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Abstract
The general quantum superposition states containing the irreducible representation of the
n-dimensional groups associated to the rotational symmetry of the n-sided regular polygon i.e.
the cyclic group (C,,) and the rotational and inversion symmetries of the polygon, i.e. the dihedral
group (D,,) are defined and studied. It is shown that the resulting states form an n-dimensional
orthogonal set of states which can lead to the finite representation of specific systems. The
correspondence between the symmetric states and the renormalized states, resulting from the
selective erasure of photon numbers from an arbitrary, noninvariant initial state, is also
established. As an example, the general cyclic Gaussian states are presented. The presence of
nonclassical properties in these states as subpoissonian photon statistics is addressed. Also, their

use in the calculation of physical quantities as the entanglement in a bipartite system is

discussed.

Keywords: quantum superposition states, cyclic symmetry group, quantum erasure channel,

phase space, dihedral symmetry group
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1. Introduction

The study of symmetries in physics has helped to the sim-
plification of difficult problems. For example, the symmetries
in the Hamiltonian dynamical evolution of a quantum system
can be related to the definition of different conservation laws
which, as in the classical theory, can be used to answer dif-
ferent questions. The use of symmetries in quantum
mechanics, in particular the definition of states associated to
point symmetry groups has been covered in several works
[1-4]. Especially, the states carrying the symmetry of the
cyclic group C, = Z/(27), also called odd an even cat states,
have been of great interest in the past decades. The non-
classical properties of this kind of states have been discussed
in [5], together with their use in fundamental quantum theory
[6-10] and in the quantum information framework [11-15].

0031-8949,/20,/065206+12$33.00

For several years, there was an impossibility to construct
a cat state with a large photon number. Instead of that, the low
photon cat states, known as kitten states, were generated [16].
After that, the possibility to obtain full cat states has been
demonstrated in several studies as: by using the reflexion of a
coherent pulse from a optical cavity with one atom [17, 18],
the use of homodyne detection in a photon number state [19],
the photon subtraction from a squeezed vacuum state in a
parametric amplifier [20], via ancilla-assisted photon sub-
traction [21], and by the subtraction of an specific photon
number in a squeezed vacuum state [22]. The superposition of
coherent states have non-classical features like squeezing of
the quadrature components [5, 23, 24]. There exist possible
experimental implementations of these superpositions [25], as
for example, by using particular superpositions of coherent
states defined on the circle [23, 24, 26]. The states adapted to
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this type of symmetry have also a connection to the phase-
time operators in the harmonic oscillator [27-30]. The defi-
nition of states carrying the circle symmetry has been
extended by the use of spin coherent states as in [31], also in
[32] the use of su(1, 1) coherent states on the hyperboloid
were considered.

More recently, a proposed method to generate states with
higher discrete symmetries, as the ones defined here, has been
obtained by the dynamic evolution of a matter-field interac-
tion described by the Tavis-Cummings model [33, 34]. There
is experimental evidence for the generation of superpositions
of four coherent states with a number of 111 photons [35].
Also, the cluster structure of light nuclei as '2C and 13C have
been describe by the point symmetry groups, as the ones
discussed here, D5, and D3/h, respectively.

In this work, the generalization of the quantum states
associated to the irreducible representations of the group
whose elements are the symmetry rotations of the n-sided
regular polygon, also named the cyclic group (C, = Z/(nZ)),
and the group containing the rotational and reflexion sym-
metries of the regular polygon, i.e. the dihedral group (D,), is
presented. Some of these type of states have been previously
defined using coherent states [1—4].

In the present work, it is shown that the cyclic and
dihedral states form an orthogonal set of states, which can be
used to define a discrete representation of states made of the
superposition of rotations, in the case of the cyclic group, and
rotations plus reflections in the case of the dihedral group.
Also it can be seen that this discrete representation can sim-
plify the calculation of quantum parameters as the entangle-
ment between two subsystems within a system. For these
reasons, we consider that given the applications of the cyclic
and dihedral coherent states in quantum information, the
generalization of such states to the noncoherent case is
important.

The proposed method discussed here, makes use of an
initial state |¢) which is not invariant under rotations. To
define the cyclic states, the superposition of the rotated states
|6,) = R(O)|¢) r =1, ....,n; 6, = 21(r — 1)/n), and the
characters associated to the A-th irreducible representation
and the r-th element of the group (xV(g,) ), are used. It is
also discussed the relation between the cyclic states and the
renormalized states obtained from the erasure of certain
photon numbers in the photon statistics of |¢) or p, e.g. the
cat states associated to the cyclic group C,: €)=
Ni(Ja) £ |—a)) are the renormalized states resulting of
eliminating the even and odd photon number states from the
coherent state |«) respectively.

On the other hand, the dihedral group D,, is the non-
Abelian group that contains the rotations and inversions
which leave the n-sided regular polygon invariant. The ele-
ments of the dihedral group are D,,: {]?(91-), Uj,j =1, ..., n},
with 6; = 27(j — 1) /n, where the inversion operators in the
phase space are defined by a rotation plus the complex con-
jugation (©), ie. 17] = C‘ﬁ(ﬁj).

Additionally to pure, non-pure cyclic and dihedral states can
be defined through a density matrix. These states correspond to a
quantum map of an noninvariant, arbitrary operator p. This type

of quantum maps have been recently relevant in quantum
information theory. In particular, the quantum maps have been
important for the quantum error correction as some of the stu-
died qubit maps represent the interaction between a qubit and an
environment [36, 37]. Furthermore, the study of the erasure map,
presented here, can be important to figure out the experimental
realization of the defined states, as the resulting states, depend on
the absorption (erasure) of certain state numbers.

As a remainder of some group characteristics we estab-
lish that given a n dimensional group {g.;r =1, ...,n}, a
conjugacy class is formed by all the elements g, which satisfy
the similarity transformation gk_'gj 8 = &> Where g; is also a
member of the group. An irreducible representation A is the
representation of a group that cannot decompose further. To
obtain the irreducible representation sometimes the following
procedure should be applied: if there exist a similarity
transformation of an element of the group g; which diag-
onalize it, i.e. C*lgjc = Ap, where Ap is made of diagonal
matrices A s then the matrices A o form an irreducible
representation of g;. The character x associated to the irre-
ducible representation J, is defined as the trace of the diag-
onal matrix Ap,, that is X(’\)(gj) = Tr(AD/w). Also, all the
members of a conjugacy class share the same characters. In
the case of the cyclic states the character associated to the
irreducible representation A and element g, of the group is
given by X;A)(gr) — 2mi(A=D(r=1)/n

This work is organized as follows: In section 2 a review of
the cyclic states constructed by means of coherent states are
presented. The generalization of these type of states for a non-
coherent system is then described in section 3. The correspon-
dence between the generalized cyclic state and a renormalized
state obtained through the elimination of certain photon numbers
in an original system is studied in section 4. In section 5, some
examples are given, the cyclic Gaussian states are defined and
some of their properties are mentioned. Also, the circle sym-
metry states are presented as an extension to the states associated
to C,, where n — oo. In section 6, the idea of the pure cyclic
states of C,, is extended to the case of non-pure density matrices.
This is done by the definition of a map of the density matrix,
which can also be related to the erasure and renormalization of
certain photon numbers in the initial state. The usefulness of this
kind of systems for the study of the entanglement in a two-mode
system is shown in section 7. The dihedral states are defined in
section 8. Finally, some conclusions are given.

2. Cyclic coherent states

In previous works, different states associated to the irreducible
representation of cyclic groups [1-4] have been defined using
coherent states [38—41]. The resulting states called crystallized
cat states have some interesting properties as subpoissonian
photon statistics, squeezing, and antibunching [4, 42, 43]. Also,
it has been demonstrated that they can be generated by the
interaction of an atom with an electromagnetic field [17, 18].
Here, we present a summary of the definition and some prop-
erties of the coherent cyclic states.
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The cyclic group C, have as elements the discrete rotations
associated to the symmetries of the regular polygon of n sides,
ie. G,={R), 0;=2n( — D/n,with(j=1, .., n)}
The number of elements is equal to the cycle of the group and
they can be divided in different conjugacy classes {g,}. The
characteristic (or character) of the class g, for the irreducible
representation A is denoted as X;M(gr) is given by the trace of
the irreducible representation. It is known that in the case of the
cyclic group each element forms its own class (g; = R(6;)) and
that the character of the class are the n roots of the identity,

YWig,) = CXP[M()‘ _nl)(r — 1)],

with \, r =1, ..., n. @))]

Additionally, the characters for any two irreducible representa-
tions A and )\’ are orthonormal, i.e.

1 i
;} YN M(g) = S )
r=1

and also the sum of the characters over all the irreducible
representations A satisfy that

1 n
=3 XXM g = i 3)
n=1

These two orthogonality conditions can be quickly checked
using the rule for the sum of the identity roots

n

Z u-,’; =0, where p, = exp(@), @)
j=1 n

such property also leads to the following theorem.

Theorem 1. Let r be an integer and i, = exp(2mi/n),
then 375y 1) = n 6mod(r,m).0-

Proof. It is clear that for r being a multiple of n:

mod(r, n) = 0, ,uzf = 1 and thus the sum Z’}zl uf;’ is equal

to n. For r not being a multiple of n (mod(r, n) = 0) we
remember that the sum

n .
Z x/ =x
j=1
which in the case of x = y/, implies
n
n .
‘]r _ r
Ezﬁ% __Mn
j=1

as p" = 1. It is important to notice that this property is satisfied
for any integer, in particular by r being a negative integer. [

x" =1

x—1°

m __
n =
-1

I
Mﬂ

O’

Given the orthogonality properties in equations (2) and
(3) one can define a macroscopic quantum state for each
one of the irreducible representations of the cyclic group as
follows

[Py = MY XD () e,
r=1

xS XWXV (g0 (alay) = N2, (5)

ror'=1

where the coherent state parameter o, = Re(a,) + i Im(a,)
is given by the rotation of a fixed number « in the complex

plane,
(Re(a,)) _ R(er)(Re(a)).

Im(c,) Im(a)

It is important to notice that all the states for different irre-
ducible representations form an orthonomal set with
(YN ) = 6,y In the case of the cyclic group C, we
have as the result the standard odd and even cat states
[p12) = Ni(la) & |—a)), which can have subpoissonian
photon statistic, squeezing, and antibunching [4].

The coherent cyclic states [1)V) are eigenvalues of the
power of the annihilation operator 4", i.e.

@'Y = a"lyrY).

Also, one can change the irreducible representation of the
state by acting the annihilation operator 4 to another state:

alY) = a%w?’)x

where the value of the new irreducible representation depends
on the original one \'(\).

3. Generalization of cyclic states as superpositions
of rotations in the phase space

The necessity of a generalization of the cyclic states to a
superposition of arbitrary, non-coherent systems can be
explained by their possible use in quantum information theory.
Also, the cyclic states form an orthogonal set of states which
can lead to a finite representation of certain quantum systems.

First, let us suppose an initial quantum state |¢) and its
representation in the Fock basis

with fj A (O = 1.

m=0

|¢> = Z Am(¢) |I’l’l>,
m=0

The discrete rotations in the phase space associated to the
symmetries of the regular polygon in the cyclic group C,
are given by the operator R (0)) = exp(—if;n), where
0; =2m(j — 1)/n; j =1, ..., n, and 7 is the bosonic number
operator. To every one of the elements of the cyclic group we
have then a rotation of the general state |¢), which can be
expressed as

Definition 1. Let |¢) = > " (A, (¢)|lm) be a quantum
state with at least one mean quadrature component
(& =+ a"h/J2, p = i@t — a)/2) different from zero,
i.e. (@|%|¢) = 0, or (P|p|d) = 0.We define the general cyclic

state for the irreducible representation A of the group C, as

[V (@) = MY xWM(g)1d,), (6)

r=1
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where X;A)(g,) is the character associated to the irreducible
representation A and to the element of the group g, € C,, and
where

= > XV Mg (814,

rr'=1

N2

To obtain a well defined state we emphasize that the
original state cannot be invariant under the rotations discussed
above, i.e. |¢,) = |¢) for r = 2, ..., n. This property can be
satisfied when the Wigner function of the state in the phase
space W (x, p) is given by a non symmetric distribution or
when the state is not centered at the origin of the phase space,
ie. fdx dpx W(x, p) =0, or fdx dpp W(x, p)=0.

As these states carry the irreducible representation of the
group C,, they are invariant, up to a phase, under the discrete
rotations I?(G /). To prove this property, lets suppose the action
of the rotation R(6)), 1 < I < n, over the state |1/)(’\)(¢)>

ROIYP (@) = MY xN(g)R(O,-119),
r=1

as the character of the representation A is

A -1 1 A1 -1), 1=\
X;)(gr): A=D(r— )f'u( Yr+l=1)  (1=2)

i,

= XV M,

then we obtain

=N, flmVS ™ X D(g RO, 1),

r=1

ROV ()

given the periodicity of the characters and the rotation
operators (uf” = iy, R(0;1,) = R(0))), this sum give us, up

to a phase, the same state as the original, i.e.

ROIWP (@) = p VNV (). 7

It can also be seen that by the use of the explicit
form of the rotated states in the Fock basis |¢,)
%o Ap(¢)e~ M m), one obtains

=N S xWg)An(d)e O m),

r=1m=0

[V ()
which can be also rewritten as

MZZ pr DAL (6) |m). (8)

r=1m=0

[V (9))

Given the characteristics of the sum of the powers of the
parameter /i, expressed in equation (4), one can show that the
different states for the cyclic group C, form an ortonormal set.
To show this, lets suppose the inner product of two cyclic
states with irreducible representations A, and Y, i.e.

= NNy S

ror'=1

o0
_ _ _ 7)\! A 17
X ST Ap(@)Ap (@) e (ImXmE=hg

m,m’'=0

(WD) VD))

performing first the sums over the parameter r/, we have
(@) V(@) = NyNn

(o] n
x> Z|Am(¢)|2,uzlilfm ,Ui,kflfm)(rf1)5mod(1fA’+m,n),o~
m=0r=1
As established by theorem 1, this sum is different from zero
when 1 — N 4+ m = sn (with s € Z ). This leads to the con-
dition m = sn—1 + X. From this, we can change the sum over
m to a sum over s, obtaining

W@ U () = NaNy
X Y D A 14a(9) |2u;’\*’\’)rﬂ;:f,\/'

s=0r=1
Similarly to the previous step, the sum over the parameter r is
different from zero when A — A = s'n with s’ € Z. As the
parameters satisfy 1 < A, A’ < n, the only possible value is that
A—XN=0,s0

WD) PD@D)) = NN s 112 () RSy

s=0

which in the case A = )\’ is equal to zero and by the expression
for the normalization constant in definition (1) is equal to one
when A = ). Finally, arriving to the expression

(WD) YNV (D)) = by

Other important properties of the cyclic states are addressed
in the next section.

4. State erasure as a quantum map and the cyclic
states

In this section, the connection between the erasure map and
the cyclic states is studied. This correspondence can lead to
the experimental implementation of the cyclic states as these
states can be seen as coming from the absorption (or erasure)
of certain photon numbers.

The general cyclic states defined above, can also be
defined as the result of selective loss of information in a
quantum system, that is, from the erasure of a subset of states
of an original state |¢) = >0 ; A, (@) |m).

As an example, one can suppose the selective erasure of
the probabilities A,,(¢) for all values of odd m, and after this
erasure, the renormalization of the state is performed. In that
case, one will have the following state made with only even
number states

Iweven> =N Z Am(¢)|m>, 9

m even
where N is the normalization constant N72 =
S evenlAm () 2. Lets compare the previous expression with
the cyclic state forn = 2, A = 1:[¢/{"(¢)). This state is given
by

198" (@) NZ Z 15" Am (@) Im).

r=1m=0

Hy = —1.
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By performing the sum over r, we then obtain

D) = NS (1 + (= 1™ Ay () |m)

m=0

which is the same expression as equation (9) with N = 2M\,.
The same can be done to the state resulting of the elimination
of even states, which is equal to the cyclic state with n = 2,
A =2, ie [¥P(P)) = N, ygqAn(d)|m). In general, the
equality between the cyclic states and the states resulting of
the elimination of certain number states can be established in
the following theorem.

Theorem 2. Let n and X be two positive integers with A < n,
and |9, \(¢)) be the renormalized state obtained after the
elimination of the number states |m) in |¢)=
> oAm(®)|m), which do not satisfy the condition
mod(m — X + 1, n) = 0, then |V, \(¢)) is equal to the cyclic
state |V (¢)) up to a phase.

Proof. The state after the erasure map |, ,(¢)), has the
following expression

|\11n,)\> = N)\,nz Ay ((b)(smod(;nf/\+l,n),0|m>

which only contains the number states that
m — A + 1 = [n (with [ an nonnegative integer), then

[ () = Nawd A 1em(@IA — 1 + In).
!

satisfy

(10)

On the other hand, by using the property for the roots of the
identity (y1,) given in theorem 1 (E’j?zl Ml’ = 1 Omod(i,n).0)> IN

the definition of |V (¢)) in equation (8), we can show that
n
Z /145,/\717’")("71) =n Mi,i/\(smod()\flfm,n),()s
r=1

this means that only the states withm = A — 1 + In (with/a
nonnegative integer) are part of |[)\V), i.e.

[N (@) = n Ny i ST Av i (BN — 1+ ). (1)
=0

Finally, when comparing equations (10) and (11) we arrive to
the conclusion

W) = ph M (9)),

with the relation between the normalization constants being

n N, = Ny, and the phase between the cyclic state and the
. 1=\ .

erasure state, being p, =" = exp(27i(l — ) /n). O

12)

Given this identification, it can be seen that the photon
number statistics for the state |¢){V(¢)) contain only the
photon numbers which satisfy mod(m — A + 1, n) = 0.

The correspondence between the cyclic states and the
states resulting from the quantum erasure map can lead to the
experimental realization of the cyclic states. One can for
example think of an initial nonivariant state |¢), with a small
mean photon number ((¢|i|¢) ~ 0). If one has a process

where the number states |1) or |2) are erased, e.g. by the
absorption of one or two photons of the electromagnetic field,
then one can expect that the resulting state will be similar to a
cyclic state.

5. Examples

5.1. Cyclic Gaussian states

Here we define different superpositions of Gaussian states
associated to the cyclic groups. These superpositions are
connected with the squeezed states defined in [44, 45]. As an
example of the general procedure described above, one can
define cyclic states using Gaussian wavepackets as initial
systems. Suppose a general one dimensional Gaussian state in
the position basis

a+a*1+2a\"* b2 + bb*
Yx) = ————| expy-————
1 4+ 2a* 4(a + a®)

x exp{—ax> + bx}, agr>0,b=0, (13)

with a = ag + ia;, b = bg + ib;. This state can be char-
acterized by the mean values of the quadrature components
(P, §), and the corresponding covariance matrix ¢. Which in
the case of the state (13) are

(%) = b + b* (p) = i(ab* — a*b)
C 2a +a®’ pr= a+a*
L1 4laf  i(a — a*)]. 4
2(a + a®\i(a — a*) 1

When this state is rotated in the phase space using the pro-
pagator (xlﬁ(0)|y>, where R(0) = exp(—ifit) is the rotation
operator, the obtained state is still Gaussian with new para-
meters a(f), b(f) given in terms of the original Gaussian
parameters a, and b, as follows

2ia cosf — sin 0
2(icosf — 2asin )’

(P —
cos 8 + 2iasinf

a(0) =

as)

The cyclic Gaussian state for the irreducible representation A
of the group C, is then given by the expression

TV = MY Mg (), (16)
r=1

with a value of ,(x) analogous to the initial state of
equation (13)

by = (“<9r> +a*0) 1+ 2a(0) )‘/ '
T 1 + 2a*(6,)

X exp {_ b*(6,) + b(e»b*w»}

4(a(0,) + a*(6,)
x exp{—a(9,)x> + b(0,)x}. a7

Given this expression one can construct then the cyclic states
using equation (16).
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(d)

Figure 1. Mandel parameter M, as a function of the real and imaginary parts of the parameter b = by + iby, for the states associated to the
cyclic group C,, UV(x) with (a) a = 1/4, (b) @ = 1/2, (c) a = 1; and for the state $?(x) for (d) a = 1/4, (¢) a = 1/2, and (f) a = 1.

For the cyclic group C,, the cyclic states can be described
by the following two orthogonal states

D (00) = Mg e (e + ™),

2 *
a+a*14+2a ¢ it
N = ] .
T 14+2a%) J2(1 £ eta)l/?

(18)

which have specific properties. In figure 1, the Mandel
parameter [46] My = ((Ar)?) /(i) is shown for the cyclic
Gaussian states of C, given in equation (18). The figure was
made taking into account three different a parameters.

A Mandel parameter My < 1 can be used to distinguish a
subpoissonian from a superpoissonian photon statistics
(Mp > 1), or poissonian statistics My = 1. As it can be seen
in the figure, the cyclic states can have subpoissonian dis-
tributions for certain regions of the parameter b = by + ib;.
As can be seen in the figure, the presence of this photon
statistic is more prominent in the states associated to the

second irreducible representation of the group \11(22)(x).
Similar to the states above, the ones associated to the

cyclic group C5 can be obtained. In figure 2, the plots and
contours for the Wigner function [47]: Wy(x,p) =
f dy ¥*(x + y)¥(x — y)e?P’/m, can be seen. In the contour
plots of the phase space (p, x) is noticed the symmetry of the
state under the rotations with angles 0, 27 /3, and 47 /3 with
respect to the x axis. It is also important to say that the Wigner
functions depicted in the figure do not have inversion sym-
metry as they are only invariant under the rotations contained
in the C3 group.

5.2. Circle symmetric states

When one increases the degree of the cyclic group the
obtained states described by our method must be invariant
under more and more rotations in the phase space. It is known
[23] that there exist a correspondence between the circle
symmetric states in the coherent case and the Fock number
states. This lead us to the question, how do the generalized
cyclic states associated to a very big number of symmetries
look like? e.g. when the order of the cyclic group tends to
infinite (n — 00), can they also be associated to the Fock
states?. To answer these questions, one can notice that the
definition 1 of the cyclic states allow us to make a general-
ization in the case when the angle 6, which determine the
rotations R(#), becomes a continuous variable. In that case,
the definition of the cyclic states becomes

W) = My LZW do "= De ), (19)
where we have an infinity number of irreducible representa-
tions, i.e. A € Z*. By means of the photon number decom-
position of |¢) = >, A (¢)|m), one obtains

90 27
WD) = MY [T 0 An(@)e 1),
m=0 0
as the integral is equal to 27 times the Kronecker delta dy_1 ,,,
we arrive to the result
1Y) = 27 NGA (DA — 1),

which, after the renormalization process, we notice corre-
sponds to the number state

Q) = 1A — 1). (20)
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Figure 2. Wigner functions and their contour plots for the cyclic Gaussian states associated to Cj for the irreducible representations A = 1
(left), A = 2 (center), and \ = 3 (right). For these figures the chosen parameters were ¢ = 1 and b = +/2 (1 + i). The black lines in the

contour plots depict the symmetry axis associated to the C; group.

We point out that this expression for the circle cyclic states is
consistent with the erasure map of the state |¢), as in principle
we need to erase all the different states but the one that
satisfies the condition m — A + 1 = 0. This result lead us to
the conclusion that the cyclic superposition (n — o0) of any
state which is noninvariant under any rotation in the phase
space, is equal to a Fock state. This, regardless of the initial,
noninvariant state |¢) that we take into consideration. We
would like to emphasize that in order of this property to be
true, the state under consideration |¢) must be noninvariant
under all possible rotations in the phase space. This implies
that |¢) must be expressed by an infinite sum of the photon
number states |m) with a nonzero probability amplitude
A,,(¢). To show this we can take as an example the C, group.
In order for a state |¢) to be noninvariant under the C, rota-
tion, it should be made by the superposition of at least two
states |m) and |n), m being even and n being odd (m, n € Z").
In the case of C; we need at least three states |m), |n), and |[)
such mod (m, 3) = 0, mod (n, 3) = 1, and mod ([, 3) =2
(m, n, I € Z"). By the extension of this argument, we must
need an infinite number of photon states in order for |¢) to be
an noninvariant state under C,,. As examples of this type of
states one can name the coherent, the squeezed coherent, the
non-centered Gaussian, and any noninvariant, continuous
variable state.

To show that the superposition of several rotations of an
initial continuous variable system can form a Fock state one
can take as an example the Gaussian state of equation (13)
witha =1,b = JE + 2i. In figure 3 are shown the Wigner

functions and their contours for the cyclic states associated
to the first irreducible representation of C, for n = 10 (left),
n =15 (center), and n = 20 (right). Here, one can see
how the cyclic states for a long degree order are more
and more alike to the vacuum state |0). Additionally to this,
it can be checked that for a given irreducible representation
of the cyclic group, a different photon state can be formed
for a sufficient large number n, i.e. the cyclic group
degree.

6. Cyclic group density matrices

The previous discussion about the properties of the erasure map
and its relation with the states associated to the cyclic groups
can be extended to any kind of state which is not invariant
under the rotation operation. For example, one can can think in
a density matrix which may correspond to a mixed state p and
define the following cyclic density matrices

Definition 2. Let p be a density matrix with at least one of its
mean quadrature components (£ = (4 + a’)/2, p =
i@ — a)/+2) different from zero, ie. Tr(p £) = 0, or
Tr(p p) = 0. Then the state associated to the irreducible
representation A of the cyclic group C, is defined as

PV =N VeV @IROHPR @), 1)

r,s=1
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Figure 3. Wigner functions and their contour plots for the cyclic Gaussian state of C,, for the irreducible representation A = 1 for (a) n = 10
(right), (b) n = 15 (center), and (c) n = 20 (left). In all the plots we took the parameters a = 1 and b = J6 + 2i.

where X;A)(gr) is the character for the group element g,,
RO, = exp(—if,n), and

n
V=0 XN (g) TR R ().
r,s=1

These type of density matrices have the same properties
of the cyclic states as being invariant up to a phase under
the rotations in the cyclic group. Also, they have a photon
distribution were not all the photon numbers are present as
they can be obtained by the elimination of certain Fock states.
To show this, one can follow an analogous procedure as in
theorem (2). Let us suppose p = Y7 1o Ay (D) |m) (m'],
with Tr(p) = >0 4 Aum(p) = 1. This expression together
with equations (1) and (21) allow us to rewrite ,6,9) as
follows

00
[7,5/\) == M Z Am,m’(i))

m,m'=0

A—1 1 A=A -s) —
X Z ,LL( Yr—1) ; )( S) i0,m t€m|m>< /|’

r.s=1

by the use of the definition of 6; = 27 (j — 1) /n and theorem
I, we can perform the sums over the r and s parameters.
Those sums are

n
A—1—
Z .u“il mr — n 6m0d()\—1—m,n),07

r=1

n

—O—1-m'
>, AT = 1 SmodA— 1 - a0
s=1

(22)

then we finally can write the cyclic state density matrices as
follows

PV =Nar® 3 A () i) "

m.m'=0

X Omod(A—1—mn),0 Omod(A—1—m'my,0 Im) (m'|,

as the delta functions imply that A\ — 1 — mand A — 1 — m/
should be a multiple of n, then A — 1 — m = nn, and
A—1—m' =& and then m' — m = —(§ + n)n is also a
multiple of n. From these properties, we can conclude that

m'=m _ 1 and finally arrive to the expression for the cyclic

n
density matrix

0
la,i)\) = -/\/:\ n? Z Am,m’ (»)

m.m'=0

X 6m0d()\—l—m,n),0 6m0d()\—l—m’,n),0 |m> <m/|7 (23)

this property is summarized in the following theorem:

Theorem 3. Let n and X\ be two positive integers with A < n
and p, \ be the renormalized state obtained after the

elimination of the number states operators |m){(m'|
in p=0_oAnm(P)m)(m',  which do  not
satisfy the conditions mod(A — 1 —m,n) = 0 and

mod(\ — 1 — m/, n) =0, then ﬁn’A(gﬁ)) is equal to the cyclic
state .

It is noteworthy to see that from equation (23) and the
property m’ — m being a multiple of n, we can immediately
show that the cyclic density matrices are invariants over the
rotations in the cyclic groups. In other words, the density
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matrix ﬁy) after the rotation R ), ie.
o0
RONPOR 0) = Nam® 3 Apw (D)
m.m’=0

1
X Omod(A—1—mm),0 Omod(A—1—m’,n),0 ,M(m MUY ) (m'),

is equal to the initial density matrix, so finally one can
establish

RO)POR (0) = pO.

As in the case of the pure cyclic states, the photon
number distribution of the cyclic density matrices contains
only some of the numbers states. Given that the different
states associated to the cyclic group C, are made with dif-
ferent photon number states, we can conclude that the cyclic
density matrices form an orthogonal set.

7. Example: calculation of the entanglement in a
bipartite state

As an example of the applications of the cyclic states we
show that this type of states can be used to describe a con-
tinuous variable system in a discrete way, and that this dis-
crete form can lead to an easier calculation of parameters,
such as the entanglement between parts in a bipartite system.
Suppose a two mode state made entirely of the group of
rotation states {|¢.)1, [g.)2; ¥ =1, ..., n} for modes 1 and 2
respectively, e.g. the state

n

IT) = Z crldhle)2,

r=1

n
X S0 e G Ol @) =

r,r'=1

(24)

As the states |@,) = R(6,)|¢), |g) = R(6,)|¢) can be
general then they might not be orthogonal. On the other hand,
the cyclic states generated by these states form an orthogonal
set. Most importantly, as there exist the same number of
cyclic states [V (4)) and [1)V(p)) as the number of rotated
states |¢,) and |¢,), then one can obtain the rotated states in
terms of the cyclic, orthogonal ones. To obtain these
expressions one must obtain the inverse relation of
equation (27)

n
A A-Dr—1
[N () = MY P Vlg,),
r=1
to do that, one can treat the characters of the group as a matrix
M ,u(f_ DE=D " which has an inverse matrix M 17{1 =

,uEll ~D&=D /p. By this expression one can obtain the inverse
equation

1

(l—r)(/\—l)l (>\)( )
N 1“” V().

6,) = (25)

By substituting this expression and an analogous expression
for |,) into the two-mode state |T'), one obtains

1 n
—zzq

<%

(l A= A=\ =1\ \)
I [0, (@nlY," (0))2-
A= 1/\/:\./\/:\, n n n > n >

From this expression is possible to calculate the partial den-
sity matrices for each mode in the bipartite state. For this we
obtain the total density matrix and perform the partial trace
operation. Finally, arriving to

S DDl W) (W (9)],

p(1) =
[P WNTES|
n
A /\/
P = 3 DD @) @i @],
ros, A\ =1
/J(l—r)()d»A’—Z) 3
where D, , v = ~“5———c,. After this, one can calculate the
m nzN)\N)\f

entanglement between the modes. The entanglement is cal-
culated by the linear entropy of the partial density matrices,
giving the following result

(26)

n
> DD

s\ =1

S =1- Z |ﬂ,/t|2a F)\,,u =
A =1

/1 A

The quantification of the entanglement by using the decom-
position of the two-mode system in terms of cyclic states was
done in a easier way than by directly taking the expression of
the state |T') of equation (24). Several other quantities can be
calculated using this decomposition as the mean values and
the covariance matrix of the system.

8. Generalized dihedral states

The dihedral group of n-th order (D,,) is a non-Abelian group
which contains all the symmetry operations of the n-sided
regular polygon. In other words, it contains the rotations of the
cyclic group C,, and the inversion operators Uy; r = 1, ..., n.
The inversions in the phase space are defined by a rotation plus
the complex conjugation operator C, i.e. U, = CR(6,), with
0, = 2w (r — 1)/n. In order to obtain any state associated to
the dihedral group, one must impose the condition for the state
to be invariant under both the rotations and inversions contained
in D,,. Inspired by the cyclic states, one can use a superposition
of all the rotations and inversions of a noninvariant state |¢),
that is the superposition of the states R(6,)|¢) and U,|¢). As we
have seen in the sections 3 and 4, the superpositions with
probability amplitudes given by the characters of the cyclic
group XE,’\) (g.) are orthogonal as they contain different photon
numbers. Given these arguments we define a set of n dihedral
states, each one corresponding to an irreducible representation
of the cyclic subgroup C,, as follows.

Definition 3. Let |¢) = >_or_ A, (¢)|m) be a quantum state
with at least one mean

quadrature  component
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Figure 4. Wigner functions and their contour plots for the dihedral Gaussian states associated to the different irreducible representations A of
the group D; for A = 1 (left), A = 2 (center), and A\ = 3 (right). For these figures the chosen parameters for the initial Gaussian state with

a=landb=1+1i

&=+ a"h/J2, p =i@ — a)/~2) different from zero,
i.e. (|%|¢) = 0, or (|p|p) = 0. The general dihedral state
for the irreducible representation A of the subgroup C, is
defined as

@)y + X" Vgl @D

VP (@) = M- (WY
r=1

where X;A)(gr) is the character associated to the element
of the group g, of the cyclic group, |¢f> = Ul¢) =
% AKX (P)e® M im) (6, = 27 (r — 1)/n), and where

N2 = 30 P (@+x V@) (5D

rr'=1

x (X)) + XNV ().

We would like to emphasize that it is the first time that an
orthogonal set of states have been associated to the dihedral
group. These set of states are invariant, up to a phase, under
the application of all the dihedral group elements. As the
construction of the dihedral states corresponds to the sum of
two cyclic states: one with initial state |¢) = > 77 [ A, (¢)|m)
and the other with the initial state |¢*) = 300 A5(¢)|m),
then the invariance under rotations can be implied from the
cyclic states invariance (up to a phase) of equation (7)

ROYVY (@) = 1My D)),
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from this correspondence one can obtain an expression for the
inversions acting on the dihedral states U;WELA) Y (U, = CR(O)):

Uy = Cul My (e))
= DY),

and thus one can imply that the dihedral state h/?)) in
definition 3 is invariant, up to a phase, under all the elements
of the dihedral group D,,.

As we can see in definition 3, the dihedral group can be
defined using the sum of a noninvariant state |¢) and its
conjugate |¢*), this implies that the cyclic state [1)V) is also a
dihedral state |yV) when the initial state has only real photon
number probability amplitudes A,,(¢) € R, implying
|¢) = |¢™). One can also notice that the dihedral states cor-
respond to the erasure map of the state (|¢) + |¢*))/v/2
since, as stated before, the dihedral state correspond to the
sum of the cyclic states for |¢) and |¢*).

As stated before, the sum xV(g)l¢) + XV (g)|6%)
used to obtain the dihedral superpositions, is an state with real
probability amplitudes, as |¢) = > (A, (¢)|m), then
X (@)16) + XV (g)16%) = 2505 Re(x (Y (g)An (9)) Im).
It can be seen that an analogous procedure to define dihedral
states can be done by using the imaginary part of the prob-
ability amplitudes xV(g,)A,, (), e.g. by using the subtraction
of the states XV (g)|¢) — X"V (g,)|¢*) instead of the sum
V(eI o) + XM (g)|¢*). The states associated to the
subtraction are also invariant, up to a phase, under all the
transformations contained in the dihedral group, however
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they are not orthogonal to the states defined in definition 3.
However, they still can be helpful as they contain the dihedral
symmetry.

In figure 4, the Wigner functions and their contour plots
for each one of the three states associated to the dihedral
group Dj; are shown. To construct this figure, the Gaussian
state of equation (13) witha = 1 and b = 1 + i was used to
generate the states of Ds. In all the cases one can notice that
additionally to the rotational symmetry of the C; subgroup,
the inversion invariance is also present.

9. Summary and conclusions

A general procedure to obtain a set of n orthogonal pure states
(or density matrices) associated to each of the irreducible
representations of the cyclic group C, and dihedral group D,
was proposed. This procedure can be summarized as follows:
given any state |¢) which is not invariant under the rotations of
the cyclic group, the cyclic states can be obtained from the
weighted superposition of the phase-space rotations of the initial
state R Op)) (j = 1, ..., n), where the weights of each rotated
state are given by the characters of each irreducible repre-
sentation. This procedure is then extended to density matrices
where the weighed superpositions are made of the elements
R, ﬁ)IéJr (6;), where p is the initial noninvariant density matrix.
Additionally, it was shown that the resulting states associated to
C,, provided by our method are invariant, up to a phase, under
any element of the group. The associated states to the dihedral
group D, are defined through the rotations of the original
noninvariant state |¢) and its complex conjugate |¢*). In the
case of the dihedral states, it is the first time that an orthogonal
set of states have been associated to the dihedral group.

The correspondence between the cyclic states of C, and
the renormalized states obtained after the erasure of certain
photon numbers was established and discussed. In particular,
it was shown that the cyclic state corresponds, up to a phase,
to the renormalized states with photon number states |m)
erased, where the erased states do not satisfy the condition
mod(A + m — 1, n) = 0. In an analogous way, the cyclic
density matrices obtained by our method correspond to
the renormalized matrices where the photon number
operators |m) (m’|, which does not satisfy the conditions
mod(A — m — 1, n) = 0 and mod(\ — m’ — 1, n) = 0, are
eliminated. On the other hand, the dihedral states correspond
to the sum of the cyclic states defined with the states |¢) and
|¢*), for this reason they correspond to the erasure map of the
state (|¢) + |¢*))/¥/2.

As example of the procedure the general cyclic Gaussian
states were defined. It was shown that these states can present
subpoissonian photon number statistics by using the Mandel
parameter My = ((AA)?)/(A). The symmetry properties of
the cyclic Gaussian states associated to C3 were also checked
using the Wigner function. Also, the correspondence between
the circle symmetric states C,, (n — 00): |@[J(Oé)) and the Fock
states |\ — 1) was demonstrated.

Also, as an example of the use of the cyclic states, the
calculation of the entanglement between subsystems in a

11

two-mode state was presented. This calculation takes advan-
tage of the orthogonality of the cyclic states to define a finite
representation of particular bipartite states.

The possible experimental realization of these states was
briefly discussed given the evidence presented in [33, 34] for
a generation of cyclic states in the atom-field interaction, and
in [35] were these type of superposition can be obtained using
a superconducting transmon coupled with a cavity resonator.
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