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Abstract. The main pest insect in coffee countries is the coffee berry borer (hypothenemus 
hampei), which impacts the coffee crops negatively. In this work, we estimate the dispersion 
parameter on a partial differential equation to model the population distribution in space of the 
coffee berry borer. To estimate the parameter, we use a technique based on the analytical 
resolution of the partial differential, data collected from a coffee farm to set up initial and 
boundary conditions, and the Bootstrap method. Results allow us to estimate the dispersion 
parameter with a coefficient of variation of 13%. 

1. Introduction 
Agriculture in Colombia has been significant for the economy for many years. The monocultures 
characterize the agricultural activity by region (sugar, cane, coffee, flowers, cotton, etc.), protruding 
coffee production as the activity that has given greater international recognition, thanks to the high 
quality of the grain [1-3]. However, one of the biggest threats in the production of coffee worldwide is 
the coffee berry borer (Hypothenemus hampei), a beetle native from Africa with size of a pin's head [4]. 
This pest is challenging to eradicate because it continues to reproduce and disperse when emerging from 
ripe fruits located in the soil [5,6]. Consequently, different Colombian agencies are interested in 
understanding the cycle of life of the coffee berry borer, particularly, the mechanisms of dispersion of 
the beetle in the coffee farms [7]. Several mathematical models have been proposed [8], however, to 
calibrate these models, it is required to improve and update estimates of the parameters used. 

Therefore, in this paper, we estimate the dispersion parameter on a partial differential equation to 
model the population distribution in space of the coffee berry borer. The methodology to estimate the 
parameter is based on the analytical resolution of the partial differential, the data collected from a coffee 
farm and the Bootstrap method. 

2. Mathematical model 
To propose a model for the distribution in space of the coffee berry borer, we assume an isolated 
environment. Additionally, we consider the transect walk across the coffee farm as a data collection 
strategy. Therefore, we consider a model in a one-dimensional space as shown in Equation (1): 
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where B	 ≡ 	B	(t, x) represents coffee berry borer concentration at x ∈ 	Ω	 = {0, H} and time t	 ∈ 	J	 =

(0, L), , the parameter α is the diffusivity (dispersion coefficient) and ε the intrinsic growth rate; 
assuming an initial distribution of the coffee beetle given by B(0, x) 	= 	B0(x). 

Equation (1) has only one solution and its analytical solution is given by Equation (2) is explicitly 
found it following the methodology proposed by Myint-U [9]. 
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Furthermore, B	(t, x) is absolutely convergent for t	 ≥ 	0 and 0	 ≤ 	x	 ≤ 	H. 

3. Field data 
To obtain the field data, we seek the advice of an expert collector to quantify the infestation of the coffee 
berry borer in the crops, in a coffee farm divided into 14	cultivation batches, from which specific data 
were obtained in time and space. The batches are denoted with i	 = 	1, . . . , 14. See Figure 1. 
 

 
Figure 1. Studied farm batches’ diagram. 

 
Table 1. Percentage values of coffee beetle infestation for each batch. 

Coffee berry borer percentage by batch (%) 
Date  LR L[ Lj Lk Ll Lm Ln Lo Lp LR> LRR LR[ LRj LRk 

12/02/2013  3 4.4 2.8 2.4 4.5 3.7 3.7 4 3.3 2.9 4.1 2 0.8 4.5 
03/07/2013  2.8 7.6 4.1 1.9 2.8 3 3.8 2.5 4.6 4.3 1.1 0.3 2.3 3.2 
23/08/2013  2.9 2.8 4.1 2.3 2.9 2.2 2.7 2.5 2.1 4.5 2.1 3.5 3.5 2.3 
24/10/2013  11.4 3.5 3.8 3.9 4.8 1.6 5.1 17.9 5.5 14.3 2.8 2 1.4 3.9 
21/10/2014   27.4 32.4 13.9 13.1 16.8 21.1  11.4  9.1 9 18.6  
01/12/2014   7.9 6.2         5 6.5  
23/12/2014   4.1   6.9 4.1 9.7  6.1  4.9    
06/02/2015   4.2 5.3 4.8 4.6 4.6 2.8    3.7 4.5 7  
11/05/2015   1.2 0.1 0.8 2 2 2  3.9  2.6 5.3 5.9  
18/07/2015   4.2 4.7 5.7 6.1 5.6   5.2   8.3 3.8  
07/11/2015  0.6 0.6 3.7  4 3.9   4.7 3.5  3.5 3.2 3 

 



II Workshop on Modeling and Simulation for Science and Engineering (II WMSSE)

Journal of Physics: Conference Series 1448 (2020) 012005

IOP Publishing

doi:10.1088/1742-6596/1448/1/012005

3

 
 
 
 
 
 

Table 1 shows the percentage of coffee beetle infestation obtained from the transect walk across the 
coffee farm at the fourteen batches, in different moments in time. Since the data obtained are not 
uniformly distributed over time, we use a polynomial interpolation technique (Lagrange interpolating 
polynomials) to obtain the missing data and generate a uniform data sample for the 34 months in which 
the data were obtained. 

We define the parameters H, L and ε from Equation (1), as follows: H is the upper limit of the interval 
that represents the spatial domain,	L is the upper limit of the interval that represents the temporal variable 
and ε is the intrinsic rate of growth of the coffee berry borer. 

To estimate H and L, we took the dimensions of the farm and the time elapsed during the process of 
data collection (34 months), finally we obtained H	 = 	3.5 and L	 = 	8. Additionally, we used the 
intrinsic rate of growth parameter ε	 = 	0.003771, according to Fernández [4]. 

According to the batches’ distribution in the coffee farm (Figure 1), in which the data was collected, 
a graph is constructed (Figure 2) that represents the batches and its adjacencies. 
 

 
Figure 2. Representation of coffee farm for 
adjacencies batches. 

 
Next, some possible routes (Hamiltonian paths) are chosen randomly to determine the initial 

condition B>(x) [10], taking into account the first infestation data collected. Figure 3 shows some 
particular examples. 

 

  
(a) (b) 

  
(c) (d) 

Figure 3. Hamiltonian patches chosen. (a) Patch 1, (b) Patch 2, (c) Patch 3 and (d) Patch 4. 

4. Sample estimation and results 
We know that the solution to the problem in Equation (1) is the function given by the formula in Equation 
(3) [11,12]: 
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Then, we formulate an algebraic system of equations that depend on α (dispersion coefficient), to 

find the different values of it using the field data. In addition, taking advantage of the fact that the 
solution of Equation (1) converges absolutely. We take only the sufficient terms of the series to obtain 
the required information. Specifically, using the first five terms of the series, the approximate solution 
is shown in Equation (4): 
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With H	 = 	3.5, L	 = 	8.25 and ε	 = 	0.003771. Given (t~	, x�	) a field data in time i and space j, we 

derive the system in Equation (5): 
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With n = 1,…5.Thus Equation (5) takes the form of Equation (6): 

 
B�t~	, x�	� = C> + CR exp(kR	α) + C[ exp(k[	α) + Cj exp(kj	α) 

+Ck exp(kk	α) + Cl exp(kl	α) 
(6) 

 
Which it represents the i − th equation of the algebraic system of equations for α. Given that the 

values of C� and k� are known, this algebraic system is solved (numerically) to obtain different values 
of α. Then, when we solve the system of equations numerically, we obtain a certain amount of values 
for α, which by means of the Bootstrap method [13] generates a generous amount of random samples. 
This allow us to estimate the following sample distribution of the parameter α. 

Table 2 summarizes some results obtained when applying the Bootstrap method from Maple, 
sampling with 7500 iterations. Note from the third and fourth column of table, the values corresponding 
to the mean and variance statistics, allowing to conclude that the value of the dispersion parameter (on 
average) is around α	 = 	0.045 and the variance around 3 × 10�l. These results allow us to estimate the 
dispersion parameter with a coefficient of variation of 13%. Additionally, a frequency histogram (Figure 
4), allows to guess about the probability function of the	α parameter, being (in its behavior) very close 
to a normal distribution. 
 

Table 2. Several Hamiltonian patches and Bootstrap values. 
Sequence Patch Mean Variance 

[LR, L[, Lj, Lk, Ll, Lm, Ln, Lo, Lp, LR>, LRR, LR[, LRj, LRk] 1 0.04502 0.0000377 
[Lo, Lk, Lj, L[, LR, Ll, Lm, Lp, LRR, Ln, LR>, LR[, LRj.LRk] 2 0.04637 0.0000396 
�Lp, Ln, Lm, Ll, LR, L[, Lj, Lk, Lo, LR>, LR[, LRR,LRj, LRk� 3 0.04675 0.0000398 
[LRj, LRR, Ln, Lp, Lm, Ll, LR, L[, Lj, Lk, Lo, LR>, LR[, LRk] 4 0.04465 0.0000371 
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Figure 4. Frequency histograms of Bootstrap values obtained from patches at Figure 3. (a) Patch 1, 
(b) Patch 2, (c) Patch 3 and (d) Patch 4. 

5. Conclusion 
In this work we obtained an estimation of the dispersion coefficient of the coffee berry borer in a model 
based on partial differential equations, using the analytical solution of classic diffusion model with initial 
and boundary values. Subsequently, we use the field data collected in a coffee farm to determine 
different parameter values for dispersion constant; and finally, we estimate the dispersion coefficient 
under the resampling process called Bootstrap. These results allow us to estimate the dispersion 
parameter with a coefficient of variation of 13%. The methodology used in this work to obtain the 
estimation is general and it can be extended to estimate parameters in other models based on partial 
differential equations. Besides, each step in the methodology may be interchangeable for a different 
technique, for instance, the truncation of the analytical solution given by the Fourier series can be 
changed for a finite difference approximation. These changes will be a subject of further study. 
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