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Abstract
We present DeepDose, a deep learning framework for fast dose calculations in radiation therapy.
Given a patient anatomy and linear-accelerator IMRT multi-leaf-collimator shape or segment, a
novel set of physics-based inputs is calculated that encode the linac machine parameters into the
underlying anatomy. These inputs are then used to train a deep convolutional network to derive
the dose distribution of individual MLC shapes on a given patient anatomy.

In this work we demonstrate the proof-of-concept application of DeepDose on 101 prostate
patients treated in our clinic with fixed-beam IMRT. The ground-truth data used for training,
validation and testing of the prediction were calculated with a state-of-the-art Monte Carlo dose
engine at 1% statistical uncertainty per segment. A deep convolution network was trained using
the data of 80 patients at the clinically used 3 mm3 grid spacing while 10 patients were used for
validation.

For another 11 independent test patients, the network was able to accurately estimate the
segment doses from the clinical plans of each patient passing the clinical QA when compared with
the Monte Carlo calculations, yielding on average 99.9%±0.3% for the forward calculated patient
plans at 3%/3 mm gamma tests. Dose prediction using the trained network was very fast at
approximately 0.9 seconds for the input generation and 0.6 seconds for single GPU inference per
segment and 1 minute per patient in total.

The overall performance of this dose calculation framework in terms of both accuracy and
inference speed, makes it compelling for online adaptive workflows where fast segment dose
calculations are needed.

1. Introduction

The accurate modelling of the delivered dose to the patient is an essential part of the treatment planning
process in photon radiation therapy. Several dose calculation engines have been used in 3D treatment
planning systems (TPS) including pencil beam (PB) (Mohan et al 1986), collapsed cone (CC) (Ahnesjö
1989) and Monte Carlo (MC) (Rogers 2006) based ones. MC simulations have been proven to yield the best
dose accuracy compared to other algorithms by modelling the full particle transport especially around tissue
interfaces and air cavities where varying types of materials are present (Arnfield et al 2000, Krieger and Sauer
2005).

One downside of the early MC implementations was the long computation times when compared to the
PB/CC algorithms. In the recent years this has been addressed partly due to the speed increase in newer
hardware and by GPU based MC implementations (Hissoiny et al 2011, Tian et al 2015). Fast dose
calculations are especially crucial for MRI-guided applications that include online dose
calculations/treatment replanning where a new plan has to be generated and approved in a few minutes while
the patient lies on the treatment couch (Henke et al 2018, Werensteijn-Honingh et al 2019). Moreover, as we
progress to more advanced MRI-guided interventions, intrafraction replanning will require almost real-time
and accurate dose calculations for use during optimization (Kontaxis et al 2017).

© 2020 Institute of Physics and Engineering inMedicine

https://doi.org/10.1088/1361-6560/ab7630
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/ab7630&domain=pdf&date_stamp=2020-04-08
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
mailto:c.kontaxis@umcutrecht.nl


Phys. Med. Biol. 65 (2020) 075013 C Kontaxis

In Intensity Modulated Radiation Therapy (IMRT) dose calculations are performed in multiple
timepoints during treatment planning depending on the optimization process used. In a typical two-phase
optimization (Bortfeld et al 1994), the dose engine is initially used to calculate the ideal dose distributions in
the patient anatomy for all included beams split into several thousand beam elements. Then, following an
optimization sequencing step that yields deliverable multi-leaf-collimator (MLC) shapes or segments, the
dose engine calculates the dose of these shapes while taking into account the machine’s MLC, jaws and patient
anatomy. For Direct Aperture Optimization (Shepard et al 2002) methods the MLC shapes and their weights
are simultaneously being updated during the optimization requiring multiple iterations of dose calculations.

Machine learning and more recently deep learning (DL) with convolutional networks has been applied in
the field of treatment planning. The ability to accurately predict the treatment dose has been demonstrated
for several treatment sites including prostate, head and neck and lung (Nguyen et al 2019, Mahmood et al
2018, Barragán-Montero et al 2019) using different types of network architectures. DL based dose prediction
can be utilized to assist the treatment planning specialist during the plan optimization process by providing
an accurate estimate of the optimal dose distribution.

The prediction in these methods relies on the correlation of patient anatomy and delineated structures to
the total treatment dose and does not take into account the actual machine parameters of the linac including
MLC leaf/jaw positions and gantry/MLC angles of the individual segments. The direct correlation of
machine parameters to patient anatomy would enable a flexible dose prediction framework equivalent to a
dose engine.

In this work we explore the use of deep convolutional networks to predict the dose of individual MLC
shapes, bypassing the use of a conventional dose engine. We introduce the DeepDose framework, a DL
pipeline that correlates the MLC shapes of the linear-accelerator (linac) to the patient anatomy by encoding
meaningful physical information into the learning process. For this proof-of-concept experiments we train
and apply this pipeline on MLC shapes of the clinical plans from prostate patients previously treated in our
clinic with conventional linear-accelerators. This initial work aims to demonstrate the network’s ability to
predict the dose for arbitrary shapes in new patient anatomies before proceeding to more specific/targetted
applications.

2. Materials andmethods

2.1. Patient data
We used the data from 101 prostate patients previously treated in our clinic with 5-beam IMRT on Elekta
linacs with 10 MV flattened beam and an MLCi collimator with a 40× 40 cm2 field size, 80 leaf pairs and
1 cm leaf width. The prescribed gantry and collimator angles were set to 40
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respectively. For these patients the prostate boost volume was treated with 77 Gy in 35

fractions.
For each patient the clinical plan was parsed to extract the MLC shapes used during treatment, in total

4176 segments among all patients. Each segment is matched to the anatomical information of its
corresponding patient leading to a unique patient-segment combination used as a training/validation/testing
dataset for our network. The experiments, including all input and output data, were performed at a 3 mm3

grid spacing which is the clinical resolution used for treatment planning and dosimetric evaluation. All
patient grids included the treatment couch and were cropped to the same size of 192× 128× 80, while
maintaining their respective isocenters at the center of the volume and verifying that the grid safely includes
the total dose distribution of the patient. The data were split in 80 patients for training, 10 for validation and
11 for testing, and thus 3290 training, 437 validation and 449 testing segments respectively. The average
patient age was 71±5.9 years, 69±6.6 years and 70±8.7 years for the training, validation and test sets.

The ground-truth dose distributions for each of the 4176 segments were calculated using the research
version of the GPUMCDMonte Carlo dose engine (Hissoiny et al 2011) using a statistical uncertainty of
1%. Each segment was calculated with 100 Monitor Units (MU) enabling a standardized dose output which
can then be scaled as needed. The ones corresponding to the training/validation datasets provide the target
doses during training and validation, while the ones corresponding to the test cases are used to evaluate the
prediction results of the network.

2.2. DeepDose
2.2.1. DL network
We used the 3D U-net network originally published by Çiçek et al (2016) for the purpose of volumetric
organ segmentation. The U-net architecture includes a decoding and encoding path (figure 1). The encoding
path consists of successive layers of two 3× 3× 3 convolutions with batch normalization+ rectified linear
units (ReLu) and a 2× 2× 2 max pooling with stride 2, while the decoding path consists of 2× 2× 2
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Figure 1. 3D U-Net

Figure 2. Input/output to be correlated by the network during training

deconvolutions with stride 2 and two 3× 3× 3 convolutions with batch normalization+ ReLus. For each
resolution of the decoding path there is a skip connection passing high-resolution features from the encoding
path. The last layer also includes a 1× 1× 1 convolution with a single output channel corresponding to the
predicted dose. The network expects a set of 3D volume inputs of dimensions X×Y ×Z and yields a dose
prediction output of the same size. The experiments were performed by using NiftyNet, a medical physics
oriented framework, in which all different network parameters can be specified including the input/output
volume X×Y ×Z size (Gibson et al 2018). The included NiftyNet implementation of the U-net was used,
modified to yield a single channel output.

2.2.2. Input
Given an MLC shape the goal is to have a network that predicts its 3D dose in any given patient anatomy
(figure 2). For that purpose we defined a network that expects 5 different 3D volumes as input, each
modelling a physical quantity/feature implicitly used also by conventional dose engines (figure 3). The
network’s output is the target 3D dose distribution of that segment. The treatment couch is included in all
inputs as well as the dose calculation, matching the clinical protocol for dose calculations in prostate
treatment at our clinic.
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Figure 3. Central PTV transversal slice from the various 3D network inputs corresponding to the segment in figure 2(a). PTV,
rectum and femur head contours are visible on the slices. Colormaps represent the body/couch values.

The first input (figure 3(a)) is the 3D mask of the segment ray-traced from the source through the grid
encoding the MLC shape into the patient anatomy. The value of all voxels inside the segment mask is set to
the area of the equivalent square shape corresponding to each segment, in order to implicitly encode the
contribution due to the different field size in the scattering component for the different non-square fields.

The next three inputs pass various distance information to the network enabling a deeper correlation of
the anatomy to the machine parameters. Input 2 (figure 3(b)) provides the distance of each voxel from the
linac source, modelling the inverse square law of the photon fluence. Input 3 (figure 3(c)) enables the
network to learn the varying dose deposition effect for an off-axis MLC shape by providing the shortest
distance of each voxel from the central beam line passing through the center of the linac MLC. Input 4
(figure 3(d)) provides the radiological depth allowing the network to take into account the tissue
inhomogeneity. More specifically, following the segment as it goes through the anatomy, each voxel is
assigned to its distance from the body surface weighted by the average density along this path up to that
point. Finally, the electron density per voxel is calculated from the treatment CT of the patient and provided
as input, essential for the attenuation and dose deposition in the patient anatomy (figure 3(e)).

The average equivalent square area of all used segments among the training, validation and testing
patients was 25.9±16.7 cm2, 25.9±16.8 cm2 and 25.7±16.0 cm2 while the average source to body surface
distance was 83.5±3.0 cm, 83.4±3.1 cm and 82.9±3.2 cm respectively.

2.2.3. Training
We trained the deep convolutional network using a 3× 3× 3 mm3 grid spacing also used in the clinical
setting. For more robust training and data augmentation we utilized patch-based training using only a
sub-volume of the 3D inputs for each iteration during the learning process. The patch size was set to
32× 32× 32 leading to a 9.6× 9.6× 9.6 cm3 volume. A batch size set of 16 patches was selected and the root
mean squared error (RMSE) was used as the loss function. The ADAM optimizer was used with learning rate,
beta1, beta2 and epsilon parameters set to 10−4, 0.9, 0.999 and 10−8 respectively. During training validation
was performed every ten iterations on the validation dataset to establish the performance of the network.

2.3. Analysis
The experiments were performed on a system with a dual Intel® Xeon® E5-2670 v3, 64 GB RAM. The
training/validation/testing of the deep learning network as well as the GPUMCD dose calculations used a
single NVIDIA® GTX Titan card.

The predicted dose distributions were evaluated by extracting the central beam and lateral profiles at the
isocenter against the ground-truth target doses. Moreover, gamma analysis tests of 3%/3 mm, 2%/2 mm and
1%/1 mm were performed for the predicted/target dose distributions of each individual segment while
taking into account the voxels within 10%–100% of the dose maximum.
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Figure 4. Training and validation loss, with a zoomed instance excluding some initial outliers

In addition, the predicted dose distributions for each patient’s segments were summed after being scaled
according to the MU values in the clinical treatment plan in order to generate the total forward-calculated
plan dose. This was then directly compared to the clinical dose distribution for that patient—also calculated
with 1% statistical uncertainty—by comparing DVH parameters and calculating the same gamma analysis
stats for voxels within 50%–100% of the dose maximum similarly to what is used clinically during QA tests.

Finally, the absolute and relative dose differences were calculated between predicted and target dose
distributions for the voxels within 10%–100% of the dose maximum.

3. Results

The training of the network took approximately 5 days on a single Titan card. It was trained for 6.6× 105

iterations with 16 patches per batch and thus having processed over 107 random patches in total. At these
iteration points the validation losses were stable and thus training was stopped to avoid potential over-fitting
(figure 4). The average validation and training RMSE was 1.2× 10−2 and 1.1× 10−2 Gy respectively.

The trained network was then used to infer the dose per segment for the independent test patients.
Inference was very fast at 0.6 sec for the whole patient volume per segment. Subsequently the individual
segment doses—all based on 100 MU calculations—were weighted using their MU values from the original
plan and summed, leading to the total predicted plan dose.

Overall a very good agreement between the target and predicted dose distributions is observed. Some
indicative profiles in the central and lateral directions to the segment dose are plotted in figure 5 for two
segments. The network prediction follows the target profiles faithfully, capturing the details encoded in the
target dose for both the patient and treatment couch.

The average difference and standard deviation (SD) among all individual segment doses was
−0.4%±2.6% (0.01±0.01 Gy in absolute values) for the voxels within 10%–100% of dose maximum. For the
forward calculated plan with a target prescription of 77 Gy, the 11 test patients showed an average difference
of 0.4%±0.5% (0.4±0.2 Gy in absolute values) for the same inclusion criteria.

Figure 6 shows the DVH and central PTV slice for the total predicted and target dose distributions for
one of the test patients. The DVH lines are very close to each other in the low and high dose levels for all
structures including femur heads, bladder, rectum and PTV/EBV. It is interesting to see that also the dose of
the treatment couch is accurately modelled.

For each of the 449 segments among all patients the gamma analysis pass rate was calculated
(figure 7(a)). The average pass rates were 89.9%±5.1%, 97.8%±3.0% and 99.4%±2.5% for the 1%/1 mm,
2%/2 mm and 3%/3 mm respectively, demonstrating very good agreement while taking into account low
dose values at the cGy level.
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Figure 5. Central, lateral x and y profiles from the target (blue) and predicted (red) dose distributions of a segment at gantry 320
◦

(a-c) and a segment at gantry 180
◦
(d-f). The patient/couch interface is visualized in the central profiles (green dotted line).

Figure 8 shows one of the mispredicted outlier segments from figure 7(a). In these cases the shape and
magnitude of the dose is overall correctly predicted but the network fails to do so at the region where a single
narrow slit is open and allows radiation to pass through. Such a shape is not frequently present in this type of
prostate plans, which tend to be more uniform and round modelling the shape of the prostate.

These outliers do not affect the total dose distributions for each patient, which achieve average pass rates
of 89.2%±3.3%, 99.5%±0.7% and 99.9%±0.3% for the 1%/1 mm, 2%/2 mm and 3%/3 mm respectively
were found (figure 7(b)). These values show excellent agreement to the clinical dose, yielding clinical grade
dose distribution that pass current clinical QA tests which would allow minimum values of 95% at 3%/3 mm.

Figure 9 shows boxplots of critical DVH points included in the planning constraints for targets and OARs
between the ground-truth and predicted total dose distributions for the test patients. The average relative
D99% difference was 0.6%±0.5% (0.4±0.4 Gy in absolute values) for the PTV and 0.5%±0.4% (0.4±0.3 Gy
in absolute values) for the CTV structures (figure 9(a)) respectively. Rectum and bladder V72Gy differences
were on average 0.3%±0.6% and 0.4%±0.6% respectively (figure 9(b)).

4. Discussion

We have presented the DeepDose framework, a DL application for accurate dose calculation of IMRT MLC
shapes in varying anatomy. We have formulated a novel set of physics-based 3D inputs which provide an
accurate mapping fromMLC shapes and patient anatomy to dose via a conventional 3D U-net network
architecture. In these first results focusing on prostate radiotherapy for conventional linacs, we show that
these inputs can model the problem successfully at the clinical isotropic 3 mm3 grid spacing.

In contrast to previously published DL applications that focus on predicting the total plan dose for a new
patient based on imaging data and anatomical structures, in this work we propose an elaborate framework
that predicts the dose for each individual segment from a patient’s plan based on the actual machine
parameters of the linac. This enables a variety of applications for DL based dose prediction besides usage as
decision support systems in the treatment planning phase. Initially this framework can be used as a
secondary dose engine in the clinical QA workflows, to quickly assess the clinical generated plans prior to
treatment. Moreover, in the future it could be extended to a new type of planning system utilizing deep
learning in various sub-components able to calculate accurate treatment plans in an online setting.
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Figure 6. Dose comparison of target (left) and predicted (right) total dose distributions for one patient.

Figure 7. Gamma analysis (y-axis: 40%–105%)

As demonstrated in this work the framework yields accurate results passing the clinical QA tests at this
standard grid spacing. The resulting accuracy is expected to increase by training the network at finer
resolution grids—ideally down to 1 mm3—as then subtler features will be learned and no interpolation
effects will be introduced during analysis at lower resolutions.

Very precise and time consuming dose calculations with low uncertainty can be used for the generation
of the training data followed by sub-second dose prediction for new anatomies/segments in the same
uncertainty range, otherwise infeasible in an online setting with a conventional dose engine. In this work we
trained the network with 1% uncertainty per segment already lower than the clinically used value of 3%.

The forward application of a trained network even in 3D is inherently fast and expanding such a
framework to parallel implementations and/or utilization of more cards, would linearly decrease the total
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Figure 8. Sagittal slice from the 3D dose for one mispredicted outlier segment (gantry angle 40◦, equivalent square area of
5.6 cm2). From left to right: bladder, PTV and rectum are visible on the slice.

Figure 9. Boxplots of the target and OARs DVH points from the total clinical and predicted dose distributions for the 11 test
patients.

calculation time reported in this work. Furthermore, if the DL approach is integrated into the planning
system itself, allowing for native inference without the need of external software, then the overall time will
decrease significantly. For the results presented in this work and an average of 41 MLC shapes, the equivalent
full plan calculation with GPUMCD takes 2.9 minutes on average per patient while the DeepDose framework
is considerably faster at approximately 1 min (37 sec for input generation and 25 sec for inference). In case
we are only interested in the dose of the complete plan (Nguyen et al 2019), a similar network based on these
inputs could be trained to predict the total dose distribution of a new patient with a single inference run.

The inputs presented in section 2.2.2 collectively allow to map each point of the patient anatomy to the
dose delivered by a particular MLC shape. This input set was designed to provide each randomly sampled
sub-volume with the necessary global information to deduce its dose mapping, and—in these
proof-of-principle results on prostate IMRT—led to excellent agreement to the clinical dose. Nonetheless,
identifying a minimal set of inputs able to model the underlying problem will be a major part of our future
work. As an initial investigation on a small subset of the available patient data, we trained four different
networks starting with the 3D MLC mask and electron density of the patient and progressively added the
next input as listed in figure 3. A random split of 11/2/12 patients for training, validation and testing was
done while the hyperparameters of the main network were used. Table 1 shows the comparison of the
predicted doses against the ground-truth data for each one of these networks. Networks 1–3 show a small
improvement in individual gamma pass rates with decreasing variance as more inputs are used. This implies
that the added inputs in 2 and 3 (distance from source and the center beamline respectively) do not add
much more information that is not implicitly extracted from the mask and density. In contrast, the addition
of the radiological depth (Network 4) boosts the predictive performance of the network leading to good
agreement with the true doses.

These initial findings on a smaller dataset, suggest that depending on the application the proper set of
inputs should be identified in order to avoid redundancy in the framework but also to increase calculation
performance with less pre/post processing needed per input. Finally, during our experiments we observed
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Table 1. Performance of the trained networks with various input combinations for a smaller training set. The inputs correspond to the
order specified in figure 3. The relative difference between clinical and predicted dose distributions is shown in the third and fourth
column for individual segments and total plan respectively. Similarly, the 3%/3 mm gamma pass rate between the distributions is shown
in the fifth and sixth column. The details on the calculation of the statistics are described in section 2.3.

NetId Inputs Segment diff (%) Plan diff (%) Segment gamma (%) Plan gamma (%)

1 a, e −1.3± 5.8 0.8± 3.1 93.7± 8.7 91.6± 9.6
2 a, b, e 0.2± 5.3 2.9± 3.0 94.1± 7.8 91.4± 10.1
3 a–c, e −0.5± 5.1 2.7± 2.8 94.4± 7.0 91.9± 9.7
4 a–e −0.2± 3.5 2.8± 0.5 98.3± 2.5 99.7± 0.2

that training a similar network while using the whole patient volume could not yield accurate dose prediction
irrespective of the input set. In theory though, the different factors including the radiological depth should
be inferrable from an appropriately large patient volume while possibly demanding larger datasets.

For these initial proof-of-concept results we exclusively used patients that were treated with five beam
IMRT plans. Given the nature of the inputs, the produced network is specialized on this particular treatment
site and setup. The endpoint of the DeepDose framework is to able to yield accurate predictions in multiple
treatment sites, involving various anatomies and MLC shapes. Moreover, for coupling to a treatment
planning system, different calculation modes ranging fromMLC shapes to elementary beam elements might
need to be supported. These features demand for more generalizable network architecture/input that will be
able to support diverse anatomies and beams at arbitrary gantry/collimator angles. In practise this becomes
computationally challenging in terms of possible anatomy/shape combinations that have to be encapsulated
by the network. This is especially the case for the dynamic Volumetric Modulated Arc Therapy (VMAT)
where—depending on the optimization approach—a treatment plan consists of at least 120 control points
per arc and typically features a wide variety of MLC shapes. We are now investigating ways to approach this
with more general-purpose networks.

In the context of MRI-guidance, we are looking into applying this framework on MR-linac treatments.
New networks that incorporate the effects of the 1.5 T transverse magnetic field of the system into the dose
calculations have to be developed, particularly in anatomical cases with varying tissue interfaces
(Raaijmakers et al 2007). Finally, a longer term goal is to integrate DeepDose in our adaptive sequencing
planning system specifically built for the purpose of adaptive MR-linac treatments (Kontaxis et al 2015).
This coupling would allow for on-the-fly calculation of new segments within the open optimization loop
during intrafraction adaptive workflows.

5. Conclusion

We present the DeepDose framework, a proof-of-concept deep learning pipeline able to infer the dose of an
arbitrary MLC shape into a given patient anatomy by utilizing physics-based quantities. This is demonstrated
in prostate radiotherapy patients previously treated in our clinic split into independent training, validation
and testing datasets. We train a deep convolutional network at the clinical 3mm3 grid spacing. This yields
excellent agreement between the predicted segment doses and the ground-truth doses generated with a
state-of-the-art Monte Carlo dose engine, passing the clinical QA gamma tests. The framework is able to
calculate each 3D segment dose in sub-second timescales, matching the time-consuming Monte Carlo
calculations at a low statistical uncertainty. We are now working on generalizing the framework towards a
broader scope of applications and investigate its use in online adaptive workflows, in which fast dose
calculations are needed.
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