II Workshop on Modeling and Simulation for Science and Engineering (Il WMSSE) IOP Publishing
Journal of Physics: Conference Series 1448 (2020) 012020 doi:10.1088/1742-6596/1448/1/012020

Genetic algorithms for mathematical optimization

J M Garcia', C A Acosta', and M J Mesa’

' Grupo de Estudio y Desarrollo de Software, Universidad del Quindio, Armenia,
Colombia

2 Corporacion Universitaria Empresarial Alexander Von Humboldt, Armenia,
Colombia

E-mail: jmgarcia@uniquindio.edu.co

Abstract. The inability to find the solution in engineering problems has led to a large part of
the scientific community developing indirect and alternative techniques to find optimization
problem-solving. Genetic algorithms are looking for models based on the natural and genetic
selection process, which optimizes a population or set of possible solutions to deliver one that
is optimal or at least very close to it in the sense of a fitting function. In this work, we derive
and evaluate a method based on genetic algorithms to find the relative maximum of
differentiable functions that are difficult to find by analytical methods. We build a library in
Python that includes different components from genetic algorithms. The test problems include
finding the maximum or minimum of functions in one and two dimensions.

1. Introduction

John Holland developed genetic algorithms (GAs) in the 1960s [1-3]. They are algorithms based on
natural selection and natural laws of genetics, which aims to solve optimization problems. These
algorithms have the following iterative process to find the optimal solution [4].

Properly represent the encoding of the problem. Most of the problems use binary encoding.

Evaluate each individual with a fitness function or target function, which determines the value
or performance of each solution.

Choose a configuration selection strategy, which will be in charge of the construction of the
new population (new generation).

Choose a mechanism to implement the genetic crossover operator.

Build a mechanism to implement the genetic mutation operator.

However, in mathematics and engineering, it is very likely to encounter problems that cannot be
solved by a direct method. Gas may be the solution for those problems with the right encoding, they
can come to several solutions very close to the optimal.

GAs have been traditionally used in different branches of engineering in optimization problems, as
shown by Bhoskar [5], Khan [6], and Shi [7]. Recently, GAs have become a high-complexity search
technique and an optimization math problem tool. Authors such as Kiyoumarsi [8], McCall [9], and
Assis [10] have used this technique to solve mathematical problems.

In this work, we evaluated and developed a method based on GAs to find the relative maximum of
differentiable functions that are difficult to find by analytical methods. To derive the method, we first

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

II Workshop on Modeling and Simulation for Science and Engineering (Il WMSSE) IOP Publishing
Journal of Physics: Conference Series 1448 (2020) 012020 doi:10.1088/1742-6596/1448/1/012020

defined and implemented in Python the building blocks of a GAs, considering the encoding and the
fitting function. Then, to validate the method we proposed the optimization of tow test functions.

2. Methods

2.1. Maximum and minimum values of a function

A function f has a relative maximum value in the number c if there is an open interval containing c
where f it is defined, such that f(c) = f(x) for everything x in the interval. On the other hand, f has a
relative minimum value in the number c if there is an open interval containing c where f it is defined,
such that f(c) < f(x) for everything x in the interval [11].

However, in the study of the calculus, we can find that these relative maximum or minimum values
are usually obtained with the help of the derivative of the function, finding what is known as hotspots,
these critical points are the points where the derivative is it does zero. However, the definition of a
relative maximum does not make a warning about if f function is differentiable and even more if f is
continuous. Then we can find two drawbacks: First, we can have functions that are continuous and
differentiable at all points but, it is very difficult to find the derivative in analytical form. Secondly and
in the worst case, we can find functions that are continuous at all points in the range but not
differentiable at some or all points, such as the Riemann and Weierstrass functions [12].

We will take two functions as an example, the first case, we will use simple genetic algorithm (AG)
to find the maximum of one function in R? and in the second case, we will find the maximum of one
function in R3.

To illustrate the method, we will take the following example: Find the maximum of the function f
in the interval (0; 1):

sin (10.005x)x

0005sin ()-sinh (-5)sin(50.5x)cos (%) + cos (0.325x) M

f(x) =e

Equation (1) is continuous in the range (0; 1), because it is the addition and multiplication of an
exponential function and several sine and cosine trigonometric functions. However, it is a very
complex function of deriving, so finding the maximum value is relatively complex by analytical
methods.

2.2. Simple genetic algorithm implementation

To find the maximum value of the Equation (1), we will use the coding model posed by Michalewicz
[13], where from an interval a list of zeros and ones that will serve as individuals or chromosomes of
the form of Equation (2):

N
(b1, by, .. by), = (2 bizi> —x 2)
i=0

Each b; € {1,0} is a chromosome gene, for this example we take a chromosome size of N = 40.
Then with this result, we convert X’ at a value in the interval (0; 1), as shown Equation (3):

L
X = L10W+x’2le1 3)
There, Ligw = 0 is the lower limit of the interval, Ly, = 1 it is the upper limit. The Equation (2)

and Equation (3) ensure that any combination of ones and zeros in size N always in this interval,
ensuring that the chromosome: 000000...000 represent the L., = 0 and chromosome 111111...111

II Workshop on Modeling and Simulation for Science and Engineering (Il WMSSE) IOP Publishing
Journal of Physics: Conference Series 1448 (2020) 012020 doi:10.1088/1742-6596/1448/1/012020

represent L,p, = 1, so that any other combination of ones and zeros will always be in the range
(Llow' Lup)-

Fixed the coding problem, we proceed to configure the GAs, which will have an initial population
of 300 individuals or chromosomes with a maximum number of iterations of 200. A selection scheme
per tournament and the recombination to a chosen point in shape mutation is made by randomly
choosing a gene and changing its value from 1 to 0 or from O to 1 as the case may be, with a
probability of 0.01. For the stop criterion, a maximum number of iterations was taken, which was 200.
100 runs of the AG were performed, where this return in most cases the following solution:

Optimal_chromosome =0110011110001110110001010011011010110111 @)

This optimal chromosome in Equation (4), codifies the solution x = 0.40452225290155597 with
the Equation (2) and Equation (3); its performance or fitness is y = 2.072060602212556, which, can
be observed as one of the green point in the Figure 1. These values compared to the actual values
obtained by traditional methods: x = 0.4048326421 and y = 2.07219397877154, have a total error
of 3.1038 x 10~*. Figure 1 shows the maximum value found and other approximate solutions, which
the GA found.

[: 7 . | —
2014 A . ‘ﬂ.l f e Solutions
n N N /1N p
15 || '! ‘t / ‘1 " \ | }‘ 1’ y}'
AR AR WA
[l || | | | BEIR | | \ N
. | | | |] | ’ | | x)' ~ —
. 104 | | ! | B S B | | .) | : ® Solutions
| | | | i | | [
|| ‘ ll) \\ [|\ |ﬂ \. f \. ’V » .-
| | | | | \ u[| |
05 ‘ Jl \ | \ l| . 14 K" N
‘ | | ' ‘ | | ‘\'}
\ | \ | | | ‘ | [!
“.) A ‘, f \ } 'J
004 ‘U -
0.0 02 04 06 08 10 2o

Figure 1. Function f from Equation (1) in the interval (0,1), green dots represent the best solutions
found.

Figure 1 shows that the function f has eight maximums reactive in interval (0; 1), in fact, two of
them have very similar values, which meant that in some occasions the AG would find the wrong
maximum value.

The next problem is to find the maximum of one function g in R3, at intervals x € (—5; 5) andy €
(=5; 5). The function g is defined in Equation (5).

1 1
g(x, y) = (3/2)e1+(x—1)2+(y—1)2 — (5/2)e1+(1/4)(X+1/2)2+(1/36)(y—1)2 +
1 1

)

2e1+(x-2)%+(y-2)2 4+ o1+(x-1)2+(y+1)?

In this case, each chromosome must have a multiple size of 2, because each chromosome must now
account for two components (x,y) for being a function in R3. In addition, in the target function it
receives a two-component vector as a parameter. However, the methodology is the same; a population
of 300 individuals was used, a chromosome size of 50 (this number must now be even) and a

II Workshop on Modeling and Simulation for Science and Engineering (Il WMSSE) IOP Publishing
Journal of Physics: Conference Series 1448 (2020) 012020 doi:10.1088/1742-6596/1448/1/012020

maximum number of cycles of 1000, otherwise the same algorithm settings were used for the function
in R?. The most common result in 100 runs was Equation (6).

Optimal_Chromosome = 10110011001110001100011101011000010001111010010101 (6)
The solution in Equation (6), corresponds to the point on the plane (x,y) =

(2.00085124,1.89686467), which has a performance of z = 6.043504718396552. Figure 2
shows the best solution and some others very close.

2 -4

a4
Figure 2. The function g in Equation (5), the red dots represent the best solutions found.

Figure 2 shows two perspectives of the function g, in which we can see two locals maximum in the
domain (—5; 5) X (=5; 5). In addition, of the optimal solution, the AG found other solutions, which
are the other red dots in Figure 2. This particular problem was a more complex problem than the
previous one, sometimes the AG found the smallest of the two local highs in the region; usually
always towards rapid convergence to find this value or very similar values.

3. Conclusions

In both examples, the algorithm did not spend too much time finding the optimal solution, usually
taking two to three minutes to complete the 200 cycles. It is interesting to do the exercise of saving the
other solutions that are obtained in each generational cycle, this shows how the algorithm is evolving
and how these solutions approach until finding the optimal final solution. These "pre-five" solutions
can become useful in engineering, because in many cases, the optimal solution is not feasible or
cannot be implemented, due to possible constraints.

Using AG to find the maximum or minimum of real variable functions is just the beginning of the
great potential that these algorithms have for solving problems in mathematics. In our case, we show
examples that do not require a large computing power; however, GAs can be used in many other areas
of mathematics, for example by finding system coefficients of linear equations or solving linear
programming problems.

The Python language is an excellent choice for implementing AG. SciPy libraries have tools for
handling values, matrices and charts. In addition, the native Python language has excellent list
management, which fits very well with the concepts of gene, chromosome, population, etc. In general,
the implementation of these concepts is simple, and the handling of objects allows such algorithms to
be developed with ease.

Acknowledgments
This work was supported by the Universidad del Quindio, Colombia.

II Workshop on Modeling and Simulation for Science and Engineering (Il WMSSE) IOP Publishing

Journal of Physics: Conference Series 1448 (2020) 012020 doi:10.1088/1742-6596/1448/1/012020

References

[1] Mitchell M 1998 An introduction to genetic algorithms (London: MIT press)

[2] KozaJ R 1994 Genetic programming II: Automatic discovery of reusable subprograms (Cambridge: MIT
press)

[3] Goldberg D E 2014 Genetic algorithms in search, optimization, and machine learning (London: Addison-
Wesley)

[4] Garcia J M, Acosta C A & Hoyos E A 2006 Libreria de funciones abstractas para la construccion de
algoritmos genéticos con programacion funcional Revista de Investigaciones Universidad del Quindio 16
123

[5] Bhoskar M T, Kulkarni M O K, Kulkarni M N K, Patekar M S L, Kakandikar G M, & Nandedkar VM
2015 Genetic algorithm and its applications to mechanical engineering: A review Materials Today:
Proceedings 2(4-5) 2624

[6] Khan M Z R and Bajpai A K 2013 Genetic algorithm and its application in mechanical engineering
International Journal of Engineering Research & Technology 2(5) 677

[71 ShiL, Da L, Fu H 2005 An application of genetic algorithm in engineering optimization Current Trends
in High Performance Computing and Its Applications (Berlin: Springer)

[8] Kiyoumarsi F 2015 Mathematics programming based on genetic algorithms education Procedia-Social
and Behavioral Sciences 192 70

[9] McCall J 2005 Genetic algorithms for modelling and optimisation Journal of Computational and Applied
Mathematics 184(1) 205

[10] De Assis L S, Junior J R, Tarrataca L, Fontoura A R, and Haddad D B 2019 Efficient Volterra systems
identification using hierarchical genetic algorithms Applied Soft Computing 2019 105745

[11] Leithold L 1998 El calculo (México: Oxford University Press)

[12] Zé&hle M and Ziezold H 1996 Fractional derivatives of Weierstrass-type functions Journal of
Computational and Applied Mathematics 76(1-2) 265

[13] Michalewicz Z 2013 Genetic algorithms+data structures = evolution programs (Charlotte: Springer

Science & Business Media)

