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Abstract
Machine-learning drivenmodels have proven to be powerful tools for the identification of phases of
matter. In particular, unsupervisedmethods hold the promise to help discover newphases ofmatter
without the need for any prior theoretical knowledge.While for phases characterized by a broken
symmetry, the use of unsupervisedmethods has proven to be successful, topological phases without a
local order parameter seem to bemuch harder to identify without supervision.Here, we use an
unsupervised approach to identify boundaries of the topological phases.We train artificial neural nets
to relate configurational data ormeasurement outcomes to quantities like temperature or tuning
parameters in theHamiltonian. The accuracy of these predictivemodels can then serve as an indicator
for phase transitions.We successfully illustrate this approach on both the classical Ising gauge theory
as well as on the quantum ground state of a generalized toric code.

1. Introduction

Identifyingphase transitions is oneof the keyquestions in theoretical and experimental condensedmatter physics
alike. For the experimental characterizationof thermodynamicphase transitions, there exists an excessive amountof
possible tools, ranging fromsystemspecific, like the studyof the conductivity in an electronic system, to very generic,
like the specificheat. The latter is particularly appealing as it does not assumeanyprior knowledge: for example,
structural transitions, the onset ofmagnetism, or the transition to superconductivity, all showup in this generic
probe. The studyof the specificheat is also a standard tool for the theoretician, especially given its generic power.

For quantumphase transitions [1], an equally generic tool as the specific heat for thermal transitions is the
fidelity susceptibility. One investigates the derivative of the overlap ( )∣ ( )y b y b¶ á + ñb  [2] of two
infinitesimally separated ground states ∣ ( )y b ñas a function of some tuning parameterβ.While this probe is in
principle very powerful [3–6], it is typically hard to evaluate as one has rarely access to the full wave-function. At
least not formost of the approximate numerical techniques and especially not in experimental studies. This
raises the question if one can replace the fidelity susceptibility with a tool that is equally unbiased, generic, and
accessible to typical numerical and experimental techniques.

In a recent publication some of the present authors introduced such an algorithmicmethod for classical
systemswith an order-parameter signaling an (arbitrary) symmetry breaking [7]. Here we demonstrate that one
can successfully generalize thismethod to problemswithout a local order parameter, i.e. systemswith a
topological character.Moreover, we show that one can straightforwardly extend [7] to the quantum realm.

Themethod is based on the analysis of the accuracy of a predictivemodel. The central idea is to distill a
predictivemodel that relates input data fromnumerical or experimental studies to the output in the formof a
known tuning parameter such as the temperature or a parameter in theHamiltonianβ. Typically, one infers this
predictivemodel viamachine-learning techniques in the formof neural nets. The basic idea, however, is
independent of the specific inference technique. In a next step, the accuracy of the predictivemodel is analyzed
via the comparison of the predicted to the known value of the tuning parameterβ. In particular, we show the
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derivative of the prediction accuracywith respect to the tuning parameter to be an equally sensitive indicator of a
phase transition as thefidelity susceptibility.

To illustrate our generalization of themethods of [7], we investigate two genericmodels hosting interesting
thermodynamic phases without a local order parameter. First, we investigate the finite-temperature cross-over
inWegner’s Ising gauge theory (IGT) [8–10] to show that we can analyze an interesting classical problem
without a local order parameter. Second, we broaden the scope by taking the step from the IGT to a generalized
toric code problem [11, 12] showcasing the applicability of themethod to quantumproblems.

2. The Ising gauge theory

Wegner’s Ising gauge theory (IGT) is a spinmodel defined on aN×N square lattice with spins placed on the
lattice bonds [8–10, 13]. It is described by theHamiltonian

( )å  s= -
Î

H J , 1
p i p

i
z

IGT

where J is a coupling constant, p refers to plaquettes on the lattice (see figure 1), and si
z is the Paulimatrix

describing a single spin-1/2. Periodic boundary conditions are imposed. The ground state of thisHamiltonian is
a highly degeneratemanifold, an arbitrary superposition of all states thatmeet the condition that the product of
spins along each plaquette is equal to 1. At a finite temperatureT>0 the local constraints s =Î 1i p i

z are
violated (seefigure 1). The IGT does not have afinite temperature phase transition.However, forfinite system
sizes one canfind a crossover temperature,T*=1/(kβ*) defined by the appearance of one plaquette with

s = -Î 1i p i
z , resulting in the scaling ( )~T N1 ln 2 2* [12, 14].Matters are further complicated by the fact

that the ground-statemanifold cannot be characterized by a local order parameter [15, 10] owing to a local gauge
degree of freedom.We come back to this point below.

To checkwhether a given spin state is in the IGT ground-statemanifold, one has to verify that the condition
s =Î 1i p i

z ismet for all plaquettes in the lattice. Equivalently, one can use the dualitymap to analyze the phase
transition: we connect the edges of the lattice that contain spinswith the same orientation and form loops. The
IGT constrained phase then has the property that all these loops are closed.Whenever the constraint is violated it
results in an open loop [10, 16, 13], see figure 1.

Distinguishing high and low temperature states of themodel (1) is a well studied test case formachine
learning recognition of phases ofmatter [14]. As one can see from figure 1, the IGT constitutes an interesting
examplewhere the phases are hard to distinguish visually without being a priori familiar with a local restrictions
or the dualmap.While an supervised approach is immediately successful at distinguishing the high and low

Figure 1. Local constraint of Ising gauge theory: upper left panel shows an example of aT=0 statewhere the gauge condition
s = 1i i

z ismet for all plaquettes, lower left panel shows the corresponding dualmap, where the spins aremapped onWilson loops
that are uninterrupted in the case of zero-temperature states. Upper right panel shows an example of a = ¥T state, where the gauge
condition is violated, the lower panel shows the correspondingWilson loopswith breakages at the places the plaquette condition is not
met.
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temperature phases [14], unsupervised approaches did not succeedwithout an explicit recipewhat type of
restriction to look at. There has been significant progress in this direction, but a fully general approach is yet to be
found [17–24].Whilemethods like principal component analysis, clustering and variational auto-encoders have
proven to be successful to determine the phase transitions in spinmodels possessing an order parameter [25],
systemswithout order parameters still represent a challenge.

Here we showhow themethod introduced by Schäfer et al [7] can be generalized to systemswithout a local
order parameter. Onefirst pre-trains a neural network to relate a spin configuration { }bS

label
to the (inverse)

temperatureβlabel, at which the configurationwas sampled. After this initial training, the performance of the
estimator is assessedwith respect to the true value. The derivative

( ) ({ } ) ( )b
b

b=
¶

¶
b S 2label

label
pred label

ismaximal where the estimator performsworst. In other words, a localmaximum in ( )b label indicates a phase
transition or cross-over temperature b label* .While thismethod does not in principle rely on a local order
parameter, it has been shown that the network picks up on themagnetization pattern [7]. It was therefore
unclear if one can generalize this strategy to the current problem.Herewe show that this approach is valid even
for phases ofmatter that do not contain an order parameter, or a finite temperature phase transition.

Our approach differs fromprototypical unsupervisedmachine learning techniques, such as, e.g. principal
component analysis, t-distributed stochastic neighbor embedding (t-SNE), or k-means clustering, since a fully
supervised subroutine, namely a regression on the labeled systemparameters, is employed.However, we
intentionally refer to the approach as an unsupervised learning scheme, as themethod aims ultimately to infer
the phase diagramof the physical system and not its parameters and the algorithm thereby requires no prior
knowledge of the phase labels, the number of different phases or character of the phase transition. In fact, the
derivative (2) has generically a stronger signal when the parameters in the supervised part of the protocol are not
learned up to high precision.

We create sample configurations of the IGTmodel and label themwithβ=1/(kT).We train a
convolutional neural network to predictβ given an IGT configuration as an input. Our neural network consists
of 2 convolutional and 2 dense layers andwas trained on 2×105 configurations for 100 different values ofβ (for
details see appendix A).

Infigure 2we showhow the difference between the true and predicted inverse temperaturesβpred−βlabel
behaves as a function of the trueβlabel for seven different system sizesN=4, 8, 12, 16, 20, 24, 28 (the total
number of spins is 2N2).We see that the behavior of the prediction is not uniform for all inputs and, in fact, we
observe that for all systems sizes there exists a different finite b̄ abovewhich the network has difficulties to
identify the correctβlabel. Infigure 3we show ( )b label whichwe evaluated as

( )
({ } ) ({ } )

b
b b

b b
»

-

-
b b

+ -

+ -


S S

,
i ilabel

pred pred

label
1

label
1

i i
label

1
label

1

where sampled at discrete b i
label. For all system sizes we observe a presence of a peak that indicates the position of

the largest change in the difference between true and predictedβ. The peak becomes less recognizable with
increasing system size, which is consistent with the fact that the criticalβ* keeps increasing with growing system
size and in the infinite system limit the crossover behavior completely disappears.

Figure 2.We show the difference of the network prediction ofβpred and assigned labelβlabel,βpred−βlabel as a function ofβlabel for
system sizesN=4 toN=28. The dashed lines denote the position of the crossover inverse temperatureβ* as determined by the
density of statesmethod.
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The neural network predicts a continuous parameter (inverse temperature) for ourmodel andwe observe a
change of behavior at some critical value.We show infigure 4 the determined crossover temperatureβ* as a
function of system size. For the system sizes wewere able to test numerically we recover logarithmic scaling as
expected for the crossover temperature [14, 26].

To independently confirm the neural network predictions, we can analyze whether we can identify the
physics of what the network is learning and reproduce its predictions by another physicalmodel. From the
training set, we can construct a density of states distribution, ò. In particular, the density of states can bewritten
as a function of energy, E, and inverse temperature,β

( ) ( )b
d d

d
=

å

å

b b

b b

=

=

 E, . 3n
M

E E

n
M
1 , ,

1 ,

n n

n

Here, δa,b is the Kronecker-delta symbol (δa, b=1 for a=b and δa,b=0 for ¹a b), En (βn) is energy (label) of
the nth configuration in the training set andM is the number of configurations in the training set.We show the
distribution ò obtained for the system sizeN=8 (128 spins) infigure 5.

We use the distribution (3) to calculate themost likely ≕b bpred for each configuration at a given energy,
which immediately allows us to evaluate the relation between the assignedβ andβpred. Using the density of states
we are able to reproduce the behavior infigure 3 (see appendix A).We show the detailed calculation and the
dependencies of the predictedβpred and its derivative ( )b label as a function of the trueβlabel in appendix A. This
gives us a numerical evidence that the network is learning the density of states distribution shown infigure 5.We
identify the logarithmic scaling (with system size) of the criticalβ* predicted from the density of states (shown in
blue infigure 4) analogously to the predictions obtained from the neural netmodel.

Figure 3.Derivative of the output of the predictivemodel, ( )b label , as a function of assigned labelsβlabel for system sizesN=4 to
N=28. The dashed lines denote the position of the crossover inverse temperature β* as determined by the density of statesmethod.

Figure 4.Positions of criticalβ* as a function of a system sizeN.We show the scaling obtained from the unsupervised learningmethod
and the scaling obtained fromdensity of states in blue and orange respectively. The shaded areas represent the error bars. Error bars
correspond to standard deviation from themean b̃* evaluated by averaging overβ* predicted byfive separately trained neural nets.
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Another unsupervised approach that has proven to be successful for both classical and quantum systems is
the confusion scheme introduced in [18].We compare both approaches in appendix C and show that the
confusion scheme is not suitable for the example of IGT studied here.

3. The toric code and its generalizations

So farwe have analyzed the performance of ourmethod on the cross-over of a classical spin-1/2model.When
going to quantummodels, two complications arise, related to the input and output of our predictivemodel. For
classical systems, simple spin configurations are the natural input. For quantum systems, generically
entanglement in the formof non-classically correlated configurations plays a key role. Consequently, the choice
of training data needs to either reflect some prior knowledge of the system, or one has to sample over various
classical projections of the entangledwave function.On the output side, one can either target afinite-
temperature transition, or investigate a quantumphase transition at zero temperature. In the former, the output
of the predictivemodel stays the same:βpred, the inverse temperature. For zero temperature transitions, one can
still investigate a single-parameter family ofHamiltoniansH(β). The obvious prediction task is then to
reproduce the tuning parameterβ, rather then the temperature.

We now turn to a concretemodel of a quantumphase transition in a systemwithout a local order parameter.
The obvious generalization of (1) is the application of a transverse field [9, 13, 27]

( )å  ås s= - -
Î

H g . 4
p i p

i
z

l
l
x

TR

Themodel above is verywell studied, has a confinement-deconfinement transition at a critical g*, and is a
working horse for the study of 2 spin-liquids. Instead of directly workingwith this simplemodel we go beyond
(4) in twoways: (i)We restrict ourselves to a subset of gauge-invariant ground states bymoving to the toric code
[11]. (ii)Wegeneralize the transverse field to allow for an exact solution.We detail both steps in the following.

The IGT of equation (4) has a local 2 gauge degree of freedom. The generators of this gauge transformation
are the vertex operators

( ) s=
Î

A , 5s
i s

i
x

that consist of a product ofσx operators along a vertex, s, of the lattice. The geometry of the vertex operator is
illustrated infigure 6. The operatorsAs commutewith theHamiltonian, i.e. [HTR,As]=0 for all vertices s. In
otherwords, one can obtain an eigenstate by changing the sign of the classicalσz-variables of another eigenstate,
as long as one does so for all spins connected to one vertex. The toric codeHamiltonian

( )å å å= - + = - -H A H A B , 6
s

s
s

s
p

pTC IGT

elevates the generators of the gauge transformation to a term in theHamiltonian. As a consequence, the ground
states of the toric code correspond to the gauge-invariant ground states ofHTR [27]. For our numerical purposes
below,we largely benefit from the exact solution of the aboveHamiltonian: we canwrite one of the four (un-
normalized) ground states as [28]

Figure 5.Density of states distribution ò (β, E) of the training set as a function of inverse temperatureβ and energy E. The plot above
has been generated for system sizeN=8.
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∣ ( )∣ ( )ñ = + ñBTC
1

2
1 0 , 7

s
p x

where ∣ ñ0x is a reference statewith all spins up in theσ x basis. Then, applying products of Pauli z-matrices along
the twonon-contractible loops yields the other three orthogonal ground states.We can easily see that the ground
states are indeed gauge invariant by applying gauge transformations, obtaining ∣ ∣ñ = ñA TC TCs .

Applying a transverse field a spin-model typically excludes an exact solution. The present case is no
difference. However, in a recent publication, Chamon andCastelnovo introduced the following generalization
of the toric code [12, 26, 29, 30]

⎛
⎝⎜

⎞
⎠⎟ ( )å å å å= + = - + - +

å åb l s b l s- -
Î ÎH H A Be e , 8

s s
s

p
p

s
TC i p

i i
x

i p
i i

x

where [ ]l Î -1, 1i describes the particular configuration of added backgroundfields andβ>0 characterizes
their amplitude. A transition to a topologically trivial phase occurs at a critical value of the field strengthβc. The
field configurationλi influences the critical valueβc. A detailed analysis of this phase transition has been
provided in [30].

Tofinish our discussion of these exactly solvablemodels wewrite the ground state of (8)

∣ ∣ ∣ ( )( )åYñ = ñ = ñå ål s l s

Î

b b

Z
h

1
e TC

1

Z
e 0 . 9

h H

h
xi i i

x
i i i

x
2 2

This ground state is four-fold degenerate when periodic boundary conditions are considered [28].We denote
withH the abelian groupwhose elements h are all possible operations defined by the action of products of
plaquette operators on an initial (reference) spin-configuration ∣ ñ0x . By ( )s hi

x wedenote the eigenvalue of the
operator si

x on the eigenstate ∣ ñh 0x . As a consequence, the term ( )s hi
x can take the values±1. The normalization

factor,Z corresponds to the partition function for this ground state and is given by

≔ ( )å åb l s

Î

Z e .
h H

h
i i i

x

With these considerations we are now in the position to show that the analysis of the predictivemodel can
point out the topological phase transition of this quantummodel as well. Unlike in the IGT, discussed in the
previous section, the highly entangled ground states of themodified toric codemodel (8) are not fully
characterized by a spin configuration alone.On the other hand, equation (9) provides a closed analytical form
for the ground states of the family of theHamiltonians (8). In addition to that, these ground states are only four-
fold degenerate in the topological phase.We take advantage of the knowledge of themodified toric code ground
states and show this to be sufficient for identification of the phase transition from the predictivemodel.

3.1. Projection onto spin configurations
Weconsider a projection of the ground states of theHamiltonian (8) onto theσx andσz bases. These two types of
projections correspond to experimentally accessiblemeasurements andwe show that both allow us to detect the
topological phase transition of the full quantummodel. As for the IGT cross-over analyzed previously, we are yet
again in the situationwherewe are able to input a configuration into the predictivemodel and ask it to predict a
continuous parameter.

There are two crucial differences here: first, we are considering a zero temperature topological phase
transition that is driven by the appliedfield strength β. The second difference lies in the behavior of the projected
spin configurations in the two phases. In particular, we are able to drawparallels to phase transitions of classical

Figure 6. Illustration of plaquette,Bp, and vertex,As, operators in the lattice.
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spinmodels. Aswe elaborate below, choosing a basis to project on corresponds tomapping the phases of the
quantummodel to phases of a specific classical spinmodel.

3.1.1. Theσx–projection
Let usfirst consider the projection onto theσx basis.We notice that the ground state (9) represents a
superposition of x-spin-configurations ∣ ≔ ∣ñ ñS h 0h x for all elements of the groupH. All states ∣ ñSh fulfill the so-
called closed loop condition

∣ ∣ ( )ñ = ñA S S 10s h h

for all values ofβ. In connection to the IGT, this corresponds to the condition of gauge invariance.More
concretely, local constraints are imposed, that the product ofσx eigenvalues around a vertex is equal to one. The
value of thefield strength,β, influences theweight of a given spin configuration (see equation (9)). Therefore, the
probability to obtain a particular configuration ∣ ñSh after projection ontoσx-basis is given by

( ) ∣ ∣ ( ) ∣ ( )
( )

˜ ( ˜)
b= á Y ñ =

å

b l s

b l s

å

Î
å

p S S
e

e
. 11h h

h

h H
h

2
i i i

x

i i i
x

Wecan understand the physics of theσx-projected ground state by first considering limiting cases of the field
strengthβ.Whenβ→0, the ground state (9) corresponds to the ground state of the pure toric code
Hamiltonian (6). Therefore, when projected onto theσx basis, all possible ∣ ñSh are equally likely (since all ∣ ñSh are
weighted equally in the full eigenstate).When b  ¥, on the other hand, all configurations but ∣ ∣ñ = ñS 0 are
exponentially suppressed and hence, the projected spin configurations are always ordered.

Thus, what used to be a topological phase transition of the full quantum state is now a transition from
disordered spin-configurations (β small) to an ordered spin-configuration (β large, all spins up).We observe
that, provided there is afiniteβ at which the transition between ordered and disordered configurations
manifests itself, we obtained a phase transition that shows resemblance to the phase transition of the 2D Ising
model.We show that indeed the 2D Isingmodel and its phase transition can be recovered by a simple change of
variables, see appendix C.

Let us now explore the topological phase transition in the toric codemodel using the unsupervised learning
methodwe introduced above.We train a neural network on the projectedσx configurations labeledwith the
field strength,β.We used a network consisting of two convolutional (100filters, kernel size 3 and 2), one dense
layer with 100 neurons and one dropout layer with dropout rate 0.15.We train the neural network on 59950
configurations containing 100 different values ofβ between 0 and 1. All the simulationswere performed for the
system sizeN=20 (800 spins). Once themodel is trainedwe apply it on 2000 new configurations for 30
different values ofβ and evaluate the derivative ( )b label (2) of the outcome, see figure 7.We show ( )b label for
six example field configurations. Thefield configurations correspond to different distributions {λi} and are
detailed in appendix C. As shown in [30] the position and the existence of the phase transition is strongly
dependent on the distribution {λi} of added fields.

It was shown in [26] that the topological phase transition of the generalized toric codemodel can be
determined from the behavior of thefidelity between two ground states with slightly variedfield strengths
(δβ→0)

( )∣ ( ) ( )b b db= áY Y + ñbF . 12

In otherwords, we calculate the overlap of two ground state wave functionswith applied fields whose
magnitudes are very close to each other.We can indeed observe a change in the behavior of the overlap in the
neighborhood of the phase transition. The rate of this change is better analyzed by studying the derivative of the
quantity in equation (12), the so-called fidelity susceptibility

( )
( )c

db
= -

¶
¶ db=

Fln
. 13F

2

2
0

Weobserve infigure 7 that the dashed lines determined from fidelity susceptibility calculation are in good
agreementwith themaximumof the peaks of the derivative ( )b label of the predictivemodel.We showdetails of
thefidelity susceptibility calculation in appendix C.

3.1.2. Theσz–projection
Wecan askwhether a particular projection is necessary to determine the topological phase transition from the
spin configurations alone. Let us considermeasuring the ground state in theσz basis instead ofσx. In order to
simplifymathematical expressions let us without loss of generality choose a different state from the ground state
manifold
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∣ ∣ ( )åYñ = ñå l s

Î

b

Z
g

1
e 0 . 14z

z g G
zi i i

x
2

Here, analogously to equation (9),G is the abelian group of possible products of vertex operators and ∣ ñ0z is the
reference state.Note thatwe chose a different reference state. As opposed to equation (9), all spins of the
reference state are aligned in an eigenstate ofσz instead ofσx. The normalization is denotedwithZz and not
elaborated on further here.

Let us again examine the limiting behavior ofβ ifσzwasmeasured on every spin of the state (14). Ifβ→0we
obtain the exact toric code ground state. Projectivemeasurement ofσz on this ground state then results in the
configuration ∣= ñS g 0g z , hence the closed loop (plaquette) conditions ∣ ∣ñ = ñB S Sp g g are fulfilled. Every
configuration ∣ ñg 0z fulfilling these constraints is obtainedwith equal probability.We note here, that the local
plaquette constraints are in exact correspondence to the IGT local constraints fulfilled in the zero temperature
phase.

Applying the same logic as in the case of theσx projection, we can conclude that in the case b  ¥we arrive
at a completely polarized state, where all spins are aligned in the x-direction. If we nowproject onto aσz
eigenstate, the plaquette constraints will not stay preserved. In fact, any configuration inσz basis will be obtained
with equal probability. Hence, we find that in theσz projection the phase transition arises from a quite different
process thanwe observed before: for smallβ the systemwould be in the statewhere loop conditions are
preserved, while for largeβ they are violated.While in the case ofσx the phase transition simply changes the
weight for some states from the set preserving loop condition, in the case ofσz projectionwe transition from the
state where all the states preserving loop condition are weighted equally to the phasewhere the loop constraints
are completely violated.We can therefore draw parallels to the previously examined IGT transition atfinite
temperature. In particular, in both cases we observe phases that can be distinguished by checking for a violation
of the local closed loop constraints. However, there is a crucial difference between these two transitions. IGT
exhibits a finite temperature cross-over and the violation of local constraints is a result of thermal excitations.
Here, we consider a quantumphase transition at zero temperature, where the local constraints are violated due
to the interplay with added perturbations. In particular, for IGT in the thermodynamic limit there is only a
transition at infinite inverse temperature, b , whereas the quantumphase transitionwe consider here occurs at a
finitefield strengthβ in the thermodynamic limit as well.

We employ the unsupervised learning technique on theσz projection of themodified toric code ground state
(14)with the strength of the backgroundfieldβ as a label for the supervised part of the protocol. This time our
neural netmodel consists of two convolutional layers (with 128filters and kernel size 2) and three dense layers
(with 100, 100 and 50 neurons, respectively).

We show infigure 8 the results forN=4 (32 spins) and twodifferent field configurations of the 6 field
configurations defined in appendix C and previously studied on a larger lattice for the x-projections. The
reduction of the system size and number offield configurations presented here are a consequence of

Figure 7.Phase transition of the toric codemodel extracted fromunsupervised learning onσx-projected configurations of the ground
states. The derivative ( )b label of the prediction of the neural networkmodel designed to predict thefield strengthβ is shown for six
different field configurations. The configurations are exemplary illustrated in the bottompanel of thefigure. Black circles denotefields
in positive directions (shades of grey denote strength), red circles denote fields in the negative direction and empty circles denote no
fields present. The dashed vertical lines denote the position of the phase transition for a given field configuration evaluated using the
fidelity susceptibility.
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constructing projections onto theσz-basis from the ground state containingσxfields:mixedσzσx termsmake
Monte Carlo update computationally significantlymore expensive (for details see appendix C).

We note here, that for bothσx andσz projectionswe limit ourselves to a single topological sector with the
choice of the ground state in equation (9). Since the other topological sectors exhibit qualitatively the same phase
transition at the same transition point the discussion above can be extended to any ground state within the
topological sector.

3.2. Phase transition determination from the stabilizer expectation values
Finally, we discuss on how to obtain the topological phase transition in the toric codemodel by extracting
necessary information bymeasurements that can be readily performed on the quantum state at hand and do not
require projections onto the spin configurations. It was shown in [30] that the behavior of the expectation values
of the stabilizer operators are intimately related to the position of the topological phase transition in the toric
codemodel.We use our predictivemodel to evaluate the position of the phase transition from the expectation
value of the stabilizer operators to offer an alternativemethod to determine the position of the phase transition.

As in the previous sections, we train a neural network to predict the value of the field strength amplitude, β.
This timewe use as an input the expectation value of the plaquette operator, á ñBp (withβ as a label). Thenwe use
the network to predict thefield strengthβ for the expectation values ofBp evaluatedwith respect to the new set of
quantum states.We use a neural networkwith two dense layers (with 20 neurons each). The derivative ( )b label

of the predictivemodel is shown as a function offield strength for six distinctivefield configurations infigure 9.
We again compare to the position of the phase transition obtained by fidelity susceptibilitymethod (dashed
lines) and observe an excellent agreement. As in the case of configurational data, we used the topological sector
defined by the ground state in equation (9). Our result is again independent of the state in the ground state
manifold, as all ground states are locally indistinguishable in the topological phase. As a consequence, the local
expectation value á ñBp does not depend on the topological sector examined.

While the connection between expectation values of stabilizer operators and the position of the phase
transition have not been shown analytically, another numerical evidencewas provided in [31]. The authors
examine direct detection of anyons, a process that can bemapped onto the expectation values whichwe
investigated here. The presence of anyons is then immediately tied to the existence of topological order.We
elaborate on the connection to the present work in appendix C.

4.Discussion

Unsupervisedmachine learning techniques for phase classification in condensedmatter physics are potentially
powerful tools for the discovery of new quantumphases. Due to the lack of local order parameters, phases
exhibiting topological order present a challenging task for unsupervisedmethods. In this work, we have shown
that a novel unsupervisedmethod, namely the analysis of predictive neural networkmodels [7], can reliably
detect the violations of topological order, or a topological phase transition should it exist.

Figure 8.Phase transition of the toric codemodel extracted fromunsupervised learning onσz-projected configurations of the ground
states. The derivative ( )b label , of the prediction of the neural networkmodel designed to predict thefield strengthβ is shown for 2
different field configurations as a function of assignedβlabel. The configurations are illustrated in the right hand panel of thefigure.
Black circles denotefields in positive direction (shades of grey denoteweaker field strength). The dashed vertical lines correspond to
the position of the phase transition determined using fidelity susceptibility.
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Topologically ordered states have been particularly challenging for unsupervised learning techniques,
because the quantity characterizing topological order is inherently non-local and hard to identify from rawdata.
In themethod presented here, we trained the network on an arbitrary continuous parameter associated to the
state and then analyzed the errors in the network predictions.We presented numerical evidence that these
prediction errors are signatures of a phase transition.We showed that this conclusionwas independent of the
particular type of phase transition present in the system and the type of the input data. To determinewhich type
of phase transition is present, applying ourmethod in conjunctionwith principal component analysis [17],
variational auto-encoders [25], or confusion schemes [18, 21] that all succeed in determination of phase
transition governed by local order parameter can be used as a guideline.

Providing the resolution to the problemoffinding the cross-over temperature in the IGT and its
generalizations in an unsupervisedmanner is the first step towards developing reliable techniques that can be
applied to study themodels whose phase diagrams are not yet fully understood.
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AppendixA. IGT: predictivemodel

Wecreated the samples used for training (like those shown infigure 1) of ourmodel usingMonte Carlo
simulations.We created data for system sizesN×N×2withNä{4, 8, 12, 16, 20, 24, 28}. For each system
sizewe created 100 different values ofβä[0, 5].We generated 20 000 configurations for each pair [β,N]. The
neural net we used consists of 2 convolutional (128filters, kernel size 3) and 2 dense layers (300 and 100 neurons,
respectively).We observed that ourmethod isflexible with respect to the hyper parameters of the neural
network.However, too shallownetworks that predict the same averageβ for all states inside and outside of the
topological sector should be avoided.

We trained the network byminimizing themean-squared-error loss function

( ) ( ) ( )åb b b b- = -L
n

1
, A1

n

mse
pred label pred label

2

whereβpred is theβ determined by the network andβlabel is the label of the given input sample, n is the batch size.
The predictions ofβ by the network and their divergences are shown infigures 2 and 3.

Figure 9.Phase transition of the toric codemodel extracted fromunsupervised learning on expectation values of a stabilizer operator,
á ñBp , in the ground state. The derivative ( )b label of the prediction of the neural networkmodel designed to predict thefield strengthβ
is shown for six examplefield configurations. Black circles denotefields in positive direction (shades of grey denote aweaker field
strength), red circles denotefields in negative direction and empty circles denote no field present.
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In order to evaluate the error bars of the neural net predictions, we repeated the training procedure outlined
above for 5 separatemodels (identical construction, separately generated training sets). Thenwe evaluated
standard deviation of the criticalβ*.

We can replicate the predictions achieved by a neural network using a density of states basedmodel as
explained in themain text. Let us consider lattice configurations (training samples)Xnwith their assigned
inverse temperature labelsβn=βlabel(Xn).We can evaluate an energy,En of each of these configurations using
the formula

( )å  s= -
Î

E J , A2
p i p

i
z

where thefirst summation is over all plaquettes, p, whereas the second summation is over spins within each
plaquette. For convenience we choose J=1. Thenwe can construct the density of states distribution of the
training set

( ) ( )b
d d

d
=

å

å

b b

b b

=

=

 E, . A3n
N

E E

n
N
1 , ,

1 ,

n n

n

Here, δa,b is the Kronecker delta symbol (d = 1a b, for a=b and δa,b=0 for ¹a b),En is energy for the
configurationXn evaluated using formula A2 andN is number of configurationsXn in the training set.We can
write the energy distribution in the form above because the energy of the lattice configuration, E is discrete by
construction andβ is discretized in steps as explained above. An example of this distribution is shown infigure 5
for the system sizeN=8.

Having access to the energy En of a given configurationXn, we can then evaluate the averageβ of all states
with energyE, whichwe denote byβav for a configurationXn in the training set

( ) ( )b
d b

d
=

å

å
=

=

E . A4n
N

E E n

n
N

E E

av 1 ,

1 ,

n

n

The function above predicts the value ofβwhich ismost likely for a given energy, E, given the energy distribution
of the training set.We can use the function (A4) to determine the relation between assigned labels,βn and values
ofβ predicted by ourmodel

( )
( )

( )b b
b d

d
=

å

å

b b

b b

=

=

E
, A5m

M
m

m
M

est 1
av

,

1 ,

m

m

whereM is the number of configurationsXm in an arbitrarily chosen test set. Using equation (A5)we can predict
the estimatedβ for a range of true labels. Infigure A1we show the difference between true and predictedβ as a
function of trueβ. Infigure A2we show the derivative of the estimatedβ as a function of trueβ. Comparingwith
figure 3we see that ourmodel based on the density of states in the training set is reproducing well the actions of
the neural netmodel we introduced in themain text.We have usedmaxima determined by the density of states
as a dashed-line reference for the position of the transition in themain text.

Figure A1.Density of states based prediction ofβ.We plot the difference between true and predicted β,βpred−βlabel, as a function of
βlabel.
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Appendix B. Toric code: predictivemodel

B.1.Mapping to Isingmodel
The projection of themodified toric code ground state on theσx basis can be understood bymapping to a
classical Isingmodel. Let us examine the ground state of the toric codewith fields (9)

∣ ∣ ( )( )åYñ = ñå l s

Î

b

Z
h

1
e 0 . B1

h H

h
xi i i

x
2

Weperform a projection of ∣Yñonto theσx basis. As stated in themain text, the outcome of the projection are the
configurations ∣ ñSh fulfilling the closed-loop condition ∣ ∣ñ = ñA S Ss h h . In addition, the probability to obtain ∣ ñSh

after projection is given by

( ) ∣ ∣ ∣ ( )
( )

˜ ( ˜)
= á Yñ =

å

b l s

b l s

å

Î
å

p S S
e

e
. B2h h

h

h H
h

2
i i i

x

i i i
x

The system can bemapped to the classical Isingmodel as follows [26]. First we notice, that every group element h
uniquely determines the configuration ∣ ñSh by applying h to a reference spin configuration, whichwe choose to
be ∣ ñ0x (all spins up in x-basis). Then, ∣ ∣ñ = ñS h 0h x . In addition, h corresponds to the product of a set Ih of
plaquette operators =  Îh Bp I ph

. Every such set of plaquette operators corresponding to a spin configuration

∣ ñSh can bemapped to the following pseudo-spin configuration: artificial degrees of freedom (pseudo-spins)
θpä{−1, 1} are introduced on every plaquette. The value of the pseudo-spin θp is determined by Ih: ifBpäIh
(plaquette flipped) it is equal to−1, else it is equal to one. As a consequence, the original spin-configuration
{ ( )}s hi

x (corresponding to ∣ ñSh ) can be deduced from the pseudo-spin configuration θp by applying the rule
( )s q q= ¢hi

x
p p . Here, p and p′ are the two adjacent plaquettes to spin i. The geometry of themapping is illustrated

infigure B1.
Let us translate themapping into the calculation of the probability p(Sh). Inserting the rule ( )s q q= ¢hi

x
p p to

equation (B2) yields

( ) ({ }) ( )
{ }

q= =
å

b q q

q
b q q

å

å

á ¢ñ ¢ ¢

á ¢ñ ¢ ¢
p S p

e

e
, B3h

h
J

J

p p p p p
h

p
h

p p p p p p

, ,

, ,

with l=¢Jp p i, for the plaquettes ¢p p, adjacent to edge i and summing over nearest-neighbors á ¢ñp p, . The
pseudo-spin configuration obtained from the group element h by applying the explainedmapping is denoted by
the parameters {θ h}. In contrast, the sumover {θ} represents a sumover all possible pseudo-spin
configurations.We recognize the expression (B3) as Boltzmannweight for an Isingmodel with bond strengths

¢Jp p, at temperature ( )b=T k1 B . The topological phase transition undergone by the studied perturbed toric
codemodel hence shows the behavior of an Ising phase transition fromdisordered pseudo-spin configurations
to ordered spin configurations after projecting onto theσx basis.

B.2. Calculation of thefidelity susceptibility
Wecompare the position of the phase transition found by the neural network to the transition indicated by the
fidelity susceptibility [2]. Thefidelity susceptibility is defined as

Figure A2.We show the derivative of the density of states based prediction, ( )b label , as a function ofβlabel.
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( )∣ ( )
( )

( )c
b b b

b
= -

¶ áY Y + D ñ
¶ D bD =

ln
, B4F

2

2
0

where the state ∣ ( )bY ñ is a ground state of a givenHamiltonianwith respect to the parameterβ. For our
particularmodel, ∣ ( )bY ñ is given in equation (9). It has been shown, that a divergence ormaximumof thefidelity
susceptibilityχF indicates a second-order symmetry-breaking quantumphase transition [3–5]. Numerical
evidence suggests that topological phase transitions are indicated in the sameway [6].We can calculate the
fidelity susceptibility for the introduced disordered toricmodel as

( )( ) ·
( )

( )
c

l s
=

å å b l s
Î

åh Z

Z

1

4

e
, B5F

h H i i i
x h2
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i i i
x
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( )l s
-

å å b l s
Î
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4

e
. B6

h H i i i
x h 2

2

i i i
x

Wenumerically evaluate the expression viaMonte Carlo sampling for the different field configurations
examined throughout this work and compare the position of themaximumwith the position of the phase
transition found by the neural network. In particular, we calculate thefidelity susceptibility for the following 6
differentfield configurations:

⎧⎨⎩
⎧
⎨⎪
⎩⎪
⎧⎨⎩
⎧
⎨⎪
⎩⎪
⎧⎨⎩
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l

l

l

l

l

l

=
=

=
=
=

=
- =

=
- =

=

=
=

= "

i

i
i

i

i
i

i

i

‘Config 1’:
0.5 if mod 2 0,
1 else,

‘Config 2’:
0.5 if mod 3 1,
0.25 if mod 3 2,
1 else,

‘Config 3’:
0.5 if mod 10 9,

1 else,

‘Config 4’:
0.5 if mod 20 19,

0.25 if mod 5 4,
1 else,

‘Config 5’:
0 if mod 5 0,
1 else,

‘Config 6’: 1 . B7

i

i

i

i

i

i

The chosen configurations constitute representative examples and incorporate different distributions of
positive, negative and zerofields. The numerical simulations of the fidelity susceptibility for the 6 differentfield
configurationson on lattices of lengths examined throughout this work (N= 20 andN= 4) are shown in
figures B2 andB3.

Thefidelity susceptibility can be connected to the heat capacity of the classical Isingmodel explained in the
previous subsection, as elaborated in [6] and [30].

Figure B1. Illustration of themapping to a classical Isingmodel. The introduced pseudo-spins on the vertices are drawn in blue, the
original spins in grey. The relation ( )s q q= ¢hi

x
p p holds.

13

New J. Phys. 22 (2020) 045003 EGreplova et al



B.3.Numerical simulation of projections
The projection of the ground state of the perturbed toricmodel onto theσx orσz basis is in both cases simulated
viaMonte Carlo sampling. To project on theσx basis, we aim to obtain a configuration Sh sampled from the
probability distribution p(Sh) (B3). Such a configuration is reached via aMarkov chain.More concretely, we start
with a lattice with all spins up in x basis and construct theMarkov chain as follows: in each step (with given spin
configuration Shi

), a randomplaquette p is picked. The decision, whether the plaquette should beflipped and
 +S Sh hi i 1 ismade via aMetropolis-Hastings test. The four spins around the chosen plaquette areflippedwith

probability

( )
( )

( )( ( ) ( ))= åb l s s-+
Î +

p S

p S
e . B8

h

h

h hi

i

i p i i
x

i i
x

i1 1

After thermalization time, the spin configuration Sh is obtainedwith probability p(Sh) and a projection is
simulated.

Projecting on theσz basis follows the same principle with the caveat that the spin-flip probability is
computationally expensive to calculate.We start from a state in the ground statemanifold

Figure B2. Fidelity susceptibility numerically calculated for a lattice of lengthN=20. The different field configurations are illustrated
in the exemplary configuration plots and detailed in equation (B7).

Figure B3. Fidelity susceptibility numerically calculated for a lattice of lengthN=4. The different field configurations are illustrated
in the exemplary configuration plots.
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∣ ∣ ( )åYñ = ñå l s
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and project on theσz basis. In particular, let us examine the probability to obtain the spin configuration

∣ ∣ ( ) sñ = ñ
Î

z 0 , B10M
i M

i
x

z

whereM is a set of spins that are flipped in the configuration ∣ ñzM with respect to the initial state ∣ ñ0z . Then, the
probability to project on ∣ ñzM is given by

⎛
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where the closed loopsC correspond to the set of spins that are flippedwhen applying a product of vertex
operators to the intial state ∣ ∣s ñ =  ñÎA 0 0s z i C i

x
z . The sum is over all possible closed loops, hence over all

possible products of vertex operators. Similarly, the setCM can be constructed from the closed loopC byflipping
the spins inM
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In order to obtain a spin configuration sampled from the distribution p defined in equation (B11), we construct a
Markov chain by starting with a spin configuration ∣ ñ0z in theσz basis. In each step, a random spin is chosen and
flipped (updating the spin configuration ∣ ñzi to ∣ ñ+zi 1 )with probability p(zi+1)/p(zi). As the computation of the
spin flip probability is expensive, we simulate z-projections only for 2×4×4=32 spins.

The neural network for the predictivemodel on the lattice with lengthN=4 (outcomes shown infigure 8)
consists of two convolutional layers with 128 neurons each and three dense layers with 100, 100 and 50 neurons.
Trainingwas conducted on a set of 157960 examples in total, 144 values ofβ between 0 and 1. For evaluation of
the trainedmodel to predict the field parameter, the values forβwere chosen to be 72 discrete steps between 0
and 1. A total of 100800 evaluation examples was generated, data augmentation (rotations, translations,mirror)
led to an additional factor of 100.

B.4.Detection of quasiparticles
Weelaborated in themain text, thatmeasuring a stabilizer expectation value contains sufficient information to
indicate the position of the topological phase transition. This behavior can be related to a detection of the
topological phase transition bymeasuring quasiparticles.More concretely, numerical evidence has been
presented in [31], that a topological phase transition can be indicated by a detection of quasiparticles. For the
toricmodel, the toricHamiltonian can bemodified such that the ground state contains a pair of quasiparticles

( )å å å= - - +
¹ =

H B A B . B13m
p p p

p
s

s
p p p

p
1, 2 1, 2

At the plaquettes p1 and p2, the expectation value á ñ = -B 1p m measured on the ground state shows the existence
of a quasiparticle. Here, the subscriptm denotes that the expectation value is takenwith respect to the ground
state of themodified toric code.When adding a phase-transition driving perturbation paramatrized by afieldβ,
the position of the phase transition is indicated by a divergence in the derivative ¶ á ñb Bp m with pä{p1, p2}. If the
added perturbation is of the form

( )å +
åb l s-
ÎH H e , B14m m

p

i p
i i

x

the following relation holds

( )á ñ = -á ñB B . B15p p m1

Here, the expectation value á ñBp is evaluated on the ground state of themodel without quasiparticles (9)
examined throughout this work.We conclude that the divergence in the derivative of á ñBp indicates the position
of the phase transition.We therefore understand, that the predictivemodel is able to reconstruct this behavior as
the accuracy of the predicted field strength depends on the slope of the expectation value á ñBp .

AppendixC. Comparisonwith the confusion scheme

Wecompare the introduced unsupervised approachwith the similar confusion scheme developed in [18].We
give here a quick summary of the scheme, for further details we refer to thework of the original authors. As
starting point, one is given (uniformly sampled) data in the range (βa,βb) and an unknown critical valueβc
separating two phases, withβa<βc<βb. The critical point can be estimated by systematically ‘guessing’. In
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particular, one chooses a value b¢c as guess for the critical point and separates the dataset in two parts: all values
smaller than b¢c are labeledwith 0, all values larger than b¢c are labeledwith 1. A neural network is trained to
reproduce the labels. This procedure is repeated for all values b¢c in the interval (βa,βb), and the performance

( )b¢P c of the trained networks is plotted and analyzed. Themain idea is, that the network performs best when b¢c
is chosen to be the critical point.More concretely, the performance has aW-shape, if a phase transition is
recognized (seefigureC1). As a consequence, themain difference between ourmethod and the confusion
scheme is that we use a single network and analyze its prediction, while themethod of vanNieuwenburg et al
requires separate networks for each point of the phase diagram theywish to check (whichmightmake it less
suitable for high dimensional parameter spaces).

The confusion scheme has proven to performwell on a variety of phase transitions in classical systems and
quantum systems.We employ the confusion scheme on the IGT crossover analyzed in section 2. The network
performance ( )b¢P c is shown infigure C1 for the system sizeN=12. As the typicalW-shape is not reproduced,
the position of the phase transition is not recognized. Instead, we obtain a shiftedV-shape.We can understand
the result in the followingway. The confusionmethod can easily distinguish between all states withβ<βc on
one side of the transition, but it cannot distinguish at the states in the ordered sector.More concretely, all
samples in the ordered sector (β>βc) are in the ground state (no local constraints are violated) and thus
indistinguishable to the networks. In the disordered section, the configurations at different b¢c are
distinguishable by different numbers of local plaquette constraint violations. Smaller values ofβ lead to a larger
number of frustrated plaquettes. As a consequence, the network is able to distinguish all the states in the
disordered phase.

For this example, a relatively small network architecture consisting of a convolutional layer (12×12=144
neurons, 5filters and kernel size 3) and a dense layer with one output neuronwas chosen. Some testingwith
larger networks showed a similar accuracy curve. Tests on smaller networks showed a different V-shape.
Specifically, the obtainedV-shapewas not shifted to the disordered phase.Henceforth, the networks were not
able to distinguish the configurations in none of the phases and had to guess randomly.We conclude, that the
application of the confusion scheme to IGT is not straightforward.
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