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Abstract
Using Tracker, a popular video-based physics modeling tool, the
position-time data of magnetically damped oscillations of a simple pendulum
are acquired. Eddy currents are generated on an aluminum sheet as the
magnetic pendulum bob passes over it and the induced magnetic field
opposes that of the magnetic bob. This causes the damping. A satisfactory
match between the theoretical model and the experimental data having been
observed, this study presented is seen to afford an insightful and exciting
demonstration or experiment on damped oscillations in introductory classical
mechanics and on Lenz’s law in introductory electrodynamics.
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1. Introduction

Magnetic braking (or damping) due to a magnetic
drag force is a consequence of Lenz’s law, an
essential topic in electrodynamics—rudimentary
or advanced. This paves the way for a range of
experimental and theoretical presentations in the
literature. The most familiar among those exper-
iments, perhaps, is the slowing down of a per-
manent magnet moving through a non-magnetic
but electrically-conducting tube, such as an alu-
minium pipe [1, 2]. This method however is lim-
ited by the fact that the moving magnet is hid-
den from view. As representative solutions to this
drawback, the motion of a magnet sliding on an
inclined plane, inlayed with a non-magnetic but

electrically conductive plate, has been presented
[3, 4]. A visible vertical motion of a magnetic-
ally damped magnet has also been achieved [5].
In the current work, we present an equally fas-
cinating case of a visible magnetically-damped
moving magnet. This time, the motion of a mag-
netic simple pendulum—its bob is a permanent
spherical magnet—is in the very close vicinity of
an aluminium sheet. Similar to the cases of the
related studies, electromagnetic induction entails
that an electric current, known specifically as eddy
current, is generated in the non-magnetic sheet.
Lenz’s law then dictates that the associated mag-
netic field of the eddy current opposes the mag-
netic field of the magnet in motion. This places a
damping force on the magnet; thus, the magnetic
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Figure 1. Experimental setup (sans the computer).
Beneath the magnetic pendulum bob is the aluminum
home baking pan.

braking. While magnetic damping on a metallic
sheet pendulum, moving in and out of an external
magnetic field, has been reported [6], magnetic
damping on the very familiar simple pendulum,
to the best of our knowledge, has yet to be presen-
ted in the literature. Apart from what appears to
be another exciting demonstration of Lenz’s law,
the study presented is seen as an effective demon-
stration or laboratory exercise on damped oscil-
lations as well. We present our results via exper-
iments first, the results of which are fitted to the
theoretical models.

2. Experiment
Figure 1 shows our simple and accessible setup.
The materials are the following: aluminium sheet
(simply a kitchen baking pan), a simple pendu-
lumwhose bob is a spherical permanent magnet, a
smartphone either with low or high speed camera,
and a computer running MS Excel and the video-
based physics modeling software called Tracker
[7, 8]. We have positioned the pendulum bob as
close as possible to the back surface of the bak-
ing pan and subsequently allowed oscillations at
small angles. Aside from preserving the simple
harmonic nature of the motion, the small angle
oscillations also help to ensure a relatively uni-
form height of the bob from the surface of the bak-
ing pan.

The motion of the magnetic pendulum was
recorded using the smartphone camera and we
then loaded themovie into Tracker in order to gen-
erate the position-time data points, with the origin
of the coordinate system being the point of support
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Figure 2. Angular position against time (experimental
data).
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Figure 3. Horizontal position against time (experi-
mental data).

of the pendulum. The data was then transferred
in MS Excel for further data analysis. Actually,
the same data analysis can be directly performed
in Tracker as well. Figures 2 and 3 are plots of
the angular and horizontal positions of the pendu-
lum as a function of time, respectively. The same
figures reveal an apparent case of exponentially
decaying oscillations.

3. Theoretical model
Because the oscillations of a simple pendulum are
a slow type of motion, we model the magnetic
braking force to be linearly proportional to the
speed. This is in keeping with a number of related
studies [9, 10]. That is, the damping force, Fmd,
is given as Fmd = −bv where b is a magnetic
damping coefficient that depends primarily on the
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Figure 4. Force diagram, showing only the forces that
affect the motion of the pendulum. The variables x and y
are the horizontal and vertical positions of the pendulum
with respect to the origin identified as point P; θ is the
usual notation for the angular position of the pendulum
relative to the equilibrium position.

strength of the magnetic field of the magnet and
the conductivity of the non-magnetic plate where
an eddy current is generated. The damping force
is a due to Lenz’s law, which states that the direc-
tion of any magnetic induction effect is such as to
oppose the effect [11]. Figure 4 shows the forces
with direct bearings on themotion of a simple pen-
dulum, of mass m and length l, whose motion is
being resisted by a drag force linearly dependent
on the speed. In the present study the drag force
is the magnetic damping force (thus the notation
Fmd). Considering e as a unit vector tangential to
the arc length s, as shown in figure 4, Newton’s
2nd law of motion yields

m
d2s
dt2

e=−mgsinθe− b
ds
dt
e. (1)

Equation (1) can be re-written as

m
d2s
dt2

+ b
ds
dt

+mgsinθ = 0. (2)

Using s= lθ and imposing sinθ ≈ θ, as well
as dividing both sides by m and then letting

γ =
b
2m

(3)

and

ω2
o =

g
l
. (4)

Equation (2) can be written as

θ̈+ 2γθ̇+ω2
oθ = 0. (5)

Equation (5) has the auxiliary equation

q2 + 2γq+ω2
o = 0 (6)

and which has the roots

q1 =−γ+
√
γ2 −ω2

o (7)

and

q2 =−γ−
√

γ2 −ω2
o . (8)

Thus, the general solution of equation (5) is
written as [12]

θ (t) = e−γt

(
A1e

+
(√

γ2−ω2
o

)
t
+A2e

−
(√

γ2−ω2
o

)
t
)

(9)
whereA1 andA2 are arbitrary constants. This solu-
tion, equation (9), has three cases:

Case 1: ω2
o > γ2(oscillatory and underdamped).

Case 2: ω2
o = γ2(not oscillatory, critically

damped).
Case 3: ω2

o < γ2(not oscillatory, overdamped).

Cases 2 and 3 are both without oscillations. Only
the pendulum in the former case returns to the
equilibrium position faster than the latter case.
Case 1 on the other hand predicts exponentially
decaying oscillations as further presented in what
follows. We start by making the substitution

ω′ =
(
ω2
o − γ2

) 1
2 =

(
g
l
− b2

4m2

) 1
2

. (10)

Indicating that the exponentials inside the
parenthesis in equation (9) are not real. Therefore
it can be written as

θ (t) = e−γt
(
A1e

+iω ′t+A2e
−iω ′t

)
. (11)
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In both equations (10) and (11), ω′ is the fre-
quency of the underdamped oscillations. Using
Euler’s relation e±iθ = cosθ± isinθ and letting
B= i(A1 −A2) and C= (A1 +A2), equation (11)
takes the form

θ (t) = e−γt (Bsinω ′t+Ccosω ′t) . (12)

The initial conditions and velocity of the
damped oscillator determine the constants B and
C. In terms of the angular amplitude θo and phase
angle φ, equation (12) can be recast to take to the
form [12–14].

θ (t) = θoe
−( b

2m )tcos(ω ′t+φ) . (13)

From figure 1, the horizontal position, x(t), of
the pendulum, of length l, can be written as

x(t) = lsinθ (t)≈ lθ (t) . (14)

Thus by inserting equation (13) in
equation (14) and writing the horizontal position
amplitude xo: xo = lθo the horizontal position of
the pendulum as a function of time has the form

x(t) = xoe
−( b

2m )tcos(ω ′t+φ) . (15)

Using the SOLVER and nonlinear curve fit-
ting feature of MS Excel [15], we have fitted
equations (13) and (15) to the angular and hori-
zontal positions data, respectively. The results are
presented in figures 5 and 6 that reveal a quite sat-
isfactory match between the theory and the exper-
iment.

On the one hand the Pearson correlation coef-
ficients are 0.9959 and 0.9962, respectively. On
the other hand, the obtained fitting parameters, as
reflected in figures 5 and 6, show that the condi-
tion ω2

o > γ2 for the underdamped oscillations, is
comfortably satisfied in both models for the angu-
lar and horizontal positions. The length of the pen-
dulum was 46.5 cm. Therefore, these particular
data-model match show that the oscillations of a
simple pendulum under the influence of magnetic
braking—although the result might be different
for magnets with far stronger magnetic fields—
conforms to the case of an underdamped oscilla-
tions, with the damping force being a linear func-
tion of the speed.
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Figure 5. Angular position as a function of time.
Experimental data (blue dots); theoretical fit (solid lines
in orange).
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Figure 6. Horizontal position as a function of time.
Experimental data (blue dots); theoretical fit (solid lines
in orange).

4. Conclusions and recommendations
Our investigation showed that the motion of a
magnetically damped simple pendulum is a case
of an underdamped oscillations. The damping
force being linearly dependent on the speed. As
a pedagogical aid, our setup appears to qualify
well for a low-cost demonstration setup for Lenz’s
law and magnetic braking. In addition, damped
or underdamped oscillations—in an undergradu-
ate class in classical mechanics in particular—can
be easily demonstrated using the same setup. Not
only for class demonstration purposes, one might
as well adapt the experiment as a full-length labor-
atory activity on damped oscillations. Varying the
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height of the pendulum bob from the surface of
the aluminium sheet would be a nice inclusion in
the experiment in order to clearly see the influ-
ence of distance on the oscillations of the simple
pendulum. Also, a number of different pendu-
lum lengths may be taken into account as well.
Then again, the use of other non-magnetic mater-
ials like copper and brass is going to demonstrate
the effect of conductivity of the metallic sheet to
the damping coefficient (or damping force) and to
the motion of the pendulum.
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