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Abstract
We present a formalism for detection of non-Markovianity (NM) through 
uncertainty relations. We show that when there is an information back-flow 
to the system from its environment through CP-divisibility breaking, the 
Choi-states corresponding to the reduced system evolution contain at least 
one negative eigenvalue. The consequent break down of uncertainty relations 
for such states can be used to witness non-Markovian dynamics. We present 
some relevant examples of the phenomenon for qubit channels. We further 
prove that square of the variance of a suitable Hermitian operator can act as a 
non-linear witness of NM. We finally show that NM is necessary in order to 
decrease the uncertainty of the states undergoing unital dynamics for qubits. 
This provides another method of certifying NM.
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(Some figures may appear in colour only in the online journal)

1.  Introduction

The theory of open quantum systems provides adequate descriptions of general quantum 
evolution, enabling physical explanations for dissipation, decoherence and other irreversible 
phenomena due to interaction with noisy environment [1–7]. Usually, the general quantum 
dynamics can be divided into two specific classes, namely, Markovian and non-Markovian. 
Markovian evolutions can be broadly identified by those special type of evolutions, for which 
the information flow from the system to the environment is a one-way traffic. These types 
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of evolutions can be described by divisible quantum maps [5–7]. However, when the sys-
tem-environment coupling is not sufficiently weak or the environment is non-stationary, we 
encounter situations where the Born–Markov approximation can not be satisfied. Therefore, 
for such evolutions, there exists many such realistic scenarios for which indivisible dynamics 
ca n also occur, providing signatures of non-Markovian information back flow [8–13].

In recent years it has been realized that non-Markovianity (NM) acts as a resource in vari-
ous quantum mechanical tasks. For example, NM allows perfect teleportation with mixed 
states [14], efficient entanglement distribution [15], improvement of capacity for long 
quantum channels [16], and efficient work extraction from an Otto cycle [17]. For these cases, 
the accomplishment of the concerned tasks are done by harnessing information backflow, 
which can be understood as resource inter-conversion. NM can thus be inter-converted via 
information backflow, into other resources such as entanglement, coherent information and 
extractable work. It can also be exploited for efficient quantum control [18]. Experimentally, 
non-Markovian system-environment correlations have been demonstrated in trapped-ion  
[19, 20], nuclear magnetic resonance [21] and photonic [22–29] systems.

In view of the emerging significance of NM in quantum information processing, it has 
become important to specify whether a given system-environment dynamics possesses non-
Markovian traits. In other words, in order to use NM as a resource, one first needs to detect 
signatures of NM. Thus, formulation of detection schemes of NM is highly relevant in a spirit 
similar to the construction of witness theories of other resources such as quantum entangle-
ment and coherence. Note that experimentally witnessing signatures of NM is a challenging 
task, as proposed measures of NM based on information backflow [9] are difficult to realize 
directly in practice.

Though there are different approaches in defining NM in the quantum domain [8–11] 
including a recent attempt to construct a generalized description of NM by process tensor 
formalism [30], in this work we propose an avenue for detecting the signatures of NM, based 
on the definition of indivisibility of the dynamical map by interlinking it with a fundamental 
feature of quantum mechanics, namely, uncertainty relations. This specific approach allows us 
to exploit the non-complete positivity spawning from the indivisibility of the channel, which 
leads to the breaking of uncertainty relations providing a scope to detect such operations. Our 
motivation thus stems from the feasibility of experimental realization of uncertainty rela-
tions between Hermitian operators, by restricting ourselves within only indivisible quantum 
operations.

Quantum theory restricts the accuracy of simultaneous measurements, which is well 
explained by the famous Heisenberg uncertainty relation [31]. A stronger lower bound of 
uncertainty was obtained by Robertson–Schrödinger (RS) by including an anti-commutator 
for more generalized pairs of observables [32]. However, for quantum states that are eigen-
states of one of the observables, a non-trivial lower bound reflecting incompatibility of the 
observables may still be obtained by using uncertainty relations based on sums of variances 
[33–35]. Other forms of uncertainty relations such as entropic uncertainty relation [36, 37], 
and fine-grained uncertainty relation [38] have also been derived. Experimental investigations 
of different uncertainty relations have been performed [39–50]

Uncertainty relations have wide range of applicability. They can be used to justify the com-
plex structure of the Hilbert space [51, 52], for detecting purity [53], entanglement [54–62], 
demonstration of EPR-steering [63–66], security analysis of quantum key distribution [67], 
etc. Drawing inspiration from the literature on the usage of uncertainty relations to witness 
quantum correlations, we investigate the possibility of detecting NM through uncertainty rela-
tions.In a realistic scenario the overall dynamics is always completely-positive (CP) and hence, 
uncertainty relations will always hold for the overall dynamics. However, complete-positivity 
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may break down within the intermediate time step for NM evolution. This leads to the viola-
tion of uncertainty relations within those intermediate time steps and hence, can be used to 
detect NM. In the present work we propose the utility of the RS uncertainty relation to detect 
NM.

The plan of this paper is as follows. In the next section we construct our theory of NM 
detection via the RS uncertainty violation proposing a linear witness of NM, and verify our 
theory with some examples. We further present a nonlinear extension of the NM witness and 
show that it could lead to the detection of NM dynamics beyond that possible by the linear 
witness. Then in section 3 we discuss a special case of unital dynamics for qubits and propose 
another method of detecting NM through the dynamics of RS uncertainty. We conclude with a 
summary of our results and possible implications of our approach in section 4.

2.  Uncertainty relations for NM detection

We begin with a brief overview of the preliminary background of indivisible non-Markovian 
operations and their characterization.

2.1.  Geometric representation of quantum channels and CP-divisibity

Consider an arbitrary quantum channel, i.e. a completely positive trace preserving map, 
ΛN (t, t0) : ρ(t0) → ρ(t). Let us introduce a set D which contains all such quantum chan-
nels. Via the channel-state duality [68, 69], we can always find a one to one connection of D 
with the set of all Choi-states F , where the Choi-state for any quantum evolution ΛN (t, t0) is 
defined by

CN (t, t0) = I⊗ ΛN (t, t0)(|φ〉〈φ|).

Here |φ〉 is a maximally entangled state of dimension d × d for a d dimensional system. 
According to Choi–Jamiolkowski isomorphism [70] for complete-positivity (CP) of the 
dynamics ΛN (t, t0), it is sufficient to show that the corresponding Choi state CM(t, t0) � 0, 
∀(t, t0). (Throughout the paper, for Choi states we use CN  and CM interchangeably to mean 
the same, unless specified explicitly.)

The channel or dynamical map is called CP-divisible iff it can always be written in the form 
ΛN (t, t0) = ΛN (t, t1) ◦ ΛN (t1, t0) where t > t1 > t0 ∀ t, t1, t0. This condition is equivalent to 
the condition that the dynamics is CP for all time intervals [8]. Following Rivas et al [8], we 
shall use the term ‘Markovian Choi-state’ if the corresponding dynamics is CP-divisible. Rest 
of the Choi states, corresponding to indivisible channels are considered as non-Markovian 
Choi states.

A dynamics of Lindblad form is, ρ̇(t) = Lt(ρ(t)) where Lt(.) =
∑

i Γi(t)(Li(.)L
†
i −

1
2{L†

i Li, (.)}). Here Γi(t)’s are Lindblad coefficients and Li’s are Lindblad operators. A neces-
sary and sufficient condition for CP-divisibility of the dynamics is that Γi(t) � 0 ∀(i, t), [3].

However, in many practical situations CP-divisibility may break down, leading to the obser-
vation of non-Markovian backflow of information. This approach of NM via CP-indivisibility 
has been used extensively in the recent literature [8–13]. It is evident from these studies that 
CP-indivisibility of arbitrary dynamical evolutions leads to the violation of positive semi-
definiteness of the corresponding Choi states [68, 69]. This leads us to the idea of detecting 
NM by the violation of uncertainty relations.

A G Maity et alJ. Phys. A: Math. Theor. 53 (2020) 175301



4

2.2.  Violation of Uncertainty relations

Robertson [32] showed that uncertainty relations can be found using the property of posi-
tive semi-definiteness of a quantum state. More recently it has been proven [56] that positive 
semi-definiteness of a state is necessary for uncertainty relations to hold. For example, in a 

two-dimensional Hilbert space a state is described by a 2 × 2 matrix ρ1 =

(
a c
c∗ b

)
 such that 

Tr[ρ1] = 1 and Det[ρ1] = ab − |c|2 � 0.
The RS uncertainty relation for two observables A and B (in arbitrary dimensions) is given 

by,

∆2A∆2B − 1
4
|〈[A, B]〉|2 − 1

4
|(〈{A, B}〉 − 2〈A〉〈B〉)|2 � 0.� (1)

Here the variance of A (similarly for B) is defined as ∆2A ≡ 〈A2〉 − 〈A〉2, and all expectation 
values are calculated over some quantum state ρ . The RS relation holds if ρ  is non-negative.

For a CP divisible evolution M, the corresponding Choi state CM(t + ε, t) � 0, ∀(t, ε), 
the uncertainty relations will always hold. However, for some arbitrary CP-indivisible evo
lution N , CN (t + ε, t) can acquire negative eigenvalues within some time interval ε and may 
lead to the violation of uncertainty relations. We use this fact to state and prove the following 
theorem.

Theorem 1.  The statement of this theorem is twofold.

	(1)	�Violation of the RS uncertainty relation for the Choi state of a dynamical evolution is suf-
ficient to detect CP-indivisibility.

	(2)	�There always exists a set of Hermitian operators, for which RS uncertainty relation will 
be violated in case of CP-indivisible operations.

Proof.  Let us consider the derivation [71] of RS-uncertainty relation given by (1). In order 
to do that, we evaluate Tr[CN TT†] for any operator T = A0 + (γ + iε)B0, where A0 = A − 〈A〉 
and B0 = B − 〈B〉. CN  is an arbitrary Choi state over which the averages are calculated. It is 
easy to show that TT† is always positive semi-definite for any operator T. After a few steps of 
simplification, we get

Tr[CN TT†] =Tr[CN A2
0] + (γ2 + ε2)Tr[CN B2

0]

+ γTr[CN {A0, B0}]− iεTr[CN [A0, B0]].

One can find that the value of Tr[CN TT†] is minimum for γ = −Tr[CN {A0,B0}]
2Tr[CN B2

0]
 and 

ε = iTr[CN [A0,B0]]

2Tr[CN B2
0]

. Substituting these, one has

minγ,εTr[CN TT†] = 1
Tr[CN B2]−(Tr[CN B])2 [(Tr[CN A2]

−(Tr[CN A])2)(Tr[CN B2]− (Tr[CN B])2) + 1
4 (Tr[CN [A, B]])2

− 1
4 ((Tr[CN {A, B}]− 2Tr[CN A]Tr[CN B]))2

]

which represents the left hand side of (1).
Now since TT† is always positive; the identity,

Tr[CN TT†] � 0� (2)
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always holds, only if CN  is positive semi-definite. Using the above identity one can have (1). 
Since TT† is always positive, the identity can break only if CN  is negative. In other words, the 
violation of the uncertainty relation is sufficient to know that CN  is not positive semi-definite, 
and hence, the dynamics is indivisible.

However, in order to show that violation of the uncertainty relation is not necessary to de-
tect CP-indivisibility, consider that CN  has a spectral decomposition of the form,

CN =
∑

i

λ+
i |λ

+
i 〉〈λ

+
i |+

∑
j

λ−
j |λ−

j 〉〈λ−
j |,� (3)

where λ+
i andλ−

j  are the positive and negative eigenvalues respectively. In this case there ex-
ists an operator TT† such that TT† is orthogonal to the eigen-basis corresponding to negative 
eigenvalues of CN  (for example TT† = |λ+

i 〉〈λ
+
i |). In this situation even if CN  is negative, the 

uncertainty relation may still hold.
Now, to prove the second part of the theorem that there always exists a pair of Hermi-

tian operators which will violate the RS uncertainty relation for CP-indivisible Choi states, 
let us consider the Choi-state in it is spectral decomposition form (3). The trace preserva-

tion condition yields 
∑

i λ
+
i +

∑
j λ

−
j = 1. This shows us that for any arbitrary choice for 

the non-Markovian Choi state, there exists at least one positive eigenvalue, to preserve this 
trace relation. Let us consider one of the Hermitian operators to be H1 = |λ−

j 〉〈λ−
j |, which 

will give us the negative eigenvalue λ−
j , if acted upon the Choi state CN . For this, the vari-

ance will give us ∆2H1 = λ−
j − (λ−

j )2 < 0. Let us now consider another Hermitian operator 
H2 =

∑
k �=l |λk〉〈λl|, where |λk〉 and |λl〉 can take any values from the spectral decomposi-

tion of CN  with corresponding eigen values λk  and λl . If there are n number of terms in 
the spectral decomposition of CN  then 〈H2

2〉 = (n − 1)
∑

k λk = n − 1, 〈H2〉 = 0 and hence 
∆2H2 > 0. Therefore, the term ∆2H1∆

2H2 < 0, making the left hand side of RS relation (1) 
to be negative, for the pair of operators H1 and H2. For any given Choi state, which is CP-
indivisible, i.e. containing at least one negative eigenvalue, we can always find such a pair of 
H1 and H2. This proves the theorem.� □ 

Recently, it has been shown that one can have convex compact structure of the set of 
Markovian–Choi states if we restrict ourselves only to those dynamical maps which have 
Lindblad type generators and in short time interval (t, t + ε) approximation (ε is sufficiently 
small) [72]. In the following proposition, using convex structure of the set of Markovian–Choi 
states, we discuss another uncertainty like relation, whose violation will sufficiently detect 
non-Markovian dynamics.

Proposition 1.  For some observable Ai and some state CM written in a convex combination 
(i.e. CM =

∑
k pkCk

M where pk � 0,
∑

k pk = 1) of some Markovian Choi-states, Ck
M within 

the set of all Markovian Choi-states having Lindblad type generators (Fε
M),

∑
i

∆2(Ai)CM �
∑

k

pk

∑
i

∆2(Ai)Ck
M

,� (4)

holds, where ∆2(Ai)X  is the variance of Ai over the state X as defined earlier. We call a state 
‘violating proposition 1’ if and only if there are no states Ck

M ∈ Fε
M and no p k such that above 

equation is fulfilled.

A G Maity et alJ. Phys. A: Math. Theor. 53 (2020) 175301
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Proof.  This fact is known from a different perspective of entanglement theory [54, 55]. For 
each Ai,

∆2(Ai)CM =
∑

k

pk〈(Ai − 〈Ai〉CM)2〉Ck
M

=
∑

k

pk(〈A2
i 〉Ck

M
− 〈Ai〉2

Ck
M

+ 〈Ai〉2
Ck
M

− 2〈Ai〉Ck
M
〈Ai〉CM + 〈Ai〉2

CM
)

=
∑

k

pk(∆
2(Ai)Ck

M
+ (〈Ai〉Ck

M
− 〈Ai〉CM)2)

�
∑

k

pk∆
2(Ai)Ck

M
.

Now summing over i, we get
∑

i

∆2(Ai)CM �
∑

k

pk

∑
i

∆2(Ai)Ck
M

,

� □ 

Since the proposition is based on convex structure of the set of Markovian Choi-states CM, 
violation of this proposition implies the state CM lies outside the convex set and hence must be 
non-Markovian. In fact this proposition is a sufficient criterion, if we choose Ai appropriately.

One may be interested to obtain the lower bound of the above derived uncertainty inequal-
ity. From the above equation it is clear that the equality holds for pure Markovian Choi-states, 
i.e. if the state CM does not have any decomposition other than itself. Next, one has to optim
ize over all such pure Markovian Choi-states.

In the following proposition, we consider another uncertainty relation, which can be advan-
tageous than the RS uncertainty relation to detect NM.

Proposition 2.  For two Hermitian operators A and B,

∆2A +∆2B � |〈[A, B]〉|,� (5)

where 〈(·)〉 = Tr((·)CM), with CM ∈ Fε
M.

Proof.  The proof is straightforward. We know (∆A −∆B)2 � 0 or ∆2A +∆2B � 2∆A∆B. 
Now, the Heisenberg uncertainty relation for A and B is given by ∆A∆B � 1

2 |〈[A, B]〉|.� □ 

Here we observe that choosing a suitable observable is important, so that the expectation 
value of the observable corresponding to some non-Markovian Choi-state CN  becomes nega-
tive. Therefore, violation of ‘proposition 2’ implies detection of NM. The reason to propose 
this sum uncertainty relation is due to the fact that it can detect NM through its violation, in 
cases where the product uncertainty relation like the RS uncertainty do not show violation. 
Let us elucidate more on this issue of NM detection in the context of the following example.

Consider a non-Markovian dynamics having Choi state CN , which has at least two nega-
tive eigenvalues λ−

1  and λ−
2 , corresponding to the eigen-vectors |λ−

1 〉,|λ−
2 〉 respectively. We 

construct two projectors W1 = |λ−
1 〉〈λ−

1 | and W2 = |λ−
2 〉〈λ−

2 |.The RS uncertainty (1) for these 
two observables, gives us λ−

1 λ−
2 (1 − (λ−

1 + λ−
2 )) � 0. Clearly, equation (1) is not violated 

since λ−
1  and λ−

2  are both negative. However, if one considers the sum uncertainty (5), the 
LHS becomes negative, but the RHS being commutator of two orthogonal projectors vanishes. 
We can see that the violation of equation (5) occurs for this case. This example shows that the 
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sum uncertainty relation (5) can be advantageous compared to product uncertainty relations 
for the detection of NM.

2.3.  Examples

In this sub-section, we present various practical examples from quantum channels, to validate 
the theory we constructed in the above presentation.

2.3.1.  Dephasing channel.  The Lindblad equation for a pure dephasing channel is given by,

dρ
dt

= γ(t)(σzρσz − ρ),

where σz is the z component of Pauli matrix and γ(t) is defined as,

γ(t) =
2λγ0 sinh[tg/2]

g cosh[tg/2] + λ sinh[tg/2]

with g =
√
λ2 − 2γ0λ. It has been shown that the dynamics will be non-Markovian when γ(t) 

has a negative region and that happen only when γ0 > λ/2 [73]. Here we calculate the LHS 
of RS-uncertainty relation (equation (1)) R(t) for the Choi-state of this dephasing channel 
under the small time approximation (εγ(t) << 1), and observe that uncertainty relations get 
violated only when the Lindblad coefficient γ(t) is negative. This confirms that violation of 
uncertainty relation is sufficient to show that the dynamics is non-Markovian. Figure 1 depicts 
the uncertainty profile as a function of time for the dephasing channel for the observables 
Sx = σx ⊗ σy , Sy = σx ⊗ σx . Note that, in figure we consider dimensionless quantity t̄ = t/κ 
and Γ̄(t) = κγ(t) for time and Lindblad coefficient respectively, where κ is a constant of the 
dimension of time.

2.3.2.  Spin bath model.  Here we use the generalized non-Markovian evolution for a spin-
bath model. This type of system has drawn significant interest in recent studies [74–77]. The 
model considered here in the present work consists of a central spin interacting uniformly with 
a collection of mutually non-interacting and completely unpolarized spins, considered as the 
environment. An exact canonical master equation of the Lindblad form for such a model has 
been derived earlier [78]. From the master equation of the Lindblad form it was shown that 
the reduced dynamics of the central spin exhibits non-Markovian features throughout the evo
lution. The dynamical equation for the mentioned reduced evolution is given by

ρ̇(t) =
i
�

U(t) [ρ(t),σz] + Γdeph(t) [σzρ(t)σz − ρ(t)]

+ Γdis(t)
[
σ−ρ(t)σ+ − 1

2
{σ+σ−, ρ(t)}

]

+ Γabs(t)
[
σ+ρ(t)σ− − 1

2
{σ−σ+, ρ(t)}

]
,

�

(6)

where σ± =
σx±iσy

2  and Γdis(t),Γabs(t),Γdeph(t) are the rates of dissipation, absorption, dephas-
ing processes respectively, and U(t) corresponds to the unitary evolution. The uncertainty pro-
file for this particular evolution is depicted in figure 2, showing the detection of NM through 
violation of uncertainty. Note that, similar to the case of dephasing channel, all the quantities 
in the plot are made dimensionless, by scaling with the parameter κ.

A G Maity et alJ. Phys. A: Math. Theor. 53 (2020) 175301
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2.4.  Variance as a non-linear witness of NM

Recently, it has been shown that for dynamical maps having Lindblad type generators, one 
can have a resource theory of NM where divisible operations are the free operations and the 
Choi-states corresponding to the free operations are the free states [72]. It was shown that for a 
sufficiently small ε, the set of all Markovian Choi-states having Lindblad type generators will 
take a convex and compact form (Fε

M). In a following work [79], a theory of linear witnesses 
was further established for detecting NM. It was shown that the set of Choi states for divisible 
operations does not form a polytope. Consequently, we can surmise that linear witnesses will 
not be sufficient for optimal detection of NM, and hence, non-linear corrections of linear wit-
nesses are in order. The possibility of detecting NM via violation of uncertainty relations gives 
us one such opportunity. As we have mentioned earlier, one can construct NM witness [79] 
by utilizing the fact that the Markovian Choi states having Lindblad generators form a convex 
and compact set (Fε

M) under the small time interval approximation [72]. A Hermitian operator 
W is said to be a non-Markovian witness if the following criteria hold:

	 1.	�Tr(WCM) � 0 ∀CM ∈ Fε
M,

	 2.	�There exists at least one NM Choi-state CN  such that Tr(WCN ) < 0.

Let CM be a Choi-state. Since CM is Hermitian, one can have it is spectral decomposition of 
the form

CM =
∑

i

λiPi,

Figure 1.  Plot for the RS-uncertainty quantity R(t) for a Choi-state and the Lindblad-
coefficient (Γ̄(t)) with dimensionless time ̄t  for the Choi-state of the dephasing channel. 
Clearly, the RS-uncertainty relation is violated (i.e. R(t) < 0) only where Γ̄(t) is 
negative.

A G Maity et alJ. Phys. A: Math. Theor. 53 (2020) 175301
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where Pis are orthogonal projectors corresponding to the eigenvalues λi. If the state is 
Markovian (CP-divisible) then CM is a valid state as it has all non-negative eigenvalues. 
Hence, Tr(CMPi) � 0, ∀i. However, if the operation is non-Markovian, then Tr(CN Pi) < 0 
for at least one i. So, orthogonal projectors serve as witness.

Proposition 3.  Corresponding to a projective NM witness Wi, it is variance ∆2Wi is also 
a witness.

Proof.  The variance of Wi over some state CN  as defined earlier is ∆2Wi =  
Tr

[
CN .W2

i

]
− (Tr [CN .Wi])

2. Since Wi is a projector corresponding to the eigenvalue say λi, 
Wi = |λi〉〈λi|, so W2

i = Wi = |λi〉〈λi|. If CN  is Markovian, then it has all non negative eigen-
values. We know that variance for such a state cannot be negative, i.e.

∆2(Wi) � 0, ∀CN ∈ Fε
M.

But if the operation is non-Markovian, Tr [CN Wi] < 0 for at least one i, say for i  =  1, and then 
the variance for the witness (projector corresponding to the negative eigenvalue) becomes

∆2(W1) = λ1 − (λ1)
2,

which is always negative. Therefore, ∆2(Wi) satisfies the conditions 1 and 2, and hence, serves 
as a non-linear witness.� □ 

Figure 2.  Plot for RS-uncertainty relation (R(t)) for a Choi-state and various 
dimensionless Lindblad-coefficients (Γ̄dis(t), Γ̄abs(t), Γ̄deph(t)) with time t̄  for the Choi-
state of spin-bath model. Clearly RS-uncertainty relation is violated (i.e. R(t) < 0) only 
at those regions where at least one of the Lindblad-coefficients is negative.

A G Maity et alJ. Phys. A: Math. Theor. 53 (2020) 175301
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In fact it is clear that ∆2(Wi) is an improvement over the actual projective witness Wi, since 
the variance contains an additional negative term. There is another corollary which can be 
drawn as a consequence of proposition 3.

Corollary.  Variance of some suitable Hermitian operator H over Choi states can be con-
sidered as a non-linear witness of NM.

Proof.  The variance of a Hermitian operator H can be expressed as

∆2(H) = Tr[H†HCN ]− (Tr[HCN ])2.

Now, similar to the proof of proposition 3, it can be shown that

1. ∆2(H) � 0 for all Markovian Choi states CM,
2. There exists at least one non-Markovian Choi state CN ,

for which ∆2(H) < 0.

This proves the corollary.� □ 

Figure 3.  Plot for RS-uncertainty relation for a time-evolving physical state and various 
Lindblad-coefficients (Γ̄dis(t), Γ̄abs(t), Γ̄deph(t)) with time ̄t  for a qubit undergoing unital 
dynamics given by the spin bath model. It is seen that negativity of Lindblad-coefficient 
(and hence NM) is necessary in order to decrease uncertainty for this unital dynamics. 
All quantities are dimensionless.
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3.  Uncertainty based NM quantifier for unital dynamics of qubits

In this section we consider the case of qubit channels and unital dynamics which have been 
studied recently in several experimental works [19–29]. Here the RS-uncertainty function cal-
culated over a physical state ρ(t) = Λ(t)ρ(0) (note that this is the time evolved state, not the 
Choi-state). We show that if we restrict ourselves to unital dynamics, then the RS-uncertainty 
quantity is a monotonically increasing function and can only decrease in the regions where 
CP divisibility breaks down.

Proposition 4.  NM is necessary to decrease RS-uncertainty of time-evolving physical 
states undergoing unital dynamics.

Proof.  It has been shown that the RS-uncertainty relation can be used to detect purity and 
mixedness of a state [53]. The RS-uncertainty relation for a physical state ρ  may be written as

�(A, B, ρ) � 0,� (7)

where �(A, B, ρ) is defined as,

�(A, B, ρ) ≡ ∆2A∆2B − |〈[A, B]〉
2

|2 − |( 〈{A, B}〉
2

− 〈A〉〈B〉)|2.� (8)

On the other hand, linear entropy is defined as

Sl(ρ) =
d

d − 1
[
1 − Tr

[
ρ2]] ,� (9)

where, a qubit ρ  may in general be expressed as ρ = I+n̂.σ̂
2 .

By choosing A = r̂.σ̂ and B = t̂.σ̂, it has been shown [53] that

�(A, B, ρ) =


1 −

(∑
i

riti

)2

 Sl(ρ).� (10)

It follows from equation (9) that,

d
dt

Sl(ρ) = −2
d

d − 1
Tr [ρρ̇] .� (11)

Further, considering unital dynamics of Lindblad operators [72, 78, 80], it can be shown that,

d
dt

Sl(ρ) =
d

d − 1

∑
i

Γi(t)Qi(t),� (12)

where Qi(t) =‖ [Vi, ρ(t)] ‖2
HS  with Vi the Lindblad operator for an arbitrary unital channel and 

‖ X ‖HS=
√

Tr[X†X] is the Hilbert–Schmidt norm. Qi(t) is a known measure of quantumness 
[81, 82]. Combining the above results, here we get

d�
dt

=
d

d − 1


1 −

(∑
i

riti

)2

∑

i

Γi(t)Qi(t),� (13)
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where, 
∑

i riti < 1. Since Qi(t) is always positive, uncertainty will always increase unless Γi(t) be-
comes negative. Hence, NM is necessary to decrease uncertainty for any unital dynamics of a qubit.
� □ 

In order to avoid any dependency of the above expression over observables A and B, one 
may choose a priori orthogonal operators i.e. r̂.̂t = 0. We plot the evolution of RS-uncertainty 

quantity with time in figure 3, for a initial qubit ρ(0) = 1
2 |+〉〈+| (where |+〉 = |0〉+|1〉√

2
), evolv-

ing under unital dynamics (when Γabs = Γdis) for the spin-bath model given by equation (6) 
with observables A = σx  and B = σy . It is clear from the plot that the RS-uncertainty decreases 
only when the CP-divisibility breaks down.

The above findings show that the decrease of �  for time-evolving physical states signifies 
information backflow. Based on this, we propose a non-Markovian quantifier for unital qubit 
dynamics, which can be defined as,

N = −
∫

d�
dt <0

d�
dt

dt.� (14)

This measure amounts to a certain quantification of total amount of NM. As a further remark, 
choosing r̂  and t̂  as orthogonal vectors, our proposed measure of NM turns out to be identical 
to the measure based on purity [78].

4.  Conclusions

To summarize, in this work our goal is to develop frameworks for detection of NM using the 
mechanism of quantum uncertainty relations. In particular, we formulate two different ways 
to detect signatures of NM in open system dynamics. First, we establish that violation of 
uncertainty relations for Choi states corresponding to the evolution dynamics is sufficient to 
detect NM. Our formalism is exemplified in the context of dephasing and spin-bath models 
for which non-Markovian evolution can be certified by the violation of the RS uncertainty 
relation. Based on our approach, we propose certain linear and non-linear witnesses of NM. 
We further present an example to clarify the advantage of the sum uncertainty relation for NM 
detection. Secondly, adopting another approach of using uncertainty relations, we show that 
for unital dynamics NM is necessary to decrease the RS-uncertainty for the time-evolving 
physical states. This enables us to propose a new NM quantifier for unital dynamics of qubits.

Before concluding, it may be worthwhile to discuss the feasibility of experimental verifi-
cation of the approaches discussed here. Variances of observables have been measured using 
optical set-ups in several experimental schemes [44, 48, 50]. On the other hand, there has 
been considerable recent activity towards experimental realization of NM under dephasing 
optical channels [19, 26–29]. In light of these results, it may be feasible to measure the RS 
uncertainty corresponding to the physical states undergoing unital dynamics, as discussed in 
section 3, in order to conclude whether the dynamics is non-Markovian. It is also important to 
mention that in order to compute the uncertainty quantity, we do not need to do a full process 
tomography as required for several other methods of detecting NM [8–11, 83]. Therefore, in 
case of determining the nature of the specific quantum evolution experimentally, our method 
could be more efficient and cost effective. It is thus evident that with further development our 
framework proposed in section 3 should provide an avenue for experimental investigation of 
non-Markovian evolution in a quantitative manner.
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