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Abstract. The aim of the concerned paper is to describe the behaviour of the water
infiltration problems in unsaturated soils. Governing equation of this phenomenon is known
as Richards’ equation. The solution of the Richards’ equation has been found by Elzaki
Adomian Decomposition Method. This method gives a solution in terms of convergent series.
Comparison of the approximate solutions and exact solutions have been found here. MATLAB
and MATHEMATICA are used to obtain numerical and graphical representation.

1. Introduction
Many important phenomena occuring in field of engineering and science are frequently modeled
through ordinary or partial differential equations. Ideally one hopes to find the exact solutions of
these equations. Researchers use analytical and numerical methods to find closed form solutions
of these equations. But every time it is not possible to find exact solution of problem. The
process of water penetrating into the soil is infiltration and it is applied in both hydrology
and soil sciences. The rate of infiltration is influenced by the condition of the soil surface,
vegetative cover, and soil properties including porosity, hydraulic conductivity, and moisture
content. Modelling of multi-phased flow through porous media presents an important problem of
practical interest for geotechnical and geo-environmental engineering. Buckingham [1] obtained
equations first and then Richards [2] derived equations which are used for defining fluid flow
through porous media which were based significantly on semi-empirical equations. To define
the analytical solution of Richards’ equation is not easy task because of some limitations. Even
though some authors [4, 3, 6, 10, 11, 7, 12, 16] have been defined the solution of governing
nonlinear Richards’ equation by different methods [23, 8, 9].

In the present study, Elzaki Adomian Decomposition Method (EADM) [21] has been applied
to solve the problem of one-dimensional infiltration of water in unsaturated soil. Elzaki Adomian
Decomposition Method (EADM) is a combination of Elzaki Transform [22, 24] and Adomian
Decomposition Method. EADM gives the solution in form of a convergent series.



International Conference on Thermo-fluids and Energy Systems (ICTES2019)

Journal of Physics: Conference Series 1473 (2020) 012009

IOP Publishing

doi:10.1088/1742-6596/1473/1/012009

2

2. Richards’ equation
The equation first proposed by Richards [2] to describe non-saturated flow in soils, known as
Richards’ equation, is based on Buckingham’s [1, 13] studies at the beginning of the 20th century.
Richards’ equation is basically a general partial differential equation describing water movement
in unsaturated soils [14]. 3 main forms of considered equation explained in the article like the
mixed formulation, the h-based formulation and the θ-based formulation, where h is the weight
based pressure potential and θ is the volumetric water content. Combination of Darcy’s law
and the continuity equation is given by Richards’ equation. Here one dimensional infiltration of
water in the vertical direction in an unsaturated soil may be derived by invoking Darcy’s law
and the continuity equation, as follows

q = −K∂H

∂z
= −K∂ (h+ z)

∂z
= −K

(
∂h

∂z
+ 1

)
, (1)

∂θ

∂t
= −∂q

∂z
, (2)

where hydraulic conductivity is given by K, H is head equivalent of hydraulic potential, flux
density and time are given by q and t respectively. Putting equation (1) in equation (2), mixed
form of Richards’ is:

∂θ

∂t
=

∂

∂z

[
K

(
∂h

∂z
+ 1

)]
(3)

In above equation (3), soil water content (θ) and pore water pressure head (h) are 2 independent
variables. To obtain the solution of the equation, constitutive relations are needed to describe
interdependence between pressure, saturation and hydraulic conductivity. However, it is possible
to remove either θ or h by assuming the concept of differential water capacity, defined as the
derivative of the soil water retention curve:

C(h) =
dθ

dh
(4)

Replacing equation (4) in equation (3), h-based expression of Richards’ equation is defined.

C(h)× ∂h

∂t
=

∂

∂z

(
K
∂h

∂z

)
+
∂K

∂z
(5)

We are producing here a phrase is called pore water diffusivity (D). It can be given as the ratio
of the hydraulic conductivity (K) to the differential water capacity (C). Therefore θ-based form
of Richards’ equation may be defined. So that D is given as

D =
K

C
=
K
dθ
dh

= K
dh

dθ
(6)

Here note that pore water diffusivity (D) and hydraulic conductivity (K) both are dependent
on θ (moisture content). From equations (3) and (6), Richards’ equation is given as

∂θ

∂t
=

∂

∂z

(
D
∂θ

∂z

)
+
∂K

∂z
(7)

Here dependent parameters are given by D and K. Both are difficult to estimate. Different
kind of models have been suggested to calculate the above mentioned parameters. But Van
Genuchten model [18] and Brook’s and Corey’s model [15] are more useful than other models.
Van Genuchten model matches experimental data but the functional structure of the model is
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very complex. So it’s impossible to apply it in analytical solution procedure. Whereas Brooks
and Corey’s model has a more precise definition. It has been assumed within this research work.
As per Brook’s and Corey’s model, some relations are given to define D and K.

D(θ) =
Ks

αλ (θs − θr)

(
θ − θr
θs − θr

)2+ 1
λ

(8)

K(θ) = Ks

(
θ − θr
θs − θr

)3+ 2
λ

(9)

where saturated conductivity, residual water content and saturated water content are given by
Ks, θr and θs respectively. Experimentally obtained parameters are given by a and λ. Brooks
and Corey determined λ as pore-size distribution index [15]. More manipulation of Brooks and
Corey’s model yields the equations (10) and (11).

D(θ) = D0 (n+ 1) θm, m ≥ 0 (10)

K(θ) = K0θ
k, k ≥ 1 (11)

where constants are given by K0, D0 and k which are representing soil properties such as pore-
size distribution and particle size. In this presentation of D and K, θ is scaled between 0 and

1 and diffusivity is normalized so that ∀m,
1∫
0

D(θ) dθ = 1 [11]. Based on Brook’s and Corey’s

representation of D and K, various analytical and numerical solutions to the Richards’ equation
have been investigated. In equations (10) and (11), putting n = 0 and k = 2 which provides
the classic Burgers’ equation. Several authors have done work on Burgers’ equation [17, 19].
By applying the traveling wave technique [11], instead of time and depth, another variable that
could be a linear combination of them is found. Tangent-hyperbolic function is usually applied to
solve these transform equations. Thus θ - based Richards’ equation in order of (n, 1) is obtained
as [11]:

θt + αθnθz − θzz = 0 (12)

Exact solution of equation (12) is given as

θ(z, t) =
(γ

2
+
γ

2
tanh ([A1(z −A2t)])

) 1
n

(13)

where A1 = −αn+n|α|
4(1+n) γ (n 6= 0), A2 = γα

(1+n)

Here arbitrary constants are α and γ. Both constants are selected as 1 [10] in this paper. Now
initial condition are given by assuming t = 0 . In the available work, nonlinear θ-based Richards’
equation has been studied.

The objective of this paper is to obtain an approximate analytical solution of governing
nonlinear Richards’ equation by combination of Elzaki transform and Adomian Decomposition
Mehtod which is given by equation (7) and supported by equations (10) and (11).

3. Analysis of Elzaki Adomian Decomposition Method
Consider [20] a general nonlinear nonhomogeneous PDE

LH(x, t) +RH(x, t) +NH(x, t) = g(x, t), (14)

H(x, 0) = m(x), Ht(x, 0) = f(x), (15)
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where the second order linear differential operator is given by L = ∂2
/
∂t2, the linear differential

operator of order less than L is given by R, N is the nonlinear differential operator and g(x, t)
is supply term.
Apply Elzaki transform to equation (14)

E [LH(x, t)] + E [RH(x, t)] + E [NH(x, t)] = E [g(x, t)] (16)

Here E denotes Elzaki transform. Using the property of the Elzaki transform in (16)

E [H(x, t)] = p2E [g(x, t)] + p2m(x) + p3f(x)− p2E [RH(x, t) +NH(x, t)] (17)

Apply inverse Elzaki transform to equation (17)

H(x, t) = G(x, t)− E−1
{
p2E [RH(x, t) +NH(x, t)]

}
(18)

where G(x, t) is emerging from supply term and the prescribed initial conditions.
An infinite series solution of equation (17) is

H(x, t) =
∞∑
n=0

Hn(x, t) (19)

The nonlinear operator is

NH(x, t) =
∞∑
n=0

An (20)

where An are the Adomian polynomials which can be calculated from formula (21)

An =
1

n!

dn

dλn

[
N

( ∞∑
i=0

λiHi

)]
λ=0

n = 0, 1, 2, ... (21)

substituting (19) and (20) into (18),

∞∑
n=0

Hn(x, t) =G(x, t)− E−1
[
p2E

[(
R
∞∑
n=0

Hn(x)

)
+

( ∞∑
n=0

An

)]]
(22)

Collecting the results on both sides of equation (22)

H0(x, t) = G(x, t),

H1(x, t) = −E−1
[
p2E [RH0(x, t) +A0]

]
,

H2(x, t) = −E−1
[
p2E [RH1(x, t) +A1]

]
,

H3(x, t) = −E−1
[
p2E [RH2(x, t) +A2]

]
,

.

.

.

(23)

In general,
Hn+1(x, t) = −E−1

[
p2E [RHn(x, t) +An]

]
(24)

The solution is given as

H(x, t) = H0(x, t) +H1(x, t) +H2(x, t) +H3(x, t) + ... (25)
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4. Implementation of EADM to solve the Richards’ equation
In this part, we apply EADM to find the solution of Richards’ equation. For the sake of
convenience two different cases of n are considered.

4.1. Case 1: if n = 1
Here we solve the Richards equation by proposed method when n = 1. So the equation (12) can
be written in the form

∂θ

∂t
+ θ

∂θ

∂z
− ∂2θ

∂z2
= 0 (26)

with the initial condition

θ(z, 0) =

(
1

2
+

1

2
tanh

(
−z

4

))
(27)

Applying Elzaki transform on both sides of equation (26),

E [θ(z, t)]

v
− vθ(z, 0) + E

[
θ
∂θ

∂z

]
− E

[
∂2θ

∂z2

]
= 0

After applying initial condition and inverse Elzaki Transform, we get

θ(z, t) =

(
1

2
+

1

2
tanh

(
−z

4

))
− E−1

[
vE

{
θ
∂θ

∂z

}]
+ E−1

[
vE

{
∂2θ

∂z2

}]
Using Adomian Decomposition method, we have

∞∑
n=0

θn(z, t) =

(
1

2
+

1

2
tanh

(
−z

4

))
− E−1

[
vE

{ ∞∑
n=0

An(z, t)

}]
+ E−1

[
vE

{ ∞∑
n=0

θnzz(z, t)

}]
(28)

Comparing the results on both sides of equation (28),

θ0(z, t) =

(
1

2
+

1

2
tanh

(
−z

4

))
,

θ1(z, t) = E−1 [vE {θ0zz(z, t)−A0}] ,
θ2(z, t) = E−1 [vE {θ1zz(z, t)−A1}] ,
θ3(z, t) = E−1 [vE {θ2zz(z, t)−A2}] ,

.

.

.

(29)

Here An is Adomian polynomial and it represents the nonlinear term θ ∂θ∂z and computed using
the following formula (21).
Some few Adomian polynomials are given as,

A0 = θ0θ0z

A1 = θ1θ0z + θ0θ1z

A2 = θ2θ0z + θ1θ1z + θ0θ2z

A3 = θ3θ0z + θ2θ1z + θ1θ2z + θ0θ3z

.

.

.

(30)
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Using Adomian polynomials (30) and the iteration formulas (29), we obtain

θ0(z, t) =

(
1

2
+

1

2
tanh

(
−z

4

))
θ1(z, t) =

1

16
sech

(z
4

)2
t

θ2(z, t) =
1

128
sech

(z
4

)2
tanh

(z
4

)
t2

(31)

The approximate solution is

θ(z, t) =

(
1

2
+

1

2
tanh

(
−z

4

))
+

1

16
sech

(z
4

)2
t+

1

128
sech

(z
4

)2
tanh

(z
4

)
t2 + ... (32)

Table 1. Comparison between the solutions obtained by different methods and absolute error
for n= 1 and t=1.

z EADM HPM [6] DTM [6] Exact Error=|Exact - EADM|

0 0.5625 0.5625 0.5625 0.562177 0.000323
1 0.43809 0.43809024 0.43823114 0.437823 0.000267
2 0.320934 0.3209337 0.32111924 0.320821 0.000113
3 0.222672 0.22267245 0.22281962 0.2227 2.8E-05
4 0.14795 0.14795014 0.1480376 0.148047 9.7E-05
5 0.0952425 0.09524247 0.1480376 0.0953495 0.000107

Table 2. Comparison between the solutions obtained by different methods and absolute error
for n= 1 and t=3.

z EADM HPM [6] DTM [6] Exact Error=|Exact - EADM|

0 0.6875 0.6875 0.6875 0.679179 0.008321
1 0.569981 0.5699813 0.5737855 0.562177 0.007804
2 0.441954 0.44195411 0.44697828 0.437823 0.004131
3 0.320928 0.32092823 0.32490192 0.320821 0.000107
4 0.220438 0.22043756 0.22279881 0.2227 0.002262
5 0.145161 0.14516129 0.1463338 0.148047 0.002886
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Table 3. Comparison between the solutions obtained by different methods and absolute error
for n= 1 and t=5.

z EADM HPM [6] DTM [6] Exact Error=|Exact - EADM|

0 0.8125 0.8125 0.8125 0.7773 0.0352
1 0.716262 0.71626155 0.73387361 0.679179 0.037083
2 0.585689 0.58568895 0.608949 0.562177 0.023512
3 0.442867 0.44286656 0.46126328 0.437823 0.005044
4 0.312916 0.3129156 0.32384731 0.320821 0.007905
5 0.209947 0.20994707 0.21537534 0.2227 0.012753

Figure 1. Comparison between the solution
obtained by different methods and exact
solution (n = 1, t = 3)

Figure 2. 3D behaviour of an approximate
solution

Here Table 1, Table 2 and Table 3 show the comparison of numerical solutions obtained with z
= 0, 1, 2, 3, 4,5 for t =1, 3 and 5 by Elzaki Adomain Decomposition Method (EADM), Homotopy
Perturbation Method (HPM), Differential Transform Method (DTM) and Exact solutions. Also
the error between exact solutions and the solutions defined by EADM has been found in the
above mentioned tables. Figure 1 displays the comparison between the solution defined by
various methods and exact solution (n = 1, t = 3). 3D behaviour of θ(z, t) for n = 1 is
represented by Figure 2.

4.2. Case 2: if n = 2
Solving Richards equation here by EADM for n = 2. So the equation (12) can be written as

∂θ

∂t
+ θ2

∂θ

∂z
− ∂2θ

∂z2
= 0 (33)

with the initial condition

θ(z, 0) =

(
1

2
+

1

2
tanh

(
−z

3

)) 1
2

(34)
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After applying Elzaki transform on both sides of equation (33) along with initial condition, we
get

E [θ(z, t)]− v2
(

1

2
+

1

2
tanh

(
−z

3

)) 1
2

+ vE

[
θ2
∂θ

∂z

]
− vE

[
∂2θ

∂z2

]
= 0 (35)

Apply inverse Elzaki Transform,

θ(z, t) =

(
1

2
+

1

2
tanh

(
−z

3

)) 1
2

− E−1
[
vE

{
θ2
∂θ

∂z

}]
+ E−1

[
vE

{
∂2θ

∂z2

}]
Applying decomposition technique,

∞∑
n=0

θn(z, t) =

(
1

2
+

1

2
tanh

(
−z

3

)) 1
2

− E−1
[
vE

{ ∞∑
n=0

An(z, t)

}]
+ E−1

[
vE

{ ∞∑
n=0

θnzz(z, t)

}]
(36)

Comparing on both sides of equation (36), we have

θ0(z, t) =

(
1

2
+

1

2
tanh

(
−z

3

)) 1
2

,

θ1(z, t) = E−1 [vE {θ0zz(z, t)−A0}] ,
θ2(z, t) = E−1 [vE {θ1zz(z, t)−A1}] ,
θ3(z, t) = E−1 [vE {θ2zz(z, t)−A2}] ,

.

.

.

(37)

Some Adomian polynomials for the nonlinear θ2 ∂θ∂z are given as,

A0 = θ20θ0z

A1 = 2θ0θ1θ0z + θ20θ1z

A2 = 2θ0θ2θ0z + θ20θ1z + 2θ0θ2z + θ21θ0

.

.

.

(38)

Using Adomian polynomials (38) and the iteration formulas (37), we get

θ0(z, t) =

(
1

2
+

1

2
tanh

(
−z

3

)) 1
2

θ1(z, t) = −
sech

[
z
3

]4 (−1 + 3 tanh
[
z
3

])
72
√

2− 2 tanh
[
z
3

] (
−1 + tanh

[
z
3

]) t
θ2(z, t) =

sech
[
z
3

]9 (
cosh

[
2z
3

]
− sinh

[
2z
3

]) (
−29 cosh

[
z
3

]
+ 7 cosh [z] + 99 sinh

[
z
3

]
− 9 sinh [z]

)
2592

√
2− 2 tanh

[
z
3

] (
−1 + tanh

[
z
3

])3 t2

2

(39)
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The approximate solution is

θ(z, t) =

(
1

2
+

1

2
tanh

(
−z

3

)) 1
2

−
sech

[
z
3

]4 (−1 + 3 tanh
[
z
3

])
72
√

2− 2 tanh
[
z
3

] (
−1 + tanh

[
z
3

]) t+
sech

[
z
3

]9 (
cosh

[
2z
3

]
− sinh

[
2z
3

]) (
−29 cosh

[
z
3

]
+ 7 cosh [z] + 99 sinh

[
z
3

]
− 9 sinh [z]

)
2592

√
2− 2 tanh

[
z
3

] (
−1 + tanh

[
z
3

])3 t2

2
+ ...

(40)

Table 4. Comparison between the solutions obtained by different methods and absolute error
for n= 2 and t=1.

z EADM HPM [6] DTM [6] Exact Error=|Exact - EADM|

0 0.700287 0.74529927 0.74523612 0.745203 0.044916
1 0.58141 0.6251658 0.62523967 0.625046 0.043636
2 0.465194 0.49773364 0.4978617 0.497658 0.032464
3 0.361456 0.38025275 0.38034966 0.380234 0.018778
4 0.273559 0.28255609 0.28260789 0.28257 0.009011
5 0.202672 0.20649731 0.20652044 0.206522 0.00385

Table 5. Comparison between the solutions obtained by different methods and absolute error
for n= 2 and t=3.

z EADM HPM [6] DTM [6] Exact Error=|Exact - EADM|

0 0.704652 0.81513698 0.81329556 0.812869 0.108217
1 0.576126 0.71035216 0.71234069 0.707107 0.130981
2 0.461495 0.58473648 0.58830312 0.582446 0.120951
3 0.376334 0.45747802 0.46020619 0.456737 0.080403
4 0.303302 0.34499388 0.34645962 0.345258 0.041956
5 0.235861 0.25425481 0.25491158 0.254891 0.01903
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Table 6. Comparison between the solutions obtained by different methods and absolute error
for n= 2 and t=5.

z EADM HPM [6] DTM [6] Exact Error=|Exact - EADM|

0 0.733023 0.87624497 0.86708837 0.867373 0.13435
1 0.566559 0.79520155 0.80437883 0.780588 0.214029
2 0.430311 0.67841825 0.69543543 0.666837 0.236526
3 0.367854 0.54435032 0.55749704 0.539758 0.171904
4 0.322919 0.41690713 0.4240044 0.417475 0.094556
5 0.267762 0.30994731 0.31313539 0.312686 0.044924

Figure 3. Comparison between the solution
obtained by different methods and exact
solution (n = 2, t = 1)

Figure 4. 3D behaviour of an approximate
solution

Here Table 4, Table 5 and Table 6 display the comparison of numerical solutions obtained
with z = 0, 1, 2, 3, 4,5 for t =1, 3 and 5 by Elzaki Adomain Decomposition Method (EADM),
Homotopy Perturbation Method (HPM), Differential Transform Method (DTM) and Exact
solutions. Also the error between exact solutions and the solutions defined by EADM has been
found in the above mentioned tables. Figure 3 displays the comparison between the solution
defined by various methods and exact solution (n = 2, t = 1). 3D behaviour of moisture content
θ(z, t) for n= 2 is represented by Figure 4.

5. Conclusion
An approximate analytical solution of Richards’ equation has been successfully obtained here
by Elzaki Adomian Decomposition Method. Richards’ equation is employed for modeling
infiltration in unsaturated soils. Here note that good agreement can be observed between the
numerical results obtained using EADM, HPM, DTM and exact solutions. Also error between
EADM and exact solutions has been found here and it is negligible. Thus we can say that the
proposed methodology is extremely reliable and efficient to find the analytical and numerical
solutions of nonlinear problems.
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