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Abstract
Quantum channels that breakCHSHnonlocality on all input states are known asCHSH-breaking
channels. In quantumnetworks, such channels are useless for distributing correlations that can violate
theCHSH Inequality.Motivated by previouswork on activation of nonlocality in quantum states,
herewe demonstrate an analogous activation of CHSH-breaking channels. That is, we show that
certain pairs of CHSH-breaking channels are no longer CHSH-breaking when used in combination.
Wefind that this type of activation can emerge in both uni-directional and bi-directional
communication scenarios.

1. Introduction

Themystery of quantummechanics involvesmany counter-intuitive phenomena absent in classicalmechanics.
Themost celebratedmethod for revealing the nonlocal features of quantum theorywas proposed by John Bell in
1964, inwhat is now known as violating a Bell Inequality [1, 2]. In recent years, nonlocality has been identified as
a resource in quantum information theory [3], with applications in quantum cryptography [4, 5], quantumkey
distribution [6] and quantum randomness [7].

In the general case ofmixed states, entanglement and nonlocality appear to be different resources [8]. It has
been shown that quantum entanglement is required to generate nonlocal correlations [9], but entanglement is
not sufficient for a quantum state to violate a Bell Inequality. That is, there are examples of entangled states
admitting local hidden variable (LHV)models [10]. In some cases, nonlocal behavior can still be exhibited after
localfiltering operation [11–13]. This reveals that nonlocal correlations are subtle in form, and they can become
manifest in different scenarios.

In particular, nonlocal correlations are capable of being activated. In general, activationmeans that two
quantumobjects can be combined to retrieve a particular quantum resource that was absent before the
combination. Activation has been studied in the case of quantum channel capacities [14, 15] and quantum
entanglement [16, 17]. Recently, this ideawas also applied to quantumnonlocality. As shownbyNavascués and
Vértesi [18], two states r1 and r2, which cannot individually exhibit nonlocality in the so-calledClauser–Horne–
Shimony–Holt (CHSH) scenario (i.e. two dichotomic observables per site), can nevertheless violate theCHSH
Inequality whenmeasured jointly. Amore general result was demonstrated by Palazuelos [19] inwhich two
copies of a Bell local state ρ can becomenonlocal, a phenomenon known as ‘super-activation’. Other examples
of nonlocality activation and super-activation can be found in [20–24].

These previousworks only considered activation of nonlocality on the level of quantum states. This analysis
can be understood from a resource-theoretic perspective inwhich nonlocality is regarded as a static quantum
resource,manifesting in differentmultipartite quantum states in different extents [3]. Activation then describes
a particular way of harnessing this resource among two ormore quantum states. Alternatively, one could
consider a dynamical resource theory of quantumnonlocality inwhich nonlocality is a distinctive feature of
dynamical quantumobjects, i.e. quantum channels. Quantum channels are of primary importance inmany
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quantum information protocols such as quantumnetwork communication [22], quantumkey distribution [7]
and quantum teleportation [25].While there aremanyways inwhich a a dynamical resource theory of
nonlocality could be formulated [26, 27], one approach involves identifying the nonlocality of a channel in terms
of its ability to transmit nonlocal correlations. In its simplest form, a point-to-point quantum channel ¢A B

distributes nonlocal correlations by sending one-half of an entangled state r ¢AA through the channel and locally
measuring the joint state s r= Ä ¢ ¢idAB A A B AA( )where idX is the identitymap on subsystemX. If the
channel ¢A B is too noisy then sAB will only be able to generate correlations that can be simulated by an LHV
model. If this holds for every possible input state r ¢AA , then ¢A B is called a nonlocality-breaking channel, as
originally introduced by Pal andGhosh [28]. Such channels are analogous to thewell-studied entanglement-
breaking channels, which are those that break the entanglement between sender and receiver whenever they are
used to distribute a quantum state [29].While every entanglement-breaking channel is necessarily nonlocality-
breaking, the results of [30] imply that the converse is not true.

In this paper, we focus on the family of CHSH-breaking channels  . These are channels whose output states
rÄ ¢id AA( ) only generate local correlations when both parties choose between a pair of dichotomic

observables. In section 2we present theCHSH-breaking conditions for several channels. In section 3we
demonstrate activation by combining twoCHSH-breaking channels and analyze this phenomenon as a
nonlocality distribution task in two different situations. The results are summarized and discussed in section 4.

2.Nonlocality andCHSH-breaking channels

ConsiderHilbert spacesA andB whose densitymatrices form the sets D A( ) and D B( ).Mathematically, a
quantum channel is a completely-positive, trace preservingmap   D D: A B( ) ( ) from D A( ) to D B( ).
As a result of Chois theorem [31], a quantum channel acting on a densitymatrix rA can be expressed as follows:

år r= E E , 1A

k
k

A
k( ) ( )†

where the operators Ek{ }are known asKraus operators whichmust satisfy the trace-preserving
constraint å = E Ek k k

† .

A channel ¢A B is called nonlocality-breaking if the output state s r= Ä ¢ ¢idAB A A B AA( ) is Bell local for
every input r ¢AA state; i.e. sAB admits a LHVmodel for all localmeasurements. Thismeans that for any family of
positive operator-valuedmeasures (POVMs) Pa x

A
a x,{ }∣ and Sb y

B
b y,{ }∣ on systemA andB, respectively, there exist

conditional distributions lp a x,( ∣ ) and lp b y,( ∣ ) and shared variableλ such that

òs l l l lP Ä S = p p a x p b ytr d , , . 2a x
A

b y
B AB[( ) ] ( ) ( ∣ ) ( ∣ ) ( )∣ ∣

Since the distributions p ab xy( ∣ ) admitting such a decomposition form a compact, convex set, we can
characterize the distributions by a collection of confining hyperplanes. These hyperplanes correspond to the so-
called Bell inequalities, and their violation in themeasurement statistics s= P Ä Sp ab xy tr a x

A
b y
B AB( ∣ ) [( ) ]∣ ∣

indicates that sAB is not a Bell local state [32]. It is not difficult to show that ¢A B is nonlocality-breaking if and
only if s j j= Ä ñá¢ ¢idAB A A B AA(∣ ∣ ) is Bell local for all pure-state inputs jñ ¢AA∣ with systemA having
dimension equaling ¢A [28].

Nonlocality-breaking channels are a generalization of thewell-studied entanglement-breaking channels
[29]. The latter refers to channels ¢A B such that s r= Ä ¢ ¢idAB A A B AA( ) is separable for every input r ¢AA .
Since every separable state is necessarily Bell local, it follows that every entanglement-breaking channel is
nonlocality-breaking. However, the converse is not true. In [30], an LHVmodel was constructed for states
having the form

s j j r= ñá + - Äj


p p
d

1 , 3AB AB A
B

B

∣ ∣ ( ) ( )

which corresponds to sending jñ ¢AA∣ through the partially depolarizing channel = +¢ X pX XtrA B
d

B1

B
( ) [ ] .

It is known that this channel is entanglement-breaking whenever
+

p
d

1

1B
[33]. However, under projective

measurement the localmodel of [30] holds for values of < - + å+ - =p 1
d d k

d
k d

d

d

1

1

1

1 1
1

large

log

B B

B

B

B

B
( ) ⟶ . In the

case of qubits ( =d 2B ), the depolarization channel is entanglement breakingwhen p 1 3, and yet it is
nonlocality breaking as long as p 1 2. A similar difference in the nonlocality and entanglement breaking
conditions exist even for POVMs. Thus, even on the level of channels, entanglement and nonlocality emerge as
distinct quantum resources.

Given the complexity in decidingwhether a given bipartite state is Bell local, in this paper we restrict our
attention to theCHSH Inequality, which is the only Bell inequality corresponding to the scenario of binary
inputs and binary outputs [34]. Recall that for any set of observables M M N N, , ,A A B B

1 2 1 2{ }with spectrum

2
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-1, 1{ }, the CHSH Inequality says that r Tr 2AB∣ ( )∣ , where

= Ä + + Ä - M N N M N N 4A B B A B B
1 1 2 2 1 2( ) ( ) ( )

is called the Bell operator. As in the general case, a channel ¢A B is calledCHSH-breaking if sAB =
rÄ ¢ ¢idA A B AA( ) cannot violate theCHSH Inequality for any input state r ¢AA , andwewill refer to such states

as beingCHSH local.
To demonstrate activation phenomenon, it suffices to consider qubit channels, i.e. = =¢  A B 2. States

of a qubit system can be expressed as sr = + v1

2
( · )where Î v 3 is called the Bloch vector of the state and

s s s s= , ,x y z( ) is the Pauli vector. In the two-level case, a channel can be characterized as an affine
transformation  on the Bloch vector of the input state [35, 36]. Explicitly, we have

L
=

t
01 , 5( ) ( )

so that

s sL+ = + +  v t v
1

2

1

2
, 6⎜ ⎟⎛

⎝
⎞
⎠( · ) ( ( ) · ) ( )

where t is a real ´1 3 vector andL is a real ´3 3matrix. Furthermore,L can be diagonalized under a proper
unitarymap on the input and output state U Uo i◦ ◦ [28]. For the purposes of decidingwhether or not a
channel is CHSH-breaking, the unitariesUi andUo above can be absorbed by the state andmeasurements in the
CHSH Inequality respectively. Hence, theCHSH-breaking conditions only need to be derived for diagonalL.

A special class of quantum channels called unital channels have the property that = id id( ) . The following
lemma says that for unital qubit channels, one only needs to consider amaximally entangled input to determine
if it is CHSH-breaking.

Lemma1.Aunital channel  is CHSH-breaking if and only if its output state Ä F ñáF+ +id (∣ ∣) does not violate the
CHSH Inequality, where F ñ = ñ + ñ+ 00 111

2
∣ (∣ ∣ ) is themaximally entangled state.

Aproof of lemma 1 is provided in appendix A. For a unital channel represented by the affine transformation
 in the Bloch vector picture, it can be readily seen that =t 0 and the diagonalizedΛ is parametrized by three
real parameters l l l, ,1 2 3{ }. It has been previously shown by Pal andGhosh in [28] that Ä F ñáF+ +id (∣ ∣)
cannot violate theCHSH Inequality for a unital channel  if and only if

l l+  1, 71
2

2
2 ( )

assuming l l l 1 2 3∣ ∣ ∣ ∣ ∣ ∣. Combiningwith lemma 1, we thus conclude that equation (7) provides the
CHSH-breaking condition for any unital qubit channel.

For a general nonunital channel, we knowof no analytical criteria for determiningwhether or not it is
CHSH-breaking, and one typically obtains results by numerically searching over all input states and
measurement settings [28]. Nevertheless, in appendices B andC,we provide analytical conditions forwhen
special classes of nonunital channels are CHSH-breaking.

We now summarize our results of the CHSH-breaking conditions for certain families of qubit channels.

• Depolarizing channeld p, : The depolarizing channel d p, perfectly transmits its input with probability p; with
probability - p1 it throws away its input and outputs a completelymixed state. On a two-qubit state, d p, acts
as:

r r rÄ = + - Ä¢ ¢


p pid 1
2

, 8A
d p
A B AA AB A

B

, ( ) ( ) ( )

where r r= ¢
¢TrA

A
AA( ). Kraus operators for thismap are easily seen to be

s=
+

=
-

-  E
p

E
p

i
1 3

4
,

1

4
2 4 . 9i i1 1 ( ) ( )

From lemma 1, it follows that d p, is CHSH-breaking if and only if p 1

2
.

• Amplitude damping channel a p, : The amplitude damping channel a p, shrinks the x and y components of an
input Bloch vector by a factor p while driving the z component toward+1. It hasKraus operator

= ñá + ñá = - ñáE p E p0 0 1 1 , 1 0 1 . 101 2∣ ∣ ∣ ∣ ∣ ∣ ( )

Note that this is a nonunital channel. Yet, the amplitude damping channel is CHSH-breaking for p 1

2
, as

calculated in appendix B.
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• Loss channell p, : The loss channel l p, perfectly transmits its input with probability pwhereas with probability
- p1 it throws away its input and outputs the state ñ0∣ . On a two-qubit state, l p, acts as:

r r rÄ = + - Ä ñá¢ ¢ p pid 1 0 0 , 11A
l p
A B AA AB A B
, ( ) ( ) ∣ ∣ ( )

and it has Kraus operators

= =
-

ñá =
-

ñáE p E
p

E
p

,
1

2
0 1 ,

1

2
1 1 . 121 2 3∣ ∣ ∣ ∣ ( )

This is a nonunital channel with aCHSH-breaking condition -p 5 1

2
, as shown in appendix B.

• Erasure channele p, : The erasure channel e p, perfectly transmits its input with probability p; with probability
- p1 it throws away its input and outputs aflag state ñe∣ , which is orthogonal to both ñ0∣ and ñ1∣ . On a two-

qubit state, e p, acts as:

r r rÄ = + - Ä ñá¢ ¢ p p e eid 1 , 13A
e p
A B AA AB A B
, ( ) ( ) ∣ ∣ ( )

and it has Kraus operators

= = - ñá = - ñáE p E p e E p e, 1 0 , 1 1 . 141 2 3∣ ∣ ∣ ∣ ( )

TheCHSH-breaking conditions is p 1

2
, as calculated in appendix C.

3. Channel activation ofCHSHnonlocality

In [18] it was shown that there exist twoCHSH local states rAB and r ¢ ¢A B such that r rÄ ¢ ¢AB A B can violate the
CHSH Inequality.We now show a similar nonlocality activation from the perspective of quantum channels.
Unlike quantum states, which are static resources, quantum channels are dynamical resources that can be used
in different ways. Two specific scenarios are discussed in this work.

Unidirectional protocol. Figure 1(b) depicts a unidirectional way for using two quantum channels to
distribute nonlocality betweenAlexis and Bobby. Alexis locally prepares a four-qubit state r ¢ ¢AAA A˜ ˜ and sends

systems Ã and ¢Ã through two different qubit channels,  A B
1
˜

and ¢ ¢ A B
2
˜

. This produces the state

s r= Ä Ä Ä¢ ¢  ¢ ¢ ¢ ¢ id id . 15ABA B A B A B AAA A
1 2 ( ) ( )˜ ˜ ˜ ˜

Figure 1. (a)Original protocol: Alexis sends one particle to Bobby via a CHSH-breaking channel, no nonlocality can be retrieved
under a two-setting-two-outcome scenario; (b) unidirectional protocol: alexis sends two particles to Bobby via twoCHSH-breaking
channels; (c) bidirectional protocol: Bobby sends one particle toAlexis, andAlexis sends one particle to Bobby via twoCHSH-
breaking channels.

4
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CHSHactivation is achieved if this state can violate theCHSH Inequality along the ¢ ¢AA BB: cut when 1 and 2

are bothCHSH-breaking channels.
Bidirectional protocol. Figure 1(c) shows a bidirectionalmethod for distributing nonlocality betweenAlexis

and Bobby.Unlike a unidirectional protocol, bothAlexis and Bobby locally prepare a two-qubit state, and they
each send one of their qubits to the other party through a channel. Thefinal shared state will have the form

s s r rÄ = Ä Ä Ä Ä¢ ¢ ¢  ¢ ¢ ¢ id id . 16AB A B A B B A AA BB
1 2 ( ) ( )

Again, CHSHactivation is achieved if this state can violate theCHSH Inequality along the ¢ ¢AA BB: cut when 1

and 2 are bothCHSH-breaking channels.
In both of these scenarios, CHSHnonlocality of the output state can be detected using the Bell operator:

= Ä + + Ä -¢ ¢ ¢ ¢ ¢ ¢ M N N M N N , 17AA BB BB AA BB BB
1 1 2 2 1 2( ) ( ) ( )

where ¢ ¢ ¢ ¢M M N N, , ,AA AA BB BB
1 2 1 2{ }are joint observables for party ¢AA and party ¢BB . The observables have

spectrum -1, 1{ }, and theCHSH Inequality reads s ¢ ¢ Tr 2AA BB:( ) .We nowdescribe our general approach
for optimizing the value of s ¢ ¢Tr AA BB:( ).

3.1. The see-saw optimization algorithm
ThemaximumCHSH-value for given channels Ä 1 2 can be obtained bymaximizing observables M N,x y{ }
and input states ρusing algorithms like the ones in [18, 37]. For example, consider a unidirectional protocol
using channels Ä 1 2. For afixed input state ρ and observable choicesNy onBobby’s side, one can define

s
s

= Ä +
= Ä -

¢
¢ ¢ ¢

¢
¢ ¢ ¢




F N N

F N N

Tr ,

Tr ,
BB

AA ABA B

BB
AA ABA B

1 1 2

2 1 2

([ ( )] )
([ ( )] )

where s ¢ ¢ABA B is given by equation (15). As shown in [18], the optimal observablesMx for Alexis are given by
l= å ñáM e esgnx i x i x i x i, , ,( )∣ ∣where l= å ñáF e ex i x i x i x i, , ,∣ ∣ is the diagonal representation of Fx. Optimal

observablesNy can be likewise obtained for afixed input state ρ and observablesMx onAlexis’s side. Finally, for
fixed local observables M N,x y{ } (and hence fixed Bell operator ), the optimal input state can be determined by
observing that

s r

r

= Ä

= Ä

 ¢ ¢ ¢ ¢ ¢ ¢

¢ ¢

   

  

tr tr

tr ,
18

AA BB A B A B AAA A

AAA A

:
1 2

1 2

( ) [ ( )[ ]]

[ ( )[ ]]
( )

˜ ˜ ˜ ˜

˜ ˜ † †

where  i
† denotes the adjoint CPmap of i. Thuswe canmaximize s ¢ ¢tr AA BB:( ) by choosing the input state to

be the outer product of the eigenstate associatedwith the largest eigenvalue of Ä  1 2[ ]† † .
We have just observed how for any two of the three problem variables rM N, ,x y{ }, we can always choose the

third so as tomaximize the value of s ¢ ¢tr AA BB:( ). This suggests we perform a ‘see-saw’ algorithm inwhichwe
alternate optimizing s ¢ ¢tr AA BB:( ) over one of the three variables [18]. For channels Ä 1 2, the algorithm is
then as follows:

(i) Randomly initializeMx,Ny, and ρ.

(ii) Update each of the variables rM N, ,x y{ } in the order r r  M Nx y repeatedly by applying the
optimization procedures described above.

(iii) In step 2, it is possible that after reaching a local maxima in the CHSH-value, the algorithm is not able to
improve on theCHSH-value.When the sameCHSH-value is reached, say, 10 times after consecutive
updates of M N,x y, and ρ, we suddenly change the state to r e r er - +1 *( ) with certain probability ε
where r* is some previously fixed state.Meanwhile, we also store themaxima that was reached before the
sudden change.

(iv) Steps 2 and 3 are repeated until the samemaximal is reached repeatedly.

Althoughwe tried different states r* for each channel, we highlight that using a random entangled pure state
sufficed. To do this, we picked r l l= ñáU U* ∣ ∣† whereU and l Î 0, 1( ) are a randomunitary and real

parameter, and l l lñ = ñ + - ñ10 1 01∣ ∣ ∣ .

3.2. Results
For both protocols, we are able to see activation for several combinations of quantum channels. Some of the
activation results can be found in table 1, and the full numerical codewe used can be found in [38]. Our largest
violation is obtained for two amplitude damping channels in a bidirectional protocol, inwhichwe obtain a
CHSHvalue of 2.011 91. Remarkably themaximal violation is obtainedwith two pure states which are partially.

5
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Our numerics give states with concurrences in the range 0.45, 0.67[ ]. Although surprising, it’s not unexpected
that themaximumviolation does not correspond to one usingmaximally entangled states with a concurrence of
1 since, generally speaking,maximally entangled states are not themost robust states against CHSH-breaking
noises. Specifically, for the amplitude damping channel there are partially entangled states with the same
robustness against noise as themaximally entangled one. For amore in depth discussion see appendix B.

It is important to note that every instance of channel activation in a bidirectional protocol provides an
instance of state activation. Indeed, if ¢A B

1 and  ¢B A
2 areCHSH-breaking channel such that

r rÄ Ä Ä Ä¢  ¢ ¢ ¢ id idA B B A AA BB
1 2 ( ) violates theCHSH Inequality, then the states sAB

1 =
rÄ ¢ ¢id A B AA

1 ( ) and s r= Ä¢ ¢  ¢ ¢ idA B B A BB
2 2 ( ) are bothCHSH local, but they can be activatedwhen put

together.
From the aforementioned result of the amplitude damping channel in the bidirectional protocol, we thus

have a state CHSHactivation of 2.011 91. In comparison, themaximal activation value found byNavascués and
Vértesi [18] is 2.023 24, and it was obtained by considering a subset of CHSH-local states that are two-
extendable. In our analysis, we do not have a greater violation, yet ourmethod has led tofinding state activation
results for some symmetric states whichwere not found in [18]. Specifically, for twoCHSH-breaking amplitude
damping channels, we have found a violation of 2.011 72 using CHSH-local states sAB

1 and sAB
2 satisfying the

condition s s=  AB
AB

AB
AB1 2 , where AB is the SWAPoperator betweenAlexis and Bobby’s systems. This

violation is only slightly smaller than ourmaximal violation, and it can be very useful for demonstrating super-
activation of a symmetric CHSH-local state. Namely, by introducing ancillary qubits, we define a new state of the
form:

s s s= ñá Ä ñá Ä + ñá Ä ñá Ä
1

2
0 0 1 1 1 1 0 0 , 19abAB a b AB a b AB

1 2˜ (∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ) ( )

By construction, this state is invariant under the permutation «aA bB (i.e. symmetric), and it does not violate
theCHSH Inequality since s1 and s2 areCHSH-local. On the other hand, a CHSH super-activation can be easily
shown (i.e. s ÄabAB 2( ˜ ) violates theCHSH inequality) according to the following scheme: Alexis and Bobby both
performmeasurements on their ancilla qubits in the ñ ñ0 , 1{∣ ∣ }basis;

• If both ancilla qubits are in ñ0∣ or ñ1∣ , Alexis (Bobby)measures on the A A1 2 (B B1 2) subsystemwith A A1 2 (B B1 2);

• If themeasurement result is ñ Ä ñ0 1a a1 2∣ ∣ ( ñ Ä ñ1 0b b1 2∣ ∣ ), Alexis (Bobby)measures on the A A1 2 (B B1 2)
subsystemwith Mx

A A1 2 (Ny
B B2 2);

• If themeasurement result is ñ Ä ñ1 0a a1 2∣ ∣ ( ñ Ä ñ0 1a b1 2∣ ∣ ), Alexis (Bobby)measures on the A A1 2 (B B1 2)
subsystemwith  MA A x

A A
A A1 2

1 2
1 2

( NB B y
B B

B B1 2
1 2

1 2
),

where M N,x y{ } is the optimalmeasurement strategy for the state s sÄA B A B
1 2

1 1 2 2. Clearly, a CHSHviolation of

´ + ´ =2 2.011 72 2 2 4 2.005 86( ) can be obtained.Hence, we have a four-qubit state sabAB˜ that is CHSH-
local and invariant under party permutation, yet it can be super-activated. By comparison, this scheme uses
fewer ancillary qubits than the analogous example presented in [18].

As another remark, we have obtained a fairly robust activation result with aCHSHviolation of 2.000 31 for
the loss channel at =p 1 2; however the channel becomesCHSHbreaking for < -p 5 1 2( ) . It is

interesting to place this result alongside the findings of [39], where the state s = Y ñáY + Ä ñá- -  0 0AB 1

2

1

4
∣ ∣ ∣ ∣

has been shown to be Bell local under all projectivemeasurements. That is, the loss channel l p, cannot violate
anyBell Inequality at =p 1 2 using projectivemeasurements when themaximally entangled state Y ñáY- -∣ ∣ is
the input state.Whether the channel is nonlocality breaking at =p 1 2 for all inputs is unknown; yet, if this

Table 1.Activation results for both protocols. All of these violations are
calculated in the casewhere the channels are CHSH-breaking.

Protocol Channel 1 Channel 2

Maximum

violation

Unidirectional =a p, 1 2 =d p, 1 2 2.005 41

=e p, 1 2 =d p, 1 2 2.004 84

Bidirectional =a p, 1 2 =a p, 1 2 2.011 91

=e p, 1 2 =e p, 1 2 2.001 64

=a p, 1 2 = -l p, 5 1 2( ) 2.002 11

=a p, 1 2 =l p, 1 2 2.000 31
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were true, the CHSHviolation herewould demonstrate channel activation of general nonlocality (rather than
just CHSHnonlocality) under projectivemeasurements.We leave this as an important open problem to resolve.

3.3. Robustness of activation
Most of our activation results can be obtained evenwhen the channel parameters are larger than the critical
values at which they becomeCHSH-breaking. This highlights a certain robustness to noise in our activation
results, which is crucial for experimentally demonstrating activation of CHSH-breaking channels. Additionally,
themapping of theCHSH-activation region shows that the see-saw algorithm indeed converges for a large
number of points.

To illustrate this activation robustness to noise, we take the case of two amplitude damping channels in the
bidirectional scenario as an example. By tuning the noise parameter p1 2( ) for the two amplitude damping
channels, we calculate theCHSHviolation in the region Îp 0.4, 0.51 2 [ ]( ) with an interval of 0.002, as shown in

figure 2. Since the amplitude damping channel is CHSH-breakingwhen p 0.5, the CHSHviolation here
signifies a valid CHSHactivation, and it is seen to persist in a small region around =p 0.51 2( ) . This in turn,
confirms and supports our activation result in table 1.However, when addingmore noise, there is no guarantee
that our algorithmwill continue to converge. As can be seen from figure 2, some points indicating no activation
are surrounded by points of activation. By a convexity argument, these points of ‘no activation’ can indeed be
activated; however, the figuremerely indicates that the see-saw algorithm failed to converge there.

4. Conclusion

In this paper, we have investigated different qubit channels that prohibit the distribution of CHSH-violating
quantum states. On their own, such channels are useless for any quantum information task that involves CHSH
nonlocality.We provide simple criteria for determining theCHSH-breaking condition for all unital channels,
andwe perform analytical calculations that determine theCHSH-breaking conditions for some special channels
that naturally arise in scenarioswith experimental noise. Ourmain result is that twoCHSH-breaking channels
may no longer beCHSH-breakingwhen used in parallel.We demonstrate this result in two different scenarios.
Interestingly, in the bidirectional scenario, our activation and super-activation results do not use states that are
entangled across both input systems. This is in contrast to other channel activation results inwhich the input
states are entangled.

The activation findings presented here show that certain channels can be used to distribute nonlocality over
long distances only when used in parallel with other channels. These results are particularly useful in instances of
long-distance and noisy quantum communication. However, it remains an open question as towhether there
exist complete nonlocality-breaking channels that can nevertheless be activated. This requires producing local
models for all channel outputs and testing the breakage of all Bell Inequalities.

Figure 2.Channel activation of CHSHnonlocality with two amplitude damping channels a p, 1
and a p, 2

. Themaximal CHSH
violation of 2.011 91 is obtained at p1=p2=0.5, where both channels just becomeCHSH-breaking.
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AppendixA. Proof of lemma 1: CHSH-breaking condition for all unital channels

For two qubits, the CHSHoperator can bewritten as a correlation operator, which is some linear operator lying
in the linear span of s sÄ =i j i j, 1

3{ } . Explicitly, we have

s s s s= Ä + + Ä - a b b a b b , A.11 1 2 2 1 2· ( ) · · ( ) · ( )

where a b,i j are spin directions for Alexis and Bobby’smeasurements and the corresponding correlationmatrix
is given as = Ä + + Ä -a b b a b bB 1 1 2 2 1 2( ) ( ), with rank not greater than two, which indicates that we can
always diagonalize it as:

s s s s= Ä + Ä d d . A.21 1 1 3 3 3 ( )

The proof of theorem1 then follows from the following proposition.

Proposition 1. Let s s= å Ä=T ti j i j i j, 1
3

, be any correlation operator having correlationmatrix tij with rank less
than 3. Then the expectation value rTTr( ) ismaximized by amaximally entangled state.

Proof.Clearly the expectation value ismaximized by some pure state yñ∣ . It then suffices to prove the
proposition for diagonal correlation operators, s s s s= Ä + ÄT d d1 1 1 3 3 3, since any Bell correlation operator
can be converted into this formby local unitaries, and the latter does not change the entanglement of the
maximizing state.Write an arbitrary pure state as yñ = Ä F ñ+R∣ ∣ , where F ñ = ñ + ñ+ 00 11 2∣ (∣ ∣ ) andR is
somematrix satisfying y y yñá =¢ RRTrA

A≔ (∣ ∣) † with y =Tr 1A( ) . Then an application of theCauchy–
Schwartz Inequality gives

y y s s s sá ñ = +T d R R d R RTr Tr A.3T T
1 1 1 3 3 3∣ ∣ [ ] [ ] ( )† †

+ = + d d R R d dTr . A.41 3 1 3( ) [ ] ( )†

This upper bound is attained by taking = R 2, which corresponds to amaximally entangled state.

Corollary 1. If  is a unital channel and  is any CHSH operator, the CHSH value y yÄ ñá Tr id[ ( (∣ ∣)] is
maximized by amaximally entangled state.

Proof.Wehave Ä F F+ + Tr id[ ( (∣ ⟩⟨ ∣))]which is equivalent to F F Ä+ +  Tr id[∣ ⟩⟨ ∣( ( ))]† where † is the
dualmap of  . If  is unital, then s =Tr 0i[ ( )]† , whichmeans that = Ä  T id ( )† is still a correlation
operator having correlationmatrix with rank less than 3. From the previous proposition, the corollary
follows. ,

Appendix B. CHSH-breaking conditions for the amplitude damping and loss channels

Aswe have shown in the previous section, for a unital channel to beCHSH-breaking it is sufficient to show that
the channel is CHSH-breaking for themaximally entangled state. However, this is usually incorrect for general
quantum channels; some counterexamples can be found in [28].

For a nonunital channel, there is no such simple test. Herewe analytically find theCHSH-breaking
condition for a specific class of channels where

l
l

l

=
t

1 0 0 0
0 0 0
0 0 0

0 0

. B.1
1

1

3 3

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

As can be checked, both the amplitude damping channel and the loss channel belong to this class.
For a pure state yñ = Ä F ñl

+UW VT∣ ˜ ( )∣ where l l= ñá + - ñálW 0 0 1 1 1∣ ∣ ∣ ∣with l  1 2, the
correlation function can be expressed as [28]:
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a l a l a l
a l a l a l

l l l a
=

-
-

- + -
T

R R R
R R R

R R R t1

, B.2
11 1 21 1 31 3

12 1 22 1 32 3

13 1 23 1 33 3
2

3

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ ( )

where a l l= -2 1( ) and ÎR SO 3( ) is a real rotationmatrix corresponding to ÎV SU 2 ;T ( ) hence, by
using the orthogonality då =R Rj ij kj ik, we have =H TT†:

a l= + ¢H H
1 0 0
0 1 0
0 0 1

, B.32
1
2
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

where ¢H is not full rank and not positive semi-definite when l l3
2

1
2. Hence, it will have atmost one positive

eigenvalue.
Based on theHorodecki criteria [40], the CHSH-breaking condition is determined by l l+  1i j where

l l ¹i j,i j ( ) are the two largest eigenvalues ofH. Therefore, from(B.3), the CHSH-breaking condition is given

by a l l+ 2 1l
2

1
2 , where ll is the largest eigenvalue of ¢H over all choices ofR.

For the case of the amplitude damping channel with l l l= = = = -p p t p, , 11 2 3 3 ,

a¢ = - - + -a a b bH p p1 1 , B.4T T2( ) ( ) ( )

where a a a= - -a R R R, , 1 T
31 31 33

2{ ( )} , and =b 0, 0, 1 T{ } . The largest eigenvalue of ¢H is l a= -1l
2

obtainedwhen ^a b. Hence theCHSH-breaking conditionwill be given by

a a a+ - = - + p p2 1 2 1 1 1. B.52 2 2( ) ( )

As a result, p 1

2
is theCHSH-breaking condition for the amplitude damping channel. Remarkably, yñ∣ ˜ will

not beCHSH-local when passing through an amplitude damping channel when >p 1 2 as long as a ¹ 0 and
a= -R 133

2. Therefore, themaximally entangled state is notmore robust against the noise of the amplitude
damping channel than some other partially entangled state. It stands to reason that CHSHactivation of the
amplitude damping channel occurs using partially entangled states.

Similarly, for the loss channel with l l l= = = = -p t p, 11 2 3 3 , ¢H is given by:

a

a
a

a a a
-

-
-

- - - + - + -

p p R

p p R

p p R p p R p p R p p

1

0 0 1

0 0 1

1 1 2 1 1 1

, B.62

31

32

31 32 33
2 2 2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

( )
( )

( ) ( ) ( ) [ ( ) ]
( )

the largest eigenvalue l a a= - - + - + -p p p p2 1 1 1 1l
2 2 2 2( ) ( )[ ( ) ] is achievedwhen =R 133 .We

have theCHSH-breaking condition

a a
a

+ - - - - + - - +
- + p p1 2 1 1 1 2 1 1

1 1

2
1, B.72 2 2

2⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( ) ( )( ) ( )

which gives a a- + + - -p ;1 1 1 1

2

2 2 1 2 2[( ) ] therefore, the CHSH-breaking condition for the loss channel is
-p 5 1

2
, which is attainedwhen a  0. Notably,maximally entangled state F ñ+∣ becomesCHSH local when

passing thorough a loss channel at =p 1

2
. Hence, in this case, nearly product states with a  0 aremuchmore

robust than themaximally entangled state.

AppendixC. CHSH-breaking conditions for the erasure channel

Since the erasure channel in(13)maps a qubit system to a qutrit system, theHorodecki criterion [40] cannot be
directly applied.However, since the channel is basis-independent, we only need to check theCHSH-breaking
condition of state y l lñ = ñ + - ñ00 1 11∣ ˜ ∣ ∣ with l  1 2.

Consider themeasurement M M N N, , ,A A B B
1 2 1 1 with spectrum -1, 1{ }, where M A

1 2( ) act on the qutrit system

and N B
1 2( ) act on the qubit system.We can assume M A

1 2( ) to be of the following form:



m m
m m

0
0

0 0 1
. C.1

11 12

21 22

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )

Without loss of generality, we take =m 133 for both M A
1 and M A

2 . This gives us

r r r= ¢ ¢ + - p p NTr Tr 2 1 Tr , C.2AB AB B
B1( ) ( ) ( ) ( ) ( )

where = Ä + + Ä - M N N M N NA B B A B B
1 1 2 2 1 2( ) ( ) and ¢ = Ä + + Ä - m N N m N NA B B A B B

1 1 2 2 1 2( ) ( )
with m A

1 2( ) being the ´2 2 blockmatrix of M A
1 2( ) . In(C.2)wehave defined
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r y y r r l
l

¢ = ñá = ¢ =
-

, Tr 0
0 1

. C.3AB B
A

AB ( )∣ ˜ ˜ ∣ ( )

Themaximumpossible value of thefirst term in (C.2) given by theHorodecki criterion is
l l+ -2 1 4 1( ) . Thismaximumcan be achieved by themeasurement settings s=N z1 , s=N x2 ,

qs qs= +m cos sinz x1 , qs qs= -m cos sinz x2 , where q l l= + -cos 1 1 4 1( ) . Notice that this choice of
measurements alsomaximizes the second termwith the value l -2 1. Hence, theCHSH violation is given by

l l l+ - + - - p p2 1 4 1 1 2 1 2. C.4( ) ( )( ) ( )

One can check that when p 1 2, theCHSH Inequality holds for all quantum states yñ∣ ˜ . Therefore, the erasure
channel is CHSH-breaking for p 1 2.
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