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Abstract

The present work concerns with the study of progressive wave solution for the waves of finite
and moderately small amplitude in the mixture of the non-ideal gas and dust particles governed
by quasilinear hyperbolic system of PDEs. Using the progressive wave method, we derive the
transport equation which provides the conditions of the shock formation, and equation to
determine the shock strength. Also, it is shown that how the presence of the parameter of non-
idealness and mass fraction of dust particles influence the shock formation and shock strength for
the planar and non planar cases. We also discuss the consequence of variation in the value of the

non-ideal parameter and the mass fraction of small solid dust particles on the evolutionary

process of the shock.
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1. Introduction

The study of non-linear waves has great importance due to its
interdisciplinary applications in many physical phenomena. A
large number of analytical and numerical techniques have
been developed to solve the non-linear system of partial
differential equations governing the wave motion (see [1, 2]).
Several methods have been proposed to study the asymptotic
behavior of weakly non-linear waves described by the quasi
linear system of hyperbolic PDEs to establish the transport
equation which is used to study the wave process asympto-
tically by the authors Sharma et al [3], Hunter [4], Kluwick
et al [5] and many more. In general, shock phenomena can
occur in various astrophysical situations, such as stellar
winds, photo-ionized gas, supernova blasts, rapid crashes
between interstellar gas clusters, and so forth. Shock pro-
cesses, such as a shock arising from stellar pulsation, a
supernova explosion going out through a stellar shell, a shock
originating from some extent source such as man-made
explosion in Earth’s atmosphere or Sun’s impulsive flare has
considerable significance in astrophysics and space sciences.

0031-8949,/20,/065205+09$33.00

In the past, the theory of progressive waves have more
attention due to its wide applications in aerodynamics, space
science, Engineering Science etc. It has been studied that the
non-linearity in the near and far field decisively changes the
behavior of the compressive and expansive waves, although
the disturbance is small, and causes the behavior of forgetting.
Due to this forgetfulness behavior, the shockless disturbances
only remember the global initial conditions such as total
energy input and forget the previous details of the flow. In
comparison to the theory of non-linear geometric acoustics
dealing with small amplitude waves, the progressive waves
approach deals with finite amplitude pulses; it is exact for the
acceleration waves, shock formation, and Riemann waves.
Courant et al [1, 6] have contributed significantly in the
context of progressive waves to solve the linear systems that
are helpful to introduce the nonlinear system. Varley and
Cumberbatch [7] have provided the theory of ‘Relatively
Undistorted Waves’ to address the waves of finite amplitude
in a radially symmetric isentropic gas flow. This theory
depends on the successive approximation scheme for the
system of hyperbolic partial differential equations (PDEs)
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which makes no assumption about the magnitude of the dis-
turbance. Seymour and Mortell [8] further applied this tech-
nique in detail in which they introduced an expansion scheme
that generalizes the previous research and it was used in linear
geometric acoustics to inspect the amplitude dispersion and
shock formation. Similar approach has been developed by
Taniuti [9], Asano [10] and their peers [11]. They discussed a
class of nonlinear partial differential equations that perceive a
decrease in tractable nonlinear equations such as the Kort-
weg-deVries equation and Burger equations, and also dis-
cussed the applications of this method in plasma physics and
hydrodynamics. Gupta et al [12] and Varley et al [13] have
discussed the concept of simple modulated waves to examine
high frequency waves in distinct regime. Further, the com-
plete shock wave classification in a van der Waals fluid is
studied by Zhao et al [14]. Singh et al [15-17] and Nath et al
[18, 19] have discussed about the evolution of weak shock
waves and its propagation in distinct material media. Ambika
et al [20] have studied the disturbance and flow patterns of
amplitude waves by using progressive wave approach.

Dusty gases have received great attention in numerous
science and industrial research since the last few decades owing
to their applications to lunar ash burst, nozzle flow, underground
explosions, bomb blast, celestial explosions, description of star
formation, coma collision with a planet, shocks in supernova
explosions and many other physical problems. Applications of
dusty-gas flow studies have recently drawn attention to industrial
and environmental problems. Removing small solid particles
from semiconductor wafers by using shock waves and non-
stationary gas dynamic wave systems is an example of industrial
applications. Here it is assumed that the gas consists of the dust
particles in which the volume of particles includes only five
percent of the mixture’s complete volume. In the present pro-
blem, we have considered that the particles are spherical, of
uniform size, and their specific heat is constant. Also, we assume
that the temperature within each particle is uniform, and there are
no collisions between particles. The study of fluid flow con-
taining solid particles is of concern to many research fields of
science and engineering such as centrifugal separation of specific
matter from liquids, many chemical processing, fluidized beds,
strong particle movement in rocket exhaust and dust stream in
geophysical and astrophysical issues. Miura and Glass [21]
investigated the propagation of a shock wave en-routing through
a dusty-gas layer. Pai [22] gave some basic idea of a gas flow in
the presence of small solid particles. Carrier [23] has explored
the characteristic of shock waves in dusty gas where the planar
steady retarded flow of a dusty gas is appropriately studied. Pang
et al Nath et al [24] and Chaturvedi et al [25] examined the
propagation of weak discontinuities in dusty gas.

In this paper, we analyze the concept of progressive wave
solution in a non-ideal dusty gas for planar, cylindrically
symmetric and spherically symmetric waves of finite and
small amplitudes, and examine how the non-ideal parameter
and mass fraction of dust particles affect the shock formation
and flow patterns. Besides this, we have discussed some
specific cases in which it is assumed that the initial dis-
turbances are either pulse or periodic wave and figured out the
entire process of shock decay after the shock formation.

2. Governing equations

The basic equations that govern the one dimensional unsteady
inviscid non-ideal dusty gas flow, may be written as (see [26])

mou
gt"‘”pr""@“r"‘i:(),
r

u,+uur+&=O,
14
E+ua—ég@+umr:a (1)

where u denotes the particle velocity, ¢ is the time, o is the
density, p is the pressure and r represents the spatial coordi-
nate. The subscripts have been used for partial derivative of
the flow parameters with indicated variables. The internal
energy E per unit mass of the mixture is given by
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Here, k, = mgy,/m, and Z = V,,/V, define the mass frac-
tion of the solid dust particles present in the flow and the volume
fraction, respectively, where Vy, and mg, denote volume of the
dust particles and the total mass respectively. Also, V, represents
tpe total volume with m, as the total mass of the mixture;
b =b(1 — k), where b is the van der Waals parameter. The
Griineisen coefficient I' is given by I' = (1 + A8)/(1 + AGy),
X =k,/(1—=k,), B = cg/cp ¥ = cp/c,, Where ¢, denotes the
specific heat of dust particles, ¢, and ¢, denote the specific heat
of the gas at constant pressure and at constant volume, respec-
tively. The volume fraction Z and the mass fraction k,, are related
by the relation Z = 0o, 6 = k,/0y,, where g, is the specific
density of the dust particles. The equation of state for the non-
ideal dusty gas is given by

(1 — k) p
(1 -2 - bo)

where R and T denote the specific gas constant and the temp-

erature of the mixture of gas and solid dust particles respectively.
On the insertion of equation (3) and neglecting the terms
containing O(b?), equations (1); can be written as

p= RT, 3)

P+ up, + gAz(ur + ﬂ) =0, “)
r
where
A 1/2
I' —bZ
A=-0b+2)+b2)p

is the speed of sound with b = ob. From equation (5), it is
noticeable that

@ — bZ)p

. — >0, (6)
A—-Gb+2)+b2)0

which leads that the governing system (1) is hyperbolic in
nature.
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3. Progressive waves

Progressive waves are the solution of the system (1), if a
family of propagating wavelets w(r, ) = constant, such that
the magnitude of the derivative of flow variables u, o and p
with respect to r along a wavelet is much smaller than the
magnitude of the derivative of flow variables with respect to r
for a fixed time ¢ (see[27]). The aforementioned notion of
motion can be considered as a generalization of simple wave
theory, where the variables p, u and p can be defined in the
form of a single variable w(r, £); it means that flow parameters
remain unaltered along a wavelet. This exhibits that these
waves are similar to slowly modulated simple waves. Now,
the transformation is considered from (7, f) to (r, w) through
t = 7(r, w), then the governing equations (1), (1), and (4) in
terms of the o(r,t) = o(r,w), u(r,t) =i(r,w) and
p(r, t) = p(r, w) transform into the following form:

mou
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(I — ur)u, — lTrp, + au, + lﬁr =0,
0 0

- mit
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Since it was assumed that the system has progressive
wave solution, therefore

where A = (
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Note that the approximation considered here does not involve
the magnitude of the flow variables but only their derivatives.

Moreover, if g, = O(o/r), u, = O@ii/r) and p =
O(p/r), then equation (1) can be rewritten as

(I —ur)or — ou, =0,
(1 = uru, — ~rp, =0,
%
(I — ur)p, — 0A*1,u, =0, 3
which gives
7= (u—+ A" )

From equation (9), it can be seen that the wavelets,
considered here are the characteristic curves of the system
(1)1, (1), and (4). Using equation (9) in (8), we obtain

oAu, =g, = p,,. (10)
By using equation (7), and (7)3, the compatibility condition
involving the flow parameters 2, i, p and their derivatives, is
given by

m@ﬁAz

(@ + A)(2Au, + p,) + =0.
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4. Finite amplitude waves

Now, let us assume that the wave propagation into a uniform
region is given by u = 0, o = gy and p = p,. Consider the
boundary conditions for 7 and @ , at r = r( to be

(12)

Here h is a smooth and bounded function. Under the pro-
gressive wave approximation, in light of equation (10) we can
write

0 =hw), T=w.

i(r,w) =U(o(r, w), p = P(o(r, w)).
Using equation (13), we can solve (9) for t = 7(r, w) as
T=w+ f _— ! —dr.
rn U(2) + F(2)

The equation (11) together with the equation (13) can be
solved for o as a function of r and w given by

oU(2) = H(w)(r/ro) ™2,
where H(w) = h(w)U(g(w)) and

(13)

(14)
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where Zy = 0py and l;o = boy. equation (14) shows that the
shock first form at r = r; on the wavelet w,, where r, can be
obtained as the solution of

L f( (T + 1) — (T + 3)Zb + 2767 + b)P(2) ]
0\ 2221 — (Z + b) + Zb)*F (2)(U(2) + F (2))?
X (8_@) dr = 0.

O (16)
equation (12)—(16) describe the simple wave solution. Also,
the disturbance propagating into the region ¢ = go, p = po
and u = 0 is described by equation (12)-(16) can be deter-
mined from equation (14). The density g can be obtained
from equation (15), thereafter the velocity i, pressure j are
determined from equation (13). Equation (16) implies that at
the distance r,, the solution will be discontinuous and the
discontinuity depends on the values of § and b. Now, we shall
envisage the wave propagation into an unperturbed region
with u = 0 ahead of the shock.

5. Small amplitude waves
In this section, we consider the disturbed flow as a pertur-

bation of the uniform state given as @ = go + 01, where the
disturbance p; is supposed to be very small. Now from
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equation (13)—-(16) we have

p_(r’w):p()_'_gl(raw)Fg’

a(r, w) = o1(r, wFy/ 0o (17)

Under the hypothesis |z (w) — go| < 1, the perturbed density
01 is given by

21(r, w) = h(W)(r/ro)y ™2, (18)
and the perturbed wavelets are given as
1
T(r, w) =w+ F(r — ro) — auh(w)J (r), (19)
0
where oy = rTr+1 : (5 +3)Zobo ‘i: ZZOhO(?Oj bo))py and
200F5(1 = (Zo + bo) + Zobo)
r—ro if m =0,
172 )
T(r) = 2r0((z) — 1) ifm=1, (20)

if m= 2.

140) log (FL(])

Equation (19) shows that for «; > 0, a shock forms on a
compression wavelet (dh(w)/dw > 0) at a distance r,, given

by
( dh(w) )
(03] =1.
dw )=y

21

)=t
s

In view of equation (18), we see that along a wavelet, the
density o, remains same for m =0 and it decays for
m=1,m=2.

We can obtain the position of weak shock wave by using
the following equal area rule (See [2]).

2 [ h©de = @wr — o + hw), @)

where w, is the wavelet just ahead of the shock and wj is the
wavelet behind the shock.

6. Steepening of shock

In this section, we describe the process of shock formation
and decay on the leading wave front w = 0. We assume the
two cases; the first one is the case when the shock propa-
gating at the boundary (pulse) and second one is the case
when the disturbance propagating at the boundary (peri-
odic wave).

Case:1 In this case, we assume that the shock propa-
gating at the boundary r = ry, is a pulse which can be written
as

0 ifw <0,
h(w) = { 208 sin (“Jr—?’) if 0 <w < 2, (23)
. Tro
0 ifw> -

In view of equation (23), the progressive wave solution for a

small amplitude disturbance is given by (17)—(19) as

-m/2
2(r, w) = po+ 000 sin(w—FO)(L) ,

ro ro
—m/2
p(r,w) = py + Fj 006 sin (w—FO)(L) ,
ro J\ "o
—m/2
. F
i(r, w)=Fyood sm(u)(i) ) 24)
ro ro
and t = 7(r, w) can be written as
1 . F
T(r W) = w4+ —(r — ro) — sm(ﬂ)m). (25)
F Foary o

The shock formation distance r,/ry is given by (21) as

’1 + ayg

Wk
Ccos (70)
o

2
Ts 1+ — ifm=1,
= =9 [ 2005(“@)]
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(26)

2(1 = Zo)(1 = by) (T — Zobo)
i SIT(T + 1) — (T +3)Zobo + 2(Zo + bo)Zobo] .
quantity. From equation (6), it may be noted that for a given

value of k, and b, a;; >0 (a;; <0) according as
I+ 1) — (4 3)Zoby + 2(Zy + bo)Zoby is positive
(negative), hence a shock forms (since r; > rg) on the leading
wave front w = 0 (respectively on the trailing wave front
w = m). Partial derivatives of oy with respect to Z; and I;O is
given as

where o = is a constant

o _ =201 = bo{(1 = Z)Ai + @ = Zobo)Ao}
0Zy SITX + 1) — (I + 3)Zobo) + 2Zobo(Zo + bo)I?
27)
where
Ar=by(T(T + 1) — (@ + 3)Zobo)
+2Zobq (Zo + bo), (284)
Ay = 2bo(Zo + bo) + 2Zybo(1 — Z)
+TT+1)—-d+ 3)150), (28b)
and
dan _ —2(1 = Z){(1 — bo)B + (I — Zybo)B, )}

by ST + 1) — (T + 3)Zobo) + 2Zobo(Zo + b2~

(29)
where
Bi=Zo(L(T + 1) — (T + 3)Zobo)
+223bo(Zy + by), (30a)
By = 2Z0(Zo + bo) + 2Zobo(1 — by)
+@TC +1) — T+ 3)Zo). (30b)

DT 4 1) — (T + 3)by > 0and T(T + 1) — (' + 3)Z, > 0,
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Figure 1. Variation of «; versus k, for different values of b with v = 1.4 and 3 = 0.8.

then 2(;1 < 0 and é?;;“ < 0. Consider a weak shock wave pro-
0 0

pagating into an undisturbed region, where h(w;) = 0 for w; < 0.
On substituting equations (23) and (25) in (22), we have

1/2
sinl@2fo) — [ _ curo /
2}"0

J(r)
With the help of equation (31) and (24),, the shock strength that is
the jump in density [o] is given by the following equation

[o] =2 5(L)m/2 O‘“”’(1 - O‘“ro) - (32)
grT e ro J(r) .

J(r)
equation (32) illustrates that the shock formation on w =0 at
r = r, > 1y achieves a maximum strength at r = r; > r,, where
ry is obtained as a solution of the following algebraic equation:

)J(rn)
g1

ro

€1y

J(r) N m(L)ler/Z(J(rl) -
ro ro ro

and then it decays eventually in proportion to r~

— 2011 =0,

(33)

m/2

Case:2 Let the small disturbance at boundary r = ry,
having a form of periodic wave defined as

h(w) = 006 sin(®), (34)
where 6 < 0 and & = Fyw/ry and let the growth over the
period 0 < @ < 27 so that the shock first forms on the
wavelet & = 7 at a distance r = r, nearest to ro which can be
obtained from the solution of equation (21). Equations (19)
and (22) are satisfied on the shock if &y + &, = 27w and

W) — Wy = 2u, where o is the solution of

IO (35)
Ny roQq1

Therefore the jump in density [g] at the shock is given by

(36)

o

r —m/2
[0] = 2006 sin u(—) ,

where r and p are satisfied by equation (35). Equation (36)
demonstrates that the shock starts with zero strength
corresponding to ;4 — 0 at r = r,, and goes to a maximum
strength for some p = p,, at r = r,,, satisfying the following
relation:

$in(241,,) — many(sin(u,)) — f1,, €08(11,,) (/7o) /2 = 0.
(37)

7. Results and discussion

In this section, we discuss the solution obtained under the
given approximation in the physical plane, and also we
examine the effect of mass fraction of dust particles and non-
ideal parameter on the propagation of the progressive wave,
and the conditions of the shock formation. To clarify more we
consider the result in two cases; first one is spherical sym-
metric case and other one is cylindrical symmetric case. Also,
we consider two cases that the disturbance is either a periodic
wave or a pulse and we observed that in both the cases the
shock formation and decay completely depends on a constant
ay;. We can obtain the shock formation distance from
equation (26) for both planar and non-planar case. Also, it can
be noticed that in the case of planar flow, the shock formation
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Figure 2. Variation of shock formation distance in (a) cylindrically symmetric flow and (b) spherically symmetric flow for different values of

b, respectively.

distance is a linear function of «;; while in case of cylindrical
symmetric flow, it is quadratic, and for spherical symmetric
flow, it is an exponential function of «;;. The Shock forma-
tion rate increases with the increasing value of m. From the
curves of the equations (27) and (29) it is clear that aj; is a
decreasing function of Z and b. Figure 1 shows that an
increase in the value of non-ideal parameter b causes to
decrease the value of oy while vy is the increasing function
of the mass fraction k,, of the dust particles. From the relation
(26), we observe that the increase in m (m = 0, 1, 2) leads to

an increase in the shock formation distance which implies that
the shock formation is earlier in case of planar flow than the
non-planar flow. Also, equation (26) demonstrates that the
increasing values of b causes an early shock formation in both
cases cylindrically as well as spherically symmetric flows.
Figure 2 shows that as we increase the value of k,, the shock
formation distance increases. This is due to the fact when a
wave is transmitted into dusty gas, the wave velocity
decreases due to the hindrance of particles of large inertia and
results in an increase in the shock formation distance. The
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Figure 3. Effects of mass fraction k, and the non-ideal parameter b on the shock strength in (a) cylindrically symmetric flow and (b)

spherically symmetric flow for v = 1.4 and 3 = 0.8, respectively.

early shock formation is due to non-idealness of the gas
whose effect is to destabilize the gas. From figure 2, it is clear
that the presence of the non-ideal parameter affects the shock
formation distance. The effect of k, along with b on the shock
strength in cylindrically symmetric and spherically symmetric
ideal and non-ideal gas flow is shown by the curves in
figure 3. We can see that the maximum value of shock
strength decreases with an increase in the value of k, and b. A
similar kind of behavior can be observed between shock
curvature and the maximum shock strength for different

values of the mass fraction k, and b. The distortion of pulse
described by (23) for cylindrically symmetric and spherically
symmetric flows are shown in figure 4, respectively. Also,
figure 4 describes the effect of non-ideal parameter b and
mass fraction of the solid dust particles k,, on the distortion of
the pulses. On increasing (decreasing) the value of b and k,
causes to slowdown (enhance) the flattening of the wave
profiles. Also, the distance r =r, at which the shock
achieves its maximum strength can be determined from
equation (37).
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Figure 4. Variation of p = % with the dimensionless variable £ = (’%OF“’) in (a) cylindrically symmetric flow and (b) spherically

symmetric flow of non-ideal gas with dust particles, respectively.

8. Conclusions

In this study, we use the progressive wave method to inves-
tigate the finite amplitude shock wave, moderately small
amplitude shock wave in the mixture of the non-ideal gas and
the dust particles where the motion is perturbed at the
boundary. We observed that the van der Waals parameter b,
together with mass fraction k,,, influence the shock formation,

shock strength, distortion of pulse and the flow patterns of the
solution curves. It is noticed that the shock decay earlier in
the case of spherically symmetric flow as compared to the
cylindrically symmetric flow. The amplitude dispersion of
the wave depends on the amplitude of the wavelets and the
values of b and k,. Asymptotic behavior for the decay process
of planar and non-planar flow configuration is investigated.
Also, in this study, we discussed two distinct cases that the
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disturbance is either a periodic wave or a pulse and found that
in both the cases the shock formation and decay relies upon a
constant «;;. It is also observed that the shock formation
distance varies exponentially in case of spherically symmetric
flow as compared to cylindrically symmetric flow. The shock
strength also varies according to variation in the values of the
parameter of non-idealness and the mass fraction of dust
particles i.e., an increase in the value of the parameter of non-
idealness as well as mass fraction of dust particles cause to
decrease (increase) the flattening of the curves for non-planar
flow. Also, the condition for obtaining the distance at which
the maximum shock strength can be achieved has been
determined, and it is found that it gradually decays according
to the power law of the distance. It is observed that a rise in
the value of b results in a significant increase in the elevation
of the expansive part of the profile, and a decrease in the
distance of shock formation, thus indicating that the dis-
turbance is being intensified.
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