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Abstract

The concept of a fake particle, or ‘fakeon’, allows us to make sense of quan-

tum gravity as an ultraviolet complete theory, by renouncing causality at very

small distances. We investigate whether the violation of microcausality can be

ampli�ed or detected in the most common settings. We show that it is actually

short range for all practical purposes. Due to our experimental limitations, the

violation does not propagate along the light cones or by means of gravitational

waves. In some cases, the Universe even conspires to make the effect disappear.

For example, the positivity of the Hubble constant appears to be responsible for

the direction of time in the early Universe.

Keywords: quantum gravity, gravitational waves, causality

1. Introduction

The idea of a fakeon has been put forward in 2017 in references [1, 2] to overcome the problem

of ghosts in higher-derivative theories and ensure unitarity. With broader applications, fakeons

can be used even in non-higher-derivative theories, for example when a �eld has a positive

squared mass, irrespectively of the sign of the pole of its propagator.

The fakeon is a degree of freedom that can only be virtual. It does not belong to the phys-

ical spectrum. It provides a better understanding of the Lee–Wick models [3, 4], overcoming

ambiguities [5] and problems with Lorentz invariance [6], and actually leading to the comple-

tion of their formulation [7]. Moreover, fakeons allow us to simplify the proofs of perturbative

unitarity in gauge and gravity theories [8]. But their most important application is that they

lead to a consistent, and basically unique, theory of quantum gravity [1, 9, 10].
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One physical consequence due to the fakeons is the violation of causality at energies larger

than their masses. The existence of a relation between higher-derivatives and violations of

microcausality has been known for a long time. For example, in classical electrodynamics, the

runaway solutions predicted by the Abraham–Lorentz force can be eliminated by renounc-

ing microcausality [11]. An analogous ‘reduction’ can be implemented in quadratic gravity

[12]. The Lee–Wick models lead to the violation of microcausality naturally, as realized

quite soon [4, 13]. Without higher-derivatives, a version of electrodynamics that has issues

with causality is the Feynman–Wheeler theory [14], which (potentially) involves the classi-

cal analogue of a massless fakeon. However, since a massless fakeon implies the violations

of both microcausality and macrocausality, Feynman and Wheeler developed a nontrivial

‘absorber-emitter theory’ to annihilate the effects of the potential fakeon and recover causality

altogether.

In quantum �eld theory, a satisfactory de�nition of causality is lacking [15]. Bogoliubov’s

condition [16] is off-shell, like the Lehmann–Symanzik–Zimmermann requirement that �elds

commute at spacelike separated points [17]. At the practical level, the dif�culty is to accu-

rately localize spacetime points working with relativistic wave packets that describe on-shell

particles. In most cases, we may have to downgrade the violation of causality to an unusual

form of the equations [18]. Nonetheless, if the discrepancies with respect to the predictions

that follow from the ordinary equations can be con�rmed or refuted experimentally, we have

a way to make progress, no matter what those discrepancies are supposed to mean.

The fake degrees of freedom must be projected away, both at the quantum level and clas-

sically. An important feature of the theories that contain fakeons is that the starting classical

action is not the true classical action [19], but an ‘interim’ local action that provides the basic

Feynman rules. The true classical action is nonlocal and can be obtained after the quantization,

bymeans of a process of classicization of the interim action. Forms of violation ofmicrocausal-

ity survive the classical limit, due to the presence of certain ‘fakeon averages’ in the projected

�eld equations. This fact suggests that it might be possible to detect the violation experimen-

tally at some point, as a discrepancy with respect to the ordinary equations, or a fuzziness of

the initial conditions, the time evolution, etc.

In this paper we study the effects of the fakeons on the classical limit of quantum gravity.

Can the violations of microcausality be ampli�ed into violations of causality? Does Lorentz

symmetry spread the effects along the light cones? Can the gravitational waves propagate the

effects to long distances?

Since the theory is Lorentz invariant, the violation occurs for suf�ciently small invari-

ant intervals. Then, it should be possible to propagate it to arbitrary distances, close enough

to the light cones, if we wait for a suf�cient amount of time. This is true in principle, but

has no practical consequences, for reasons related to the poor accuracies of our measure-

ments. In all realistic situations the violation of microcausality remains con�ned within a

radius of order 1/m, where m is the fakeon mass. To spread it out, we need sources that

oscillate with a frequency ω of order m, which are not realistic, even if we assume that the

fakeon masses m are relatively small (say, several orders of magnitude below the Planck

mass).

We also �nd that the impact of fakeons on the gravitational radiation is negligible, which

excludes the possibility of propagating the violation of microcausality to longer distances by

means of gravitational waves. Again, it would be necessary to generate radiation with very

large frequencies.

We conclude that the ampli�cation of the violation of microcausality does not appear to

be around the corner. Actually, nature is for some reason keeping it con�ned down to small
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distances. For example,we show that the positivity of theHubble constant conspires to suppress

the violation and give time a direction in the early Universe.

The approach to quantum gravity based on the idea of fake particle comes from perturba-

tive quantum �eld theory, so the fakeon prescription is understood at present in momentum

space and working perturbatively around �at space. The problem of fully understanding the

fakeon prescription in coordinate space (beyond the tree level) or around generic backgrounds

is still open at this stage. In some cases, more general backgrounds can be reached by means

of resummations of the results obtained around �at space. An example of this type is given in

section 4.

The paper is organized as follows. In section 2 we study the fakeon average and dis-

cuss its effects close to the light cones. In section 3 we extend the analysis to the gravita-

tional waves. In section 4 we study the effects of the Hubble constant on the fakeon average.

Section 5 contains the conclusions and appendix A is devoted to the technical aspects of a

calculation.

2. Light cones and microcausality

In this section we study the classical limit of the fakeon Green function. In particular, we show

that the violation of microcausality does not propagate along the light cones if the source is

slowly varying for time intervals of order 1/m, where m is the mass of the fakeon.

Consider the Klein–Gordon equation

(

1+
�

m2

)

φ(x) = J(x), (2.1)

where J is a real source and m a mass. If φ is a fakeon, its solution is [19]

φ(x) = 〈J〉f(x) ≡
∫

Gf(x− y)J(y)d4y, (2.2)

where 〈J〉f denotes the ‘fakeon average’

〈J〉f =
m2

�+ m2

∣

∣

∣

∣

f

J ≡ m2

2

(

1

�+ m2

∣

∣

∣

∣

ret

+
1

�+ m2

∣

∣

∣

∣

adv

)

J. (2.3)

The violation of causality is due to the contributions of the advanced potentials.

In Fourier transforms, we get

Gf(x) = P
∫

d4p

(2π)4
−m2 e−ip·x

p2 − m2
=

1

2

[

G+iǫ(x)+ G−iǫ(x)
]

, (2.4)

where P denotes the principal value and

G±iǫ(x) = −
∫

d4p

(2π)4
m2 e−ip·x

p2 − m2 ± iǫ
=

m3

(2π)2

K1

(

±im
√
x2 ∓ iǫ

)

√
x2 ∓ iǫ

are the Feynman Green function and its conjugate, K1 denoting the modi�ed Bessel function

of the second kind. Each G±iǫ(x) can be easily evaluated by means of the Wick rotation from
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the Euclidean framework. Then formula (2.4) gives

Gf(x) =
m4

8π2





K1

(

im
√
x2 − iǫ

)

m
√
x2 − iǫ

+

K1

(

−im
√
x2 + iǫ

)

m
√
x2 + iǫ



 . (2.5)

Observe that Gf(x− y) vanishes for (x− y)2 < 0, so φ(x) receives contributions only from
the past and future light cones

C±(x) ≡
{

y | (y− x)2 > 0, sgn(y0 − x0) = ±1
}

in x, equipped with their interiors. Formula (2.2) can be written as

〈J〉f(x) =
∫

C−∪C+
Gf(x− y)J(y)d4y (2.6)

and the violation of microcausality is due to the contributions of C+.

For m
√
x2 ≫ 1, we can use the approximation K1(z) ∼ e−z

√

π/(2z), which holds for

|z| ≫ 1, arg(z) 6= π mod 2π. We �nd the behavior

Gf(x) ∼
m5/2

4
√
2π3/2(x2)3/4

cos
(

m
√
x2 +

π

4

)

, m
√
x2 ≫ 1. (2.7)

Since Gf rapidly oscillates for
√
x2 ≫ 1/m, only the contributions coming from the regions

close to the light cones effectively matter.

In the limit m→∞, Gf(x) is localized in the present, since formula (2.3) gives

Gf(x)→ δ(4)(x). (2.8)

The �rst terms of the expansion around m = ∞, which are

Gf(x) =

[

1− �

m2
+

�2

m4
+ · · ·

]

δ(4)(x),

are good indications that, when m is �nite, but large, the violation of causality is short range.

However, in the limit m→ 0, using K1(z) ∼ 1/z for z→ 0, we get

Gf(x)−−−−−−→
|x2 |≪1/m2

im2

8π2

(

1

x2 + iǫ
− 1

x2 − iǫ

)

=
m2

4π
δ(x2), (2.9)

which shows that close enough to the light cones the violation spreads out everywhere with no

suppression.

The question is: is it correct to talk about a violation of microcausality? Or does Lorentz

invariance raise it to a violation of macrocausality? Events X and Y separated by the same

invariant interval (x− y)2 give equal contributions to the fakeon average. If their distance

|x− y| is small in some inertial frame, it may be arbitrarily large in other inertial frames.

Nevertheless, we are going to show that the limit |(x− y)2| ≪ 1/m2 is practically out of

reach.

We begin by working in the rest frame of the source. Then we derive a relativistically

improved approximate formula. At that point, we will be able to consider the effect of shifting

to a moving frame.
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We �rst assume that the source is static and pointlike, i.e.

J(x) = J0δ
(3)(x− x̄). (2.10)

From the Fourier transform of Gf , we easily get the Yukawa behavior

〈J〉f =
m2 e−mr

4πr
J0,

where r = |x− x̄|. This result can also be retrieved directly from (2.5) using the tricks

explained in the appendix. An extended static source J(x) gives

〈J〉f(x) =
m2

4π

∫

d3y
e−m|x−y|

|x− y| J(y). (2.11)

The sensitivity of the average to the source is exponentially damped by the distance from the

observer.

Next, a pointlike source oscillating with frequency ω,

J(x0, x) = J0e
−iωx0δ(3)(x− x̄), (2.12)

gives

〈J〉f(x) =
J0m

2e−iωx0

4πr







e−r
√
m2−ω2

forω < m,

cos
(

r
√

ω2 − m2

)

forω > m.
(2.13)

Note that the fakeon prescription is needed only for ω > m. For ω ≫ m the approximate

behavior

〈J〉f(x) ∼
J0m

2

8πr

[

e−iω(x0−r)
+ e−iω(x0+r)

]

shows that the violation of microcausality does propagate along the light cones.

To treat the most general case, let us introduce the Fourier transform

J(x0, x) =

∫

dω

2π
e−iωx0 J̃(ω, x) (2.14)

with respect to time. From (2.4) and (2.13), we �nd

〈J〉f(x) =
∫ m

−m

dω

2π
e−iωx0

∫

d3y
m2 e−

√
m2−ω2|x−y|

4π|x− y| J̃(ω, y)

+

∫

|ω|>m

dω

2π
e−iωx0

∫

d3y
m2 cos(

√
ω2 − m2|x− y|)

4π|x− y| J̃(ω, y). (2.15)

This result shows that all the frequencies ω < m are exponentially damped by the distance

between the observer and the source. Instead, no frequencies |ω| > m are damped.

If the source J(y0, y) is slowly varying in an amount of time comparable to 1/m, i.e.

J̃(ω, y) = 0 for ω > ω̄, for some ω̄ ≪ m, (2.16)
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the violation of causality can be estimated by comparing the exact solution

φ(x) = 〈J〉f(x) =
∫ ω̄

−ω̄

dω

2π
e−iωx0

∫

d3y
m2 e−

√
m2−ω2|x−y|

4π|x− y| J̃(ω, y) (2.17)

to the causal formula

〈J〉f(x) ∼
∫

d3y
m2J(x0 − |x− y|, y)

4π|x− y| exp
(

−
√

m2 − ω̄2|x− y|
)

≡ φ̃c(x),

(2.18)

which involves the source J only at an earlier, retarded time.

To study the accuracy of the causal approximation, let us focus on a pointlike source

J(x0, x) = j(x0)δ(3)(x− x̄), (2.19)

such that j(x0) is an L2 function and its Fourier transform j̃(ω) vanishes for ω > ω̄. Then,
writing the exact solution (2.17) as φ ≡ φ̃c +∆φ̃, we have

E ≡ ‖∆φ̃‖
‖φ̃c‖

6
ω̄
√
m+ m̄√
2m̄3/2

∼ ω̄

m
, (2.20)

where m̄ ≡
√
m2 − ω̄2 and ‖ · · · ‖ denotes the L2 norm. This bound gives us a way to estimate

the precision of the approximation at the global level. Later we discuss the accuracy of the

approximation as a function of the distance r between the source and the observer, to show

that the correction ∆φ̃, which encodes the violation of microcausality, is negligible for all

practical purposes.

2.1. Improved approximation

TheGreen function (2.5) is invariant under time reversal T. Instead, the Green function implied

by the causal approximation (2.18) is not. A better approximation is given by the T-symmetric

formula

〈J〉f(x) ∼
∫

d3y
m2
[

J(x0 − |x− y|, y)+ J(x0 + |x− y|, y)
]

8π|x− y| e−
√
m2−ω̄2|x−y| ≡ φ̃T(x). (2.21)

If we take the source (2.19), with the assumption (2.16), it is easy to check that

‖φ̃T − φ̃c‖
‖φ̃c‖

6
ω̄√
2m̄

∼ ω̄√
2m

. (2.22)

This means that, globally, the T-symmetric approximation is as good as the causal one. Neither

(2.17), nor (2.18), nor (2.21) are Lorentz invariant, due to the assumption (2.16). However,

(2.21) can be used to switch easily to a moving inertial frame (see below).

2.2. Properties

We list a few properties of the causal approximation (2.18), the T-symmetric approximation

(2.21) and the exact solution (2.17).
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(a) Formula (2.21) has the right behavior for m→ 0,

lim
m→0

φ̃T(x)

m2
=

1

8π

∫

d3y

|x− y|
[

J(x0 − |x− y|, y)+ J(x0 + |x− y|, y)
]

,

(2.23)

in agreement with (2.9), even if, strictly speaking, m = 0 is not compatible with the con-

dition of slow variation for time intervals of order 1/m. Formula (2.18) does not share this

property.

(b) When m is large, we correctly get

lim
m→∞

φ̃c(x) = lim
m→∞

φ̃T(x) = J(x)

in both cases.

(c) If J(y0, y) has compact support in y [J(y0, y) = 0 for |y| > ρ, where ρ is some �nite

radius] and the Fourier transform J̃(ω, y) vanishes for ω > ω̄, ω̄ 6 m, and is bounded

[|J̃(ω, y)| 6 K for every ω and y], then φ(x), φ̃c(x) and φ̃T (x) tend to zero exponen-

tially at spatial in�nity. Indeed, let |x| > r for an r > ρ. Then, |x| > r > ρ > |y| implies

|x− y| > |x| − |y| > r − ρ, so (2.17), (2.18) and (2.21) give

|φ|, |φ̃T|, |φ̃c| <
m2Kω̄ρ3 e−m̄(r−ρ)

3π(r − ρ)
. (2.24)

2.3. Data and validity of the approximations

Now we analyze the experimental data to justify the approximations. The theory of quantum

gravity that emerges from the fakeon idea predicts a spin-2 fakeon χµν of mass mχ and a

potential scalar fakeon φ of mass mφ (see the next section for details). The masses mχ and mφ

are free parameters. At present, we do not have strong bounds on their values. For example,

the gravitational potential of a point-like massM is

V(r) = −GM

r

(

1− 4

3
e−mχr +

1

3
e−mφr

)

.

Since Newton’s law has been veri�ed down to 10−2 cm [20], we infer that

mχ,mφ &
102

cm
∼ 10−3 eV. (2.25)

The fakeon masses could have any values larger than this one. If mχ,mφ are smaller than the

Planck mass, the quantum gravity theory of reference [1] is perturbative and may allow us to

test new physics at relatively low energies. In what follows, we takemχ,mφ ∼ 1012 GeV, which

means 1/mχ, 1/mφ ∼ 10−36 s, as reference values. We also compare the results we obtain with

those implied by other values of mχ,mφ.

The shortest time interval that has been measured directly comes from laser pulses and is

about 10−17 s [21].We take this value as the reference amount of time 1/ω̄whenwe require that

the source is slowly varying at the practical level. If mχ,mφ ∼ 1012 GeV, the overall accuracy

(2.20) of the approximation (2.18) is

E =
‖∆φ̃‖
‖φ̃c‖

∼ ω̄

m
∼ 10−19. (2.26)
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We need mχ,mφ ∼ 70 eV to have ‖∆φ̃‖ ∼ ‖φ̃c‖ and make the violation of causality

important.

Even in that case, however, we have to �ght against the damping exponential factors∼ e−mr

of formulas (2.17), (2.18), (2.21) and (2.24), which depress the outcome. Due to them, the

region where the magnitude of φ is not depressed is a ball of radius 1/mχ, 1/mφ ∼ 10−26 cm.

However, such distances are unreachable to us. Indeed, the shortest distance ever mea-

sured, provided by LIGO’s technology, is around 10−17 cm [22], where the damping factor

is ∼ e−109 .

If we want a damping factor of order unity at the shortest distance ever measured,

we need mχ,mφ ∼ 2 TeV. However, in that case E ∼ 10−11 is still too small: the causal

formula (2.18) continues to be good enough and the violation of microcausality remains

undetectable.

If the Higgs boson is a fakeon [23], the violation of microcausality extends to an amount of

time equal to 1/mH ∼ 10−26 s, which is still too short. In that case, E ∼ 5× 10−10 and if we

want a damping factor of order one we need to go to distances r ∼ 1/mH ∼ 10−16 cm.

Note that, to some extent, it makes sense to assume that the source is slowly varying in time

and not assume that it is weakly varying in space, since, as seen, the measurements of space

distances are much more precise than those of time intervals. Clearly, the assumption that

the source is slowly varying depends on the reference frame and so implies a ‘spontaneous’

breaking of Lorentz symmetry. Can the violation of microcausality be enhanced by switching

to a Lorentz frame that moves at a great speed with respect to the source? In principle yes, but

in practice no.

To see this, we use the approximation (2.21). Let s denote the frame where the assumption

(2.16) holds. If we go to a Lorentz frame s′ that moves at a speed β > 0 relatively to the source

J in s, the frequencies of J are enhanced by factors

√

1− β

1+ β
,

√

1+ β

1− β
. (2.27)

If we switch to an inertial frame with β = 1− ε, ε ≪ 1, the larger factor (2.27) is∼
√

2/ε.
If the maximal frequency of the source J is ω̄′, as seen from s′, the maximal frequency seen

from s is ω̄ ∼ ω̄′√2/ε. Then, if we assume mχ,mφ ∼ 1012 GeV and take 1/ω̄′ around the

shortest amount of time that has been measured directly so far, which means ω̄′ ∼ 1017 Hz, we

need ε ∼ 10−38 to make the right-hand sides of (2.20) and (2.22) of order one, which is out of

reach. Similar conclusions hold with the other values of mχ,mφ considered above and for the

transverse Doppler effect.

The second question is: can we reduce the effects of the damping factor e−mr? The answer
is, again, no, because measurements of space distances mix with measurements of time inter-

vals, which are much less precise. Consider the contraction of lengths in special relativity. The

endpoints of a bar of length l at rest in smust be recorded simultaneously in s′. However, if the
highest precision of a measurement of time in s′ is∆t′ ∼ 10−17 s, then the length

l′ =
l

γ
± |β|∆t′

of the bar in s′ has an error that cannot be reduced below ∼ 10−7 cm for |β| → 1. On thop of

this, the factor γ is practically one for all known macroscopic objects of our galaxy (and far

beyond), which have maximum velocities of order 1000 km s−1 with respect to the CMB rest

8
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frame. Large values of γ are hard to reach even for elementary particles, because we would

need to accelerate them to about 1012 GeV.

In conclusion, there is no obvious way of reducing the shortest time intervals or space

distances we can measure by switching to different Lorentz frames. When the source is

slowly varying in time the fakeon average is short range. If, in addition, J has compact

support in space, 〈J〉f is exponentially decreasing at spatial distances. Under these cir-

cumstances, the violation of microcausality is a sort of fuzziness of the source and its

evolution.

A last resort to amplify the violations is to get help from radiation, i.e. signals that do

propagate along the light cones. The electromagnetic radiation is not very helpful here, since

only gravity is sensitive to the averaged source 〈J〉f , while the other interactions are sensitive
to the unaveraged source J. In the next section we show that the gravitational radiation pre-

dicted by the classicization of quantumgravity coincideswith the one predicted by the Einstein

theory.

3. Gravitational waves

Now we study the effects on the gravitational waves. We assume that the sources are smooth,

have compact support in space and are slowly varying for time intervals of order 1/m, where
m is the fakeon mass.

We recall that the quantum gravity theory of reference [1] describes a triplet made of

the graviton, a spin-2 fakeon χµν of mass mχ and a scalar �eld φ of mass mφ, which can

be fake or physical. This leads to two physically inequivalent theories, the GFF (gravi-

ton–fakeon–fakeon) theory and the GSF (graviton–scalar–fakeon) theory. In this section we

show that the gravitational waves predicted by both versions coincide with the ones of Einstein

gravity for all practical purposes. For de�niteness, we �rst work in the GFF theory and then

extend the results to the GSF theory.

Neglecting the cosmological constant, the unprojected �eld equations that follow from the

interim classical action are [19]

(

1+
∇2

m2
χ

)

Gµν +
rφχ

3

(

∇µ∇ν − gµν∇2
)

G = κ2Tµν , (3.1)

where Gµν is the Einstein tensor, rφχ = (m2
φ − m2

χ)/(m
2
φm

2
χ), κ =

√
8πG and

κ2Tµν ≡ κ2Tmµν +
1

2m2
χ

gµνR
ρσRρσ −

2

m2
χ

RµρνσR
ρσ

+
2m2

φ + m2
χ

3m2
χm

2
φ

R

(

Rµν −
1

4
gµνR

)

, (3.2)

Tmµν denoting the matter energy-momentum tensor.

Once the fakeons φ and χµν are projected away, the �eld equations for the graviton �eld

hµν , de�ned as the �uctuation around �at space by means of the relation gµν = ηµν + 2κhµν ,
have the form:

Gµν = κ2TGFF
µν , (3.3)

where TGFF
µν contains the corrections to the Einstein equations. Since the right-hand side

depends on the metric, the equations have to be treated perturbatively in κ. We expand the

Einstein tensor as

Gµν = κ
[

−�h̃µν + ∂µ∂
ρh̃ρν + ∂ν∂

ρh̃ρµ − ηµν∂
ρ∂σ h̃ρσ

]

+ κ2Jµν ,

9
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where

h̃µν = hµν −
1

2
ηµνh, h = hµνη

µν ,

� = ∂2 and Jµν is at least quadratic in hαβ . Using the de�nition of TGFF
µν given in reference

[19], equation (3.3) can be recast in the perturbative form

−�h̃µν + ∂µ∂
ρh̃ρν + ∂ν∂

ρh̃ρµ − ηµν∂
ρ∂σ h̃ρσ

= κ
〈

Tµν − Uµν +
rφχ

3

(

ηµν∂
2 − ∂µ∂ν

)

〈T − U〉φ
〉

χ
,

(3.4)

where κ2Uµν is the left-hand side of (3.1) minus its linear part, T = ηµνTµν , U = ηµνUµν and

the fakeon average 〈· · ·〉f is de�ned as in formula (2.3), themasses beingm2 = m2
χ orm

2 = m2
φ,

depending on the case.

It is convenient to impose the gauge-�xing condition ∂µh̃µν = ∂νV , where V is a function

to be determined, because then the equation (3.4) take the form

�
(

h̃µν − ηµνV
)

= −κ〈Tµν − Uµν〉χ +
(

∂µ∂ν − ηµν�
)

[

2V +
κrφχ
3

〈〈T − U〉φ〉χ
]

(3.5)

and if we choose

V = −κrφχ
6

〈〈T − U〉φ〉χ,

they reduce to

�
(

h̃µν +
κηµνrφχ

6
〈〈T − U〉φ〉χ

)

= −κ〈Tµν − Uµν〉χ. (3.6)

Applying the de�nition (2.3) in momentum space, it is easy to prove the identity

rφχ〈〈T − U〉φ〉χ =
1

m2
χ

〈T − U〉χ −
1

m2
φ

〈T − U〉φ.

Inserting this result into (3.6), we obtain the equation

�

(

h̃µν +
κηµν
6m2

χ

〈T − U〉χ −
κηµν
6m2

φ

〈T − U〉φ
)

= −κ〈Tµν − Uµν〉χ. (3.7)

We concentrate on the �rst order in κ, where Uµν = Jµν = 0. Since (3.7) implies

h̃µν = O(κ), we have R2 ∼ RµνR
µν ∼ κ4. Then, formula (3.2) implies Tµν = Tmµν +O(κ2).

At the end, the approximation leads to the equation

�

(

h̃µν +
κηµν
6m2

χ

〈Tm〉χ −
κηµν
6m2

φ

〈Tm〉φ
)

= −κ〈Tmµν〉χ. (3.8)

It is convenient to decompose

h̃µν = h̃Eµν + h̃fµν

as the sum of the solution

h̃Eµν(x
0, x) = − κ

4π

∫

d3y
Tmµν(x

0 − |x− y|, y)
|x− y|

10
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to the Einstein equations

�h̃µν = −κTmµν (3.9)

(in the same approximation) and the rest h̃fµν , which is due to the fakeons. Combining (3.8) and

(3.9), it is easy to �nd that the difference h̃fµν solves the equation

�

(

h̃fµν +
κηµν
6m2

χ

〈Tm〉χ −
κηµν
6m2

φ

〈Tm〉φ
)

= κ
(

Tmµν − 〈Tmµν〉χ
)

= κ
�

m2
χ

〈Tmµν〉χ. (3.10)

In the end, the solution reads

h̃fµν =
κ

m2
χ

〈Tmµν〉χ −
κηµν
6m2

χ

〈Tm〉χ +
κηµν
6m2

φ

〈Tm〉φ. (3.11)

We see that h̃fµν is a sum of fakeon averages, which obey the properties derived in the previous

section. Therefore, if the source is slowly varying the corrections are short-range and do not

affect the radiation, which coincides with the one predicted by the Einstein equations. If the

source is not slowly varying, we also have contributions such as those appearing in the second

line of formula (2.13) with ω > m = mφ,mχ.

In the GSF theory, where φ is a physical particle, only χµν is a fakeon, so the fakeon aver-

age 〈· · ·〉φ that appears in the solution (3.11) is replaced by the convolution 〈· · ·〉φret with the

retarded Yukawa potential. We obtain

h̃GSFµν = h̃Eµν +
κ

m2
χ

〈Tmµν〉χ −
κηµν
6m2

χ

〈Tm〉χ +
κηµν
6m2

φ

〈Tm〉φret.

In the end, the gravitational waves do not amplify or propagate the violation of micro-

causality, due to the large distances involved and the damping exponential factors that appear

in formulas (2.17), (2.18), (2.21) and (2.24). The bounds on the massesmχ and mφ that we can

obtain from this analysis are much less meaningful than the bound (2.25) obtained from the

Newton force.

The conclusion holds under the assumption (2.16) that the sources are slowly varying in

time, which means that their frequencies are much smaller than the fakeon masses mχ and

mφ. As shown by the second line of formula (2.15), frequencies of order mχ, mφ or higher are

not damped. Core-collapse supernovae are expected to generate waves with frequencies up to

about 10 kHz [24]. With fakeonmasses of the order of 1012 GeV, those frequencies are still too

small, but they become important if mχ, mφ are around one MeV, which we cannot exclude,

yet.

We have mentioned that the effects of the fakeon average are a microuncertainty on the

source of the radiation. One might wonder why such an uncertainty does not amplify, in the

end. The answer is that all the gravitational signals emitted by the averaged source propagate

with the same speed c, which implies that, at arbitrary distances, the microuncertainty is just

translated in spacetime along the light cones, but not ampli�ed.

4. Hubble constant and recovery of microcausality

In this section we study other situations where the potential violation of microcausality is

depressed rather than enhanced. In passing, the investigation gives us the opportunity to

illustrate some important aspects of the classical limit of the fakeon prescription.

11
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We consider a scalar �eld ϕ (different from the scalar φ belonging to the graviton triplet) in

the Friedmann–Lemaitre–Robertson–Walker (FLRW) background. Before plunging into the

details, it is important to make a few comments on the properties of our theory on nontrivial

backgrounds. The spin-2 fakeon χµν is described by an involved action [10], whose quadratic

part is the covariantized Pauli–Fierz action [25], plus nonminimal terms. It is known that a

Pauli–Fierz mass term can create pathologies [26] on nontrivial backgrounds. For example,

it may turn on ghost-like degrees of freedom. Nevertheless, these problems do not arise in

the theory of quantum gravity we are studying. Recall that the Pauli–Fierz action of χµν has

the wrong overall sign (which is why χµν is treated as a fakeon). This means that any degree

of freedom turned on by its mass term would have the right sign and be healthy. Actually,

that degree of freedom is already present in the theory (and under control): it is the massive

scalar φ.
To see this, one must recall how the �elds φ and χµν are introduced [10]. One starts from

the higher-derivative action

SQG = −M2
Pl

16π

∫

d4x
√−g

[

R+
1

m2
χ

(

RµνR
µν − 1

3
R2

)

− 1

6m2
φ

R2

]

(4.1)

(neglecting the cosmological term, for simplicity) and introduces auxiliary �elds to convert it

into a two-derivative action. The scalar φ is originated by the auxiliary �eld for R2, while the

tensor χµν is originated by the auxiliary �eld for RµνR
µν − R2/3. This means that the trace of

χµν is not really an independent �eld (it can also be seen as originated by an auxiliary �eld for

R2), so it talks with φ. Thus, a degree of freedom turned on by the χµν Pauli–Fierz mass term

is not independent, but can be reabsorbed into φ.
Other situations that lead to healthy massive Pauli–Fierz �elds are known in the literature,

as in the de Rham–Gabadadze–Tolley model [27] or the compacti�cation of �ve-dimensional

theories [28].

We also stress that the concept of fakeon is more general than the theory of quantum gravity

it comes from. One can apply it to models of quantum gravity that do not includemassive spin-

2 �elds (renouncing renormalizability, as in Einstein gravity), but also theories of matter �elds

(and fakeons) in curved space. As already recalled, even the Higgs boson might be a fakeon

[23]. In this sense, the results of this section contribute to the analysis of the general properties

of fakeons in connection with the issue of microcausality.

Coming back to the problem of this section, the equation of a generic scalar ϕ of mass m

interacting with an external source J in a curved background is

1√−g∂µ
(√−ggµν∂νϕ

)

+ m2ϕ = J.

We study it under the assumption of homogeneity, ϕ = ϕ(t), in the FLRW background. The

equation then reads

Σϕ =
J

m2
, (4.2)

where Σ denotes the operator

Σ = 1+
3H

m2

d

dt
+

1

m2

d2

dt2
,

12
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H = ȧ(t)/a(t) is the Hubble parameter and a(t) is the cosmic scale factor. The Green function

GH(t) is the solution of

ΣGH(t) = δ(t).

If ϕ is a fakeon, the solution is

ϕ(t) =

∫ +∞

−∞
dt′Gf

H(t − t′)J(t′) ≡ 1

m2
〈J〉Σ(t), (4.3)

where the fakeon average is de�ned as

〈A〉X ≡ 1

2

[

1

X

∣

∣

∣

∣

rit

+
1

X

∣

∣

∣

∣

adv

]

A. (4.4)

Let us recall that the fakeon prescription is originated perturbatively, in momentum space

(see e.g. [19]). For this reason, it is convenient to study the Fourier transforms G̃H(ω), G̃
f
H(ω)

ofGH(t) andG
f
H(t). The retarded and advanced potentials are de�ned by shifting the frequency

ω to ω ± iǫ and taking the anti-Fourier transforms.

In the limit H→ 0 we �nd

Σ→ 1+
1

m2

d2

dt2
,

which is the one-dimensional version of the operator studied in section 2 and gives the fakeon

Green function [19]

Gf
0(t) =

m

2
sin(m|t|). (4.5)

Here the violation of microcausality is generically negligible due to the rapidly oscillating

behavior. At the cosmological level, on the other hand, short time intervals can be important

in the �rst moments of the Universe, so it is interesting to study the problem at nonzero H.

A situation that we can investigate exactly is the case of the vacuum energy, where H is

constant. Since we can at most assume H ∼ constant for a �nite amount of time, we study the

equation (4.2) in some interval

t1 6 t 6 t2. (4.6)

We compare the cases where ϕ is physical and ϕ is fake. The most general solution for the

Fourier transform G̃H(ω) is

G̃H(ω) = − m2

(ω − ω+)(ω − ω−)
+ A(2π)δ(ω − ω+)+ B(2π)δ(ω − ω−), (4.7)

where A and B are arbitrary constants,

ω± = −3

2
Hi± σ, σ =

√

m2 − 9

4
H2,

and the ‘complex delta function δ’ has to be understood as a series expansion in powers ofH/m.
Note that atH 6= 0 the nonvanishing imaginary parts of ω± make the prescriptionsω → ω ± iǫ
redundant.

13
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If ϕ is a physical �eld, A and B are determined by the initial conditions. Instead, if ϕ is

a fakeon, we must set A and B to zero, since the ‘on-shell’ contributions δ(ω − ω±) must be

absent, by de�nition. Thus, the fakeon Green function turns out to be

Gf
H(t) = −

∫

dω

2π

m2 e−iωt

(ω − ω+)(ω − ω−)
= m2sgn(H)θ(Ht)e−

3
2Ht

sin (tσ)

σ
, (4.8)

which we have written in a form that is explicit for both real and imaginary σ. Due to the theta
function of (4.8), when H is positive only the past contributes to the fakeon solution

ϕ(t) =

∫ t

−∞
dt′Gf

H(t − t′)J(t′), (4.9)

which means that the violation of microcausality disappears altogether. It does not matter

whether m is small or large, since the result is exact. If, on the other hand, H is negative the

opposite occurs.

The projection drops the delta-function contributions of formula (4.7). Note that it is not

straightforward to make the projection directly in coordinate space, because the differential

equation is only de�ned in the interval (4.6). For example, we cannot discard alleged ‘runaway

solutions’. Moreover, the expressions of ω± show that for H > 0 the runaway behavior con-

cerns t→−∞, which makes no sense if the Universe has a beginning. Not to mention that the

unknown differential equation for t < t1 could make the runaway behavior disappear.

Yet, formula (4.9) hides a subtlety: it requires knowledge of the source J for t < t1. We

might have that knowledge or not [we just know that the differential equation is (4.2) with

H = constant for t1 6 t 6 t2]. What if we do not know J in the far past (e.g. if the Universe

has a beginning)?

To clarify this point, it is useful to consider the case where ϕ is a physical �eld, where the

most general solution can be written as

ϕ(t) =

∫ t2

t1

dt′Gf
H(t − t′)J(t′)+ e−

3
2Ht

[

A′ cos(σt)+
B′

σ
sin(σt)

]

,

where A′ and B′ are new constants. Here the problem of knowing J at times prior to t1 does not

show up, since this knowledge is hidden into A′ and B′. However, when ϕ is a fakeon we do

not have such constants and the problem remains.

What saves the day is that the damping factor and the oscillating behavior ofGf
H restrict the

relevant contributions of the integral (4.9) to a little bit of future and a little bit of past around

t. Let∆t = min(2/(3|H|), 1/σ) form > 3H/2 and∆t = max(1/|ω+|, 1/|ω−|) form < 3H/2.
If J is regular and tends to zero at in�nity, the surviving uncertainty

δJ ≡
∫ t1

−∞
dt′Gf

H(t− t′)J(t′)

is small for all times t & t1 +∆t. Thus, we can replace (4.9) with the approximate solution

ϕ(t) =

∫ t

t1

dt′G f
H(t − t′)J(t′) for t1 +∆t . t 6 t2.

This result shows that we get predictivity in an interval that is slightly smaller than (4.9).
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In the end, we learn that when fakeons are present the differential equations must be under-

stood in a new way. In particular, we may have to deal with uncertainties and fuzziness every

time we use them.

WhenH is approximately constant, we obtain an approximate solution by replacingH with

H(t). In reference [18] it was shown that the equations of the FLRW metric for the GFF theory

coincide with the Friedmann equations upon making the replacements ρ− 3p→ 〈ρ− 3p〉Σ
and ρ+ p→ 〈ρ+ p〉Υ. The mass appearing in Σ is mφ and Υ = Σ+ 6Ḣ/m2

φ (at zero space

curvature). Then the result (4.9) implies that whenH is constant and positive, as in the primor-

dial, in�ationary phase of the Universe, microcausality is restored in all the equations of the

GFF theory. In some sense, the positivity of the Hubble constant determines the direction of

time in the early Universe.

After in�ation, H remains positive, but not constant. We do not have the general solution

Gf
H(t) for a generic function H(t). Nevertheless, if H . mφ we can neglect the time depen-

dence of H for intervals of time δt much smaller than the Hubble time tH = 1/H. Indeed, the
usual Friedmann equations imply |Ḣ| . H2 for p= wρ. If H . mφ, we have Σ ∼ Υ and the

inequality |Ḣ| . H2 is also implied by the GFF equations that follow from the classicization of

quantum gravity. Combining |Ḣ| . H2 with |δt| ≪ tH , we obtain |δt| ≪ H/|Ḣ|, which means

H(t) ∼ H = constant. Then we can repeat the arguments outlined above and reach similar con-

clusions. This means that for amounts of time much smaller than the Hubble time (which is

comparable to the life of the Universe), there is no violation of microcausality in the classical

limit.

Finally, note that the limits

Gf
0±(t) ≡ lim

H→0±
Gf
H(t) = mθ(±t) sin

(

m|t|
)

do not coincide with the H = 0 Green function Gf
0(t) of formula (4.5). Actually, Gf

0(t) =

(Gf
0+
(t)+ Gf

0−(t))/2. Basically, the resummation of the expansion in powers of H acts as a

bifurcation.

5. Conclusions

The results of the investigations carried out in this paper are good news for the consistency

of the theory of quantum gravity of reference [1] with data. At the same time, they mean that

more efforts have to be spent to identify ways to test the �rst departures from the predictions

of Einstein gravity.

The violation of microcausality is expressed by a fuzziness relation

∆x2 ∼ 1

m2
, (5.1)

where m is the fakeon mass and ∆x is the invariant interval between two events. The relation

(5.1) means that events separated by an interval ∆x of order 1/m cannot be chronologically

ordered or distinguished from each other. Because of the damping factor e−mr of formulas

(2.17), (2.18), (2.21) and (2.24), under normal circumstances (5.1) basically means |∆t| ∼
1/m, i.e. time does not make sense below the Compton wavelength of the fakeon. Although the

relation |∆t| ∼ 1/m is not Lorentz invariant, the apparent breakdownof Lorentz symmetry is of

a spontaneous type, due to the limitations of our experimental accuracies. Themeasurements of

time intervals are much less precise than those of space distances. Moreover,we cannot change

inertial frame at will. Actually, the subset of inertial frames spanned by themacroscopic objects

populating our galaxy and far beyond is rather tiny. This makes our perception of the world
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quite limited, if not biased. The idea ofmicrocausalitywe inherit from it might just be a blunder

suggested by our partial insight and experimental inaccuracy.

Not to mention that in several situations, the violation of microcausality disappears alto-

gether, for a variety of reasons. For example, the positivity of the Hubble constant makes

the fakeon average causal and is ultimately responsible for the arrow of time in the early

Universe.
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Appendix

It is interesting to prove the limit (2.8) directly in Minkowski spacetime, to point out some

nontrivial aspects of the fakeon Green function and describe how the light cone contributions

(2.9) disappear. Consider

∫

d4xGf(x)J(x),

where J(x) denotes a test function. If we rescale x→ x/m, we obtain J(x/m) (which tends

to J(0) for m→∞ and can be taken outside the integral) times an m-independent integral.

The latter must be computed with the help of a cutoff and a trick to properly account for the

light-cone contributions (2.9).

We switch to polar coordinates (t, r, θ,ϕ), insert the cutoff L on the r integral (for r large)

and integrate the angles away. Thenwe separate the integral into the sum of three contributions,

to isolate the light cones from the rest: (i) the integral for |x2| ≤ δ2; (ii) the integral for x2 ≥ δ2

and (iii) the integral for x2 ≤ −δ2, with δ arbitrarily small. In (i) we use the approximation

(2.9) and obtain

2J(0)

∫ L

0

r2dr

∫

√
r2+δ2

−θ(r2−δ2)
√
r2−δ2

dtδ(t2 − r2) = J(0)
L2

2
. (6.1)

In (ii) we get

J(0)

π

∫ L

0

r2dr

∫ +∞

0

ds
K1 (is)+ K1 (−is)√

s2 + r2
= J(0)

[

1− L2

2
− e−L(L+ 1)

]

.

(6.2)

We have simpli�ed this expression by switching to the variables s, r, where s =
√
t2 − r2 and

noting that if we take ǫ→ 0, the integrand turns out to be regular for s = 0. In particular, we

can let δ → 0 here, i.e. integrate s from 0 to in�nity. Finally, the integral (iii) vanishes, since

Gf(x) = 0 for x2 < 0. Summing (6.1) and (6.2) and taking L→∞, we get J(0), as we had to

prove.

The nontrivial point is that the contributions (6.1) from the light cones (2.9) are divergent,

but so are the bulk contributions (6.2) and the total is �nite.
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