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Abstract
We consider the relations between nonstationary quantum oscillators and their stationary
counterpart in view of their applicability to study particles in electromagnetic traps. We develop
a consistent model of quantum oscillators with time-dependent frequencies that are subjected to
the action of a time-dependent driving force, and have a time-dependent zero point energy. Our
approach uses the method of point transformations to construct the physical solutions of the
parametric oscillator as mere deformations of the well known solutions of the stationary
oscillator. In this form, the determination of the quantum integrals of motion is automatically
achieved as a natural consequence of the transformation, without necessity of any ansätz. It
yields the mechanism to construct an orthonormal basis for the nonstationary oscillators, so
arbitrary superpositions of orthogonal states are available to obtain the corresponding coherent
states. We also show that the dynamical algebra of the parametric oscillator is immediately
obtained as a deformation of the algebra generated by the conventional boson ladder operators. A
number of explicit examples is provided to show the applicability of our approach.

Keywords: harmonic oscillator, parametric oscillator, coherent states, dynamical algebras, point
transformations, quantum invariants
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1. Introduction

The dynamics of many physical systems is described by using
quantum time-dependent harmonic oscillators [1–19], where
the construction of minimum wave packets is relevant
[20–30] (see also the recent reviews [31, 32]). Such a diver-
sity of applications is due to the quadratic profile of the
oscillator [7, 33–40], which is also useful in the trapping of
quantum particles with electromagnetic fields [2, 3, 6, 9,
10, 27, 28, 41–48]. In most of the cases reported in the lit-
erature the oscillator has a frequency of oscillation that
depends on time. Usually, it is also acted by a driving force
which also depends on time. Thereby, the oscillator is sub-
jected to external forces that either take energy from it or
supply energy to it. Such a nonconservative system has no
solutions with the property of being orthogonal if they are

evaluated at different times. Nevertheless, diverse techniques
have been developed to find solutions with physical meaning
[7, 22–25, 34–40, 42]. The progenitor of most of the solvable
models reported in the literature is the approach of Lewis and
Riesenfeld [49, 50], where an invariant operator is introduced,
as an ansätz, to get a basis of eigenvectors that serve to
construct the physical solutions. Important results on the
matter were obtained by Dodonov and Man’ko [1, 40], and by
Glauber [42]. Further developments have been reported in,
e.g. [7, 13, 15, 22–25, 34–37, 51–53].

In the present work we develop an approach to study
nonstationary oscillators by means of the so called point
transformations [54, 55]. These have been used in the clas-
sical context to deform the trajectories of a given linear sec-
ond order differential equation into trajectories of the free
particle [56], although the latter procedure is commonly
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called Arnold transformation. An extension to quantum sys-
tems was introduced in [57] which, in turn, has been used to
study the Caldirola–Kanai oscillator [58, 59] (see also the
book [60]). The point transformations are also useful to
interrelate the harmonic oscillator with a series of oscillator-
like systems for which the mass is a function of the position
[61, 62], as well as to study the ordering ambiguity of the
momentum operator for position-dependent mass systems in
the quantum case [63]. The major advantage of the point
transformation method is that conserved quantities (first
integrals) as well as the structure of the inner product are
preserved [55]. Another property of these transformations is
that they can be constructed to be invertible. Then, one may
depart from a system for which the dynamical law of motion
is already solved to arrive at a new exactly solvable dyna-
mical law that can be tailored on demand to describe the
behavior of another system, and vice versa.

We are interested in solving the Schrödinger equation
associated to the Hamiltonian

= + W + + H t
p

m

m
t x F t x V t

2 2
, 1

2
2 2

0ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )

where x̂ and p̂ are the canonical operators of position and
momentum =  x p, i[ ˆ ˆ] , F(t) stands for a time-dependent
driving force, V t0 ( ) is the time-dependent zero point energy,
and  is the identity operator. The function Ω(t) is real-valued
and positive. That is, the Hamiltonian (1) describes a non-
stationary oscillator, the frequency of which Ω(t) depends on
time. In general, the system under interest is nonconservative,
so the orthogonality of the related solutions is not granted
a priori. As H tˆ ( ) is not an integral of motion, an additional
problem is to determine the invariants (first integrals) that
may serve as observables to define uniquely the system.

The main result reported in this work is to show that the
properly chosen point transformations permit to solve the
above problems by overpassing the difficulties that arise in
the conventional approaches. In particular, we show that the
integrals of motion are automatically obtained as a con-
sequence of the transformation, without necessity of any
ansätz. Another interesting result is that the point transfor-
mations permit to verify the orthogonality of the basis states,
so that the construction of arbitrary linear superpositions is
achieved easily. The latter lays the groundwork to construct
the corresponding coherent states since the dynamical alge-
bras are also immediately obtained as a deformation of the
well known boson algebra.

The paper is organized as follows. In section 2 we pose
the problem to solve by providing the explicit forms of the
Schrödinger equation for the stationary oscillator and the
nonstationary one. In section 2.1 we solve the differential
equation of the parametric oscillator by point transforming the
differential equation of the stationary one. In section 2.2 we
verify that the orthogonality of the initial solutions as well as
the matrix representation of observables are inherited to the
new system by the point transformations. The determination
of the invariants (quantum integrals of motion) for the new
system is discussed in section 2.3, and the derivation of the
related dynamical algebras is developed in section 2.4. We

discuss the superposition of the solutions of the nonstationary
oscillators in section 2.5. The construction of the coherent
states of the parametric oscillator is developed in section 3,
where we show that these states share almost all the properties
of the Glauber states [64], except in the fact that they mini-
mize the Schrödinger–Robertson inequality rather than the
Heisenberg uncertainty. Section 4 provides some particular
cases as concrete examples of the applicability of our
approach. Some results reported already by other authors are
recovered on the way. Final concluding remarks are given in
section 5. Detailed information about the point transforma-
tions we use throughout the manuscript is provided in
appendix A. A discussion about the possibility of making the
zero point energy V t0 ( ) equal to zero without loosing gen-
erality is delivered in appendix B. Relevant information about
the Ermakov equation, which is a keystone in our approach,
can be found in appendix C. Finally, the correspondence
between our approach and the well known quantum invariant
method [1, 7, 13, 34–37, 40, 51–53] is discussed in
appendix D.

2. One-dimensional parametric oscillator

The one-dimensional stationary quantum oscillator with mass
m and constant frequency of oscillation w is described by the
Hermitian Hamiltonian

= + >H
P

m

m
w X w

2 2
, 0, 2osc

2
2 2ˆ ˆ ˆ ( )

where X̂ and P̂ stand for the canonical position and
momentum operators, = X P, i[ ˆ ˆ] . The Schrödinger
equation for the oscillator wave function t tY = á Y ñX X,( ) ∣ ( )
in the position representation is well known

t
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with τ the time-parameter. The solutions are easily achievable
by separation of variables tY = Ft- X X, e Ei( ) ( ), where
F = á FñX X( ) ∣ fulfills the eigenvalue equation

-
F

+ F = F


m X
mw X E

2

d

d

1

2
. 4

2 2

2
2 2 ( )

The fundamental set of normalized solutions is therefore
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where Hn(z) are the Hermite Polynomials [65]. In the space
= F ñ =

¥ span n n 0{∣ } , a vector Fñ∣ is regular if it satisfies the
normalization condition Fñ = áF Fñ < ¥2∣∣∣ ∣∣ ∣ , with inner
product defined as follows

òáF F ñ = F F
-¥

¥
X X Xd . 62 1 2 1*∣ ( ) ( ) ( )( ) ( ) ( ) ( )

Clearly, the basis set is orthonormal dáF F ñ =n m n m,∣ .
On the other hand, the wave functions y y= á ñx t x t,( ) ∣ ( )

of the one-dimensional nonstationary quantum oscillator
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described by the Hamiltonian (1) satisfy the Schrödinger
equation

y y
y

y y y
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In this case the oscillator has a frequency of oscillation Ω that
depends on time. The driving force F and zero point of energy
V0 also depend on time. That is, the oscillator under study is
subjected to external forces that either take energy from it or
supply energy to it. This system is nonconservative, with no
orthogonal basis of solutions ψn(x,t) at arbitrary times t and t′,
y y dá ¢ ñ ¹t tn m n m,( )∣ ( ) for ¹ ¢t t . Nevertheless, as it has been
indicated in the introduction, diverse techniques have been
developed to find solutions with physical meaning for such
kind of systems [7, 22–25, 34–40, 42, 49, 50].

In the sequel we show that the Schrödinger equations (3)
and (7) are interrelated in such a form that the solutions of the
stationary problem (3) can be used to get the solutions of the-
nonstationary one (7), and vice versa. The key is provided by
a deformation of the coordinate variable, the time parameter,
and the wave functions of the ‘initial’ system, which gives
rise to the corresponding variables and parameters of the
‘new’ (or ‘deformed’) system. Such a deformation is properly
defined by point transformations [54, 55]. We shall consider
the stationary oscillator as the initial system, so the parametric
oscillator can be interpreted as a deformation of the sta-
tionary one.

2.1. Point transformations

We look for relationships between the elements of the set
t YX, ,{ } and those of the set yx t, ,{ }. Formally,

t t t= = Y = YX X x t x t X x t x t, , , , , , , .
8

( ) ( ) ( ( ) ( ))
( )

Notice that the dependence of Ψ on x and t is implicit, so it is
convenient to rewrite it as an explicit function of the elements
in yx t, ,{ }. We may write

yY = G x t x t, ; , . 9( ( )) ( )

The explicit dependence of G on ψ is essential since it pro-
vides a mechanism to map any solution of(3) into the set of
solutions of(7), and vice versa. To be precise, the latter
equations are respectively of the form

t y y yY Y Y = =tS X S x t, ; , , 0, , ; , , 0,
10

X X t x xin , def ,( ) ( )
( )

with nonlinearities present in neither Sin nor Sdef. Hereafter,
for simplicity, we use no-number subindices to denote partial
derivatives = ¶

¶
fu

f

u
.

Departing from Sin, the proper point transformation (see
appendix A for details) produces

y
t
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As equation (11) must be of the form Sdef indicated in (10),
we impose the conditions

t
= =

X
B x t1, , 0. 13t

x
2

( ) ( )

To satisfy the first condition let us introduce a real-valued
function σ(t)>0 such that t s= - tt

2 ( ). Then, by simple
integration (and some rearrangements), one gets
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where the real-valued function γ(t) stems from the integration
with respect to x. Clearly Xxx=0 for any functions σ>0
and γ. Then, the condition B(x, t)=0 leads to

s
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t

d

d
 , and η=η(t) a complex-valued function that

arises by integration. The introduction of (15) into (12) gives
the energy potential

s
s s s

g
s

s
s

h
s

g
s

= - + + +

´ + + - +


V x t
m w

x m
W

w

x
m

m

W
w

,
2

2
i 2 . 16

2

4
2 2

4

2

2
2

2

4

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ̈

( )



 

Comparing this result with equation (7) we obtain a system of
three equations for σ, γ, and η. Without loss of generality we
may take V0(t)=0 (see appendix B) to get

s s
s

g g

h x s
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where the real-valued function x t( ) is given by
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Remark that ξ is just a displaced version of η in the complex
plane that permits to rewrite the function A x t,( ) in (15) as
follows

s
s
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In turn, the time-dependent function σ satisfies the Ermakov
equation [66], which is a quite natural result in the studies of
the parametric oscillator [22–25]. Therefore, for a set of
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nonnegative parameters {a, b, c}, we have

s = + +t aq t bq t q t cq t , 201
2

1 2 2
2 1 2( ) [ ( ) ( ) ( ) ( )] ( )

where q1 and q2 are two linearly independent real solutions of
the linear homogeneous equation obtained from (17) by
making w=0, see AppendixC for details. That is, the
Wronskian W (q1, q2)=W0 is a constant. The condition

- = -b ac4 4 w

W
2

2

0
2 ensures σ>0 at any time [67, 68].

Notice that w 0 produces =b ac2 , so that s =free

+a q c q1 2. That is, our method applies even if the initial
Hamiltonian Hosc

ˆ in (2) is reduced to the purely kinematic
Hamiltonian of the free particle. The deformation of the
system is thus provided by the point transformation ruled by
the function σfree, although the latter is not necessarily con-
nected with the parametric oscillator. In the present work we
omit the analysis of such a case, results on the matter will be
reported elsewhere.

On the other hand, the equation for γ(t) in (17) describes
a classical oscillator of frequency Ω(t) that is subjected to the
driving force F(t), see e.g. [69]. This function can be
expressed as the sum of the homogeneous solution
g g g= +q t q th 1 1 2 2( ) ( ), and an arbitrary particular solution
γp(t). The real constants g1,2 as well as the function γp(t) are
defined whenever the driving force F(t) has been provided.
Therefore, the function τ introduced in (14) can be rewritten
in terms of q1 and q2:
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To conclude this section we emphasize that, as a result
of the point transformation, the function (9) acquires the
factorized form y yY = =G x t x t A x t x t, ; , , ,( ( )) ( ) ( ), see
appendix A. Therefore, we can write the solutions ψ(x,t) of
the parametric oscillator in terms of the solutions tY X,( ) of
the stationary one, and vice versa. As we have already solved
the stationary case, it is easy to get the solutions we are
looking for:

y
s
s s

x
t

s
= - -

Y


x t
m

x
W

x
X x t t

, exp i
2

, ,
.

22

2⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( ( ) ( ))

( )



2.2. Orthogonality and basic solutions

As indicated above, the explicit form of the solutions ψn(x, t)
is easily achieved from (22) by using tY =X,n( )

Ft-  Xe E
n

i n ( ) and the functions F Xn( ) defined in (5). How-
ever, the orthogonality of the new set ψn(x,t) is not evident.
We are interested in the orthogonality of these functions
since, although it is not a necessary condition to get physi-
cally admissible solutions, it is sufficient to get superpositions
of states in easy form. To elucidate such a property let
us consider a pair of arbitrary solutions of the stationary
oscillator, tY X,1 ( )( ) and tY X,2 ( )( ) . Using (22), the

straightforward calculation gives
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That is, the point transformation preserves the structure of
the inner product. Hence, the orthogonal set of solutions
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The above expression is in agreement with the results
reported by Glauber [42]. From (23) we immediately realize
that the orthonormality

ò
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holds when the functions ψ are evaluated at the same time. In
general, if ¹ ¢t t , the orthonormality is not granted. We write

ò y y d¢ ¹ ¹ ¢
-¥

¥
x x t x t t td , , , . 27n m n m,*( ) ( ) ( )

Having in mind that the products (26) are evaluated at a given
time t, we may write y= ñ =

¥ t tSpan n n 0( ) {∣ ( ) } . That is, the
space of states we are dealing with is dynamical (see, e.g. [70]
for a discussion on the matter). The detailed analysis of the
properties of such a space is out of the scope of the present
work, so it will be provided elsewhere.

2.3. Quantum integrals of motion

The nonconservative system described by the Hamiltonian
H tˆ ( ) defined in (1), equivalently by the Schrödinger
equation (7), is quite different from the stationary oscillator
associated to the well known Hamiltonian Hosc

ˆ of
equation (2). Although we have shown the orthonormality of
the solutions ψn(x, t), it is necessary to emphasize that they
are not eigenfunctions of the Hamiltonian H tˆ ( ). Indeed, the
time-dependence of H tˆ ( ) prohibits the factorization of ψ(x, t)
as the product of a purely time-dependent function T t( ) with a
position-dependent function c x( ), where c x( ) fulfills a given
eigenvalue equation. Nevertheless, the functions ψn(x, t) are
admissible from the physical point of view. Since H tˆ ( ) is not
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a constant of motion of the system ¹H t 0
t

d

d
ˆ ( ) , we wonder

about the observable(s) required to define the system. Such
observable(s) must include the set ψn(x, t) as its (their)
eigenfunctions. Moreover, what about the related spectrum?
The latter points must be clarified in order to provide the
functions (24), and any linear combination of them, with a
physical meaning.

Remarkably, such information is obtained from the point
transformation itself, because any conserved quantity is pre-
served [55]. Indeed, from (5) we see that the energy eigen-
values = +E w n 1 2n ( ) of the stationary oscillator must be
preserved since they are constant quantities. To be specific,
using the relationships(A-9) of appendix A, the stationary
eigenvalue equation (4) gives rise to the new eigenvalue
equation
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where the eigenvalues = +E w n 1 2n ( ) have been inher-
ited from the stationary oscillator. It is immediate to identify
the operator
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where  t( ) is the identity operator in t( ), see section 2.5. The
operator I tˆ ( ) is such that the eigenvalue equation
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ˆ ( )∣ ( ) ( )∣ ( ) ( )

coincides with (28) in position-representation j =x t,n ( )
já ñx tn∣ ( ) . Besides, the straightforward calculation shows that

I tˆ ( ) satisfies the invariant condition

= +
¶
¶

=
t

I t H t I t
t
I t

d

d

i
, 0. 31ˆ ( ) [ ˆ ( ) ˆ ( )] ˆ ( ) ( )

That is, I tˆ ( ) is an integral of motion of the parametric
oscillator.

We would like to stress that the invariant operator I tˆ ( )
arises in natural form from the point transformation we are
presenting in this work, without necessity of any ansätz. In
particular, for g g= = =F t 01 2 ( ) , the operator (29) coin-
cides with the invariant of Lewis and Riesenfeld [50].
Additional invariant operators can be found in similar form,
see details in appendix D.

2.4. Dynamical algebra and quadratures

In addition to the previous results, it is possible to obtain a set
of ladder operators for the parametric oscillator (compare with
[22–25]). We first recall that the action of the boson ladder

operators

=
¶
¶

+

=-
¶
¶

+ =










a
mw X

mw
X

a
mw X

mw
X a a

2 2
,

2 2
, , , 32

ˆ

ˆ [ ˆ ˆ ] ( )† †

on the eigenstates of Hosc
ˆ is well known

F = F F = + F- +a X n X a X n X, 1 .
33

n n n n1 1ˆ ( ) ( ) ˆ ( ) ( )
( )

†

The above results are quite natural considering the rela-
tionships

= +

=- =



 

H w a a

H a wa H a wa

,

, , , . 34

osc
1

2

osc osc

( )ˆ ˆ ˆ

[ ˆ ˆ] ˆ [ ˆ ˆ ] ˆ ( )

†

† †

Using equations (A-9) of appendix A, the boson opera-
tors (32) are deformed as follows

s s
s

g
s

s s
s

g
s

=
¶
¶

+ - +

´ + +

=-
¶
¶

+ +

´ + - +













a t
mw x

m

w

w

x
m

w
W w

a t
mw x

m

w

w

x
m

w
W w

2 2
i

2
i ,

2 2
i

2
i , 35

2

2

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ˆ ( )

ˆ ( )

( )

†





while the equations (33) acquire the form

j j

j j

=

= +
-

+

a t x t n x t

a t x t n x t

, , ,

, 1 , . 36
n n

n n

2 1

2 1

ˆ ( ) ( ) ( )
ˆ ( ) ( ) ( ) ( )†

Remarkably, the time-dependent ladder operators (35) satisfy
the Heisenberg algebra

= a t a t t, , 372 2[ ˆ ( ) ˆ ( )] ( ) ( )†

and factorize the invariant operator of the parametric oscil-
lator

= + I t w a t a t t . 382 2
1

2( )ˆ( ) ˆ ( ) ˆ ( ) ( ( )†

The latter leads to the commutation rules

= - = I t a t wa t I t a t wa t, , , , 392 2 2 2[ ˆ ( ) ˆ ( )] ˆ ( ) [ ˆ ( ) ˆ ( )] ˆ ( ) ( )† †

which verify that a t2ˆ ( ) and a t2ˆ ( )† are indeed ladder operators
for the eigenfunctions of the invariant operator. On the other
hand, the canonical operators of position and momentum
become time-dependent

s g

g

= + -

= X + X -*









x
mw

a t a t t

p
m w

a t a t m t

2
,

2
,

40
2 2

2 2

^ ^ ^

^ ^ ^

[ ( ) ( ) ( )]

[ ( ) ( ) ( )]
( )

†

† 

where X = - +
s

st
w

i( )  . It may be proved that =x p,[ ˆ ˆ]
  ti ( ), as expected.
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Using I tˆ ( ), from (24) and (30), we find

y jñ = ñt- t t ae . 41n
I t t

n
i∣ ( ) ∣ ( ) ( )ˆ( ) ( )

Equivalently,

y j= t- +x t x t b, e , . 41n
w n t

n
i 1 2( ) ( ) ( )( ) ( )

It is important to emphasize that the operator t- e I t ti ˆ ( ) ( )

in(41a) is not the time evolution operator of the parametric
oscillator, no matter it adds the appropriate time-dependent
complex phase to the eigenfunctions of I tˆ ( ). The latter is in
agreement with the properties of the invariant operator
introduced by Lewis and Riesenfeld [49, 50].

In figure 1 we show the correspondence between the
solutions Ψ of the Schrödinger equation for the stationary
oscillator and the solutions ψ of the parametric oscillator, they
are connected via the point transformation (upper row). In
turn, the eigenfunctions Fn of the oscillator Hamiltonian Hosc

ˆ
are associated to the eigenfunctions jn of the invariant I tˆ ( ),
the latter constructed as the point transformation of Hosc

ˆ
(lower row). The functions Ψ are obtained from Φ via the
unitary evolution - e H ti oscˆ (left column) while the functions
ψ are obtained from j through the action of the operator

t- e I t ti ˆ ( ) ( ) (right column). The diagram described above is
commutative.

2.5. Linear superpositions and representation space

Consider the normalized superposition of eigenvectors of the
invariant operator I tˆ ( ):

å åc jñ = ñ = Î
=

¥

=

¥

t c t c c; , with 1, .

42

I
n

n n
n

n n
0 0

2∣ ∣ ( ) ∣ ∣

( )

We say that any regular solution of the Schrödinger
equation (7), in free-representation form, can be written as

å

c c

j y

ñ = ñ

= ñ = å ñ

t

t

-

=

¥
- +

=
¥

t t

c t c t

; e ;

e ,

43

I t t
I

n
n

w n t
n n n n

i

0

i 1 2
0

∣ ∣

∣ ( ) ∣ ( )
( )

ˆ( ) ( )

( ) ( )

where we have used (41a). Additionally, we can construct
linear operators ¢ t t,ˆ ( ) that map elements of ¢ t( ) into ele-
ments of t( ). Using the Hubbard representation [71] we may

write

å y y

y y

¢ ñá ¢

= á ¢ ¢ ñ

=

¥

 

 

t t t t

t t t t

, ,

, , 44

n m
n m n m

n m n m

, 0
,

,

ˆ ( ) ≔ ∣ ( ) ( )∣

( )∣ ˆ ( )∣ ( ) ( )

where the coefficient n m, does not depend on time. In part-
icular, for equal times  t t t,ˆ ( ) ≔ ˆ ( ), we can construct a
representation of the identity operator in  t( ) as

å y y=
=

¥

 t t t: . 45
n

n n
0

( ) ∣ ( )⟩⟨ ( )∣ ( )

The time-evolution operator U(t, t′) is obtained from(44) by
fixing d=n m n m, , for any n, m. From the orthogonality of the
eigenfunctions at a fixed time(26) it follows that the action of
U(t, t′) on any superposition(43) defined in t′ produces

å

å

c y

y c

¢ ¢ñ = ¢ ¢ ñ

= ñ = ñ

=

¥

=

¥

U t t t c U t t t

c t t

, ; ,

; . 46

n
n n

n
n n

0

0

( )∣ ( )∣ ( )

∣ ( ) ∣ ( )

In turn, the time-propagator

å y y¢ ¢ = ¢ ¢
=

¥

 x t x t x t x t, ; , , , 47
n

n n
0

*( ) ( ) ( ) ( )

is such that

òy c y= á ñ = ¢ ¢ ¢ ¢ ¢c c
-¥

¥
x t x t x x t x t x t, ; d , ; , , .

48

( ) ∣ ( ) ( )

( )

The function ¢ ¢ x t x t, ; ,( ) can be explicitly computed by
using the solutions(25) and the summation identities of the
Hermite polynomials [65]. However, such a derivation is not
necessary in the present work. A discussion on the matter has
been recently carried out for a similar problem in [72].

3. Coherent states

The simplest form to define the coherent states is to say that
they ‘are superpositions of basis elements to which some
specific properties are requested on demand’[32]. In this sense
the discussion of section 2.5 is relevant since the capability of
summing up an orthonormal set of the parametric oscillator
states facilitates the construction of the corresponding

Figure 1. Connection between the stationary and parametric oscillators through the point transformation (P.T. for short). The orientation of
the blue (horizontal) arrows may be inverted with the construction of the inverse point transformation. Thus, the diagram is commutative.

6

Phys. Scr. 95 (2020) 064004 K Zelaya and O Rosas-Ortiz



(generalized) coherent states. Additionally, as the set
a t a t t, ,2 2{ ( ) ( ) ( )}† generates the Heisenberg Lie algebra (37),

one may use the conventional disentangling formulae to construct
the appropriate displacement operator aD t;ˆ ( ). The relevant
point here is that the set a t a t t, ,2 2{ ( ) ( ) ( )}† , together with the
invariant I tˆ ( ), close the oscillator algebra (39). Thus, the
coherent states so constructed are linear superpositions of the
eigenstates of I tˆ ( ) which, in turn, is factorized by the time-
dependent ladder operators (38). The resemblance of the math-
ematical background of the parametric oscillator to that of the
stationary oscillator is, in this form, extended to the related
coherent states.

Using the conventional disentangling formulae, see e.g.
[32, 73], along with a t2 ( ) and a t2 ( )† , one obtains the operator

a

a

=

= Î

a a

a a

-

- -a


D t; e

e e e , , 49

a t a t

a t a t

2 2

2

2 2 2

*

*

ˆ ( )

( )

ˆ ( ) ˆ ( )

ˆ ( ) ˆ ( )

†

∣ ∣ †

which produces displacements on the time-dependent ladder
operators

a a a

a a a

= +

= + *





D t a t D t a t t

D t a t D t a t t

; ; ,

; ; .
502 2

2 2

^ ^ ^ ^
^ ^ ^ ^

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )
†

† † †

In the Perelomov picture [74] the coherent states a ñt; I∣ are
constructed by the action of aD t;ˆ ( ) on the fiducial state
j ñt0∣ ( ) . From(50) and (43) we find

åa
a

jñ = ñt
t

- -

=

¥ -a
t

n
t; e e

e
, 51w t

n

n nw t

n
i 2

0

i2

2∣
!

∣ ( ) ( )( )
( )∣ ∣

which is equivalent to the one obtained in the Barut–Gir-
ardello picture [75], where the following equation holds

a a añ = ñt-a t t t; e ; . 52w t
2

iˆ ( )∣ ∣ ( )( )

Although the explicit dependence on time of a ñt;∣ , it is found
that the related probability distribution is time-independent

a j a
a

= á ñ = a- t t
n

; e . 53n n

n
2

2
2( ) ∣ ( )∣ ∣ ∣ ∣

!
( )∣ ∣

Clearly, n is a Poisson distribution, as expected [30] (com-
pare with [29]). In turn, the expectation values of the quad-
ratures are as follows

s a

g
a

q q

q g
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- = +
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t

a a
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x
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q c q a
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2
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2
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2
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⎛
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⎞
⎠⎟

ˆ

∣ ∣
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( )

s
a

s
a g

á ñ = á ñ =

´ + -t t- -

p m
t

x m w

w
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d

d
2

Re e
1

Im e , 54

t t

w t w ti i⎜ ⎟⎛
⎝

⎞
⎠

ˆ ˆ

( )( ) ( ) 

with a a= qaei∣ ∣ . If F(t)=γ(t)=0 then á ñx tˆ becomes a linear
combination of q1,2 that matches with the classical result. As
usual, a∣ ∣ and qa play the role of the classical initial conditions
of the system. For ¹F t 0( ) , the expected value á ñx tˆ is dis-
placed by a quantity γ, so it is associated with a classical

oscillator subjected to the action of a driving force(17). In
both cases the expected value of the momentum(54b) is in
agreement with the Ehrenfest theorem [76], which is a
property of the quadratic Hamiltonians.

On the other hand, the Heisenberg uncertainty is given by

s s
D D = +

 
x p

w4 4
, 55t t

2 2
2 2 2 2

2
( ˆ) ( ) ( )

with

s
s

s
D = D = +

 
x

mw
p

mw

w2
,

2

1
. 56t t

2 2 2
2

2 2

⎛
⎝⎜

⎞
⎠⎟( ˆ) ( ˆ ) ( )

The product (55) is minimized for s = 0 , which means that
Dx̂ and Dp̂ are inversely proportional, up to the constant
 2, just as this occurs in the stationary case. In the trivial
situation where s s¹ t( ), from (17) we realize that the unique
solution is obtained for the constant frequency sW = ¹w2 4

W t( ), which reproduces the conventional results of the sta-
tionary oscillator. For arbitrary time-dependent σ-functions
the uncertainty D D x p 2ˆ ˆ is minimized at the times tk
such that s =t 0k( ) , see section 4 for details.

Paying attention to the product (55) it is clear that the
variances minimize the Schrödinger–Robertson inequality at
any time, it is given by [77–79]:

s

s

D D +

= á + ñ - á ñá ñ

x p

xp px x p

4
,

1

2
, 57

t t x p

x p

2 2
2

,
2

,

( ˆ) ( ˆ )

ˆ ˆ ˆ ˆ ˆ ˆ ( )

ˆ ˆ

ˆ ˆ

where sx p,ˆ ˆ stands for the covariance function. In our case

s
ss

=


w2
. 58x p, ( )ˆ ˆ


As we can see, the coherent states of the parametric oscillator
satisfy almost all the properties of the Glauber coherent states.
The unique exception is that they minimize the Schrödinger–
Robertson inequality rather than the Heisenberg uncertainty.

For completeness, the coordinate representation of the
coherent states is given by the wavepacket

ò

y a
p

g t

s
s

=
D

´ -

´ -
D

+ -

+ +

¢ ¢ ¢






 
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4
i
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2
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t
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2
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^ ^

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢
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⎠⎟
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⎦⎥

( )
( )

( )
( )

( ) ( ) ( )

( )
( ⟨ ⟩ )

⟨ ⟩ ⟨ ⟩ ⟨ ⟩



which is characterized by a Gaussian function with time-
dependent width, the maximum of which follows the trajec-
tory of a classical particle under the influence of the para-
metric oscillator potential.
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4. Examples and discussion of results

To show the applicability of our approach we consider the
results for some specific forms of the time-dependent fre-
quency W t2( ). We take F(t)=0 for simplicity. With these
considerations, it follows that the mapping of the position
variable acquires the form

g g
s

g g=
+ +

Î X x t
x q t q t

t
, , , . 601 1 2 2

1 2( )
( ) ( )

( )
( )

4.1. Ω2ðt Þ ¼ 0

Despite its simplicity, the null frequency Ω=0 provides a
connection between the solutions of the harmonic oscillator
and the free-particle systems, see e.g. [80, 81]. It is straight-
forward to obtain the function

s g g g= + + - = +t a ct ac w t t t2 , ,
61

2 2 1 2
1 2( ) ( ) ( )

( )

where >a c, 0 and >ac w2. Then, the relation between the
time parameters is given by

t = - +t
w w

ac w ct
1

arctan
1

, 622⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

while the spatial coordinates are related through equation (60).
Now, from (22) with a=c=w=1, we arrive at the general
result

y = + Y
+

-+x t t
x

t
t, e 1

1
, arctan , 63i 2 1 4

2

m tx
t

2

1 2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )( ) ( ) ( )

which has been already reported in [80, p 83]. The above pro-
cedure permits the construction of coherent states for the free-
particle system by means of a simple mapping of
the Glauber states to the appropriate basis (similar results can be
found in [82]). In such case, the function σ is proportional to the
width of the wave-packet which, from(61), is an increasing
function in time. In other words, the coherent states of a free-
particle are less localized as the time goes pass.

4.2. Ω2ðt Þ ¼ Ω2
0 > 0

In this case the Hamiltonian (1) is of the form

= +
W

ºW =WH t
p

m

m
x H

2 2
. 64t

2
0
2

2
osc0

ˆ ( )∣ ˆ ˆ ˆ ( )( )

That is, the Hamiltonian (64) represents a stationary oscillator
of frequency Ω0. With the pair of linearly independent
functions, = Wq t tcos1 0( ) ( ) and = Wq t tsin2 0( ) ( ), the func-
tions σ and γ take the form

s

g g g

= W + W

+ -
W

W

= W + W

t a t c t

ac
w

t

t t t

cos sin

sin 2 ,

cos sin . 65

2 2
0

2
0

2

0
2 0

1 0 2 0

( ) ( ) ( )

( )

( ) ( )

From(29) and(65) we realize that I tˆ ( ) still is a time-
dependent operator, which is also an invariant of the system.
Consequently, the functions jn (x, t) are not eigenfunctions of
the Hamiltonian (64), although they are solutions of the
corresponding Schrödinger equation. In the special case
a=c=w/Ω we obtain σ(t)=w/Ω. Additionally, for
g ¹ 01,2 we recover the displaced number states discussed in
[83, 84], which include the conventional coherent states for
n=0. The construction of squeezed-coherent states is also
feasible from the previous results, for details see [85]. For
γ1,2=0, the eigenfunctions jn are simply reduced to the
solutions of the stationary oscillator of frequency Ω0.

4.3. Ω2ðt Þ ¼ Ω1+Ω2 tanhðkt Þ

For W > W1 2 the frequency Ω(t) changes smoothly from
W - W1 2 to W + W1 2. In the limit  ¥k , the function Ω(t)
converges to the Heaviside step distributionQ t( ) [65]. In general,
we have the linearly independent functions q t( ) and q t*( ) , with

m m

m
m

m

= - +
- -

-
-

= 
W

=
W + W - W

=

- -

+



+ -q t z z F
g

z

g
k

k
z kt

1 1
i , 1 i
1 i

1

2
,

2
,

1

2
, tanh ,

66

g gi
2

i
2 2 1

2
2

1 1
2

2
2

⎟
⎛
⎝⎜

⎞
⎠˜( ) ( ) ( )

( )

( )

where F a b c z, ; ;2 1( ) stands for the hypergeometric function
[65], and q t*( ) stands for the complex conjugate of q t( ) . Thus,
the corresponding Wronskian is the pure imaginary num-
ber = - +W q q kg, 2i*( )  .

Following the discussion of appendix C we set
=q qRe1 [ ] and =q qIm2 [ ] as the pair of linearly indepen-

dent real solutions that are required in our approach. Then the
Wronskian is the real number W0=kg+, and

s = +

+ -
+

t a q c q

ac
w

k g
q q

Re Im

2 Re Im , 67

2 2 2

2

2 2

( ) ( [ ]) ( [ ])

[ ] [ ] ( )

 

 

Figure 2. The solution of the Ermakov equation (20) (solid-black) is
compared with q t1( ) (dashed-blue) and q t2 ( ) (dotted-red). In all cases
the time-dependence is dictated by the frequency function
W = W + Wt kttanh2

1 2( ) ( ), with k=1/2, Ω1=5, Ω2=3,
and a=c=1.
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where >a c, 0 to obtain a nodeless real-valued solution. It is
worth to remember that any linear combination of Re q[ ] and
Im q[ ] can be used to describe the classical motion of a
particle under the influence of the parametric oscillator.
Whereas for the quantum case the nonlinear combination(67)
is necessary to make any prediction. The behavior of Re[q],
Im[q], and σ is depicted in figure 2. It can be appreciated that
the classical solutions transit from lower ( <t 0) to higher
(t>0) frequency oscillations, as expected. The time rate of
such transition is controlled by the parameter k. The oscilla-
tions are not exactly periodic, but they can be cosidered
periodic at large enough times.

The probability densities of the eigenfunctions jn (x, t)
are shown in figure 3 for n=0, 1, 2. We can appreciate that
j0 (x, t) is a localized wave-packet that spreads out during a
finite interval of time, then it is squeezed up to it recovers its
initial configuration. Such an oscillatory property is relevant
in the paraxial approximation of electromagnetic signals, for
it is associated with self-focusing beams in varying media
[86–89]. For higher eigenfunctions there is a definite number
of nodes, the position of which varies in time. Moreover, from
the polynomial behavior of the solutions, it is clear that the
oscillation theorem holds at each time, leading to a complete
set of solutions which form a basis. The latter generates a
vector space which turns out to be dynamical [70].

On the other hand, the behavior of the coherent states in
coordinate representation(59), as well as the variances

associated with it(55), are depicted in figure 4. It is clear that
the maximum of y a x t; , 2∣ ( )∣ follows a classical trajectory,
compare with the behavior of q t1( ) in figure 2. The variance
Dx 2( ˆ) squeezes in time with oscillatory profile. The squeezing
increases as the time goes on. On the other hand, the variance
Dp 2( ˆ) spreads out more strongly than its canonical counter-
part. Thus, this configuration skews in favor of the localiza-
tion in position, which is the desired behavior inside ion traps,
as discussed in, e.g. [42].

5. Conclusions

We have shown that the properly chosen point transformation
permits to solve the Schrödinger equation for a wide diversity
of nonstationary oscillators. Our method overpasses the dif-
ficulties that arise in the conventional approaches like the
absence of the observables that define uniquely the state of a
parametric oscillator. Namely, as the related Hamiltonian is
not an integral of motion, it is usual to provide an ansätz in
order to guess the form of the related invariant. A striking
feature of our method is that the integrals of motion are
automatically obtained as a consequence of the transforma-
tion, with no necessity of guessing any ansätz. The latter is
relevant since there is no general procedure to find a given
invariant for time-dependent systems. Of course, provided a
certain number of invariants, one can use the quantum
invariant approach [1, 7, 13, 34–37, 40, 51–53] to enlarge the
number of integrals of motion. Our method provides not only
a primordial set of invariants for nonstationary systems,
derived as point transformations of the integrals of motion of
the related stationary systems, but also permits to recover the
results of the quantum invariant method (full details are given
in appendix D).

Other difficulty which is automatically fixed by our
approach concerns the orthogonality of the states of the
nonstationary oscillators. That is, in contrast with the sta-
tionary case, the orthogonality of the solutions of the
Schrödinger equation for a nonstationary system is not
automatically granted. We have demonstrated that the
orthonormality of the parametric oscillator states is inherited

Figure 3. Probability density j y=n n
2 2∣ ∣ ∣ ∣ for the indicated values of n with = W = W = = = =k a c w1 2, 5, 3, 11 2 . The horizontal and

vertical axes correspond to position and time, respectively.

Figure 4. (a) Probability density y a x t; , 2∣ ( )∣ for the coherent states
with = W = W = = = =k a c w1 2, 5, 3, 11 2 . The horizontal
and vertical axes correspond to position and time, respectively. (b)
Variances of the physical position Dx t

2( ˆ) (solid-blue) and momentum
Dp t

2( ˆ ) (dashed-red), with the same parameters as in figure (a).
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from the stationary case as a natural consequence of the point
transformation. The dynamical algebra, in turn, is inherited
from the stationary oscillator algebra. The latter results laid
the groundwork to construct the corresponding coherent
states, which inherit all the properties of the Glauber states
with the exception that they minimize the Schrödinger–
Robertson inequality rather than the Heisenberg uncertainty.
The construction of the related squeezed-coherent states is
also feasible from our approach, for a detailed discussion on
the matter see [85].

It is to be expected that our method can be applied to
study the dynamics of particles in electromagnetic traps [41].
Additional applications may include the propagation of
electromagnetic signals in waveguides, where the Helmholtz
equation is formally paired with the Schrödinger one [90–92],
and the self-focusing is relevant [86–89]. Finally, the
approach can be extended to study supersymmetric structures
in quantum mechanics [93] with time-dependent poten-
tials [16, 17]
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Appendix A. Point transformation

The detailed derivation of equations (11)–(12) in terms of
point transformations [55] is as follows. We first consider the
explicit dependence of X, τ, and ψ on the set yx t x t, ; ,{ ( )}
given in (8)–(9). The mapping from Sin to Sdef, see
equation (10), must be such that nonlinearities are not present
in Sdef. In general, it is expected to find

y y y y y y yY = Y =t G x t G x t, ; , , , , ; , , , .
A 1

t x X X t x x x1 , 2 ,( ) ( )
( - )

Using (9) and (A-1), the Schrödinger equation of the sta-
tionary oscillator (3) becomes a partial differential equation of
the desired form Sdef. To be concrete, we have

t t
Y

= Y + Y
Y

= Y + Yt t
x

X
t

X
d

d
,

d

d
. A 2X x x X t t ( - )

Equivalenty

y y
Y

= +
Y

= +y y
x

G G
t

G G
d

d
,

d

d
. A 3x x t t ( - )

The system (A-2)–(A-3) includes YX and Yt as unknown
functions, the solutions of which are

t y t y t t

y y

Y = - + -

Y = - + - +

y y

t y y

J x t
G G G G

J x t
X G X G X G X G

1

,
,

1

,
,

A 4

X t x x t t x x t

t x x t t x x t

( )
( )

( )
( )

( - )

where t t= - ¹J x t X X, 0x t t x( ) stands for the Jacobian of
the transformation. In similar form

t t

t

Y
= Y + Y + Y

+ Y + Y

t t t

t

x
X X

X

d

d
2

, A 5

X X x x X x x

X x x x x

2

2 ,
2

,
2

,

, , ( - )

equivalently

y y y
Y

= + + +y y y y
x

G G G G
d

d
2 . A 6x x x x x x x

2

2 , , ,
2

, ( - )

To simplify the calculations, with no loss of generality, we
take a function t x t,( ) that depends on the time parameter t
only, τ=τ(t). The Jacobian is immediately simplified

t= =J J x t X, . A 7x t( ) ( - )

On the other hand, the function y yG , produces the non-
linearity yx

2 in (A-6) that is not present in Sdef. Therefore we
must impose the condition Gψ,ψ=0, which permits to fac-
torize the function Ψ in (9) as follows

y yY = =G x t x t A x t x t, ; , , , , A 8( ( )) ( ) ( ) ( - )

with A x t,( ) a complex-valued function to be determined.
Therefore, from (A-4) and(A-5) we arrive at the expressions

y y y

t
y y

y
t

y
t

y

Y = - + + -

Y = +

Y = + -

´ + -

t
X

J
A

X

X
A A

X

X
A

J
A A

X
A A A

X

J

A
X

J
A

,

,

1
2

. A 9

x t

x
x t t

t

x
x

X
t

x x

X X
x

x x x
xx t

x xx
xx t

x

, 2 , ⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

[ ]

( - )

After substituting equations (A-5)–(A-9) in (3), together with
some arrangements, we finally have

y
t
y y y+ + - =



m X
B x t V x ti

2
, , 0,t

t

x
x x x

2

2 , ( ) ( )

where

t

t t

=- + -

=- -

- - +








B x t
X

X m X

A

A

X

X

V x t
A

A

X

X

A

A

m X

A

A

X

X

A

A
mw X x t

, i
2

2 ,

, i

2 2
, .

t

x

t

x

x xx

x

t t

x

x

t

x

xx xx

x

x t

2

2

2

2
2 2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

( )

( )

Appendix B. Zero point energy term

Consider the Schrödinger equations

F = -
¶
¶

F + F F = F~
x

V x t x ti , , , , B 1
2

2
( ) ( ) ( - )
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and

Y = -
¶
¶

Y + Y Y = Y
x

V x t x ti , , , , B 2
2

2
( ) ( ) ( - )

with = +V x t V x t V t, , 0( ) ( ) ( ) . Using Φ(x, t)=h(t)Ψ(x, t) in
(B-1) we arrive at a differential equation for h(t), the solution
of which produces

òF = - ¢ ¢ Yx t t V t x t, exp i d , . B 3
t

0
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( - )

That is, if V x t,( ) differs from V x t,( ) by an additive time-
dependent term V t0 ( ), the solutions of (B-1) and (B-2) coin-
cide up to a global phase that depends on time. Of course, if

¹V V t0 0 ( ), then F x t,( ) and Y x t,( ) belong to the same
equivalence class (ray) in the space of states.

Appendix C. The Ermakov equation

The Ermakov equation [66]

s s
s

+ W = >t
w

w, 0, C 12
2

3
̈ ( ) ( - )

is well known in the literature and finds many application in
physics [22–25, 30, 60, 67, 68, 86–89, 94, 95]. It arises quite
naturally in the studies of parametric oscillators [22–25, 30],
in the description of structured light in varying media
[86–89], and in the study of non-Hermitian Hamiltonians with
real spectrum [60, 67, 68]. The key to solve (C-1) is to
consider the homogeneous linear equation

+ W =q t q 0, C 22̈ ( ) ( - )

which coincides with the equation of motion for a classical
parametric oscillator. Consider two solutions, q1 and q2, and
the related Wronskian = -W q q q q q q,1 2 1 2 1 2( )   . It is
straightforward to show that W q q,1 2( ) is a constant in time,
and different from zero if the involved solutions are linearly
independent.

Using two linearly independent solutions, q1 and q2, of
(C-2) we have = =W q q W, const1 2 0( ) . Then, following
[66], the solution of (C-1) is of the form

s = + +t aq t bq t q t cq t , C 31
2

1 2 2
2 1 2( ) [ ( ) ( ) ( ) ( )] ( - )

where {a, b, c} is a set of real constants. To get a function
σ>0, it is necessary to impose the condition -b2

= -ac4 4 w

W

2

0
2 , with nonnegative constants {a, b, c} [67, 68].

If, by chance, the accessible solution of (C-2) is a com-
plex-valued function, say  q : , it follows that its
complex conjugate q* is a second linear independent solu-
tion. Then, without loss of generality, the real and imaginary
parts of q can be used as the pair of linearly independent
solutions one is looking for. That is, =q qRe1 [ ] and

=q qIm2 [ ] . In this form the σ-function, as well as the
Jacobian of the transformation, are well-behaved. Then, they
produce singular-free transformation functions X x t,( )
and t x t,( ).

Appendix D. Point transformations and quantum
invariant formulation

To construct the invariant operator I tˆ ( ) of the parametric
oscillator, in section 2.3 we have used the fact that constants
of motion are preserved under point transformations. Thus,
the invariant I tˆ ( ) introduced in (29) corresponds to the point
transformation of the oscillator Hamiltonian Hosc

ˆ defined in
(2). Quite interestingly, given I tˆ ( ), any Hermitian function
f I t( ˆ ( )) of I tˆ ( ) must be also an invariant [51]. However, there
exist in principle a wide set of invariants for the harmonic
oscillator—the Hamiltonian Hosc

ˆ included—, so there may
also exist the corresponding set of point-transformed invariant
operators associated to the parametric oscillator. As the
addition and the product of two invariants is also an invariant
[53], we have at hand a powerful technique to construct
additional invariants for the parametric oscillator. To clarify
the point let us rewrite the ladder operators (32) as follows

t t= =t t-a a a ae , e , D 1w wi iˆ ( ) ˆ ˆ ( ) ˆ ( - )† †

where tº =a a 0ˆ ˆ ( ), and tº =a a 0ˆ ˆ ( )† † . The straightfor-
ward calculation shows that the latter operators are constants
of motion of the stationary oscillator. In similar form, using
the operators (36) we now write

= =t t-a t a t a t a te , e , D 2w t w t
2

i
2 2

i
2

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( - )( ) † ( ) † 

with t t( ) defined in(21). It is a matter of substitution to
verify the following equations

= +
¶
¶

=

= +
¶
¶

=





a t

t
H t a t

a t

t

a t

t
H t a t

a t

t

d

d

i
, 0,

d

d

i
, 0. D 3

2
2

2

2
2

2

ˆ ( ) [ ˆ ( ) ˆ ( )]
ˆ ( )

ˆ ( ) [ ˆ ( ) ˆ ( )]
ˆ ( ) ( - )

†
†

†

  

  

That is, in agreement with [40], the operators a t2˜̂ ( ) and a t2˜̂ ( )†

are dynamical invariants of the parametric oscillator.
Remarkably, the construction of the point-transformed
operators (D-2) does not require the determination of the
classical constants of motion (compare with [52]).

As indicated above, provided a pair of invariants of the
parametric oscillators, just like the ladder operators (D-2), one
is able to construct additional constants of motion. For
instance, in complete agreement with the factorization (38),
the invariant operator (29) can be expressed as the following
product of invariants

= + I t w a t a t t . D 42 2
1

2( )ˆ( ) ˆ ( ) ˆ ( ) ( ( - )† 

Thus, the point-transformation method discussed throughout
the present work can be adapted to recover the results of the
quantum invariant formulation. The construction of invariants
like the product (D-4) can be extended by increasing the
power of the factors at will. An immediate example is pro-

vided by the quadratic forms of a t2ˆ ( ) and a t2
ˆ ( )† . In such a case

it may be shown that the resulting invariant is equivalent to
(D-4) through a Bogoliuobov transformation [52]. The study
of such constructions is out of the scope of the present work,
so it will be reported elsewhere.
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