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Abstract

The omnipresent disorder in physical systems makes it imperative to investi-

gate its effect on the spatial range of interactions for which system remains

thermodynamically extensive. Previously known bounds on the statistical free

energy for clean systems [8] indicate it to be extensive only for the spatially

short range interactions (decaying faster than r−d at large distance r with d as

system dimension). We analyze the bounds for quantum systems with different

types of disordered many body potentials e.g. annealed, quenched, Gaussian

or power law distributed. Our results indicate the dependence of the bounds

on the multiple distribution parameters representing the potential which in turn

permits, in contrast to clean potentials, more freedom to achieve the extensive

limits even for arbitrary spatial ranges of the interactions.

Keywords: many body long range interaction, disorder, extensive nature,

thermodynamics, Gaussian distribution, power law distribution, ensemble

average

1. Introduction

The complexity in varied forms e.g. many-body interactions, disorder etc. in real physical

systemsmakes it necessary to explore their statistical properties and the approach to thermody-

namic limits. An important role in this context is played by the range of many body interactions

(the spatial decay of interaction at large distances relative to its dimensionality). Based on the

range, the interaction can be classi�ed in two categories: (i) short range interactions (SRI) that

fall off faster than r−α for suf�ciently large distances r between particle-pairs with α > d, and

(ii) long-range interactions (LRI) with α 6 dwith d as space-dimension. (It must be noted that

the ‘range’ mentioned here is different from the characteristic length-scale of the potential).

The peculiar thermodynamic behavior of LRIs has motivatedmany studies in recent past [1–3]

and is also primary focus of the present work. The speci�c issue we address here is regarding
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the in�uence of disorder on extensive behavior of quantum systems with long-range interac-

tions. The idea to pursue this study originates from intense current interest in the questions

of localization, thermalization and ergodicity, at �nite temperature, of a many body system,

isolated or weakly coupled to a bath [4–7].

In thermodynamics, an extensive property of a macroscopic system e.g. free energy is

de�ned to be directly proportional to the size of the system and independent of its shape. In

statistical mechanics context however the de�nition is not so straight forward. For example,

the free energy of a �nite system de�ned through the partition function is not, in general

directly proportional to its volume and is shape-dependent. Due to varying de�nition of parti-

tion function across thermodynamics ensembles, the latter’s choice also play an important role.

To reconcile the thermodynamics with statistical mechanics, it is therefore necessary that the

statistical properties should approach their thermodynamic behavior in the ‘thermodynamic

limit’, that is, the limit of in�nitely large system-size while keeping the particle density

�nite.

As indicated by previous studies [8–12], the existence of a ‘thermodynamic limit’ in a clean

system depends on the nature of the interaction which in general may have both attractive as

well repulsive parts. This is intuitively expected: an unconstrained increase in the attractive

forces in macroscopic limit would lead to collapse of the system, with free energy per parti-

cle diverging to −∞. Similarly an unrestricted increase in the repulsive part with increasing

volume would cause system to disintegrate with free energy per particle diverging to ∞. The

stability of the system in macroscopic limit is therefore feasible only under certain conditions

on the interactions. The necessary, unavoidable role of statistical mechanics in the analysis

of many-body systems has motivated many studies in past to probe these conditions. The

most rigorous results have been derived by the studies [8, 9] on clean systems, quantum as

well classical and under various general conditions on the attractive and repulsive part of the

potential energy, on the shapes of the domains con�ning the system and for canonical as well

as grand canonical ensemble. Based on these studies, the crucial role played by the range

of many body interactions in absence of disorder, in context of the system-stability is now

well-understood.

A real many body system always contains some disorder. It is therefore natural to wonder

about the role of disorder in presence of many body interactions e.g. how the disorder would

affect the allowed ‘range’ of interaction in context of extensive behavior of the physical proper-

ties. The intuition suggests that the disordermay act as a barrier (screen) for interaction between

two faraway units of the system, thus effectively reducing the ‘range’ of interaction by local-

averaging although spatial dependence of the potential (for a single system) may still behave as

r−α with α 6 d. The intuition is indeed supported by the studies in classical long-range lattice

models [13–17] but its validity in general for classical and quantum systems is not known so

far. As averaging of the properties is necessary for any theoretical/experimental comprehension

of the disordered systems, the information about effective reduction of the ‘interaction range’

due to disorder, thus increasing its thermodynamic viability, is very desirable. This motivates

us to reconsider the derivations, given in [8] of the upper and lower bounds of the free energy

for a disordered many body system and seek whether the ‘range’ of interaction can indeed be

affected.

Based on underlying complexity e.g. many body interactions, impurities and scattering con-

ditions etc, the randomness in the system can manifest in various forms which in turn can have

signi�cant consequences for the statistical averages. In case of the system with an annealed

disorder, the randomvariables it depends on evolve with time; the statistical averages are there-

fore carried out over all possible values that the random variables can take. On the contrary, a

system with quenched disorder depends on random variables frozen in time; the averages are
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Table 1. Extensive limit of disordered many body interactions with arbitrary spatial dependence: the table describes the conditions on the dis-
tribution parameters, with arbitrary spatial dependence, for which the ensemble averaged free energy is extensive; (note columns 2nd, 3rd, 5th
and 6th correspond to conditions (71), (78), (86), (81) respectively with wa,wb = 0). In presence of disorder, the spatial dependence of many
body interactions is expected to manifest through the distribution parameters of the potentials. More speci�cally, the ensemble averaged mean of
the potential in general has the same spatial decay rate as its single replica. As intuitively clear, the presence of more parameters in a condition
increases the probability to ful�ll it. For annealed case, the temperature also enters in the condition as a parameter, thereby helping the collective
conspiracy of the parameters to achieve extensive limits. Here the symbol G in 3rd column refers to the geometric mean of a speci�c combi-

nation of parameters: Gp =
∏

k,l

[

akl (βckl)
aklΓ (−akl,βckl)

]
1

N1N2 for Pareto, Gc = e−βδU
∏

k,l

[

eiβcklΓ (iβckl)+ e−iβcklΓ (−iβckl)
]

1
N1N2 for Cauchy

case, Gs = e−βδU
∏

k,l

[

1
π

∑∞
n=1

(−1)n+1(βckl)
nakl

n!
sin

( naklπ
2

)

Γ(nakl + 1)Γ (−nakl,β(u− δkl))
]

1
N1N2 for Sym-stable case. Note in case of quenched

Levy, annealed Cauchy and symmetric-stable (both annealed and quenched) distributions, the results mentioned in the table are applicable only for
the restricted support (see text). The 4th column states whether the annealed disordered LRIs with speci�c distribution type given in column 1st
(and with µ, ν2, δU , cU ∼ 1

Rγ
, γ < d) can be extensive i.e. whether both the conditions in columns 2nd and 3rd can simultaneously be ful�lled for

them (a brief explanation given ina). The 7th column contains the similar information for the quenched disorders (a brief explanation given inb).

Distribution type Annealed lower bound Annealed upper bound Annealed LRIs Quenched lower bound Quenched upper bound Quenched LRIs

Gaussian Finite u, σ2,T 2µkT 6 ν2 Yesa Finite u µ < 0 Nob

Levy Finite δL δU +
√
2kT cU 6 0 Yesa δL < cL δU > cU Yesb

Pareto Finite ck/T Gp > 1 Yesa
∑

k
αkck
1−αk

6 0
∑

k,l
αklckl
1−αkl

> 0 Nob

Cauchy Finite δk, ck/T Gc > 2 Yesa δL 6 0 δU > 0 Yesb

Sym-St Finite δk, ck/T Gs > 1 Yesa YL 6 0 YU > 0 May beb

aThe comments in 4th column of table 1 are based on following reasoning (for the conditions in columns 2nd, 3rd): (a) Gaussian: the conditions can be satis�ed by an LRI at suf�ciently

strong disorder, (b) Levy: the conditions can be satis�ed by a LRI with a suitably large negative location parameter, (c) Pareto: the stability parameter a and scaling parameter c being

always positive, the condition on Gp can be satis�ed, (d) Cauchy: with c always positive semi-de�nite, the conditions can be ful�lled for Cauchy cases with a negative location

parameter, (e) Sym-stable: the terms corresponding to higher n in the series are expected to cancel each other’s contribution, the condition Gs > 1 can be ful�lled by the cases with

negative location parameters.
bThe comments in 7th column of table 1 are based on following reasoning (for the conditions in columns 5th, 6th): (a) Gaussian: µ being the mean of φηη, a repulsive potential,

is expected to be positive, (b) Levy: the location parameter δ can in general be bigger or smaller than the scale parameter, (iii) Pareto: upper bound cannot be satis�ed as ckl > 0,

akl > 1, (c) Cauchy: the location parameter δ can in general be positive or negative, (d) Sym-stable: due to cosine terms, the contribution from series in equation (85) may be positive

or negative.
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Table 2. Extensive limit, annealed disorder and low temperature: besides spatial decay
rate of the potential, the bounds on the averages in the annealed case can in general
depend on temperature too. Here the 2nd and 3rd column describe the low tempera-
ture limit of the bounds on the distribution parameters for the ensemble averaged free
energy to be extensive. Assuming the distribution parameters (i.e. σ2, δU , cU) appearing
in column 3 with a spatial dependence of 1/rγ type, the columns 3rd and 4th predict if a
d-dimensional system with speci�c disordered potential type is extensive. Note the case
γ > d for each disorder type is similar to the clean case.

Distribution

type Lower bound Upper bound

Case 1
rγ

with γ < d

Case 1
rγ

with γ > d

Gaussian σ2 6 0 ν2 > 0 Extensive if

σ2 = 0

Extensive if

σ2 = 0

Levy δL > −wa δU 6
wb
Rd+ǫ Extensive if

δU 6 0, δL
�nite

Extensive if δL
�nite

Pareto cL > −wa cU 6
wb
Rd+ǫ Not extensive

(as cU > 0)

Extensive

Cauchy δL +
π
2
cL > −wa δU +

π
2
cU 6

wb
Rd+ǫ Extensive if

δU 6 0,

|δU | > π
2
cU ,

δL �nite

Extensive if δL
�nite

Sym-St δL > −wa δU 6
wb
Rd+ǫ Extensive if

δU 6 0, δL
�nite

Extensive if δL
�nite

therefore obtained by keeping the random variables �xed. The averages also depend on the dis-

tribution parameters representing the disordered potential as well as on its spatial dependence

and a competition among them is expected to in�uence the bounds for extensive behavior.

This motivates us to consider the disordered potential of both annealed and quenched types,

and with distributions of both �nite and in�nite variances. Our results, illustrated in tables 1

and 2 for speci�c cases, clearly indicate the signi�cant role played by disorder to sustain the

thermodynamic extensive limits in physical systems: the appearance of multiple distribution

parameters in the bounds indeed helps, by a subtle conspiracy, to overcome the effect of the

spatial range of interactions. In case of annealed disorder, the temperature also appears as a

parameter, thus increasing the degree of freedom for the system to approach the thermodynamic

limit.

For clear presentation of our ideas, here we con�ne ourselves to disordered potentials in

quantum systems in contact with a heat bath which permits the use of canonical ensemble.

Note most studies of the LRIs in past have focused on isolated classical systems and there-

fore analyzed thermodynamic properties in micro-canonical ensemble. The contact of a real

disordered LRI with external environment however cannot usually be ignored which makes

it necessary to consider canonical ensemble for their analysis. Our approach can also be

generalized to grand canonical ensemble along the same lines as discussed in [8] for clean

cases.

The paper is organized as follows. Section 2 describes the Hamiltonian of the quantum sys-

tem used in our analysis; for comparison of results, here we use the same general form of

the Hamiltonian as in [8]. Section 3 reviews the de�nition of thermodynamic limit for free

energy and Fisher–Ruelle conditions on the non-random many-body potentials under which

the free energy is extensive. To clarify our objectives from the onset, this section also presents
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a statement of our results for the conditions in the case of disordered potentials. The deriva-

tion of the conditions for both annealed as well as quenched disorder and for the �nite and

in�nite limits of the system volume is described in section 4; essentially being analogous to

section 3 of [8], the steps for in�nite volume limit are mentioned only brie�y (with some

details given in appendix A). In presence of the disorder, the spatial decay rate of the poten-

tial enters in the conditions through the distribution of its random part and the results can

vary based on the distribution parameters e.g. �nite or in�nite variances; this is discussed

in detail in sections 5 and 6. Our results clearly show a sensitivity of the thermodynamic

limit to the nature of disorder, with latter often helping the LRIs to recover their extensive

behavior. Table 1 describes the parametric condition for �ve distribution types of the LRIs

which leave the system extensive if ful�lled. Table 2 mentions the low temperature limit of

the conditions on extensivity of LRIs. An example illustrating our results is also discussed

in appendix B. We conclude in section 7 with a brief discussion of the implications of our

results.

2. Many body Hamiltonian

Let H
(

p1, . . . , pN ; r1, . . . , rN
)

be the Hamiltonian of a quantum system of volume Ω con-

sisting of N interacting ‘particles’ (i.e. sub-units) with their momenta and spatial coordi-

nates as ps, rs, s = 1, . . . ,N. Assuming that the interacting part can be separated from the

non-interacting one, H can be written as

H = H0 + UN (1)

with H0(p1, . . . , pN; r1, . . . , rN) as the total Hamiltonian of N non interacting ‘particles’

H0 =

N
∑

s=1

H
(s)
0 , (2)

H
(s)
0 = H

(s)
0 (ps, rs) as the single-particle Hamiltonian of the particle labeled as ‘s’ and

UN ≡ UN(r1, r2, . . . , rN) as the total interaction among the particles.

In general, a many body potential among N particles may consist of the sum over

contributions from k body terms, with 1 6 k 6 N:

UN =

N
∑

k=1

U(k) (3)

with U(k) as a k-body contribution

U(k)
=
∑

{p}
U(k,p)(rp1, rp2, . . . , rpk) (4)

with
∑

p implying a summation over distinct

(

N

k

)

combinations of k particles chosen from

the set of N particles, with subscript p referring to one such combination and subscripts

p1, p2, . . . , pk ranging from 1→ N. Here we assume, as in [8], that UN(r1, r2, . . . , rN) is sym-

metric in N variables ri, i = 1→ N. Note however, due to presence of disorder, UN is not

translational invariant for our case.

For application to real quantum systems, it is useful to assume H to be a self-adjoint opera-

tor, thus implying it has real eigenvalues and a complete set of orthonormal eigenfunctions. As

5
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discussed in [8], this assumption imposes constraints on the allowed boundary of the volume

Ω and also requires the potential U to be square-integrable. To proceed further, it is there-

fore necessary to de�ne the domain con�ning the system. Following the approach given in

[8], we consider a d-dimensional coordinate space, with position vectors r, con�ned within a

domain denoted by D and volume Ω = Ω(D). The domain is assumed to have a wall of thick-

ness h > 0 so that the statement ‘r is in D’ implies that the point r is at least at a distance h

from any boundary point of D; this is equivalent to say that r is in a free volume Ω′ where
Ω′ < Ω.

For later reference, we also consider two sub-domainsD1,D2 which may overlap but their

free volumes are separated by the distance R and lie within the free volume of domain D.

The sub-domains D1,D2 are assumed to be of volumes Ω1,Ω2 and contain N1,N2 particles

respectively such that Ω = Ω1 +Ω2 and N = N1 + N2.

Consider H1(p1, . . . , pN1 ; r1, . . . , rN1) and H2(p
′
1, . . . , p

′
N1
; r′1, . . . , r

′
N2
) as the Hamiltoni-

ans of these two parts which interact with each other with an interaction potential Φ. Thus we

have

H = H1 + H2 +Φ (5)

with H1 =
∑N1

s=1 H
(s)
0 + UN1 and H2 =

∑N2
t=1H

(t)
0 + UN2 . Here UN1 = UN1(r1, r2, . . . , rN1)

corresponds to the interactions among the particles within domain D1 only. Similarly

UN2 = UN2(r
′
1, r

′
2, . . . , r

′
N2
) is related to the domainD2 only andΦ is the sum over those inter-

actions of UN which are not contained in UN1 ,UN2 (i.e. those consisting of particles from both

volumes Ω1,Ω2:

Φ = Φ(r1, r2, . . . , rN1 , r
′
1, r

′
2, . . . , r

′
N2
) (6)

Clearly the net potential energy UN = UN(r1, r2, . . . , rN1 , r
′
1, r

′
2, . . . , r

′
N2
) of the N particles

within domainD is the sum of the potential energies of the particles within domainD1,D2 and

the interaction Φ: UN = UN1 + UN2 +Φ. Further note that

Φ =
∑

k,l

Φ
(k,l)

=
∑

k,l,p,p′
Φ

(k,l,p,p′). (7)

with superscripts k, l implying k of them in domainD1 and l of them in domainD2. Further
∑

p

and
∑

p′ refer to the summation over distinct combinations of k and l particles, respectively,

chosen from the set of N1 and N2 particles, respectively with subscripts p, p′ referring to such

combinations. The number of k+ l-body terms Φ(k,l), with k of them in domain D1 and l of

them in domain D2, given as

Mk+l =
∑

k,l

N1N2

(l+ 1)(k− 1)

(

N1 − 1

l

)(

N2 − 1

k − 1

)

(8)

which becomes very large in the thermodynamic limit (see appendix C of [8] for the

derivation).

3. Extensive nature of free energy: conditions on potentials

The free energy F of a system, with Hamiltonian H and at a temperature T, is de�ned as

F = − 1
β
log Z with Z as the canonical partition function Z = Tr e−βH and β = (kT)−1. The

thermodynamic limit of the free energy can be de�ned as follows [8]: given a sequence of

6
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domainsDk, (k = 0, 1, 2 . . .) with volume Ω(Dk)→∞ containing N particles at �xed particle

density ρ, the limiting free energy per particle, say f = F/N becomes volume-independent:

lim
k→∞

f (β, ρ,Ωk) = f (β, ρ). (9)

As discussed in [8], the existence of the limit depends on two requirements as volume of the

system increases: (a) a lower bound of the free energy per unit volume, say f, it should not

diverge to −∞, and (b) an upper bound of the free energy per unit volume, that it does not

diverge to +∞. These bounds on the free energy in turn manifest as constraints on the many

body potentials; here we state them �rst for clean potentials (derived in [8]) and later on their

generalization for disordered cases (derived later in this paper).

3.1. Ruelle–Fisher conditions on clean potentials

As discussed in [8], the bounds on free energy impose following constraints on the potentials:

(a) The lower bound on the potential, also referred as the stability condition, is given as

UN(r1, r2, . . . , rN) > −wa N (10)

for all r1, r2, . . . , rN and for all Nwithwa �nite. The above relation is basically a statement

about the stability of the system against its collapse due to attractive nature of the potential.

More restrictive conditions ensuring thermodynamic limit can be also obtained for a class

of stable potentials [8].

(b) The mutual potential energy Φ(N1,N2) of the sets of N1 and N2 particles, separated from

each other by a minimum distance R, satis�es the inequality, for some �xed R0 and wb,

Φ(r1, r2, . . . , rN1 , r
′
1, r

′
2, . . . , r

′
N2
) 6

N1 N2 wb

Rd+ǫ
(11)

if |ri − r′j| > R > R0 for all i = 1, . . . ,N1 and j = 1, . . . ,N2 and (N1+N2)

Rd+ǫ is suf�ciently

small with ǫ > 0. The above relation describes the stability of the system against the

repulsive part of the many body interaction.

3.2. Conditions on disordered potentials

In presence of disorder, it is relevant to consider the thermodynamic limit of the disorder aver-

age (also referred as the ensemble average) of the free energy. The averaging (also referred as

the ensemble average) however depends on the nature of the disorder i.e. whether it is annealed

or quenched:

〈F〉 = − 1

β
〈log Z 〉 quenched (12)

= − 1

β
log〈Z 〉 annealed (13)

with 〈.〉 implying a disorder average. (Here the annealed and quenched disorder refer to system-

dependence on random variables that do and do not evolve in time, respectively. A quenched

disorder average is therefore obtained by keeping the randomvariables �xed,while an annealed

average is an average which is also carried out over all the possible values that the random

variables can take).

7
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Our objective in this paper is to derive the conditions on the disordered potentials for which

〈F〉/Ω will have a well-de�ned thermodynamic limit. In this section, we state the conditions;

the details of their derivation are given in sections 3 and 4.

(a) The HamiltonianH for the domainD represents a suf�ciently well-behaved, stable poten-

tial (system) so that 〈Z〉 (quenched case) or 〈log Z〉 (annealed case) exists. This in turn

requires that on an average the minimum diagonal element, say Umin, of potential U in

an arbitrary basis is bounded from below such that a �nite wa (more accurately wa < ∞)

exists for all N (equivalently volume Ω containing N particles) for which

− 1

β
log〈e−β Umin〉 > −wa N (annealed) (14)

〈Umin〉 > −wa N (quenched) (15)

(b) If one consider two domains say D1 and D2 separated from each other by a minimum

distance R, the interaction potential Φ of these domains must not depend too strongly on

N1,N2 (alternatively their volume Ω1,Ω2) and must decay to zero with increasing R. Here

R is a length scale such that (a) |ri − r′j| > R for all particle-pairs (ri, r
′
j) with ri in domain

D1 and r
′
j in D2, and, (ii)

Ω1+Ω2

Rd+ǫ is suf�ciently small for a d-dimensional disordered sys-

tem. The free energy can be shown to be bounded from above if the largest diagonal,

referred as Φmax, of Φ-matrix in an arbitrary basis (in which H1,H2 and Φ are statistically

independent) satis�es following inequality, for all N1,N2,

− 1

β
log〈e−β Φmax〉 6

N1 N2 wb

Rd+ǫ
(annealed) (16)

〈Φmax〉 6
N1 N2 wb

Rd+ǫ
(quenched) (17)

where wb is �nite.

As explained later in sections 5 and 6, the conditions (15)–(17) can further be simpli�ed,

based on the tail behavior of the Φmax-distribution e.g. exponential or power-law (which gov-

erns the applicability of the central limit theorem) and the separability of its spatial dependence

from random degrees of freedom.

As clear from above, in contrast to non-random case where the conditions for the thermo-

dynamic limits are on the potential itself, now only the distribution parameters are subjected

to constraints

4. Bounds on free energy in presence of disorder

4.1. Lower bound on free energy

Peirels theorem [18] states that for a self adjoint operator H

Tr(e−βH) =
∑

k

〈k|e−βH|k〉 >
∑

k

exp
[

−β〈k|H|k〉
]

(18)

where |k〉 is arbitrary basis. Using the above, the partition function Z(N,Ω) = Tr(e−βH) for the

Hamiltonian H = H0 + U can be written as

8
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Z(N,Ω) >
∑

k

e−β (H0)kk e−β Ukk (19)

Now letUmin andUmax be the minimum andmaximumdiagonals of the interaction potential

U in an arbitrary basis, then it can be shown that [8, 10]

(

Tr e−βH0
)

e−βUmin > Z(N,Ω) >
(

Tr e−βH0
)

e−βUmax (20)

Using only the �rst inequality, one has

Z 6 Z0 e
−βUmin (21)

where Z0 = Tr e−βH0 is the partition function, with H0 as the Hamiltonian for the system of

N non-interacting particles con�ned within volume Ω with ρ as the constant particle density:

N = ρΩ.
For clarity, let us assume that Umin corresponds to the sth diagonal of U: Umin ≡ Uss =

〈s|U|s〉. For cases with U given by equation (3), one can write

Uss ≡
N
∑

k=1

U(k)
ss U(k)

ss =
∑

p

U(k,p)
ss (22)

with U(k,p)
ss as the sth diagonal of the potential U(k,p). Equation (21) can then be rewritten as

Z 6 Z0 e
−β Uss (23)

The lack of interaction permits Z0 to be expressed in terms of the single particle parti-

tion functions zs: Z0 = (zs)
N with zs = e−βH(s)

0 with H(s)
0 as the single particle Hamiltonian. To

proceed further, we need to consider the annealed or quenched disorder case separately.

(a) Annealed case:

As the partition function Z0 corresponding to non-interacting system is independent of

the interaction potential, the ensemble average of both sides of equation (21) gives

〈Z〉 6 〈Z0〉 〈e−β Umin〉 (24)

The above on substitution in equation (13) leads to

〈F(Ω)〉 > N 〈Fs(Ω)〉 − 1

β
log〈e−β Umin〉 (25)

with Fs = − 1
β
log zs as the free energy of a single particle with zs as its partition function.

If condition (14) is now ful�lled, the lower bound on f, the ensemble averaged free energy

per particle for interacting case, becomes

f > fs − wa (26)

where fs = 〈Fs〉, is the ensemble-averaged free energy per particle for non-interacting

case, or equivalently, the ensemble-averaged free energy for a single free particle. Clearly

a �nite lower limit of f would then exist if ωa remains �nite in the in�nite volume

limit. Note ωa can be temperature dependent but for the limit to exist at very low

9



J. Phys. A: Math. Theor. 53 (2020) 165001 P Shukla

temperatures, ωa should also be �nite in T→ 0 limit. It is possible however that the

approach to thermodynamic limit of a system varies with temperature.

(b) Quenched case:

First taking log of both sides of equation (21), followed by an ensemble average,

gives

〈F(Ω)〉 > N 〈Fs(Ωb)〉 + 〈Umin〉 (27)

Substitution of equation (15) in equation (27) now gives

f > fs − wa (28)

Clearly a lower bound of f exists if the lower bound of 〈Uss〉 is given by equation (15),

with a �nite wa in the thermodynamic limit (N,Ω→∞ with ρ constant).

Note if
〈Uss〉
N

→ 0, the lower limit of the free energy of the interacting particles is then

given by the non-interacting ones. Clearly the lower limit of the free energy exists for

an arbitrary potential UN given by equation (3), irrespective of the spatial range of the

many body termsU(k), as long as the minimum eigenvalues of the latter are symmetrically

distributed such that 〈Uss〉 = 〈U(k)
ss 〉 = 0.

4.2. Upper bound on free energy

Following the approach of [8], we now consider a domainD of volumeΩ containingN particles

divided into two sub-domainsD1,D2 which may overlap but their free volumes are separated

by the distance R and lie within the free volume of domainD. The Hamiltonian in this case is

given by equation (5).

Again applying Peirels’s inequality to the partition function Z(N,Ω) = Tr(e−βH) with H

given by equation (5), we have in an arbitrary basis, say |k〉,

Z(N,Ω) >
∑

k

e−β(H1+H2)kk e−β Φkk (29)

> e−β Φmax
∑

k

e−β(H1+H2)kk (30)

where Φmax is the largest diagonal of Φ-matrix: Φmax > Φkk for all k. Henceforth subscript η
will be reserved for Φmax i.e. Φηη ≡ Φmax. Note from equation (7)

Φηη =
∑

k

∑

l

Φ
(k,l)
ηη , Φ

(k,l)
ηη =

∑

k,l,p,p′
Φ

(k,l,p,p′)
ηη (31)

(a) Annealed case:

AssumingH1,H2 andΦ as statistically uncorrelated, the ensemble averaging then gives

〈Z(N,Ω)〉 >
∑

k

〈e−β(H1+H2)kk 〉 〈e−β Φmax〉 (32)

To proceed further, let us write for simpli�cation

α =
Ω1Ω2 wb

Rd+ǫ
.

10
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Now using equation (16), (32) can then be rewritten as

〈Z〉 > 〈Z1〉 · 〈Z2〉 · e−β α (33)

Taking the logarithm of equation (33) and using the de�nition for the ensemble aver-

aged free energy per unit volume f = − 1
βg log〈Z〉 yields, for both wb > 0 or wb < 0,

Ω f 6 Ω1 f1 +Ω2 f2 + |α| (34)

By successive divisions of further domains D3,D4 from the domain D1 and iterating

equation (33), we can obtain an inequality for an arbitrary subdivision of the original

domainD:

f (ρ,Ω) 6

n
∑

m=1

vm fm(ρ,Ωm)+
1

Ω

n−1
∑

m=1

|αm| (35)

where vm = Ωm
Ω
. Here again the free volumes of the n sub-domains Dm are contained in

the free volume of Ω but are separated from each other by at least the �xed distance R.

Here the series in the last term comes because we gain additional terms αn in successive

stages: α1 =
(Ω−Ω2)Ω2 wb

Rd+ǫ , α2 =
(Ω−Ω2−Ω3)Ω3 wb

Rd+ǫ and αn−1 =

(

Ω−
∑n

j=2 Ω j

)

Ωn wb

Rd+ǫ . As Ω >
∑n

j=2 Ω j, one has

n−1
∑

m=1

|αm| =
n−1
∑

m=1



Ω−
m+1
∑

j=2

Ω j



 Ωm+1

|wb|
Rd+ǫ

6
Ω

2

Rd+ǫ
|wb|. (36)

Substituting this in equation (35), we have, with ξ = Ω

Rd+ǫ ,

f (ρ,Ω) 6
n
∑

m=1

vm fm(ρ,Ωm)+ |wb| ξ (37)

(b) Quenched case:

Proceeding from equation (30) by �rst taking log and then averaging, one can again

arrive at equation (37) but now wb is given by the inequality (17). As clear, the condition

is satis�ed by wb = 0, irrespective of the range of potentials, as long the disorder average

of their off-diagonals is zero.

4.3. Thermodynamics limit and extensivity

Equation (37) give the upper bound on the free energy per particle of the Hamiltonian H for

a disordered system of volume Ω con�ned by a domain D. It is now relevant to consider the

thermodynamic limit of the free energy i.e. to analyze the form of its lower and upper bounds

in the limit Ω→∞,R→∞ such that ǫ = Ω

Rd+ǫ → 0. Note equation (37) is essentially of the

same form as equation (5.5) of [8] (with following replacements N →− f , Ω→D, V → Ω

where the symbols given on left of the→ are those used in [8]). Following the approach used

in section 6 of [8], the upper and lower bounds on free energy, in large k limit and for ν > d,

can be rewritten as (details given in appendix A)

11



J. Phys. A: Math. Theor. 53 (2020) 165001 P Shukla

f (ρ,Ωk) 6 f (ρ,Ω0)+
|wb| ξ0 ϕ2

(1− ϕ2)
(38)

with ξ0 arbitrary, ϕ2 < 1 (see appendix A) and

f (ρ,Ωk) > f (ρ,Ω0)+ wa (39)

Here, as mentioned before, wa,wb must remain �nite in the thermodynamics limit; (note

wa can be a decreasing function of the volume). Further, analogous to case of non-random

potentials too [8],wa,wb are temperature independent in the quenched disorder case. However,

for annealed case, the temperature-dependence of wa,wb cannot be ruled out.

As clear from equations (38) and (39), an existence of �nite wa,wb, satisfying conditions

(14)–(17), in turn implies the existence of a free energy with upper and lower bounds in the

thermodynamic limit.

5. Role played by type of disorder: distribution with finite variance

In presence of disorder, each of the k-body contributionsU(k,p) (equation (4)) andΦ(k,p) are ran-

domized, with their matrix elements behaving like random variables if the basis to represent

them is chosen appropriately e.g. the eigen function basis of the Hamiltonian in absence of

disorder. With Uss and Φηη given by equations (22) and (31) respectively, both of them behave

as random variables too. Based on the nature of randomness and mutual dependence of var-

ious terms contributing to them, the conditions can be rewritten in terms of the distribution

parameters which gives better insight about their applicability.

For later reference, an important point worth emphasizing here is following. As the ques-

tion regarding an existence of upper bound of free energy is concerned with repulsive core of

a potential at large particle-distances, the matrix elements of Φ in any physically meaningful

basis are expected to be positive. Further, as Φ describes the interaction between two domains

at a spatial distance R, this results in a R-dependence ofΦηη and thereby its distribution param-

eters. Intuitively themean and variance of the distribution forΦηη are expected to have the same

spatial-dependence as its typical value.

For cases in which U(k,p) for k = 2→ N are mutually independent, bothU(k)
ss =

∑

pU
(k,p)
ss as

well as Φ(k,l)
ηη =

∑

p,p′Φ
k,l,p,p′
ηη are summations over many independent random variables. With

number of terms contributing toU(k)
ss andΦ(k,l)

ηη becoming very large in the thermodynamic limit,

the standard central limit theorem (CLT) predicts their distribution to approach Gaussian limit.

The latter helps as the averages in equations (14) and (16) can then be simpli�ed by following

identity for a Gaussian random variable, say y with mean u and variance σ2

〈e−β y〉 = e(1/2)β
2σ2−βu (40)

Consider that the diagonal element U(k,p)
ss of U(k,p)(rp1, . . . , rpk) are distributed with mean u(k,p)

and variance σ2(k,p). Following CLT, the mean uk and variance ν
2
k for the Gaussian distributed

U(k)
ss can be expressed as

uk =
∑

p

u(kp), σ2
k =

∑

p

σ2(kp) (41)

Similarly assuming thatΦ(k,l,p,p′ )
ηη is distributed with mean µ(klpp′) and variance ν2(klpp

′), the mean

µkl and variance ν
2
kl for the Gaussian distributed Φ

(k,l)
ηη can be expressed as

12
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µkl =
∑

p,p′
µ(klpp′), ν2kl =

∑

p,p′
ν2(klpp

′) (42)

Further assuming that many body interactions U(k) for different k are mutually indepen-

dent, the latter would also be applicable for their diagonals U(k)
ss . Applying the same reason-

ing, maximum diagonals Φ(k,l)
ηη for different k, l can also be assumed independent. Following

equations (22) and (31), this implies

〈Umin〉 ≡ 〈Uss〉 =
∑

k

〈U(k)
ss 〉, (43)

〈Φmax〉 ≡ 〈Φηη〉 =
∑

k,l

〈Φ(kl)
ηη 〉. (44)

and

〈e−β Umin〉 ≡ 〈e−β Uss〉 =
∏

k

〈e−β U(k)
ss 〉 (45)

〈e−β Φmax〉 ≡ 〈e−β Φηη〉 =
∏

k,l

〈e−β Φ
(k,l)
ηη 〉 (46)

A point worth emphasizing here is as follows: from equations (22) and (31), Uss as well

as Φηη can directly be written as the sum over U(kp)
ss and Φ

(klpp′)
ηη respectively which suggests

one to apply CLT directly to Uss as well as Φηη . But note U
(kp) for different k values refer

to the interactions corresponding to different numbers of particles and in general need not be

identically distributed; (a similar argument can be extended to Φ
(klpp′)
ηη too). The CLT in its

standard form is however applicable to a sum over i.i.d. variables. Although many generalized

variations of CLT applicable to non-i.i.d. variables are available in scienti�c literature, they are

often applicable under speci�c restrictions on the nature of randomness of the variables. For

generic considerations, it is therefore more appropriate to apply CLT to U(k)
ss as well as Φ(k,l)

ηη .

To proceed further, we consider annealed and quenched cases separately.

5.1. Annealed case

Lower bound. Applying the relation (40) for y→ U(k)
ss gives 〈e−β U(k)

ss 〉 = e(β
2/2)ν2

kl
−βµkl . The

latter on substitution in equation (45) leads to

〈e−β Uss〉 = exp

[

∑

k

(

β2σ2
k

2
− βuk

)

]

(47)

with uk, σk de�ned in equation (41). With help of the above, equation (14) can then be rewritten

as

1

N

N
∑

k=1

(

uk −
β

2
σ2
k

)

> −wa (48)

where wa is �nite but arbitrary otherwise. Further de�ning u = 1
N

∑N
k=1 uk and σ2 =

1
N

∑N
k=1 σ2

k , equation (48) can be simpli�ed as

u− β

2
σ2

> −wa (49)

13
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Note u and σ2 correspond to an average of mean values and variances, respectively, of all

many body contributions to the potential U. Consequently, for the cases with Gaussian decay

with �nite mean and variance, u and σ2 are expected to be �nite and a �nite wa can always be

found. Following equation (39), this in turn implies that, at �nite temperature, a lower limit of

average free energy can always be de�ned for Gaussian distributed many body potentials. But

at low temperature near T→ 0, condition (49) cannot be satis�ed unless σ2 also varies with

temperature (e.g. σ2 ∼ 1
β
); note however in the latter case the condition reduces to almost same

form as in the case of non-random potentials.

Upper bound. Applying the relation (40) to Φ
(k,l)
ηη gives 〈e−βΦ(k,l)

ηη 〉 = e(β
2/2)ν2

kl
−βµkl with

µkl, νkl de�ned in equation (42). Substitution of the latter in equation (46) gives

〈e−βΦηη〉 = exp

[

∑

k,l

(

β2ν2kl
2

− βµkl

)

]

(50)

Using equation (50) in equation (16) then leads to

N1N2
∑

k,l=1

(

µkl −
β

2
ν2kl

)

6
N1N2wb

Rd+ǫ
. (51)

Further de�ning µ = 1
N1N2

∑N1N2
k,l=1 µkl and ν = 1

N1N2

∑N1,N2
k,l=1 νk,l, the above inequality can be

rewritten as

µ− β

2
ν2 6

wb

Rd+ǫ
. (52)

For cases with 2µ 6 βσ2, the condition (52) is satis�ed for wb = 0, (the left side of

equation (52) being negative-de�nite as ν2 > 0). Consequently, following equation (38), an

upper limit of free energy exists, for �nite temperatures, for any d-dimensional disordered

many body potential of arbitrary spatial decay if 2µ 6 βσ2. Further, even if µ ∼ 1
Rγ

> 0 with

γ arbitrary, equation (52) is satis�ed for very low temperatures (β →∞) irrespective of R-

dependence of ν. In opposite case of 2µ > βσ2, a �nite wb can again be de�ned if µ ∼ 1
Rγ

with γ > d. Clearly in this case, the condition for existence of upper limit is same as in the

case of clean potentials.

As clear from the above, a competition between mean and variance, latter dominating the

former with help of low temperature, ful�lls the condition for upper limit for potentials with

arbitrary spatial decay.

5.2. Quenched case

To determine the upper and lower bounds in this case, only a knowledge of mean values 〈Uss〉
and 〈φηη〉 is needed. As discussed above, Uss behaves as a product of Gaussian variables U

(k)
ss ,

with its mean given by equation (43); the condition (15) can then be rewritten as

u > −wa. (53)

where u is same as de�ned above equation (49). Clearly, u being �nite, the above condition can

be ful�lled for an arbitrary potential U irrespective of its spatial range. Similarly φηη behaves

as a product of Gaussian variables φ(kl)
ηη , with its mean given by equation (44); the condition

(17) for upper limit can then be written as

14
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µ 6
wb

Rd+ǫ
. (54)

with µ again same as de�ned above equation (52). Clearly, if µ > 0 (Φ being repulsive poten-

tial), a �nitewb exists if µ ∼ 1
Rγ

with γ > dwhich is analogous to the corresponding condition

for clean potentials. Clearly, contrary to annealed Gaussian potentials, the quenched Gaussian

disorder does not help the extensive nature of long range interactions.

To clarify the above results, an example for both annealed as well as quenched cases with

Gaussian disorder is discussed in appendix B.

5.3. Clean limits

For variance-limits σ2
k , ν

2
kl → 0, the Gaussian distribution of variables U(k)

ss and φ(k,l)
ηη reduce to

Dirac-delta functions δ(U(k)
ss − uk) and δ(φ(k,l)

ηη − νkl)(peaked at corresponding mean values uk
and µkl and zero elsewhere). Clearly the u =

∑

k uk and µ =
∑

k,l µkl in these limits are equiv-

alent toUss andφηη and the conditions in equations (49) and (52)–(54) reduce to corresponding

limits for clean quantum systems discussed in [8].

6. Role played by type of disorder: distributions with power-law tails

Many physical variables e.g. many body potentials often reveal a stable distribution with

asymptotic power law decay which corresponds to in�nite variance. A stable distribution in

general is described by four parameters, say a, b, c, δ referred as the stability, skewness, scale
and location parameters of the distribution, respectively, and can be de�ned as [19]

f (x; a, b, c, δ) =
1

π
Re

∫ ∞

0

eit(x−δ)e−(ct)a (1−ibφ) dt, (55)

with φ = tan(πa/2) for a 6= 1, φ = −(2/π)log|t| for a = 1; (note another expression for φ
is also used sometimes [19]: φ =

((

ct|1−a − 1
)

tan(πa/2) for a 6= 1, φ = −(2/π)log|ct| for
a = 1). Here the parameters are con�ned within following ranges:

a ∈ (0, 2], b ∈ [−1, 1], c ∈ (0,∞), δ ∈ (−∞,∞) (56)

with support of the distribution depending on a, b:

x ∈ (−∞,∞) if b 6= ±1,

x ∈
[

δ − c tan(πa/2),∞
)

if a < 1, b = 1

x ∈
(

−∞, δ + c tan(πa/2)
]

if a < 1, b = −1. (57)

A relevant point for comparison with non-random cases is that, in the limit a→ 0 or c→ 0,

the variable x described by stable distribution approaches its non-randomlimit: f(x; a, b, c,µ)→
δ(x− µ).

As examples and also for later reference, we mention here three important stable distri-

butions, namely Levy (a = 1/2, b = 1 and x ∈ [δ,∞)), Pareto (x ∈ (−∞,∞)) and Cauchy

(a = 1, b = 0 and x ∈ (−∞,∞)), with their probability densities given as follows (with

subscripts L,P,C on f referring to Levy, Pareto or Cauchy distribution, respectively) [19]:

Levy fL(x; c, δ) ≡ f (x; 1/2, 1, c, δ)=

√

c

2π
(x− δ)−3/2e

− c
2(x−δ) , (58)
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Pareto fP(x; a, c) ≡ f (x; a, b, c, δ) =
aca

xa+1
(x > c), = 0 (x < c) (59)

Cauchy fC(x; c, δ) ≡ f (x; 1, 0, c, δ) =
1

πc

[

c2

c2 + (x− δ)2

]

(60)

Evaluation of averages: as mentioned in previous section, the standard central limit

theorem is applicable for a sum of independent and identically distributed (i.i.d.) random

variables with �nite variances. For cases where the random variable is described by a non-

degenerate stable distribution with power law tails, a generalized central limit theorem can be

invoked [19]: consider random variables xn, n = 1→ N distributed with probability density

f(xn; a, bn, cn, δn). The generalized CLT (GCLT) predicts that the sum

y =

N
∑

n=1

xn (61)

will tend to a stable distribution f(y; a, b, c, δ) as the number of random variables grows where

ca =

N
∑

n=1

can, b = c−a
N
∑

n=1

bn c
a
n

δ =
∑

n

δn + tan(πa/2)

(

bc−
N
∑

n=1

bncn

)

a 6= 1

=
∑

n

δn +
2

π

(

b c log c−
N
∑

n=1

bncn log cn

)

a = 1 (62)

For the case in which xn are independent and identically distributed say with density

f(xn, a, b0, c0, δ0), y approaches the distribution described by f(y; a, b, c, δ) with b = b0, c
a =

Nca0, δ = Nδ0 + Nb0c0 tan(πa/2)
(

N(1−a)/a − 1
)

for a 6= 1 and δN = Nδ + 2
π
b0c0N log N for

a = 1.

The calculation of the averages is easier for cases with symmetric stable distribution

f(y, a, 0, c, δ) and β > 0 (later referred as sym-st). The averages can however be de�ned only

in a restricted region δ < u 6 y 6 ∞; equation (55) gives (using b = 0)

〈e−βy〉S,res =
1

π

∞
∑

n=1

(−1)n+1(cβ)an

n!
sin
(naπ

2

)

Γ(an+ 1)Γ (−an, β(u− δ)) e−βδ (63)

〈y〉S,res =
1

π

∞
∑

n=1

can

n!

(anu− δ)Γ(an− 1)

(u− δ)an
cos
(naπ

2

)

(64)

with notation 〈.〉S,res implying an ensemble average over the restricted region in which such

averages can be de�ned.

It is more instructive to consider the cases with special values of a, b, c, δ. As mentioned

above, with xn given by the distribution fL(xn; cn, δn), fP(xn; a, cn) or fC(xn, cn, δn), the GCLT

predicts y to be distributed as fL(y; c, δ), fP(y, a, c) or fC(y; c, δ), respectively, with c, δ
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given by equation (62); (c =
(
∑

n

√
cn
)2
, δ =

∑

nδn +
(
∑

n

√
cn −

∑

ncn
)

for Levy case,

ca =
∑

n c
a
n for Pareto and c =

∑

n cn, δ =
∑

n δn for Cauchy cases). Using

equations (58)–(60) for the distribution of y, the averages can then be given as

〈e−βy〉L = e−βδ−
√
2βc (65)

〈e−βy〉P = acaβa Γ(−a, βc) (66)

〈e−βy〉C,res =
1

2

[

eiβcΓ(iβc)+ e−iβc
Γ(−iβc)

]

(67)

with 〈〉L, 〈〉P, 〈〉C referring to an averaging over Levy, Pareto or Cauchy distributed y, respec-

tively. Note here equation (67) is valid only for partial averaging i.e. for δ 6 y 6 ∞ instead

of entire support of Cauchy distribution (i.e. −∞ 6 y 6 ∞); this is equivalent to considering

only a part of the ensemble of Cauchy distributed y.

Similarly

〈y〉L,res =
1

2
√
π

[

cΓ(−1/2, t/2)+ 2 δ Γ(1/2, t/2)
]

(68)

〈y〉P =
a c

a− 1
(a > 1) = ∞ (a 6 1), (69)

〈y〉C = δ (70)

where the relation in equation (68) is valid for the cases with a �nite upper limit of y (i.e. only

for partial averaging if δ 6 y 6 (c+ tδ)/t, with t > 0, instead of entire support).

6.1. Annealed case

As examples of annealed disorder with stable distribution, here we consider four cases men-

tioned above.With equations (45) and (46) still applicable for the averages, the lower and upper

bounds wa,wb can then be obtained by using equations (63), (65)–(67) as follows.

Lower bound: assuming that U(k,p)
ss is described by a non-degenerate stable distribu-

tion f (U(k,p)
ss , ak, bkp, ckp, δkp), the above, along with equation (22), then implies that U(k)

ss

approaches a stable distribution f (U(k)
ss , ak, bk, ck, δk) with its parameters given by equation (62)

(with replacements b→ bk, c→ ck, δ → δk in the left side of the equation and bn → bkp,

cn → ckp, δn → δkp in the right side). Using equations (65)–(67) for y→ U(k)
ss , followed by

equation (45) gives 〈e−βUmin〉. The latter on substitution in equation (14) then leads to the

condition

XL ≡
1

N

N
∑

k=1

Xk > −wa (71)

with Xk = X(ak, bk, ck, δk) where

X(a, b, c, δ)= δ +

√

2c

β
Levy (72)

=
−1

β
log
[

a (βc)a Γ (−a, βc)
]

Pareto (73)

= δ +
log 2

β
− 1

β
log
[

eiβcΓ (iβc)+ e−iβc
Γ (−iβc)

]

Cauchy (74)

17



J. Phys. A: Math. Theor. 53 (2020) 165001 P Shukla

= δ − 1

β
log

(

1

π

∞
∑

n=1

(−1)n+1(βc)na

n!
sin
(naπ

2

)

Γ(na+ 1)Γ (−na, β(u− δ))

)

SymSt (75)

with u de�ned above equation (63) and

ck =

(

∑

p

√
ckp

)2

, δk =
∑

p

δkp +

(

∑

p

√
ckp −

∑

p

ckp

)

(Levy),

δk =
∑

p

δkp (Pareto),

ck =
∑

p

ckp, δk =
∑

p

δkp (Cauchy),

ck =

(

∑

p

c
ak
kp

) 1
ak

, δk =
∑

p

δkp with 0 < ak < 2, (SymSt) (76)

Note, as mentioned above, equations (74) and (75) are applicable only for restricted support

(for δk 6 U(k)
ss 6 ∞, and δk < u 6 U(k)

ss 6 ∞, respectively).

As the left side of equation (71) is a combination of many parameters, they may conspire

together, for some cases, to give rise to a �nite wa. For example, table 1 illustrates the para-

metric combinations for which XL > 0, thus satisfying the condition (71), with wa = 0, even

for arbitrary spatial dependence of distribution parameters. As another example, consider the

low temperature limit (β →∞) of equation (71). With de�nitions

δL ≡
1

N

N
∑

k=1

δk, cL ≡
(

1

N

N
∑

k=1

ck
ak

)
1
ak

. (77)

equation (71) can now be approximated as

δL > −wa (Levy), cL > −wa (Pareto), δL +
π

2
cL > −wa (Cauchy), uL > −wa (symSt)

Clearly, in low temperature limit, wa exists for Levy, Cauchy and sym-stable cases if δL is

�nite (as cL > 0 and u > δL, see equation (56)). For Pareto case however the above limit can

always be satis�ed e.g. forwa = 0. This becomesmore clear by an examplewith i.i.d. variables,

discussed in appendix B.

Upper bound: for Φ
(k,l,p,p′)
ηη distributed as f (Φ(k,l,p,p′)

ηη ; akl, bklpp′ , cklpp′ , δklpp′), here

again GCLT implies that Φ
(k,l)
ηη given by equation (31) approaches the distribution

f (Φ(k,l)
ηη ; akl, bkl, ckl, δkl) with its parameters given by equation (62) (following replacements

b→ bkl, c→ ckl, δ → δkl in the left side of the equation and bn → bklpp′ , cn → cklpp′ , δn → δklpp′
on its right side). For f corresponding to Levy, Pareto or Cauchy distributions, the upper limit

wb can then be obtained as follows: using equations (63), (65)–(67) for y = φ(kl)
ηη , followed

by its substitution in equation (46), gives 〈e−βφmax〉 = 〈e−βφηη〉. The latter on substitution in

equation (16) gives
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XU ≡ 1

N1N2

N1N2
∑

k,l=1

Xkl 6
wb

Rd+ǫ
. (78)

where Xkl = X(akl, bkl, ckl, δkl) with X given by equations (72)–(75). Here

ckl =





∑

p,p′

√
cklpp′





2

, δkl =
∑

p,p′
δklpp′ +





∑

p,p′

√
cklpp′ −

∑

p,p′
cklpp′



 (Levy),

δkl =
∑

p,p′
δklpp′ (Pareto),

ckl =
∑

p,p′
cklpp′ , δkl =

∑

p′,p

δklpp′ (Cauchy),

ckl =





∑

p,p′
c
akl
klpp′





1
akl

with 0 < akl < 2, (SymSt) (79)

Note, as mentioned in previous section, the distribution parameters ofΦ(k,l)
ηη can beR-dependent,

Φ
(k,l) being the interaction between two domains at a minimum distance R. Here again the

results for Cauchy and sym-stable distributions are applicable for restricted support only.

Once again, due to appearance of multiple parameters on its left side, the condition in

equation (78) has the possibility of ful�llment irrespective of the spatial dependence of the dis-

tribution parameters. For example one such case is the parametric conditions for which XU 6 0

(with details given in table 1). Another useful example is the large β-limit of equation (78).

Using de�nitions

δU ≡ 1

N1,N2

N
∑

k,l=1

δkl, cU ≡
(

1

N1N2

∑

k,l

c
ak
kl

) 1
ak

. (80)

equation (78) can now be approximated as

δU 6
wb

Rd+ǫ
(Levy), cU 6

wb

Rd+ǫ
(Pareto), δU +

π

2
cU 6

wb

Rd+ǫ
(Cauchy),

u 6
wb

Rd+ǫ
(SymSt),

Further recalling that u > δU and δU can be negative (see equation (56) and the text above

equation (63)), the above condition can be satis�ed by Levy and sym-stable distributions for the

cases with δU < 0 even if |δU| ∼ 1
Rγ

for arbitrary γ. But as cU > 0 (see equation (56)), Pareto

distribution ful�lls the above condition only if cU = 0 or cU ∼ 1
Rγ

with γ > d. In Cauchy case,

however, an additional presence of δU in the bound may help to overcome the positive de�nite

contribution from cU e.g. if both δU ∼ −α0
Rγ

, cU ∼ α1
Rγ

with α0 > α1 > 0 even if γ < d. Clearly

the Pareto type disorder does not help LRIs to attain the thermodynamic limit but the disorder

of Levy, Cauchy or symmetric stable types can.

6.2. Quenched case

As in the annealed case discussed above, here again U(k)
ss and φ(kl)

ηη approaches the same stable

distributions as that of U(kp)
ss and φ(klpp′)

ηη , respectively, with relation between their parameters

19



J. Phys. A: Math. Theor. 53 (2020) 165001 P Shukla

given by equations (76) and (79). But a determination of wa,wb now requires a knowledge

of mean values 〈U(k)
ss 〉 and 〈φ(kl)

ηη 〉 only which can be obtained by equations (43) and (44). As

examples, here again we give the results for quenched disorder with Levy, Pareto, Cauchy or

symmetric-stable distributions.

Upper bound: using equation (44) along with equations (64), (68)–(70) for y = φ(kl)
ηη ,

followed by its substitution in equation (14), the condition (17) now becomes

YU ≡ 1

N1N2

∑

k,l

Ykl 6
wb

Rd+ǫ
, (81)

with Ykl ≡ Y(akl, bkl, ckl, δkl) where

Y(α, ξ, γ, η) =
1

2
√
π

[

γΓ

(

−1

2
,
t

2

)

+ 2η Γ

(

1

2
,
t

2

)]

≈ γ − η

2
√
π

[(

1+
t2(γ − 2η)√
π(γ − η)

]

Levy (82)

=
α γ

1− α
(α > 1), = ∞ (α 6 1) Pareto (83)

= η Cauchy (84)

=

∞
∑

n=1

(γ)nα

n!

(nuα− η)Γ(nα− 1)

(u− η)nα
cos
(πnα

2

)

SymSt (85)

with equations (82) and (85) applicable for restricted support only (i.e. for δkl 6 φ(kl)
ηη 6 (ckl/t +

δkl) and δkl 6 u 6 φ(kl)
ηη 6 ∞). Here again, akl, bkl, ckl, δkl are given by equation (79) and can in

general be a function of spatial distance R between the domains. Clearly, in case of a potential

Φ with arbitrary spatial range R−γ , at least one way to approach the upper limit is if YU 6 0.

The parametric conditions in which the latter can be achieved are illustrated in table 1.

Lower bound: again using equations (64), (68)–(70) for y ≡ U(k)
ss with replacements

c→ ck, δ → δk, followed by equation (43) and its substitution in equation (15), then gives the

condition

YL ≡
1

N

∑

k

Yk > −wa. (86)

Here Yk = Y(ak, bk, ck, δk) for each of the four cases is given by equations (82)–(85) but with

ak, bk, ck, δk nowgiven by equation (76). Clearly for the parametric conditions leading to a �nite

ỸL, a �nite value of wa can always be found. As an example, table 1 gives, for the four cases,

the parametric conditions which lead to YL > 0 and thereby satisfy the condition equation (86)

for wa = 0.

The tables 1 and 2 summarize our results for the �ve distribution types mentioned above.

We further elucidate our ideas by an example discussed in appendix B.

6.3. Clean limits

It is worth recalling that, the limits a→ 0 or c→ 0 correspond to the clean (non-random)

limit of the distribution f(x; a, b, c, δ) of the variable x (as f is peaked around x = δ and zero

elsewhere). A substitution of ak → 0 or ck → 0 in equations (72)–(75) then leads to the clean

limits of equations (71) and (86): δL > wa. Similarly substituting ak → 0 or ckl → 0 gives the
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clean limits of equations (78) and (81): δU 6
wb
Rd+ǫ . As expected, the clean limits are same

for both annealed and quenched cases and, with replacements δk → Uk, δkl → φ(k,l), coincide

with results given in [8] for clean systems, (also given by equations (10) and (11) along with

equations (3), (4) and (7)).

7. Conclusion

To understand the role of disorder, we analyzed the extensive limits for a number of proto-

typical disordered many-body potentials. Our results reveal that disorder often helps quantum

systems to attain the thermodynamic limit by relaxing the conditions on the spatial range of

potentials. While for non-random cases the need for extensivity imposes constraints directly

on each realization of the potential, in contrast the conditions in presence of disorder are only

on the average/typical average of the disordered potential and its moments. This indicates

that even though not all realizations of the potential may individually satisfy the extensivity

requirement, its ful�llment on an average across the disordered ensemble is suf�cient. This is

useful because the conditions on the distribution parameters of complicated potentials can be

more easily ful�lled as the volume increases. Under certain parametric condition, this helps

to reduce the lower limit on the spatial range of ‘extensive’ interactions. In this context, our

analysis reveals the crucial role played by the nature of disorder i.e. annealed vs quenched in

attaining thermodynamic limit. The conditions in case of an annealed disorder turn out to be

temperature-sensitive, a �ngerprint of the underlying dynamics which equilibrates itself with

changing temperature. For low enough temperatures and based on the type of distribution of

the potential (more speci�cally, its diagonal matrix element in the physically relevant basis),

the distribution parameters can conspire together to ful�ll the condition necessary for the exis-

tence of upper bound of free energy (a statement on the repulsive nature of the potential) even if

the potential is spatially long-ranged (spatial decay of the potential is slower than the physical

dimensions of the system); tables 1 and 2 describe the parametric conditions for the existence

of extensive limit for �ve prototypical distributions. Although we have con�ned here to quan-

tum potentials and canonical ensemble, our results can be generalized to classical systems as

well as to grand canonical ensembles; (as mentioned before, similar results have been known

in context of classical long-range lattice models [13–17]).

As suggested by previous studies of complex systems, the role of non-homogenized, local

interactions is akin to that of disorder, at least in context of the statistical properties. Thus we

expect our results to be applicable also for a clean system with varying range of interactions

across a single sample. It seems the complexity, irrespective of its origin, helps to locally block

the interactions at far-parts, effectively making them shorter range so that they can achieve

thermodynamic limit and stability.
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Appendix A. Derivation of equations (38) and (39)

In section 4.2, we derived the upper bound on the free energy per particle of the Hamiltonian

H for a disordered system of volume Ω con�ned by a domainD. As obvious, the upper bound

21



J. Phys. A: Math. Theor. 53 (2020) 165001 P Shukla

is the sum of the free energies of the sub-volumes contained in Ω but all of them separated

from each other by a minimum distance R; (here R is the length scale such that |Rs − Rt| > R

for all pairs of (s, t) particle-pairs with s in domain D1 and t in domain D2). As discussed in

[8], this minimum distance is basically to take it account the thickness of the wall of each of

the volumes which however approaches zero in in�nite volume limit.

Our next step is to consider the thermodynamic limit of the free energy i.e. to analyze the

form of its lower and upper bounds in the limitΩ→∞,R→∞ such that ξ = Ω

Rd+ǫ → 0. Note

equation (37) is essentially of the same form as equation (5.5) of [8] (with following replace-

ments g→− f , Ω→D, V → Ω where the symbols given on left of the→ are those used in

[8]).

Following the approach used in section 6 of [8], we consider a sequence of cubic domains

Dk, (k = 0, 1, 2, . . .) of edge ak with volumesΩk and the wall-thickness hk. Now assuming that

the edge of the cube at (k+ 1)th step of the sequence is twice that of at kth step, one has

ak = 2ka0 and the nominal volume Ωk = adk = 2kd a0. Both Ωk and hk are assumed to increase

to in�nity in a way such that ξk and the fraction of the volumes excluded by the walls tend

to zero; this can be done by assuming the wall-thickness to be just a small fraction of the

edge of the cube: hk = bkak with fractional thickness bk = ϕk1α0 with 1/2 < ϕ1 < 1 so that

limk→∞ bk → 0 while limk→∞ hk →∞. As described in [8], a cubic domain Dk+1 at (k+ 1)th

sequence-step consists of 2d cubic domains Dk, with their free volumes lying within the free

volume of Dk+1 but separated from each other by a distance

Rk+1 = 2[hk − (hk+1 − hk)] = 4(1− ϕ1)(2ϕ1)
k h0. (A1)

As clear Rk+1 > R0 if h0 is chosen large enough. Now by de�ning ϕ2 = 2(d−ν)/2 ϕ−ν
1 < 1, the

repulsion parameter can now be rewritten as

ξk+1 =
Ωk+1

Rν
k+1

= ξ0 ϕ
k+1
2 . (A2)

Thus ξk → 0 as k→∞. Note the condition ϕ2 < 1 can be ful�lled by choosing the ϕ1 =

2(d−ν)/2ν with ν > d which also satis�es the assumption made above i.e. ϕ1 < 1.

Let f (Dk) = fk be the free energy density at stage k. Then application of the basic inequality

(37) with two sets of 4 cubes (each of volume Ωk) leads to

fk+1(ρ)− |ωb| ξk+1 6
1

2
fk,1(ρ)+

1

2
fk,2(ρ) (A3)

But as the cubes at step k are all identical, the above equation can be rewritten as

fk+1(ρ)− |ωb| ξk+1 6 fk(ρ) (A4)

Subtraction of tk ≡ |ωb|
∑k

n=0 ξn from both the sides gives

fk+1(ρ)− tk+1 6 fk(ρ)− tk (A5)

Now using equation (A2), we have

tk = |wb| ξ0
k
∑

n=0

ϕn2 =
|wb| ξ0 (1− ϕk+1

2 )

(1− ϕ2)
(A6)
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which implies limk→∞ tk → |wb| ξ0
(1−ϕ2)

. Thus if we de�ne qk ≡ fk − tk, then equation (A5) gives qk
as a monotonically decreasing sequence but bounded from below through equation (26), that

is

qk+1 6 qk (A7)

As qk is a decreasing function with respect to k, its limit is bounded from above by any qM with

M < k: q∞ 6 qk 6 qk−1 6 · · · 6 q2 6 q1 6 q0.

Using now qk 6 qM for all M 6 k gives the upper bound on the free energy

f (ρ,Ωk) 6 f (ρ,ΩM)− (tM − tk) (A8)

for all M < k. But as

tk − tM = |wb| ξ0
k
∑

n=M+1

ϕn2 =
|wb| ξ0 ϕM+1

2 (1− ϕk−M2 )

(1− ϕ2)
,

takingM = 0, we have

f (ρ,Ωk) 6 f (ρ,Ω0)+
|wb| ξ0 ϕ2(1− ϕk2)

(1− ϕ2)
(A9)

which can be rewritten as

f (ρ,Ωk)−
|wb| ξ0 ϕ2

(1− ϕ2)
6 f (ρ,Ω0)−

|wb| ξ0 ϕk+1
2

(1− ϕ2)
(A10)

But now using q∞ = f∞ − t∞, with f∞ having a lower bound given by equation (26), along

with qk > q∞, we can write the lower bound on qk:

qk > f (ρ,Ω0)−
1

βΩ
log〈e−βUmin〉 − |wb| ξ0

(1− ϕ2)
(A11)

Using now qk = fk − tk on the lhs of equation (A11) and rearranging gives

f (ρ,Ωk)+
1

βΩk

log〈e−βUmin〉 > f (ρ,Ω0)−
|wb| ξ0 ϕk+1

2

(1− ϕ2)
(A12)

with help of equation (14), the above inequality can be rewritten as

f (ρ,Ωk) > f (ρ,Ω0)−
|wb| ξ0 ϕk+1

2

(1− ϕ2)
+ wa (A13)

Now as ϕ2 < 1 if ν > d, this implies limk→∞ (ϕ2)
k → 0. In large k limit and for ν > d,

therefore, equations (A10) and (A13) can be rewritten as

f (ρ,Ωk) 6 f (ρ,Ω0)+
|wb| ξ0 ϕ2

(1− ϕ2)
(A14)

and

f (ρ,Ωk) > f (ρ,Ω0)+ wa (A15)

Here, as mentionedbefore,wa,wbmust remain �nite in the thermodynamics limit; (notewa can

be a decreasing function of volume). Further, analogous to case of non-random potentials too

[8], wa,wb are temperature independent in the quenched disorder case. However, for annealed

case, the temperature-dependence of wa,wb cannot be ruled out.
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Appendix B. Example: two-body interaction with a random and a non-random

component

Consider a system with its g particles interacting via a pair-wise coupling of random single

particle �elds represented by an operator Λ. The Hamiltonian of the system can be given by

equation (1) with the potential U as

U =

N
∑

s,t=1
s 6=t

Λ
(st)

| rs − rt|
p. (B1)

Choosing an arbitrary N-dimensional �xed basis |k〉, k = 1→ N, the matrix elements of U can

be given as

Ukl =

N
∑

s,t=1
s 6=t

Λ
(st)
kl

| rs − rt |p
(B2)

Following the de�nition ofΦ given by equation (7), itsmaximumdiagonal element, required

to determine wb, can be given as

Φmax = Φηη =

N1
∑

s=1

N2
∑

t=1

Λ
(st)
ηη

| rs − r′t |p
(B3)

Let us now de�neΛ0 as follows:Λ0 =
∑N1

s=1

∑N2
t=1 |Λ(st)

ηη |. The latter alongwith equation (B3)
gives

Φmax <
Λ0

Rp
(B4)

with R as the minimum distance between the free volumes of the domains Ω1,Ω2 i.e.

R < |rs − rt| for all (s, t)-pairs (as de�ned in section 2). The above leads to

− 1

β
log〈e−βΦmax〉 6 − 1

β
log〈e−

βΛ0
Rp 〉 (B5)

〈Φmax〉 6
〈Λ0〉
Rp

(B6)

Here, as Λ0 is a sum over a large number of i.i.d. positive random variables |Λ(st)
ηη |, each say

with mean λ and variance η, one can invoke CLT to calculate the averages on the left side.

To �nd wa for this case, we again need a prior information about minimum eigenvalue of

U. Let λ(st)
min be the minimum eigenvalue of the randomized pair-interaction Λ(st). As assumed

above, the latter are independent for different pairs which implies Vmin as the sum over large

number of independent random variables:

Umin >
N
∑

s,t=1

λ(st)
min

|rs − rt|p
> −λmin

Lp
. (B7)

where λmin =
∑N

s,t=1 |λ
(st)
min| and L be the largest possible distance between particles in a given

volume Ω : |rs − rt| 6 L. The above gives
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− 1

β
log〈e−β Umin〉 > − 1

β
log〈e

βλmin

Lp
〉 (B8)

〈Umin〉 > −〈λmin〉
Lp

(B9)

Further evaluation of inequalities (B5), (B6), (B8) and (B9) depends on the type of ran-

domness of the variables Λ0 and λmin. Here we again consider the distributions with �nite and

in�nite variances separately.

Annealed distribution with �nite variance: assuming Λ(st)
ηη as i.i.d. random variables with

mean µ0 and �nite variance ν0 for all {s, t} pairs, the CLT predicts Λ0 to approach a Gaussian

distribution with mean µ = N1N2µ0 and variance ν2 = N1N2ν
2
0 ; equation (40) then implies

〈e−
βΛ0
Rp 〉 = e−β( µ

Rp
− βν2

R2p
). The latter along with equation (B5) gives the upper bound

− 1

β
log〈e−βΦmax〉 6 N1N2

(

µ0

Rp
− βν20

R2p

)

(B10)

The condition (17) for the upper limit on free energy can then be ful�lled if a �nite wb can

be de�ned such that

(

µ0

Rp
− βν20

R2p

)

6
wb

Rd+ǫ
(annealed) (B11)

For the temperaturesT→ 0, when the 2nd term on the left side of the above equation dominates

(note both ν,µ and R > 0), the condition can be ful�lled with wa = 0 irrespective of power p

of the interaction. For �nite T too, a �nite wa exists even for p < d if µ→ 0. Clearly, near zero

temperatures or symmetrically distributed disordered potential (B1), an upper limit of the free

energy exists irrespective of the spatial dependence of the potential (i.e. even for p < d with d

as the physical dimension of the system). This is in contrast to clean systems where the upper

limit of free energy exists, in general, for short range interactions i.e. those spatially decaying

faster than volume of the system.

For Λ(st) for various s, t-pairs as i.i.d. random interactions, their minimum eigenvalues λ(st)
min

are i.i.d. random variables, say with mean u0 and variance σ2
0 . Following the central limit

theorem, the distribution of λmin in the large volume limit can again be given by the Gaus-

sian, with mean Nu0 and variance Nσ2
0 . Using the above, equation (B8) can then be rewritten

as

− 1

β
log〈e−β Umin〉 > −N

(

u0

Lp
+

β

2

σ2
0

L2p

)

(B12)

A comparison with equation (14) now indicates that wa can be de�ned in terms of u0 and σ
2
0 :

wa =
u0
Lp

+
β
2

σ2
0

L2p
. With L ≈ S Ω

1/d, with S as a shape-dependent positive constant,wa → 0 for

�nite temperature T. For T→ 0 however, existence of a �nite wa depends on the competition

of limits Ω→∞ and β →∞; for TLp → 0, it is possible again to de�ne a �nite wa (wa → 0).

Annealed, power law distributions: again assuming Λ
(st)
ηη as i.i.d. random variables dis-

tributed with probability density f (Λ(st)
ηη ; a0, b0, c0, δ0) with f given by Levy, Pareto or Cauchy

distribution, the GCLT predicts Λ0 to be distributed as f(Λ0; a, b, c, δ), respectively; here
a = a0 = 1/2, b = b0 = 1, c = c0(N1N2)

2 and δ = N1N2δ0 for Levy, a = a0, c = N1N2c0
for Pareto, a = a0 = 1, b = b0 = 0, c = N1N2c0 and δ = N1N2δ0 for Cauchy. Substituting

equations (68)–(70) with y = Λ0 and β → β
Rp

in equation (B5), the condition for the upper
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limit can be given as follows

X

N1N2

6
wb

Rd+ǫ
. (B13)

with X ≡ X(a, b, c, δ) where X is de�ned as

X(a, b, c, δ) =
δ

Rp
+

√

2c

βRp
Levy (B14)

=
−1

β
log

[

a

(

βc

Rp

)a

Γ

(

−a, βc
Rp

)]

Pareto (B15)

= δ +
log 2

β
− 1

β
log

[

e
iβc
Rp Γ

(iβc)

Rp
+ e−

iβc

Rp
Γ

(

− iβc

Rp

)]

Cauchy (B16)

For Levy case, the condition (B13) can be simpli�ed as δ0
Rp

+

√

2c0
βRp

6
wb
Rd+ǫ . Clearly a �nite

wb in large R limit can be found for arbitrary p if only δ0 < 0 and β is large. For Pareto case,

the condition can be approximated as c0
Rp

6
wb
Rd+ǫ (neglecting the contribution from logarithmic

terms); as c0 > 0, a �nite wb now exists only for p > d+ ǫ. Similarly, for Cauchy case, a �nite

wb for arbitary p exist if δ0 is suf�ciently negative. Thus the condition (17) for the upper bound
on free energy can be ful�lled for a random potential with long range spatial decay (i.e. p < d)

if it is Levy or Cauchy distributed but not in the case of Pareto distribution.

Again assuming λ(st)
min as i.i.d distributed with probability density f (λ(st)

min; ã0, b̃0, c̃0, δ̃0) for
all {s, t} pairs, with f corresponding to Levy, Pareto or Cauchy distribution, the GCLT predicts

λmin to be distributed as f (λmin; ã, b̃, c̃, δ̃). here ã = ã0 = 1/2, b̃ = b̃0 = 1, c̃ = c̃0
√
N and δ̃ =

Nδ̃0 for Levy, ã = ã0, c̃ = Nc̃0 for Pareto, ã = ã0 = 1, b̃ = b̃0 = 0, c̃ = Nc̃0 and δ̃ = Nδ̃0 for
Cauchy. Substituting equations (68)–(70) with y = −λmin and β → β

Lp
in equation (B8), the

condition for the lower limit can be given as follows

X̃

N
6 −wa. (B17)

with X̃ = X(ã, b̃, c̃, δ̃, t̃) with X given by equations (B14)–(B16). Here again the above condi-

tions can be rewritten in terms of ã0, b̃0, c̃0, δ̃0. For example, for Levy case, equation (72) gives

− δ̃0
Lp

+

√

2c̃0
βLp > −wa. Clearly a �nite wa for Levy case can be de�ned even for limit L→ 0 if

δ̃0 < 0 and/or β is large. For Pareto case, equation (73) can be approximated as c̃0
Lp

> −wa

(neglecting the contribution from logarithmic terms); as c̃0 > 0, a �nite wa can always be

de�ned (e.g. wa = 0). For Cauchy case, the bound becomes − δ̃0
Lp

> −wa which can easily

be ful�lled e.g. with δ̃0 < 0. The condition (16) for the lower limit on free energy can then be

ful�lled for a random potential with long range spatial decay for all three types of distributions

i.e. Levy, Pareto as well as Cauchy.

Quenched, �nite variance distributions: Following the same reasoning as in the annealed

case with �nite variance, bothΛ0 and λmin approachGaussian distributions, in the large volume

limit, with mean and variance as (N1N2µ0,N1N2ν
2
0 ) and (Nu0,Nσ

2
0) respectively. The latter

along with equations (B6) and (B9) now give the conditions for wa,wb as follows:

µ0

Rp
6

wb

Rd+ǫ
,

u0

Lp
> −wa, (B18)
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Clearly, here again, a �nitewb exists if µ0 < 0 or p > d; note the latter case is analogous to the

correspondingcondition for clean potentials. But, as u0 is �nite, and,L→∞ in thermodynamic

limit, the 2nd condition above can be ful�lled for an arbitrary wa > 0 and for an arbitrary p.

Quenched, power law distributions: Proceeding as in the annealed case i.e. using

f (Λ(st)
ηη ; a0, b0, c0, δ0) for Λ

(st)
ηη and f (λ(st)

min; ã0, b̃0, c̃0, δ̃0) for λ
(st)
min for all s, t-pairs but now using

equations (82)–(84), one can calculate 〈Λ0〉 and 〈λmin〉. The latter along with equations (B6)

and (B9) now give the conditions for wa,wb as follows:

1

Rp
Y(a0, c0, δ0) 6

wb

Rd+ǫ
, (B19)

1

Lp
Y(ã0, c̃0, δ̃0) > −wa. (B20)

where Y for the three cases is given by equations (82)–(84). As clear from the above,

equation (B19) can be satis�ed for arbitrary p if Y(a0, c0, δ0) < 0 and, except for Cauchy case,

the latter can be achieved even if δ0 > 0 (note δ0 corresponds to mean of the distribution

f(a0, b0, c0, δ0) for case a0 > 1 which is expected to be positive for repulsive potential).

Further as Y(ã0, c̃0, δ̃0) is �nite, left side of equation (B20) approaches zero for arbitrary

p > 0 in thermodynamic limit (L→∞) for all three distributionsmentioned above.Any choice

of wa > 0 therefore satis�es the condition (B20) and thereby indicates existence of the upper

bound of free energy.
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