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The resolution of the MIEZE setup on the longitudinal
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ABSTRACT: A longitudinal neutron resonance spin echo (L-NRSE) spectrometer combined with a
MIEZE (modulated intensity with zero effort) configuration will be constructed at the C33 beam
port at China Mianyang Research Reactor (CMRR). In the MIEZE mode, the analyzer is placed in
front of the sample, and between the sample and the detector there is no other optical device. The
MIEZE signal is sensitive to the neutron path length differences from the sample to the detector.
In this work, we have analytically studied the effects of sample geometry, detector thickness, and
experimental setup on the resolution function.
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1 Introduction

Neutron scattering technique plays a significantly important role in the study of the dynamical
properties in condensed matters, chemical and biological systems. Neutron spin echo (NSE)
spectroscopy is an ideal method for quasi-elastic neutron scattering (QENS) [1, 2], and has the
highest energy resolution of all neutron scattering methods, typically in the range of ~neV to
~ eV [3, 4]. The basic idea of the neutron spin echo technique is to encode the information
on energy transfers in neutron scattering events by the spin phase of the neutrons. It allows the
decoupling of the energy resolution from monochromatizing the primary neutron beam; whereas
triple-axis and time-of-flight (TOF) spectrometers always have the intensity loss problem.

Golub and Géhler [5] introduced an alternative NSE method, i.e., the neutron resonance spin
echo (NRSE) technique, which uses resonance spin flippers (RSFs) [6] to take place of the two strong
static magnetic fields to define the precession regions [7, 8]. For the transversal NRSE technique,
by using pairs of identical RF flippers with opposite DC fields it is possible to reduce stray fields
to negligible values [9]. It has been developed in some neutron facilities, e.g., MUSES [10] at
LLB-Saclay in France, VIN ROSE at J-Parc/MLF [11] in Japan. IN22-ZETA [12] at Institut
Laue Langevin (ILL) in France and TRISP [13, 14] at Heinz Maier-Leibnitz Zentrum (MLZ) in
Germany are combined with triple-axes. The longitudinal NRSE technique has been proposed for
the spectrometer RESPECT at the European Spallation Source (ESS) in Sweden [15], and it has
already been available at RESEDA [16, 17] at MLZ.

As NSE technique uses polarized neutrons, it is inherently sensitive to the depolarization of
the neutron beam. Therefore, it can be quite challenging to perform experiments with external
magnetic fields or ferromagnets and protonated materials. Then the technique of Modulation of
IntEnsity with Zero Effort (MIEZE) has been developed [18], which employs one pair of resonance
coils rather than two pairs in standard NRSE spectrometer. By operating the RSF at different
frequencies, one can obtain an intensity modulated signal at the detector and the neutron energy



transfer during the scattering process at the sample is encoded in the contrast. The contrast denotes
the ratio of the amplitude to the mean value of the intensity, and corresponds to the polarization
in a conventional NSE instrument. Since all spin manipulations are performed before the sample,
MIEZE is independent of depolarisation effects.

A lot of MIEZE tests have been performed [19, 20], and this technique has already been
implemented at RESEDA and MIRA [21, 22] at MLZ, PF2/VCN [23] at ILL, VIN ROSE [11],
and also the Larmor instrument at ISIS [24]. It has been demonstrated that it can be used under
applied magnetic fields (e.g., 17 T at RESEDA [25]), and it also supports the studies of magnetic
materials [26-28] and incoherent scatterers [19, 29, 30]. In this work, we firstly give a brief
introduction about the longitudinal neutron resonance spin echo spectrometer combined with a
MIEZE configuration under construction in the C33 port at CMRR. Then we present the study of
the resolution function of the MIEZE spectrometer by an analytical method.
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Figure 1. The schematic drawing of the longitudinal neutron spin echo spectrometer combined with a
MIEZE configuration: (a) the MIEZE, and (b) NRSE option.

2 The MIEZE technique

A longitudinal neutron resonance spin echo spectrometer combined with a MIEZE geometry is
under construction in the C33 port at CMRR. The size of the neutron beam is 30 mmx30 mm.
Figure 1 shows the schematic layout of the instrument. The resonance spin flippers include a
static magnetic field By; (i = 1,2) and a radio frequency field B; with frequency w; which induce
neutron spin precessions. The static field By; is parallel to the neutron flight path, the RF field
B; is transverse to By; and the neutron beam. The distance between the first pair of resonance
spin flippers is L; = 2 m, the distance between the second resonance spin flipper to the sample is
Lrs = 1.2m. For the MIEZE option, it is possible to perform measurements for sample-detector
distance Lgsp between 0.5 m and 5 m. A 2-dimensional position sensitive CASCADE detector [31]
will be used, with ns time-resolution, and the active area is 20 cmx20 cm.

The two RF coils are operating at different frequencies in the range of 40kHz < w2 < 2MHz.
The Larmor conditions w;» = yBj, are satisfied for both of them, with y = 27t - 2.912kHz/G.
Downstream of the second RF coil, the neutron procession angle ¢ can be written as

Y= 2((4)2 - a)l)tl + 2&)2L1/V. 2.1



One can find that ¥ depends on the neutron velocity v and the time of arrival at the first RF
coil #;. At a certain position D, separated by L, from the second RF coil, the time of arrival of

neutrons is given by
Li+L
tp =t +——2, 2.2)
1

and the corresponding neutron precession angle in eq. (2.1) can be written as

L+ 1L

Yp = 2(602 - wl) (tD - ) + 2w2L1/v, 2.3)

which is independent of the neutron velocity v on the condition:
(w2 —wi)(Ly + Lp) = woLy, (2.4)

and one gets ¥p = 2(wy — w1)Ip.

By employing a polarizer, a sinusoidal intensity modulation can be obtained. With a trans-
mission probability 7 = 0.5(cosyp + 1), one can obtain a pure sinusoidal intensity /(¢p) with
maximum contrast C = 1:

I(tp)/Ih =T = %[cos 2(wy — wy)tp + 1]. (2.5)

Assume that the scattering properties of the sample can be given by a scattering law S(w) which
is symmetric around zero-energy transfer with iw < 1/2mv?, where m is the neutron mass. The
contrast at the detector position D can be written as [32]

1(tp) = % [1+ cos?2(ws — wi)tp] / cos [2 (w2 — w1) h‘:ﬁg” S (w) dw, (2.6)

where the scattering law S(w) describes the scattering properties. The MIEZE time 7y is defined as

hL
™ = U)M—Sf, 2.7
my

which is equivalent to the spin echo time in NSE and NRSE instruments, with wy; = 2(ws — wy)
called the modulation (or MIEZE) angular frequency. The role of the polarisation in NSE and
NRSE measurements is taken by the cos-Fourier transform of S(w) or the contrast C as

Cz/S(w)cos(a)TM)dw. (2.8)

For cold neutrons with long wavelength, one can perform very high resolution measurements,
since the energy resolution is proportional to the third power of neutron wavelength.

3 Path length differences due to a cylinder sample

The MIEZE method is related to time of flight method and it is quite sensitive to the path length
differences AL, through the setup. The contrast of the MIEZE signal is reduced by several factors,



such as the sample geometry, the resolution of the detector, the finite efficiency of the polarizer and
analyzer. For simplification, here the contrast C(g, 7) can be written as [33]

S(q,7)
Clg.7)=R- ) 3.1
S(q,0)
with the total reduction factor
R = Reoil * Raetector * Rsamplea (3.2)

where R, denotes the contrast reduction in the coil systems in front of the beam. It has no
analytical form and can be mainly determined by the performance of the RF-spin flippers. With the
longitudinal field geometry for the RF-spin flippers, this factor could be assumed to be close to 1 in
the experimental limit [34]. Rgetector describes the contrast reduction because of the thickness of the
detector. These two factors only depend on the instrumental parameters, while Rgayple depends on
the geometries of both the experimental setup and the given sample. It can be determined by using
Monte Carlo simulations as reported by Hayashida et al. [35] or by analytical calculations like in
refs. [33, 36].
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Figure 2. The scattering geometry in a cylinder sample with the radius 7.

For simplicity we consider a cylinder sample with radius ry as depicted in figure 2, in the case
of a parallel incoming beam the path length difference AL, can be written as
r cos ¢(cos 26 — 1) LT sin fp(tan 26 cos ¢ + sin ¢)

cos 26 cos(260 — 6p)
with S(r, ¢) an arbitrary scattering point respect to the centre of the sample, 6p the tilt of the
detector, and 26 the scattering angle with 6 = arcsin(Z—;rl) for a neutron wavelength 4 and a
momentum transfer g. The phase difference at the detector can be given by
ALZ
Ay = 27TT, 34
where A = 27v/wyy is the distance passed by a neutron of velocity v over a period 27 /wys of the

ALy = , (3.3)

oscillating signal [33].
The reduction factor can be obtained as

1 2n ) o0
Rsample = ) / / Ccos (—ALQ) rdrd¢. (3.5)
nry Jo 0 A



4 Path length differences due to a cuboid sample

Considering a cuboid sample with the width yy and thickness xg, the path length difference AL,

can be written as )
ysinfp — xcosfp

cos(fp —26)
where S(x,y) denotes the sample position. The reduction factor can be then obtained by averaging
cos(Ay) over all the sample as follows

AL2:x+

4.1

X0/2  pyo/2 AL
Rsample = / ( 2) dydx
xoyo —-x0/2 J-yo /2 (4.2)
Ginc myo sinOp 0 mxp[cos(@p — 260) — cosbp]
= Si -
Acos(fp —20) Acos(0p —20)

In additions, the finite thickness of the detector €y can also lead to the path length difference
as follows,
€
ALy= ——— 4.3
2 cos(20 — 0p) (4.3)
where ¢ is the depth of a given point in the detector. Assuming that the detection probability across

the detector thickness doesn’t change, the corresponding reduction factor can be written as

1 [o02 2nALy
Raetector = — Ccos de
£0 J_gy)2 A

4.4)
EQTT

- sine A cos(20 — 0p)

In the CASCADE detector, boron coated foils are used to convert the neutrons and record the
MIEZE signal. Each neutron detection plane is about 1 pum thick, and the detector thickness may
be not a major factor of the contrast decreasing according to the requirement €y < 27v/wy, for low
frequency wym. However, for high Fourier times, the spin echo group is in the order of minimeter
and only visible on one foil, reducing the efficiency of the detector as shown in [37].

5 Performance of a MIEZE setup

It has been demonstrated that the MIEZE technique is well adapted for the small-angle neutron
scattering (SANS) configuration [33] as well as reflectometry [19, 38].

In order to estimate the accessible (g, 7)-range for a quasi-elastic experiment using the MIEZE
option, the total reduction factor R has been calculated with the assumption R.o;; = 1 in the two-
arms (TA) and SANS methods as shown in figure 3. Figure 4 shows the accessible (g, T)-range
for a cuboid sample with the neutron wavelengths A = 4 A (where one can obtain the maximum
flux), and A = 12A, respectively. The corresponding technical limits 7y = 1.9ns and 7y = 52 ns
are obtained with L; = 2m, Lps = 1.2m, and Lsp = 4.5 m. One can find that in a large g-range,
the SANS configuration shows better performance than the TA mode. However, in the case that
the cuboid sample is tilted by an angle with respect to the y-axis, one could also maximize the
reduction factor Rgample by properly tilting the detector.
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Figure 3. The two-arms mode and small-angle neutron scattering configuration, with the cuboid sample
surface perpendicular to the incoming beam.
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Figure 4. Accessible (g,7)-range for (a) 4 = 12A, and (b) A = 4 A, with the distance between the
sample and detector Lsp = 4.5m, a detector thickness €9 = 6 um, and the cuboid sample size of 10 x 2
(widthxthickness) mm?.

In order to compare the effect of different sample geometries for measurement, the reduction
factor Rgample has been plotted versus g for a cuboid sample and a cylinder sample in figure 5. It is
obvious that different sample shapes show large differences, especially at larger g values.

According to eq. (2.7), the Fourier time is proportional to the oscillating magnetic field
frequency of the RF. In figure 6, the effect of wy ranges from 27t- 40kHz to 27t- 2 MHz has
been simulated for a cuboid sample.
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Figure 5. The reduction factor R versus g for a SANS configuration with different sample geometries, i.e.,
cylinder ro = 3 mm (red solid line) and cuboid 10 X 2 (widthxthickness) mm? (black dash-dotted line), with
A=12 A, a detector thickness &y = 6 pm. Both samples have the same volume V = 100 mm?>.
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Figure 6. The reduction factor R versus ¢ for a SANS configuration, with 1 = 12 A, the sample size of
10 % 2 (widthxthickness) mm?, and a detector thickness gy = 6 pum. wy ranges from 27t-40 kHz to 271-:2 MHz,
yielding a MIEZE time 7y from 1 ns to 52 ns, respectively.

6 Conclusion

The MIEZE technique allows to perform low background quasi-elastic neutron scattering exper-
iments in strong magnetic fields and depolarising samples because all beam manipulations are
performed before the sample. However, it is quite sensitive to the neutron path difference AL, due
to the instrumental setup and the sample geometry. We have discussed the major influence of AL,
on contrast reduction of MIEZE measurements.
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