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Abstract

The omnipresent disorder in physical systems makes it imperative to investi-
gate its effect on the spatial range of interactions for which system remains
thermodynamically extensive. Previously known bounds on the statistical free
energy for clean systems [8] indicate it to be extensive only for the spatially
short range interactions (decaying faster than r~¢ at large distance r with d as
system dimension). We analyze the bounds for quantum systems with different
types of disordered many body potentials e.g. annealed, quenched, Gaussian
or power law distributed. Our results indicate the dependence of the bounds
on the multiple distribution parameters representing the potential which in turn
permits, in contrast to clean potentials, more freedom to achieve the extensive
limits even for arbitrary spatial ranges of the interactions.

Keywords: many body long range interaction, disorder, extensive nature,
thermodynamics, Gaussian distribution, power law distribution, ensemble
average

1. Introduction

The complexity in varied forms e.g. many-body interactions, disorder etc. in real physical
systems makes it necessary to explore their statistical properties and the approach to thermody-
namic limits. An important role in this context is played by the range of many body interactions
(the spatial decay of interaction at large distances relative to its dimensionality). Based on the
range, the interaction can be classified in two categories: (i) short range interactions (SRI) that
fall off faster than »~“ for sufficiently large distances r between particle-pairs with o > d, and
(i1) long-range interactions (LRI) with o < d with d as space-dimension. (It must be noted that
the ‘range’ mentioned here is different from the characteristic length-scale of the potential).
The peculiar thermodynamic behavior of LRIs has motivated many studies in recent past [1-3]
and is also primary focus of the present work. The specific issue we address here is regarding
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the influence of disorder on extensive behavior of quantum systems with long-range interac-
tions. The idea to pursue this study originates from intense current interest in the questions
of localization, thermalization and ergodicity, at finite temperature, of a many body system,
isolated or weakly coupled to a bath [4-7].

In thermodynamics, an extensive property of a macroscopic system e.g. free energy is
defined to be directly proportional to the size of the system and independent of its shape. In
statistical mechanics context however the definition is not so straight forward. For example,
the free energy of a finite system defined through the partition function is not, in general
directly proportional to its volume and is shape-dependent. Due to varying definition of parti-
tion function across thermodynamics ensembles, the latter’s choice also play an important role.
To reconcile the thermodynamics with statistical mechanics, it is therefore necessary that the
statistical properties should approach their thermodynamic behavior in the ‘thermodynamic
limit’, that is, the limit of infinitely large system-size while keeping the particle density
finite.

As indicated by previous studies [§—12], the existence of a ‘thermodynamic limit’ in a clean
system depends on the nature of the interaction which in general may have both attractive as
well repulsive parts. This is intuitively expected: an unconstrained increase in the attractive
forces in macroscopic limit would lead to collapse of the system, with free energy per parti-
cle diverging to —oo. Similarly an unrestricted increase in the repulsive part with increasing
volume would cause system to disintegrate with free energy per particle diverging to co. The
stability of the system in macroscopic limit is therefore feasible only under certain conditions
on the interactions. The necessary, unavoidable role of statistical mechanics in the analysis
of many-body systems has motivated many studies in past to probe these conditions. The
most rigorous results have been derived by the studies [8, 9] on clean systems, quantum as
well classical and under various general conditions on the attractive and repulsive part of the
potential energy, on the shapes of the domains confining the system and for canonical as well
as grand canonical ensemble. Based on these studies, the crucial role played by the range
of many body interactions in absence of disorder, in context of the system-stability is now
well-understood.

A real many body system always contains some disorder. It is therefore natural to wonder
about the role of disorder in presence of many body interactions e.g. how the disorder would
affect the allowed ‘range’ of interaction in context of extensive behavior of the physical proper-
ties. The intuition suggests that the disorder may act as a barrier (screen) for interaction between
two faraway units of the system, thus effectively reducing the ‘range’ of interaction by local-
averaging although spatial dependence of the potential (for a single system) may still behave as
r~® with a < d. The intuition is indeed supported by the studies in classical long-range lattice
models [13—17] but its validity in general for classical and quantum systems is not known so
far. As averaging of the properties is necessary for any theoretical/experimental comprehension
of the disordered systems, the information about effective reduction of the ‘interaction range’
due to disorder, thus increasing its thermodynamic viability, is very desirable. This motivates
us to reconsider the derivations, given in [8] of the upper and lower bounds of the free energy
for a disordered many body system and seek whether the ‘range’ of interaction can indeed be
affected.

Based on underlying complexity e.g. many body interactions, impurities and scattering con-
ditions etc, the randomness in the system can manifest in various forms which in turn can have
significant consequences for the statistical averages. In case of the system with an annealed
disorder, the random variables it depends on evolve with time; the statistical averages are there-
fore carried out over all possible values that the random variables can take. On the contrary, a
system with quenched disorder depends on random variables frozen in time; the averages are
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Table 1. Extensive limit of disordered many body interactions with arbitrary spatial dependence: the table describes the conditions on the dis-
tribution parameters, with arbitrary spatial dependence, for which the ensemble averaged free energy is extensive; (note columns 2nd, 3rd, 5th
and 6th correspond to conditions (71), (78), (86), (81) respectively with w,,w; = 0). In presence of disorder, the spatial dependence of many
body interactions is expected to manifest through the distribution parameters of the potentials. More specifically, the ensemble averaged mean of
the potential in general has the same spatial decay rate as its single replica. As intuitively clear, the presence of more parameters in a condition
increases the probability to fulfill it. For annealed case, the temperature also enters in the condition as a parameter, thereby helping the collective
conspiracy of the parameters to achieve extensive limits. Helre the symbol G in 3rd column refers to the geometric mean of a spemﬁc combi-

nation of parameters: G, = [, [aw (Be)™ T (—au, Bew)] M2 for Pareto, G, = e —8y I [ eUT (ifcy) + e U (=ificyy)| M2 for Cauchy

n=1 n!
Levy, annealed Cauchy and symmetric-stable (both annealed and quenched) distributions, the results mentioned in the table are applicable only for
the restricted support (see text) The 4th column states whether the annealed disordered LRIs with specific distribution type given in column 1st
(and with p, 12,8y, ¢y ~ R, , ¥ < d) can be extensive i.e. whether both the conditions in columns 2nd and 3rd can simultaneously be fulfilled for

them (a brief explanation given in®). The 7th column contains the similar information for the quenched disorders (a brief explanation given in®).

. 1yt na . H
case, G, = e Pu [T [% S CUT B M 2 (”“k’ ) T(nay + DT (—nay, Bu — 6y)) 1 % for Sym-stable case. Note in case of quenched

Distribution type Annealed lower bound ~ Annealed upper bound  Annealed LRIs  Quenched lower bound  Quenched upper bound  Quenched LRIs

Gaussian Finite u, 02, T 2ukT < V2 Yes® Finite u u<0 No?
Levy Finite 0, Sy +2kTcy <0 Yes? oL <7 Sy > EU Yes”
Pareto Finite ¢ /T G,>1 Yes® otk kffk <0 Zkl(llk](iz zZ No”
Cauchy Finite 0, cx/T G.>2 Yes? 5. <0 oy =0 Yes”
Sym-St Finite 6y, ¢ /T G, > 1 Yes? Y. <0 Yy >0 May be?

“The comments in 4th column of table 1 are based on following reasoning (for the conditions in columns 2nd, 3rd): (a) Gaussian: the conditions can be satisfied by an LRI at sufficiently
strong disorder, (b) Levy: the conditions can be satisfied by a LRI with a suitably large negative location parameter, (c) Pareto: the stability parameter a and scaling parameter ¢ being
always positive, the condition on G, can be satisfied, (d) Cauchy: with ¢ always positive semi-definite, the conditions can be fulfilled for Cauchy cases with a negative location
parameter, (e) Sym-stable: the terms corresponding to higher n in the series are expected to cancel each other’s contribution, the condition G, > 1 can be fulfilled by the cases with
negative location parameters.

°The comments in 7th column of table 1 are based on following reasoning (for the conditions in columns 5th, 6th): (a) Gaussian: y being the mean of ¢,,, a repulsive potential,
is expected to be positive, (b) Levy: the location parameter ¢ can in general be bigger or smaller than the scale parameter, (iii) Pareto: upper bound cannot be satisfied as ¢ > 0,
ay > 1, (c) Cauchy: the location parameter ¢ can in general be positive or negative, (d) Sym-stable: due to cosine terms, the contribution from series in equation (85) may be positive
or negative.
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Table 2. Extensive limit, annealed disorder and low temperature: besides spatial decay
rate of the potential, the bounds on the averages in the annealed case can in general
depend on temperature too. Here the 2nd and 3rd column describe the low tempera-
ture limit of the bounds on the distribution parameters for the ensemble averaged free
energy to be extensive. Assuming the distribution parameters (i.e. o2, 8y, ¢y) appearing
in column 3 with a spatial dependence of 1/r7 type, the columns 3rd and 4th predict if a
d-dimensional system with specific disordered potential type is extensive. Note the case
~ > d for each disorder type is similar to the clean case.

Distribution Case rl—, Case r%
type Lower bound Upper bound withy < d withy > d
Gaussian 0?2 <0 12 >0 Extensive if Extensive if
o2 =0 02 =0
Levy 0L > —w, oy < R%ﬁ—F Exﬁensive i£ Extensive if 9,
1) U < 0, 0 L finite
finite
Pareto CL = —w, cy < IT:,-”J‘;—E Not extensive Extensive
(ascy = 0)
Cauchy o+ T > —w, Sy +3cy < RZL”“ Extensive if Extensive if 0,
oy <0, finite
|_5U\ = Jcu,
0 finite
Sym-St 0L > —w, oy < RZ"’;F Exﬁensive i£ Extensive if 3,
1) U < 0, 0 L finite
finite

therefore obtained by keeping the random variables fixed. The averages also depend on the dis-
tribution parameters representing the disordered potential as well as on its spatial dependence
and a competition among them is expected to influence the bounds for extensive behavior.
This motivates us to consider the disordered potential of both annealed and quenched types,
and with distributions of both finite and infinite variances. Our results, illustrated in tables 1
and 2 for specific cases, clearly indicate the significant role played by disorder to sustain the
thermodynamic extensive limits in physical systems: the appearance of multiple distribution
parameters in the bounds indeed helps, by a subtle conspiracy, to overcome the effect of the
spatial range of interactions. In case of annealed disorder, the temperature also appears as a
parameter, thus increasing the degree of freedom for the system to approach the thermodynamic
limit.

For clear presentation of our ideas, here we confine ourselves to disordered potentials in
quantum systems in contact with a heat bath which permits the use of canonical ensemble.
Note most studies of the LRIs in past have focused on isolated classical systems and there-
fore analyzed thermodynamic properties in micro-canonical ensemble. The contact of a real
disordered LRI with external environment however cannot usually be ignored which makes
it necessary to consider canonical ensemble for their analysis. Our approach can also be
generalized to grand canonical ensemble along the same lines as discussed in [8] for clean
cases.

The paper is organized as follows. Section 2 describes the Hamiltonian of the quantum sys-
tem used in our analysis; for comparison of results, here we use the same general form of
the Hamiltonian as in [8]. Section 3 reviews the definition of thermodynamic limit for free
energy and Fisher—Ruelle conditions on the non-random many-body potentials under which
the free energy is extensive. To clarify our objectives from the onset, this section also presents
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a statement of our results for the conditions in the case of disordered potentials. The deriva-
tion of the conditions for both annealed as well as quenched disorder and for the finite and
infinite limits of the system volume is described in section 4; essentially being analogous to
section 3 of [8], the steps for infinite volume limit are mentioned only briefly (with some
details given in appendix A). In presence of the disorder, the spatial decay rate of the poten-
tial enters in the conditions through the distribution of its random part and the results can
vary based on the distribution parameters e.g. finite or infinite variances; this is discussed
in detail in sections 5 and 6. Our results clearly show a sensitivity of the thermodynamic
limit to the nature of disorder, with latter often helping the LRIs to recover their extensive
behavior. Table 1 describes the parametric condition for five distribution types of the LRIs
which leave the system extensive if fulfilled. Table 2 mentions the low temperature limit of
the conditions on extensivity of LRIs. An example illustrating our results is also discussed
in appendix B. We conclude in section 7 with a brief discussion of the implications of our
results.

2. Many body Hamiltonian

Let H (pl, e PNSTLL, rN) be the Hamiltonian of a quantum system of volume (2 con-
sisting of N interacting ‘particles’ (i.e. sub-units) with their momenta and spatial coordi-
nates as ps, Iy, s = 1,...,N. Assuming that the interacting part can be separated from the

non-interacting one, H can be written as

H=H,+ Uy (D)
with Hy(p1, ..., PN; L1, - - ., Iy) as the total Hamiltonian of N non interacting ‘particles’
N
Hy = Hy, )
s=1

H(()s) :H(()S)(px,rx) as the single-particle Hamiltonian of the particle labeled as ‘s’ and
Uy = Un(ry, 12, . .., Ty) as the total interaction among the particles.

In general, a many body potential among N particles may consist of the sum over
contributions from k body terms, with 1 < k < N:

N
Uy =Y U® (3)
k=1
with U® as a k-body contribution
UP =" U1, 1) “)
{r}
with ), implying a summation over distinct X combinations of k particles chosen from

the set of N particles, with subscript p referring to one such combination and subscripts
pl,p2,..., pkranging from 1 — N. Here we assume, as in [8], that Uy(r;, 12, . .., Iy) iS sym-
metric in N variables rj, i = 1 — N. Note however, due to presence of disorder, Uy is not
translational invariant for our case.

For application to real quantum systems, it is useful to assume H to be a self-adjoint opera-
tor, thus implying it has real eigenvalues and a complete set of orthonormal eigenfunctions. As
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discussed in [8], this assumption imposes constraints on the allowed boundary of the volume
Q and also requires the potential U to be square-integrable. To proceed further, it is there-
fore necessary to define the domain confining the system. Following the approach given in
[8], we consider a d-dimensional coordinate space, with position vectors r, confined within a
domain denoted by D and volume €2 = €2(D). The domain is assumed to have a wall of thick-
ness i > 0 so that the statement ‘r is in D’ implies that the point r is at least at a distance h
from any boundary point of D; this is equivalent to say that r is in a free volume 2’ where
< Q.

For later reference, we also consider two sub-domains D, D, which may overlap but their
free volumes are separated by the distance R and lie within the free volume of domain D.
The sub-domains Dy, D, are assumed to be of volumes 2,2, and contain N, N, particles
respectively such that Q2 = Q; + 2, and N = N + N,.

Consider Hy(py, - - -, Py,3T15- - - Iy;) and H)(p, ..., pﬁ\,l;r'l, e, rﬁ\,z) as the Hamiltoni-
ans of these two parts which interact with each other with an interaction potential ®. Thus we
have

H=H +H,+® 5)

with Hy = >N HY 4+ Uy, and Hy = -2 H + Uy,. Here Uy, = Uy, (r1,12,. .., Ty,)
corresponds to the interactions among the particles within domain D; only. Similarly
Uy, = Uy, (r},15,. . ., r’NZ) is related to the domain D, only and ® is the sum over those inter-
actions of Uy which are not contained in Uy, , Uy, (i.e. those consisting of particles from both
volumes €2, (,:

D = O(ry,12,. .., Ty, T, TS, 0, Ty) (6)

Clearly the net potential energy Uy = Un(ri,X2,. .., Iy, T}, Th, ..., rj\,2) of the N particles
within domain D is the sum of the potential energies of the particles within domain D;, D, and
the interaction ®: Uy = Uy, + Uy, + ®. Further note that

o= ok = 3 gklrs), )
kil kLp.p

with superscripts &, / implying k of them in domain D; and [ of them in domain D,. Further >,
and ) v refer to the summation over distinct combinations of k and [ particles, respectively,
chosen from the set of N; and N, particles, respectively with subscripts p, p’ referring to such
combinations. The number of k + [-body terms <I>(k’l), with k of them in domain D; and [ of
them in domain D, given as

- NN, N, —1 N, — 1
Mk*";ml)(k—l)( ! ><k—1) ©

which becomes very large in the thermodynamic limit (see appendix C of [8] for the
derivation).

3. Extensive nature of free energy: conditions on potentials

The free energy F of a system, with Hamiltonian H and at a temperature 7, is defined as
F = —é log Z with Z as the canonical partition function Z = Tre *7 and 8 = (kT)~'. The
thermodynamic limit of the free energy can be defined as follows [8]: given a sequence of

6



J. Phys. A: Math. Theor. 53 (2020) 165001 P Shukla

domains Dy, (k =0, 1,2 . ..) with volume (D) — oo containing N particles at fixed particle
density p, the limiting free energy per particle, say f = F/N becomes volume-independent:

As discussed in [8], the existence of the limit depends on two requirements as volume of the
system increases: (a) a lower bound of the free energy per unit volume, say f, it should not
diverge to —oo, and (b) an upper bound of the free energy per unit volume, that it does not
diverge to +o00. These bounds on the free energy in turn manifest as constraints on the many
body potentials; here we state them first for clean potentials (derived in [8]) and later on their
generalization for disordered cases (derived later in this paper).

3.1. Ruelle—Fisher conditions on clean potentials
As discussed in [8], the bounds on free energy impose following constraints on the potentials:

(a) The lower bound on the potential, also referred as the stability condition, is given as
Un(ry,ra, ... xy) 2 —wg N (10)

forallry,rs,...,ryand forall N with w, finite. The above relation is basically a statement
about the stability of the system against its collapse due to attractive nature of the potential.
More restrictive conditions ensuring thermodynamic limit can be also obtained for a class
of stable potentials [8].

(b) The mutual potential energy ®(N;, N,) of the sets of N; and N, particles, separated from
each other by a minimum distance R, satisfies the inequality, for some fixed Ry and wy,

N1 N wy,

/ / /
<I>(r1,r2,...,er,rl,rz,...,er) < Rt

(1)
ifr,—rj|>R>Ryforalli=1,...,Nyandj=1,...,N, and % is sufficiently
small with € > 0. The above relation describes the stability of the system against the
repulsive part of the many body interaction.

3.2. Conditions on disordered potentials

In presence of disorder, it is relevant to consider the thermodynamic limit of the disorder aver-
age (also referred as the ensemble average) of the free energy. The averaging (also referred as
the ensemble average) however depends on the nature of the disorder i.e. whether it is annealed
or quenched:

(F)

(log Z) quenched (12)

=3 log(Z)  annealed (13)

with (.) implying a disorder average. (Here the annealed and quenched disorder refer to system-
dependence on random variables that do and do not evolve in time, respectively. A quenched
disorder average is therefore obtained by keeping the random variables fixed, while an annealed
average is an average which is also carried out over all the possible values that the random
variables can take).
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Our objective in this paper is to derive the conditions on the disordered potentials for which
(F)/Q will have a well-defined thermodynamic limit. In this section, we state the conditions;
the details of their derivation are given in sections 3 and 4.

(a) The Hamiltonian H for the domain D represents a sufficiently well-behaved, stable poten-
tial (system) so that (Z) (quenched case) or (log Z) (annealed case) exists. This in turn
requires that on an average the minimum diagonal element, say Upiy, of potential U in
an arbitrary basis is bounded from below such that a finite w, (more accurately w, < co)
exists for all N (equivalently volume €2 containing N particles) for which

—— log(e ™ #Unmin) > —w,N (annealed) (14)
(Unin) = —waN (quenched) (15)

(b) If one consider two domains say D; and D, separated from each other by a minimum
distance R, the interaction potential ® of these domains must not depend too strongly on
N1, N, (alternatively their volume €2, {),) and must decay to zero with increasing R. Here
R is alength scale such that (a) |r; — r’;| > R for all particle-pairs (r;, ;) with r; in domain
D, andr’ ;inD,, and, (ii) Qléjfz is sufficiently small for a d-dimensional disordered sys-
tem. The free energy can be shown to be bounded from above if the largest diagonal,
referred as @, of -matrix in an arbitrary basis (in which H;, H, and ® are statistically
independent) satisfies following inequality, for all Ny, N,

1 . N N
3 log<e"‘3@m“> < leiigwb (annealed) (16)
N N.
<q)max> < leiz_i_va (quenched) (17)

where wy, is finite.

As explained later in sections 5 and 6, the conditions (15)—(17) can further be simplified,
based on the tail behavior of the ®,,,-distribution e.g. exponential or power-law (which gov-
erns the applicability of the central limit theorem) and the separability of its spatial dependence
from random degrees of freedom.

As clear from above, in contrast to non-random case where the conditions for the thermo-
dynamic limits are on the potential itself, now only the distribution parameters are subjected
to constraints

4. Bounds on free energy in presence of disorder

4.1. Lower bound on free energy

Peirels theorem [18] states that for a self adjoint operator H

Tre ™) = > (ke ™ k) > Y exp [-B(kIHIK)] (18)

k k

where |k) is arbitrary basis. Using the above, the partition function Z(N, 2) = Tr(e?") for the
Hamiltonian H = H, + U can be written as
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Z(N, Q) > Z e P Howk o= Unk (19)
k

Now let Upin and Upyax be the minimum and maximum diagonals of the interaction potential
U in an arbitrary basis, then it can be shown that [8, 10]

(Tr efﬁHo) e HUnin > Z(N,Q) > (Tr efﬁHo) e~ BUmax (20)
Using only the first inequality, one has
Z < 7 e Umin @1)

where Zy = Tr e 710 is the partition function, with Hy as the Hamiltonian for the system of
N non-interacting particles confined within volume 2 with p as the constant particle density:
N = pQ.

For clarity, let us assume that Uy, corresponds to the sth diagonal of U: Uy, = U =
(s|U|s). For cases with U given by equation (3), one can write

N
T ST B e
k=1 p

with U%P) as the sth diagonal of the potential U*?). Equation (21) can then be rewritten as
Z< Zye s (23)

The lack of interaction permits Z, to be expressed in terms of the single particle parti-

. . . _BH® . . . o
tion functions z;: Zoy = (z,)" with z, = e #0" with Hés) as the single particle Hamiltonian. To
proceed further, we need to consider the annealed or quenched disorder case separately.

(a) Annealed case:
As the partition function Zj corresponding to non-interacting system is independent of
the interaction potential, the ensemble average of both sides of equation (21) gives

(Z) < (Zo) (e Umin) (24)

The above on substitution in equation (13) leads to
1 ;
(F(Q)) = N (Fy(Q)) — 3 log (e Umin) (25)

with Fy = —% log z, as the free energy of a single particle with z, as its partition function.
If condition (14) is now fulfilled, the lower bound on f, the ensemble averaged free energy
per particle for interacting case, becomes

f 2 fr — Wy (26)

where f; = (F;), is the ensemble-averaged free energy per particle for non-interacting
case, or equivalently, the ensemble-averaged free energy for a single free particle. Clearly
a finite lower limit of f would then exist if w, remains finite in the infinite volume
limit. Note w, can be temperature dependent but for the limit to exist at very low

9



J. Phys. A: Math. Theor. 53 (2020) 165001 P Shukla

temperatures, w, should also be finite in 77— O limit. It is possible however that the
approach to thermodynamic limit of a system varies with temperature.

(b) Quenched case:
First taking log of both sides of equation (21), followed by an ensemble average,
gives

(F(Q)) = N (Fs(2)) + (Unin) (27
Substitution of equation (15) in equation (27) now gives

f > fs — Wq (28)

Clearly a lower bound of f exists if the lower bound of (Uy) is given by equation (15),
with a finite w, in the thermodynamic limit (&, {2 — co with p constant).

Note if <UT‘,‘> — 0, the lower limit of the free energy of the interacting particles is then
given by the non-interacting ones. Clearly the lower limit of the free energy exists for
an arbitrary potential Uy given by equation (3), irrespective of the spatial range of the
many body terms U, as long as the minimum eigenvalues of the latter are symmetrically
distributed such that (Uy,) = (U®) = 0.

4.2. Upper bound on free energy

Following the approach of [8], we now consider a domain D of volume €2 containing N particles
divided into two sub-domains D;, D, which may overlap but their free volumes are separated
by the distance R and lie within the free volume of domain D. The Hamiltonian in this case is
given by equation (5).

Again applying Peirels’s inequality to the partition function Z(N, Q) = Tr(e ") with H
given by equation (5), we have in an arbitrary basis, say |k),

Z(N,Q) > Z e BHITHIN o8 Pik (29)
k

2 e*ﬁ ‘bmaxz e*ﬁ(Hl +H)ik (30)
k

where @, is the largest diagonal of ®-matrix: ®,,x > Py for all k. Henceforth subscript 7
will be reserved for @, i.€. D, = Ppax. Note from equation (7)

_ (k.D) (kD) (kLp.p)
(I)’?’? - Z Z q)mz > (I)nn - Z (I)nn ! GD
ko1

kLp.p/

(a) Annealed case:
Assuming H;, H, and ® as statistically uncorrelated, the ensemble averaging then gives

(Z(N, Q) > Z (e PHITHic) (= Pmax) (32)
k

To proceed further, let us write for simplification

o Ql Qg Wp
- Rd+€

10
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Now using equation (16), (32) can then be rewritten as
(Z)2(2)-(Z) - P (33)

Taking the logarithm of equation (33) and using the definition for the ensemble aver-
aged free energy per unit volume f = —i log(Z) yields, for both w;, > 0 or w;, < 0,

Qf < Wfi+Dfh+]of (34)

By successive divisions of further domains D3, D, from the domain D; and iterating
equation (33), we can obtain an inequality for an arbitrary subdivision of the original
domain D:

n 1 n—1
PO <Y om fup Q) + 5 > Lo (35)
m=1 m=1

where v,, = %" Here again the free volumes of the n sub-domains D,, are contained in

the free volume of (2 but are separated from each other by at least the fixed distance R.
Here the series in the last term comes because we gain additional terms «, in successive

Q->" Q) Uw
. Q—0H) O w, Q—0H—3) Q3w j=2%¢%j n Wh
stages: o = (=0 0 wp R§1”2 b Qy = Q=S ) 23 wy szfE) 3°b and a1 = % As Q) >

n
=2 €, one has

n—1 n—1 m—+1 |w| Qz

b
ST Sl R SN 3
m=1 m=1 j=2

Substituting this in equation (35), we have, with § = 7.,

T <D v funlp, Q) + wp| € 37

m=1

(b) Quenched case:

Proceeding from equation (30) by first taking log and then averaging, one can again
arrive at equation (37) but now wy, is given by the inequality (17). As clear, the condition
is satisfied by w;, = 0, irrespective of the range of potentials, as long the disorder average
of their off-diagonals is zero.

4.3. Thermodynamics limit and extensivity

Equation (37) give the upper bound on the free energy per particle of the Hamiltonian H for
a disordered system of volume (2 confined by a domain D. It is now relevant to consider the
thermodynamic limit of the free energy i.e. to analyze the form of its lower and upper bounds
in the limit {2 — 0o, R — oo such that € = % — 0. Note equation (37) is essentially of the
same form as equation (5.5) of [8] (with following replacements N — —f, Q@ — D, V — Q
where the symbols given on left of the — are those used in [8]). Following the approach used
in section 6 of [8], the upper and lower bounds on free energy, in large k limit and for v > d,
can be rewritten as (details given in appendix A)

1
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Fu ) < fip.Qg)+ LS (38)
(1 =)

with £ arbitrary, ¢, < 1 (see appendix A) and

f(p’ Qk) = f(p» Q0) + wq (39)

Here, as mentioned before, w,, w, must remain finite in the thermodynamics limit; (note
w, can be a decreasing function of the volume). Further, analogous to case of non-random
potentials too [8], w,, w;, are temperature independent in the quenched disorder case. However,
for annealed case, the temperature-dependence of w,, w; cannot be ruled out.

As clear from equations (38) and (39), an existence of finite w,, w;, satisfying conditions
(14)—(17), in turn implies the existence of a free energy with upper and lower bounds in the
thermodynamic limit.

5. Role played by type of disorder: distribution with finite variance

In presence of disorder, each of the k-body contributions uk») (equation (4)) and ®* are ran-
domized, with their matrix elements behaving like random variables if the basis to represent
them is chosen appropriately e.g. the eigen function basis of the Hamiltonian in absence of
disorder. With Uy, and ®,,, given by equations (22) and (31) respectively, both of them behave
as random variables too. Based on the nature of randomness and mutual dependence of var-
ious terms contributing to them, the conditions can be rewritten in terms of the distribution
parameters which gives better insight about their applicability.

For later reference, an important point worth emphasizing here is following. As the ques-
tion regarding an existence of upper bound of free energy is concerned with repulsive core of
a potential at large particle-distances, the matrix elements of ® in any physically meaningful
basis are expected to be positive. Further, as ® describes the interaction between two domains
at a spatial distance R, this results in a R-dependence of ®,,, and thereby its distribution param-
eters. Intuitively the mean and variance of the distribution for ®,,, are expected to have the same
spatial-dependence as its typical value.

For cases in which U*?) for k = 2 — N are mutually independent, both U = >~ UG” as
well as @57]‘,;1) => p’pﬁI)],;;é”””/ are summations over many independent random variables. With
number of terms contributing to U and CID%I) becoming very large in the thermodynamic limit,
the standard central limit theorem (CLT) predicts their distribution to approach Gaussian limit.
The latter helps as the averages in equations (14) and (16) can then be simplified by following
identity for a Gaussian random variable, say y with mean u and variance o>

(e7F7) = el/2F0>~fu (40)

Consider that the diagonal element U of U*?)(r,,, .. ., 1) are distributed with mean u*»)
and variance o2*?). Following CLT, the mean u; and variance v} for the Gaussian distributed
U™ can be expressed as

=3, oF =3 g (1)
P P

. . . / . . . . .
Similarly assuming that CID%I‘,;I”’ ) is distributed with mean ;") and variance 2*??), the mean

i and variance v, for the Gaussian distributed CID%I) can be expressed as

12
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klpp 2 2(klpp
kl:ZM( ) Vkl:ZV(W) (42)
pr pr

Further assuming that many body interactions U for different k are mutually indepen-
dent, the latter would also be applicable for their diagonals UX. Applying the same reason-
ing, maximum diagonals <I)(k D for different k, [ can also be assumed independent. Following
equations (22) and (31), thls 1rnplies

(Unin) = (Uss) = Y (UY), (43)

k
(Prmax) = (D) = Z <(I)§7k7§)> (44)

Kl

and
<eﬂ9 Umin> = (e Un H -B U§'§) (45)
k

(670 Pmn) = (=5 Pm) H o q>5]knt> 46)

k.l

A point worth emphasizing here is as follows: from equations (22) and (31), Uy as well
as ®,, can directly be written as the sum over U*P) and @%””/) respectively which suggests
one to apply CLT directly to Uy, as well as ®,,. But note U* for different k values refer
to the interactions corresponding to different numbers of particles and in general need not be
identically distributed; (a similar argument can be extended to @%””/) too). The CLT in its
standard form is however applicable to a sum over i.i.d. variables. Although many generalized
variations of CLT applicable to non-i.i.d. variables are available in scientific literature, they are
often applicable under specific restrictions on the nature of randomness of the variables. For
generic considerations, it is therefore more appropriate to apply CLT to U as well as (b%’j;l).

To proceed further, we consider annealed and quenched cases separately.

5.1. Annealed case

Lower bound. Applying the relation (40) for y — U® gives (e#U%') = e(**/2%i~5iu_ The
latter on substitution in equation (45) leads to

(o77U) = exp [Z (ﬁz(’k fu )

k

(47)

with u, oy defined in equation (41). With help of the above, equation (14) can then be rewritten
as

N
— (uk - 0;3) > —w, (48)
k=1

where w, is finite but arbitrary otherwise. Further defining u = %ZQJZI we and o? =
% Zivzl o7, equation (48) can be simplified as

u——o” = —w, 49)

13
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Note u and o correspond to an average of mean values and variances, respectively, of all
many body contributions to the potential U. Consequently, for the cases with Gaussian decay
with finite mean and variance, u and o are expected to be finite and a finite w, can always be
found. Following equation (39), this in turn implies that, at finite temperature, a lower limit of
average free energy can always be defined for Gaussian distributed many body potentials. But
at low temperature near T — 0, condition (49) cannot be satisfied unless o also varies with
temperature (e.g. 0> ~ %); note however in the latter case the condition reduces to almost same
form as in the case of non-random potentials.

Upper bound. Applying the relation (40) to & gives (e 0%y = e /2B with

s Vi defined in equation (42). Substitution of the latter in equation (46) gives

2.2
(e7%m) = exp [Z <ﬂ 2”“ ﬂuu)] (50)

k.l

Using equation (50) in equation (16) then leads to

NN,

B NiNyw,,
E (ukIEVfl S R (51
ki=1

: _ 1 NNy _ 1 NiNy ; ;
Further defining p = 55> 2127 pw and v = 555 70077 vy, the above inequality can be

rewritten as

w,
B w

S i (52)

"

For cases with 2 < ﬁoz, the condition (52) is satisfied for w;, = 0, (the left side of
equation (52) being negative-definite as v> > 0). Consequently, following equation (38), an
upper limit of free energy exists, for finite temperatures, for any d-dimensional disordered
many body potential of arbitrary spatial decay if 2yt < So. Further, even if y1 ~ % > (0 with
~ arbitrary, equation (52) is satisfied for very low temperatures (5 — oo) irrespective of R-
dependence of v. In opposite case of 2i1 > 307, a finite wj, can again be defined if 1 ~ R%
with v > d. Clearly in this case, the condition for existence of upper limit is same as in the
case of clean potentials.

As clear from the above, a competition between mean and variance, latter dominating the
former with help of low temperature, fulfills the condition for upper limit for potentials with
arbitrary spatial decay.

5.2. Quenched case

To determine the upper and lower bounds in this case, only a knowledge of mean values (Uy;)
and (¢,,) is needed. As discussed above, Uy, behaves as a product of Gaussian variables U,
with its mean given by equation (43); the condition (15) can then be rewritten as

U= —wy,. (53)

where u is same as defined above equation (49). Clearly, u being finite, the above condition can
be fulfilled for an arbitrary potential U irrespective of its spatial range. Similarly ¢,,, behaves
as a product of Gaussian variables qﬁﬁl’j?, with its mean given by equation (44); the condition
(17) for upper limit can then be written as

14
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wp
B Rd+€'

(54)

with p again same as defined above equation (52). Clearly, if ¢ > 0 (® being repulsive poten-
tial), a finite wy, exists if p ~ % with v > d which is analogous to the corresponding condition
for clean potentials. Clearly, contrary to annealed Gaussian potentials, the quenched Gaussian
disorder does not help the extensive nature of long range interactions.

To clarify the above results, an example for both annealed as well as quenched cases with
Gaussian disorder is discussed in appendix B.

5.3. Clean limits

For variance-limits o7, 1/, — 0, the Gaussian distribution of variables U$’ and ¢k reduce to
Dirac-delta functions (U — ;) and 6(¢{” — vjy)(peaked at corresponding mean values iy
and 1 and zero elsewhere). Clearly theu = > pug and o = > s puq in these limits are equiv-
alent to U and ¢, and the conditions in equations (49) and (52)—(54) reduce to corresponding
limits for clean quantum systems discussed in [8].

6. Role played by type of disorder: distributions with power-law tails

Many physical variables e.g. many body potentials often reveal a stable distribution with
asymptotic power law decay which corresponds to infinite variance. A stable distribution in
general is described by four parameters, say a, b, ¢, 0 referred as the stability, skewness, scale
and location parameters of the distribution, respectively, and can be defined as [19]

1 oo P
f(ea,b,e, §) = ;Re/ elt(xfls)e*(cl) (1—ibe) ds, (53)
0

with ¢ = tan(wa/2) for a # 1, ¢ = —(2/m)log|t| for a = 1; (note another expression for ¢
is also used sometimes [19]: ¢ = ((cz|'™ — 1) tan(wa/2) for a # 1, ¢ = —(2/m)log|ct| for
a = 1). Here the parameters are confined within following ranges:

ac0,2], be[-1,1], ce€(0,0), € (—o00,0) (56)
with support of the distribution depending on a, b:

X € (—o0,00) if b# +1,

x € [0 —ctan(ma/2),00) ifa<l,b=1

x € (—00,6 4 c tan(wa/2)] if a<1,b=—1. (57)

A relevant point for comparison with non-random cases is that, in the limita — 0 or ¢ — 0,
the variable x described by stable distribution approaches its non-random limit: f{(x; a, b, c, i) —
O(x — p).

As examples and also for later reference, we mention here three important stable distri-
butions, namely Levy (¢ = 1/2,b =1 and x € [4, c0)), Pareto (x € (—o0, 00)) and Cauchy
(a=1,b=0 and x € (—00,0)), with their probability densities given as follows (with
subscripts L, P, C on freferring to Levy, Pareto or Cauchy distribution, respectively) [19]:

Levy fisie.0) = [(51/21e,0) =[5 (=8 Ve =0, (58)
vis
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a

Pareto fp(x;a,c) = f(x;a,b,c,6) = x% x=0),=0 x<c) (99

1 2
Cauchy fe(xic.6) = f(x:1.0,c.6) = [M} (60)

Evaluation of averages: as mentioned in previous section, the standard central limit
theorem is applicable for a sum of independent and identically distributed (i.i.d.) random
variables with finite variances. For cases where the random variable is described by a non-
degenerate stable distribution with power law tails, a generalized central limit theorem can be
invoked [19]: consider random variables x,, n = 1 — N distributed with probability density
fxu; a, by, ¢y, 0,). The generalized CLT (GCLT) predicts that the sum

N
y=> % (61)
n=1

will tend to a stable distribution f{y; a, b, ¢, §) as the number of random variables grows where

N
0= Z 0y + tan(ma/2) <bc — Z bncn> a#1
n n=1

N
2
= 0+ —|(bcl — byc, log ¢, =1 62
zﬂ:+ﬁ<cogc;cogc>a (62)
For the case in which x, are independent and identically distributed say with density
Sf(xu, a, by, co, 09), ¥ approaches the distribution described by f(y; a, b, ¢, §) with b = by, ¢* =
Nc§, § = NS + Nbycy tan(ma/2) (N'=®/@ — 1) fora # 1 and oy = NS + 2bycoN log N for
a=1.

The calculation of the averages is easier for cases with symmetric stable distribution
f(v,a,0,¢,6) and 3 > 0 (later referred as sym-st). The averages can however be defined only
in a restricted region 6 < u <y < oo; equation (55) gives (using b = 0)

X 1yl an
(6 P)gres = 3 EDTEH™ G (”“T”) T(an + )T (—an, Bu— ) e ™ (63)

n!

g n=1
1 2 ¢ (anu — §) T(an — 1) nam
(V)sres = p nz::l T G — o) cos (T) (64)

with notation (.)s,.s implying an ensemble average over the restricted region in which such
averages can be defined.

It is more instructive to consider the cases with special values of a, b, ¢, 6. As mentioned
above, with x, given by the distribution f7.(x,,; ¢,, 0,), fp(Xus @, ¢,) Or fe(xy, €y ,), the GCLT
predicts y to be distributed as f1.(y;c,d), fp(y,a,c) or fc(y;c,d), respectively, with c¢,d
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given by equation (62); (¢ = (Zn\/c—n)z, d=> 0+ (Zn\/a - chn) for Levy case,
c*=5 ¢t for Pareto and c=) ,c,0=> ,0, for Cauchy cases). Using
equations (58)—(60) for the distribution of y, the averages can then be given as

<efﬁy>L — e PO-V2Pe (65)
(e™)p = ac*B*T'(—a, Bc) 0
<eiﬁy>C,res _ % [ewcl—‘(iﬁc) + e*iﬁcl"(—iﬁc)] (67)

with ()7, ()p, () c referring to an averaging over Levy, Pareto or Cauchy distributed y, respec-
tively. Note here equation (67) is valid only for partial averaging i.e. for § < y < oo instead
of entire support of Cauchy distribution (i.e. —oco < y < o0); this is equivalent to considering
only a part of the ensemble of Cauchy distributed y.

Similarly
1
(V)Lires = NG [eT(—1/2,1/2)+25T(1/2,1/2)] (68)
O)p = % (@>1) =00 (a< 1), (69)
()e=20 (70)

where the relation in equation (68) is valid for the cases with a finite upper limit of y (i.e. only
for partial averaging if 6 <y < (¢ + #9)/1, with 7 > 0, instead of entire support).

6.1. Annealed case

As examples of annealed disorder with stable distribution, here we consider four cases men-
tioned above. With equations (45) and (46) still applicable for the averages, the lower and upper
bounds w,, w;, can then be obtained by using equations (63), (65)—(67) as follows.

Lower bound: assuming that U%?) is described by a non-degenerate stable distribu-
tion f(U%P, ay, by, cip, 01p), the above, along with equation (22), then implies that U®
approaches a stable distribution f(U®, a, by, ¢y, &) with its parameters given by equation (62)
(with replacements b — by, ¢ — cx, 0 — d; in the left side of the equation and b, — by,
Cn = Cips On — Oy in the right side). Using equations (65)—(67) for y — U, followed by

equation (45) gives <e’5Umi">. The latter on substitution in equation (14) then leads to the
condition

1
XLENZXk > —w, (71)

with X, = X(ay, by, cx, 0x) where

X(a,b,c,8) =0 + \/% Levy (72)
= % log [a(Bc)*T (—a, Bo)] Pareto (73)
=5+ 102 2 %log (7T (iBc) + e T (—iBc)] Cauchy (74)
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o0

_1\n+1 na
=5 %log G §o DO, (55) T+ DT (—na, fu - 5)))

n!
n=1

SymSt (75)

with u defined above equation (63) and

2
= <Z m) , O = Z Okp + (Z VCrp — Z ck,,> (Levy),
P P 4 p

5k = Z 5kp (Pareto),
P
Gk = Z Chpy Ok = Z Okp (Cauchy),
P r
1
ax
G = (Z Ciﬁ) SRUES Z oy with 0 < gy <2, (SymSt)  (76)
4 P

Note, as mentioned above, equations (74) and (75) are applicable only for restricted support
(for 6 < U® < 00, and 6 < u < U® < oo, respectively).

As the left side of equation (71) is a combination of many parameters, they may conspire
together, for some cases, to give rise to a finite w,. For example, table 1 illustrates the para-
metric combinations for which X; > 0, thus satisfying the condition (71), with w, = 0, even
for arbitrary spatial dependence of distribution parameters. As another example, consider the
low temperature limit (8 — 00) of equation (71). With definitions

_ 1 N 1 N i
= = p— ag
5L_N;6k, oL = (Nkz_;ck ) : (77)

equation (71) can now be approximated as
0L > —w, (Levy), ¢, > —w, (Pareto), 0, + %EL > —w, (Cauchy), u; > —w, (symSt)

Clearly, in low temperature limit, w, exists for Levy, Cauchy and sym-stable cases if §; is
finite (as ¢, > 0 and u > §,, see equation (56)). For Pareto case however the above limit can
always be satisfied e.g. for w, = 0. This becomes more clear by an example with i.i.d. variables,
discussed in appendix B.

Upper bound: for @5]’21"”’/) distributed as f ((bgj;l’p’p/ s @ity Diipyt's Chippl s Onapy ) heTe
again GCLT implies that (b%’j;l) given by equation (31) approaches the distribution
f (@%ﬁ}l);akl, bu, cu», O) With its parameters given by equation (62) (following replacements
b — by, ¢ = ¢, 0 — dy in the left side of the equation and by, — by, ¢ — Capp'> On —> Okgppr
on its right side). For f corresponding to Levy, Pareto or Cauchy distributions, the upper limit
wy, can then be obtained as follows: using equations (63), (65)—(67) for y = ¢4, followed
by its substitution in equation (46), gives (e #?mx) = (e=%¢m), The latter on substitution in
equation (16) gives
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s _ 1 wp
XU:iZIXkl < Rt (78)

where Xy, = X(aw, bu, cu, 0y) with X given by equations (72)—(75). Here

2

= Z Ve | s o= Z Ouipy + Z /Cripy — Z Chipp' (Levy),
pr pr pr pr
o = Z Otipy (Pareto),
pr
= Z Cipy» Ok = Z Oty (Cauchy),
pr P
e
Ukl
Tl DI with 0 < ay < 2, (SymSt)  (79)

Note, as mentioned in previous section, the distribution parameters of @gﬁ;“ can be R-dependent,
®*D being the interaction between two domains at a minimum distance R. Here again the
results for Cauchy and sym-stable distributions are applicable for restricted support only.

Once again, due to appearance of multiple parameters on its left side, the condition in
equation (78) has the possibility of fulfillment irrespective of the spatial dependence of the dis-
tribution parameters. For example one such case is the parametric conditions for which X, < 0
(with details given in table 1). Another useful example is the large S-limit of equation (78).
Using definitions

oy =
v NI»NZ

L
1 A\
Z o, Cu = (mzckzk> . (80)

k=1 k.l

equation (78) can now be approximated as

oy < RdJrE (Levy), cu < RdJr (Pareto), 0y + ECU < Rd+‘ (Cauchy),

u< Rd+€ (SymSt),

Further recalling that u > Sy and &y can be negative (see equation (56) and the text above
equation (63)), the above condition can be satisfied by Levy and sym-stable distributions for the
cases with 0y < 0 even if |3U| i for arbitrary . Butas ¢y > > 0 (see equation (56)), Pareto
distribution fulfills the above cond1t10n only if ¢y = 0 or ¢y ~ = withy > d. In Cauchy case,
however, an additional presence of &, in the bound may help to overcome the positive definite
contribution from ¢ e.g. if both 5 ~ =% c = withag > a; > 0evenif y < d. Clearly
the Pareto type disorder does not help LRIs to attain the thermodynamic limit but the disorder
of Levy, Cauchy or symmetric stable types can.

Cy ~~

6.2. Quenched case

As in the annealed case discussed above, here again U% and ¢ approaches the same stable
distributions as that of U*? and ¢7), respectively, with relation between their parameters
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given by equations (76) and (79). But a determination of w,, w;, now requires a knowledge
of mean values (UY) and (¢{") only which can be obtained by equations (43) and (44). As
examples, here again we give the results for quenched disorder with Levy, Pareto, Cauchy or

symmetric-stable distributions.

Upper bound: using equation (44) along with equations (64), (68)—(70) for y = ¢>§]’;§>,
followed by its substitution in equation (14), the condition (17) now becomes

1 wWp
Yy=—— Yu < ——, 81
U N1N2%: WS pare (1)

with Y, = Y(ay, by, cu, Ox) where

1 1t 1t

y—n 2y —2n) ]
~ 1 L 82
v [ = o "
— % (@>1), =oco (@< Pareto (83)
= Cauchy (84)

p Wy 5 SymSt (85)

_ Z (" (nua — ) I'(na — 1) cos (@)

n=1
with equations (82) and (85) applicable for restricted support only (i.e. for d; < (bﬁ%) < (ew/t+
du) and 6y < u < ¢\ < 00). Here again, ay, b, cu, du are given by equation (79) and can in
general be a function of spatial distance R between the domains. Clearly, in case of a potential
& with arbitrary spatial range R™7, at least one way to approach the upper limit is if ¥, < 0.

The parametric conditions in which the latter can be achieved are illustrated in table 1.

Lower bound: again using equations (64), (68)—(70) for y = U% with replacements
¢ — ¢, 6 — Jy, followed by equation (43) and its substitution in equation (15), then gives the
condition

1
YL:Nzk:Yk > —w,. (86)

Here Y, = Y(ay, by, ¢k, 0y) for each of the four cases is given by equations (82)—(85) but with
ax, by, cx, O now given by equation (76). Clearly for the parametric conditions leading to a finite
Y,, a finite value of w, can always be found. As an example, table 1 gives, for the four cases,
the parametric conditions which lead to Y; > 0 and thereby satisfy the condition equation (86)
forw, = 0.

The tables 1 and 2 summarize our results for the five distribution types mentioned above.
We further elucidate our ideas by an example discussed in appendix B.

6.3. Clean limits

It is worth recalling that, the limits @ — 0 or ¢ — 0 correspond to the clean (non-random)
limit of the distribution f{x; a, b, ¢, §) of the variable x (as f is peaked around x = ¢ and zero
elsewhere). A substitution of a; — 0 or ¢y — 0 in equations (72)—(75) then leads to the clean
limits of equations (71) and (86): oL = w,. Similarly substituting a; — 0 or ¢y — 0 gives the
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clean limits of equations (78) and (81): oy < % As expected, the clean limits are same
for both annealed and quenched cases and, with replacements §; — UF, 6 — (b(k‘l), coincide

with results given in [8] for clean systems, (also given by equations (10) and (11) along with
equations (3), (4) and (7)).

7. Conclusion

To understand the role of disorder, we analyzed the extensive limits for a number of proto-
typical disordered many-body potentials. Our results reveal that disorder often helps quantum
systems to attain the thermodynamic limit by relaxing the conditions on the spatial range of
potentials. While for non-random cases the need for extensivity imposes constraints directly
on each realization of the potential, in contrast the conditions in presence of disorder are only
on the average/typical average of the disordered potential and its moments. This indicates
that even though not all realizations of the potential may individually satisfy the extensivity
requirement, its fulfillment on an average across the disordered ensemble is sufficient. This is
useful because the conditions on the distribution parameters of complicated potentials can be
more easily fulfilled as the volume increases. Under certain parametric condition, this helps
to reduce the lower limit on the spatial range of ‘extensive’ interactions. In this context, our
analysis reveals the crucial role played by the nature of disorder i.e. annealed vs quenched in
attaining thermodynamic limit. The conditions in case of an annealed disorder turn out to be
temperature-sensitive, a fingerprint of the underlying dynamics which equilibrates itself with
changing temperature. For low enough temperatures and based on the type of distribution of
the potential (more specifically, its diagonal matrix element in the physically relevant basis),
the distribution parameters can conspire together to fulfill the condition necessary for the exis-
tence of upper bound of free energy (a statement on the repulsive nature of the potential) even if
the potential is spatially long-ranged (spatial decay of the potential is slower than the physical
dimensions of the system); tables 1 and 2 describe the parametric conditions for the existence
of extensive limit for five prototypical distributions. Although we have confined here to quan-
tum potentials and canonical ensemble, our results can be generalized to classical systems as
well as to grand canonical ensembles; (as mentioned before, similar results have been known
in context of classical long-range lattice models [13—17]).

As suggested by previous studies of complex systems, the role of non-homogenized, local
interactions is akin to that of disorder, at least in context of the statistical properties. Thus we
expect our results to be applicable also for a clean system with varying range of interactions
across a single sample. It seems the complexity, irrespective of its origin, helps to locally block
the interactions at far-parts, effectively making them shorter range so that they can achieve
thermodynamic limit and stability.
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Appendix A. Derivation of equations (38) and (39)

In section 4.2, we derived the upper bound on the free energy per particle of the Hamiltonian
H for a disordered system of volume €2 confined by a domain D. As obvious, the upper bound
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is the sum of the free energies of the sub-volumes contained in €2 but all of them separated
from each other by a minimum distance R; (here R is the length scale such that |R; — R,| > R
for all pairs of (s, f) particle-pairs with s in domain D) and 7 in domain D,). As discussed in
[8], this minimum distance is basically to take it account the thickness of the wall of each of
the volumes which however approaches zero in infinite volume limit.

Our next step is to consider the thermodynamic limit of the free energy i.e. to analyze the
form of its lower and upper bounds in the limit {2 — oo, R — oo such that § = 1% — 0. Note
equation (37) is essentially of the same form as equation (5.5) of [8] (with following replace-
ments g — —f, Q@ — D, V— Q where the symbols given on left of the — are those used in
[8D.

Following the approach used in section 6 of [8], we consider a sequence of cubic domains
Dy, (k=0,1,2,...) of edge a; with volumes €); and the wall-thickness /;. Now assuming that
the edge of the cube at (k+ 1)th step of the sequence is twice that of at kth step, one has
ar = 2*a, and the nominal volume €2 = ai = 2k 4, Both Q and h; are assumed to increase
to infinity in a way such that &; and the fraction of the volumes excluded by the walls tend
to zero; this can be done by assuming the wall-thickness to be just a small fraction of the
edge of the cube: iy = byay with fractional thickness by = cp’fao with 1/2 < ¢y < 1 so that
limy_ by — 0 while limy_,o, iy — 00. As described in [8], a cubic domain Dy, at (k + 1)th
sequence-step consists of 2¢ cubic domains Dy, with their free volumes lying within the free
volume of Dy but separated from each other by a distance

Rii1 = 20 — (g1 — )l = 4(1 — 1) 2p1)* ho. (A1)

As clear Ry > Ry if hy is chosen large enough. Now by defining ¢, = 2(@~")/2 p V<1, the
repulsion parameter can now be rewritten as

0
Eep1 = ﬁ =& it (A2)
k+1

Thus & — 0 as kK — oco. Note the condition ¢, < 1 can be fulfilled by choosing the ¢; =
2W@=1)/2 with v > d which also satisfies the assumption made above i.e. ¢, < 1.

Let f(Dy) = fi be the free energy density at stage k. Then application of the basic inequality
(37) with two sets of 4 cubes (each of volume €2;) leads to

finr @)~ el &1 < 5 fia o)+ 3 o) (A3)
But as the cubes at step k are all identical, the above equation can be rewritten as
Jier1(p) = |wp| &1 < fi(p) (A4)
Subtraction of 7 = |wy|>25_, &, from both the sides gives

Sir1(p) =t < filp) — 1 (A5)

Now using equation (A2), we have

X k+-1

. |wb|§0(1_902 )
) w1 — T A6
1 Iwblﬁo;:(): ©2 (1 —¢) .
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which implies limy_, #; — (lll""f’) Thus if we define g; = f; — 1, then equation (AS5) gives gy

as a monotonically decreasing sequence but bounded from below through equation (26), that
is

i+1 < G (A7)
As gy 1s a decreasing function with respect to k, its limit is bounded from above by any gy, with

M <kigoo < g < 1 <00 < g2 < q1 < o
Using now g < gy for all M < k gives the upper bound on the free energy

f (o, ) < f(p, ) — (i — 1) (AB)

for all M < k. But as
k

w,
=ty = |ws| & > 90§—| bl

n=M+1

M+1(1 _ solng)
(1 =) '

taking M = 0, we have

lwp| o p2(1 — ©5)

f(p: ) < f(p. o) + (A9)
(1 —¢2)
which can be rewritten as
k+1
Fpu 0 = W02y g - Ierl S0 (A10

(I —¢2) (I —¢2)

But now using g, = foo — t~, With f, having a lower bound given by equation (26), along
with gx > ¢, we can write the lower bound on ¢;:

[wp| o

() — - log(e*Umn) All
> f(p,) 50 gle ) (1— ) (A1)
Using now g; = fx — t on the lhs of equation (A11) and rearranging gives

£, Q) + _10 (e FUnin) > £(p, Q) — M (A12)

p’ k ﬂQ g = p» 0 (1 . )
with help of equation (14), the above inequality can be rewritten as
k41
Fo: %) = f(p: o) — sl &oes ™ + wq (AL3)
(I =)

Now as ¢, < 1 if v > d, this implies lim;_,~ (<p2)k — 0. In large k limit and for v > d,
therefore, equations (A10) and (A13) can be rewritten as

lwp| &o @2

Y , Q)
flo. %) < f(p 0)4-(1 o)

(A14)

and

F(p. %) = f(p, Qo) + wa (A15)

Here, as mentioned before, w,, w;, must remain finite in the thermodynamics limit; (note w, can
be a decreasing function of volume). Further, analogous to case of non-random potentials too
[8], w,, wyp, are temperature independent in the quenched disorder case. However, for annealed
case, the temperature-dependence of w,, w; cannot be ruled out.
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Appendix B. Example: two-body interaction with a random and a non-random
component

Consider a system with its g particles interacting via a pair-wise coupling of random single
particle fields represented by an operator A. The Hamiltonian of the system can be given by
equation (1) with the potential U as

N AGD

U= moa (B1)

sit=1

s#EL

Choosing an arbitrary N-dimensional fixed basis |k), k = 1 — N, the matrix elements of U can
be given as

S
Uy = z_:l T (B2)
o

Following the definition of ® given by equation (7), its maximum diagonal element, required
to determine wy, can be given as

N M A(sl)

max = 7]7] Z Z |rs — l'/ |p (B3)

s=1 =1

Let us now define Ag as follows: Ag = S, S22, |A]. The latter along with equation (B3)
gives
A
Prnas < (B4)
with R as the minimum distance between the free volumes of the domains €2, € i.e.
R < |rs — 1y for all (s, 1)-pairs (as defined in section 2). The above leads to

_% 10g<eﬂ3<1>max> < _% 1og<e7%g) (BS)
(Ao)
<(I)max> < Rp (B6)

Here, as Ag is a sum over a large number of i.i.d. positive random variables |A§;f])|, each say
with mean A and variance 7, one can invoke CLT to calculate the averages on the left side.

To find w, for this case, we again need a prior information about minimum eigenvalue of
U. Let A" be the minimum eigenvalue of the randomized pair-interaction A“”. As assumed
above, the latter are independent for different pairs which implies Vy,;, as the sum over large
number of independent random variables:

N

Unin > Y i A (B7)
min |rs — rt|p Iy

st=1

where \pin = Z” 1A% | and L be the largest possible distance between particles in a given

volume Q: |rg — r| < L. The above gives

24



J. Phys. A: Math. Theor. 53 (2020) 165001 P Shukla

1 _BU- 1 eﬂ)\min
7510 (e7F Umin) > —ﬂlog< I (B8)
Ami
<Umin> = _< len> (B9)

Further evaluation of inequalities (BS), (B6), (B8) and (B9) depends on the type of ran-
domness of the variables Ay and \,;,. Here we again consider the distributions with finite and
infinite variances separately.

Annealed distribution with finite variance: assuming Aif,’]) as i.i.d. random variables with
mean /i and finite variance v, for all {s, t} pairs, the CLT predicts Ag to approach a Gaussian
distribution with mean p = N1N, o and variance > =N lNzug; equation (40) then implies

;31/2
R2P

BA )
<e’Tﬂo> = e 7(& — 25°). The latter along with equation (B5) gives the upper bound

L oale #oms o _ Brg
_B log(e " ) < NIV, (ﬁ ~ R

(B10)

The condition (17) for the upper limit on free energy can then be fulfilled if a finite w,, can
be defined such that

po B w
(ﬁ _ ﬁ) < R (annealed) (B11)

For the temperatures 7 — 0, when the 2nd term on the left side of the above equation dominates
(note both v, p and R > 0), the condition can be fulfilled with w, = 0 irrespective of power p
of the interaction. For finite 7 too, a finite w, exists even for p < d if u — 0. Clearly, near zero
temperatures or symmetrically distributed disordered potential (B1), an upper limit of the free
energy exists irrespective of the spatial dependence of the potential (i.e. even for p < d with d
as the physical dimension of the system). This is in contrast to clean systems where the upper
limit of free energy exists, in general, for short range interactions i.e. those spatially decaying
faster than volume of the system.

For A for various s, ¢-pairs as i.i.d. random interactions, their minimum eigenvalues )\fflﬁl
are i.i.d. random variables, say with mean u, and variance o03. Following the central limit
theorem, the distribution of Ay, in the large volume limit can again be given by the Gaus-
sian, with mean Nug and variance No%. Using the above, equation (B8) can then be rewritten
as

1 o uy pf o2
7E10g<e Alniny > _N (U + 2L20p) (B12)

A comparison with equation (14) now indicates that w, can be defined in terms of u, and 03:

2
W, = % + g% With L ~ S QY 4 with S as a shape-dependent positive constant, w, — 0 for
finite temperature 7. For 7' — 0 however, existence of a finite w, depends on the competition
of limits 2 — oo and 5 — oo; for TLP — 0, it is possible again to define a finite w, (w, — 0).

Annealed, power law distributions: again assuming Aff,;) as i.i.d. random variables dis-
tributed with probability density f (A%ﬂ?; aop, bo, co, do) with f given by Levy, Pareto or Cauchy
distribution, the GCLT predicts Ay to be distributed as f{Ag; a, b, c, ), respectively; here
a=dayp= 1/2, b= bo = 1, c = Co(NlNz)z and § = NlNz(So for Levy, a = dap, C = N1N26‘0
for Pareto, a =ayp = 1,b = by = 0,c = N1Nacy and § = N{N,6p for Cauchy. Substituting

equations (68)—(70) with y = Ay and S — R—gp in equation (B5), the condition for the upper
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limit can be given as follows

X w
< W

— < . Bl

NN, Rd+e (B13)
with X = X(a, b, ¢, §) where X is defined as
Xa.b.e.0)= — 4 |2 Lev (B14)
a: ,C, - Rp /BRP y
-1 Be\“ Bc
= ? log |:a (m) I <_a RI’):| Pareto (B15)
log2 1 (1ﬁc) _ifc ifc

=4 — —lo — I ——= h Bl

+ 3 3 og { RP +e RP R Cauchy (B16)

For Levy case, the condition (B13) can be simplified as % + \/% < RZ 4. Clearly a finite
wp, in large R limit can be found for arbitrary p if only do < 0 and S is large. For Pareto case,
the condition can be approximated as g5 < 7% (neglecting the contribution from logarithmic
terms); as ¢ > 0, a finite wy, now exists only for p > d + €. Similarly, for Cauchy case, a finite
wy, for arbitary p exist if § is sufficiently negative. Thus the condition (17) for the upper bound
on free energy can be fulfilled for a random potential with long range spatial decay (i.e. p < d)
if it is Levy or Cauchy distributed but not in the case of Pareto distribution.

Again assuming A" as i.i.d distributed with probability density f(A\*): do, by, ¢o, dp) for
all {s, t} pairs, with f corresponding to Levy, Pareto or Cauchy distribution, the GCLT predicts
Amin to be distributed as f(Amin; @, b, ¢, §). here a = dg = 1/2 b=by=1,¢= Co\/ﬁ and§ =
Ny for Levy, a = dy, ¢ = N¢ for Pareto, a = ay = 1, b=by=0,¢=Ncéand = Nd, for
Cauchy. Substituting equations (68)—(70) with y = —Apin and 08— % in equation (B8), the
condition for the lower limit can be given as follows

< —w,. (B17)

=)

with X = X(a, I~), c, 5, 1) with X given py equations (B14)—(B16). Here again the above condi-
tions can be rewritten in terms of dy, by, ¢y, dp. For example, for Levy case, equation (72) gives

_ % 4 5{‘;} > —w,. Clearly a finite w, for Levy case can be defined even for limit L — 0 if

b0 < 0 and/or B is large. For Pareto case, equation (73) can be approximated as % = —W,

(neglecting the contribution from logarithmic terms); as ¢p > 0, a finite w, can always be
defined (e.g. w, = 0). For Cauchy case, the bound becomes — 5‘) > —w, which can easily
be fulfilled e.g. with do < 0. The condition (16) for the lower hmit on free energy can then be
fulfilled for a random potential with long range spatial decay for all three types of distributions
i.e. Levy, Pareto as well as Cauchy.

Quenched, finite variance distributions: Following the same reasoning as in the annealed
case with finite variance, both Ay and Ay, approach Gaussian distributions, in the large volume
limit, with mean and variance as (NN, N 1N21/ ) and (Nug, No, ) respectively. The latter
along with equations (B6) and (B9) now give the conditions for w,, wy as follows:

Ho W Y
Rr ~ Rid+e’ L

2 —Wg, (Bls)
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Clearly, here again, a finite w, exists if j19 < 0 or p > d; note the latter case is analogous to the
corresponding condition for clean potentials. But, as u is finite, and, L — oo in thermodynamic
limit, the 2nd condition above can be fulfilled for an arbitrary w, > 0 and for an arbitrary p.
Quenched, power law distributions: Proceeding as in the annealed case i.e. using
FAYD: ag, by, co, 8y) for Aﬁf,’]) and f(A? 3 do, bo, ¢o, dp) for A for all s, z-pairs but now using

nn 2 min
equations (82)—(84), one can calculate (Ag) and (Apin). The latter along with equations (B6)
and (B9) now give the conditions for w,, wy, as follows:

Wp

R (B19)

1
EY(ao,Co, do) <

1 R
EY(GO,CO,(SO) = —wy. (B20)

where Y for the three cases is given by equations (82)—(84). As clear from the above,
equation (B19) can be satisfied for arbitrary p if ¥Y(ao, ¢, §p) < 0 and, except for Cauchy case,
the latter can be achieved even if dy > 0 (note ¢y corresponds to mean of the distribution
Sfao, by, co, dp) for case ap > 1 which is expected to be positive for repulsive potential).

Further as Y(dy, ¢, &) is finite, left side of equation (B20) approaches zero for arbitrary
p > 0in thermodynamic limit (L — oo) for all three distributions mentioned above. Any choice
of w, > 0 therefore satisfies the condition (B20) and thereby indicates existence of the upper
bound of free energy.
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