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Abstract
The increasing precision of spacecraft radiometric tracking data experienced 
in the last number of years, coupled with the huge amount of data collected and 
the long baselines of the available datasets, has made the direct observation of 
Solar System dynamics possible, and in particular relativistic effects, through 
the measurement of some key parameters as the post-Newtonian parameters, 
the Nordtvedt parameter η and the graviton mass.

In this work we investigate the potentialities of the datasets provided by 
the most promising past, present and future interplanetary missions to draw 
a realistic picture of the knowledge that can be reached in the next 10–15 
years. To this aim, we update the semi-analytical model originally developed 
for the BepiColombo mission, to take into account planet–planet relativistic 
interactions and eccentricity-induced effects and validate it against well-
established numerical models to assess the precision of the retrieval of the 
parameters of interest.

Before the analysis of the results we give a review of some of the 
hypotheses and constrained analysis schemes that have been proposed until 
now to overcome geometrical weaknessess and model degeneracies, proving 
that these strategies introduce model inconsistencies. Finally we apply our 
semi-analytical model to perform a covariance analysis on three groups of 
interplanetary missions: (1) those for which data are available now (e.g. 
Cassini, MESSENGER, MRO, Juno), (2) in the next years (BepiColombo) 
and (3) still to be launched as JUICE and VERITAS (this latter is waiting for 
the approval).
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1.  Introduction

Precise radio tracking between spacecrafts and Earth stations is a well established technique, 
used since decades and is a widely used method to access Solar System dynamics.

Range, range-rate and angular (e.g. ∆DOR) measurements are used, in the standard least-
squares orbit determination procedure, for several purposes, in particular to improve the Solar 
System ephemerides or to perform fundamental physics experiments.

The purpose of this work is to analyze the most promising past, present and future plane-
tary missions to draw a realistic picture of the achievable degree of accuracy in the description 
of Solar System dynamics in the next 10–15 years. Planetary missions are by themselves mul-
tidisciplinary, carrying a variety of instruments tailored for the investigation of one or more 
crucial features for the characterization of planets or satellites. Typically they are aimed to the 
determination of the gravity field, surface imaging, the study of the atmosphere (or at least the 
exosphere), the magnetic field, etc. Most missions involve orbiters or landers, rather than flyby 
probes, which are suited for long-lasting observation campaigns. In the context of this work, 
we are interested in the orbital part of the missions only, characterized by the capacity of a 
high-precision determination of the position and velocity (the state vector) of the probe rela-
tive to the target body center of mass; and thus by the possibility of high-precision determina-
tion of the state vector of the target body itself with respect to the Solar System fundamental 
plane. In this work we consider separately seven interplanetary space missions. Two of them 
(MESSENGER (MSG), Cassini) have ceased their operation in 2015 and 2017 respectively, 
three are currently active (Mars Reconnaissance Orbit (MRO), BepiColombo (BC), Juno), 
one approved but still to be launched (JUICE). Finally, we also consider the proposed, but still 
not approved, Venus orbiter named VERITAS as a test case for future Venus orbiters equipped 
with state-of-the-art tracking systems.

In the limit of ‘weak field’, which is a good approximation for the Solar System environ
ment, the Einstein field equations can be expressed in terms of small deviations from Newton’s 
laws [1]. More generally, these deviations are usually parametrised by the set of coefficients 
called post-Newtonian (PN) parameters. In the Newtonian theory of gravity they are all zero, 
but in General Relativity (GR) some of them are, by definition, unity. Therefore, their pre-
cise measurement can be used to test GR in the Solar System. The PN parameters α1,α2 are 
nonzero in case of violation of the Einstein’s principle of relativity (i.e. the laws of physics 
are independent of the reference frame). The parameters β and γ  (in GR both equal to 1) are 
related, respectively, to the degree of nonlinearity of gravitation and to the space curvature 
generated by a unit rest mass. In addition to its dynamical role (i.e. it appears into the equa-
tions of motion), the parameter γ  controls the so-called ‘Shapiro delay’ [2] to the light-time of 
a radio beam, the delay being enhanced when the radio beam passes in proximity of the Sun.

The description of gravity in GR as a mere geometric effect is based on the Equivalence 
Principle (EP), which states that the gravitational mass appears to be equal in value to the 
inertial one. A possible violation of the EP has been tested several times in the last centuries 
and up to now it has never been measured [3].

The ‘weak form’ (WEP) of the EP states the universality of the free falling of test parti-
cles in an external field. Conversely, the ‘strong form’ (SEP) generalizes this effect to bodies 
whose gravity field is not negligible (e.g. planets or stars).

The most widely accepted theory that accounts for SEP violation relates the inertial and 
gravitational masses through the self-gravitational potential of the involved bodies scaled by 
the Nordtvedt parameter η which is related to PN parameters by the Nordtvedt equation (valid 
for metric theories) [1, 4]
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η = 4β̄ − γ̄ − α1 −
2
3
α2; with β̄ = β − 1; γ̄ = γ − 1� (1)

which is derived from the assumption that the metric tensor gij is symmetric.
Other parameters we are interested in are the GM (i.e. the product of Newton constant and 

mass) of the Sun (hereafter µ0), its rate of change in time ζ = µ̇0/µ0 (not to be confused with 
PN parameter ζ), the gravitational oblateness of the Sun J2� and the angular momentum of the 
Sun S� which can be inferred by observing the Lense–Thirring effect [5].

Finally, we also add to the list the Compton wavelength λg of the graviton which, as pro-
posed by [6], can be measured by Earth–Mars ranging.

The parameters described above produce effects on the long-term trajectories of the Solar 
System bodies. It is well known that ranging data are more suited to convey informations 
about long-term perturbations than range-rate, which are the main source of information about 
‘local’ and fast-changing accelerations. Generally speaking, Doppler data are used to resolve 
the trajectory of the probe around the host planet center of mass, while the range data are used 
to resolve the motion of the planet center of mass with respect to Solar System barycenter.

For this reason, the experiments devoted to fast-changing signals (e.g. planetary gravity 
fields), which are based mainly on range-rate measurements, are in practice uncorrelated to 
fundamental physics ones. Therefore, we can neglect the motion of the probes around the 
reference planet and focus on the Earth-to-planet distance perturbation.

Unfortunately, our knowledge about most of Solar System asteroids masses and positions 
in time is not exact. Thus, assuming these quantities as perfectly known in our model would 
introduce spurious signals resulting in biases on the estimated parameters and in the underes-
timation of their formal uncertainties.

When dealing with simulated data these effects can be detected by comparing the true 
errors (estimated minus expected values) and the formal errors, but, dealing with real data, the 
true errors are unknown.

An example: the current uncertainty of Jupiter GM is 1.5–2.0 km3 s−2 [7], leading to a 
perturbation on the Earth–Mercury range of about 20–30 mm (see [8], table IV, appendix E). 
In figure 1 we show this effect (red line).

For comparison, in the same figure (black line) we report the Earth–Mercury range pertur-
bation due to η = 10−4 (i.e. the current accuracy about η).

The two signals are very similar because the perturbation due to η depends on the position 
of the Sun with respect to the Solar System Barycenter that, in turn, is determined mainly by 
Jupiter mass and position. Anyway, the signals are not identical (the Pearson correlation coef-
ficient is 0.87), therefore it is still possible to measure η with an accuracy below the 10−4 level 
[8, 9]. However, this also means that to further reduce the uncertainty of η it is necessary to 
improve the knowledge of the Jupiter GM. This is true, in general for all parameters we are 
interested in: precise estimations are strongly conditioned by the accuracy on the ephemerides 
and masses of the Solar System bodies.

This paper is structured as follows: in section 2 we describe the mathematical model we 
used for the covariance analysis, in section 3 we report details about the missions considered, 
in section 4 we discuss the results and finally, in section 5 we draw the conclusions.

2.  Mathematical model

The model was originally developed to be applied to MORE (Mercury Orbiter Radioscience 
Experiment) onboard BepiColombo (BC). Its original purpose was to calculate the signals 
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relative to a set of perturbing parameters on the Earth–Mercury range and to obtain the corre
sponding covariance matrix.

Details about the model can be found in [8], where they concluded that, despite the uncer-
tainties of the masses of Solar System bodies and ephemerides, BC mission could improve 
the estimation of the parameter η up to 1 order of magnitude with respect to the current 
knowledge.

In the work here presented, we report on some important updating and improvements to the 
model, leading to partially different conclusions.

First of all the code has been generalised to model the range measurements, as a function of 
the set of parameters we are interested in, between two arbitrary planets of the Solar System.

Here we briefly summarize the structure of the code. We adopt the notation of [10], we 
define ri as the coordinates the planet i in an inertial reference frame, rij = rj − ri as the vector 
from i to j  and rij = ||rij|| its modulus.

We number the planets from 1 (Mercury) to 8 (Neptune), while 0 is referred to the Sun. In 
the following we indicate with i and k the two planets, where i is the nearest to the Sun.

Finally, we call q the list of N parameters involved for the covariance analysis. All qj  are 
very small, consequently the perturbation on the i-to-k distance can be expressed as a first 
order Taylor series expansion around the nominal solution. To get the perturbations on the 
range measurements due to qj  we follow this procedure:

	 1.	�we write the forces per unit mass δa j
i  on body i and δa j

k  on body k; 
	 2.	�by solving the Hill’s equations of motion [11] (see appendix A for a detailed description) 

assuming null initial conditions we obtain the secular displacements δr j
i  and δr j

k and the 
range perturbed vector δr j

ik = δr j
k − δr j

i ; 
	 3.	�the perturbed vector is finally projected along the the i-to-k direction to obtain the pertur-

bation δρ j
ik(q) on the range.

Initial conditions of i and k belong to q. Their signatures are computed using the homoge-
neous solution equation (A.13) of Hill’s equations.

Figure 1.  Red line: Earth–Mercury spurious signal on range caused by a 1.5 km3 s−2 
biased assumption of the Jupiter’s GM. Black line: Earth–Mercury range perturbation 
due to η = 10−4. Both signals have been calculated using the ‘non-homogeneous’ 
contribution only of the equations of motion (see appendix A for details).
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All perturbations that will be treated, in the Hill’s frame, are expressed as the sum of 
polynomial and sinusoidal (resonant and non-resonant) functions of time. The corresponding 
solutions of the Hill’s equations are reported in appendix A.

Finally, after imposing a priori for all parameters based on their current or expected (in 
the case of future missions) accuracies, we calculate the covariance matrix (see section 2.2).

2.1.  Improving the model

First of all, we include the effect of the orbital eccentricity of Mercury since it is considerably 
larger (e1  =  0.205) than those of the other planets. Moreover, we add to the model described 
in [8] the following parameters: the Eddington parameter γ , the preferred frame parameters 
(α1,α2), the angular momentum of the Sun (S�) and the Compton wavelength of the graviton 
(λg). Finally, we also consider the effects of the uncertainties on the positions of planets and 
asteroids.

The model does not include the z-coordinates since orbital inclinations of the most massive 
bodies are in general very small.

For validation purposes, the ranging signatures obtained with the model presented in this 
work have been compared to numerically integrated ones. The results in the case of a simu-
lated Earth–Mercury ranging experiment are reported in figure C1.

The analytical model shows to be in good agreement with the numerical solution present-
ing small deviations, due mainly to our co-planar approximation. These small deviations (that 
are in the order of 15%–20% in terms of relative error) map into negligible differences in 
terms of variance and covariance on the solve-for parameters. More specifically, it can be 
proven that a relative error er on the range signatures maps into an error of the order of er (in a 
worst-case assumption corresponding to an additive and constant error) on the formal uncer-
tainty of the solve-for parameters, meaning that, for the purposes of this work, the approx
imation introduced by the co-planar assumption is justified.

The signatures of some parameters in the ranging data, for the 5 different ranging options 
here considered (Earth–Mercury, Earth–Venus, Earth–Mars, Earth–Jupiter, Earth–Saturn), are 
displayed in appendix D.

2.1.1.  Mercury’s eccentricity.  In our co-planar approximation we use the longitude of the 
perihelion � = Ω+ ω where Ω is the longitude of the ascending node and ω  is the argument 
of perihelion.

The heliocentric cartesian position of body i is r0i = {x0i, y0i}, where

x0i =r(t) [cos ν(t) cos� − sin ν(t) sin�] ;
y0i =r(t) [sin ν(t) cos� + cos ν(t) sin�]
� (2)

where ν  is the true anomaly. We define R0i the semimajor axis of body i, tp  as the epoch of the 
passage at the perihelion and t′ = t − t p.

The terms (r cos ν, r sin ν) in equation (2) at the first order of the elliptical expansion are 
[12]

r cos ν = R0i cos(nit′) + ei
R0i

2
[cos(2nit′)− 3] + O(e2

i );

r sin ν = R0i sin(nit′) + ei
R0i

2
sin(2nit′) + O(e2

i );
�

(3)

where ni =
√
(µ0 + µi)/R3

0i  is the mean motion.
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The accuracy of equation (3), and consequently of the model in general, is O(e2
i ) ≈ 4% (for 

Mercury), which is sufficient for our purposes.
Referring to the circular orbit approximation, we define the radial/transverse unit vector

ui
r = {cos(Φi +�i), sin(Φi +�i), 0};

ui
t = {− sin(Φi +�i), cos(Φi +�i), 0};

�
(4)

where

Φi = ni(t − t p
i ).� (5)

Finally, from equation (2), the vector r0i, projected along these directions, is [13]

r0i ≈ R0iui
r + eiRe

i� (6)

where

Re
i = R0i(− cosΦiui

r + 2 sinΦiui
t)� (7)

is the first-order correction for eccentricity.
The formulas necessary to express the forces described in this section  in terms of the 

Mercury’s orbital eccentricity are reported in appendix B.

2.1.2.  Planetary perturbations on range.  In [8] only the perturbations due to uncertainties of 
GMs were considered, for completeness we include also the uncertainties on the positions of 
the bodies.

Define p a vector containing the orbital parameters and the GM of a planet/asteroid. It can 
be expressed as p = p̄ + δp, where p̄ are adopted values (e.g. from an arbitrary set of eph-
emerides) and δp are small deviations between true and the adopted values.

Orbits are assumed co-planar and the eccentricity of Mercury is assumed to be known, 
therefore the elements of p are: radius (R0j ) of the orbit, the GM (µj) and longitude of the 
perihelion (�j) (the mean motion has been expressed in terms of µj and R0j ). We considered 
N  =  353 perturbers among planets and asteroids, so the parameters to be included into the 
original sample are 3 × N .

The trajectory of body i, in heliocentric coordinates, can be obtained by solving

r̈0i = −µ0 + µi

r3
0i

r0i +
∑

j�=i�=0

µj

(
rij

r3
ij
−

r0j

r3
0j

)
.� (8)

Since µj � µ0 the deviation from the Keplerian orbit is small (in the interval of time of our 
interest) and the term into summation can be calculated by assuming unperturbed orbits for 
each j .

As said above, we assume ej = 0 ∀ j �= 1.
Equation (8) can be re-written in the Hill’s frame [11] by using equation (B.1b) and equa-

tion (B.3) (with n  =  3) and solved for planets i and k (see appendix A and [8] for details) find-
ing the analytical expression of rik(δp).

Expanding at the first order this quantity and summating over all bodies, the perturbations 
are

δrik =
∑

j�=i�=k

[
δµj

∂rik

∂µj

∣∣∣∣
µ̄j

+ δR0j
∂rik

∂R0j

∣∣∣∣
R̄0j

+ δ�j
∂rik

∂�j

∣∣∣∣
�̄j

]
.� (9)
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Finally, the range perturbation is

δρik ≈
δrik · Rik

Rik
� (10)

and the factor 1/Rik can be obtained using equation (B.4).

2.1.3.  Dynamical effects of γ  and other parameters.  Defining µ0 as the current (t  =  t0) esti-
mated value of the GM of the Sun, we can write the true GM as

µ0,true(t) = µ0 [1 + ζ(t − t0)] + δµ0� (11)

where µ0 is the current best estimate and δµ0 is the offset.
We also re-consider the perturbation due to the gravitational flattening of the Sun. In [8] 

the inclination of the Sun’s equator was included, however its effect is smaller than the one 
triggered by the eccentricity of the Mercury’s orbit. Therefore we decide to neglect the first 
effect and include the second one.

Neglecting planet–planet interactions, the force per unit mass on body i due to γ̄ , β̄, δµ0, ζ 
and J2� is [1]

δaγ̄,β̄,δµ0 ,ζ,J2�
i =

µ0

r3
0i

[
−
(
ζt +

δµ0

µ0

)
r0i + 2(β̄ + γ̄)

µ0

c2

r0i

r0i

−J2�
3
2

R2
�

r2
0i

r0i − γ̄
ṙ2

0i

c2 r0i + 2γ̄
r0i · ṙ0i

c2 ṙ0i

]
,

�

(12)

where R� is the Sun’s radius. The terms into equation (12) can be written in the Hill’s frame 
by using equation (B.1a). Again, neglecting planet–planet interactions, for preferred-frame 
parameters the perturbation on the orbit of body i is [1]

δaα1,α2
i =

µ0

2c2r3
0i

[
α1(w · ṙ0i)r0i + 3α2(w · r0i)

2 r0i

r2
0i

−α1(r0i · ṙ0i)w − 2α2(w · r0i)w + w2(α1 − α2)r0i
]�

(13)

where w2 = w · w and

w = 3.69 × 105{−0.970, 0.139,−0.197} m s−1� (14)

is the velocity of the Solar System Barycenter (SSB) relative to the thermal microwave back-
ground radiation [14] that represents the ‘preferred frame’.

It can be seen from equations  (12) and (13) how the eccentricity of the orbit of body i 
reduces the degeneracy among parameters.

2.1.4.  Lense–Thirring effect.  The nonzero angular momentum of a celestial body produces a 
secular precession of both the longitude of the ascending node and the argument of perihelion 
of a test particle orbiting around it. It is a relativistic correction called ‘Lense–Thirring effect’ 
[5]. It can be used to test the GR (when measured by probes orbiting around the Earth) or, 
assuming the GR to be exact, it can provide a direct measurement of the angular momentum 
of the Sun (we will consider this latter case) [15].

The perturbation on body i is [10]

δai
LT = GS�

γ + 1
c2r3

0i

[
−s × ṙ0i + 3

(s · r0i)(r0i × ṙ0i)

r2
0i

]
,� (15)
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where S� = 1.92 × 1041 kg m2 s−1 [15, 16] is the modulus of the angular momentum of the 
Sun and s is the unit vector which indicates its direction.

We neglect the second term into square brackets because the cross product is a vector along 
the z-axis and in our co-planar approximation it cannot be detected. The term (s · r0i) is also 
very small because s is near aligned along z-axis.

We express the angular momentum of the Sun as S� = kLTM�R2
�Ω� where 

Ω� = 2.864 × 10−6 rad/s is the angular velocity at the equator [17] and kLT the normalized 
moment of inertia (i.e. the parameter to be estimated).

Assuming γ = 1, after some algebra we get

δai
LT ≈ kLT

2µ0R2
�Ω�

c2

[
ṙ0i

r3
0i
× {0, 0, 1}

]
.� (16)

The expression in the Hill’s frame of the term into square brackets of equation  (16) is 
reported in equation (B.1f ).

2.1.5.  Shapiro delay.  The Shapiro delay [2] is one of the consequences of the space-time 
curvature in the proximity of the Sun. It affects both range and Doppler data and it can be 
used to measure the parameter γ  in an independent way from the dynamical effect described 
in section 2.1.3.

Regarding the signature on the range, the following term [10]

δrγ̄ik = γ̄
µ0

c2 log
r0i + r0k + rik

r0i + r0k − rik
� (17)

must be added to the dynamical effect of γ̄  (i and k are the inner and the outer planets, 
respectively).

From equation (17) one can notice how the signal is maximized during the i-Sun-k align-
ments. They can occur during the cruise phases as well during the orbital phases.

The perturbation in equation (17) can be evaluated with good approximation (for our pur-
poses) by using the formulas appendix B.

2.1.6.  Compton wavelength of the graviton.  The gravitational potential for a system of bodies 
in the case of a massive graviton is [6]

U = −G
∑
i �=j

mimj

rij
e−rij/λg

� (18)

where λg is the Compton wavelength of the graviton which, in General Relativity, is infinity.
Several tests have been proposed in the last decades for the measurement of this parameter. 

They are based on the observations of galaxy clusters [18, 19] as well as on the solar-system 
dynamics. For a comprehensive work regarding the measurements of the graviton mass see 
e.g. [20]. In the last years, the previous lower limit λg > 2.8 × 1012 km (obtained by meas-
urements based on solar-system dynamics [21]), has been increased to λg > 1.6 × 1013 km 
thanks to direct detection of gravitational waves (three events GW150914, GW151226 and 
GW170104) [22]. Recently, in [6] it has been forecasted that the lower limit of λg could be 
increased to 1.2–2.2 × 1014 km thanks to precise measurements of the perihelion advance of 
Mars obtained from MRO data.

In this work we check this prediction taking into account also the correlations of λg with all 
other parameters. Neglecting the planet–planet interaction, the force per unit mass on planet 
i is

F De Marchi and G Cascioli﻿Class. Quantum Grav. 37 (2020) 095007
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ai = −µ0

r3
0i

[
1 − r2

0i

2λ2
g

]
r0i + O(1/λ3

g).� (19)

Therefore, using equation (B.1b) with n  =  1, the perturbation due to the massive graviton is

δaλg
i =

µ0

2λ2
g
(ui

r + 2ei sinΦiui
t).� (20)

The (small) parameter belonging to q is 1/λ2
g and its formal error, say σg , extracted from the 

covariance matrix, gives the lower limit to the Compton wavelength of the graviton

λg > 1/
√
σg.� (21)

As an example, we plot in figure  2 the signature on the Earth–Mercury range due to 
γ̄ = 10−5 and λg = 1014 km. We compare the ones obtained by solving the Hill’s equa-
tions (with and without eccentricity of Mercury) with those obtained by numerical integration. 
The contribution of the eccentricity of Mercury’s orbit is apparent.

2.1.7.  Non-gravitational forces.  Non-gravitational forces, for our purposes, must be treated as 
a source of systematic noise. The modelling of some non-gravitational forces (i.e. solar pres
sure or thermal effects) might not be accurate enough for the scope of precise orbit determi-
nation, thus the perturbation induced by these forces must be calibrated or, thanks to the EP, 
directly measured by an onboard accelerometer (it is the case of BC) and subtracted from the 
dynamical model. For the mission JUICE, the accelerometer will be necessary to measure the 
displacement of the onboard antenna with respect to the center of mass due to the sloshing of 
the propellant [23].

The calibration of the non-gravitational forces, usually composed by both stochastic and 
deterministic contributions, is commonly tackled with a multi-arc strategy (see [24] for a 
detailed description).

In this work, for simplicity, we take into account these effects in an indirect way, by assum-
ing conservative values for the accuracy of the single measurements. In particular, to all meas-
urements we associate uncertainties that are always a factor 2 or 3 larger than the observed (or 
predicted, in the case of future missions) RMS.

2.1.8.  Aging of the transponder.  The on-board transponder develops a cumulative offset that 
corresponds to a drift in the range signal. This phenomenon is called ‘aging’ of the transpon-
der. In the case of MSG, a linear trend leading to an offset of  <1 m over 7 years, attributed to 
the aging of the transponder, has been observed and removed from the radiometric data [9]. 
For BC, the onboard self-calibrating system is expected to reduce the aging to less than a few 
cm after 1 year, this effect can be absorbed by a monotonic function of time [25]. Therefore, 
we added the following effect to the range signals

δρik = ρstart +∆ρ
t − tstart

tend − tstart
� (22)

and (ρstart,∆ρ) are parameters to be estimated.

2.2.  Covariance analysis and a priori

Given the set of N parameters q, our purpose is the calculus of their RMS, which are the 
square roots of the diagonal elements of the covariance matrix. We take into account also the 
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current knowledge about some (or all) parameters, so we will use a priori, that can be seen as 
additional ‘observations’ [24].

The simplest way is to express them as a set of M linear combinations of elements of q

f P
n =

N∑
j=1

anm(qm − qm,true); n = 1, ..., M� (23)

where anm are constant coefficients and f P
n  are normally distributed with zero mean and vari-

ance σP
n  which is the accuracy of the a priori information.

The normal and covariance matrices are

C = HTWH + (HP)TWPHP; P = C−1
� (24)

where H and HP are the design matrices

Hlm =
∂ρik(tl)
∂qm

; l = 1, ..., Nd; m = 1, ..., N;

HP
nm =

∂fn
∂qm

; m = 1, ..., N; n = 1, ..., M
� (25)

Figure 2.  Signature on the Earth–Mercury range due to γ̄ = 10−5 (top) and λg = 1014 
km (bottom). Blue: numerical integration, green: analytical model (assuming e  =  0), 
orange: analytical model with first order eccentricity of Mercury’s orbit included.
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where Nd is the number of observations (i.e the i-to-k range measurements and W, WP are 
weight matrices, here assumed to be diagonal

Wlm =
δlm

σ2
l

; l, m = 1, ..., Nd;

WP
mn =

δmn

(σP
n )

2 ; m, n = 1, ..., M
�

(26)

with δij being the Kroneker delta.
A priori have been assumed according to the current knowledge of the parameters involved.
For planets, the current uncertainties about GMs and ephemerides are reported in table 1, 

the last ones being based on the comparison among the recent ephemerides DE430, INPOP15a 
and EPM2014 [26]. We used these values for planetary σ(µj),σ(R0j),σ(�j). Thanks to the 
data carried by Juno mission, in the next future the GM of Jupiter will be likely reduced to 
σ(µ5) = 1.0 km3 s−2 [27] therefore we adopt this value.

Among the 345 minor bodies we consider, two are trans-neptunians (Pluto, Eris) for which 
we used (500 km, 20 mas) for radial/along-track uncertainties. All other bodies are asteroids 
belonging to the main belt and we assumed a positioning error of (100 km, 10 mas).

To summarize, a priori have been used for:

	 1.	�Parameters related to planets and asteroids: µj, R0j  and �j; 
	 2.	�Nordtvedt equation (1). Being an exact relation, in practice it corresponds to express one 

of the parameters as a function of the others. This can be done by adopting a small, but 
nonzero, value for σn . Following [30], we put σP

n = 10−8; 
	 3.	�initial state vectors for planets i and k based on the values into table 1 (see section 2.2.1 

for a detailed description); 
	 4.	�parameters β, γ , η, α1, α2, µ0, J2�, ζ, kLT and λg using as a priori the values reported in 

table 4.

2.2.1.  A priori on initial conditions.  Initial conditions can be expressed in barycentric 
(ri, ṙi, rk, ṙk) as well as heliocentric (r0i, ṙ0i, r0k, ṙ0k) coordinates.

In our model, the natural setup is the heliocentric one. The evolution of the state vector in 
terms of the initial conditions is given by equation (A.13) where initial conditions {r0, t0, ṙ0, ṫ0} 
are relative to the Hill’s frame (they are related to heliocentric coordinates by equation (A.3) 
evaluated at t  =  0).

Table 1.  Current knowledge about GMs and positions of the Solar System planets.

Body
Radial position  
Unc. (km)

Along track  
position Unc. (mas) GM Unc. (km3 s−2)

Mercury 0.020 0.2 0.9 [28]
Venus 0.004 0.2 0.006 [29]
Earth 0.002 0.2 0.0043 [29]
Mars 0.002 0.2 0.00028 [29]
Jupiter 1.5 4.0 2.0 [7]–1.0 [27]
Saturn 0.2 0.2 1.1 [29]
Uranus 50. 5.0 7.0 [29]
Neptune 200. 5.0 10.0 [29]
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We can pass to barycentric coordinates by using

ri = r0i − (1 + ηΩ0)

∑
j�=0 µjr0j∑

j µj
+ O(η2)� (27)

where Ωi  is the ratio between self-gravitational and rest energy of body i (for the Sun 
Ω0 = −3.52 × 10−6) [8].

From equation (27), the passage to a barycentric configuration implies the introduction of 
a signal proportional to η, to be added to the ‘heliocentric’ one which is obtained by solving 
the equation of motion

r̈0i = −µ�

r3
0i

r0i + η
∑

j�=i�=0

µj

(
Ωi

rij

r3
ij
− Ω0

r0j

r3
0j

)
� (28)

where

µ� = µ0 + µi + η(Ω0µi +Ωiµ0),� (29)

see [8] for details.
It results that the ‘barycentric’ signal largely dominates the heliocentric one, of about a 

factor 10 (for a comparison see top panels of figure D1).
Unfortunately, this advantage cannot be used: an hypothetical exact knowledge about one 

or more barycentric initial conditions is equivalent to an information about the real position 
of the Sun. However, this latter depends on the inertial masses of the Solar System bodies, 
therefore on η, so we created a self-referential loop.

The Sun-SSB distance is ||r0|| ≈ 7–8 × 105 km and the current uncertainty on the Nordtvedt 
parameter is ∆η ≈ 10−4. The uncertainty on the real position of the Sun due to a possible SEP 
violation is

∆ηΩ0||r0|| ≈ 1 m.� (30)

We verified that this is a qualitative ‘dividing line’ for the a priori on initial positions of bodies 
i and k. If they are larger, the resulting formal error of η is nearly the same in both barycentric 
or heliocentric configurations. In the other case, while in the heliocentric setup the RMS of 
η remains stable, in the other configuration it becomes about 1 order of magnitude smaller.

Since the output must be independent of the configuration adopted, we conclude that the 
descoping strategy (the assumption of exact knowledge of some elements of the initial state 
vector [8, 30, 31]), when applied to a barycentric setup, leads to an unphysical RMS of η.

For the same reason, in this work we do not adopt constraints on rotations and rescaling 
[8, 31–32].

A priori on initial conditions are sufficient to lock the rotation around z-axis and the con-
straint on the rescaling, as was for the descoping strategy, implicitly adds information about 
the real position of the Sun with respect to the SSB.

Moreover, we retain that the rescaling is in fact not necessary since the astronomical unit 
has been redefined as a conventional unit of length (resolution B2, IAU XXVIII General 
Assembly 2012) and the GM of the Sun is now among the parameters to be estimated.

In [30] it has been argued that the formal accuracies of the parameters depend on the refer-
ence epoch at which the initial state vector is estimated.

We believe that this effect is a consequence of erroneously maintaining the same set of a 
priori on constraints (such as descoping or rescaling) when changing the estimation epoch. 
In appendix F we prove that, if the a priori matrix is properly propagated by using the state 
transition matrix Φ(t1, t0) the formal uncertainties remain unchanged.
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3.  Missions and datasets

Here we report an overview of the main characteristics of the interplanetary missions we con-
sidered. We use for our analysis a set of simulated normal points with associated errors. The 
normal points are a derived measurement representing the relative distance between Earth and 
the barycenter of the planetary system the probe is orbiting in [33].

The points with an impact parameter b < bmin  must be discarded because of the effect 
of the solar plasma noise. In the case of missions able to establish a coherent multifre-
quency radio link a nearly complete suppression of the plasma noise can be achieved [17]. 
Notably BC and JUICE are (or will be) equipped with a Ka-band Transponder that ena-
bles a X/X (7.2 GHz uplink / 8.4 GHz downlink), X/Ka (7.2 GHz / 32.5 GHz) and Ka/Ka  
(34 GHz / 32.5 GHz) band multifrequency link. For these missions we adopt bmin = 7R�, 
in agreement with the latest numerical simulations performed for BC [34]. For the missions 
employing a single frequency X-band two-way link (all the others except VERITAS) we dis-
card all the data collected for b < bmin = 73.5R� corresponding to a Sun-Earth-Probe (SEP) 
angle of 20◦.

Finally, the Ka/Ka link is not expected for VERITAS, so only a partial calibration of the 
plasma noise will be possible. Therefore, we adopt an intermediate value of bmin = 40R� that 
can be translated into a SEP of about 10.5◦.

The precision of each normal point depends on:

	 •	�The real data sampling: n points can be equivalent to one point with RMS rescaled by a 
factor 1/

√
n or equivalently, the measurement RMS can be rescaled to different integra-

tion times as:

σ′
ρ = σρ

√
T ′

C

TC
� (31)

		 where σρ is the range RMS, TC is the integration time and (·)′ denotes rescaled quantities.
	 •	�The radio-link technology: a standard X-band ranging system can provide ranging meas-

urements with an accuracy limited to a few meters, a regenerative pseudo-noise ranging 
system, employed on BC, VERITAS and JUICE, can reach an absolute precision of some 
tenths of centimeters [34, 35].

The code we developed can deal only with Earth-to-planet range data, so particular attention 
must be applied when assigning the RMS of the Cassini and JUICE simulated normal points 
since neither Cassini nor JUICE are placed on circular orbits around Saturn or Jupiter, respec-
tively, for the entire duration of the missions. Orbits are in general highly elliptic with several 
flybys of the satellites. This implies that the uncertainty in the positioning of the central body 
may, and in general does, vary along the duration of the mission. Specific assumptions have 
been made for these two missions, in order to deal correctly with this issue (see below for 
details).

In the following we describe case-by-case the generation of the simulated normal points.

	 1.	�The scientific objectives of MSG were the study of the geology, geophysics, exosphere 
and magnetosphere of Mercury. It has been launched in 2004. After a flyby encounter of 
Earth (2005), two of Venus (2006–2007) and three of Mercury (2008–2009) it began a 
highly elliptical orbital phase (200 km × 15 000 km altitude, period: 12 h) around Mercury 
on March 18, 2011 until crashing on the surface 4 years later, on April 30, 2015.
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		 The spacecraft tracking is based on a two-way X-band link as described in [36]. We 
simulated a 4.1 yrs mission, a data spacing of 10 h and an associated RMS of 1m, that is 
conservatively compliant with the measured performances of MSG [9].

	 2.	�Cassini was a NASA mission devoted to the study of Saturn and its environment. Launched 
on October 15, 1997, it started the orbital phase around Saturn on July 1st, 2004. After 
several flybys around the Saturn’s satellites and the deployment of the lander Huygens on 
the Titan surface, it performed close passes by the rings of Saturn until the final plunge 
into Saturn’s atmosphere on September 15, 2017. Although equipped with a Ka-band 
transponder, during the Saturnian system tour Cassini was tracked only through a dual-
frequency link (X/X, X/Ka) that does not allow a complete plasma noise cancellation 
scheme. For this reason we considered a bmin corresponding to a SEP = 20◦. We simu-
lated a 13.2 yrs mission and, for the accuracy of its reconstruction of the Earth–Saturn 
distance, we consider two cases: 100 m (optimistic) and 1 km (conservative) with a data 
spacing of 24 h.

	 3.	�MRO is a still operating NASA mission devoted to the study of Mars. It has been launched 
on 2005 and the orbital insertion around Mars was accomplished on March 12, 2006. The 
orbit is nearly circular (250 km × 316 km of altitude).The tracking system operates with 
a single-frequency two-way X-band link and employs a DSN standard sequential tone 
ranging scheme [37], that allows a ranging accuracy of the order of few meters over 
typical integration times (5 min). We simulated a 12 yrs mission with a data spacing of 
10 h and an RMS of 1 m.

	 4.	�Juno is a currently operating NASA mission devoted to the study of Jupiter. It entered 
in a polar, highly elliptical (75600 km × 8.1 million km), orbit around Jupiter on July 
5, 2016. As for Cassini, the radio-link is established through X/X, X/Ka-band links. We 
simulated a 4.9 yrs mission with a data spacing of 53 d and an RMS of 50 m. These values 
are motivated by the highly elliptical orbits of Juno, that allow the precise determination 
of Jupiter position only at perijoves, that occur every 53 d. The value of the RMS reflects 
the current uncertainties in the reconstruction of Juno position [38].

	 5.	�BC, an ESA-JAXA mission, has been launched on October 19, 2018 and it will enter into 
Mercury orbit on December 5, 2025. After the orbit insertion there will be the release of 
two spacecraft. The first one, the Mercury Magnetospheric Orbiter (MMO) will study 
of the exosphere and the magnetosphere. The other one, the Mercury Planetary Orbiter 
(MPO), will be placed on a low altitude polar orbit (480 km × 1500 km altitude, 2.3 h 
period). Onboard the MPO there is an experiment (MORE) devoted to (i) the improvement 
of the gravity field and rotational state of Mercury (with respect to previous estimates by 
MSG) and (ii) to perform tests of GR theory. The tracking of the spacecraft is ensured 
by high accuracy X/X, X/Ka and Ka/Ka band range and Doppler links between the MPO 
spacecraft and DSN/ESA stations. We generated synthetic normal points for a nominal 
mission of 2 yrs with a data spacing of 10 h and an associated RMS of 4 cm. This assump-
tion is conservatively compliant with the expected performances of the BC ranging for 
which performances of about 1.5 × 10−4 cm s−1 (at 1000 s integration time) and 15 cm in 
range (at 300 s integration time) are expected [39].

	 6.	�JUICE (JUpiter ICy moons Explorer) is an ESA space mission focused on the study of 
the icy moons of Jupiter [23]. The launch is set for June 2022 and it will reach the Jupiter 
system on October 2029.

		 An orbital phase around Ganymede is planned (5 months of high elliptical orbit plus 4 
months of 500 km circular orbit) after several flybys of Europa and Callisto (2.6 yr).

		 The radio link technology will be the same as the one used on MPO (BC) so the range 
measurements will have a precision of some cm. However, the positioning error of Jupiter 
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with respect to the Earth is expected to be of the order of some meters (during the orbital 
phase to Ganymede [40]). We assume an RMS of 10m during the Ganymede orbital phase 
and a conservative value of 100m otherwise.

	 7.	�VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy) is 
a proposed NASA Discovery-class mission aimed at the exploration of Venus, for which 
a 2.7 years (4 Venus cycles) orbital phase is planned. The proposed radio link technology 

Figure 3.  Ratio between the current uncertainties of the parameters and their expected 
RMS, for all missions. Regarding λg we imposed a reference value of 1013 km.

Table 2.  Results for the covariance analysis applied to missions in operation and/or 
concluded. A priori used are reported in table 4 (step 1). We indicate with ∆ the spacing 
between consecutive simulated normal points expressed in hours (or days in the case 
of Juno).

MSG MRO Juno Cassini
Duration (yr) 4.1 12.0 4.9 13.2
RMS (m) 1.0 1.0 50.0 100.0

∆ (h) 10.0 10 53d 24

bmin [R�] 73.7 73.7 73.7 73.7

β 4.8 × 10−5 1.5 × 10−5 5.9 × 10−5 5.7 × 10−5

γ 2.0 × 10−5 2.0 × 10−5 2.3 × 10−5 2.3 × 10−5

η 1.9 × 10−4 6.0 × 10−5 2.4 × 10−4 2.3 × 10−4

α1 1.1 × 10−6 7.4 × 10−7 6.0 × 10−6 5.9 × 10−6

α2 9.6 × 10−7 2.9 × 10−7 3.4 × 10−5 2.9 × 10−5

µ0 (km3 s−2) 0.35 0.25 0.42 0.42
J2� 1.0 × 10−8 1.2 × 10−8 1.2 × 10−8 1.2 × 10−8

ζ (yr−1) 4.1 × 10−14 7.8 × 10−15 4.3 × 10−14 4.2 × 10−14

kLT 5.4 × 10−3 5.4 × 10−3 5.4 × 10−3 5.4 × 10−3

λg (km) 3.4 × 1013 1.0 × 1014 8.3 × 1012 5.1 × 1013
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will enable the same performances as MPO (BC). We decided to analyze this proposed 
mission as a placeholder for possible future missions to Venus equipped with state-of-
the-art tracking systems. We simulated a 2.7 yrs mission (stating from May 2028) a data 
spacing of 10 h and an RMS of 4 cm.

4.  Results and discussion

First, a preliminary check is conducted analyzing all considered missions imposing the same 
set of a priori (reported in table 4). This first analysis can be considered as a ‘base case sce-
nario’ with respect to the realistic approach that is adopted later on. This is intended to assess 
preliminarily the effectiveness of each mission with respect to the current state of the art. In 
figure 3 we report, for each parameter, the ratio between the current uncertainty and the RMS 
attainable under the aforementioned hypotheses. MRO and BC stand out as most performing 
among the current and the ‘new’ missions respectively. The detailed numerical values used for 
figure 3 are reported in table E1.

The actual data analysis approach will be different because, in general, new missions 
always benefit from the results of the previous ones.

We simulate this approach in three steps: first, by imposing as a priori the current knowl-
edge about the parameters we get the covariance matrices for the missions which are currently 
operative and/or concluded MSG, Juno, Cassini, MRO).

Afterwards, taking advantage of the results of these missions we define the new set of a 
priori (table 4, step 2) and we use it for the covariance analysis of BC.

Finally, since VERITAS (if confirmed) and JUICE will start to collect data not before year 
2028, when the mission BC will be finished, we use the expected results of BC (table 4, step 

Table 3.  Results for the covariance analysis applied to BC (using a priori reported in 
table 4, step 2) and to JUICE/VERITAS (using a priori, based on BC results, reported in 
table 4, step 3). We indicate with ∆ the spacing between consecutive simulated normal 
points. In some cases, since we assumed conservative a priori (see table 4 step 2), some 
accuracies are larger than those expected after BC indicated by ‘∗’. This means that in 
these cases the improvement is negligible.

BC JUICE VERITAS

Duration (yr) 2.0 2.6 & 0.8 2.7

RMS (m) 0.04 100.0 & 10.0 0.04

∆ (h) 10 10 10

bmin [R�] 7.0 7.0 40.0

β 1.7 × 10−5 1.6 × 10−5 1.4 × 10−5

γ 1.0 × 10−6 2.0 × 10−6 ∗ 1.9 × 10−6 ∗
η 6.9 × 10−5 6.2 × 10−5 5.6 × 10−5

α1 3.4 × 10−7 5.0 × 10−7 ∗ 4.0 × 10−7 ∗
α2 6.7 × 10−8 1.0 × 10−7 ∗ 7.7 × 10−8 ∗
µ0 (km3 s−2) 0.08 0.10 ∗ 0.08
J2� 2.8 × 10−9 4.5 × 10−9 ∗ 4.3 × 10−9 ∗
ζ (yr−1) 9.2 × 10−15 1.0 × 10−14 ∗ 9.5 × 10−15 ∗
kLT 5.3 × 10−3 5.4 × 10−3 ∗ 5.4 × 10−3 ∗
λg (km) 1.1 × 1014 1.0 × 1014 1.1 × 1014
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3) to define a new set of a priori (table 4, step 3) to be considered in the covariance analysis 
of JUICE/VERITAS.

In all cases we adopt a conservative approach to define the set of a priori at each step 
(results have been rounded up). Moreover, we adopt in all cases the same set of a priori for 
planets/asteroids ephemerides and GMs even if, in the next 15 years, they will be definitely 
improved. Results for MSG, Juno, Cassini and MRO are reported in table 2, while for BC, 
JUICE and VERITAS are in table 3.

Comparing the current knowledge (step 1) to the results in table 2 one can notice that the 
data from MRO are the most promising among the current missions: the improvement, with 
respect to the current knowledge, spans from a factor 1.7 (µ0) to 100 (α2) for all parameters 
except for γ , J2� and kLT.

Even in the optimistic case (RMS 100 m), the results obtained from Cassini data are in 
general worse than those of MRO.

For λg, our result agrees with the forecast of [6] regarding the data analysis of MRO (the 
lower limit we found is 1.03 × 1014 km).

Regarding MSG, the values we found are in general larger than those reported by [9] since 
we take into account the uncertainty of the Earth’s orbit, and the parameters γ,α1,α2. For all 
missions, the contributions to the measurements of the Sun’s angular momentum and J2 are 
negligible.

Based on these results, we build the set of a priori reported in table 4 (step 2).
Regarding BC, a large improvement (a factor 20) with respect to the results of MRO is 

expected for the parameter γ . A factor 2–4 of improvement is expected for α1, α2, µ0 and J2�. 
No significant improvements are expected for the other parameters.

Finally, we found that no improvements of the results of BC are expected after the JUICE 
and VERITAS range data analysis.

Table 4.  A priori adopted on the parameters for the covariance analysis in different 
cases. Step 1: for missions currently operative and/or finished (VEX, MSG, Juno, 
Cassini, MRO). Step 2: for BC. Step 3: for JUICE and VERITAS.

Parameter
Step 1 Step 2 Step 3
(Current) (After MRO, ecc.) (After BC)

β 7.0 × 10−5 [34] 3.0 × 10−5 2.0 × 10−5

γ 2.3 × 10−5 [41] 2.0 × 10−5 2.0 × 10−6

η 4.4 × 10−4 [34] 1.0 × 10−4 1.0 × 10−4

α1 6.0 × 10−6 [16] 1.0 × 10−6 5.0 × 10−7

α2 3.5 × 10−5 [16] 5.0 × 10−7 1.0 × 10−7

µ0 (km3 s−2) 0.42a 0.30 0.10
J2� 1.2 × 10−8 [30] 1.1 × 10−8 4.5 × 10−9

ζ (yr−1) 4.3 × 10−14 [25] 1.0 × 10−14 1.0 × 10−14

kLT 5.4 × 10−3 [43] 5.4 × 10−3 5.4 × 10−3

λg (km) None 9.0 × 1013 1.0 × 1014

a For the GM of the Sun we adopted 3 times the uncertainty reported in [42].
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5.  Conclusion

In this work we analyzed the possible outcomes in terms of tests of General Relativity, of the 
radio tracking data analysis of some past, present and future planetary missions. The results 
we presented have to be intended as a roadmap to guide future data analysis campaigns aim-
ing to set a new and tighter level of accuracy of validation of the General Relativity theory. 
The approach we employed is based on an updated version of the covariance analysis method, 
described in [8], which was initially conceived for the BepiColombo Relativity experiment.

The approach is fully analytical: all the perturbations on planetary orbits are calculated by 
solving the Hill’s equations.

The updating concerns the introduction of the preferred frame parameters (α1,α2), 
Eddington parameter γ , Compton wavelength of the graviton (λg) and Lense–Thirring effect 
of the Sun. We also included the aging of the transponder, the effect of the eccentricity of 
the Mercury’s orbit and the uncertainties of the ephemerides for planets and minor bodies. 
Finally, the code has been extended to deal with the perturbations between two arbitrary bod-
ies orbiting around the Sun.

With these characteristics the code is suitable to compare the sensitivity to each parameter 
for space missions orbiting around inner or outer planets.

The method has been first validated by comparing the signatures of the parameters we 
are interested in with the numerical results for a simulated radio tracking between Earth and 
Mercury. We verified that the analytical model presents minor discrepancies with respect to 
the validation model, mainly due to the minor neglected effects, that do not yield to significant 
differences on the results, in terms of formal uncertainties. Afterwards, we sequentially per-
formed a covariance analysis to (1) five still operative and/or finished interplanetary missions 
(2) to BepiColombo and (3) to two missions still to be launched (JUICE) and/or approved 
(VERITAS). Each step benefits from the results of the previous one. We conclude that a sig-
nificant improvement of the current knowledge can come after the analysis of the range data of 
MRO. The next important improvement, mainly for the parameter γ , will be carried out by BC 
data. We want to stress that our simulations are based on a data analysis strategy that considers 
only one mission at a time, eventually employing as a priori the results of other missions. It 
has been preliminarily shown in [44] that a strategy based on the simultaneous data analysis 
of several missions might lead to a further reduction of the formal uncertainties on the param
eters of interest via an effective reduction of their correlations. Thus our results represent the 
first, but fundamental, step towards future combined analysis works.
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Appendix A.  Hill’s equations and particular solutions

The equations of motion of a planet i in heliocentric coordinates are

r̈0i = −µ0 + µi

r3
0i

r0i + δf� (A.1)

where the first term is the Sun’s attraction and δf  represents all small perturbations to the 
Keplerian 2-body orbit, including (i) the planet–planet interactions (ii) the Sun’s acceleration 
with respect to the Solar System Barycenter (iii) forces due to the parameters of our interest.

Consider a rotating frame (the Hill’s frame) defined as follows: (1) the origin rotates around 
the Sun on the ecliptic plane with angular velocity equal to the mean motion ni and distance 
equal to the semimajor axis R0i; (2) the axes are radial (r), along-track (t) and out-of-plane (w). 
With respect to a fixed frame, they are

ui
r = {cos(nit + ϕi), sin(nit + ϕi), 0},

ui
t = {− sin(nit + ϕi), cos(nit + ϕi), 0},

ui
w = {0, 0, 1};

� (A.2)

where ϕi is the initial phase. Defining {δri, δti, δwi} the position of the planet i (see figure A1) 
in the Hill’s frame, the transformations from/to heliocentric coordinates (r0i, ṙ0i, r̈0i) are

r0i = (R0i + δri)ui
r + δtiui

t + δwiui
w;

ṙ0i = (δṙi − niδti)ui
r + [ni(R0i + δri) + δṫi] ui

t + δẇiui
w;

r̈0i =
[
δr̈i − 2niδṫi − n2

i (R0i + δri)
]

ui
r +

[̈
ti + 2niδṙi − n2

i δti
]

ui
t + δẅiui

w.
� (A.3)

Assuming that all components are small with respect to R0i, the Sun’s attraction into From 
equations (A.3) and (A.1) can be expanded at the first order (see equation (B.1b) with n  =  3 
and ei  =  0). Equation (A.1) in the Hill’s frame becomes

Figure A1.  Scheme of the Hill’s rotating frame.
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δr̈i − 2niδṫi − 3n2
i δri = δf · ui

r;

δẗi + 2niδṙi = δf · ui
t;

δẅi + n2
i δwi = δf · ui

w.

� (A.4)

All perturbations δf  described in this work can be expressed, in the Hill’s frame, in terms of 
sinusoidal and polynomials functions of time, the bigger degree being 3. Neglecting the out-
of-plane components, the equations of motion to be solved are

δr̈i − 2niδṫi − 3n2
i δri =

3∑
i=0

Ar,iti +
∑

j

[Cr,j cos(njt) + Sr,j sin(njt)] + Ĉr cos(nit) + Ŝr sin(nit);

δẗi + 2niδṙi =
3∑

i=0

At,iti +
∑

j

[Cr,j cos(njt) + St,j sin(njt)] + Ĉt cos(nit) + Ŝt sin(nit);

� (A.5)
where all (A, S, C, Ŝ, Ĉ) coefficients are constants depending on the given perturbation. We 
indicated with the symbol (̂  ) the resonant terms. Non-resonant frequencies nj �= ni are 
arbitrary.

Being equation  (A.5) linear, the most general solution is the sum of polynomial (pol), 
resonant (res), non-homogeneous (nh) and homogeneous (h) terms (we drop the index i for 
simplicity)

δr = δrpol + δrres + δrnh + δrh;
δt = δtpol + δtres + δtnh + δth.
� (A.6)

Solutions for polynomial trends are

δrpol = PR · {Ar0, Ar1, Ar2, Ar3, At0, At1, At2, At3};
δtpol = PT · {Ar0, Ar1, Ar2, Ar3, At0, At1, At2, At3};
� (A.7)

where

PR =

{
1
n2 ,

t
n2 ,

n2t2 − 2
n4 ,

t
(
n2t2 − 6

)
n4 ,

2t
n

,
n2t2 − 2

n3 ,
2t
(
n2t2 − 6

)
3n3 ,

n4t4 − 12n2t2 + 24
2n5

}
;

PT =

{
−2t

n
,− t2

n
,−

2t
(
n2t2 − 6

)
3n3 ,

6t2

n3 − t4

2n
,−3t2

2
,

4t
n2 − t3

2
,

4t2

n2 − t4

4
,−24t

n4 +
4t3

n2 − 3t5

20

}
.

� (A.8)
Resonant contributions are in the form

δrres = RR · {Ŝr, Ĉr, Ŝt, Ĉt};

δtres = RT · {Ŝr, Ĉr, Ŝt, Ĉt};
� (A.9)

where

RR =

{
− t cos(nt)

2n
,

t sin(nt)
2n

,− t sin(nt)
n

,− t cos(nt)
n

}
;

RT =

{
nt sin(nt) + cos(nt)

n2 ,
nt cos(nt)− sin(nt)

n2 ,
sin(nt)− 2nt cos(nt)

n2 ,
2nt sin(nt) + cos(nt)

n2

}
.

� (A.10)
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Non-homogeneous solutions are (nj �= n)

δrnh =
∑

j

NR,j · {Sr,j, Cr,j, St,j, Ct,j};

δtnh =
∑

j

NT ,j · {Sr,j, Cr,j, St,j, Ct,j};
� (A.11)

where

NR,j =

{
sin (njt)
n2 − n2

j
,
cos (njt)
n2 − n2

j
,

2n cos (njt)
n3

j − n2nj
,

2n sin (njt)
n2nj − n3

j

}
;

NT ,j =





2n cos (njt)
n2nj − n3

j
,

2n sin (njt)
n3

j − n2nj
,

(
n2

j + 3n2
)
sin (njt)

n2
j

(
n2 − n2

j

) ,

(
n2

j + 3n2
)
cos (njt)

n2
j

(
n2 − n2

j

)

 .

� (A.12)
Finally, defining the initial conditions {r0, t0, ṙ0, ṫ0} = {δri(0), δti(0), δṙi(0), δṫi(0)}, the 

homogeneous solutions are

δrh = −[3r0 + (2ṫ0/n)] cos(nt) + (ṙ0/n) sin(nt) + 4r0 + 2ṫ0/n;
δth = t0 − 2ṙ0/n − (6nr0 + 3t0)t + [6r0 + (4ṫ0/n)] sin(nt) + (2ṙ0/n) cos(nt).
� (A.13)

Appendix B.  First order corrections for eccentricity

In this section we report the first-order expansions used in the calculus of the perturbations 
described in section 2.1.

All terms into equations (12), (13), (16), (20) and (28) can be written using equation (6) and 
the following formulas (where n �= 0)

1
(r0i)n ≈ 1

(R0i)n (1 + ein cosΦi);� (B.1a)

r0i

(r0i)n ≈ 1 + ei cosΦi(n − 1)
Rn−1

0i

ui
r + ei

2 sinΦi

Rn−1
0i

ui
t;� (B.1b)

ṙ0i ≈ niR0iui
r + einiR0i

(
sinΦiui

r + cosΦiui
t

)
;� (B.1c)

r0i · ṙ0i

r3
0i

ṙ0i ≈ ein2
i sinΦiui

t;� (B.1d)

(ṙ0i)
2 r0i

r3
0i

≈ n2
i (1 + 4ei cosΦi)ui

r + 2ein2
i sinΦiui

t;� (B.1e)

ṙ0i

r3
0i
× {0, 0, 1} ≈ ni

R2
0i

[
1 + 4ei cosΦiui

r + ei sinΦiui
t

]
;� (B.1f )

Regarding the planet–planet interactions terms, assuming ej   =  0 for all j �= i, from equa-
tion (6) the i-to-j  vector is

rij = Rij − eiRe
i� (B.2)
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where Rij = R0ju j
r − R0iui

r is the same vector in circular approximation. We get

rij

(rij)n ≈ 1
(Rij)n

[
Rij + ei

(
Re

i + n
Re

i · Rij

R2
ij

)]
� (B.3)

that has been used to evaluate the (ij)-term into equations (8) and (28).
Finally, the quantity 1/(Rij)

n can be obtained in terms of sinusoidal functions by applying 
the power-reduction formulae to the well known series expansion (valid for R0i < R0k )

1
Rij

=
1

R0j

∞∑
l=0

(
R0i

R0k

)l

Pl(cosΦij)� (B.4)

where Pl are the Legendre polynomials.

Appendix C.  Validation of the code. Comparison with numerical results

Here we report a comparison between the numerical and analytical perturbations on a simu-
lated set of Earth–Mercury range data due to some parameters of our interest. The numer
ical simulations have been performed using Jet Propulsion Laboratory’s software MONTE 
[45]. A number of parameters of our interest are already implemented in MONTE (such as 
γ,β, kLT, J2�). For the remaining parameters we custom-implemented the forces and partial 
derivatives, basing on the expression reported in [8, 31, 46]. A certain number of effects we 
neglected are at the origin of the discrepancies (≈15%–20%) first of all, the equations  of 
motion we used are valid for small eccentricities of bodies i and k (in figure D1 Mercury 
and Earth, respectively). Moreover, we neglected planet–planet interactions (except for the 
parameter η [8]), orbital inclinations, while eccentricities of the perturbing bodies have been 
modeled with a first order expansion only.

Appendix D.  Range perturbations for different missions

Here we report a collection of the signals of some parameters for different missions. 
Regarding η we report a comparison between ‘barycentric’ and ‘heliocentric’ signatures (see 
section 2.2.1). In some cases (β, γ , J2� and kLT) the advantage of a mission to Mercury is 
apparent. For λg, on the contrary, the Earth–Jupiter and Earth–Saturn range signals are the 
largest ones.

Appendix E.  Performance test for all missions

For all missions considered in this work, we report the outputs relative to the same set of a 
priori (i.e. the current knowledge about the parameters, see section 4 for details).

Appendix F.  Constraint proof

In this appendix we prove that in a minimum variance least squares (MVLS) orbit determina-
tion problem, in which linear constraints on the solve-for parameters are applied, the covari-
ance matrix is independent of the epoch at which the constraints are specified.The general 
solution of the MVLS can be written as
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Figure C1.  Comparison between numerical (black points) and analytical (red points) 
Earth–Mercury range perturbations due to some parameters of our interest.
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Figure D1.  Perturbations on range signal due to some parameters of our interest in 
different cases: Earth–Mercury (blue), Earth–Venus (yellow), Earth–Mars (green), 
Earth–Jupiter (red) and Earth–Saturn (black).
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x̂0 =
(
HTWH

)−1 HTWy� (F.1)

where x̂0 is the vector of differential corrections to the solve-for parameters computed at 
epoch t  =  t0, H is the design matrix, W is the weight matrix (that in the MVLS corresponds 
to the inverse of the observation noise covariance matrix) and y is the observation deviation 
vector (for the derivation of the solution see [47]). Note that we did not include a priori infor-
mations in the solution for a matter of simplicity, but their inclusion would be straightforward. 
One or more linear constraints (as for example fixing the X coordinate of the Earth at a certain 
epoch) can be introduced in the problem and the easiest way to factor them in is to treat them 
as additional observations. We can write a generic set of nc linear constraints as

c0 = Cx0 − M(t) = N (0,ΣC)� (F.2)

C is the matrix (of dimensions nc × n, with n the number of state parameters) describing the 
linear combination of state parameters entering the constraint, M is the set of constrained val-
ues and N (0,ΣC) denotes a normal distribution with 0 mean and covariance matrix ΣC . Note 
that in the MVLS approach the weights associated to c0 correspond to Σ−1

C  . If the constraints 
are given at the estimation epoch (i.e. at t  =  t0) the design matrix, when the constraints are 
factored in, becomes: 

H =

[
H̄
∂c0
∂x0

]
=

[
H̄
C

]
� (F.3)

where H̄ is the partition of H relative to the actual radiometric observations and ∂c0
∂x0

= C is is 
the additional block due to the constraints. The weight matrix can be in the same way parti-
tioned as

Table E1.  Results for the covariance analysis applied to all missions with the current 
uncertainties as a priori.

MSG MRO Juno Cassini BC JUICE VERITAS
Duration 
(yr) 4.1 12.0 4.9 13.2 2.0 2.6 & 0.8 2.7

RMS (m) 1.0 1.0 50.0 100.0 0.04
100.0 & 
10.0 0.04

∆ (h) 10.0 10 53d 24 10 10 10

bmin [R�] 73.7 73.7 73.7 73.7 7.0 7.0 40.0

β 4.8 × 10−5 1.5 × 10−5 5.9 × 10−5 5.7 × 10−5 3.6 × 10−5 5.9 × 10−5 4.6 × 10−5

γ 2.0 × 10−5 2.0 × 10−5 2.3 × 10−5 2.3 × 10−5 1.2 × 10−6 2.3 × 10−5 8.5 × 10−6

η 1.9 × 10−4 6.0 × 10−5 2.4 × 10−4 2.3 × 10−4 1.4 × 10−4 2.4 × 10−4 1.9 × 10−4

α1 1.1 × 10−6 7.4 × 10−7 6.0 × 10−6 5.9 × 10−6 5.6 × 10−7 5.9 × 10−6 8.6 × 10−7

α2 9.6 × 10−7 2.9 × 10−7 3.4 × 10−5 2.9 × 10−5 7.4 × 10−8 2.9 × 10−5 1.3 × 10−7

µ0  
(km3 s−2)

0.35 0.25 0.42 0.42 0.15 0.42 0.26

J2� 1.0 × 10−8 1.2 × 10−8 1.2 × 10−8 1.2 × 10−8 4.6 × 10−9 1.2 × 10−8 1.2 × 10−8

ζ (yr−1) 4.1 × 10−14 7.8 × 10−15 4.3 × 10−14 4.2 × 10−14 2.3 × 10−14 4.3 × 10−14 3.8 × 10−14

kLT 5.4 × 10−3 5.4 × 10−3 5.4 × 10−3 5.4 × 10−3 5.3 × 10−3 5.4 × 10−3 5.4 × 10−3

λg (km) 3.4 × 1013 1.0 × 1014 8.3 × 1012 5.1 × 1013 8.8 × 1013 1.5 × 1013 6.6 × 1013
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W =

[
W̄ 0
0 Σ−1

C

]
.� (F.4)

thus the inverse of the state covariance matrix at time t0, P−1 can be written as:

P−1 = HTWH = H̄TW̄H̄ + CTΣ−1
C C.� (F.5)

In general, the constraints cCanC b.e specified at any time (t  =  t1) different from the esti-
mation epoch:

c1 = C∗x1 − M1(t) = N (0,ΣC).
� (F.6)

The constraints must provide the same amount of information independently of the epoch 
at which they are specified. This means that the partial derivatives of the constraints with 
respect to the state vector must remain unchanged. Thus, without losing generality, we can 
write:

∂c1

∂x1
=

∂c0

∂x0

∂x0

∂x1
= CΦ(t0, t1) = CΦ−1(t1, t0)� (F.7)

Where Φ(t1, t0) is the state transition matrix that maps the state from t0 to t1 ( for a complete 
discussion about the state transition matrix refer to [47]). From (F.7) we can write:

C∗ = CΦ−1(t1, t0).
� (F.8)

Using the constraints given at epoch t1 the mapping matrix (referred always to the estimation 
epoch t0):

H =

[
H̄
∂c1
∂x0

]
=

[
H̄

∂c1
∂x1

Φ(t1, t0)

]
=

[
H̄

C∗Φ(t1, t0)

]
.� (F.9)

Then the covariance matrix:

P−1 = HTWH = H̄TW̄H̄ +ΦT(t1, t0)C∗TΣ−1
C C∗Φ(t1, t0)

� (F.10)

and substituting (F.8) in (F.12)

P−1 = HTWH = H̄TW̄H̄ +ΦT(t1, t0)(ΦT(t1, t0))−1CTΣ−1
C CΦ−1(t1, t0)Φ(t1, t0).

� (F.11)

Thus:

P−1 = H̄TW̄H̄ + CTΣ−1
C C. 

�
(F.12)

We proved that if the a priori uncertainties on the constraints are properly mapped the inverse 
of the covariance matrix is unchanged. We can conclude that also the covariance matrix will 
remain unchanged.
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