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Abstract

We investigate, by series methods, the behaviour of interacting self-avoiding
walks (ISAWs) on the honeycomb lattice and on the square lattice. This is the
�rst such investigation of ISAWs on the honeycomb lattice. We have gener-
ated data for ISAWs up to 75 steps on this lattice, and 55 steps on the square
lattice. For the hexagonal lattice we �nd the θ-point to be at uc = 2.767± 0.002.
The honeycomb lattice is unique among the regular two-dimensional lattices
in that the exact growth constant is known for non-interacting walks, and is
√

2+
√
2 (Duminil-Copin H and Smirnov S 2014 Ann. Math. 175 1653–65),

while for half-plane walks interacting with a surface, the critical fugacity, again
for the honeycomb lattice, is 1+

√
2 (Beaton N R et al 2014 Commun. Math.

Phys. 326 727–54). We could not help but notice that
√

2+ 4
√
2 = 2.767 . . . .

We discuss the dif�culties of trying to prove, or disprove, this possibility. For
square lattice ISAWswe �nd uc = 1.9474± 0.001, which is consistent with the
bestMonte Carlo analysis.We also study bridges and terminally-attachedwalks
(TAWs) on the square lattice at the θ-point. We estimate the exponents to be
γb = 0.00± 0.03, and γ1 = 0.55± 0.03 respectively. The latter result is con-
sistent with the prediction (Duplantier B and Saleur H 1987 Phys. Rev. Lett.
59 539–42; Seno F and Stella A L 1988 Europhys. Lett. 7 605–10; Stella A
L et al 1993 J. Stat. Phys. 73 21–46) γ1(θ) = ν =

4
7 , albeit for a modi�ed

version of the problem, while the former estimate is predicted in [Duplantier
B and Guttmann A J 2019 Statistical mechanics of con�ned polymer networks
(in preparation)] to be zero.
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1. Introduction

An n-step self-avoiding walk (SAW) ω on a regular lattice is a sequence of distinct vertices
ω0,ω1, . . . ,ωn such that each vertex is a nearest neighbour of its predecessor. SAWs are con-
sidered distinct up to translations of the starting point ω0. We shall use the symbolΩn to mean
the set of all SAWs of length n, and denote cn = |Ωn|.

It is well known that the (lattice-dependent) connective constant µ = limn→∞(cn)
1
n exists,

and for the honeycomb lattice µ =

√

2+
√
2 [1]. It is unproved but widely accepted that the

sub-dominant asymptotic behaviour of cn is governed by a power law, namely

cn = Cnγ−1µn(1+ o(1)) (1)

where the constant C is lattice-dependent but the exponent γ is universal, and depends only
on the dimension.4 Without loss of generality we will orient our honeycomb lattice so that it
has vertical edges, and assume that SAWs start at a vertex at the bottom of a vertical edge (see
�gure 1). We also scale the lattice so that edges have unit length.

We are also interested in two subsets ofΩn: terminally attached walks (TAWs) and bridges.
For the purposes of de�ning these objects it is easier to transform the honeycomb lattice
into a brickwork lattice (see �gure 1), with walks starting at a vertex with edges in the ±x
and +y directions. If ω is an SAW on the honeycomb lattice then let ω′ be its transforma-
tion to the brickwork lattice, and denote ω′

i = (x′i, y′i). A TAW is then an SAW ω such that
y′i > y′0 for all i = 0, 1, . . . , n, while a bridge satis�es the stronger condition y′0 < y′i 6 y′n for
all i = 1, . . . , n. If we let tn be the number of TAWs of length n and bn be the number of bridges,
then it is known that limn→∞(tn)

1
n = limn→∞(bn)

1
n = µ, and expected that

tn = Tnγ1−1µn(1+ o(1)), bn = Bnγb−1µn(1+ o(1)) (2)

where again T and B depend on the lattice while γ1 and γb depend only on the dimension.
These conjectures are based on Coulomb gas and SLE formulations.

While the existence of the aforementioned critical exponents has not been proved, their
exact values in two dimensions have been conjectured. Indeed, it is expected that γ =

43
32 [2],

γ1 =
61
64 [3], and γb =

9
16 [4]. Further support for the quoted value of γb is given in [5].

1.1. Geometric properties

We will be interested in the geometric properties of SAWs and ISAWs, and in particular three
measurements of ‘size’: the (squared) radius of gyration, end-to-end distance, and monomer-
to-end distance. For a given SAW ω of length n these are given by

R2
g(ω) =

1
2(n+ 1)2

n
∑

i, j=0

|ωi − ω j|2 (3)

4Note that we will sometimes write cn ∼ Cnγ−1µn; more generally, for two sequences an and bn we write an ∼ bn if
an/bn → 1 as n→∞.
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Figure 1. Top: an example of an ISAW on a 7× 9 rectangular section of the honeycomb
lattice. This ISAW has length 80 and contains 13 contacts. Bottom: the same ISAW,
embedded in our chosen brickwork lattice.

R2
e(ω) = |ω0 − ωn|2 (4)

R2
m(ω) =

1
2(n+ 1)

n
∑

i=0

(

|ω0 − ωi|2 − |ωn − ωi|2
)

(5)

where |·| denotes Euclidean distance (we scale the lattice so that edges have unit length). The
mean values of these quantities are then naturally

〈R2
g〉n =

1
cn

∑

ω∈Ωn

R2
g(ω), 〈R2

e〉n =
1
cn

∑

ω∈Ωn

R2
e(ω), 〈R2

m〉n =
1
cn

∑

ω∈Ωn

R2
m(ω). (6)

Each is expected to display power-law behaviour, ie. 〈R2
x〉n ∼ Mxn

2ν (where x is one of g, e, or
m) whereMx depends on the lattice, while ν depends only on dimension. In two dimensions it
is expected that ν =

3
4 .

1.2. Interacting SAWs

SAWs serve as a model for dilute polymers in a good solvent, but in order to model compact
or collapsing polymers we need to introduce an energy term. We let energy ǫ be associated
with two vertices ωi and ω j if |ωi − ω j| = 1 and |i− j| > 1; when this occurs the walk is said
to have a nearest neighbour contact or just contact. If c(ω) is the total number of contacts in ω
then we let u = exp(−ǫ/kT) where k is Boltzmann’s constant and T is absolute temperature,
and assign weight uc(ω) to ω. SAWs which have been so weighted are interacting SAWs or
ISAWs. An example of an ISAW is shown in �gure 1.
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The partition function for ISAWs of length n is

cn(u) =
∑

ω∈Ωn

uc(ω) =
∑

m

cn,mu
m (7)

where cn,m is the number of ISAWs of length n with m contacts. Note that it is expected that
the limiting free energy

κ(u) = lim
n→∞

1
n
log cn(u) (8)

exists for all u > 0, but this has only been proved for 0 6 u 6 1 (see e.g. [6, chapter 9]). De�ne
the bivariate generating function for honeycomb lattice ISAWs a

C(u, z) =
∑

m,n

cm,nu
mzn

= 1+ 3z+ 6z2 + 12z3 + 24z4 + (42+ u)z5 + (78+ 12u)z6

+ (144+ 30u)z7 + (264+ 72u)z8 + (486+ 126u+ 36u2)z9 + · · · (9)

As u is varied the behaviour of an ‘average’ ISAWof length n (sampled from the Boltzmann
distribution, where Pn(ω) ∝ uc(ω)) changes. The mean metric quantities de�ned in (6) can now
be taken as functions of u:

〈R2
x〉n =

1
cn(u)

∑

ω∈Ωn

R2
x(ω)u

c(ω). (10)

For small u (corresponding to high temperature), the polymers are in the dilute phase and
the exponents γ and ν are expected to be independent of u and the same as the u = 1 case. For
large u (low temperature) the average ISAW is highly compact, corresponding to polymers in
a poor solvent. For two dimensions, the exponents γ and ν in the compact phase are expected
to be 19

16 and 1
2 respectively [7]. The θ-temperature (corresponding to a particular value of u,

which we call uc) separates these two regimes.
It is generally accepted now that at the θ-point, the exponents γ and ν take values γ =

8
7 ≈

1.143 and ν =
4
7 ≈ 0.571, respectively. These values were originally obtained by Duplantier

and Saleur [8], who studied a variant of ISAWs on the honeycomb lattice with annealed
vacancies, where the weight is effectively associated with nearest-neighbour and (some) next-
nearest-neighbour contacts. They argued that this model was in the same universality class as
regular ISAWs. Various numerical studies (e.g. [9–11, 37]) have found estimates consistent
with these values.

There has been some confusion around these exponents, however. Nienhuis and collabo-
rators [12, 13] studied an exactly solvable O(n) loop model on the square lattice, where for
a certain set of vertex weights the n→ 0 limit was proposed to be in the same universality
class as ISAWs (this is now called the BN model, after Blöte and Nienhuis). This led to the
conclusion that at the θ-point, γ =

53
46 ≈ 1.152 and ν =

12
23 ≈ 0.522. Subsequent numerical

work on that model [14] produced estimates γ ≈ 1.045 and ν ≈ 0.576, much closer to the
Duplantier–Saleur values. An explanation was offered by Vernier et al [15], who argued that
the BN model is actually in a completely different universality class from ISAWs, with critical
exponents that form a continuum rather than taking on discrete values. The numerical discrep-
ancy is then explained by the fact that the BN values are the lower bounds for the range of
exponents.
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1.3. Amplitude ratios

For non-interacting SAWs, the metric properties described above are related by the CSCPS
equality, proposed by Cardy and Saleur [16], queried as incompatible with enumerations by
Guttmann and Yang [17] and subsequently corrected by Caracciolo et al [18]. Let

An =
〈R2

g〉n
〈R2

e〉n
, Bn =

〈R2
m〉n

〈R2
e〉n

. (11)

The equality is

lim
n→∞

Fn = 0, (12)

where

Fn =

(

2+
yt

yh

)

An − 2Bn +
1
2
, (13)

and yt =
4
3 and yh =

91
48 are the thermal and magnetic renormalisation-group eigenvalues,

respectively, of the O(0) model, that is to say, the SAW model. For brevity we will sometimes
write A∞ = limn→∞An and B∞ = limn→∞Bn.

For the interacting SAW model at the θ-point, Owczarek et al [19] conjectured that the
CSCPS equality holds with yt and yh in (13) replaced by their θ-point values, notably yt = 7

4
and yh = 2. Of course, the metric propertiesmust also be calculated at the θ-point. In [19] com-
pelling numerical evidence for this conjecture was presented, but no proof. In the intervening
25 years there has still been no proof of this result, but in 2011 Caracciolo et al [9] presented
an exhaustiveMonte Carlo analysis which provided evenmore compelling numerical evidence
for the correctness of this conjecture.

1.4. Honeycomb ISAWs and generating function identities

It is very tempting to try to use the methods of Duminil-Copin and Smirnov [1] and Beaton
et al [20] to compute and prove the exact value of uc. There are, however, (at least) two issues
with this idea, which we brie�y describe here.

In their proof of the connective constant, Duminil-Copin and Smirnov show that an identity
involving weighted SAW generating functions is satis�ed for particular values of the weights.
More precisely, they take a �nite, simply connected regionD of the lattice, and for convenience
let SAWs start and end on the midpoints of edges. Then for a a midpoint on the boundary
∂D and b any midpoint, they de�ne the parafermionic observable

Fa→b(z, σ) =
∑

ω:a→b

e−iσW(ω)z|ω|, (14)

where the sum is over all SAWs inD from a to b, |ω| is the length ofω, andW(ω) is the winding
angle of ω (that is, π

3 times the number of left turns minus the number of right turns).
The identity is then

(p− v)Fa→p

(

zc,
5
8

)

+ (q− v)Fa→q

(

zc,
5
8

)

+ (r − v)Fa→r

(

zc,
5
8

)

= 0, (15)

where p, q, r are the three midpoints around a vertex v, a is any midpoint in ∂D, and

zc = 1/
√

2+
√
2. This identity is proved by partitioning walks which end adjacent to v into
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Figure 2. Square lattice. Plot of κ(u) against u.

two sets: those which visit at most two of p, q, r, and those which visit all three. In the �rst
(resp. second) set, the contributions of triples (resp. pairs) of walks to (15) can then be shown
to be 0.

To accommodate ISAWs, one would need to generalise (14) by including the weight u
for nearest-neighbour contacts, and hope that (15) (or something like it) could be satis�ed
for values of u other than the trivial u = 1 case. Unfortunately we have not been able to
construct such an identity, and would be surprised if such a thing exists. This is the �rst
problem.

Even if an identity like (15) could be found, there is another issue. The proof in [20] for
the critical surface adsorption fugacity ac relies on taking the generating function GT (a, z) for
SAWs in an in�nite strip of width T , with a tracking the number of visits to one of the sides of
the strip. One can then set z = zc and interpret this as a series in a, rather than z. This series has
a radius of convergence, say aT , and it is shown in [20] that aT decreases to ac as T →∞. This
works because ac is the largest value of a such that the radius of convergence of G(a, z) (once
more viewed as a series in z) is zc, where G(a, z) is the generating function for TAWs which
accrue weight a with each visit to the boundary.

However, this is not true for the ISAW generating function C(u, z). Because κ(u) (as de�ned
in (8)) is expected to be monotone increasing in u, the only value of u for which zc is the
radius of convergence of C(u, z) is u = 1. Instead, at u = uc, the radius of convergence will
be some other value smaller than zc, about which we presently have no further exact infor-
mation. In �gure 2 we show a plot of κ(u) against u, derived from the series data we discuss
below.

1.5. ISAWs in three dimensions

One interesting aspect of ISAWs is that d = 3 is the critical dimension. In [21] two related
models on Z

3 are studied. One is a model of classical unbounded n-component continuous
spins with a triple-well single-spin potential (the |φ|6 model), and the other is a random walk
model of linear polymers with a three-body repulsion and two-body attraction at the tricritical
theta point. The polymer model is exactly equivalent to a supersymmetric spin model which

6
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corresponds to the n = 0 version of the |φ|6 model. For bothmodels the authors of [21] identify
the tricritical point, and prove that the tricritical two-point function has Gaussian long-distance
decay, namely 1/|x|.

Recently Bauerschmidt and Slade [22] studied the full phase diagram for the mean �eld
version of this problem, by considering walks on the complete graph in the limit as the number
of vertices tends to in�nity. In this very accessible account, they �nd a dilute phase which is
separated from a dense phase by a phase boundary curve. The phase boundary is divided into
two parts, corresponding to �rst-order and second-order phase transitions, with the division
occurring at a tricritical point.

1.6. Outline of the paper

The primary goal of this paper is to analyse ISAW series data in order to compute new estimates
for the amplitude ratios, critical points and critical exponents described above. In section 2
we outline the �nite lattice method and its application to enumerating ISAWs. The numerical
analysis of the series data is given in section 3. Section 3.1 reviews some known results for non-
interacting SAWs. In section 3.2.1 we compute several estimates for uc for the honeycomb
lattice, and in section 3.2.2 this is repeated for the square lattice. Section 3.3 presents some
analysis of the critical behaviour of interacting bridges and TAWs on the square lattice. Finally
in section 4 we present some concluding remarks.

2. Series generation

2.1. Hexagonal lattice

We calculated series for the ISAW generating function C(u, z) for walks of up to 75 steps.

2.1.1. Enumerationof ISAW. The algorithmwe use to enumerate ISAWs on the honeycomblat-
tice builds on the pioneering work of Enting [23] who enumerated square lattice self-avoiding
polygons using the �nite lattice method. An implementation of the SAP enumeration algorithm
for the honeycomb lattice can be found in [24]. The basic idea of the �nite lattice method is to
calculate partial generating functions for various properties of a given model on �nite pieces,
say W × L rectangles of the given lattice, and then reconstruct a series expansion for the in�-
nite lattice limit by combining the results from the �nite pieces. The generating function for
any �nite piece is calculated using transfer matrix (TM) techniques. Our algorithm is based
in large part on the one devised by Conway et al [25] for the enumeration of square lattice
SAWs with various improvements by Jensen [26]. The TM algorithm for the enumeration of
honeycomb SAW was described in [27] and a detailed description of the general method can
be found in [28].

2.1.2. Basic transfermatrix algorithm. Themost ef�cient implementation of the TMalgorithm
generally involves bisecting the �nite lattice with a boundary line and moving this boundary
in such a way as to build up the lattice cell by cell. ISAW in a given rectangle are enumerated
by moving the boundary so as to add two vertices at a time, as illustrated in �gure 3. Due
to the symmetries of the honeycomb lattice we separately consider rectangles with L < W

and L > W , since they will be traversed differently. The reason we do this is that we need to
minimise the number of edges intersected by the boundary.

For each con�guration of occupied or empty edges along the boundarywe maintain a gener-
ating function for partial ISAW cutting the intersection in that particular pattern. If we draw an

7
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Figure 3. A snapshot of the boundary line (solid line) during the transfer matrix calcu-
lation on the honeycomb lattice. ISAWs are enumerated by successive moves of the kink
in the boundary line, as exempli�ed by the position given by the dotted line, so that two
vertices at a time are added to the rectangle. The left panel show the case L > W while
the right panel is the case L < W . To the left of the boundary line in the left panel we
have drawn an example of a partially completed ISAW.

ISAW and then cut it by a line, we observe that the partial ISAW to the left of the boundary line
consists of loops connecting two edges on the boundary (we shall refer to these as loop-ends),
and pieces connected to only one edge on the boundary (we call these free ends). The other
end of a free piece is an end-point of the ISAW so there are at most two free ends. Furthermore
the number of free ends increase as the boundary is moved.

We are not allowed to form closed loops, so two loop ends can only be joined if they belong
to different loops. To exclude loops which close on themselves we label the occupied edges
in such a way that we can easily determine whether or not two loop ends belong to the same
loop. On two-dimensional lattices this can be done by relying on the fact that two loops can
never intertwine. Each loop-edge is assigned a label depending on whether it is the lower or
upper end of a loop. We must also ensure that the graphs we are counting have only a single
component. In addition we demand that valid ISAW con�gurations are those where the walk
touches all the sides of the rectangle.

Unoccupied edges come in two varieties depending on whether or not the ISAW passes
through the vertex to the left of the edge. If this ‘left’ vertex is empty no contact can occur
along this edge but if the vertex is occupied a contact may occur depending on whether or not
the ISAW passes through the rightmost vertex along the edge in question. This is illustrated in
�gure 3 where for example the second edge along the boundary is a ‘contact’ edge since the
ISAW passes through the vertex on the left while the top-most edge in an ‘empty’ edge since
the vertex to the left is unoccupied.

Each con�guration along the boundary line can thus be represented by a set of edge states
{σi}, where

σi =























E empty edge,
C contact edge,
L lower loop end,
U upper loop end,
F free end.

(16)

If we read from the bottom to the top, the con�guration along the intersection of the partial
ISAW in �gure 3 is {LCUCFE}.
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2.1.3. Updating rules for the TM algorithm. The updating of a partial generating function
depends on the states of the edges to the left of the new vertices. When the kink in the bound-
ary is moved we insert 3 new edges namely the edge connecting the new vertices and the two
edges to their right. In �gure 4 we display the possible local ‘input’ states and the ‘output’
states which arise as the kink in the boundary is propagated by one step. Not all 25 possible
local input states are displayed since many are related by an obvious re�ection symmetry while
others are related by the interchange L ↔ U with straightforward changes to the correspond-
ing updating rules. We shall refer to the con�guration before the move as the ‘source’ and a
con�guration produced as a result of the move as a ‘target’. In each move the source generating
function is multiplied by u jzk, where j is the number of added contacts and k is the number of
new occupied edges and is then added to the target generating function.

Below we describe how some of these rules are derived:

EE: the bottom and top left edges are both empty. We have �ve possible output states.
We can leave the bottomand right edges empty (EE)whichmeans no new edges or contacts
were added so the weight is just 1.
We can insert a new partial loop (LU) thus adding three new edges with weight z3.
We can add two new free edges on the right (FF) (this is only allowed provided the
source has no free ends). This creates a new contact along the vertical edge so the weight
is uz2.
Finally we can add a free edge on the bottom (FE) or top edge (EF) on the right (allowed
provided there is at most one free edge in the source). In this case we may or may
not occupy the vertical edge as well so there are two instances with weights z and z2,
respectively.

LE: the bottom left edge has a lower loop-edge while the top left edge is empty.
Firstly, we may terminate the lower-loop edge. This creates a new degree-1 vertex so it
is only allowed if there is at most 1 free edge in the source. Here we may or may not
occupy the vertical edge. We also have to relabel the matching upper loop-edge of the
now discontinued lower loop-edge as a free edge. Such an edge relabelling is indicated
above the con�guration (in this case by U→ F).
Secondly, we can continue the loop edge along the bottom right edge (weight z) or along
both vertical and top right edges (weight z2).
Thirdly, we can terminate the lower-loop edge (relabelling) and add a new free edge on
the top right edge (this is only allowed provided the source has no free edges). We insert
a single edge and create a contact along the vertical edge so the weight is uz.
Finally, we continue the loop-edge along the bottom and insert a new free edge on the top
while creating a contact along the vertical edge so the weight is uz2.

FE: the bottom left edge is a free edge.
We can leave both right edges empty. This creates a separate component and is only
allowed if the resulting graph is a valid ISAW. That is, the source contains no other occu-
pied edges (and if required both the bottom and top of the rectangle has been touched). The
partial generating function is added to the running total for the ISAW generating function.
We mark this possibility by an ‘add’ above the con�guration.
We can continue the free end along the bottom edge or the vertical and top edges.
We continue the free end along the bottom edge and insert a new free edge on top.

LL: one or both lower edges can terminate or both can be continued with the by now obvious
results. Finally, we can occupy the vertical edge which means that we join two loops
together. The matching upper loop-edge of the top most lower edge becomes the lower
edge of the joined loop. Such an edge relabelling is indicated by U→ L.

9
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Figure 4. Updating rules for the TM enumeration of honeycomb ISAW.
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LU: the two loop-edges belong to the same loop so terminating both edges results in a separate
component so we check and add if permitted. Otherwise, both or at least one edge is
continued to the right.

2.1.4. Calculation of the ISAW generating function. To calculate the ISAW series we use our
TM algorithm to count the number of ISAW in rectangles of sizeW × L using the TM traversal
direction 1 of the left panel of �gure 3 when L > W and the traversal direction 2 of the right
panel when W < L. We calculated the series for walks up to 75 steps. This required calcula-
tions for rectangles up toW = 26 in direction 1. For a given width all required lengths can be
obtained in a single calculation (similarly for direction 2). The �nal series is then obtained by
simply adding up the results for all rectangles.

The ISAW generating function is a two variable function C(u, z). The coef�cient of zk is a
polynomial in u. In order to calculate a series expansion for C(u, z) we would generally need
to store a two variable polynomial (truncating the series at order n = 75 in z). The degree of
the polynomial of z75 is 28. Such a calculation requires a lot of memory and it makes it more
dif�cult to write an ef�cient parallel version of the TM algorithm (for details on parallelisa-
tion see [26–28]). We have therefore taken a different approach. Since the coef�cient of zk is a
polynomial in uwe can reconstruct the coef�cients of this polynomial from evaluations at inte-
ger values of u. We calculate the series for C(u = i, z), i ∈ [0, 28] and then use these evaluated
series to reconstruct the actual series for C(u, z). Thankfully we do not generally have to use 29
evaluations. The number of contacts reaches the maximum of 28 at width 8 and then decreases
as the width of the rectangle increases. In this way our calculations require less memory and
we get a more stable parallel algorithm, but everything in life has a cost and in this case the
need for several evaluations at integer points means we had to use more CPU time. The typical
trade-off was that we saved at least an order of magnitude in memory but had to use about 4
times as much CPU time.

The integer coef�cients of the series expansions become very large and in order to han-
dle this the calculations were performed using modular arithmetic. The series were calculated
modulo prime number pi and the coef�cients reconstructed at the end using the Chinese remain-
der theorem. The equations used to determine the polynomial coef�cients of zk can readily be
solved mod pi, so we did this prior to applying the Chinese remainder theorem. The algorithm
for the calculation of metric properties requires integer multiplication so we used the largest
prime numbers smaller than 230. In this case we needed 3 primes to represent the integer
coef�cients.

2.2. Square lattice

We calculated series for the ISAW generating function C(u, z) for walks up to 59 steps and for
the metric quantities 〈R2

x〉n up to 55 steps. The algorithm used is a generalisation of the one
used by Jensen to enumerate non-interacting SAW [29] to 79 steps. The changes required
to enumerate ISAW are identical to those described above for the honeycomb lattice. The
updating rules in the square case are simpler since only a single vertex is added when mov-
ing the kink in the boundary and furthermore the symmetry of the square lattice means that
rectangles of size W × L and L×W have the partial generating functions so only one direc-
tion of the TM algorithm is required. However, for square ISAW the number of interactions
increase faster with the length of the walk so that for length 59 there is a maximum of 45
interactions.
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3. Results

3.1. Non-interacting SAWs

3.1.1. Honeycomb lattice. The metric properties of non-interacting honeycomb lattice SAWs
have been extensively studied by Jensen in [27], based on enumerations of SAWs to length 105
steps, and their metric properties to length 96 steps. Writing

〈R2
e〉n ∼ Men

2ν , 〈R2
g〉n ∼ Mgn

2ν , 〈R2
m〉n ∼ Mmn

2ν ,

Jensen estimatedMe = 0.8857(1),Mg = 0.124 24(4), andMm = 0.3894(1). The quantity A∞
in (13) is justMg/Me, and B∞ isMm/Me. Jensen estimated these directly as 0.140 3001(2) and
0.439 635(1) respectively. As a consequence, the estimate of limn→∞Fn = 0.000 003(13).

Jensen also studied the SAW generating function, and pointed out that as well as the dom-

inant singularity at z = zc = 1/
√

2+
√
2, with exponent γ =

43
32 , there is a singularity on the

negative real axis at z = −zc, with exponent − 1
2 , and a conjugate-pair of singularities on the

imaginary axes at z = z−c ≈ ±0.64215i. This singularity structure induces two distinct sets of
parity effects, meaning that one really needs to look at every fourth term to focus clearly on the
dominant singularity. This remark applies equally to the case of interacting walks, considered
below.

3.1.2. Square lattice. For square-lattice non-interacting SAWs, a corresponding series anal-
ysis, as well as an exhaustive Monte Carlo analysis is given in [30] by Caracciolo et al.
They estimated the corresponding amplitudes for square-lattice SAWs (also triangular lat-
tice SAWs, but we will not discuss those here) as Me = 0.771 21(4), Mg = 0.108 207(7) and
Mm = 0.339 03(4). They also estimated the ratios directly, and found A∞ = 0.140 296(6), and
B∞ = 0.439 649(9). These give limn→∞Fn = 0.000 036(37). It is clear that the amplitude ratios
A∞ and B∞ appear to be lattice-independent, as is expected.

In the case of the square lattice, as well as the physical singularity in the SAW generating
function at z = zc ≈ 0.379 052 277 755 161, [31] with exponent γ =

43
32 , there is another sin-

gularity at z = −zc, with exponent − 1
2 . This induces a parity effect on numerical properties,

such as ratios of successive terms, and so it is customary to look at series comprised of every
second term to eliminate the effect of the singularity on the negative axis.

3.2. Interacting SAWs

As �rst conjectured, with supporting numerical evidence based on series expansions, in [19],
and subsequently supported by rather precise Monte Carlo analysis in [9], the quantity

Fn =
23
8
An − 2Bn +

1
2

(17)

should vanish at the θ temperature as n→∞.
More remarkably, as proved in [30] for the non-interacting case, so should

lim
n→∞

nFn = 0.

As a consequence, we expect

Fn = O(n−3/2).

12
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Figure 5. Honeycomb lattice. A plot of Fn = 23
8 An − 2Bn + 1

2 against n−3/2 for uc =
2.777, 2.767, 2.757 reading from top to bottom. We claim that the central curve appears
to be headed towards the origin.

3.2.1. Honeycomb lattice. Using the series expansions derived as described in section 2,
we calculated 〈R2

e〉n, 〈R2
g〉n, and 〈R2

m〉n, as a function of u = exp(−ǫ/kT), and calculated the
amplitude ratios An(u) and Bn(u), and thus the sequence {Fn(u)}, for a range of u values.
Extrapolating Fn(u) against n−3/2, and seeking that value of u which resulted in the n→∞
limit of Fn(u) to vanish, we quickly found the critical value u = uc to be around u = 2.77,
and more careful analysis allowed us to re�ne this estimate to 2.767± 0.002. The only other
estimate of this quantity we can �nd in the literature is an old (1989) calculation of Poole
et al [32] who give uc = 2.69± 0.14, some two orders of magnitude less precise than our
estimate.

We also calculated the individual amplitudes directly at this value of uc, in the simplest
possible way, by just extrapolating the sequence 〈R2〉n/n2ν against 1

n
. In the notation of the pre-

vious subsection, we estimated Me = 1.525(2), Mg = 0.2772(3) and Mm = 0.7795(5). This
gives for the amplitude ratios A∞ = 0.1817(5) and B∞ = 0.5111(10). From (17) we �nd
F = 0.000 19(340). Greater precision could undoubtedly be obtained by a more sophisticated
analysis, such as that performed in [30], but as the precise values of these amplitudes are of
little interest, we have not carried out any further analysis. We remark that the amplitude ratio
A∞ was �rst estimated by Chang et al [33] by the scanning simulation method. Their estimate
A∞ = 0.179± 0.003 is in agreement with our more precise estimate. More precise estimates
were given in [9], albeit for the square lattice (though these amplitude ratios are expected to
be universal). They give A∞ = 0.181 51(10) and B∞ = 0.511 06(31). These are in complete
agreement with our series results.

One typical piece of numerical evidence for our estimate of uc is shown in �gure 5 where
the values of Fn are extrapolated against n−3/2 for a range of u values. While some curva-
ture in the plots is evident, we argue that the central curve, corresponding to uc = 2.767
appears to pass through the origin, while the plot corresponding to uc = 2.777 extrapolates
to a value above zero, and the plot corresponding to uc = 2.757 extrapolates to a value below
zero.
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Figure 6. Honeycomb lattice. Estimates of the exponent ν at u = 2.767 from
〈R2

g〉n, 〈R2
m〉n, 〈R2

e〉n reading from top to bottom. We claim that all three curves appear
to be heading towards the origin, corresponding to ν =

4
7 .

It is signi�cant that the curve passes through a minimum around n = 25. If we had many
fewer terms, it would not be at all obvious that Fn was approaching 0. This will turn out to be
signi�cant in our analysis, below, of the corresponding square-lattice data.

A completely different way to estimate uc is to calculate the critical exponent ν of any of
the three metric properties that we have studied. For u < uc we expect ν =

3
4 , which should

change discontinuously to ν =
4
7 at u = uc and to ν =

1
2 for u > uc. As we are dealing with

�nite series, we will not see discontinuities in the exponent estimates, but we can expect that
at u = uc, the exponent ν should be 4

7 . Thus our other approach to estimating uc is to vary u
and analyse the resulting metric series for their associated exponents.

This we do as follows: let 〈R2〉n ∼ An2ν for some generic length metric. Then

rn ≡
〈R2〉n
〈R2〉n−1

∼ 1+
2ν
n
.

So one can estimate ν by studying the sequence νn = (rn − 1) n2 . Extrapolating νn against 1
n

should give an estimate of ν as n→∞. If there are no con�uent singular terms, the plot
should be linear. Otherwise there will be some curvature, but the plot is still able to be
extrapolated.

Because of other singularities on the negative real axis and the imaginary axes in the case of
the honeycomb lattice, to eliminate oscillations produced by these singularities, we in practice
calculate

rn =
〈R2〉n
〈R2〉n−4

∼ 1+
8ν
n
,

and estimate ν from the sequence νn = (rn − 1) n8 .
In �gure 6 we show the plots for the three metric properties at our central estimate of uc. It

can be seen that all are plausibly approaching 4
7 . The top curve, (in red, for those viewing in

14
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Figure 7. Honeycomb lattice. Plot of rn = Hn/Hn−4 against 1
n
= 1/(4 j+ k) for

k = 0, 1, 2, 3. All curves should extrapolate to 23
8 as n→∞.

colour) is 〈R2
g〉n, the middle (blue) curve is the data for 〈R2

m〉n, and the bottom (green) curve is
the data for 〈R2

e〉n.
Finally, we repeated the method of analysis introduced in [19]. From (17) we see that

lim
n→∞

Gn =
4B∞ − 1
2A∞

=
23
8
.

We then de�ne

Hn =

n
∏

m=0

Gm,

and note that

∑

Hnz
n ∼ c(1− G∞z)

λ.

Then a simple ratio analysis allows one to estimate G∞, which should equal 23
8 at the θ-point.

(The value of the exponent λ is irrelevant to this calculation).
In �gure 7we show plots of the ratiosHn/Hn−1 against 1n . Again, because of the singularities

on the negative real and imaginary axes, this plot has a 4-term periodicity. We have therefore
broken the data into four sets, according as n (mod 4) is 0, 1, 2, 3. This gives four distinct plots,
all of which should go to the same limit, and that limit should be 23

8 = 2.875. As can be seen,
the plots behave in exactly the expected way. This test is moderately sensitive. If the estimate
of uc is increased or decreased by 0.005 the corresponding plots can be seen to go to a limit
above or below 23

8 respectively.
We also studied the ISAW series at u = uc, by the method of differential approximants.

Just as in the non-interacting case discussed above, we found four singularities. The dominant
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Figure 8. Square lattice. Estimates of the exponent ν at u = 1.9474 from
〈R2

m〉n, 〈R2
g〉n, 〈R2

e〉n reading from top to bottom. We claim that all three curves
appear to be heading towards the origin, corresponding to ν =

4
7 .

singularity at z = zc ≈ 0.481846, with an exponent of about 1.11, compared to the predicted
value of 8

7 = 1.1428 . . . , and a second singularity at z = −zc with a small exponent that is
dif�cult to estimate, but appears to be about −0.1± 0.1, and a conjugate pair of singularities
at z = z−c ≈ ±0.507 with an exponent we cannot estimate.

3.2.2. Square lattice. For the square-lattice, we have fewer terms than for the honeycomb.
One consequence of this is that the corresponding plot of Fn against n−3/2, (shown in �gure 5
for the honeycomb lattice), appears to be approaching a minimum, but we have insuf�-
cient terms to see this clearly, and, more importantly, to extrapolate the plot after it has
passed through a minimum. So we turn instead to the other two methods used above for the
analysis.

In earlier work [19] based on shorter series, analysis of the metric properties to estimate uc
gave rise to the estimate log(uc) = 0.665(5). A more recent Monte Carlo analysis in [9] using
walks up to 3200 steps, gave rise to the estimate log(uc) = 0.6673(5).Our analysis suggests that
this is slightly high, our result being log(uc) = 0.6665(5), corresponding to uc = 1.9474(10).

In �gure 8 we show the plots for the three metric properties at our central estimate of uc. It
can be seen that all are plausibly going to the origin, corresponding to ν =

4
7 . The top curve,

(in blue, for those viewing in colour) is 〈R2
m〉n, the middle (red) curve is the data for 〈R2

g〉n, and
the bottom (green) curve is the data for 〈R2

e〉n.
Finally, we repeated the method of analysis introduced in [19], as we did for the honeycomb

lattice. However, again we see the effect of a shorter series.
In �gure 9 we show a plot of the ratios

√

Hn/Hn−2 against 1
n
. Because of singularities on the

negative real axis, we have taken ratios of alternate terms. It can be seen that the plot appears
to be going to a limit greater than 23

8 . We believe that this is a short series effect, and that with
further terms this plot would pass through a maximum, and then decrease to a value around
23
8 , just like the corresponding plot for the honeycomb lattice.
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Figure 9. Square lattice. Plot of rn =
√

Hn/Hn−2 against 1
n
. The curve should extrapo-

late to 23
8 as n→∞.

So we base our analysis for the square lattice just on the metric property analysis, and
conclude that log(uc) = 0.6665(5), which overlaps the estimate from the best Monte Carlo
analysis [9], log(uc) = 0.6673(5).

We also studied the ISAW series at u = uc, by the method of differential approximants.
Just as in the non-interacting case discussed above, we found two singularities. The dom-
inant singularity at z = zc ≈ 0.309 805, with an exponent of about 1.12, compared to the
predicted value of 8

7 = 1.1428 . . . , and a second singularity at z = −zc with a small expo-
nent that is dif�cult to estimate, but appears to be about −0.1± 0.05. Both uc and zc were
estimated in earlier work by Grassberger and Hegger [34], who estimated uc = 0.665±
0.002 and zc = 0.3101± 0.0004, both of which are in agreement with our more precise
estimates.

3.3. Square lattice bridges and TAWs at the theta point

We have also generated rather short series for interacting bridges and interacting terminally
attached self-avoidingwalks (TAWs) on the square lattice, by a simple backtracking algorithm.
This allows us to give moderately accurate estimates of the exponents at the θ point for these
quantities. For TAWs an earlier estimate is given in [35], but as far as we are aware, no previous
estimate for interacting bridges has been given.

In [36] the estimate γ1(θ) = 0.57± 0.09 was given, based on a Monte Carlo analy-
sis, using their earlier estimate of the θ point, uc = 1.915± 0.06. In [35] the estimate
γ1(θ) = 0.57± 0.02 was given, based on a 28 term series, from which the θ point was esti-
mated to be at uc = 1.93± 0.03. Our analysis, based on a 30 term series, using differen-
tial approximants, and assuming our estimate uc = 1.9474 gives a slightly lower estimate,
γ1(θ) = 0.55± 0.03, but all three calculations of this exponent are essentially in agree-
ment. Note that this exponent was predicted to be exactly 4

7 = 0.57142 . . . by Duplantier and
Saleur [8], albeit for a modi�ed version of the interacting SAW model, being a loop model
with annealed vacancies. The numerical results would appear to be in agreement with this
prediction.
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More precisely, Duplantier and Saleur [8] �rst predicted the boundary exponents γ1 = 8/7
and γ11 = 4/7. However, these were exponents characteristic of the special transition, not of
the ordinary transition. This ‘shift’, until it was recognised, led to a lot of discussion in the
literature about the possible differences between the standard θ point and so-called θ′ point of
the Duplantier–Saleur vacancy percolation model. Actually, the θ and θ′ �xed points are the
same.

In [38] Vanderzande et al gave a persuasive argument, using connections with site per-
colation on the two-dimensional triangular lattice, for the resolution of the puzzle of the
exponents at the ordinary and special transitions. They also used series analysis to estimate
γ1 = 1.11± 0.04 for the special transition and 0.57± 0.02 for the ordinary transition. (See
also [35] for later work.) Finally the value of γ1(θ) = 4/7 in the ordinary case was correctly
calculated by the same authors in [39] from the Duplantier–Saleur exponents for three lines
attached to the boundary (not one) via a string of geometrical arguments. The reason that the
Duplantier–Saleur exponents are those of the special transition is the fact that the ISAW at
the θ-point touches and bounces on the boundary many times when the transition is driven by
vacancies (as does SLE6 for percolation).

For bridges at the θ point, we estimate γb(θ) = 0.00± 0.03, again based on a differential
approximant analysis. As far as we are aware, this exponent has not previously been estimated.
In [40] this exponent is calculated for the �rst time, along with a number of other exponents
for con�ned polymer networks, and is predicted to be precisely zero.

4. Conclusion

For the honeycomb lattice we estimate uc = 2.767± 0.002. The honeycomb lattice is unique
among the regular two-dimensional lattices in that the exact growth constant is known for non-

interacting walks. It is
√

2+
√
2 [1], while for half-plane walks interacting with a surface,

the critical fugacity, again for the honeycomb lattice, is 1+
√
2 [20]. We could not help but

notice that
√

2+ 4
√
2 = 2.767 . . . . We have been unsuccessful in trying to devise a proof

strategy, analogous to that used to prove the two known results just quoted, to try and prove
this result. At present it remains a possibility, but it would be wrong to even dignify it with the
title ‘conjecture’. For square lattice bridges and TAWs at the θ-point we estimate the exponents
to be γb = 0.00± 0.03, and γ1 = 0.55± 0.03 respectively. The latter result is consistent with
the prediction [8, 36, 39] γ1(θ) = ν =

4
7 .
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