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In this paper we have presented the analytical treatment of integrable improved perturbed

nonlinear Schrédinger equation with type of Kerr law nonlinearity by using a newly proposed
technique extended modified auxiliary equation mapping method. By the implementation of this
method we have obtained a variety of some new and quite general form of exact traveling wave
solutions in which we are including periodic, doubly periodic, combined, dark, bright, half dark,

half bright, using three parameters which is the main key difference of our newly proposed
method. For detailed dynamical physical description of our newly found results we have
presented them with graphical representation using Mathematica 10.4 to explain in a more
efficient manner the behavior of different physical structures of solutions.
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(Some figures may appear in colour only in the online journal)

1. Problem formulation and introduction

To study the extraction of optical solitons is one of excited
and most fascinating branch of applied physics and mathe-
matical studies with potential applications in most of scientific
and engineering disciplines including nuclear physics, non-
linear optics, plasma physics, optical communication systems,
nano-fiber technology, electromagnetism, chemistry, mathe-
matical physics, biomedical problems, many other physical
and natural sciences [1-36].

At present time the technology based on optical fiber
system has the key importance to transfer information, for
example in the transformation of telecommunication networks
and other internet sources [1]. Which are frequently used in
biomedical studies biological studies. Because of which, in
coming recent years it is more important to study the
extraction of optical solitons as they are considered as the
basic ingredients for information transfer from a mathematical
perspective.

0031-8949,/20,/065209+09$33.00

Recently, to extract exact solutions for partial differential
equations have been received considerable attention of many
researchers in mathematics. Many researchers including
mathematicians, physicists, biologists have studied exten-
sively integrable Improved Perturbed Nonlinear Schrodinger
equation with type of Kerr law nonlinearity which was first
time proposed by Biswas [35], which is a well known gov-
erning model with potential applications in optical and
quantum mechanics. If we go back in past to read the lit-
erature we will observe that with the application of different
numerical techniques the approximated solutions have
obtained for this well known governing model but the present
research is the motivation to obtain a variety of some new and
quite general form of exact traveling wave solutions in a more
compact form using our newly proposed technique. [4, 5].
Therefore our research work is the motivation to study the
dynamical structures of optical solitons for integrable
improved perturbed nonlinear Schrédinger equation with
temporal evolution. As a consequences we found some new
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families of solitons including periodic, doubly periodic,
bright, half bright, dark, half dark, combined, family of kink
type solutions using three parameters that is actually the main
key point of our proposed new method.

Also, the sufficient and necessary constraint conditions
for the existence of optical soltions are carried out during the
mathematical derivation.

At present time a number of some new very efficient,
powerful and more accurate methods which are dealing with
analytical studies just have been introduced in the literature
with the help of different new mathematical softwares for
example Maple, Mathematica 10.4 and Matlab. Like the
jacobi elliptic function method [6], extended Fan sub-
equation method [7, 8], Kudryashov method, the Bécklun
transform method [9, 10] ,the tanh-function method [14] ,
homogenous balance method [11], inverse scattering method
[15, 16],the truncated expansion method [12, 13] and many
more [37-41].

In section second the main steps of our newly developed
method was described in detail. In section three we have
presented the implemented results of our newly developed
technique for improved perturbed nonlinear Schrodinger
equation. In section four a more detailed physical description
with respect to graphs of our results and discussion of the
obtained results is given. While in section five some of con-
cluding remarks were given.

2. Extended modified auxiliary equation mapping
method

Suppose we are considering a more general form of nonlinear
complicated partial differential equation(NLPDE) which is
there to represent any nonlinear wave problem with the
help of a set of independent variables S, = {xo = ¢, x1, xp,
................ , X,} with function {(x, f) as dependent function
given in the following

T(C, Cps Cair Criggoeeeoene) = 0, (1)
Here T represents a polynomial function with its argument ¢

(x, 1) with nonlinear terms and its partial derivatives.

To determine exact traveling wave solutions we will use
linear transformation given in the following,

l
C = C(g)’ é-: Z XiXis (2)

i=0

where x;, i =0, 1 ... .......L,. are any constants. Further by
the help of above linear transformation (6) into (1) we will
have the below mentioned ‘nonlinear ordinary differential
equation (NLODE)’,

o, ¢, ¢ ¢,......) =0, 3)

Then in the next step we are assuming that ((£) will be
expressed into the general solution which is given as below as

series of (&),

(= O =Y gadd(©) + ;" bl (©)

, J
+ X, G OBE) + z;_ldj[i((f))) :
@

where the a;, b;, c;, d; are arbitrary constants which are need
to be determined later, and here ¢(¢) is there with satisfying
the following generalized solution which is given into the
form of a series of (&) with three parameters:

2
W2 = (%) = 1)+ 1ttt ©). ()

Here in above expression p, o, and ps are any constants
to be determined later. To determine v in form of explicit,
we will follow the steps given in the following one
by one:

1. Firstly we will determine the non-negative integer ‘n’
by balancing between the terms of highest order non-
linearity and highest order partial derivative in
equation (5) of equation (6).

2. Further by putting the value of equation (6) with
equation (7) into (5), and by the collection of with all
those terms of same power w’k(g)wf(g) (j=0,1,2,3,
4,5, ... ...n, k=0, 1), and by setting them to zero,
we will find out a system of algebraic equations, and
then by the help of an appropriate mathematical
software, we will obtain a set of values with constants
aj, bj, Cj, dj

3. By putting all the above mentioned values of arbitrary
constants into the equation (6) then we will find out the
required form of results of equation (3).

3. Improved perturbed nonlinear Schrédinger
equation with type of Kerr law nonlinearity

The focus of this section is to apply our newly developed
technique to check the precision of our method. In the con-
sequence of which we will obtain a variety of some new exact
traveling wave results of Improved Perturbed Nonlinear
Schrodinger equation with type of Kerr law Nonlinearity
which is a well known model to study optical solitons in
optical communication systems. The dimensionless form first
time presented and studied by Biswas [35, 36, 42] of our
model is given by

iu, + auye + buy + cF(uf)u = iow,
+ iIN(uPmu) + v (u ™). (6)

In the above model the coefficients represented by a and b
takes the introduction of dispersion terms, while on the left
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hand side the first term is there to show the linear evolution
term. The coefficient of a represents the improved term which
is there to take the introduction of stability analysis to the
NLSE excluding this term the problem otherwise will be an
ill-posed problem. And the coefficient of b shows the usual
group velocity dispersion(GVD).

When we talk about right hand side there are some
perturbation terms included in the model NLSE for example
« is there to show the coefficient of inter modal dispersion,
while A is the representation of self steeping constant which
is necessary to present there to avoid from the formation of
shock waves. While the coefficient v is the representation of
non linear dispersion term. While m is the representation of
power law nonlinearity parameter which is present to
represent the the full nonlinearity factor which has been
considered on a generalized setting. Its important to men-
tion here that all these perturbation terms are of Himltonian
type and hence in the finally speaking the perturbed NLSE
is given by (6) which is regarded to be integrable. The
coefficient of ¢ mentioned on the left hand side is the
representation of non Kerr law nonlinearity term which has
been presented by the functional F. In my present research
work we will deal only with Kerr law nonlinearity which is
in other words some time called as the cubic nonlinearity.
While this type of nonlinearity actually initiates only when
a particular light wave in an optical fiber system is subjected
to nonlinear responses. In this case:

Fu) = u. 7

So, the equation (6) takes the form as mentioned below:

iu, + aq, + buy + c(uP)u = icu, + iA(|ulPu),
+ v (Jul)u. @)

Further by the consideration of below mentioned linear
wave transformation

u(x, 1) = Q€)e?, ¢ = —kx + wt,
and while £ = x + Mt ©)]

Where )\, k, and w are arbitrary constants. Now by using
the above mentioned linear transformation in equation (8),
and with the decomposition into real and imaginary parts
respectively we are having the following equations:

2
(@ + b)(%ﬁf)) (e = OO
+ (kwa — K% — ak — w)Q(§) = 0. (10)
And
(M — kKNa + wa — 2kb — a)(a%—f))
(At 2v>Q2<£)(8%—f)) 0. (1)

Equation (10) can be rewritten as

Rl( 820(6) a2

ng) + R0O3*& + R30(¢) = 0.

where R; = (aA\; + b), R, = (¢ — A\k), and R3 = (kwa —
k*b — ak — w) By the principal of homogeneous balance,
making a quite balance between Q” and Q° terms in
equation (12), we will obtain n = 1. And then by using our
technique equation (12) takes the general solution as given
below:

b,
V(&)

v

Q) =ao+ ay(©) + G

+ di

13)

While here ¥(§) is there with satisfying the following
equations with its mentioned partial derivatives:

2
= (%) = 12 © + 13O + pt©: (14)

W) = (€ + %M2¢2(§) Foui©: (15

P& = (1 + 3p P (€) + 6p3* (DY (). (16)

By substituting equation (13) using equation (14) into
equation (12), and by the collection of all coefficients of
same powers ¢ N(OU/(&) (‘k=0,1.5=0, 1,2, 3, 4, 5,
6, ... .....n") and by putting them to zero will give us a new
system of algebraic equations, using an appropriate math-
ematical software like Maple Mathematica, and distinct
families of newly and more generally developed exact tra-
velling wave solutions with different values of constants
ap, by, dy a, with frequency are found, by substituting them
in equation (13) we will found our solutions of Improved
Perturbed Nonlinear Schrodinger equation with type of Kerr
law Nonlinearity as listed below.

Family 1:
. A
ao:il_\‘Al’ by=d =0, ay= ii,
VAV, PNVANIN VAV
2A1 A3N%
= —, = — 17
My As H3 84 17)

then by putting all above mentioned values into equation (12)
using the equation (14), in this family we will have the fol-
lowing mentioned results with the help of our newly developed
method, the following results of equation (6) in this family.
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i[2(ac + b%c?) + b2 (uy — efi2be® + 3py) + €(1 = 3eBpy tanh| 1 J7i (@ + &)
25 A ‘

Where ji, > 0, €= £1, p3 — 4,y = 0. (18)

M](x, t) = -

A 4 (1 g T m
( 4A1 + b (1 + 5+cosh[ﬂ(w‘+fg)|><1 3051)”2\/:) 10}
el

u(x,t) =i
4 A A,
Where p1; > 0, 3 > 0, p, = —J4pu, 5. 19)

Here in above solutions ‘¢’ and ‘4’ are can be of any choices of 1 or —1, with any appropriate choice of (e, ) = (1, 1),

-1 1,1, =1, 1, 1.

€ 26 w
(—2A] B b2(1 n (J1+ p? 8+ cosh[[1z; ( +50)J))(1 _ 3Cﬁl),“1)

p + sinh[ /i) (w+ &yl "

9t =1 1q
usz(x, t) =1 2\/K1\/A_2 e
Where 11, > 0, (¢,0) = (1, 1), (1, 1), (-1, 1), (1, 1). (20)

Here A, = (—ac—b*c* + b>c>B)), Ay = (B—befBs), Ay = (b* — 3b%c3;), While here ‘p’ and ‘€, are any arbitrary
constants.
Family 2:

d = i'—é : b =a=0 — 21)
l 5 =do=a . = s
1 \/—5 1 0 1 oy

then by putting all above mentioned values into equation (12) using the equation (14), in this family we will have the following
mentioned results with the help of our newly developed method, the following results of equation (6) in this family.

€ sech B\/u_l(w + 50)]2\/A_4\/M_1

us(x, t) =1i ei®

J6JAs(1 + ¢ tanh B\/u_l(w i 50)])
Where pi; > 0, €= =£1, p5 — 4p 3 = 0. (22)

\Emg(l + 6 cosh[ JJiy (w + &) YT
VA5 (6 + cosh [ T (w + E)D(6 + cosh [T (w + )] + € sinh[ 77 (w + £)])
Where 11, > 0, py, = —J4pu,145. (23)

Here in above solutions ‘€’ and ‘6’ are can be of any choices of 1 or —1, with any appropriate choice of (¢, 6) = (1, 1), (—1, 1),
(la _1)’ (19 1)

ei@

us(x, t) =1

VAT et = T4 p7 6 coshl iy (w + &)1 + p sinhlL 7y (w + D) Ay

ug(x, t) =1i it
VAs (p + sinh [ (J7i; (w + E)D(p + 1 4 p? 6 € + € cosh[ g (w + &)1 + sinh [ /1y (w + £
Where 11, > 0, (e,6) = (1, 1), (1, =1), (=1, 1), (1, 1).
(24
Here Ay = (b + a)\), As = (¢ — Ak), ‘P’ and ‘&’ are arbitrary constants.
Family 3:
JA VA A
dj=+ =2 by= (i, =py=a;=0, ap=i Sy =—=2, (25)
2JAs 2JAs AV
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then by putting all above mentioned values into equation (12) using the equation (14), in this family we will have the following
mentioned results with the help of our newly developed method, the following results of equation (6) in this family.

2\/A_6 n FSCCh[%‘M(w+£O)]2\/E«m

(I + e tanh[ 7y (w+ D)

up(x, 1) = —i el
4, As
Where pi; > 0, €= %1, p5 — 4p 3 = 0. (26)

JAe + € (1 + 6 cosh[ [ty (w + D Bq iy
6 T &+ coshl [y (@ + E)D (G + cosh[f7z; @ + &) + € sinh[ 71, @ + &)

2JAs

Where 1, > 0, py = — /4, 1t5. 27

ip
e 4

ug(x, t) = —i

Here in above solutions ‘¢’ and ‘4’ are can be of any choices of 1 or —1, with any appropriate choice of (e, 6) = (1, 1),

(-1 1), {1, =1, 1, 1.

\/A_ n € (=1 = 14 p2 & cosh[ ffi; (w+ & + p sinh[ fj; (w + EID VA4 Ty
6 : : e
(p + sinh [f71; W+ EOD(p + 1 +p* § e+ € cosh[Jiy (w+ & + sinh [ Ty (@ + €)DD) ¢it

ug(x, t) = —i 2\/A_5
Where 11, > 0, (¢,0) = (1, 1), 1, —-1), (-1, 1), (1, 1). (28)

Here Ag = (—ak—b*k* + kwa), Ay = (b + a\), As = (¢ — \k), p’ and ‘€’ are arbitrary constants.
Family 4:

. VA4 2A6 .\/A4\/M3
d=—i——, bi=a0=0, jy=—, g =i———.
A4 \/EﬂAS

V2 /A5

then by putting all above mentioned values into equation (12) using the equation (14), in this family we will have the
following mentioned results with the help of our newly developed method, the following results of equation (6) in this
family.

(29)

(6 sech[%\/u_l(w n 50)]2\/,“_1“2 + 2u1\/u_3(1 + € tanh[é\/,u_l(w + 50)])2)

upx, 1) = | —iyAy 0i0
2V2 A5y (1 + € tanh[%\/,u_l(w + go)])
Where p; > 0, €= %1, 15 — 4p 3 = 0. (30)

1) = i NA4(—2¢ (1 + 6 cosh[ /iy (w + &N + (6 + cosh[ /iy (w + &y)] + € sinh[ J; (w + {0)])2 ) oit
1x, 1) =
232 A5 (8 4 cosh[ 1ty (w + £ (S + cosh[ [1z; (w + )] + € sinh[ J7z; (W + &)

Where m = [y, g1y >0, py = —J4ppiz.
(€29)

Here in above solutions ‘€’ and ‘6’ are can be of any choices of 1 or —1, with any appropriate choice of (¢, 6) = (1, 1),
(_1, 1), (1, _1)’ (1’ 1)
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(n_a)

U

-3 5 b T B

Figure 1. The physical representation of (19) and (20). here (g,-a) represents 2nd dimensional graph of (19) with §, = .3, e = .8, a = .2,
b=S5c=—-1,u=—-12, up=-18, u3 =19, =238, 8, = 1.8, 5, =1, 6 = 1.9 in intervals (0, 10), (—15, 15) as type of bright
soliton. And (gs-a) shows 2nd dimensional graph of (20) as type of bright soliton with different shape in intervals (0, 10), (—15, 15) with
=—-10,e=18,a=2,b=15,c=1L 1 =18 up=—-19, u3=9,=-28,6,=.2,06,=1,6=-19, p = —1. And (¢3-b)
represents 3rd dimensional graph of (20) with g = —1.0, e =18, a=2,b=15,c=1, uy =18, po = —-19, u3=.9, g = -2.8,
Or=2,0,=16=—-19, p = —1 in intervals (0, 5), (—5, 5) as bright soliton.

A

NN

e (1 +
X

1 4 p* § cosh[ /ity (w + &)] — p sinh[ /7] (w + £)])

(p + sinh[ /] (w + EID(p + 1 4+ p? 6 € + € cosh[ Ji; (w + &] + sinh[ ] (w + &)

1+ € (J1+p? &+ cosh[, Ty (WD
p +sinh[_ 7 (w+ &)l

| 75

_ it

Ho

Where 11, > 0, p3 >0, (e,6) =(1,1), 1, —1), (-1, 1), (1, 1).

(32)

Here Ay = (b + a)\y), As = (¢ — k), ‘p’ and ‘&, are arbitrary constants.

4. Graphical or physical representation of the results

In this section we are going to represent the graphical
representation of our newly found distinct families of exact
travelling wave results in which we are including combined
functions, hyperbolic functions, rational functions, trigono-
metric functions with different appropriate figures (Figures 1,
2, 3 and 4) to have a complete understanding of graphical
description of improved perturbed nonlinear Schrodinger
equation with type of Kerr law nonlinearity using Mathe-
matica 10.4.

5. Results and discussion

This section is going to highlight the similarities and differ-
ences of our newly found a variety of results which we just
have found by the help of our newly developed method with

those solutions which are present already in the literature
obtained by different authors using different mathematical
techniques. The first and main key point to obtain new
families of results of our method is the main body or structure
of our modified new proposed solution (4), which is totally
different and new structure using three parameters which is
the main key difference of our newly proposed method,
further to understand the dynamics of our obtained solutions
more completely the graphical structure by using quite dif-
ferent and new sets of values of constants a;, b;, ¢;, d; either
by using the software Mathematica 10.4 or Maple are given,
Also equation (5) gives us distinct forms of exact traveling
wave new results which are including rational functions,
combined functions, trigonometric functions, and hyperbolic
functions. In the following we have listed some same results
which we have obtained by our method in comparison of
other results obtained by other techniques already available in
literature.
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(gs_a)

Ules)

Figure 2. The physical representation of (22), (23) and (24). here (g4-a) represents 2nd dimensional graph of (22) with & = 1.3, e = 1.8,
a=2,b=15c=2, 41 =25 u=19,u3=2,8=2,0, = 1.8, >, = l inintervals (0, 5), (—5, 5) as type of bright soliton of different
shape. And (gs-b) shows 3rd dimensional graph of (23) as type of half bright soliton with different shape in intervals (0, 5), (=5, 5) with
£ =38,¢=29,a=28b=15c=—-1,pu =16, i, =18, u3 =19, =28, 8, = 1.8, 5, =1, 6§ = —1.9. And (gs-b) represents
3rd dimensional graph of 24) with§y = 1,e =18, a=2,b=15,c =3, u; =25, 1 = —1.6, uy3 = =2, = -2.8, 3, = 2.8, 5, = 1.5,
6 =1.9, p =1 in intervals (0, 5), (-5, 5) as bright soliton.

Figure 3. The graphical representation of (26), (27) and (28). here (g;-b) represents 3rd dimensional graph of (26) with §, = —1, ¢ = 1.5,
a=-2,b=—-15c=—-1,u=—-12, uyp = —-13, u3 = 1.8, g = =2.5, 51 = —1.8, B, = —1 in intervals (0, 5), (—5, 5) as type of
periodic soliton of different shape. And (gg-b) represents 3rd dimensional graph of (27) as type of doubly periodic bright soliton with
different shape in intervals (0, 3), (=5, 5) with o = —1.8, e = =19, a = 28, b=—15,c =1, 4y = 1.6, up = 1.9, u3 = 1.9, g = 1.8,
By =—18, 8, =1,6 = —1.9. And (go-a) represents 3rd dimensional graph of (28) as bright soliton of different shape with £, = 1.9,
e=18,a=2,b=15c=19, =17, 10, =16, 13=2,3= 18,8, =28, 3, = 1.5, 6 = 1.9, p = 1 in intervals (0, 10), (—15, 15).

(Uro_a)

5 10 15

Figure 4. The physical representation of (30), (31) and (32). here (g;o-a) represents 2nd dimensional graph of (30) with {§; = —1.6, € = 1.5,
a=29b=3,c=-19,u =19, up = —-19, u3 = 1.8, g = =2.5, 8; = —1.8, B, = 1.8 in intervals (0, 10), (—15, 15) as type of bright
soliton with quite different shape. And (q,,-b) shows 3rd dimensional graph of (31) as type of half bright soliton with different shape in

intervals (0, 5), (=5, 5) with §, =3.5,¢=2,a=3,b=—-19,¢ =35, 4, =19, up, =3, u3 = —-19, 8 =-1.9, 5, = 1.9, 5, = —1,

6 = —1. And (g,-a) represents 2nd dimensional half bright soliton with different structure of (32) with §, = 3, ¢ = 1.9,a = -2,b = —1.9,
c=19, u1 =19, up =17, u3 =29, =18, g; = =28, 5, =18, 6 = —1.9, p = 1 in intervals (0, 10), (5, 5).

listed all the solutions under this improved sub-equation

Results obtained by Improved Sub — ODE Method: .
but our results for the same equation Improved

* As it was claimed in Improved Sub-ODE Method that Perturbed Nonlinear Schrodinger equation with type
when hg = 0 and h; = 0, the general elliptic equation of Kerr law nonlinearity are different in complex
degenerated into improved sub-equation auxiliary domain which are more general in compact form with
ordinary differential equation and the authors [19, 20] a straight forward and with a more simplified way
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calculated, which are quite hard to discuss in complex
domain. So we have found some new variety of exact
travelling wave solitons in a complex domain.

The extraction of exact solutions in a complex domain for
nonlinear improved perturbed nonlinear model with
respect to time is of key importance with potential
applications in optical and quantum physics. Which is not
calculated yet by any other technique, so our obtained
results are totaly new with quite different structures.

A variety of new optical solitons is extracted here first
time in complex domain using a single technique using
three parameters which is the main key difference of our
newly proposed method.

It is important to mention here that we have checked all
solutions by using Mathematica.

L]

Results obtained by New Mapping Method:

* we made a detailed comparison of our newly obtained
results with the results obtained by New Mapping
Method mentioned in [19, 20], all listed solutions are
in real domain, while our results are totaly different and
newly obtained in complex domain.

Results obtained by Extended Auxiliary equation Method:

* we made a detailed comparison of our newly obtained
results with the results calculated by Bernoulli Sub —
ODE Method mentioned in [42], all listed solutions are in
real domain, but our results are quite different and new in
complex domain.

In the last, its quite important to describe here that the results
found in [19, 20] are totaly different from our obtained variety
of solutions, So our solutions are completely new and more
general in a compact form with in complex domain. From the
above comparison we can conclude that we have obtained a
variety of new optical solitons which are more general and
has not been extracted before, from which it shows that our
method is more effective, reliable, very helpful, quite straight
forward with less computational time to study more
analytically other complicated nonlinear partial differential
models.

6. Concluding remarks

In this work we have successfully presented a new method to
study more analytically other complicated nonlinear partial
differential equations(NLPDES), which are appearing in
quantum mechanics, nano-technology, mathematical physics,
chemistry, nonlinear optics, molecular biology, plasma phy-
sics, elastic media, and in different engineering disciplines.
As an application we have implemented our newly developed
technique on integrable improved perturbed nonlinear
Schrodinger equation with type of Kerr law nonlinearity with
potential applications in optical and quantum mechanics, in
the consequences of that we have obtained some new variety
of more general families of analytic travelling wave solutions

which are actually highly useful to study the qualitative fea-
tures of several phenomena more accurately and also have a
profound impact in the development and improvement of
some quite new mathematical softwares which are highly
helpful and very useful to find out the numerical solutions of
other complicated partial differential equations and also to
make a comparison with analytical solutions. To represent a
detailed graphical structure of our obtained solutions we have
shown them with graphs explaining with three parameters
using the software Mathematica 10.4 which gives the physical
interpretation more clearly. Also the computational work and
efficiency of the method demonstrates the reliability,
straightforwardness, and simplicity of the method.
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