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Abstract
A nonlinear integrable model known as the (4 + 1)-dimensional Boiti—-Leon—-Manna—Pempinelli
(4D-BLMP) equation is studied in the present paper. To this end, by considering the Hirota
bilinear form of the model and utilizing the linear superposition method (LSM) along with
symbolic computations, a group of rational wave solutions including multiple wave and positive
(non-singular) compelexiton solutions is formally derived. The dynamical behavior of the
solutions is also analyzed graphically by considering the special values of the involved
parameters. The results of the current work reveal the existence of different wave structures to
the 4D-BLMP equation and distinguish it from other models that do not possess non-singular
compelexiton solutions.

Keywords: (4 4 1)-dimensional boiti-leon—-manna—pempinelli equation, hirota bilinear form,
linear superposition method, symbolic computations, multiple wave and positive compelexiton
solutions

(Some figures may appear in colour only in the online journal)

1. Introduction different strategies to deal with nonlinear differential models,
a specific strategy is deriving the Hirota bilinear form and
A wide variety of problems in modern scientific fields are then applying the linear superposition principle along with
described by nonlinear differential models. Although there are symbolic computations to acquire rational wave solutions.
Recently, the LSM has been used by many authors and has
10" Authors to whom any correspondence should be addressed. the theme of many research works [1-9]. For example, a
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group of rational wave solutions to the Hirota—Satsuma—Ito
equation and the asymmetric Nizhnik—Novikov—Veselov
equation were obtained respectively in [8, 9] by adopting the
LSM along with symbolic computations.

Due to the efficiency of the LSM along with symbolic
computations, our goal in the present paper is extracting a
series of rational wave solutions to the following (4 + 1)-
dimensional Boiti-Leon—-Manna—Pempinelli equation [10]
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The above nonlinear model has been introduced by Xu
and Wazwaz [10] and has been studied using different
approaches. Xu and Wazwaz demonstrated that the above
new model has the Painlevé property and derived its bilinear
representation, bilinear Bicklund transformation, Lax pair,
and infinite conservation laws by means of the Bell poly-
nomial method.

It is worth mentioning that when u = u(x, y, 1), a = 1,
0 = —3, then equation (1) reduces to the following (2 + 1)-
dimensional BLMP equation [11-13]

0%u Mu ou u 3@@ _0 )
0tdy  Oyox3 Ox JyOx O0x? Oy '
Furthermore, for u = u(x, y, z, 1), « = 1, and g = -3,

equation (1) reduces to the following (3 + 1)-dimensional
BLMP equation [14-16]
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The above (2 + 1) and (3 4+ 1)-dimensional BLMP
equations have been investigated through effective methods.
For example, Luo [11] derived multi-soliton solutions of the
equation (2) by means of the Hirota’s bilinear method.
Mabrouk and Kassem [12] acquired group similarity solutions
of the model (2) through a two-parameter group transforma-
tion. Kumar and Tiwari [13] obtained soliton solutions of the
equation (2) using the Lie symmetry method. Li and Ma [14]
procured multiple-lump waves and interaction solutions of the
model (3) with the use of ansatz methods. Liu et al [15]
reported resonant soliton and complexiton solutions of the
equation (3) through the linear superposition method. Luo
[16] gained double-periodic soliton solutions of the model (3)
using an extended homoclinic test technique. More articles
are found in [17-28].

It is worthy of note that by using the Painlevé analysis
under the transformation

u:6%mu»

the equation (1) can be written in its Hirota bilinear form as
follows [10]

(DyD, + D.D, + D;D, + o (D,D; + D.D;
+ DD} ))ff =0, @)

in which f is an unknown to be computed and ‘D’ is the
Hirota’s derivative operator. The organization of this paper is
as follows: In section 2, key ideas of the linear superposition
method are presented. In section 3, a group of rational wave
solutions including multiple wave and positive compelexiton
solutions to the model is formally derived. Concluding
remarks are given in the last section.

2. Linear superposition method

Suppose that a nonlinear differential model can be converted
to the following Hirota bilinear equation [1, 2, 6]

P(D,, Dy,, ....Dy,, )ff =0, 5)

under a specific transformation where P is a polynomial
satisfying

P(0,0,...,00 =0.
Now, consider the N-wave functions
fi=el,  m=kix + kaixa

+ o+ kyixuy, I <i<N,

where kj, 1 <i <N, 1 <j< M are unknowns that must

be computed later. By inserting the N-wave function
f=ah +eah+t. ... +enly
=ge'h + ge + ...+ gye'lv,
into the left hand side of equation (5) and considering the

properties of Hirota’s bilinear operators, we find

P(Dy, Dy, ....Dy, )f f=2 > eePki — ke,
1<j<i<N

ki = {kii, kaiyeoskni}

and therefore, f solves the Hirota bilinear equation (5) if and
only if

Pki—k)=0, 1<j<i<N
Now, by considering the relation
ki=aik™, 1<I<M, 1<i<N,
we obtain
P(kij — kij, kai — kojy -, ki — kagj)

= P(a(k/" — k"),

Xz (k™ = KI)apg (k™ — KE). ©)
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It should be noted that n;, 1 <! < M are derived by
balancing powers in (6) and a;, 1 < I < M are selected
such that

Pa(k]" = k"), ax (/" = K),eang (k™ — K1) = 0.

After finding unknowns, rational wave solutions of the
nonlinear differential model are formally constructed.

3. Rational wave solutions of the 4D-BLMP equation

In this section, the linear superposition method along with
symbolic computations is utilized to extract a group of
rational wave solutions including multiple wave and positive
compelexiton solutions of the 4D-BLMP equation.

Multiple wave solution: According to the linear super-
position method [1-9], a polynomial corresponding to the
Hirota bilinear equation (4) is considered as

P(x,y,2,5,1) =yt + zt + st
+a(yx® + zx3 + sxd).

The weights of the independent variables are defined as
(ny, no, 3, ng, ns) = (1, =1, =1 — 1, 3) such that the
polynomial is homogeneous of degree 2. Inserting the
N-wave function

f=een + ge™ + ...+ eyev,
n; = arkix + agki_ly + agk,-_lz
+ ask; 's + ask’t, 1 <i<N,

h+h &

By expanding equation (7) and setting the coefficients of
the resulting expression to zero, one derives

aas + azas + asas = 0.
By solving the above algebraic equation, we get
ar = —(az + aq).

Now, by considering a; = 1, one can acquire the fol-
lowing multiple wave solution for the 4D-BLMP equation

= 6Z(nf),,
u=62(nf

in which
f=een + ge™ + ...+ eyev,
— (a3 + a4)ki’1y + agki’lz + a4ki’ls
+ ask’t, 1<i<N,
and k; =0, i=1,..N.
The 3D and density graphs of u for the special values of
the involved parameters have been presented in figure 1.
Actually, figure 1 exhibits the 3D and density graphs of 1, 2,
and 3-wave solutions.
Positive compelexiton solution: In order to extract the

positive compelexiton solution of the 4D-BLMP equation, we
first consider

fi = ae + ge™ + ...+ eyely,
n;, = kix — (a3 + a4)k,-71y + a3kflz
+a4k,»_'s + a5ki3t, 1<i<N,
h =ae M4 ge 4 .. 4 eye v,
=1 = (—k)x — (a3 + ag) (k)" 'y
+ a3(—ki) 'z + as(—k) s
+as(—k)*t 1 <i<N,
which k; =0, i=1,...,N. Obviously, f and f, are the

solutions for the equation (4). Thus, a linear combination of £
ad f, as

n;, = kix

= Y e cosh (kix — (a3 + an)k; 'y + azsk; 'z + ask's + ask’1),

2 i=1

into equation (4) and considering the properties of Hirota’s
bilinear operators yields

Paik; — k), ar(k; ' — kjil)’
x ay(k = kY, astk = kY, as(k? — kD)
= amask;" — k&P — k) + asas(k;" — k)
x (kP = k) + asask;" = kYK = &) + aay
)k = kY — k)P + aafisk — kY
x(ki — k) + aagis(k" — k) (ki — k)* = 0. )

is also a solution of the equation (4). On the other hand, by
considering the nonzero real numbers ky.1, kni2, -+ kniy
and owing to the new functions

fi = enpieer 4 eyioelvi + L+ ey e v,
m = (ki)x — (a3 + ag) k)™ 'y + a3(Ik;) 'z
+ as(Iki)y~'s + as(Ik;)*t
=1(kix + (a3 + a4)ki_ly

— a3ki_lz — a4ki_1s — askft),
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Figure 1. 3D and density plotsof u for@Q) N =2, =1, =2, a=1,0=1, k= 1L,k =05 a=—-15a=1,as=1,y=1,z=1
whent = 0andt = 10 (Left to Right); b)) N=3, =1, =2,=3,a=1,8=-1, k=1, k=05 k= —-1,a3 = —-15,a4, =1,
as=1,y=1,z=1whent=0andt = 15 (Leftto Right); c) N=4, =1, =2,=3,4=4,a=1,=-1, k=1, =05,
ky=—1,ky=—-05,a3=—-15a4=1,as=1,y=1,z=1whent =0 and t = 10 (Left to Right).
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Figure 2. 3D and density plots of u for(a) M =1, N=1,=1,6=04,a=1,6=1, k=05 k=1, a3=—-1,a3=1,a5 =1,
y=1,z=1whent =0 and r = 30 (Left to Right); b)) M =2, N=2,=11,5=09,5=03,5,=09, a=1,8=1,k =1,
=04,k =08k =06,a3=1,a,=15,a5=05,y=1,z=1whenr =0 and t = 10 (Left to Right).

b = enpie7 v+ ey e v whene; > 0 fori = 1, 2,...,N and ZlNzl g > Zl{:\ﬁllal isa
+ . devime vim, —m = 1((—ki)x + (a3 + as) positive function and thus, the positive compelexiton solution

(—k)™y — as(—k)™'z = as(—k)'s — as(—k)*), can be written as

=62
are the solutions for the equation (4), we find that a linear uw= E( ),

combination of f ad f; as

N+M
hth = > ecos(kix + (a3 + aNk; 'y — ask; 'z — ask; s — ask?r),

2 i=N+1

is a solution of the equation (4). Now, it is clear that the new which the function f has been defined above. The 3D and
expression density graphs of u for the special values of the involved

N
f= Z g; cosh (kix — (a3 + a4)k,-’1y + agkflz + a4kfls + a5ki3t)
i=1
N+M
+ > & cos (kix + (a3 + aNk; 'y — ask; 'z — ask; s — ask?r),
i=N-+1
& € R,
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parameters have been given in figure 2. Truly, figure 2 shows
the 3D and density graphs of positive compelexiton solutions.

Compelexiton solution: Finally, the following compe-
lexiton solution for the 4D-BLMP equation can be con-
structed

u= 6%<1nf>x,

N
f=> em(ecos (1;,) + €2 sin (1);,)),

i—1
x ki = ki + Tkaiy ;= kix — (a3 + ag)k; 'y
+ ask; 'z + ask; s + askPr = M1+ ;o
€i1» €2y kiis k2i € R.

In a special case, when N=2, k= —1 —1, and
ko, =1+ 1, we find

1 1
m=m,+1In,=—x+ 5(03 +as)y — 5937
1 1
— 5a4s + 2ast + I| —x — 5(a3 + aq)y

+laz+las—2a t)
23 24 st,

1 1
T =M + [772,2 =X - E(a3 + agy + 5032
1 1
+ 5a4s —2ast + Ilx+ 5(613 + aq)y

flazflas+2at)
23 24 st

Therefore, the compelexiton solution can be written as

= 62(nf),,
u 5 nf

which

e—x+%(a3+a4)y— %a3z—la4s+2a5t

f= 2

X [qlcos(—x — %((13 + aq)y + %agz + %a4s — 2a5t)
+ a2 sin(—x — %(a3 + aq)y + %G3Z + %a4s — 2a5t)]

n exf%(a3+a4)y+%a3z+%a4s—2a5t

X [e2,1cos (x + %(613 + as)y — %(132 — %a4s + 2a5t)

+ &2 sin (x + %(a3 + aq)y — %a3z — %a4s + 2a5t)].

It should be mentioned that ‘Compelexiton Solutions’
were introduced in [29] and mean a kind of explicit exact
solutions involving two elementary functions ‘trigonome-
tric functions and exponential functions’.

Remark 1. It is worth noting that when u = u(x, y, s, 1),
then equation (1) reduces to the following (3 + 1)-dimensional

BLMP equation

0%u 0%u 0%u 0%u
of 2L 4+ 2L
Otdy  OtOs OyOx3  0s0x3
ﬁ 8_14 aZu + 82“ + @ @ + %
Ox\ 0yox  0OsOx ox*\ 09y  Os
=0.

Now, one can obtain the following multiple wave and
positive compelexiton solutions to the 3D-BLMP equation
(which are in agreement with the solutions reported in [15])

u= 6%(1nf)x,

f=¢gen + eeh + ...+ eyev,
n; = kix + azki_ly — azki_ls + a4k,-3t,
1<i<N, k=0, i=1,.,N,

and

= 6Z(Inf),.
u 5 f

N
f=>_ ¢ cosh (kix + ark; 'y — ark; s + askjr)
i=1

N+M
+ Z g cos (kix — azk,-_ly + azk,-_ls - a4ki3t),
i=N+1
N N+M
g>0fori=1,2, . ,Nand) &> > gl
i=1 i=N—+1

Remark 2. The correctness of the rational wave solutions
listed in the present paper was checked by substituting each
solution back into its corresponding equation. Maple package
was formally utilized to handle the required computations.

4. Conclusion

A nonlinear integrable model called the (4 + 1) dimensional
Boiti-Leon—Manna-Pempinelli equation was successfully
studied in the current paper. Through the use of the Hirota
bilinear form of the model and adopting the linear super-
position principle along with symbolic computations, a group
of rational wave solutions including multiple wave and
positive compelexiton solutions was formally obtained. The
properties and physical structure of the solutions were ana-
lyzed graphically by considering the special choices of the
involved parameters, providing some useful information. The
positive compelexiton solution presented herein is of great
importance; it does not contain any singularity and such a key
characteristic distinguishes the model from other models that
do not possess non-singular complexiton solutions. It is cor-
roborated that the current work presents comprehensive
results about the existence of different wave structures to the
4D-BLMP equation.
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