field to allow for an exact solution. We detail both steps in the following.

The IGT of equation (4) has alocal Z, gauge degree of freedom. The generators of this gauge transformation
are the vertex operators

Ay = H Uf) )
1€5

that consist of a product of o, operators along a vertex, s, of the lattice. The geometry of the vertex operator is
illustrated in figure 6. The operators A, commute with the Hamiltonian, i.e. [Htgr, A;] = 0 for all verticess. In
other words, one can obtain an eigenstate by changing the sign of the classical o-variables of another eigenstate,
aslongas one does so for all spins connected to one vertex. The toric code Hamiltonian

Hrc= =Y A: + Her = —Y A — »_ By, (6)
s s P

elevates the generators of the gauge transformation to a term in the Hamiltonian. As a consequence, the ground
states of the toric code correspond to the gauge-invariant ground states of Hrg [27]. For our numerical purposes
below, we largely benefit from the exact solution of the above Hamiltonian: we can write one of the four (un-
normalized) ground states as [28]
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Figure 6. Illustration of plaquette, By, and vertex, A,, operators in the lattice.

[1¢) = < 10+ Bplos), @)

where |0, ) is a reference state with all spins up in the o™ basis. Then, applying products of Pauli z-matrices along
the two non-contractible loops yields the other three orthogonal ground states. We can easily see that the ground
states are indeed gauge invariant by applying gauge transformations, obtaining A;|TC) = |TC).

Applying a transverse field a spin-model typically excludes an exact solution. The present case is no
difference. However, in a recent publication, Chamon and Castelnovo introduced the following generalization
of the toric code [12, 26, 29, 30]

—BY Ao} B Xiof
), (®

HZHTC—i—Ze iep Z—ZAS+Z(—BP+ZG iep
s s P s

where \; € [—1, 1] describes the particular configuration of added background fields and 3 > 0 characterizes
their amplitude. A transition to a topologically trivial phase occurs at a critical value of the field strength /3. The
field configuration ); influences the critical value (.. A detailed analysis of this phase transition has been
provided in [30].

To finish our discussion of these exactly solvable models we write the ground state of (8)

o) — \/%egzix,vgfn@ = 3 e X Aeitp,), )

1
‘/7 heH
This ground state is four-fold degenerate when periodic boundary conditions are considered [28]. We denote
with H the abelian group whose elements / are all possible operations defined by the action of products of
plaquette operators on an initial (reference) spin-configuration |0,). By o7 (h) we denote the eigenvalue of the
operator o} on the eigenstate |0, ). As a consequence, the term o7 (h) can take the values 1. The normalization
factor, Z corresponds to the partition function for this ground state and is given by
Z= 3 LA,
heH

With these considerations we are now in the position to show that the analysis of the predictive model can
point out the topological phase transition of this quantum model as well. Unlike in the IGT, discussed in the
previous section, the highly entangled ground states of the modified toric code model (8) are not fully
characterized by a spin configuration alone. On the other hand, equation (9) provides a closed analytical form
for the ground states of the family of the Hamiltonians (8). In addition to that, these ground states are only four-
fold degenerate in the topological phase. We take advantage of the knowledge of the modified toric code ground
states and show this to be sufficient for identification of the phase transition from the predictive model.

3.1. Projection onto spin configurations
We consider a projection of the ground states of the Hamiltonian (8) onto the o, and o, bases. These two types of
projections correspond to experimentally accessible measurements and we show that both allow us to detect the
topological phase transition of the full quantum model. As for the IGT cross-over analyzed previously, we are yet
again in the situation where we are able to input a configuration into the predictive model and ask it to predict a
continuous parameter.

There are two crucial differences here: first, we are considering a zero temperature topological phase
transition that is driven by the applied field strength (. The second difference lies in the behavior of the projected
spin configurations in the two phases. In particular, we are able to draw parallels to phase transitions of classical
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spin models. As we elaborate below, choosing a basis to project on corresponds to mapping the phases of the
quantum model to phases of a specific classical spin model.

3.1.1. The o,—projection

Let us first consider the projection onto the o, basis. We notice that the ground state (9) represents a
superposition of x-spin-configurations |S;,) := h|0), for all elements of the group H. All states |S,) fulfill the so-
called closed loop condition

AqlSn) = |Sn) (10)

for all values of 3. In connection to the IGT, this corresponds to the condition of gauge invariance. More
concretely, local constraints are imposed, that the product of o, eigenvalues around a vertex is equal to one. The
value of the field strength, 3, influences the weight of a given spin configuration (see equation (9)). Therefore, the
probability to obtain a particular configuration |Sy) after projection onto o,-basis is given by

BT it (h)

e pefTihi®

p(Sw) = [(SHTB) P = (1D
We can understand the physics of the o, -projected ground state by first considering limiting cases of the field
strength 3. When 8 — 0, the ground state (9) corresponds to the ground state of the pure toric code
Hamiltonian (6). Therefore, when projected onto the o, basis, all possible |S,) are equally likely (since all |S,) are
weighted equally in the full eigenstate). When 8 — oo, on the other hand, all configurationsbut |S) = |0} are
exponentially suppressed and hence, the projected spin configurations are always ordered.

Thus, what used to be a topological phase transition of the full quantum state is now a transition from
disordered spin-configurations (3 small) to an ordered spin-configuration (0 large, all spins up). We observe
that, provided there is a finite 3 at which the transition between ordered and disordered configurations
manifests itself, we obtained a phase transition that shows resemblance to the phase transition of the 2D Ising
model. We show that indeed the 2D Ising model and its phase transition can be recovered by a simple change of
variables, see appendix C.

Let us now explore the topological phase transition in the toric code model using the unsupervised learning
method we introduced above. We train a neural network on the projected o, configurations labeled with the
field strength, 5. We used a network consisting of two convolutional (100 filters, kernel size 3 and 2), one dense
layer with 100 neurons and one dropout layer with dropout rate 0.15. We train the neural network on 59950
configurations containing 100 different values of S between 0 and 1. All the simulations were performed for the
system size N = 20 (800 spins). Once the model is trained we apply it on 2000 new configurations for 30
different values of 3 and evaluate the derivative D(0),pe1) (2) of the outcome, see figure 7. We show D(Oape) for
six example field configurations. The field configurations correspond to different distributions { \;} and are
detailed in appendix C. As shown in [30] the position and the existence of the phase transition is strongly
dependent on the distribution { \;} of added fields.

It was shown in [26] that the topological phase transition of the generalized toric code model can be
determined from the behavior of the fidelity between two ground states with slightly varied field strengths

(66 — 0)
Fy = (U(B)IW(B + 60)). (12)

In other words, we calculate the overlap of two ground state wave functions with applied fields whose
magnitudes are very close to each other. We can indeed observe a change in the behavior of the overlap in the
neighborhood of the phase transition. The rate of this change is better analyzed by studying the derivative of the
quantity in equation (12), the so-called fidelity susceptibility

0*InF
Xp= o | (13)
T000) Ly

We observe in figure 7 that the dashed lines determined from fidelity susceptibility calculation are in good
agreement with the maximum of the peaks of the derivative D(0,p) of the predictive model. We show details of
the fidelity susceptibility calculation in appendix C.

3.1.2. The o —~projection

We can ask whether a particular projection is necessary to determine the topological phase transition from the
spin configurations alone. Let us consider measuring the ground state in the o, basis instead of o, In order to
simplify mathematical expressions let us without loss of generality choose a different state from the ground state
manifold
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Figure 7. Phase transition of the toric code model extracted from unsupervised learning on o,-projected configurations of the ground
states. The derivative D(B)pe1) of the prediction of the neural network model designed to predict the field strength 3is shown for six
different field configurations. The configurations are exemplary illustrated in the bottom panel of the figure. Black circles denote fields
in positive directions (shades of grey denote strength), red circles denote fields in the negative direction and empty circles denote no
fields present. The dashed vertical lines denote the position of the phase transition for a given field configuration evaluated using the
fidelity susceptibility.
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|\I]z> -

e 2T S glo,). (14)

ZZ geG

Here, analogously to equation (9), G is the abelian group of possible products of vertex operators and |0,) is the
reference state. Note that we chose a different reference state. As opposed to equation (9), all spins of the
reference state are aligned in an eigenstate of ¢, instead of o,.. The normalization is denoted with Z, and not
elaborated on further here.

Let us again examine the limiting behavior of 3if o, was measured on every spin of the state (14). If 3 — 0 we
obtain the exact toric code ground state. Projective measurement of o, on this ground state then results in the
configuration S, = g|0), hence the closed loop (plaquette) conditions By|S,) = |S,) are fulfilled. Every
configuration g|0,) fulfilling these constraints is obtained with equal probability. We note here, that the local
plaquette constraints are in exact correspondence to the IGT local constraints fulfilled in the zero temperature
phase.

Applying the same logic as in the case of the o, projection, we can conclude that in the case 3 — oo we arrive
ata completely polarized state, where all spins are aligned in the x-direction. If we now project ontoa o,
eigenstate, the plaquette constraints will not stay preserved. In fact, any configuration in o, basis will be obtained
with equal probability. Hence, we find that in the o, projection the phase transition arises from a quite different
process than we observed before: for small 3 the system would be in the state where loop conditions are
preserved, while for large 3 they are violated. While in the case of o, the phase transition simply changes the
weight for some states from the set preserving loop condition, in the case of o, projection we transition from the
state where all the states preserving loop condition are weighted equally to the phase where the loop constraints
are completely violated. We can therefore draw parallels to the previously examined IGT transition at finite
temperature. In particular, in both cases we observe phases that can be distinguished by checking for a violation
of thelocal closed loop constraints. However, there is a crucial difference between these two transitions. IGT
exhibits a finite temperature cross-over and the violation of local constraints is a result of thermal excitations.
Here, we consider a quantum phase transition at zero temperature, where the local constraints are violated due
to the interplay with added perturbations. In particular, for IGT in the thermodynamic limit there is only a
transition at infinite inverse temperature, 3, whereas the quantum phase transition we consider here occurs ata
finite field strength 3 in the thermodynamic limit as well.

We employ the unsupervised learning technique on the o, projection of the modified toric code ground state
(14) with the strength of the background field F as a label for the supervised part of the protocol. This time our
neural net model consists of two convolutional layers (with 128 filters and kernel size 2) and three dense layers
(with 100, 100 and 50 neurons, respectively).

We show in figure 8 the results for N = 4 (32 spins) and two different field configurations of the 6 field
configurations defined in appendix C and previously studied on a larger lattice for the x-projections. The
reduction of the system size and number of field configurations presented here are a consequence of

8
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Figure 8. Phase transition of the toric code model extracted from unsupervised learning on o_-projected configurations of the ground
states. The derivative D(1,be1), Of the prediction of the neural network model designed to predict the field strength 3is shown for 2
different field configurations as a function of assigned [3j,¢1. The configurations are illustrated in the right hand panel of the figure.
Black circles denote fields in positive direction (shades of grey denote weaker field strength). The dashed vertical lines correspond to
the position of the phase transition determined using fidelity susceptibility.

constructing projections onto the o,-basis from the ground state containing o, fields: mixed 0,0, terms make
Monte Carlo update computationally significantly more expensive (for details see appendix C).

We note here, that for both o, and o, projections we limit ourselves to a single topological sector with the
choice of the ground state in equation (9). Since the other topological sectors exhibit qualitatively the same phase
transition at the same transition point the discussion above can be extended to any ground state within the
topological sector.

3.2. Phase transition determination from the stabilizer expectation values

Finally, we discuss on how to obtain the topological phase transition in the toric code model by extracting
necessary information by measurements that can be readily performed on the quantum state at hand and do not
require projections onto the spin configurations. It was shown in [30] that the behavior of the expectation values
of the stabilizer operators are intimately related to the position of the topological phase transition in the toric
code model. We use our predictive model to evaluate the position of the phase transition from the expectation
value of the stabilizer operators to offer an alternative method to determine the position of the phase transition.

As in the previous sections, we train a neural network to predict the value of the field strength amplitude, .
This time we use as an input the expectation value of the plaquette operator, (B,) (with 3as alabel). Then we use
the network to predict the field strength 3 for the expectation values of B, evaluated with respect to the new set of
quantum states. We use a neural network with two dense layers (with 20 neurons each). The derivative D(S}ape1)
of the predictive model is shown as a function of field strength for six distinctive field configurations in figure 9.
We again compare to the position of the phase transition obtained by fidelity susceptibility method (dashed
lines) and observe an excellent agreement. As in the case of configurational data, we used the topological sector
defined by the ground state in equation (9). Our result is again independent of the state in the ground state
manifold, as all ground states are locally indistinguishable in the topological phase. As a consequence, the local
expectation value (B,) does not depend on the topological sector examined.

While the connection between expectation values of stabilizer operators and the position of the phase
transition have not been shown analytically, another numerical evidence was provided in [31]. The authors
examine direct detection of anyons, a process that can be mapped onto the expectation values which we
investigated here. The presence of anyons is then immediately tied to the existence of topological order. We
elaborate on the connection to the present work in appendix C.

4. Discussion

Unsupervised machine learning techniques for phase classification in condensed matter physics are potentially
powerful tools for the discovery of new quantum phases. Due to the lack of local order parameters, phases
exhibiting topological order present a challenging task for unsupervised methods. In this work, we have shown
that a novel unsupervised method, namely the analysis of predictive neural network models [7], can reliably
detect the violations of topological order, or a topological phase transition should it exist.
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Figure 9. Phase transition of the toric code model extracted from unsupervised learning on expectation values of a stabilizer operator,
(By), in the ground state. The derivative D(B1aper) of the prediction of the neural network model designed to predict the field strength 3
is shown for six example field configurations. Black circles denote fields in positive direction (shades of grey denote a weaker field
strength), red circles denote fields in negative direction and empty circles denote no field present.

Topologically ordered states have been particularly challenging for unsupervised learning techniques,
because the quantity characterizing topological order is inherently non-local and hard to identify from raw data.
In the method presented here, we trained the network on an arbitrary continuous parameter associated to the
state and then analyzed the errors in the network predictions. We presented numerical evidence that these
prediction errors are signatures of a phase transition. We showed that this conclusion was independent of the
particular type of phase transition present in the system and the type of the input data. To determine which type
of phase transition is present, applying our method in conjunction with principal component analysis [17],
variational auto-encoders [25], or confusion schemes [18, 21] that all succeed in determination of phase
transition governed by local order parameter can be used as a guideline.

Providing the resolution to the problem of finding the cross-over temperature in the IGT and its
generalizations in an unsupervised manner is the first step towards developing reliable techniques that can be
applied to study the models whose phase diagrams are not yet fully understood.
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Appendix A. IGT: predictive model

We created the samples used for training (like those shown in figure 1) of our model using Monte Carlo
simulations. We created data for system sizes N x N x 2with N € {4, 8,12, 16,20, 24, 28}. For each system
size we created 100 different values of 3 € [0, 5]. We generated 20 000 configurations for each pair [ 3, N]. The
neural net we used consists of 2 convolutional (128 filters, kernel size 3) and 2 dense layers (300 and 100 neurons,
respectively). We observed that our method is flexible with respect to the hyper parameters of the neural
network. However, too shallow networks that predict the same average 3 for all states inside and outside of the
topological sector should be avoided.

We trained the network by minimizing the mean-squared-error loss function

Lmse(ﬁpred - 5label) = %Z(ﬂpred - 5label)2: (A1)

where 3,,.qis the 3 determined by the network and By, is the label of the given input sample, 7 is the batch size.
The predictions of 3 by the network and their divergences are shown in figures 2 and 3.
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In order to evaluate the error bars of the neural net predictions, we repeated the training procedure outlined
above for 5 separate models (identical construction, separately generated training sets). Then we evaluated
standard deviation of the critical 3".

We can replicate the predictions achieved by a neural network using a density of states based model as
explained in the main text. Let us consider lattice configurations (training samples) X,, with their assigned
inverse temperature labels 5, = Bapei(X,,)- We can evaluate an energy, E,, of each of these configurations using
the formula

E=-]y_[]7% (A2)
p

iep

where the first summation is over all plaquettes, p, whereas the second summation is over spins within each
plaquette. For convenience we choose ] = 1. Then we can construct the density of states distribution of the
training set

N
> on—10E.E, 9.5,

6(ﬁ> E) =
ZnNzléﬂﬁl

(A3)

Here, §,,;, is the Kronecker delta symbol (¢, , = 1fora = bandé,; = 0for a = b), E,, is energy for the
configuration X, evaluated using formula A2 and N is number of configurations X,, in the training set. We can
write the energy distribution in the form above because the energy of the lattice configuration, Eis discrete by
construction and (3is discretized in steps as explained above. An example of this distribution is shown in figure 5
for the system size N = 8.

Havingaccess to the energy E,, of a given configuration X,,, we can then evaluate the average (3 of all states
with energy E, which we denote by 5% for a configuration X, in the training set

ZnN: 16E,E,l /611

B (E) =
Yo 105 E,

(A4)

The function above predicts the value of 3 which is most likely for a given energy, E, given the energy distribution
of the training set. We can use the function (A4) to determine the relation between assigned labels, 3, and values
of @ predicted by our model

S B (Em) b,

M
Zm: 1617, B

BE(B) = , (A5)

where M is the number of configurations X,,, in an arbitrarily chosen test set. Using equation (A5) we can predict
the estimated /3 for a range of true labels. In figure A1 we show the difference between true and predicted Sasa
function of true 3. In figure A2 we show the derivative of the estimated 3 as a function of true 8. Comparing with
figure 3 we see that our model based on the density of states in the training set is reproducing well the actions of
the neural net model we introduced in the main text. We have used maxima determined by the density of states
as a dashed-line reference for the position of the transition in the main text.
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Appendix B. Toric code: predictive model

B.1. Mapping to Ising model
The projection of the modified toric code ground state on the o, basis can be understood by mapping to a
classical Ising model. Let us examine the ground state of the toric code with fields (9)

S e XAt plo,), (B1)

1
) = —
zZ heH

We perform a projection of |¥) onto the o, basis. As stated in the main text, the outcome of the projection are the
configurations |S;,) fulfilling the closed-loop condition A|S;,) = |S;). In addition, the probability to obtain |S,)
after projection is given by

eBZ,- Aioi (h)

p(Sw) = [(SWl¥) |* = (B2)

SiepeT AN
The system can be mapped to the classical Ising model as follows [26]. First we notice, that every group element h
uniquely determines the configuration |S;) by applying / to a reference spin configuration, which we choose to
be |0,) (all spins up in x-basis). Then, |S,) = h|0,). In addition, h corresponds to the product of a set I, of
plaquette operators h = [[,.; B,.Every such setof plaquette operators corresponding to a spin configuration
|Sp) can be mapped to the following pseudo-spin configuration: artificial degrees of freedom (pseudo-spins)
0, € {—1,1} areintroduced on every plaquette. The value of the pseudo-spin 6, is determined by I,: if B, € I,
(plaquette flipped) it is equal to —1, else it is equal to one. As a consequence, the original spin-configuration
{07 (h)} (corresponding to |S;)) can be deduced from the pseudo-spin configuration 6, by applying the rule
o; (h) = 6,0,.Here, pand p’ are the two adjacent plaquettes to spin i. The geometry of the mapping is illustrated
in figure B1.

Let us translate the mapping into the calculation of the probability p(Sy,). Inserting the rule o} (h) = 6,0, to
equation (B2) yields

y h oh
edzww’) Tpp 00

_ hy
p(Sw) = p({0"}) = Zw}eﬂap,p’) Top Op0p

(B3)

with J, ,» = ; for the plaquettes p, p’ adjacent to edge iand summing over nearest-neighbors (p, p’). The
pseudo-spin configuration obtained from the group element 4 by applying the explained mapping is denoted by
the parameters {6 1. In contrast, the sum over {6} represents a sum over all possible pseudo-spin
configurations. We recognize the expression (B3) as Boltzmann weight for an Ising model with bond strengths
Jp,pr attemperature T = 1/ (kg (3). The topological phase transition undergone by the studied perturbed toric
code model hence shows the behavior of an Ising phase transition from disordered pseudo-spin configurations
to ordered spin configurations after projecting onto the o, basis.

B.2. Calculation of the fidelity susceptibility
We compare the position of the phase transition found by the neural network to the transition indicated by the
fidelity susceptibility [2]. The fidelity susceptibility is defined as
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Figure B1. Illustration of the mapping to a classical Ising model. The introduced pseudo-spins on the vertices are drawn in blue, the
original spins in grey. The relation o7 (h) = 6,0, holds.

PG + AB)
6(Aﬂ)2 Aﬂzo

XF = > (B4)

where the state |¥(3)) is a ground state of a given Hamiltonian with respect to the parameter (3. For our
particular model, [U(3)) is given in equation (9). It has been shown, that a divergence or maximum of the fidelity
susceptibility xrindicates a second-order symmetry-breaking quantum phase transition [3—5]. Numerical
evidence suggests that topological phase transitions are indicated in the same way [6]. We can calculate the
fidelity susceptibility for the introduced disordered toric model as

1 Shen(SAiof () e i . 7

Xr = Z Z2 > (BS)
o (h))ePTidii)?
RICRL (DL}

We numerically evaluate the expression via Monte Carlo sampling for the different field configurations
examined throughout this work and compare the position of the maximum with the position of the phase
transition found by the neural network. In particular, we calculate the fidelity susceptibility for the following 6
different field configurations:

05 if i mod 2 =0,

‘Config 1’: \; =
e 1 else,
ifi mod3 =1,
‘Config 2: A = 0 25 ifi mod 3 =2,
else,
‘Config 3": \; = —0.5 ifi mod 10 =9,
1 else,
—0.5 if i mod 20 = 19,
‘Config 4: \; =410.25 ifi mod 5 = 4,
else,
‘Config 5: \; = ifi mod5 =0,
1 else,
‘Config 6: \; =1V i. .

The chosen configurations constitute representative examples and incorporate different distributions of
positive, negative and zero fields. The numerical simulations of the fidelity susceptibility for the 6 different field
configurationson on lattices of lengths examined throughout this work (N = 20 and N = 4) are shown in
figures B2 and B3.

The fidelity susceptibility can be connected to the heat capacity of the classical Ising model explained in the
previous subsection, as elaborated in [6] and [30].
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Figure B2. Fidelity susceptibility numerically calculated for a lattice of length N = 20. The different field configurations are illustrated
in the exemplary configuration plots and detailed in equation (B7).
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Figure B3. Fidelity susceptibility numerically calculated for a lattice of length N = 4. The different field configurations are illustrated
in the exemplary configuration plots.

B.3. Numerical simulation of projections

The projection of the ground state of the perturbed toric model onto the o, or ¢, basis is in both cases simulated
via Monte Carlo sampling. To project on the o, basis, we aim to obtain a configuration S;, sampled from the
probability distribution p(Sy) (B3). Such a configuration is reached via a Markov chain. More concretely, we start
with a lattice with all spins up in x basis and construct the Markov chain as follows: in each step (with given spin
configuration Sy,), arandom plaquette p is picked. The decision, whether the plaquette should be flipped and

Sn; — Sn,,, is made viaa Metropolis-Hastings test. The four spins around the chosen plaquette are flipped with
probability

P (i) ENC) SISV CH R S (D)) (B8)
p(Shi)

After thermalization time, the spin configuration Sj, is obtained with probability p(S;,) and a projection is
simulated.

Projecting on the ¢, basis follows the same principle with the caveat that the spin-flip probability is
computationally expensive to calculate. We start from a state in the ground state manifold

14



10P Publishing

New J. Phys. 22 (2020) 045003 E Greplova et al

1 s x
ex 2% 37 ¢l0,) (B9)
\/Z geG

and project on the o, basis. In particular, let us examine the probability to obtain the spin configuration

lzv) = [] 7102), (B10)

ieM

|\Ilz> =

where M is a set of spins that are flipped in the configuration |zy;) with respect to the initial state |0,). Then, the
probability to project on |zy;) is given by

8 : B 2
plaw) = el P = | ZeThrer NG Mg, ShGA) | (B11)
¢ jgc cosh(BA)) [T sinh(BA))

where the closed loops C correspond to the set of spins that are flipped when applying a product of vertex
operators to the intial state [T A|0,) = [];.. 0710,). The sum is over all possible closed loops, hence over all
possible products of vertex operators. Similarly, the set Cy; can be constructed from the closed loop Cby flipping
the spinsin M
I1 of [Tef0:) = IT oflos). (B12)
ieM  ieC icCy
In order to obtain a spin configuration sampled from the distribution p defined in equation (B11), we construct a
Markov chain by starting with a spin configuration |0,) in the o, basis. In each step, a random spin is chosen and
flipped (updating the spin configuration |z;) to |z; 1)) with probability p(z; ; 1)/p(z;). As the computation of the
spin flip probability is expensive, we simulate z-projections only for 2 x 4 x 4 = 32 spins.

The neural network for the predictive model on the lattice with length N = 4 (outcomes shown in figure 8)
consists of two convolutional layers with 128 neurons each and three dense layers with 100, 100 and 50 neurons.
Training was conducted on a set of 157960 examples in total, 144 values of S between 0 and 1. For evaluation of
the trained model to predict the field parameter, the values for 3 were chosen to be 72 discrete steps between 0
and 1. A total of 100800 evaluation examples was generated, data augmentation (rotations, translations, mirror)
led to an additional factor of 100.

B.4. Detection of quasiparticles

We elaborated in the main text, that measuring a stabilizer expectation value contains sufficient information to
indicate the position of the topological phase transition. This behavior can be related to a detection of the
topological phase transition by measuring quasiparticles. More concretely, numerical evidence has been
presented in [31], that a topological phase transition can be indicated by a detection of quasiparticles. For the
toric model, the toric Hamiltonian can be modified such that the ground state contains a pair of quasiparticles

Hy,=— Y B,—Y A+ Y, B, (B13)
p=pl,p2 s p=plL,p2
At the plaquettes p; and p,, the expectation value (B,),, = — 1 measured on the ground state shows the existence

of a quasiparticle. Here, the subscript m denotes that the expectation value is taken with respect to the ground
state of the modified toric code. When adding a phase-transition driving perturbation paramatrized by a field 5,
the position of the phase transition is indicated by a divergence in the derivative d3(B,),, withp € {p;, p,}.Ifthe
added perturbation is of the form

-8 Aiot
Hy— Hy+ > e Z; , (B14)
P
the following relation holds
(Bp) = —(Bp)m- (B15)

Here, the expectation value (B,) is evaluated on the ground state of the model without quasiparticles (9)
examined throughout this work. We conclude that the divergence in the derivative of (B,) indicates the position
of the phase transition. We therefore understand, that the predictive model is able to reconstruct this behavior as
the accuracy of the predicted field strength depends on the slope of the expectation value (B,).

Appendix C. Comparison with the confusion scheme

We compare the introduced unsupervised approach with the similar confusion scheme developed in [18]. We
give here a quick summary of the scheme, for further details we refer to the work of the original authors. As
starting point, one is given (uniformly sampled) data in the range ((,, 8;) and an unknown critical value 53,
separating two phases, with 3, < . < (3. The critical point can be estimated by systematically ‘guessing’. In
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Figure C1. Accuracy P (3.) of the confusion scheme on the IGT problem with N = 12 (blue dots). In grey, the ideal W-shape
indicating a phase transition is shown as comparison. The crossover from ground state to non ground state is at around
B¢ = B¢ = 2.5. Theerror bars are obtained by averaging over ten different and independent Monte Carlo runs for obtaining the data.

particular, one chooses a value 3/ as guess for the critical point and separates the dataset in two parts: all values
smaller than (3, are labeled with 0, all values larger than /3! are labeled with 1. A neural network is trained to
reproduce the labels. This procedure is repeated for all values 3. in the interval (3,, 3;), and the performance

P (L) of the trained networks is plotted and analyzed. The main idea is, that the network performs best when 3.
is chosen to be the critical point. More concretely, the performance has a W-shape, if a phase transition is
recognized (see figure C1). As a consequence, the main difference between our method and the confusion
scheme is that we use a single network and analyze its prediction, while the method of van Nieuwenburg et al
requires separate networks for each point of the phase diagram they wish to check (which might make it less
suitable for high dimensional parameter spaces).

The confusion scheme has proven to perform well on a variety of phase transitions in classical systems and
quantum systems. We employ the confusion scheme on the IGT crossover analyzed in section 2. The network
performance P(/3.) is shown in figure C1 for the system size N = 12. As the typical W-shape is not reproduced,
the position of the phase transition is not recognized. Instead, we obtain a shifted V-shape. We can understand
the result in the following way. The confusion method can easily distinguish between all states with 3 < (.on
one side of the transition, but it cannot distinguish at the states in the ordered sector. More concretely, all
samples in the ordered sector (G > (3.) are in the ground state (no local constraints are violated) and thus
indistinguishable to the networks. In the disordered section, the configurations at different 3. are
distinguishable by different numbers of local plaquette constraint violations. Smaller values of 3lead to alarger
number of frustrated plaquettes. As a consequence, the network is able to distinguish all the states in the
disordered phase.

For this example, a relatively small network architecture consisting of a convolutional layer (12 x 12 = 144
neurons, 5 filters and kernel size 3) and a dense layer with one output neuron was chosen. Some testing with
larger networks showed a similar accuracy curve. Tests on smaller networks showed a different V-shape.
Specifically, the obtained V-shape was not shifted to the disordered phase. Henceforth, the networks were not
able to distinguish the configurations in none of the phases and had to guess randomly. We conclude, that the
application of the confusion scheme to IGT is not straightforward.
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