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Abstract. A domain discretisation procedure for a planar curved domain with boundary in 

polar equations is presented. The curved domain is split into curved triangles and then to a fine 

mesh of linear triangles in the interior and curved triangles or linear triangles near to the 

boundary. Later by inserting midside nodes to these triangles 6-node triangles obtained further 
each one into four triangles. The mesh conformity is preserved by applying similar procedure 

to every triangle of the domain. This procedure is applied to discretize the star shaped curved 

domain or cracked convex curved domains into all triangles and then into all quadrilaterals. 

Thus we generate a triangular and a quadrangular finite element mesh. The refinements to the 

mesh are obtained by increasing the number of divisions of the boundary curve. This 

discretization of curved domains will reduce the computational complications in the evaluation 

of integrals, which has lot of practical applications. 

1.  Introduction  

A differential equation can be converted to be algebraic system of equations by using finite element 

techniques that intern con be solved by applying numerical techniques. When the domain is irregular 

to solve resulting PDE use of FEM is preferred over other methods, because of their versatility for 
fitting boundary conditions. It’s valuable to establish a procedure to create partitions automatically, in 

which, besides the data defining the boundary, only a parameter representing the degree of refinement 

of the mesh would be given. A technique  for automatic generation  of  triangulations  applied  to the 
case of  star shaped, cracked  and  re-entrant  two-dimensional curved  domains is discussed here. 

2.  Mesh generations over star shaped domain  

Ω be a bounded open set of  𝑅𝑛  with boundary𝜕Ω; the applicability of the method depends on the 

possibility of expressing  𝜕Ω  by an equation in polar coordinates     𝜌 = 𝑓(𝜃) ..….. (1)       

whose origin   O  is suitably chosen in Ɲ , f; being a mapping from [0,2𝜋] to [N, M], a bounded 

interval  of  𝑅+   with  N > 0, where 

N=min  ( 𝑓(𝜃)) … … … … … … … … … . (2)   M=max  ( 𝑓(𝜃)) … … … … … … … … … . (3) 

       0≤ 𝜃 ≤ 2𝜋    0≤ 𝜃 ≤ 2𝜋 
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Figure 1. Curved domain Ω with 

boundary defined by polar equation ρ=f(θ) 
and convex kernel  Ɲ= Ω. 

Let Ω be a non-singular star shaped domain of  𝑅2. So, we can choose a point O in convex kernel  Ɲ= 

Ω as the origin and eqn(1) holds. We next choose an angle 𝛽 such that   𝛽 =
2𝜋

𝑛
  (4) for a given integer 

n, n≥ 3. We define The vertices 𝑃𝑚,𝑙  of the curved triangular element W subtending an angle 𝛽   at  

(0,0) is defined by  the relations (Fig. 1 ): 𝑃0,0 = (0,0); 𝑃𝑚,𝑙 = (𝜌𝑚𝑙 , 𝜃𝑚𝑙) Where 𝜌𝑚𝑙 =
𝑙𝑓(𝜃𝑚𝑙)

𝑝
 , 

l=1,2.3,.....,p   ,  𝜃𝑚𝑙=
𝑚𝛽

𝑙
,  m=1,2,3.....,l (5) where p is positive integer parameter. When  Ω is a  non-

singular star shaped domain of  𝑅2 and  consists of  ‘n’ curved triangular elements, we have  
m=1,2,3.....nl. Figure 2, Ω is shown as an assemblage of curved triangular elements and also The mesh 

generation procedure over two consecutive boundary curves of a curved triangular element. The 

subtending angle 𝛽 = 𝜋/2  for this. Fig,3 Homotetically reduced mesh generation  over  a  quarter 

circle  𝐵𝑖 (i=1,2,3,4) boundaries in a quarter circle 𝐵1 = AB ; 𝐵2 =CD  ; 𝐵3 =EF ;𝐵4 =GH. We 
generalise the procedure to generate triangular mesh for an arbitrary curved domain consisting of 

curved triangular elements for which one side is the boundary curve defined by the polar equation (1) 

and the other two sides are straight lines. First we depict a single curved triangular element in Fig.4. 

Fig.5:   Domain Ω is star shaped and discretized by five curved triangular elements emanating from 𝑥0 

, Ω=∑ Ω𝑖
𝑖=5
𝑖=1 ,the domain   and  𝜕Ω =∑ ∂Ω𝑖  

𝑖=5 
𝑖=1  ,the  boundary. A non-star shaped domain Ω (Fig.6) 

which can be discretised by three star shaped domains and   Ω=∑ Ω𝑖
𝑖=3
𝑖=1 . 

 

 

  

Figure 2. Ω is an assemblage of 

curved triangular elements. 

 Figure 3. Homotetically 

reduced mesh generation  over  

a  quarter circle. 

Figure 4. A single curved 

triangular element. 

2.1.  Discretisation of Curved triangular Elements  
Curved triangular elements are triangular elements having two straight sides and one curved side. 

When the curved side is defined by simple quadratic equations, it may possible to replace this curve by 

a parabolic arc passing through four points, this may be impossible with many curved boundaries 

defined by polar equations.  Using 𝜌 = 𝑓(𝜃)   (1), we can generate the Cartesian coordinate on the 

curved boundary as well as the mesh point’s interior to the curved triangular element. Next, we 
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consider a point(0,0) 𝜖Ω  the scaling center, and connect it with the boundary by means of rays that 

emanate from it. We take the initial ray OA as 𝜃 = 𝜃0 and final ray OB as  𝜃 = 𝜃𝑁 . Let us make ‘n’ 

divisions of the subtending angle (𝜃𝑁 − 𝜃0 )  along the boundary curve. Let us now define on the 

boundary curve 

 𝜃𝑖
𝑛+1 =

(𝜃𝑁−𝜃0)

𝑛
(𝑖 − 1) + 𝜃0,i=1,2,3,........,(n+1),  𝜌𝑖

𝑛+1 = 𝜌(𝜃𝑖
𝑛+1), i=1,2,3,........,(n+1)  (2) 

Then we reduce this boundary curve by a factor  ‘1/(n+1)’  and the (n-1) divisions can be then written 

as 

𝜃𝑖
𝑛 =

(𝜃𝑁−𝜃0)

(𝑛−1)
(𝑖 − 1) + 𝜃0, i=1,2,3,........,n   𝜌𝑖

𝑛  = 𝜌(𝜃𝑖
𝑛) (

𝑛

(n+1)
)   , i=1,2,3,........,n                   (3) 

We shall keep reducing the boundary curve, after (n+1) steps we reach the point O. Hence, in general 

we can write: 

𝜌𝑖
𝑛+2−𝑗 =  𝜌(𝜃𝑖

𝑛+2−𝑗) (
𝑛+2−𝑗

(n+1)
),  ( i=1,2,3,........,(n+1-j));   (j=3,4,.......n) 

𝜃𝑖
𝑛+1−𝑗 =

(𝜃𝑁−𝜃0)

(𝑛−𝑗)
(𝑖 − 1) + 𝜃0,   ( i=1,2,3,........,(n+1-j));   (j=2,3,.......(n-1))                                 (4) 

𝜃1
2=𝜃0, 𝜃2

2=𝜃𝑁    , 𝜌1
1 = 0, 𝜃1

1=𝜃0 , 𝜃𝑚
𝑚=𝜃𝑁 ,m=2,3,.......,(n+1) 

Now, we can write the Cartesian coordinate points over the curved triangular element  and they can be 

computed as: 
(i) On the curved boundary of the domain (say first curve) 

𝑥𝑖
𝑛+1 = 𝜌𝑖

𝑛+1𝑐𝑜𝑠(𝜃𝑖
𝑛+1), 𝑦𝑖

𝑛+1 = 𝜌𝑖
𝑛+1𝑠𝑖𝑛(𝜃𝑖

𝑛+1),                           (5) 

𝜃𝑖
𝑛+1 =

(𝜃𝑁−𝜃0)

𝑛
(𝑖 − 1) + 𝜃0,    𝜌𝑖

𝑛+1  = 𝜌(𝜃𝑖
𝑛+1) = 𝑓( 𝜃𝑖

𝑛+1), ( 𝑖 = 1,2,3, … … , 𝑛 + 1)  

(ii)On the first reduced curved boundaries of the domain (say second curve) 

𝑥𝑖
𝑛 = 𝜌𝑖

𝑛𝑐𝑜𝑠(𝜃𝑖
𝑛), 𝑦𝑖

𝑛 = 𝜌𝑖
𝑛𝑠𝑖𝑛(𝜃𝑖

𝑛),                                                                                         (6)  

𝜃𝑖
𝑛=

(𝜃𝑁−𝜃0)

(𝑛−1)
(𝑖 − 1) + 𝜃0,  𝜌𝑖

𝑛 =𝜌(𝜃𝑖
𝑛) (

𝑛

n+1
)= 𝑓(𝜃𝑖

𝑛) (
𝑛

n+1
), ( 𝑖 = 1,2,3, … … , 𝑛)  

(iii) On the succeeding (3𝑟𝑑  to 𝑛𝑡ℎ)reduced curved boundaries of the domain 

𝑥𝑖
𝑛+2−𝑗 = 𝜌𝑖

𝑛+2−𝑗 cos(𝜃𝑖
𝑛+2−𝑗) , 𝑦𝑖

𝑛 = 𝜌𝑖
𝑛+2−𝑗 sin(𝜃𝑖

𝑛+2−𝑗),   
( i=1,2,3,........,(n+1-j));   (j=3,4,.......n)          (7) 

Where, 

𝜌𝑖
𝑛+2−𝑗

= 𝜌(𝜃𝑖
𝑛+2−𝑗

)(
𝑛+2−𝑗

(n+1)
),  ( i=1,2,3,........,(n+1-j));   (j=3,4,.......n) 

𝜃𝑖
𝑛+1−𝑗 =

(𝜃𝑁−𝜃0)

(𝑛−𝑗)
(𝑖 − 1) + 𝜃0,   ( i=1,2,3,........,(n+1-j));   (j=2,3,.......(n-1)) 

We illustrate the above procedure for a single curved triangular element in Fig.7 

 

 

 
 

Figure 5. A star shaped domain 
discretized by five curved 

triangular elements. 

 
Figure 6. A non-star 

shaped domain. 

Figure 7. Mesh points over a   
Curved triangular Element for 

n=4. 
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2.2.  Generation of Mesh Points and Finite Element meshes over a Curved triangular Element  

We now consider the generation of mesh points finite element meshes for curved domain whose 

boundary is defined by a polar equations. A smooth domain  Ω   given by the interior of the boundary 

curve 𝜕Ω  defined by polar equation 𝜌(𝜃)=1 and   x(𝜃) =𝜌(𝜃)cos(𝜃), y(𝜃) = 𝜌(𝜃) sin(𝜃) , 𝜃 ∈ [0,2𝜋]  

We discretise the domain Ω into four sub-domains  Ω 𝑖 ,i=1,2,3,4 Ω = ∑ Ω𝐢
𝟒
𝐢=𝟏   

Where Ω𝐢 is the sub − domain  over ith quadrant We consider Ω𝟏  the sub-domain over first quadrant 

i.e 𝜃 ∈ [0, 𝜋/2]. Applying the procedure stated earlier, the following figures were generated by n=4  
for the domain. 

  

Figure 8a. Scattered points in 2d for a 
quarter of circular  domain (n=number of 

divisions on boundary=4). 

Figure 8b. Triangular Mesh generation Over a 
quarter circle (n=number of divisions on 

boundary=4). 

3.  Triangulation and Quadrangulations of the Curved triangular Elements  
We can generate polygonal and analytical curved surface meshes by mending together linear triangle 

and curved triangle respectively by using subsections (called LOOPs). Consider a rectangular region. 

This region is sectioned into four LOOPs Fig.9(d). After the LOOPs are defined, the number of 

elements for each LOOP is selected to produce the mesh shown in Fig. 9(c).The complete mesh is 
shown in Fig.9 (b). Figs.10a-10d shows the meshes for an elliptical region.  

 
 

Figure 9a. Complete  quadrangulated 

mesh. 
Figure 9b. Complete  triangulated mesh. 
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Figure 9c. Exploded view showing four 

loops. 

Figure 9d. Exploded view showing four 

loops with numbering. 

 

  

Figure 10a. An ellipse as a curved domain 

made up of four curved triangles. 

Figure 10b. An ellipse as a curved 

domain made up of twelve curved 
triangles. 

 
 

Figure 10c. An elliptic curved domain 
discretised in to twelve quadrilaterals. 

Figure 10d. An elliptic curved domain 
discretised in to sixteen triangles. 
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4.  Applications of Automesh Generation Scheme 

Cross-section of the bar whose outer periphery is defined by the equations 𝜌(𝜃) = 0.9 + 0.1 cos(4𝜃) , 

x(𝜃)= 𝜌(𝜃)cos(𝜃), y(𝜃)= 𝜌(𝜃)sin(𝜃) 𝜃𝜖[0 , 2𝜋] ,-1 ≤ 𝑥, 𝑦 ≤ 1  and  𝐴 circular  disk  with   unit  radius 

whose outer periphery is defined by the equations 𝜌(𝜃) = 1 , x(𝜃)=  𝜌(𝜃)cos(𝜃), y(𝜃)= 𝜌(𝜃)sin(𝜃) 

𝜃𝜖[0 , 2𝜋] , ,-1 ≤ 𝑥, 𝑦 ≤ 1.  

We now display the all triangular and all quadrilateral finite element meshes for the above examples of 

polar equations for curved domain. The Cartesian coordinates of the mesh points can be obtained by 

usual equations:   x(𝜃)= 𝜌(𝜃)cos(𝜃), y(𝜃)= 𝜌(𝜃)sin(𝜃), 𝜃𝜖[0 , 2𝜋]  Where 𝜌(𝜃) will be different for 
each example. 

Example (1) 𝜌(𝜃) = 0.9 + 0.1 cos(4𝜃)    Example (2) 𝜌(𝜃) = 1 

  

Figure 11a. Discretisation first quadrant 

domain of example 1 in to linear triangles. 

Figure 11b. Discretisation full domain of 

example 1 in to linear triangles. 

  

Figure 11c. Discretisation full domain of 

example 1 in to linear triangles. 

Figure 11d. Discretisation full domain of 

example 2 in to linear triangles. 

5.  Conclusions 

An automatic mesh generator is discussed for the two dimensional analytical curved surfaces with 
polar boundary equation. This fully automatic scheme allows the user to define the problem domain 

with minimum input of coordinates of boundary. This work may be useful for various applications in 

science and engineering. The quality of the quadrilateral mesh can be subsequently enhanced by a 
series of mesh modifications and element shape improvement procedures. One advantage of the mesh 

is for applications to two dimensional boundary value problems, because the jacobian of all the 

interior quadrilaterals is a linear expression. The elements near to the boundary are a few 
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quadrilaterals having one curved side and three straight sides. Thus, an algorithm based on the 

proposed mesh generation scheme has computational convenience and it can be coded. 
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