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Abstract
In this paper, we consider the Sierpinski carpet fractal networks Gt constructed by the Sierpinski
carpet F. Firstly, the structure properties of Gt, including degree distribution and clustering
coefficient, are studied. Then, the weighted average geodesic distances of the Sierpinski carpet
fractal F are analyzed by using the integral of geodesic distance in terms of self-similar measure
with respect to the weight vector. Further the weighted average geodesic distances of the
Sierpinski carpet fractal networks is obtained.

Keywords: Sierpinski carpet, Sierpinski carpet fractal networks, weighted average geodesic
distances, self-similar measure
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1. Introduction

Complex networks have been acknowledged as an invaluable
tool for describing real-world systems in nature and society
[1–5]. The consensus dynamics of multi-agent systems has
gained much interest [6, 7]. Extensive empirical studies have
uncovered that a lot of real networks share several remarkable
features [8]. A very important observation is that most real-
life systems are characterized by ubiquitous small-world
effect [9], including large clustering coefficient [10] and small
average geodesic distance [11, 12]. The average geodesic
distance is one of the important fundamental structural char-
acteristics in complex networks. In recent years, people pay
more attention to the weighted complex networks [13, 14].
Chemical graph theory [15] is the topology branch of math-
ematical chemistry which applies graph theory to chemical
phenomena. A topological invariant Top(G) of graph G is a
real number with the property that for every graph H iso-
morphic to G, Top(H)=Top(G). The topological invariant
can used to structural isomer discrimination, structure-activity

relationships and pharmaceutical drug design. The average
distance is concerned in the research of complex networks
and is related to Wiener sumW(G) [16] which is a topological
invariant in chemical graph theory, where =W G( )
å = åÌ Îd x y d x y, ,x y G x y G,

1

2 ,( ) ( ){ } . Therefore, the average
distance in complex network can be applied to chemical
graph theory.

The word Fractal was coined by Mandelbrot, and its
original meaning is irregular and fragmented. In 1973,
Mandelbrot first proposed the idea of fractal in his lectures at
the French academy. Fractal is a rough or fragmented geo-
metric shape that can be split into parts, each of which is (at
least approximately) a reduced-size copy of the whole. Such a
definition defaults that a fractal feature is a property called
self-similarity, that is, fractal includes self-similarity. Fractal
is the morphological feature of filling space with non-integer
dimension. The Sierpinski carpet model in this paper con-
forms to the definition of fractal and has self-similarity.

Song, Havlin and Makse revealed that many real net-
works have self-similarity and fractality [17]. T Li, K Jiang
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and L Xi [18] investigated the average distance of self-similar
fractal trees which come from the self-similar fractals. In [19],
H Ruan and Y Wang studied the topological invariants and
Lipschitz equivalence of fractal squares. In addition, lots of
complex networks can be generated from self-similar fractals.
In [20–23], the evolving networks from the Sierpinski carpet
are considered. Hence, it is natural to generalize the average
geodesic distance from complex networks to self-similar
fractals. Deng et al [24] obtained the average geodesic dis-
tances for Vicsek networks related to Vicsek fractal. Zhao
et al [25] researched the average geodesic distance on the
Sierpinski carpet in terms of the integral of geodesic distance
on self-similar measure. Wang et al [26] constructed the
evolving networks from Sierpinski carpet, and studied scale-
free and small-world properties of Sierpinski networks.
However, for most self-similar fractal networks, the analytic
formula of the average geodesic distance is difficult to obtain
directly.

In this paper, we first introduce the Sierpinski carpet.
And, we give the structure properties of the Sierpinski carpet
fractal networks, including degree distribution and clustering
coefficient. To obtain the average distance of complex

networks with finite nodes from self-similar fractal with
uncountably many points, we introduce an integral of geo-
desic distance with respect to the self-similar measure. We
analyze weighted average geodesic distances of the Sierpinski
carpet. Finally, we compute the exact value of average geo-
desic distance of the Sierpinski carpet fractal networks.

The organization of this paper is as follows. In section 2,
we introduced our models. In section 3, we study the struc-
tural properties of the Sierpinski carpet fractal networks. In
section 4, we study the weighted average geodesic distance in
Sierpinski carpet. In the last section, we draw the conclusion.

2. Model

Take a unit square in R2 and denote it by S0. Dividing each side
of S0 into four identical segments, we may obtain 42 squares
with sides of length 1

4
, take eight in diagonal line of the 42 small

squares and remove the others. Denote by S1 the set formed by
the eight squares. Denote by S2 the set obtained by repeating the
above procedure for each square of S1. Repeat infinitely the
above procedure, we obtain É É É É ÉS S S St0 1 2  

Figure 1. First four steps of the Sierpinski carpet construction.
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(see figure 1). The non-empty set = =
¥F St t1⋂ is called a

Sierpinski carpet.
A second description F can also be described as the self-

similar set or the attractor on S0=[0, 1]×[0, 1] for the eight
contracting linear maps = +T x ai

x
i4

( ) for iä{1, 2, 3, 4, 5,
6, 7, 8}, where a1=(3, 3)/4, a2=(0, 3)/4, a3=(0, 0)/4,
a4=(3, 0)/4, a5=(2, 2)/4, a6=(1, 2)/4, a7=(1, 1)/4
and a8=(2, 1)/4. Then the Sierpinski carpet F is the self-
similar set, which is the unique invariant set of IFS =Ti i 1

8{ }
satisfying = =F T Fi i1

8⋃ ( ). For convenience, write
Fi=Ti(F).

Fix a weight vector (p1, p2, p3, p4, p5, p6, p7, p8), such
that å == p 1i i1

8 , and piä(0, 1). Assume μ is the self-similar

probability measure [27, 28] on F satisfying

åm m=
=

-p T .
i

i i
1

8
1( ◦ )

Write =T T Ti i i in n1 1 ◦ ◦ and =F T Fi i i in n1 1 ( )  . Then
we have m =F p pi i i in n1 1

( )  .
Inspired by the Sierpinski carpet we construct the Sier-

pinski carpet fractal networks Gt=(Vt, Et), with node weight
distributions. See figure 2, there is a self-similar node weight
distribution on Gt. The Sierpinski carpet fractal networks Gt

are built as follows:
Initially (t= 1), G1 consists of eight nodes, four of which

constitute a complete graph, and each of the remaining nodes

Figure 2. The Sierpinski carpet fractal networks Gt (t=1, 2, 3) with weight distributions. Gt consists of eight isomorphic subgraphs in eight
colors.
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is only connected with one of the four previous nodes in turn.
Let G1

c be copy of G1.
For t�2, given the generation t−1, the Sierpinski

carpet fractal networks Gt are constructed by replacing every
node in Gt−1 with Gc

1.
Next we calculate the cardinalities of nodes and edges of

the Sierpinski carpet fractal networks Gt, denoted as =N Vt t∣ ∣
and Et∣ ∣, respectively.

It is obvious that the total number of nodes increased by a
factor of 8, i.e., Nt=8Nt−1. Considering the initial condi-
tion N1=8, it follows that Nt=8t.

By construction, Gt consists of eight subgraphs. Then we
can find that the total number of edges of Gt at two successive
generations obeys the recursion relation:

= + +-
+E E8 2 6.t t

t
1

1∣ ∣ ∣ ∣

According to the iterative relationship, notice that =E 101∣ ∣ ,
we obtain

= - -+ +E
4

21
8

1

3
2

6

7
.t

t t1 1∣ ∣ · ·

3. Structural properties of the sierpinski carpet
fractal networks

Now we study some relevant characteristics of the Sierpinski
carpet fractal networks Gt, focusing on degree distribution
and clustering coefficient.

3.1. Degree distribution

For many other networks, such as maximal planar networks
[29], their degrees increase with the size of the network.
According to the structure of the network, we know that there
are only three kinds of degree, which are 1, 2 and 4,
respectively. Now we’re going to derive the total number of
nodes for each degree of the Sierpinski carpet fractal networks
Gt.

Proposition 1. For the Sierpinski carpet fractal networks Gt,
let Nt(i) denote the total number of nodes with degree
i (i=1, 2, 4). Then the exact expressions of Nt(i) are as
follows.

= + +

= -

= -

+

+

N

N

N

1
2

21
8

1

3
2

4

7
,

2
1

3
8

1

3
2 ,

4
4

7
8

4

7
.

t
t t

t
t t

t
t

2

2

( ) · ·

( ) · ·

( ) ·

Proof. We know the Sierpinski carpet fractal networks Gt

consist of eight isomorphic subgraphs.
According to the structure of the network, nodes with

degree 1 exist only in the periphery of Gt, nodes with degree
2 are generated by the edges connecting the eight parts of Gt,

and nodes with degree 4 are generated by the interconnection
of the middle four parts of each generation of Gt.

Therefore, one can find that the total numbers of nodes
with degree i (i=1, 2, 4) obey the recursion relation,
respectively

= - -
= +
= +

-
+

-
+

-

N N

N N
N N

1 8 1 2 4,

2 8 2 2 ,
4 8 4 4.

t t
t

t t
t

t t

1
2

1
2

1

( ) ( )
( ) ( )
( ) ( )

Together with the initial condition N1(1)=4, N1(2)=0 and
N1(4)=4, we can obtain the desired results.

,

In the following proposition, we derive average degree of
a node in the Sierpinski carpet fractal networks Gt.

Proposition 2. The average degree á ñk of a node in the
Sierpinski carpet fractal networks is

á ñ »k
64

21
.

Proof. By the definition of average of a node, we have

á ñ =

=
- -

= - -

+ +

-

k
E

N

2

2 8 2

8
64

21

1

3

1

4

12

7

1

8
.

t

t

t t

t

t t

4

21
1 1

3
1 6

7

1
⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

∣ ∣

· ·

· ·

If  ¥t , then á ñ »k 64

21
.

,

3.2. Clustering coefficient

Here, we calculate the local clustering coefficient for an
arbitrary node and the average clustering coefficient for the
whole network. The local clustering coefficient of a given
node is the ratio between the total number of edges that
actually exist between its k nearest neighbors and the potential
number of edges k(k−1)/2 between them. The clustering
coefficient of the whole network is obtained by averaging the
local clustering coefficient over all its nodes.

For a node with degree 1 or 2, it is obvious that the local
clustering coefficients, ct(1), ct(2), for these two kinds of
nodes are

= =c c1 0, 2 0.t t( ) ( )

For a node with degree 4, there are three edge between its
nearest neighbors. Thus, the local clustering coefficient for
this kind of nodes is

=c 4
1

2
.t ( )

4
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As a consequence, the average clustering coefficient for
the whole network is

=
+ +

= -

c
N c N c N c

N

1 1 2 2 4 4

2

7

2

7

1

8
,

t t t t t t

t
t

⎜ ⎟⎛
⎝

⎞
⎠

¯ ( ) ( ) ( ) ( ) ( ) ( )

·

in the limit of large size (i.e.,  ¥t ), c 2

7
¯ . With the

increase of network scale, the clustering coefficient of Gt

tends to a non-zero constant 2

7
.

4. The weighted average geodesic distance in F

In this section we analyze weighted average geodesic dis-
tances of the Sierpinski carpet by using the integral of geo-
desic distance in terms of self-similar measure. Due to the
specialties of Sierpinski carpet, it is different from that of
other models. As to specificity, that is the geodetic distance
between the four peripheral blocks should pass through the
middle part, so we take the middle four parts as a whole. This
results the calculation is much more difficult.

To simplify the following calculation, let = =F Fi i0 5
8⋃ ,

= å =p pi i0 5
8 , i.e.

å= =
= =

F F p, 1.
i

i
i

i
0

4

0

4

⋃

Given = = = =A A A A1, 1 , 0, 1 , 0, 0 , 1, 0 ,1 2 3 4( ) ( ) ( ) ( )

= = = = =B B B B C
3

4
, , , , , , , ,1

3

4 2
1

4

3

4 3
1

4

1

4 4
3

4

1

4
( ) ( ) ( ) ( )

, .1

2

1

2
( ) Let d(x, y) be the geodesic between x and y on F. Then
we obtain the following theorem.

Theorem 1. Let τ(1)=3, τ(2)=4, τ(3)=1, and τ(4)=2.
The weighted average geodesic distance in F is

ò m m

=
å + + å + +

- - å

t t t

´

=

=

Î
¹

d x y d x d y

p p z z p p z z

p p

,

2 2 2 2

4 2
,

F F

i i i i j

i i

0 1
4

0
2

1
4 2

i
i j

i j i j
, 1,2,3,4

( ) ( ) ( )

( ) ( )( )
{ }

( ) ( )

where ò m=
=

z d x A d x,i F i
i 1

4{ }( ) ( )} satisfies

- + + = +

+ + + +

- + + = +

p p p z p z p z

p p p p

p p p z p z p z

1
1

4
2

1

4

2

4
3 3 3 ,

1
1

4
2

1

4

0 1 3 1 2 4 4 2

0 2 3 4

0 2 4 2 1 3 3 1

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )

( )

( ) ( )

+ + + +

- + + = +

+ + + +

- + + = +

+ + + +

p p p p

p p p z p z p z

p p p p

p p p z p z p z

p p p p

2

4
3 3 3 ,

1
1

4
2

1

4

2

4
3 3 3 ,

1
1

4
2

1

4

2

4
3 3 3 .

0 1 3 4

0 3 1 3 2 4 4 2

0 1 2 4

0 4 2 4 1 3 3 1

0 1 2 3

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( ) ( )

( )

( ) ( )

( )

Proof. In fact, we can obtain that

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

å

å

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

=

=

= +

+

+ + +

+

+ +

+ +

+ + +

+

= +

+

+ +

+ +

+ +

= + +

´

+ +

= + + + +

+ + + +

t

=

=

z d x A d x

d x A d x

d x B d B A d x

d x A d x

d x B d B C d C B

d B A d x

d x B d B C

d C B d B A d x

d x B d B C d C B

d B A d x

p d x A d x

p d x A d x

p d x A d x

p d x A d x

p d x A d x

p d x A d x p

d x A d x

p d x A d x

p p z p z p z p z

p p p p

,

,

, ,

,

, , ,

,

, ,

, ,

, , ,

,

1

2
,

2

2

1

4
,

1

4
, 3 2

1

4
, 3 2

1

4
, 3 2

1

2
,

2

2

1

4

,

1

4
, 3 2

1

4
2

1

4
2

4
3 3 3 .

F

i F
i

F

F

F

F

F

F

F

F

F

F

F

F

i
i

F
i

1 1

1

8

1 1 1

1

2 2 1

1 1

3 3

1 1 1

4 4 1

1 1

0 1

1 1

2 4

3 1

4 2

0 1 1

1

2

4

0 1 1 2 4 3 1 4 2

0 2 3 4

i

0

1
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3

4
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⎜ ⎟

⎜ ⎟

⎜ ⎟
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⎝
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⎠
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⎝

⎞
⎠

⎛
⎝
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⎠
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Similarly we also obtain

ò

ò

ò

m

m

m

=

= + + + +

+ + + +

=

= + + + +

+ + + +

=

= + + + +

+ + + +

z d x A d x

p p z p z p z p z
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z d x A d x

p p z p z p z p z

p p p p

,

1

4
2

1
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4
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4
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4
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F
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2 2
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According to the structure of the fractal F, we obtain that

ò ò

ò

å

å

m m m m

m m

=

+

´ = ´

¹ ´

d x y d x d y d x y d x d y

d x y d x d y

, ,

, .

F F i F F

i j F F

0

4
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i j

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

Using the self-similarity of measure and scale as
=d T x T y d x y, ,i i

1

4
( ) ( ), considering the term òå = ´i F F0

4

i i

m md x y d x d y,( ) ( ) ( ), we have the following two results:
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Considering the term ò m må ¹ ´
d x y d x d y,i j F Fi j

( ) ( ) ( ), we
will use the below equations.
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We discuss two cases.

Case 1. Suppose T T0, 1 0, 1i j
2 2([ ] ) ⋂ ([ ] ) is a singleton.

Then in this case (i, j)=(i, 0) if i>j. Furthermore,

=F F Bi i0⋂ { }, thus
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Case 2. Suppose = ÆT T0, 1 0, 1i j
2 2([ ] ) ⋂ ([ ] ) , then in

this case (i, j)ä{(1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1),
(2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3)}.
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Combining equations (1) and (2), we can obtain the exact
expression for ò m m
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5. The weight average geodesic distance of fGt gt

Given a undirected graph G with vertex set V with a weight
distribution Îqi i V{ } with å =Î q 1i V i , then the weight average
distance DG¯ of G can be defined as

å=D q q D i j, ,G
i j

i j
,

¯ ( )

where D(i, j) is the geodesic between nodes i and j.
Notice that the Sierpinski carpet fractal network (Gt, dt) is

a metric space with diameter 4t−1. Moreover, let
= -d d 4 1t t

t¯ ( ), then we obtain a new space G d,t t( ¯ ). Sup-
pose μt is the weight distribution on Gt. Then we have m

w
t ⟶

and G d F d, ,t t
dH( ¯ ) ⟶ ( ). As a result, theorem 2 follows from

theorem 1.

Theorem 2. The weight average geodesic distance of Gt t{ } ,
satisfy

where ò m=z d x A d x,i F i( ) ( ) for i=1, 2, 3, 4.

Example 1. If = = = = = = =p p p p p p p1 2 3 4 5 6 7

=p8
1

8
, then the weight average geodesic distance of Gt t{ }

is 51 2 110.

6. Conclusion

In this paper, we focus on a kind of Sierpinski carpet fractal
networks Gt, which depend on the parameter t. We exhibit
topological properties such as degree distribution and clustering.
Firstly, we study the structure properties of Gt, including degree
distribution and clustering coefficient. The latter are analyzed
weighted average geodesic distances of the Sierpinski carpet
fractal by using the integral of geodesic distance in terms of
self-similar measure with respect to the weight vector. Further,
we obtain weighted average geodesic distances of the Sierpinski
carpet fractal networks. In this paper, the highlight is the pro-
blem solving approach that is the reference value for further
study in many other diverse models. Our work provides useful
insight into the average geodesic distances for fractal networks.
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