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Abstract
The Eringen’s strain-driven nonlocal differential model is well-established to exhibit
inconsistencies when applied to bounded continua of applicative interest. The stress-driven
nonlocal theory leads instead to well-posed nonlocal elastic formulations demonstrating
stiffening structural responses. In the present article, using the stress-driven nonlocal model, a
comprehensive analysis is conducted to explore the vibrational characteristics and critical
divergence velocity of a hybrid-nanotube constructed by carbon (C) and boron nitride (BN)
nanotubes conveying magnetic fluid. The impact of size-dependence, magnetic field and
thermal medium on the dynamic behavior of the systems is included in the proposed model.
The obtained governing equations of two-segment nanotubes are then examined using the
finite element method. It is interestingly showed that the threshold of the divergence/flutter
instability of the system would be enhanced by employing a hetero-nanotube instead of a
nanotube composed of a uniform material. Furthermore, the results demonstrate that the
configuration of the mode shapes may be dramatically changed for a nanotube conveying fluid.
Therefore, the classical modes do no longer exist, and should not be considered in the
dynamics of the system. It is also shown that by assuming a low temperature medium, the
critical velocity increases by increasing the temperature and decreases in the case of high
temperature.

Keywords: hybrid-nanotube, fluid-conveying, magnetic flow, stress-driven nonlocal model,
magneto-thermal environment
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1. Introduction

Carbon nanotubes (CNTs) have outstanding mechanical,
electronic and magnetic features that confer a great deal of
employments in micro/nanoelectronic devices. Following the
discovery of CNTs, several empirical investigations demon-
strated the existence of another type of nanotubes constructed
by boron and nitride atoms called boron-nitride nanotubes
(BNNTSs) with exceptional properties that introduce them as
possible candidates to work in toxic, biological and high
temperature media. Fortunately, the compatibility of the two
structures, i.e. CNTs and their counterpart BNNTSs, has
motivated scientists to hybridize CNTs by BNNTs to create a
new material platform with excellent properties which would
simultaneously employ the benefits of carbon and boron
nitride nanotubes [1, 2]. Thanks to the hollow cylindrical
geometry of C-BN nanotubes, they are supposed to be
potential candidates for nanopipes in nanofluidic systems with
promising applications in targeted drug delivery or fluid fil-
tration devices, biomimetic selective transport of ions among
many. Rodriguez Judrez et al [3] examined the electronic/
magnetic/mechanical features of different kind of hetero
C-BN nanotubes and introduced the new composite nano-
tubes in drug delivery and nano-vehicle systems. Xiao et al
[4] analyzed the conductance properties and transport features
of the hybrid structures made of carbon and BN segments.
Zhang and Wang [5] presented a beat-like behavior of car-
bon/BN nanotubes by adopting the continuum mechanics
elasticity and verified their results with the molecular
dynamics and showed that the interaction of two vibrational
modes of the system results in fixing the intrinsic issues in the
advancement of mass nanosensors. Vedaei er al [6] mathe-
matically studied the sensing features of C-BN-C hybrid-
nanotubes by performing the first principles density function
theory together with the Green’s function formalism theory. It
was exhibited that O, and NO, molecules will chemically
attract to the surface of hetero-nanotubes in which excellent
selectivity can be predicted by collecting the signals of dif-
ferent electric fields. Chernozatonskii et al [7] considered the
dimensionless and quasi one-dimensional hetero-nanotubes
composed of C/BN fragments and computed their electron
spectra by means of crystal orbitals. Cheng et al [8] studied
the free vibration analysis of a hinged-hinged hetero-nanotube
by assuming the equivalent Eringen nonlocal theory of elas-
ticity and employed the dynamic stiffness method to analyze
the mentioned structure. They concluded that the divergence
instability of the system may be reduced by increasing the
length ratio and the nonlocal parameters. Kiani [9] evaluated
the frequencies of the stocky SWCNTSs in a magnetic field for
different boundary conditions considering nonlocal Timosh-
enko, Rayleigh and higher-order beam theories by utilizing a
meshless method. He addressed the effect of small-scale
parameter, strength of the magnetic field and the slenderness
ratio of the SWCNT on the fundamental frequency of the
actuated nanotube. In another research, Kiani [10] examined
the influence of the longitudinal magnetic field on a system
containing periodic jungles of single-walled carbon nanotubes
to be able to explore the applicable ways of controlling the

characteristics of transverse waves. He employed different
nonlocal beam models and derived the discrete and con-
tinuous versions of equations of motion. Finally, he discussed
the effects of system parameters like wavenumber, radius of
SWCNTs, magnetic field strength, nonlocality on the flexural
and shear frequencies and found that the longitudinal magn-
etic field could be employed as an efficient way to control
characteristics of both flexural and shear waves in such con-
ductive systems.

Over the past decade, several size-dependent continuum
theories have been proposed by researchers to model the
small scale behavior of nano-structures, including couple
stress theories [11, 12], strain gradient theory [13, 14], Erin-
gen’s nonlocal elasticity [15-25] and energy-equivalent
model (EEM) [26-29]. The most popular small-scale theory
to capture the nanoscale behavior of miniature structures and
systems is represented by the nonlocal elasticity theory. The
strain-driven nonlocal theory is formulated using the Fred-
holm integral equation in which the nonlocal stress tensor at
any point is considered as a weighted mean of the local strain
tensor in the elastic body. In the case of unbounded domains,
Eringen [25] proposed the mathematical kernel function to
deal with the Rayleigh surface waves. In this kind of sim-
plified nonlocal model, the nonlocal integral convolutions is
replaced by the nonlocal differential equations. Therefore, the
nonlocal differential elasticity theory can be employed as the
equivalent and applicable mathematical framework taking
into account the size-dependent behavior of nanoscale struc-
tures. Unfortunately, the equivalent model encountered some
difficulties as applied to specific kind of boundary conditions
and external loading and Eringen’s nonlocal differential
model shows somehow paradoxical results in dealing with
bounded structural domains [30-32]. The stress-driven non-
local model proposed by Romano and Barretta [33], instead,
is characterized by alternating the roles of stress and strain
tensors compared to the traditional Eringen nonlocal integral
model. Consequently, the stress filed is defined by a Fredholm
integral equation in which the strain field would be the result
of an integral convolution of the local stress field and the
nonlocal-dependent kernel function. Recently, the stress-dri-
ven nonlocal elasticity theory was efficiently implemented on
different nanoscale systems and devices [34—40].

Owing to their approximately frictionless walls and
excellent sensitivity in vibrational behavior, nanotubes
conveying fluid can be utilized as biological channel, min-
iaturized drug delivery devices and fluid conveyors to
achieve a higher critical velocity in such nanopipe-based
systems [41-44]. Zhen and Fung [45] investigated the
nonlinear vibrational response of fluid-conveying CNTs by
means of Lindstedt—Poincaré asymptotic method. They took
into account the harmonic excitation and geometric non-
linearity in the studied model in the context of nonlocal
elasticity. Moreover, they considered the primary resonance
of a simply supported system by examining the frequency-
amplitude relationship and found that when the frequency of
a forcing function tends to the fundamental frequency,
the primary resonance of the first mode takes place, and as
the ratio of the two lowest natural frequencies is close to 3,
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the internal resonance phenomenon happens. Zhen and Fang
[46] studied the effects of the nonlocal elasticity and thermal
medium on the dynamic behavior of a CNT conveying fluid
and analyzed the equations of motion with the aid of the
differential quadrature method (DQM). They concluded that
the effect of thermal gradient is to enhance the natural fre-
quency and critical divergence velocity, and its impact
decreases as the elastic medium surrounds the nanotube. By
considering the nonlocal elasticity theory, Zhang et al [47]
suggested the wave method to examine the vibrational
characteristic of fluid-conveying CNTs. They presented the
onset of divergence instability phenomenon and determined
the critical velocity for different conditions of the system.
Nematollahi et al [48] presented a mathematical model to
investigate the small-scale dynamics of FG viscoelastic
pipes considering the nonlocal strain gradient theory. They
applied the Galerkin decomposition method to numerically
solve the equations of motion and performed a compre-
hensive analysis to compute the divergence/flutter instabil-
ity behavior of the considered system. Kiani [49] presented
the dynamic interaction of stocky inclined SWCNT con-
veying fluid by using the Eringen’s nonlocal elasticity. He
employed the Timoshenko and higher-order beam theories
to model the dynamics of the nanotubes and utilized the
Galerkin method to discretize the governing equations.
Finally, the effects of inclination angle, nonlocal parameter
and slenderness ratio on the maximum amplitudes of long-
itudinal and transverse displacements were also discussed.
Wang et al [50] investigated the capability of controlling the
stability of fluid-conveying CNTs with the help of long-
itudinal magnetic field. They modeled the nanotube by
adopting the nonlocal Euler-Bernoulli theory and dis-
cretized the equations of motion using the DQM. They
demonstrated that the nonlocality of nanotube makes the
system more flexible and can shift the unstable mode.
Moreover, it was shown that the presence of a longitudinal
magnetic field results in much stiffer CNT systems. Wang
et al [51] studied the vibrational behavior of a SWCNT
conveying fluid in a magneto-thermal environment. The
effects of different parameters such as the fluid velocity and
density, the temperature and magnetic field flux change, and
the nonlocal parameter on the dynamic behavior of wavy
CNTs were discussed. Hosseini et al [52] utilized the non-
local beam theory to study the impact of a longitudinal
magnetic field on the transverse vibration of a fluid-con-
veying SWCNT. They used the differential transformation
method (DTM) to numerically solve the higher-order diff-
erential equations and discussed the effects of the nonlocal
parameter and strength of the magnetic field on the diver-
gence instability and natural frequency of SWCNTs. Their
results exhibited that the critical flow velocity and funda-
mental frequency of SWCNTs will increase by increasing
the nonlocal parameter.

As mentioned earlier and proved by many researchers, due
to their outstanding properties, homogeneous nanotubes, i.e.
BNNTs and CNTs, have potential applications in small-scale
fluid-conveying systems. Therefore, it is convenient to fabricate
a new hybrid structure composed of carbon/BN nanotubes for

Magnetic Field (Hx)

Figure 1. The schematic configuration of the hybrid nanotube
conveying magnetic fluid.

the next-generation nanopipe-based devices, wherein the fea-
tures of both materials could be exploited simultaneously.
Motivated by this inspiring idea, the present study deals with
the instability and vibrational behavior of C-BN hybrid-nano-
tubes in a magneto-thermal environment by adopting the new
size-dependent model. To this end, we formulate the stress-
driven nonlocal theory of elasticity which is conveniently dri-
ven by the stress field and not by the elastic deformation and
finite element method is used to analyze the governing
equations of two fragments of nanotube. It is concluded that the
nano-hetero-structure has higher critical velocity and natural
frequency compared to the homogeneous nanotube. Finally, it is
exhibited that the internal magnetic fluid may considerably
change the mode shapes and therefore the classical mode shapes
are no longer valid in dealing with such structures.

2. Mathematical formulation

The considered hybrid-nanotube, as shown in figure 1, is com-
posed of two different materials. The first part of the composite
(hybrid) nanotube is a homogenous carbon nanotube and the
second part is a boron nitride nanotube. It is assumed that the
two segments have similar geometrical properties with different
material constants. The nanotube has the total length
L Li=¢L, 0<&<1and L,=(1-— &)L, represent the
length of carbon and boron nitride nanotubes, respectively. The
nanotube conveys a magnetic fluid flow and the boundary
conditions of the nanopipe are clamped-clamped. The whole
system is exposed to a horizontal magnetic field H, and exposed
to a thermal environment. It is worth noting that, since the
longitudinal stiffness of nanotube is commonly much larger than
its transverse stiffness, the transverse displacement of nanotube
is remarkably higher than its longitudinal one [48]. On the other
hand, the transverse motion of nanotube is usually supposed to
be independent of its axial motion and therefore, in the current
study, the transverse equation of motion is of interest.

2.1. Stress-driven nonlocal model

The nonlocal model introduced in this section is based on the
stress-driven approach for describing the nonlocal elastic
behavior. The first stress-driven formulation of the nonlocal
model has been recently proposed as an alternative way
compared to other strain-driven formulations [53]. In such
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model the strain in a given point of the continuum x is a
function of the entire stress field by the following convolution
integral:

elx) = j;/ ©\(x, X) C(X): o(X) dx (1)

where C is the elastic compliance C = E!, and also in this
case the kernel is an attenuation function of the space. Some
advantages arise in this kind of formulation, one of those is
the possibility to evaluate an analytical solution of the pro-
blem in a very simple way. In this section, we consider the
bending problem formulation of a nonlocal Bernoulli-Euler
nano-beam where the nonlocal behavior is modeled with the
aid of a stress-driven formulation. In this case the only
meaningful components of stress and strain are along the x-
direction. Therefore, the nonlocal stress-strain relation is

e(x) = %fOL o\ (x — ©) 0 () di 2)

Moreover, as it has been shown previously [54, 55], for
the bending problem at hand, equation (2) leads to the fol-
lowing bending curvature-moment relation:

1 pL
X(x) = —f o\(x — %) M (%) dx (3)
EIl Jo

The advantage of this formulation is immediately shown

if we consider the differential equation of the integral for-

mulation. In particular, if the kernel is the attenuation function
described by a bi-exponential function as:

1 [x — x|

exp| ———— 4
Mcp( L. ) @
where nonlocal parameter is A = L./L, being L. a char-

acteristic length, the differential formulation of the stress-
driven nonlocal problem is given by:

P\(x, X) =

X" (x) — LZX( x) = E &)
under the following boundary conditions:
1
X'(0) = 72X 0)
BC 1“ (6)
X'(L) = 7X@

The above-mentioned stress-driven formulation is used to
derive the governing equation for vibrating hybrid-nanotube
conveying magnetic fluid flow.

2.2. Lorentz force

In this sub-section, we extract the differential form of Max-
well’s equations and then acquire the Lorentz force relation
arising from the longitudinal magnetic field. The Maxwell’s
relations for a conducting elastic body can be expressed as [56]:

J=V xh @)

ch

E=—-—u— 8

V x ,uat (®)

Vh=0 )]

E:—ﬂ@HxH) (10)
Ot

h=V x (U x H (11)

in which J, h, E and U represent the current density, the dis-
turbing vectors of magnetic field, the strength vectors of electric
field and the displacement vector, respectively. Moreover, in the
above equations, V = %éx + %éy + a%éz is the Hamilton
arithmetic operator and p denotes the magnetic field
permeability. Applying the longitudinal magnetic field

= (H,, 0, 0) and considering the displacement vector as
U = (0, v, w), the current density and the disturbing vectors of

the magnetic field are written by:

ov ow
0 0z

h= Vx(UxH)H(—+—

ov ow

+ H—ey + Ho——e (12)

2 2
J=V xh=—H[dV 0w
Ox0z  Ox0y

0% *w 0w
—H +—+—e
[8y82 oxr 92 ] '

+H, Pv O Fwle
dyoz )

a2 Oy?
Thereby, the Lorentz force denoted by F, (a body force)
induced by the longitudinal magnetic field can be obtained as:

13)

0% 0% 0w
= x H) = uH? — + e
L /'L(J ) /J“ [( a 2 ayZ 8yaz )ey
0w 0w 0%
HEE LS e 14
( ox2  Oy? Oy ) ] (9

Since the current problem is assumed to be axisymmetric
and the lateral displacement of C-BN nanotube is considered to
be w = w(x, t), the Lorentz force per unit length of the hybrid
nanotube and in the z direction can be obtained as:

2
m:m%fmwa

e (15)

where A represents the nanotube cross section area.

2.3. Fluid-structure interaction in the presence of magnetic fluid

To derive the applied force due to the magnetic-fluid flow on
the considered nanotube, it is assumed the internal viscous
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fluid is laminar, incompressible and infinite passing through a
nanotube with high aspect ratio. The momentum-balance
relation governing the motion of the magnetic flow is
expressed by the Navier—Stokes equation as:

pﬂz—VP—i—usVzv—&-JxH

7 (16)

in which p and g are the density and dynamic viscosity of
fluid respectively, P denotes the fluid pressure, v is the
velocity of fluid described by v = v, e + v, e,. It is assumed
that the radial component of the fluid velocity is equal to
v, = dw/dt while the term ¥ is the average flow velocity in
the x-direction. The Lorentz force acting on the magnetic fluid
due to the longitudinal magnetic field appeared in the last
term of equation (16) is written by:

JxH=0vxH) x H (17)

where J and o stand for the electric current density vector and
the electrical conductivity of the fluid, respectively. In addi-
tion, the time derivative operator in equation (16) symbolized
by d/dt is described by d /dt = 0/0t + V.0 /0x. Performing
some mathematical computations and following the above-
mentioned assumptions results in the governing equation for
the pressure gradient of the magnetic fluid as:

2 2 2,
or (0w 25, 0w +_28
o or? Y oxot Ox?
0w Ow ow ow
N AR A T ) 18
M(@xz@t " 8x3) (a ax) (1%

It was demonstrated by Wang and Ni [57] that the
influence of fluid viscosity in the transverse load induced by a
magnetic fluid on the nanotube can be neglected. Multiplying
equation (18) by the cross section area of the internal fluid,
Ay, yields the following relation for the force applied on the
nanotube caused by the magnetic flow:

02w w0
Fyp = —m| 22 4 25, e
/= (aﬂ T 3x2)
ow ow
—0ArH? + 7 ) 19
oo (a ox (19)

where my is the mass per unit length of the fluid. While we
are dealing with the fluid flow at nanoscale, the average
velocity of the fluid in nanotube is estimated through slip
boundary conditions [52, 58]. According to the mentioned
assumption, the average velocity correction factor (VCF),
introduced by Rashidi et al [59], is employed to account for
the effect of nanoscale on the fluid flow passing through a
nanotube. They presented the following relation to calculate

the VCF of the fluid:

Vi

VCF = = (1 + ag.Kn)

vx,(nafslip)

() )

where v, stands for the average flow velocity with the con-
sideration of slip boundary conditions and 7y (,,— ;) denotes
the averaged velocity of the fluid with no-slip boundary
conditions. Furthermore, Kn represents the Knudsen number
characterizing the boundary conditions and flow regimes,
ag;, is determined by Knudsen number and o, represents the
tangential moment accommodation coefficient wherein is
equal to 0.7 [59].

(20)

2.4. Applying stress-driven formulation in conjunction with the
thermal effects

To extract the governing equation of motion, we consider a
straight hybrid-nanotube under bending conditions with
length L and cross-section A. The longitudinal axis of nano-
tube coincides with the x axis. According to the Bernoulli-
Euler model, the relation between the curvature y (x) and the
flexural displacement w at any time is given by:

2

o*w
X(X)*W

21

On the other hand, the d’ Alembert dynamical equilibrium
of a vibrating nanotube can be expressed by the following
differential equation:

0*M 0*w
o ? + Fe

(22)

where M denotes the resultant bending moment and m is the
mass per unit length of the nanotube. In addition, F,,; is the
total external force in z-direction due to the magnetic field
effect and conveying fluid which can be written as follows:
Fou = Fp + Fyy (23)
To derive the vibrational equation of motion, we take the

second derivative of equation (5) with respect to x. One can
obtain the following relation:

I Lazx(x) 1 02M (x)
ox* L2 0x? EIL? Ox?

(24)

and then using equation (21), the governing equation for the
stress-driven vibrating nanotube conveying fluid can be
obtained as follows:

0w

0w
2
—El—=m
Oxb Ox*

0*w

EIL; —_—
Or?

— Feu (25)
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Furthermore, based on the thermal elasticity theory, the
axial force N, due to the thermal effects can be expressed
as [60]:

EA
1 —2v

N, = — ay AT (26)

where v is the Poisson’s ratio of nanotube, «, represents the
coefficient of thermal expansion in x direction and AT
denotes the temperature change. Taking into account the
effect of thermal environment, the equation of motion gov-
erning the dynamic behavior of nanotube is re-formulated
as:

EILZaW Ei:mi—l\l,g .

Ox ot~ o Pt )

27)

Moreover, the boundary conditions of the nanotube is dou-
bly-clamped, and therefore the BCs of the structure are as
follows:

ow(0, 1) _ ow(L, t)

0,)=w(,t) =
w(0, 1) = w(L, 1) o o

=0 (28

2.5. Governing equations of motion

In the present sub-section, we aim to derive the governing
equation of a hybrid C-BT nanotube conveying magnetic
fluid by taking into consideration the nonlocal effects. As
illustrated in equation (27) and using the related formulations

It is assumed that the two parts of the nanotube have similar
geometrical parameters and different material properties.
Thus, by employing equation (29) for two sections of the
nanotube and denoting the subscript ‘BN’ for boron-nitride
and ‘C’ for carbon, one can obtain:

O%w 0*w;
2 1
EcIL} == _Ecl84
EcAOéchT 8 Wi 82W1
+ = + ms| 2(VCF)Vy (no—sii
EETEEI )“(“”’)aaz
_ 0w ow
+ (VCF)vaz,(nofslip) 6_21] + UAfoZ(a_tl

2
—+ (VCF)Vx (no—slip) %Wl) Achz 9 M;l for 0 Sx< gL
* (30)
O%w *w
EpyIL? - 2 = EsnI = o =
EgvAay AT 92
4 Ly QxBN w2 + my
1 —2v Ox?
32 32W2
(Z(VCF)VX (no—slip) 5~ ENP) +(VCF) (”0*375[’) Ix?
+ UAfH2(% + (VCF) V. (no—slip) 3W2)
9 0.
2 8 %}
; for €L <x<L @D
Ox?

The following dimensionless parameters are introduced
and the governing equations of motion can be expressed in
non-dimensional form as follows:

_ X 7 Ecl my
X = —, W = - = 4 =
L L (mc + my)L my + mc
m L, E mpN + m
u= (no xlzp)L f )\c == 1= ﬂv 2 = il !
Ecl L EC mec + myg
a _ OéchTL_z _ OéxBNAT L2
T 2w N T T S 2
oAs H2 L2 _ oy H’I? HAH? L2
hyx = — = ——, (32)
1IE‘CI(I’HC + I’I1f 1lEcli’}’lf Ecl

for the external forces, the dynamic behavior of nanotube
according to a classical EB beam model is governed by:

O*w 0*w  EAa,AT 0*w
m R
Ox* Ot? 1 —2v 0Ox?

9w e
+ mf(a_ + 2(VCF) ¥y (no— bllp)8 g}t

28W

EIL; — EI

0w ow
2= 2
+ (VCF) x(no slip) 7 7 Ox P ) + UAfo (E
ow 5, 0w
+ (VCF)Vx (no—slip) = O ) X W (29)

in which r is the radius of gyration of the nanotube. By using
the above-mentioned parameters, one can obtain:

20WL 0w PWL | O*W
ozt oxt | or? <o
Jrzf(VCF)ua il +(VC )Yu 288?/21
X

+ hlx% + hzx(VCF)u%

o’W,

- h X ~_5
> o

for 0<x<¢ (33)
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oW, O*Ws 02W, O*Ws
)\2 =« + o + o0y .
ars axt | Carz TV
2
+ 2f(VCF)ua W2 + (VCF)u 2%
X
oW, oW,
+ hiy—= + hy (VCF
R 2 ( Ju—— T
- h3x%, for £<x<1 (34)

Therefore, the following boundary /continuity conditions
for C-BN hybrid nanotube are considered in the simulation

and the element nodal displacements at the two end nodes
are defined by:

{de}

Then the displacement function for each element can be
expressed as:

= [df df df df (39)

W.(X) = [Ni Ny N3 N4l{d.} (40)

where

2)?93 — 3)?92[6 + le3 Xe 3le B 2)?8213 + Xele3

processes: M = B ’ 2= 3
3 - 2 3 22
Wi(0. 7) = Wa(l, 7) = E)Wl((z 7) 8W2(}, 7) Ny — —2%,% + 3%, le’ y = e I, — %21
ox ox 3 I}
=0, essential boundary conditions (35) (41)
Wi(E, T)li=g = Wa(E, )= ]
OM(x, 7) _ OWmE, 1)
a)f )EZf 8X )Ezf
pdW@En | PWME ) a2 I ) ‘ _ o IwEn |
-4 22 =4
ox o=t 0% it Ox =g ox? et
pIWED | PWE D | e 0WE ) o, W, 7)
oz it ¢ 0% it ox3 e

continuity conditions at the junction of X = §

In the next section, equations (33) and (34) are simulta-
neously solved by means of a Galerkin-based finite element
method.

3. Solution methodology

The vibrational governing equation of C-BN hybrid nano-
tube conveying magnetic fluid in a thermal environment was
given by equations (33) and (34) with the corresponding
boundary /continuity conditions described in equations (35)
and (36), Which can be decomposed via the finite element
method. In this study, beam elements with two nodes and
four degrees of freedom are employed. Thereby, the
amplitudes of deflection and slope at each node are defined
as follows:

at=we =0, as=2|
ox %,=0

Q=W =1, df =X 37)
a'f K=l

in which [, is the length of beam element. The following
displacement function is adopted for the nanotube elements:

W, (%) = a1 + ar® + az7% + as x> (38)

(36)

The Galerkin weighted residuals method (GWRM) with
the interpolation function N, (as the weight function) can
then be applied on equations (33) and (34). By assuming the
solution of the problem in the following form:

Wi(x, 7) = Wi@) exp(\r), i = 1,2 (42)

and using the GWRM weak form of the equations of motion,
one can obtain that:

[MIS Wi + [DIC Wi + [KIEWi = 0 43)

IMIBN W, + [DIBNWs + [K1BY W =0 (44)

where

M = fo " NTN dx

[DIS = —2.JBu(VCF) fo " NTN'E + s j; NN ds
[KIE = —A2 j; NN s+ fo " NN di
— Gxe j; " NN ds — i2(VCF)? fo YN s

— hoyu(VCF)

L )
NTN' di + ha, f (N')TN' d
0 0

(45)
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MY = a, fo " NTN a
[DIEN = —2.[Bu(VCF) fo “ NN di + hys fo " NTN di
KIEY = —a\2 fo " WTYNTaE + oy fo NN di

— @y J; " NYIN' i — u2(VCF) j; " WYTN di

lﬂ l(
— hou(VCF) j; NTN' dx + ha, fo (NN dx—
(46)

In which the matrices [M], [D] and [K] represent the
mass, damping and stiffness matrices, respectively. After
applying the boundary/continuity conditions, by using the
assumed solution and applying the usual assemblage pro-
cedure, the following equation is extracted:

(¥[M] + X[D] + [KD{A.} =0 (47)

where A and A, are the eigenvalues and eigenvectors of the
system. The eigenvalues of equation (47) might be complex
numbers in general. Thus, to solve the eigen-problem (47),
one can use the quadratic eigenvalue problem in the fol-
lowing form:

[Al{x} = A[Bl{x} (48)
where
_ | =K1 [0] | [D] [M] A,
[A]_[ [0] [M]]’ [B]_[[M] [0]]’ {X}_{me}
(49)

It should be pointed out that the solution of the char-
acteristic equation (47) would be complex due to the presence
of damping matrix [D]. Moreover, the real part of the eigen-
vector A, is associated with the mode shape of the nanotube,
whereas the real and imaginary parts of eigenvalues A\ corre-
spond to damping and natural frequencies of C/BN nanotube
conveying fluid, respectively.

4. Results and discussion

In this section, in order to justify the soundness of the present
work, some comparative studies are performed with the results
of published works in the literature. Finally, the dynamic
behavior of the system is presented by conducting some
numerical examples and considering the natural frequencies,
critical velocity and mode shapes of a C/BN hetero-nanotube.

4.1. Validation of the present analysis

To the best knowledge of the authors of this article, there is
not any investigation on the dynamic analysis of doubly-
clamped fluid-conveying C/BN hetero-nanotube in a mag-
neto-thermal environment. Hence, in order to validate
the results of the present study, we investigate the natural
frequencies and divergence velocities of a homogeneous
fluid-conveying CNT compared to the reported results from

Table 1. Properties of CNT and BNNT sections of hybrid nanotube.

Properties CNT BNNT
Density (rho) (g cm73) [8] 2.3 2.18
Young’s modulus (E) (Tpa) [8] 1 1.8
Outer Radius (nm) 3.5 3.5
Thickness (h) (nm) 0.34 0.34
Aspect ratio (L/2Ry) 100 100
Coefficient of Thermal Expansion —1.6 x 107 —0.3 x 107°
(Room Temperature) (K™ I)
Coefficient of Thermal Expansion 1.1 x 1078 02 x 1078

(High Temperature) K™hH

the literature. In addition, the properties of carbon and BN
nanotubes are tabulated in table 1. A comparison between
the first four natural frequencies and dimensionless
divergence velocities of a clamped—clamped homogenous
carbon nanotube are presented in table 2. The results are
obtained by disregarding the nonlocal parameter and the
magnetic/thermal environments. As indicated in this table,
one can conclude that the natural frequencies and critical
velocities of CNT agree very well with the values reported
in [61-63]. Moreover, the variations of the divergence
critical velocities of the first four modes of fluid-conveying
carbon nanotube are presented in table 3. According to the
results of table 3, one can see that the results of the current
work are in good agreement with those reported in the
literature.

4.2. The effect of length ratio

The impact of length ratio £ on the natural frequencies,
critical velocities and mode shapes of the fluid-conveying
hybrid nanotubes are presented in this part. Figure 2 dis-
plays the real/imaginary parts of the non-dimensional fre-
quencies of C/BN hybrid-nanotube versus the fluid velocity
for three specific values of length ratio £. The parameter (3 is
equal to 0.5, the length ratio is assumed to be 1, 0.8 and 0.5.
From figure 2, it is found that the natural frequencies of the
system increase with a decreased length ratio. This is due to
the fact that the flexural rigidity of BN nanotube is higher
than CNT. Furthermore, it is also concluded that the critical
divergence velocity is increased by decreasing the length
ratio &. This is a pleasant result for designing the composite
nanopipes constructed from two-different materials that the
divergence instability can be adjusted and fortunately the
threshold of critical velocity can be postponed by reducing
the length ratio £. Especially the following findings can be
extracted from this figure. As the length ratio ¢ is equal to 1,
the first-mode divergence occurs when the non-dimensional
velocity u approaches to 6.284; after that the 1st and 2nd
flutter of the coupled-mode happens at u = 9.265. On the
other hand, when the value of length ratio is equal to 0.8,
the divergence of the lst-mode occurs at u = 6.761 and
when the fluid velocity raises to 9.759, the flutter of the
coupled-mode takes place. Finally, when the length ratio
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Table 2. Non-dimensional divergence critical velocity and the first four natural frequencies of a doubly-clamped CNT.

Present study (100 nodes)

Reference [33] Reference [34] Reference [35]

Divergence critical velocity 6.284
1st natural frequency at zero flow velocity 22.37
2nd natural frequency at zero flow velocity 61.67
3rd natural frequency at zero flow velocity 120.93
4th natural frequency at zero flow velocity 199.99

6.284 6.29 6.3
22.3734 22.46 22.37
61.6762 61.96 61.67
120.9303 121.38 120.91
199.9905 — —

Table 3. Variations of the divergence velocities of the four first
modes for CNT versus parameter 3.

Non-dimensional
Present study (100

divergence

; nodes) Reference [33]
velocity

8 =0.1 =05 pg=01 g=05

Mode 1 6.284 6.284 6.284 6.284
Mode 2 8.988 — 8.989 —
Mode 3 12.570 12.570 12.572 12.572
Mode 4 15.461 — 15.466 —

takes the value £ = 0.5, the divergence of the Ist mode
takes place at u = 7.069 and by further increasing the flow
velocity, the flutter of the coupled-mode happens at
u = 10.807. Some further information can be inferred in
figure 2 and left here for the sake of brevity. Additional
findings about the divergence, re-stabilization and flutter
phenomena for the other modes may be readily extracted by
taking a glance into figure 2. The real/imaginary parts of
the first five natural frequencies of the composite nanotube
is illustrated in figure 3 for the same values of the length
ratio when 8 = 0.1. The important result obtained from this
figure is the fact that as the parameter 3 reduces, the
divergence of the second mode occurs before the first-mode
re-stabilization and the divergence velocity does not
change. It is also demonstrated that the divergence of the
2nd mode is close to the coupled-mode flutter of the 1st and
2nd modes. Especially, one can see that for the case of
¢ =1, the 2nd mode divergence happens at u = 8.988,
while by increasing the flow velocity to u = 9.002, the
flutter of the coupled-mode occurs. As indicated in
figures 3(b) and (c), one observes that when the parameter £
takes the values 0.8and 0.5, the divergence velocities of the
2nd mode are increased and happen at u = 9.390 and
u = 10.460, respectively.

The first five mode shapes of C/BN hybrid nanotube for
three specific values of parameter £ have been calculated
using finite element method, as plotted in figure 4. It is noted
that the slopes at different sections of the nanotube and the
location of the maximum deflection changes and hence the
configuration of the mode shape differs from that one of
uniform CNT, where the maximum amplitude and node
locations tend to move to the left support.

4.3. The effect of flow velocity

As ausual rule, many researchers frequently tend to utilize the
classical mode shapes of nanotubes for examining the
vibration characteristics nanotubes conveying fluid. However,
the flow velocity inside the nanotube have a considerable
impact on the configuration of the mode shapes and should be
considered in the simulations. In order to examine the effects
of the internal velocity on the mode shapes configuration,
figure 5 depicts the variation of the first five modes for
£=10.5 and @ = 0.5 and different values of u. It is evident
that the increase of an internal fluid velocity u considerably
changes the form of the mode shapes, thus leading to a sig-
nificant change in values of the natural frequencies. It is
interestingly concluded that the form of the mode shapes
changes and occasionally reveals surprising results. For
u = 0, as expected, the mode shapes are similar to those of
classical hetero-nanotubes. It is particularly shown that as the
flow velocity increases and takes the values u = 4, 7, the
form of the first mode dramatically changes and evolves to a
new configuration somehow similar to the second mode of
classical hetero-nanotubes. According to the illustrated results
of this figure, it is also found that the effect of the internal
flow velocity is a considerable change in configurations of the
mode shapes, especially for the first and second modes.

4.4. The effect of magnetic field

As mentioned earlier, BNNTSs are isostructural to CNTs. It is
evident that CNTs possess good magnetic properties, how-
ever, pristine BNNTSs, in contrast to CNTs have relatively
weak magnetic features. Nevertheless, several researchers
proved that BNNTSs can be functionalized into metallic/semi-
metallic and even magnetic materials by partial hydrogena-
tion, or embedding line defects or edge attachment of oxygen
or sulfur atoms [64]. The influence of the length ratio £ on the
critical velocity of hybrid nanotube for three assigned values
of non-dimensional parameter /,, is depicted in figure 6. One
can observe that the variation of critical velocity decreases
non monotonically by increasing the length ratio. The effect
of magnetic field is to increase the divergence critical velocity
of the fluid-conveying C/BN nanotube.

4.5. The effect of temperature gradient

In order to explore the effect of the temperature gradient on
the dynamic behavior of hetero-nanotube conveying fluid, in
the current sub-section, the variation of the divergence critical
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Figure 4. Comparison of the first five mode shapes of the hybrid nanotube at u = 0 for ¢ = 1, £ = 0.8 and £ = 0.5 (a) first mode (b) second
mode (c) third mode (d) fourth mode (e) fifth mode.

velocity versus the temperature changes is studied. Exper-
imental findings exhibited that the coefficients of thermal
expansion for both carbon and BN nanotubes take the nega-
tive values at low temperature conditions (<300 K) and shift

12

to positive values at high temperature environment (>300 K)
[18, 32]. To this end, the thermal expansion coefficients for
carbon and boron-nitride segments at low and high temper-
ature conditions are tabulated in table 1. For the case of room
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Figure 5. Comparison of the first five mode shapes of hybrid nanotube for £ = 0.5 and = 0.5 at different flow velocities (a) first mode
(b) second mode (c) third mode (d) fourth mode (e) fifth mode.
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(low) temperature, it is shown in figure 7 that higher temp-
erature changes lead to a higher divergence velocity. The
correlation between the critical velocity and the magnitude of
magnetic field is almost linear. On the other hand, as
demonstrated by the plotted curves in figure 8, for a high
temperature environment, the effect of temperature gradient is
to reduce the critical velocity which is totally in conflict with
results of low temperatures.

4.6. The effect of stress-driven nonlocal theory

The effect of the nonlocal parameter A, on the variation of the
three lowest natural frequencies of hetero-nanotubes is shown
in figure 9. According the presented results, one can conclude
that in presence of a nonlocal parameter, the values of the
natural frequencies and the divergence velocities will be
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decreased and the effect of nonlocality is more pronounced
for higher modes. Moreover, it is concluded that the sensi-
tivity of this kind of nano-hetero-structure is increased for
higher values of flow velocity. For instance, if the small-scale
effect is ignored, the 1st mode divergence instability occurs at
u = 7.019, while by taking into account the effect of size-
dependency, i.e. at A\, = 0.014, the first mode loses its sta-
bility when the internal flow velocity becomes u = 6.587.

5. Conclusions

The effect of the length ratio, magneto-thermal field and size-
dependence on the divergence velocity, natural frequency and
mode shapes of fluid-conveying C/BN hybrid-nanotube was
examined in this work using a stress-driven-based nonlocal
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model. The governing equations of two fragments of the
composite nanotube were developed and numerically ana-
lyzed with the help of the finite element method. The obtained
results are summarized as follows

1. The natural frequencies and the critical divergence
velocities were enhanced by using hetero-nanotubes
against the uniform one made of carbon atoms.

. It was found that at low temperatures the divergence
velocity is enhanced by any increase in the temperature.
On the other hand, at high temperatures the temperature
gradient reduces the critical velocity.

. It was finally exhibited that by taking into account the
effect of nonlocality, higher modes of hetero-nanotubes
are more sensitive to the variation of the nonlocal
parameter.

The results of this research study on employing the
hybrid nanotubes would be of great interest in designing
novel nanopipes and tuning the vibrational characteristics of
biological devices composed of nanotubes.

Compliance with ethical standards

Conflict of interest

The authors declared no potential conflicts of interest with
respect to the research, authorship and publication of this
article.

Funding

The authors received no financial support for the research,
authorship and publication of this article.

ORCID iDs

Hamid M Sedighi ® https: //orcid.org/0000-0002-3852-5473
Hassen M Ouakad @ https: //orcid.org /0000-0001-7262-2130

References

[1] Nozaki H and Itho S 1996 Lattice dynamics of a layered
material BC2N Physica B: Condensed Matter 219-220
487-9

[2] Stephan O, Ajayan P M, Colliex C, Redlich P, Lambert J] M,
Bernier P and Lefin P 1994 Doping graphitic and carbon
nanotube structures with boron and nitrogen Science 266
1683-5

[3] Judrez R, Chigo Anota A, Herndndez Cocoletzi H,

Sanchez Ramirez J F and Castro M 2017 Stability and
electronic properties of armchair boron nitride /carbon

15

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

nanotubes Fullerenes, Nanotubes and Carbon
Nanostructures 25 716-25

Xiao H, Zhang C X, Zhang K W, Sun L Z and Zhong J X 2013
Tunable differential conductance of single wall C/BN
nanotube heterostructure Journal of Molecular Modeling 19
2965-9

Zhang J and Wang C Y 2017 Beat vibration of hybrid boron
nitride-carbon nanotubes—a new avenue to atomic-scale
mass sensing Computational Materials Science 127 270-6

Vedaei S S and Nadimi E 2019 Gas sensing properties of CNT-
BNNT-CNT nanostructures: a first principles study Applied
Surface Science 470 933-42

Chernozatonskii L A, Gal’pern E G, Stankevich I V and
Shimkus Y K 1999 Nanotube C-BN heterostructures:
electronic properties Carbon 37 117-21

Cheng Q, Liu Y S, Wang G C, Liu H, Jin M G and Li M 2019
Free vibration of a fluid-conveying nanotube constructed by
carbon nanotube and boron nitride nanotube Physica E:
Low-dimensional Systems and Nanostructures 109 183-90

Kiani K 2015 Free vibrations of elastically embedded stocky
single-walled carbon nanotubes acted upon by a
longitudinally varying magnetic field Meccanica 50
3041-67

Kiani K 2019 Elastic waves in uniformly infinite-periodic
jungles of single-walled carbon nanotubes under action of
longitudinal magnetic fields Journal of the Brazilian Society
of Mechanical Sciences and Engineering 41 418

Tadi Beni Y, Abadyan M and Koochi A 2011 Effect of the
Casimir attraction on the torsion/bending coupled instability
of electrostatic nano-actuators Physica Scripta 84 065801

Ghodrati B, Yaghootian A, Ghanbar Zadeh A and
Mohammad-Sedighi H 2018 Lamb wave extraction of
dispersion curves in micro/nano-plates using couple stress
theories Waves in Random and Complex Media 28 15-34

Sedighi H M 2014 Size-dependent dynamic pull-in instability
of vibrating electrically actuated microbeams based on the
strain gradient elasticity theory Acta Astronautica 95 111-23

Tadi Beni Y and Abadyan M 2013 Size-dependent pull-in
instability of torsional nano-actuator Physica Scripta 88
055801

Eltaher M A, Omar F A, Abdalla W S and Gad E H 2019
Bending and vibrational behaviors of piezoelectric nonlocal
nanobeam including surface elasticity Waves in Random and
Complex Media 29 264-80

Hamed M A, Sadoun M and Eltaher M A 2019 Effects of
porosity models on static behavior of size dependent
functionally graded beam Structural Engineering and
Mechanics 71 89-98

Eltaher M A, Abdraboh A M and Almitani K H 2018
Resonance frequencies of size dependent perforated
nonlocal nanobeam Microsystem Technologies 24 3925-37

Emam S A, Eltaher M A, Khater M E and Abdalla W S 2018
Postbuckling and free vibration of multilayer imperfect
nanobeams under a pre-stress load Applied Sciences 8 2238

Kiani K 2018 Application of nonlocal higher-order beam
theory to transverse wave analysis of magnetically affected
forests of single-walled carbon nanotubes International
Journal of Mechanical Sciences 138 1-16

Kiani K 2014 Free vibration of size-dependent magneto-
electro-elastic nanobeams based on the nonlocal theory
Physica E: Low-dimensional Systems and Nanostructures
63 52-61

Ansari R, Gholami R and Rouhi H 2015 Size-dependent
nonlinear forced vibration analysis of magneto-electro-
thermo-elastic Timoshenko nanobeams based upon the
nonlocal elasticity theory Composite Structures 126 216-26

Kiani K 2018 Nonlocal free dynamic analysis of periodic
arrays of single-walled carbon nanotubes in the presence of


https://orcid.org/0000-0002-3852-5473
https://orcid.org/0000-0002-3852-5473
https://orcid.org/0000-0002-3852-5473
https://orcid.org/0000-0002-3852-5473
https://orcid.org/0000-0001-7262-2130
https://orcid.org/0000-0001-7262-2130
https://orcid.org/0000-0001-7262-2130
https://orcid.org/0000-0001-7262-2130
https://doi.org/10.1016/0921-4526(96)00787-9
https://doi.org/10.1016/0921-4526(96)00787-9
https://doi.org/10.1016/0921-4526(96)00787-9
https://doi.org/10.1016/0921-4526(96)00787-9
https://doi.org/10.1016/0921-4526(96)00787-9
https://doi.org/10.1016/0921-4526(96)00787-9
https://doi.org/10.1126/science.266.5191.1683
https://doi.org/10.1126/science.266.5191.1683
https://doi.org/10.1126/science.266.5191.1683
https://doi.org/10.1126/science.266.5191.1683
https://doi.org/10.1080/1536383X.2017.1389905
https://doi.org/10.1080/1536383X.2017.1389905
https://doi.org/10.1080/1536383X.2017.1389905
https://doi.org/10.1007/s00894-013-1823-y
https://doi.org/10.1007/s00894-013-1823-y
https://doi.org/10.1007/s00894-013-1823-y
https://doi.org/10.1007/s00894-013-1823-y
https://doi.org/10.1016/j.commatsci.2016.11.014
https://doi.org/10.1016/j.commatsci.2016.11.014
https://doi.org/10.1016/j.commatsci.2016.11.014
https://doi.org/10.1016/j.apsusc.2018.11.220
https://doi.org/10.1016/j.apsusc.2018.11.220
https://doi.org/10.1016/j.apsusc.2018.11.220
https://doi.org/10.1016/S0008-6223(98)00194-8
https://doi.org/10.1016/S0008-6223(98)00194-8
https://doi.org/10.1016/S0008-6223(98)00194-8
https://doi.org/10.1016/j.physe.2018.08.026
https://doi.org/10.1016/j.physe.2018.08.026
https://doi.org/10.1016/j.physe.2018.08.026
https://doi.org/10.1007/s11012-015-0184-2
https://doi.org/10.1007/s11012-015-0184-2
https://doi.org/10.1007/s11012-015-0184-2
https://doi.org/10.1007/s11012-015-0184-2
https://doi.org/10.1007/s40430-019-1897-2
https://doi.org/10.1088/0031-8949/84/06/065801
https://doi.org/10.1080/17455030.2017.1308582
https://doi.org/10.1080/17455030.2017.1308582
https://doi.org/10.1080/17455030.2017.1308582
https://doi.org/10.1016/j.actaastro.2013.10.020
https://doi.org/10.1016/j.actaastro.2013.10.020
https://doi.org/10.1016/j.actaastro.2013.10.020
https://doi.org/10.1088/0031-8949/88/05/055801
https://doi.org/10.1088/0031-8949/88/05/055801
https://doi.org/10.1080/17455030.2018.1429693
https://doi.org/10.1080/17455030.2018.1429693
https://doi.org/10.1080/17455030.2018.1429693
https://doi.org/10.1007/s00542-018-3910-6
https://doi.org/10.1007/s00542-018-3910-6
https://doi.org/10.1007/s00542-018-3910-6
https://doi.org/10.3390/app8112238
https://doi.org/10.1016/j.ijmecsci.2018.01.033
https://doi.org/10.1016/j.ijmecsci.2018.01.033
https://doi.org/10.1016/j.ijmecsci.2018.01.033
https://doi.org/10.1016/j.physe.2014.05.002
https://doi.org/10.1016/j.physe.2014.05.002
https://doi.org/10.1016/j.physe.2014.05.002
https://doi.org/10.1016/j.compstruct.2015.02.068
https://doi.org/10.1016/j.compstruct.2015.02.068
https://doi.org/10.1016/j.compstruct.2015.02.068

Phys. Scr. 95 (2020) 065204

H M Sedighi et al

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

longitudinal thermal and magnetic fields Computers &
Mathematics with Applications 75 3849-72

Kiani K 2013 Vibration behavior of simply supported inclined
single-walled carbon nanotubes conveying viscous fluids
flow using nonlocal Rayleigh beam model Applied
Mathematical Modelling 37 1836-50

Ghorbanpour Arani A, Haghparast E,

Khoddami Maraghi K and Amir S 2015 Nonlocal vibration
and instability analysis of embedded DWCNT conveying
fluid under magnetic field with slip conditions consideration
Proceedings of the Institution of Mechanical Engineers,
Part C: Journal of Mechanical Engineering Science 229
349-63

Eringen A C 1972 Nonlocal polar elastic continua
International Journal of Engineering Science 10 1-16

Mohamed N, Eltaher M A, Mohamed S A and Seddek L F
2019 Energy equivalent model in analysis of postbuckling of
imperfect carbon nanotubes resting on nonlinear elastic
foundation Structural Engineering and Mechanics 70
737-50

Eltaher M A et al 2019 Modal participation of fixed—fixed
single-walled carbon nanotube with vacancies International
Journal of Advanced Structural Engineering 11 151-63

Eltaher M A, Almalki T A, Almitani K and Ahmed K I 2019
Participation factor and vibration of carbon nanotube with
vacancies Journal of Nano Research 57 158-74

Eltaher M A, Mohamed N, Mohamed S and Seddek L F 2019
Postbuckling of curved carbon nanotubes using energy
equivalent model Journal of Nano Research 57 136-57

Barretta R, Faghidian S A and Luciano R 2019 Longitudinal
vibrations of nano-rods by stress-driven integral elasticity
Mechanics of Advanced Materials and Structures 26
1307-15

Barretta R, Caporale A, Faghidian S A, Luciano R,

Marotti de Sciarra F and Medaglia C M 2019 A stress-driven
local-nonlocal mixture model for Timoshenko nano-beams
Composites Part B: Engineering 164 590-8

Barretta R, Faghidian S A and Marotti de Sciarra F 2019
Stress-driven nonlocal integral elasticity for axisymmetric
nano-plates International Journal of Engineering Science
136 38-52

Romano G and Barretta R 2017 Stress-driven versus strain-
driven nonlocal integral model for elastic nano-beams
Composites Part B: Engineering 114 184-8

Barretta R, Fabbrocino F, Luciano R, de Sciarra F M and
Ruta G 2019 Buckling loads of nano-beams in stress-driven
nonlocal elasticity Mechanics of Advanced Materials and
Structures ISSN: 1537-6494 (Print) 1537-6532 (https://doi.
org/10.1080/15376494.2018.1501523)

Barretta R, Faghidian S A, Luciano R, Medaglia C M and
Penna R 2018 Free vibrations of FG elastic Timoshenko
nano-beams by strain gradient and stress-driven nonlocal
models Composites Part B: Engineering 154 20-32

Barretta R, Luciano R, Marotti de Sciarra F and Ruta G 2018
Stress-driven nonlocal integral model for Timoshenko
elastic nano-beams European Journal of Mechanics-A/
Solids 72 275-86

Barretta R, Fazelzadeh S A, Feo L, Ghavanloo E and
Luciano R 2018 Nonlocal inflected nano-beams: a stress-
driven approach of bi-Helmholtz type Composite Structures
200 239-45

Barretta R, Faghidian S A, Luciano R, Medaglia C M and
Penna R 2018 Stress-driven two-phase integral elasticity for
torsion of nano-beams Composites Part B: Engineering 145
62-9

Barretta R, Cv?anadija M, Feo L, Luciano R,

Marotti de Sciarra F and Penna R 2018 Exact solutions of
inflected functionally graded nano-beams in integral
elasticity Composites Part B: Engineering 142 273-86

16

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

Barretta R, Canadija M, Luciano R and Marotti de Sciarra F
2018 Stress-driven modeling of nonlocal thermoelastic
behavior of nanobeams International Journal of
Engineering Science 126 53-67

Majumder M, Chopra N, Andrews R and Hinds B J 2005
Nanoscale hydrodynamics: enhanced flow in carbon
nanotubes Nature 44 438

Maraghi Z K, Arani A G, Kolahchi R, Amir S and
Bagheri M R 2013 Nonlocal vibration and instability of
embedded DWBNNT conveying viscose fluid Composites
Part B: Engineering 45 423-32

Askari H and Esmailzadeh E 2017 Forced vibration of fluid
conveying carbon nanotubes considering thermal effect and
nonlinear foundations Composites Part B: Engineering 113
31-43

Chang T P 2013 Stochastic FEM on nonlinear vibration of
fluid-loaded double-walled carbon nanotubes subjected to a
moving load based on nonlocal elasticity theory Composites
Part B: Engineering 54 391-9

Zhen Y X and Fang B 2015 Nonlinear vibration of fluid-
conveying single-walled carbon nanotubes under harmonic
excitation International Journal of Non-Linear Mechanics
76 48-55

Zhen Y X and Fang B 2010 Thermal-mechanical and nonlocal
elastic vibration of single-walled carbon nanotubes
conveying fluid Computational Materials Science 49
276-82

Zhang Z, Liu Y S and Lii B H 2014 Free vibration analysis of
fluid-conveying carbon nanotube via wave method Acta
Mechanica Solida Sinica 27 626-34

Nematollahi M S, Mohammadi H and Taghvaei S 2019
Fluttering and divergence instability of functionally graded
viscoelastic nanotubes conveying fluid based on nonlocal
strain gradient theory Chaos 29 033108

Kiani K 2014 Nanofluidic flow-induced longitudinal and
transverse vibrations of inclined stocky single-walled carbon
nanotubes Computer Methods in Applied Mechanics and
Engineering 276 691-723

Wang L, Hong Y, Dai H and Ni Q 2016 Natural frequency
and stability tuning of cantilevered CNTs conveying fluid
in magnetic field Acta Mechanica Solida Sinica 29
567-76

Wang B, Deng Z, Ouyang H and Xu X 2015 Free vibration of
wavy single-walled fluid-conveying carbon nanotubes in
multi-physics fields Applied Mathematical Modelling 39
6780-92

Hosseini M and Sadeghi-Goughari M 2016 Vibration and
instability analysis of nanotubes conveying fluid subjected to
a longitudinal magnetic field Applied Mathematical
Modelling 40 2560-76

Romano G and Barretta R 2017 Nonlocal elasticity in
nanobeams: the stress-driven integral model Int. J. Eng. Sci.
115 14-27

Barretta R et al 2018 Exact solutions of inflected functionally
graded nano-beams in integral elasticity Compos Part B 142
273-86

Barretta R et al 2018 Closed-form solutions in stress-driven
two-phase integral elasticity for bending of functionally
graded nano-beams Physica E 97 13-30

Narendar S, Gupta S S and Gopalakrishnan S 2012 Wave
propagation in single-walled carbon nanotube under
longitudinal magnetic field using nonlocal Euler—Bernoulli
beam theory Applied Mathematical Modelling 36
4529-38

Wang L and Ni Q 2009 A reappraisal of the computational
modelling of carbon nanotubes conveying viscous fluid
Mechanics Research Communications 36 8337

Sadeghi-Goughari M, Jeon S and Kwon H J 2017 Effects of
magnetic-fluid flow on structural instability of a carbon


https://doi.org/10.1016/j.camwa.2018.02.033
https://doi.org/10.1016/j.camwa.2018.02.033
https://doi.org/10.1016/j.camwa.2018.02.033
https://doi.org/10.1016/j.apm.2012.04.027
https://doi.org/10.1016/j.apm.2012.04.027
https://doi.org/10.1016/j.apm.2012.04.027
https://doi.org/10.1177/0954406214533102
https://doi.org/10.1177/0954406214533102
https://doi.org/10.1177/0954406214533102
https://doi.org/10.1177/0954406214533102
https://doi.org/10.1016/0020-7225(72)90070-5
https://doi.org/10.1016/0020-7225(72)90070-5
https://doi.org/10.1016/0020-7225(72)90070-5
https://doi.org/10.1007/s40091-019-0222-8
https://doi.org/10.1007/s40091-019-0222-8
https://doi.org/10.1007/s40091-019-0222-8
https://doi.org/10.4028/www.scientific.net/JNanoR.57.158
https://doi.org/10.4028/www.scientific.net/JNanoR.57.158
https://doi.org/10.4028/www.scientific.net/JNanoR.57.158
https://doi.org/10.4028/www.scientific.net/JNanoR.57.136
https://doi.org/10.4028/www.scientific.net/JNanoR.57.136
https://doi.org/10.4028/www.scientific.net/JNanoR.57.136
https://doi.org/10.1080/15376494.2018.1432806
https://doi.org/10.1080/15376494.2018.1432806
https://doi.org/10.1080/15376494.2018.1432806
https://doi.org/10.1080/15376494.2018.1432806
https://doi.org/10.1016/j.compositesb.2019.01.012
https://doi.org/10.1016/j.compositesb.2019.01.012
https://doi.org/10.1016/j.compositesb.2019.01.012
https://doi.org/10.1016/j.ijengsci.2019.01.003
https://doi.org/10.1016/j.ijengsci.2019.01.003
https://doi.org/10.1016/j.ijengsci.2019.01.003
https://doi.org/10.1016/j.compositesb.2017.01.008
https://doi.org/10.1016/j.compositesb.2017.01.008
https://doi.org/10.1016/j.compositesb.2017.01.008
https://doi.org/10.1080/15376494.2018.1501523
https://doi.org/10.1080/15376494.2018.1501523
https://doi.org/10.1016/j.compositesb.2018.07.036
https://doi.org/10.1016/j.compositesb.2018.07.036
https://doi.org/10.1016/j.compositesb.2018.07.036
https://doi.org/10.1016/j.euromechsol.2018.04.012
https://doi.org/10.1016/j.euromechsol.2018.04.012
https://doi.org/10.1016/j.euromechsol.2018.04.012
https://doi.org/10.1016/j.compstruct.2018.04.072
https://doi.org/10.1016/j.compstruct.2018.04.072
https://doi.org/10.1016/j.compstruct.2018.04.072
https://doi.org/10.1016/j.compositesb.2018.02.020
https://doi.org/10.1016/j.compositesb.2018.02.020
https://doi.org/10.1016/j.compositesb.2018.02.020
https://doi.org/10.1016/j.compositesb.2018.02.020
https://doi.org/10.1016/j.compositesb.2017.12.022
https://doi.org/10.1016/j.compositesb.2017.12.022
https://doi.org/10.1016/j.compositesb.2017.12.022
https://doi.org/10.1016/j.ijengsci.2018.02.012
https://doi.org/10.1016/j.ijengsci.2018.02.012
https://doi.org/10.1016/j.ijengsci.2018.02.012
https://doi.org/10.1038/438930b
https://doi.org/10.1016/j.compositesb.2012.04.066
https://doi.org/10.1016/j.compositesb.2012.04.066
https://doi.org/10.1016/j.compositesb.2012.04.066
https://doi.org/10.1016/j.compositesb.2016.12.046
https://doi.org/10.1016/j.compositesb.2016.12.046
https://doi.org/10.1016/j.compositesb.2016.12.046
https://doi.org/10.1016/j.compositesb.2016.12.046
https://doi.org/10.1016/j.compositesb.2013.06.012
https://doi.org/10.1016/j.compositesb.2013.06.012
https://doi.org/10.1016/j.compositesb.2013.06.012
https://doi.org/10.1016/j.ijnonlinmec.2015.05.005
https://doi.org/10.1016/j.ijnonlinmec.2015.05.005
https://doi.org/10.1016/j.ijnonlinmec.2015.05.005
https://doi.org/10.1016/j.commatsci.2010.05.007
https://doi.org/10.1016/j.commatsci.2010.05.007
https://doi.org/10.1016/j.commatsci.2010.05.007
https://doi.org/10.1016/j.commatsci.2010.05.007
https://doi.org/10.1016/S0894-9166(15)60007-6
https://doi.org/10.1016/S0894-9166(15)60007-6
https://doi.org/10.1016/S0894-9166(15)60007-6
https://doi.org/10.1063/1.5057738
https://doi.org/10.1016/j.cma.2014.03.008
https://doi.org/10.1016/j.cma.2014.03.008
https://doi.org/10.1016/j.cma.2014.03.008
https://doi.org/10.1016/S0894-9166(16)30328-7
https://doi.org/10.1016/S0894-9166(16)30328-7
https://doi.org/10.1016/S0894-9166(16)30328-7
https://doi.org/10.1016/S0894-9166(16)30328-7
https://doi.org/10.1016/j.apm.2015.02.033
https://doi.org/10.1016/j.apm.2015.02.033
https://doi.org/10.1016/j.apm.2015.02.033
https://doi.org/10.1016/j.apm.2015.02.033
https://doi.org/10.1016/j.apm.2015.09.106
https://doi.org/10.1016/j.apm.2015.09.106
https://doi.org/10.1016/j.apm.2015.09.106
https://doi.org/10.1016/j.ijengsci.2017.03.002
https://doi.org/10.1016/j.ijengsci.2017.03.002
https://doi.org/10.1016/j.ijengsci.2017.03.002
https://doi.org/10.1016/j.compositesb.2017.12.022
https://doi.org/10.1016/j.compositesb.2017.12.022
https://doi.org/10.1016/j.compositesb.2017.12.022
https://doi.org/10.1016/j.compositesb.2017.12.022
https://doi.org/10.1016/j.physe.2017.09.026
https://doi.org/10.1016/j.physe.2017.09.026
https://doi.org/10.1016/j.physe.2017.09.026
https://doi.org/10.1016/j.apm.2011.11.073
https://doi.org/10.1016/j.apm.2011.11.073
https://doi.org/10.1016/j.apm.2011.11.073
https://doi.org/10.1016/j.apm.2011.11.073
https://doi.org/10.1016/j.mechrescom.2009.05.003
https://doi.org/10.1016/j.mechrescom.2009.05.003
https://doi.org/10.1016/j.mechrescom.2009.05.003

Phys. Scr. 95 (2020) 065204

H M Sedighi et al

nanotube conveying nanoflow under a longitudinal magnetic
field Physics Letters A 381 2898-905

[59] Rashidi V, Mirdamadi H R and Shirani E 2012 A novel model
for vibrations of nanotubes conveying nanoflow
Computational Materials Science 51 347-52

[60] Wang L, Ni Q, Li M and Qia Q 2008 The thermal effect on
vibration and instability of carbon nanotubes conveying
fluid Physica E 40 3179-82

[61] Zare A, Eghtesad M and Daneshmand F 2017 Numerical
investigation and dynamic behavior of pipes conveying fluid
based on isogeometric analysis Ocean Engineering 140
388-400

17

[62] Lee H L and Chang W J 2008 Free transverse vibration of the
fluid-conveying single-walled carbon nanotube using nonlocal
elastic theory Journal of Applied Physics 103 024302

[63] Rafiei M, Mohebpour S R and Daneshmand F 2012 Small-
scale effect on the vibration of non-uniform carbon
nanotubes conveying fluid and embedded in viscoelastic
medium Physica E 44 1372-9

[64] Zhang Z, Liu X, Yu J, Hang Y, Li Y, Guo Y, Xu Y, Sun X,
Zhou J and Guo W 2016 Tunable electronic and magnetic
properties of two-dimensional materials and their one-
dimensional derivatives WIREs Computational Molecular
Science 6 324-50


https://doi.org/10.1016/j.physleta.2017.06.054
https://doi.org/10.1016/j.physleta.2017.06.054
https://doi.org/10.1016/j.physleta.2017.06.054
https://doi.org/10.1016/j.commatsci.2011.07.030
https://doi.org/10.1016/j.commatsci.2011.07.030
https://doi.org/10.1016/j.commatsci.2011.07.030
https://doi.org/10.1016/j.physe.2008.05.009
https://doi.org/10.1016/j.physe.2008.05.009
https://doi.org/10.1016/j.physe.2008.05.009
https://doi.org/10.1016/j.oceaneng.2017.05.006
https://doi.org/10.1016/j.oceaneng.2017.05.006
https://doi.org/10.1016/j.oceaneng.2017.05.006
https://doi.org/10.1016/j.oceaneng.2017.05.006
https://doi.org/10.1063/1.2822099
https://doi.org/10.1016/j.physe.2012.02.021
https://doi.org/10.1016/j.physe.2012.02.021
https://doi.org/10.1016/j.physe.2012.02.021
https://doi.org/10.1002/wcms.1251
https://doi.org/10.1002/wcms.1251
https://doi.org/10.1002/wcms.1251

	1. Introduction
	2. Mathematical formulation
	2.1. Stress-driven nonlocal model
	2.2. Lorentz force
	2.3. Fluid-structure interaction in the presence of magnetic fluid
	2.4. Applying stress-driven formulation in conjunction with the thermal effects
	2.5. Governing equations of motion

	3. Solution methodology
	4. Results and discussion
	4.1. Validation of the present analysis
	4.2. The effect of length ratio
	4.3. The effect of flow velocity
	4.4. The effect of magnetic field
	4.5. The effect of temperature gradient
	4.6. The effect of stress-driven nonlocal theory

	5. Conclusions
	Compliance with ethical standards
	Conflict of interest
	Funding
	References



