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Abstract

This present work applies the Lie group of point transformation method to construct the generalized
invariant solutions for the (2+1)-dimensional dispersive long wave (DLW) equations under some
constraints imposed on infinitesimal generators. In this connection, Lie point symmetries, vector
fields and commutation relation for DLW system are well established and then the system is
reduced into number of nonlinear ODEs through various symmetry reductions. An optimal system
of one dimensional subalgebras of the Lie invariance algebra is formed. We exhaustively carry out
symmetry reductions on the basis of these subalgebras. All the obtained solutions are more general
in terms of arbitrary functions, and completely different from the previous work of the Sharma et al
2019, Phys. Scr. (Physica Scripta, 2019). Wherever possible, the relative comparison of our findings
with the previous work is exhibited. Furthermore, we discuss the dynamic behavior of general
solutions like annihilation of single soliton, nonlinear wave profile, curved shaped multisoliton and
annihilation of doubly soliton through their evolutionary profiles.

Keywords: (2+1)-dimensional DLW equation, exact solutions, generalized invariant solutions,
soliton solutions

(Some figures may appear in colour only in the online journal)

1. Introduction

Nonlinear partial differential equations (PDEs) occur in dif-
ferent fields due to their broad applications in science and
engineering such as rheology plasma physics, signal proces-
sing, fluid dynamics, visco-elasticity, continuum mechanics,
control theory, differential geometry and optics, etc [1-33]
Many nonlinear physical occurrences have been construed by
finding group invariant solutions for nonlinear PDEs. This
physical phenomenon, which can be framed using PDEs,
depends on the space variables x and y, and time instant ¢. For
this aim, there are many transformation methods to obtain
exact solutions of NPDEs and some of these are Bicklund
transformation method, Riccati—-Bernoulli method, hyperbolic
tangent method, inverse scattering method, homogeneous
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balance method, Lie symmetry method and many more
mathematical techniques.

Lie symmetry method is an efficient and reliable tech-
nique for obtaining the exact solutions of nonlinear partial
differential equations [2, 4, 16, 30-33]. This method helps us
to reduce the number of independent variables in NPDEs by
the means of similarity forms This method, in recent times, is
used numerous significant research problems in mathematical
sciences, engineering and physics [6—11].

Lie group of point transformation method is applied to
seek the exact and group invariant solutions of the (2 + 1)-
dimensional dispersive long wave (DLW) system which is of
the establish form [14]

Uy + Ve + (uuy)y, =0,
Ve + Uy + W)y + Uy = 0. (D

© 2020 IOP Publishing Ltd  Printed in the UK
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Firstly, the dispersive long wave equations have been
determined by Boiti er al [3] together with the compatibility
condition of a weak Lax pair. Paquin and Winternitz [17]
stated symmetry algebra of equations (1) as infinite dimen-
sional. Then, in two space dimensions, Lou [12] obtained the
similarity solutions of DLW equations.

The integrable DLW equations considered by [17] are
given as

1
Ur = —Vyx — E(MZ)X, Vi = 7(’/‘ V4 u+ MX}’)X’ (2)

where u(x, y, t) is the horizontal velocity and v(x, y, ) is the
deviation height of the surface wave which propagate along
X-axis.

Ma [13] explored various explicit solutions for a
restricted BLP (2+1)- dimensional DLW equations. You and
Xia [28] found the Hamiltonian structures of the DLW system
hierarchy and also obtained second integrable couplings.

In order to bridge the gap between these findings and the
more familiar notation of Lie symmetry analysis, we compare
our results with the outcomes of (i) Eslami et al [5], authors
found three types of explicit travelling wave solutions
involves rational function of sin, cos, sinh, cosh for conditions
N — 4 >, <, =, (i) Wazwaz [24] investigated Painlevé
Bécklund transformation and simplified Hirota’s method, and
explored solutions such as kink and soliton, 2 kink and 2
soliton, 3 kink and 3 soliton solutions. Also, using tanh
method, authors found singular and travelling wave solutions,
(iii) Ma and Hu [14] used projective Riccati equation
approach and construct Weierstrass elliptic function solution,
soliton solution, trigonometric solutions and rational solu-
tions. Moreover, annihilation of two solitary waves are dis-
cussed, (iv) Zheng et al [29] used extended mapping
approach to explore localized structure such as dromion,
rings, compacton, peakons solutions, etc. Also, authors found
solitary, periodic and variable separable solutions. Founded in
the mathematics of partial differential equations, Lie sym-
metries have helped advances in many fields of modern
physics.

Recently, Sharma et al [20] found some exact explicit
solutions of the DLW system of equations. In this paper, we
have considered this (2+1)-dimensional DLW equations (1)
and obtained more generalized invariant solutions. The
obtained findings are totally different from the results found
by Sharma et al [20] as they imposed conditions on three
arbitrary functions whereas we have imposed condition on
only one arbitrary function by keeping remaining two arbi-
trary functions just the same in the solutions. The main reason
to use this technique is the ability to encode important phy-
sical principles that are implicitly expressed by governing
equations. We exploited solutions which are not discussed in
the past. Thereafter, authors discussed their physical inter-
pretation and solutions are shown in three dimensional plots.

The paper is organized as follows: In section 2, by using
Lie symmetry analysis, invariance criteria, infinitesimal gen-
erators and vector fields are obtained for the DLW system.
Several subalgebra’s are studied to reduce the system into less

number of independent variables with graphical simulation in
section 3. In section 4, the explanation of graphs is exhibited
by considering parameter values of arbitrary function and
constants for the obtained group invariant solutions. Finally,
the conclusion is given in section 5.

2. Lie symmetry analysis for the DLW equation (1)

In this section, we consider the following one-parameter (€)
Lie group of infinitesimals transformation of the DLW
equation (1)

xF=x+ €&y, t,u) + 0(?),
Y=y +en@,y, tu) + 0(e?),
F=t+ et v, t,u) + 0(?),
w=u-+edpx,yt,u)+ 0(?),
vE=v 4+ e(x,y, t,u) + 0(e?), €)

where &, 1, 7, ¢ and @ are the infinitesimal generators for the
variables x, y, ¢, u and v.

Therefore, the vector field associated with infinitesimals
dimensional Lie algebra can be written as

V:€8x+778y+7_6t+¢8u+w8v- 4)

The corresponding second and third prolongations are
given as

Pr2v =V + ¢aa—u + ¢X8%x + waiuy ++ aﬁ"y%
PRV =V by
+ waix + g afm )

Applying prolongation on DLW system of equations (1), we
obtain invariance conditions as

O+ VY + uydt + uy ¢ + udp® + uy ¢ =0,
P+ O+ vot ) + upt + v+ 9 =0,  (6)

where ¢%, ¢*, ¢, ¢, ¢, ¥, 1’ and ™ are invariant
coefficients which can be defined as

¢ = Dy — uD,& — u, Dy — u, Dy,
¢’ =Dy¢p — uyD,§ — uyDyn — u, Dy,

% = Dydy — uneDy§ — uyDyn — Dy,
P = Dy ¢y — unDi§ — ugyDin) — Dy,

O =Dy, — U DyE — Uy Dy — Uy Dy,
Y* = Dyp — weDe§ — vyDyn —
W' =Dpp — D& — VyDﬂ] — Dy,

V= Dethy — vie Di§ — vy Dy — v D, @)

VIDXT,
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Table 1. Commutation table.

* v v, A
4 0 Vit = 65 0
Vo =iy = Sh S 0 0
V3 0 0 0

where D,, D, and D, are total derivative operator. For
explanation, one of them can be indicated as
D —i—i——f—u i4—vi—&-u 9
t Ox * ou “ov * Ou,
0 0 0]
+ Va— + Upy—— + Vy— F s 8
Ovy Y Ou, o vy ®
Substituting all above expressions from equations (7)—(8) into
equations (6) and equating all the differential coefficients to
zero, then we get determining equations. Consequently, the
following infinitesimals generators can be written as

§=§f1'(f) +hH@). n=h(y), T=£0),

6= —gf{ ) + gf{’ o + £ 0,

v+1)
2
where f; and f, are functions of ¢, and A is a function of y.

Dash (') represents the derivative of respective variable. The
associated vector field of the DLW system takes the form

/(/]:_

LA @) + 20 ()], ®

V= V() + W(h) + Vi), (10)
where
, 0 0 1, ,
V() = gfl (5= + RO~ S O
o Lot o d
R0 - S0+ D 0
0 , 0
V(h) = KO+ £+
Vi) = h() 2 — oy + 2 (11)
ady v

Then, table 1 represented the calculation of commutative
relation of these vector fields for DLW system.

Moreover, optimal system of one dimensional subalgebra
is obtained using Olver’s approach [16]. Using Adjoint
table 2, we obtain required optimal system. Equation (1) has
following types of one dimensional subalgebras

‘/23‘/3"/2—’_‘/19‘/2_‘/1"/1—’_‘/2—’_‘/3

3. Similarity reductions and group invariant
solutions

For obtaining group invariant solutions of Dispersive
Long wave equations (1), the corresponding characteristic

equation is

dx _dy dt
HO+H@O RO O
_ du
—5 @0 + 20 + £ 0
dv

= ) (12)
D @) + 20 ()]

For simplification, we used following set of arbitrary func-
tions in subsequent calculations. In this section, we found
reduced equations and corresponding group invariant solu-
tions with respect to subalgebras V,, V3, Vo, + V| and
Vi + V2 + V3 under the assumption f, (1) = %fl(t) and h
(y) = y or h(y) = d, d is a constant.

3.1. Subalgebra Vo = fo(t) L +F,(t) & with f2(t) = 2f1(t) and
hy) =y

The characteristic equation is

dc _dy _dt _ du _ dv
0 fin 0

o at 13
LH(® 0 ()

On solving equation (13), we obtain the similarity function as

xf5 (1)

2

ulx,y,)=U¥,T)+

andv(x,y, 1) =V, T)
(14)
with similarity variables Y =y and T = t.
After substituting values of u and v from equations (14)

into equation (1), we get new partial differential equations
with two independent variables Y and T as

f2 (T)Uy + Uyr =0, and f2 D
L(T) L)

By solving (15), we obtain

A+V)y+Vvr=0. (15

_ &)
uy,T)= £(T) dY + h(T), and
&)
VY, T)=="-— -1 16
X, 1) 7T (16)

By using back substituting the value of U and V in
equation (14), we obtain the group invariant solutions as

/ d
hHO Ja(») dy

, ¥, 1) = + (1), d 17
u(x, y, 1) 10 0 1(#), an (17
&)

LV, 1) = -1 18
v(x, y, 1) 10 (18)
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3.2. Subalgebra V3 = h(y)% —h’(y)(v+1) Z with
fa(t) = §f1(t) and h(y) = y

The characteristic equation is

dx _dy _di _du  dv (19)
0o vy 0 0 —w+1

On solving equation (19), we obtain the similarity function as

(e, y, 1) = UX, T) and v(x, y, 1) = ~V (X, T) — 1 (20)
y

On solving equation (25), we obtain the similarity function as

Wt 3. 1) UKX,Y) (a+f @ ond
BEN/A0) 2, (0)
VX,Y)
vix,y, ) = — — 1 (26)
AU
with similarity variables X = 3;(_;; and Y = y.

After substituting values of u and v from equations (26)
into equation (1), we get new partial differential equations
with two independent variables X and Y

UyUx 4+ UUxy + Vxx =0, and

with similarity variables X = x and T = t. VUx + UVx + Uxxr = 0. @7
After substituting values of u and v from equations (20) By solving (27), we obtain
into equation (1), we get new partial differential equations UXX,Y) = —2¢tanh (X + uY + ¢3), and (28)
with two independent variables X and T V(X,Y)=—2c¢cc(tanh (X + 2Y + ¢3) — 1)
tanh (¢, X Y 1). 2
Vik =0, and Vg + VU + U Vy=0=0. (1) x (tanh(aX + ¥ + c3) + 1) (29)
By using back substituting the value of U and V in
By solving (21), we obtain equation (26), we obtain the group invariant solutions as
(a + 0)f @)
—Xh{(T) — 2Xx2hj(T) ux, y, 1) = —————-
U, =2 2 M 24,(0)
hi(T) + Xhy(T) hi(T) + Xho(T)
VY, T) = hy(T) + Xhy(T). 2¢, tanh(“(;z;" + ey + q)
1
(22) - » and (30)
VA@)
ci(a+x) _ cil@a+x)
2clcz(tanh( Vi) + ay + C3) 1)(tanh( o + oy + 03) + 1)
v(x,y, 1) = — — 1. (31)

By using back substituting the value of U and V in
equation (20), we obtain the group invariant solutions as

—xh! (1) — Lx2nl (1)
ulx,y, t) = : 2~ 2 hs (1) , and
hi(t) + xhy () h(t) + xhy(t)
(23)
V()C, y, t) — M — 1. (24)
y
3.3. Subalgebra Vo + V¢ = X (fi(h)+fa(t) L +F1(t) &
S (i Hu—fi(x+f1) L —F(v+D)F(Hh2 with
fa(t) =£f1(t) and h(y) =y
The characteristic equation is
dc  _dy _ di _ du
Sy 0 f@O) 20 + 2@
_ o dav (25)

Lo+ DY@

N

3.4. Subalgebra Vi +Va+ Vg = X(f1 (D) +fa(t) 2 +hi(y)
& A0 5 —L (L Ou—F{(0x) 3
v+ (D) + 20, (y) 2

3.4.1. With fo(t)=2f(t) and h(y) =y. The characteristic
equation (12) recasts in the following form

d—x — d_y _ dt - du
x;afi/(t) y fi(t) _%ll(t) + x;aﬁ,/(t)
D) dv/ : (32)
- +2]
On solving (32), we obtain the similarity function as
!/
t
u(x, y, 1) = Crafn UXYy
2h® Ji®
— | st
ey, V& Tt -

NI

with similarity variables X = ¢

5 @)

and Y = ye~ oy
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After substituting values of u and v from equations (33)
into equation (1), we get new partial differential equations
with two independent variables X and Y

U Uxy + Ux Uy — Uy — Y Uyy + Vxx =0,

UVx+VUx =Y Vy+ Uxxy — V=0. (34)

To solve this system (34), we apply Lie group method on it
and a new set of infinitesimals is obtained as

fX:%XJr@, EY: Y(a1+a210gY),

3
Ny = —%U, ny = —V(cu + 542 +a logy), (35)

where a;, a, and a3 are arbitrary constants. Thus, the
characteristic equation of equation (35) is given by

1704 dy _du
%X +a3  Y(a + aylogY) —%U
= 3dV . (36)
,V(al + ) + ay logy)

To obtain the group invariant solutions, further processes can
be derived by arising the following cases:

For a; = 0, associated characteristic equation (36) is
formulated as

X dy _dUu
= av . . (37)
—2V(logY + 3 + Ay)

Thus, similarity reduction of system of equations (34) can be
derived as

U, Y) = —ZX g
VAl + log(Y)
V(X
VX, ¥) = o (38)
Y (A + log(Y))
with similarity variable X; = ;:712:21/)’ where A, = ZL‘
Al 2

and A; = %

Then, By substituting U(X, Y), V(X, Y) and X, in system
(34), the following reduced nonlinear ODE equations are
given as follows:

XPU" + 2X,UU" + 2% U + 5X,U’
+ 6UU' + 3U — 4V" =0,

=X U" = 30" +2vU" +2UV' + V' + 3v=0. (39)

On solving, equations (39) give particular solutions as
U(X) =2 — X, and V(X) = X,,
1

UM =% - X, and VXD = X — 16X,

U =%, and V() =0,
where a, a, and a3 are arbitrary constants.
Eventually, exact solutions of DLW system of
equations (1) can be given as
[517%)
u(x, y, t) =
2a3 \Jfi(t) + ax(x + a)
o 2613
Ji® @ log e Jio ™) + ap)
(x + a)fl/ ®) _ x4+ a)a,
N .
%0 fw@logte [io®y £ a4
a,(2a ) +a(x +a
Sy - LCaNFO @)

Wiz log (ve Jio ¥y + ay)?

Solutions given by (40)-(41) representing the wave
profile for u and v, respectively, and showing multisolitons
after certain period. It converted into doubly soliton and two
doubly soliton in opposite direction which are different from
the work of Eslami et al [5].

Qod2

2a3 \Jfi (1) 4+ ax(x + a)

i 3(13
2./ (az log e S35 + ap)
(x + a)fl/ @) 3a,(x + a)
+ o 1
KO ap@y@loge Jio " £ a4

u(x, y, t) =

((x + @)az + 2a3 ;1))
di 3
4a2y\/m[10g e J ) + Z_l]

2
X 4a2(log (ye*ffffr)) T ﬂ) — (u + %]
a fl(l‘) a 43)

az @ + a)ff (1)

v(x,y, t) =

ulx,y, 1) = ) (44)
a+x 2a3
To (5 +2) 1
vix,y, 1) =—1 (45)

Solutions given by (42)—(43) observed single soliton
profile at r = 8, then it is converted into parabolic wave
profile after r = 48, but this behavior is not reported by
Wazwaz [24]. He investigated the rational and multiple
soliton solutions of the DLW system of equations. Also, his
work used Tanh, rational tan, rational cos-sin, rational tanh,
rational sinh-cosh solutions.
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For a, = 0 and a3 = 0, the characteristic equation (36)
recasts as

dX _dy _du_ _dv 6)
az Ya, 0 —Va
On solving, we obtain similarity form
UX,Y)=UX)and VX, Y) = @ 47

where U; and V| are similarity function depend upon the
same variable X, = X — %.
1
Therefore, putting these value in system (34), we obtain
nonlinear ordinary differential equations

—az(aU* + (@ U + a)U") + at V' =0,

aV\U] + (U + a3) V] — a3U" = 0. (48)

The primitives of these are
Ui(X2) = B1, and Vi(X3) = [,
Ui(X) = —Z—‘:, and Vi(Xp) = B3 + BuXo,
Uith) = —2 + £ and U(Xo) = 235 + fsX,
where 5;’s, (1 < i < 5) are the integration constants.

The solutions of DLW system, by back substitution, can
be furnished as

(x + a)f] @) LB

= 49
u(x,y,t) 70 \/m 49)
B2
(3,0 = -1 (50)
e ANV
(x + a)f, (1) a5
D= - 51
u(x, y, 1) 2% AT 51)
v(x, y, 1) = Ba X+a a log (ye—fﬁdz)
y fi(t) \/fi(t) a
B3
-1 (52)
ANVAQ)
(x + a)f @
LY, ) = —————
v 2f, (1)
_ Za] a
ai(x + a) — £ () [azlog e J o df)] a Jh@ 3
v(x, y, )= 2a;

( It ( ffl() r) |
+ 0g (Ve G
aly f(l) a(f(;)c 208 ‘ell

at+x a310g(ye*fﬁd’) Bs

NIIO) a (@)

(54)

Group invariant solutions provided by (51)-(52), (53)—
(54) showing the multisoliton behavior, which is not shown
by Ma and Hu [14]. Their work involved projective riccati
equation approach which involved weierstrass elliptic func-
tion solutions.

3.4.2. With fa(t)=2f((t) and h(y)
converted as

=d. Then equation (9)

51 (x + ay .

f](t) 771:07, lefi(t)s

¢1 (x + a)fl// (1) — _fll (1), wl (V + 1)

—— ®). (55)

The characteristic equation of system of equations (55) is

dx _dy o dt du
CEAR @y d A0 CEO @0 — 5 ()
dv
= — (56)
_( erl) 1/(t)

By equations (56), the similarity reduction gives solutions as

x+aff )  FX,Y)
u(x, Vs t) = and
2ﬁt) \/fl (t)
KX,Y)
vix,y, t) = ——= — 67
NIAQ;
where X = (%) and Y=y —d f i@ e similarity

variables with similarity functions F(X, Y) and K(X, Y).
After putting all the above values in system (1), we
obtain reduced form as

FxFy + FFxy + KxX — dFyy =0

KFy + FKy + Fxyy — dKy = 0. (58)

Again, by applying Lie group of transformation method on
system (58), we get new infinitesimal generators &y, &y, np
and ng for X, Y, F and K as

1
Ex = EQX +a, =aY+ o,

1 3
= ——C F’ = ——C K, 59
U ) 1 Nk ) 1 (59)
where ¢y, ¢, and c3 are arbitrary constants. Therefore, the

characteristic equation for system (59) furnished as

X Y F K
] d = d = 611 = 631 . (60)
SaX + ¢ a¥Y+ o —aF  —aK

For ¢; = 0 and c¢; = 0, we obtain the characteristic
equation (60) in the following form
ax dy _ d_F -
X 4 243 2(Y + Ay) —F

where A, = £ and A; = £ which provides the following
c ]

dK

— 61
-3K’ ©D

similarity forms

_Fm and K(X, Y) = &)3 (62)
VY + A Y + Ax)2
where F(w) and K(w) are similarity functions with the
s . X244

similarity variable w =

JY+4A

FX,Y) =
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(a) 3D plot of w. (b) 3D plot of v.

Figure 1. Solitary wave profile solutions of u and v for the equations (17)—(18).

Putting values of F(w), K(w) and w in system of u(x, y, 1) = Crs
equations (58), we have e alx + a) + 2c3 Jfi (1)

w(wd + 2F)F" + (Swd + 6F)F' + 2wF'? . Badx+a)+ 6¢3d \[f (1)
+ 3dF — 4K" = 0, 4fi(t)(C1(y — df% dt) + C2)
1
dw + 2F)K' + (3d + 2wF")K — 3F" — wF" = 0.
( ) ( ) ot a0

6 y XTOLY 68
9 20, (1) ©%

Solution which can be obtained as

d(ci(x + a) + 2¢3 £ (1))

F(W) = ﬂ - dW, and K(W) =nrnw, (64) V(x, ) t) = 1 >
v 4f1(t)[61(y - df% dt) + Cz]
3d d 4>
Fw) == — ZSw, and K(w) = Z2w — w2, (65) d(ci(x + a) + 2¢3 Jf;(1)?
w 4 4 16 ry— L
4(0[0( —d Ldt)+c]
where constants ry, r, and r3 are arbitrary. U ny f 0 ) (69)

By back substitution, the case terminates providing the

invariant solutions of DLW system (1) given as
Solutions (68)-(69) representing the multisoliton by

u(x, y, 1) = an setting arbitrary functions whereas Zheng er al [29] used
alx +a) + 2¢ [ (@) extended mapping approach for constructing different types
f localized structure such as foldon, ring and peakons, etc.
d 2e3d [ (1 ©
— ad(x + @) + 26:dy4 (0 For ¢; = 0 and c¢3 =0, the characteristic equation (60)
fl(l)(Cl (y — df % dt) + 02) could be written as
(&
dX dY dF dK

(x + a)f] (1) 66) 0o (70)

—_— c c

2 () 3 2

Then, the first similarity reduction of the DLW system is
cr(ca(x + a) + 2c t FX,Y)=H(w),andK(X, Y) = S(w), 71
Yy, 1) = 112 (ci ) 34]‘1())2_1. 67) X, Y) (w) X, Y)=Sw) (71
£ [Cl (y —d f 1 dt) + 02] where H(w) and S(w) are similarity functions and similarity
h variable w can be expressed by w = X — 2Y.
(&)
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(a) 3D plot of u. (b) 3D plot of v.

Figure 2. Evolutionary wave profile for # and v of the equations (23)—(24).

-0 -5 0 5 10

400‘1“ ”
Vo 0 7 i
7 7 1 T 7 S

| i S T,

200 "'mr'.ﬂﬂ
A T e (o I )

(c) 3D plot of v for t = 4 (d) 3D plot of v for t = 53.

Figure 3. Annihilation in u and v after t = 4 of solution (40)—(41). a = 0.3, a; =094, a, =5,a3 =4, ay =7, by = 51, by = 7 and
a=023,a, =051,a, =4, a3 = 19.93, by = 0.36, b; = 3 with arbitrary function f(#) = 1 — cos(bot + by).
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Figure 4. Annihilation in u at different value of ¢ of solution (42). a = 15, a; =3,a, =23,a3 =0.011, a0, =9, b9 =7, b; = 1, b, = 5.
with arbitrary function £ (¢) = (bot? + byt + b2)>.

(a)t;l (b)t;3 (c) t = T73.

Figure 5. Annihilation in v at different value of ¢ of solution (43). a = 1.55, a; = 1.035, a, = 2.23, a3 = 0.011, a, = 119.51, by = 7.1,
by = 2.03, b, = 6 with arbitrary function £ (t) = (bot> + b1t + by)?.

(a) 3D plot of w. (b) 3D plot of v.

Figure 6. Wave profile solutions u and v of the equations (49)-(50). a = 0.21, 5, = 105, 5, = 107, b; = 0.001, b, = 0.761, b3 = 1. with
arbitrary function f (1) = cosh? (b112 + bat + b3).
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(a) 3D plot of u at t =25 (b) 3D plot of v at ¢t = 25.

Figure 7. Wave profile solutions u and v of the equations (53)—(54). a = 2.7, 35 = 10, by = 10, b, = 12, b3 = 7, a; = 2.9, a3 = 1 with
arbitrary function f(¢) = byt + b,.

2x 108

12108

=8 10

(a) wave profile u (b) wave profile of v.

Figure 8. Wave profile solutions u and v of the equations (66)—(67) fora =3, d=13,ci=1,co=11,c3=1,r =3, n =15
with fi () = sec(t).

Making use of equation (71) into the DLW system yields On comprising equations (57), (71) and (73), we reach to
c the following exact solutions of the DLW equations
©S" = C3[H'2 + (H + —3d)]H”,
(&) /
(x +a)f] () "
2 SH' + (Hey + dc3)S' — c3H" = 0. 72 u(x, y, t) = (74)
2 (Hey 3) 3 (72) 2(0) o)
This system of nonlinear ODEs is satisfied by
Hw)=m, and S(w) =, -
c3 vix,y, t) = -1 (75)
Hw)=——=d, and S(w) = v3 + uw,
(w) o W) =7+ NAG
Hw)= _E — ﬁd, and S(w) = 2032 + vsw,  (73) ,
w (6] W + t
u(ey. ) = @+ aff () cd 76)
where 1, V2, 73, V4 and s are arbitrary constants of integration. 2£ (1) e A (@)

10
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(a) Wave profile u at y = 18 (b) Wave profile of v at y = 18.

Figure 9. Wave profile solutions u# and v of the equations (68)—(69) fora =3, d=7,¢c; =3, ¢, =1,c3=17,13=3,by=0.11,b; =3
with f{ () = sec(bot + by).

/\r e
|
|

-0.95 |-

1]
t

(a) Soliton wave profile u (b) wave profile of v.

Figure 10. Wave profile solutions u and v of the equations (74)—(75). a = 23, v, = 1.11, 7, = 0.01, a; = 4, a, = 5. function
fl(t) =1- COS(alt + dz).

o 2ere3 \[fi (1
V(x’ Y t) C2fi (t) [CZ(x + a) V(x’ Y, t) = [ - f(i( ) 1 ) 2
ax+a)+a i@®\d —tdt -y ]
+ o \/ﬁ(ﬂ(de dt — y)] i
7 + s aox+a) + BELE (df ! dt—y)—l
R
+ N{0) 1 (77) a2 fi(0) e A (1) Ji(@) 79)
ulx,y, t) = @+ af @ __cd For ¢; = 0 and ¢;3 = 0, the Lagrange’s equation (60) is
240 o @) as follows
202

o dX dY dF dK
(x—l—a)cz—Q,/ﬁ(t)[y—dfﬁdt] (78) F:_:F:F' (80)

2

11
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(¢c)3D plot of vatt=1

(d) 3D profile of v at t = 65

(e) 3D plot of v at t = 99

Figure 11. Annihilation Wave profile solutions u of the equations (78)—(79). a = 0.11, d = 100, ¢3 = 231, ¢, = 1, 75 = 1. with f1(r) = ¢.

Therefore, we find new similarity form of solutions H(w) and 4. Analysis and discussions

S(w) and hence, F(X, Y) and K(X, Y) can be rewritten as

FX,Y)=HWw), and KX, Y) = S(w), (81)

where w = X is a similarity variable. Therefore, equation (81)
reduce equations of system (58) into the following ODEs

SH' + HS' =0, and S = 0. (82)
Hence, we get the following solutions of equation (82)
Hw)=——— and Sw) = \w + XAy, (83)
w + A

where \; and )\, are integration constants. Leading solution of
DLW system read as

u(x, y, 1) = ! G+ ah®
o M+ a) + X (@) 21(1)
(84)
Vo, y. 1) = Alla + x) + X Jf (@) _q (85)

f@®

12

In this section, we see that the obtained invariant and exact
solutions of (2+1)-dimensional Dispersive Long wave
equation are all mixed exponential-algebraic solitary wave
solutions. These solutions listed in equations (17)—(18), (23)—
(24), (40)~(41), (42)(43), (44)-(45), (49)-(50), (51)—~(52),
(53)(54), (68)-(69), (66)~67), (TH)—(75), (16)(7T7), (78)-
(79), (84)—(85) are analyzed graphically based on numerical
simulation. The graphical representation of the DLW
equation (1) provides the elastic behavior of multisoliton,
doubly soliton, single soliton, traveling wave, Kink wave,
parabolic wave profile solutions. The physical structure are
graphically described in the figures 1-12 with appropriate
choice of function and constants.

Figure 1: Solitary wave profile solutions for u and v
represented by equations (17) and (18), respectively, are
illustrated with arbitrary function A(t) = sin(¢), g(y) =
cos(y), & (y) = cos(y) and f, (t) = cos(?).

Figure 2: Evolutionary wave profile solutions # and v of
the equations (23)—(24) with arbitrary function & (¢) = sin(?),
hy(t) = cos(t), h3(t) = t, and f, (t) = cos(t) are shown.

Figure 3: The transition of multisolitons profile of solu-
tions u and v represented by equations (40) and (41)
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(a) Kink wave profile u

400000 |- [

300000

200000

100000

(b) Parabolic wave profile of v.

Figure 12. Wave profile solutions u and v of the equations (84)—(85). A\; = 0.191, X\, = 1, a = 215. with sech(?).

Table 2. Adjoint table.

*

Vi V2 £
Vl Vl V2 - €V3 V3
V2 Vl — € Vz Vz V3
£ Vi V2 £

respectively, are shown graphically in this figure by
considering appropriate choice of arbitrary function
fi(t) =1 — cos(bot + b)) and constants a = 0.3, a; = 0.94,
(12:5, 613:4, 041:7, b():Sl, b1:7 and 6120.23,
a; = 0.51, a, =4, a3 = 19.93, by = 0.36, b; = 3. Initially,
the wave profile for u and v shows multisolitons after certain
period, it convert into doubly soliton and two doubly soliton
in opposite direction. We observed that positions are totally
transparent after mutual collision and without face shifting.
Moreover, position is slowly decaying and singular in soliton
solutions.

Figure 4: Annihilations of soliton profile of solution u
represented by equation (42) are exhibited in this figure for
different values of . We observed single soliton profile at
t = 8, then it is converted into parabolic wave profile after
t = 48. Later, it is changed into stationary profile after
t =60. Profile is traced for the function f(1)=
(bot? + byt + by)?. For numerical simulation, values of
constants are taken as a = 15, a; = 3, a, = 23, a3 = 0.011,
a2:9,b0:7,b1:l,andb2:5.

Figure 5: The wave profile is plotted by taking the choice
of arbitrary constants a = 1.55, a; = 1.035, a, = 2.23,
asz = 0011, Qp = 11951, b() =171, bl = 203, b2 =6 in
equation (43), while function is similar as in figure 4. In this
figure, annihilation of multisolitons solution of v has been
observed with different value of z. Initially, we have noticed
that multisolitons profile is annihilates into doubly soliton in
opposite direction after + = 3. Later on, it converted into line
soliton wave profile after r = 73.

13

Figure 6: The solutions u and v are given by equations (49)
and (50), respectively, are shown in this figure. We have
recorded single soliton for u# and the nonlinear behavior for wave
profile v. For plotting this profile, we have taken the function as
£, (t) = cosh? (b11> + byt + b3) with arbitrary constants
a=021, B, =105, 3, =107, by =0.001, b, =0.761 and
b3 =1.

Figure 7: Multisoliton of wave components given by
equations (53) and (54) are shown in this figure. The dyna-
mical behavior of multisoliton for solutions u and v is
observed at t = 25. The figure shows that their amplitude
after mutual collision is not changed by solitons and elastic
behavior is observed. These plots are drawn by taking func-
tion as fi(t) = b\t + b, with arbitrary constants a = 2.7,
/84 = 1, ﬂs = 10, b] = 10, bz = 12, b3 = 7, ay = 29, and
as = 1.

Figure 8: In this figure, multisolitons solution are
revealed for the solutions u and v represented by
equations (66) and (67), respectively. The interaction of line
soliton and doubly soliton is shown the profile of solution u,
and doubly soliton in opposite direction is observed for pro-
file of solution v. The arbitrary function and constants are
considered as f;(¥) = tan(bot + by), a =3,d =13, ¢; = 1,
Cp = 1.1,6‘3:1,7'1:33.11(17'2:5.

Figure 9: The solutions given by equations (68) and (69)
are exhibited graphically in this figure. We observed that
profile of u represents elastic behavior of multisolitons,
whereas doubly soliton profile is shown by v with arbitrary
function taken as f(f) = tan(bot + b;) and arbitrary constants
a:3, d:7, C1:3, 6‘2:1, C3:17, r3:3, b():()ll
and b; = 3. The profile accordingly changes its nature when
the values of arbitrary functions and constants are altered.

Figure 10: Multisoilton behavior of u# and traveling wave
profile of v via equations (74)—(75) are recorded in this figure
by choosing arbitrary function f; (t) = 1 — cos(a;t + a,) and
constantsa = 23, v, = 1.11, v, = 0.01, a; = 4, and a, = 5.

Figure 11: Annihilation of multisolitons wave profile for
the solutions u and v given by equations (78)—(79) are shown
in this figure with suitable choice of function fi(f) = ¢
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arbitrary constants a = 0.11,d = 100, ¢, = 1, ¢3 = 231, and
75 = 1. The multisoliton wave profile for u is converted into
wave profile after + = 65, while nature of v initially changed
into single soliton at r = 65. Later, as time passed over
t =99, the wave nature consume its almost energy and it
turned into stationary wave profile.

Figure 12: The graphical representation of equations (84)
and (85) showing the kink wave and parabolic wave profile
for u and v, respectively. Figure is traced for arbitrary func-
tion considered as fj(f) = sech(f) and arbitrary constants
A =0.191, \, =1, a =215.

5. Conclusion

In this paper, Lie symmetry approach has been applied to
obtain more generalized group invariant solutions for dis-
persive long wave (DLW) equations. All the results are
examined physically via numerical simulation, and elastic
behavior of multisoliton, annihilation wave profiles, doubly
soliton, single soliton, kink wave, parabolic, stationary and
nonlinear behavior of the DLW system of equations are dis-
played by considering the appropriate values of the arbitrary
constants and function fi(#). The Lie group method is more
impressive and effective to obtain more general exact solu-
tions of nonlinear PDEs. It clearly provide that the occupied
approach is efficient and useful to construct the different
kinds of solitary wave solutions. The comparison of obtained
group invariant solutions with the earlier research work
[5, 14, 24, 29] is also shown. In future, researchers can aim at
implementing and validating such real physical models.

Acknowledgments

The authors would like to thank the anonymous referees for
their extensive comments on the revision of the manuscript
which really improved the quality of the paper. Authors, Amit
Kumar and Harsha Kharbanda, would like to thank their
supervisor, Dr. Sachin Kumar, for his support and helpful
suggestions. The third author was supported by Junior
Research Fellowship from UGC (University Grant Commis-
sion), India (Sr. No. 2 121 440 663).

ORCID iDs

Sachin Kumar © https: //orcid.org/0000-0003-4451-3206

References

[1] Abdelrahman M A E and Sohaly M A 2017 Solitary waves for
the nonlinear Schrodinger problem with the probability
distribution function in the stochastic input case Eur. Phys.
J. Plus. 132 339

[2] Bluman G W and Cole J D 1974 Similarity Methods for
Differential equations (New York: Springer)

14

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Boiti M, Leon J Jp and Pempinelli F 1987 Spectral transform
for a two spatial dimension extension of the dispersive long
wave equation Inverse Prob. 3 371-87

Clarkson P A and Kruskal M D 1989 New similarity
reductions of the Boussinesq equation J. Math. Phys. 30
2201-13

Eslami M, Neyrame A and Ebrahimi M 2012 Explicit solutions
of nonlinear (2 + 1)-dimensional dispersive long wave
equation J. King Saud Univ, Comput. Inf. Sci. 24 69-71

Jadaun V and Kumar S 2018 Lie symmetry analysis and
invariant solutions of (3 + 1) dimensional Calogero-
Bogoyavlenskii-Schiff equation Nonlinear Dyn. 93 349-60

Kumar Pratibha S and Gupta Y K 2010 Invariant solutions of
Einstein field equation for nonconformally flat fluid spheres
of embedding class one Internat. J. Modern Phys. A 25
3993-4000

Kumar S and Gupta Y K 2014 Generalized invariant solutions
for spherical symmetric non-conformally flat fluid
distributions of embedding class one Int. J. Theor. Phys. 53
2041-50

Kumar S and Kumar D 2019 Solitary wave solutions of
(3 + 1)-dimensional extended Zakharov-Kuznetsov
equation by Lie symmetry approach Comput. Math. Appl. 77
2096-113

Kumar S and Kumar D 2019 Group invariant solutions of
(3 4 1)- dimensional generalized B-type Kadomstsev
Petviashvili equation using optimal system of Lie subalgebra
Phys. Scr. 94 065204

Kumar S, Wazwaz A M, Kumar D and Kumar A 2019 Group
invariant solutions of (2 + 1)-dimensional rdDym equation
using optimal system of Lie subalgebra Phys. Scr. 94 115202

Lou S Y 1995 Similarity solutions of dispersive long-wave
equations in two space dimensions Math. Methods Appl. Sci.
18 789-802

Ma W X 2003 Diversity of exact solutions to a restricted Boiti-
Leon-Pempinelli dispersive long-wave system Phys. Lett. A
319 325-33

Ma Z-Y and Hu Y-H 2007 Solitons, chaos and fractals in the
(2 + 1)-dimensional dispersive long wave equation Chaos
Solitons Fractals 34 1667-76

Maiias M 1996 Darboux transformations for the nonlinear
Schrodinger equations J. Phys. A 29 7721-37

Olver P J 1993 Applications of Lie groups to differential
equations Graduate Texts in Mathematics 2nd edn (New
York: Springer) 107

Paquin G and Winternitz P 1990 Group theoretical analysis of
dispersive long wave equations in two space dimensions
Phys. D 46 122-38

Rogers C and Schief W K 2002 Bicklund and Darboux
transformations Cambridge Texts in Applied Mathematics
(Cambridge: Cambridge University Press)

Sahoo S, Garai G and Saha Ray S 2017 Lie symmetry analysis for
similarity reduction and exact solutions of modified KdV-
Zakharov-Kuznetsov equation Nonlinear Dynam. 87
1995-2000

Sharma K, Arora R and Chauhan A 2019 Invariance analysis,
exact solutions and conservation laws of (2 + 1)-
dimensional dispersive long wave equations Phys. Scr. 95
055207

Wadati M, Sanuki H and Konno K 1975 Relationships among
inverse method, Bicklund transformation and an infinite
number of conservation laws Progr. Theoret. Phys. 53
419-36

Wang M L 1995 Solitary wave solutions for variant
Boussinesq equations Phys. Lett. A 199 169-72

Wazwaz A M 2005 The tanh method: solitons and periodic
solutions for the Dodd-Bullough-Mikhailov and the
Tzitzeica-Dodd-Bullough equations Chaos Solitons Fractals
25 55-63


https://orcid.org/0000-0003-4451-3206
https://orcid.org/0000-0003-4451-3206
https://orcid.org/0000-0003-4451-3206
https://orcid.org/0000-0003-4451-3206
https://doi.org/10.1140/epjp/i2017-11607-5
https://doi.org/10.1088/0266-5611/3/3/007
https://doi.org/10.1088/0266-5611/3/3/007
https://doi.org/10.1088/0266-5611/3/3/007
https://doi.org/10.1063/1.528613
https://doi.org/10.1063/1.528613
https://doi.org/10.1063/1.528613
https://doi.org/10.1063/1.528613
https://doi.org/10.1016/j.jksus.2010.08.003
https://doi.org/10.1016/j.jksus.2010.08.003
https://doi.org/10.1016/j.jksus.2010.08.003
https://doi.org/10.1007/s11071-018-4196-z
https://doi.org/10.1007/s11071-018-4196-z
https://doi.org/10.1007/s11071-018-4196-z
https://doi.org/10.1142/S0217751X10050184
https://doi.org/10.1142/S0217751X10050184
https://doi.org/10.1142/S0217751X10050184
https://doi.org/10.1142/S0217751X10050184
https://doi.org/10.1007/s10773-014-2010-3
https://doi.org/10.1007/s10773-014-2010-3
https://doi.org/10.1007/s10773-014-2010-3
https://doi.org/10.1007/s10773-014-2010-3
https://doi.org/10.1016/j.camwa.2018.12.009
https://doi.org/10.1016/j.camwa.2018.12.009
https://doi.org/10.1016/j.camwa.2018.12.009
https://doi.org/10.1016/j.camwa.2018.12.009
https://doi.org/10.1088/1402-4896/aafc13
https://doi.org/10.1088/1402-4896/ab2d65
https://doi.org/10.1002/mma.1670181004
https://doi.org/10.1002/mma.1670181004
https://doi.org/10.1002/mma.1670181004
https://doi.org/10.1016/j.physleta.2003.10.030
https://doi.org/10.1016/j.physleta.2003.10.030
https://doi.org/10.1016/j.physleta.2003.10.030
https://doi.org/10.1016/j.chaos.2006.04.073
https://doi.org/10.1016/j.chaos.2006.04.073
https://doi.org/10.1016/j.chaos.2006.04.073
https://doi.org/10.1088/0305-4470/29/23/029
https://doi.org/10.1088/0305-4470/29/23/029
https://doi.org/10.1088/0305-4470/29/23/029
https://doi.org/10.1016/0167-2789(90)90115-6
https://doi.org/10.1016/0167-2789(90)90115-6
https://doi.org/10.1016/0167-2789(90)90115-6
https://doi.org/10.1007/s11071-016-3169-3
https://doi.org/10.1007/s11071-016-3169-3
https://doi.org/10.1007/s11071-016-3169-3
https://doi.org/10.1007/s11071-016-3169-3
https://doi.org/10.1088/1402-4896/ab5eae
https://doi.org/10.1088/1402-4896/ab5eae
https://doi.org/10.1143/PTP.53.419
https://doi.org/10.1143/PTP.53.419
https://doi.org/10.1143/PTP.53.419
https://doi.org/10.1143/PTP.53.419
https://doi.org/10.1016/0375-9601(95)00092-H
https://doi.org/10.1016/0375-9601(95)00092-H
https://doi.org/10.1016/0375-9601(95)00092-H
https://doi.org/10.1016/j.chaos.2004.09.122
https://doi.org/10.1016/j.chaos.2004.09.122
https://doi.org/10.1016/j.chaos.2004.09.122

Phys. Scr. 95 (2020) 065207 S Kumar et al
[24] Wazwaz A M 2013 Multiple soliton solutions and rational long-water wave system obtained by an extended mapping
solutions for the (2 + 1)-dimensional dispersive long water- approach Chaos Solitons Fractals 23 1741-8
wave system Ocean Eng. 60 95-8 [30] Kaur L and Wazwaz A M 2018 Painlevé analysis and invariant
[25] Wazwaz A M 2016 The simplified Hirota’s method for solutions of generalized fifth-order nonlinear integrable
studying three extended higher-order KdV-type equations equation Nonlinear Dyn. 94 2469-77
J. Ocean Eng. Sci. 1 181-5 [31] Kaur L and Gupta R K 2014 Some invariant solutions of
[26] Wazwaz A M and El-Tantawy S A 2017 Solving the (3 + 1)- field equations with axial symmetry for empty space
dimensional KP-Boussinesq and BKP-Boussinesq equations by containing an electrostatic field Appl. Math. Comput. 231
the simplified Hirota’s method Nonlinear Dynam. 88 3017-21 560-5
[27] Yang X-F, Deng Z-C and Wei Y 2015 A Riccati-Bernoulli [32] Wazwaz A M and Kaur L 2018 Complex simplified Hirota’s
sub-ODE method for nonlinear partial differential equations forms and Lie symmetry analysis for multiple real and
and its application Adv. Difference equation 2015 117 17 pp complex soliton solutions of the modified KdV-Sine-Gordon
[28] You F and Xia T 2008 The multi-component dispersive long equation Nonlinear Dyn. 95 2209-15
wave equation hierarchy, its integrable couplings and their ~ [33] Kaur L and Gupta R K 2013 Kawahara equation and modified
Hamiltonian structures Appl. Math. Comput. 201 44-55 Kawahara equation with time dependent coefficients:
[29] Zheng C-L, Fang J-P and Chen L-Q 2005 New variable symmetry analysis and generalized-expansion method Math.

separation excitations of (2 + 1)-dimensional dispersive

15

Methods Appl. Sci. 36 584-600


https://doi.org/10.1016/j.oceaneng.2012.12.049
https://doi.org/10.1016/j.oceaneng.2012.12.049
https://doi.org/10.1016/j.oceaneng.2012.12.049
https://doi.org/10.1016/j.joes.2016.06.003
https://doi.org/10.1016/j.joes.2016.06.003
https://doi.org/10.1016/j.joes.2016.06.003
https://doi.org/10.1007/s11071-017-3429-x
https://doi.org/10.1007/s11071-017-3429-x
https://doi.org/10.1007/s11071-017-3429-x
https://doi.org/10.1186/s13662-015-0452-4
https://doi.org/10.1016/j.amc.2007.11.048
https://doi.org/10.1016/j.amc.2007.11.048
https://doi.org/10.1016/j.amc.2007.11.048
https://doi.org/10.1016/j.chaos.2004.06.082
https://doi.org/10.1016/j.chaos.2004.06.082
https://doi.org/10.1016/j.chaos.2004.06.082
https://doi.org/10.1007/s11071-018-4503-8
https://doi.org/10.1007/s11071-018-4503-8
https://doi.org/10.1007/s11071-018-4503-8
https://doi.org/10.1016/j.amc.2013.12.120
https://doi.org/10.1016/j.amc.2013.12.120
https://doi.org/10.1016/j.amc.2013.12.120
https://doi.org/10.1016/j.amc.2013.12.120
https://doi.org/10.1007/s11071-018-4686-z
https://doi.org/10.1007/s11071-018-4686-z
https://doi.org/10.1007/s11071-018-4686-z
https://doi.org/10.1002/mma.2617
https://doi.org/10.1002/mma.2617
https://doi.org/10.1002/mma.2617

	1. Introduction
	2. Lie symmetry analysis for the DLW equation (1)
	3. Similarity reductions and group invariant solutions
	3.1. Subalgebra V2=f2(t)∂∂x+f2′(t) ∂∂u with f2(t)=a2f1(t) and h(y) = y
	3.2. Subalgebra V3=h(y)∂∂y-h′(y)(v+1) ∂∂v with f2(t)=a2f1(t) and h(y) = y
	3.3. Subalgebra V2+V1=x2(f1′(t)+f2(t)) ∂∂x+f1(t) ∂∂t -12(f1′(t)u-f1″(t)x+f2′(t)) ∂∂u -12(v+1)f1′(t)∂∂v with f2(t)=a2f1(t) and h(y) = y
	3.4. Subalgebra V1+V2+V3=x2(f1′(t)+f2(t)) ∂∂x+h1(y) ∂∂y+f1(t) ∂∂t-12(f1′(t)u-f1″(t)x) ∂∂u -12(v+1)(f1′(t)+2h1′(y) ∂∂v
	3.4.1. With f2(t)=a2f1(t) and h(y) = y
	3.4.2. With f2(t)=a2f1(t) and h(y) = d


	4. Analysis and discussions
	5. Conclusion
	Acknowledgments
	References



