
March 2020

EPL, 129 (2020) 50005 www.epljournal.org
doi: 10.1209/0295-5075/129/50005

Membranes for spontaneous separation of pedestrian
counterflows

S. Koyama, D. Inoue, A. Okada and H. Yoshida

Toyota Central R&D Labs., Inc. - Bunkyo-ku, Tokyo 112-0004, Japan

received 11 December 2019; accepted in final form 30 March 2020
published online 7 April 2020

PACS 05.65.+b – Self-organized systems
PACS 87.16.Uv – Active transport processes
PACS 87.16.D- – Membranes, bilayers, and vesicles

Abstract – Designing efficient traffic lanes for pedestrians is a critical aspect of urban planning
as walking remains the most common form of mobility among the increasingly diverse methods of
transportation. Herein, we investigate pedestrian counterflows in a straight corridor, in which two
groups of people are walking in opposite directions. We demonstrate, using a molecular dynamics
approach applying the social force model, that a simple array of obstacles improves flow rates
by producing flow separations even in crowded situations. We also report on a developed model
describing the separation behavior that regards an array of obstacles as a membrane and induces
spontaneous separation of pedestrians groups. When appropriately designed, those obstacles are
fully capable of controlling the filtering direction so that pedestrians tend to keep moving to their
left (or right) spontaneously. These results have the potential to provide useful guidelines for
industrial designs aimed at improving ubiquitous human mobility.

Copyright c© EPLA, 2020

Introduction. – Modern transportation systems are
becoming increasingly complex and often require differ-
ent time and spatial scales, as represented by the rapid
growth of the diverse transportation methods and mo-
bility technologies [1,2]. Since there are still numerous
phenomena that are not fully understood within each
of such transportation systems, both experimental and
theoretical studies aimed at understanding such phenom-
ena have been performed continuously [3,4]. Among the
different transportation methods, walking remains the
most fundamental, so pedestrian flows have been widely
studied [5–8]. In typical experimental studies, pedes-
trian trajectories are observed and analyzed by recording
their motions with video cameras or using laser measure-
ments [9–16]. On the other hand, theoretical approaches
have also been used to gain a systematic understanding of
observed pedestrian behaviors and/or for predicting the
pedestrian flows under various circumstances [17–21]. For
example, the so-called social force model, first proposed
by Helbing and Molnár [22], is one of the most widely
used theoretical approaches to model pedestrian move-
ments, which enables us to simulate flows using molecular
dynamics [23–27].

In the present study, we also employ the social force
model to investigate pedestrian behaviors in a straight

corridor in which two groups of people are walking in op-
posite directions. Similar situations with two groups of
particles moving in opposite directions have been exten-
sively studied in the context of lane and pattern forma-
tions not only of pedestrians [28,29] but also of various
physical particles, such as charged colloids [30–32], mi-
croswimmers [33], and plasmas [34,35]. These studies are
focused mainly on a bulk system without obstacles. Here
we demonstrate that separation-membrane–like obstacles
placed along the centerline of a corridor improve flow ef-
ficiency even in crowded situations. This is because the
presence of those obstacles triggers a spontaneous separa-
tion of the pedestrians groups, thereby resulting in an un-
conscious “keep-left” pedestrian mentality, as illustrated
in fig. 1. Although relevant studies have been reported,
such as effects of placing columns asymmetrically near an
exit [23,36], and a partition line effect controlling the crit-
ical density in the jamming transition [37], the enhance-
ment of a pedestrian counterflow by means of particular
choices of obstacles is, to our knowledge, new. We also
report on the development of a model describing the sep-
aration behavior, which is inspired by a reminiscent mem-
brane separating multi-component fluids. These findings
related to pedestrian group filtering could potentially pro-
vide useful guidelines for improving daily pedestrian flows.
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Fig. 1: Pedestrian counterflow separation: (a) flow without
filtering membrane and (b) flow separated into two streams
using a permeable membrane, which is realized by an array of
obstacles. The parameter Φ shown in each figure is an order
parameter indicating the degree of lane formation (or separa-
tion). See eq. (3) for the precise definition.

Problem. – Here we consider a throng of N pedestri-
ans walking in a straight corridor of width W and length
L, as shown in fig. 2(a). In this context, i ∈ N+x out
of N pedestrians are walking in the +x-direction, and
the remaining i ∈ N−x pedestrians are traveling in the
−x-direction. Here, we assume n(N+x) = n(N−x) = N/2.
We also assume that the periodic boundary condition in
the x-direction, which is set so that the global average
density of ρav = N/(LW ), is constant. Such situations,
in which a self-organizing lane formation or a clogging
phenomenon occurs at high-density points (which is of-
ten called jamming transition), have been extensively
studied [16,29,38–40].

According to the experiments examining the impacts
of congestion in a corridor, pedestrian flow veloci-
ties tend to decrease as density increases (see, e.g.,
ref. [16] and fig. S1 in the Supplemental Informa-
tion Supplementarymaterial.pdf (SI))1. In the present
study, we consider situations in which an obstacle array is
placed along the median line of a corridor to suppress ve-
locity reductions and to control pedestrian flow patterns.
To be more specific, we consider elliptic obstacles with
major and minor axes of lengths 2a and 2b, respectively,
which are placed on the median line of the corridor (y = 0)
at intervals of Lp. The obstacles are commonly angled,
such that the angle between the x-axis and the major
axis is ϕ.

Molecular dynamics simulation. – Before showing
simulation results, we will first summarize the model equa-
tions used in the molecular dynamics. Each pedestrian is
modeled by a spherical particle, the dynamics of which is
governed by the following equation of motion:

mi
dvi

dt
= −mi

vi − vdei

τ
+

∑
j �=i

fij +
∑

k∈wall

fw
ik + ξi, (1)

where mi, ri, and vi are the mass, radius, and veloc-
ity of the i-th particle, respectively. The first term on

1See the SI for the details of the simulation and the model, with
supplementary data.

Obstacle

Fig. 2: The present system and fundamental diagram.
(a) Schematic of the geometry. (b) Average velocity v vs. av-
erage density ρav obtained with the simulations for different
situations. The cases with obstacles of ϕ = 0 and ±π/4 are
shown along with the no-obstacle case. The symbols with an
error bar indicate the mean value with the standard deviations
of no fewer than five samples with different initial conditions.
For each run, the value of v is the average over 1.5 × 107 steps
with time step dt = 0.001 s, i.e., 1.5 × 104 s.

the right-hand side represents the force driving the pedes-
trian in the desired direction ei with velocity vd and relax-
ation time τ . The second term is the sum of the pairwise
interaction force fij between pedestrian particles i and j.
In the third term, the walls and obstacles are expressed in
terms of groups of fixed particles, indexed by k ∈ wall,
with fw

ik being the interaction force between particle i
and those fixed particles (see fig. S2 in the SI). Finally,
ξi indicates the Gaussian white noise satisfying 〈ξi〉 = 0,
〈ξi(t)ξi(t′)〉 = ΞIδ(t − t′), where δ is the Kronecker delta,
I is the identity matrix, and Ξ is the noise intensity
parameter.

The explicit form of fij is given by

fij = [Ae−r′
ij/B − κr′

iju(−r′
ij)]nij

−gr′
iju(−r′

ij)Δvt
ijtij , (2)

where A, B, κ, and g are the model parameters, and
r′
ij = rij − (ri + rj), with rij being the distance between
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particle i and j, and u(z) is the Heaviside function, the
value of which is unity for z > 0 and zero otherwise. The
normal unit vector nij is pointing from the position of
particle j to that of i, and the unit vector tij is in the
tangential direction perpendicular to nij . Δvt

ij is the pro-
jection of the relative velocity between i and j on tij . The
interaction force fw

ik has the same form as eq. (2) with the
parameters A and B simply replaced by Aw and Bw.

All the simulations are implemented using the open
source code LAMMPS [41]. The source codes in the orig-
inal package are modified to incorporate the pairwise in-
teractions corresponding to eq. (2) (see sect. S1 of the SI
for details). The specific values of parameters used in our
simulations are summarized as shown below. The mass
of each pedestrian is mi = 80 kg and the diameter of a
pedestrian dp = 2ri is 0.3 m. We choose dw = 1/2

√
2m as

the diameter of fixed particles. The model parameters for
the pairwise interaction force given in eq. (2) are fixed at
A = Aw = 2000 N, B = Bw = 0.08 m, κ = 1.2 × 105 N/m,
g = 2.4 × 105 Pa · s, and τ = 0.5 s, following ref. [23]. The
repulsive force is taken into account only for rij < 3.0 m,
and is otherwise cut off. The value of pedestrians’ de-
sired velocity or terminal velocity is set as vd = 1.55 m/s,
which is based on the experimental result in ref. [16], and
the noise intensity is chosen as Ξ = 6.63 × 105 N2 to
reproduce the experimental density-velocity relationship
discussed below (see fig. S3 in the SI). The initial config-
uration is constructed with randomly distributed pedes-
trians, and each simulation runs over 2 × 107 steps with
time step dt = 0.001 s. Note that the simulations set with
these parameters reproduce the experimental results well,
as shown in fig. S1 in the SI. In the following simulation
results, the geometrical parameters are fixed at L = 20 m,
W = 8 m, a = 0.7 m, b = 0.4 m, and Lp = 10 m unless
otherwise stated.

We show in fig. 2(b) the fundamental diagram, namely
the density-velocity relation for our system. More pre-
cisely, we plot the velocity averaged over the pedestrians
walking in the +x-direction vs. the average density ρav
(= N/LW ). Here, and in what follows, the time average
is taken over 1.5 × 107 steps for each run, and no fewer
than five runs with different initial configurations are used
to obtain each averaged quantity. In general, pedestrian
counterflows under ordinary situations in the absence of
obstacles exhibit congestion as density increases, resulting
in monotonically decreasing velocity (see, e.g., ref. [16]).
This feature is properly captured by our simulation for the
no-obstacle case results, which are shown as a reference in
fig. 2(b). In the same figure, the case in the presence
of obstacles with ϕ = 0, i.e., the symmetric obstacles,
which have no impact on this fundamental diagram, is
also shown. On the other hand, the corridor with em-
placed asymmetric obstacles (ϕ = −π/4 and π/4) main-
tains a much higher velocity than that in the previous two
cases. The simulation snapshots (see fig. S4 in the SI) im-
ply that this significant velocity enhancement (thus, flux)
is a result of lane formations that reduce friction between

particles passing in opposite directions. We also note here
that the formed lanes are stable. In other words, once
a lane is formed, it tends to occupy the same side of the
corridor for a long time. In our simulations, the lanes with
emplaced asymmetric obstacles do not change sides during
the simulation runs (see fig. S5 in the SI). At this point,
we see that the flow structure, i.e., whether or not lanes
are formed, plays an essential role in improving traffic flow
efficiency.

Next, we investigate the structure of the pedestrian
counterflows in the presence of the obstacles in greater
detail. In order to quantify the flow structure discussed
above, we introduce the order parameter Φ, which is de-
fined as

Φ =
1
N

N∑
i=1

vxi · yi

|vxi · yi| , (3)

where vxi and yi are the x component of the velocity
and the y component of the position of particle i, respec-
tively [25]. Since y = 0 is the median line of the corridor,
the value of vxi ·yi is positive when particle i moves in the
+x-direction in the region y > 0. Therefore, Φ > 0 when
most pedestrians keep to their left, and similarly Φ < 0
if they keep to their right. The value of Φ vanishes when
the pedestrians walking in the opposite directions are uni-
formly distributed or when the keep-left and keep-right
patterns appear with equal probability. This order param-
eter is normalized such that |Φ| = 1 when the pedestrian
flow is perfectly separated into two streams (see fig. 1).

In fig. 3(a), we show the order parameter Φ as a function
of the average density ρav for the situations considered in
fig. 2(b), supplemented by the cases of ϕ = π/6 and π/12.
In the absence of obstacles, the system is purely symmetric
about y = 0. Hence, we see Φ ∼ 0 in the entire range of
ρav. Again, the symmetric obstacles with ϕ = 0 do not
influence the flow structure. On the other hand, when the
obstacles are angled by ϕ = ±π/4, |Φ| ∼ 1 for the wide
range up to ρav ∼ 1 m−2, and |Φ| is larger than 0.75 even
for the high densities. In the case of shallower |ϕ| < π/4
angles, the absolute value of Φ is smaller, but remains
significant. In other words, the pedestrian flow exhibits
clear self-organization by separating into two groups that
keep to their left or to their right as they travel in opposite
directions.

In view of the fact that the separation does not occur
in the absence of obstacles, the lane formation obtained
here is in contrast to that observed in a bulk situation,
i.e., in a system without obstacles, for certain parame-
ter ranges (see, e.g., [28,42–44]). In the present case, the
asymmetry of obstacles is the main contribution to the
lane formation and stabilization. This is confirmed by
the symmetric obstacle results, which still do not lead to
the stable lane formation. The local interaction with a
tilted obstacle transfers a part of momentum in the x-
direction into a momentum in the y-direction. Depending
on the direction (along x) from which a particle collides,
the gained momentum in the y-direction in fact differs.
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Fig. 3: Order parameter Φ (a) as a function of average density
ρav for various obstacles, and (b) as a function of angle ϕ of
obstacles for various values of ρav. The symbols indicate the
simulation results (see the caption of fig. 2). The predictions
of the model given by eq. (4) are shown with lines.

This local imbalance diffuses to the entire region of the
corridor, which results in the complete separation with
Φ ∼ 1 observed in fig. 3(a).

In order to examine the effect of the geometrical param-
eter in greater detail, we show the relationship between Φ
and ϕ at several values of ρav in fig. 3(b). The order pa-
rameter sign is determined by the angle ϕ, such that Φ > 0
for ϕ > 0 and Φ < 0 for ϕ < 0, which confirms that tuning
the geometrical parameter enables us not only to induce
self-organized lane formations but also to control the flow
patterns precisely, i.e., keep them left or keep them right.
Figure 3(b) also shows that the control sensitivity to ϕ de-
pends on the density. More specifically, |Φ| is rather sen-
sitive for the high density value of ρav = 1.6 m−2, whereas
it is robust for the lower density value of ρav = 0.4 m−2.

Membrane model for separation. – We next
present a model reproducing the separation behavior of
the pedestrian counterflows discussed above. We be-
gin with noting that the role played by the obstacles is

reminiscent of the effects of filtering membranes used to
separate different fluid components. Therefore, inspired
by the modeling of such filtering membranes [45,46], we
now construct a differential equation describing the dy-
namics of pedestrian concentrations. For simplicity, we
assume that the pedestrian density and velocity values
are uniform on each side of the membrane. The density
of pedestrians walking in the +x- or −x-direction in the
region y > 0 is written as ρ±x

y>0. Then, the density in the
region y < 0 is ρ±x

y<0 = ρav/2 − ρ±x
y>0 because the den-

sity of people going in each direction in the whole area of
−W/2 < y < W/2 is ρ+x = ρ−x = ρav/2. Furthermore,
assuming the density of all pedestrians is uniformly dis-
tributed, we have ρ+x

y>0 +ρ−x
y>0 = ρav/2. Hence, the system

density distribution is fully determined once a governing
equation for ρ+x

y>0 is solved. In the following, ρ+x
y>0 is sim-

ply written as ρ, and the order parameter is expressed as
Φ = 2(ρ/ρav − 1/2).

Using the same idea as the model describing concen-
tration variations between two reservoirs separated by a
membrane [45,47], we model the behavior of ρ as follows:

dρ

dt
=

M1L

eS

(ρav

2
− ρ

)
+

M2L

eS
(ρav − ρ), (4)

where e is the thickness of the membrane, S = LW/2
is the area of interest (now the region y > 0). In con-
trast to the models describing ordinary membranes [45,47],
the equation above contains two terms driving the den-
sity change characterized by M1 and M2; the parameter
M1 controls the driving force that mixes the pedestrians
such that the values of ρ in y > 0 and y < 0 ap-
proach. On the other hand, M2 is the parameter for
the driving force that separates the pedestrians moving
in the +x- and −x-directions such that ρ approaches
ρav. The solution of eq. (4) is readily obtained as ρ =
ρ0 + ρ1 exp(−M1Lt/eS) + ρ2 exp(−M2Lt/eS), where ρ1
and ρ2 are the constants determined from the initial con-
ditions and ρ0 = ρav(M1 + 2M2)/(2M1 + 2M2) is the sta-
tionary solution.

Diffusion phenomena should dominate the physical
mechanisms of mixing. Since the analysis of counterflows
in the bulk region shows generally increasing diffusion co-
efficient with increasing density, we assume a functional
form for M1 which increases with density. The diffusion
coefficient in the y-direction obtained under wall-free bulk
conditions, in comparison with our model for M1, is found
in fig. S6 of the SI, where the linear time dependence of
the mean square displacement shows the ordinary diffusion
process in the y-direction. On the other hand, in model-
ing the separating force M2, we take into account the fact
that a certain separation effect is observed even in the low-
density region. Hence we assume a constant value for M2
with respect to ρav. However, since the separation ability
should depend on the the geometrical details of the obsta-
cles forming the membrane, we assume that M2 depends
on the angle ϕ. We note that a common function of ϕ is
assigned to M2 for all the results shown below (see fig. S7
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in the SI) of which the functional form reflects the shape
of obstacles constituting the membrane. The values of Φ
obtained from the steady solution of eq. (4) are shown
in figs. 3(a) and (b). The results of molecular dynamics
simulations, including the variation of decreasing |Φ| in
fig. 3(a), are well captured. In addition, the molecular dy-
namics results examining the effect of the interval between
obstacles Lp are well predicted by the present model with
the same parameter set (see fig. S8 in the SI).

From the above comparison, we conclude that the min-
imum model given in eq. (4), based on the membrane
dynamics (with the driving forces chosen appropriately),
is capable of predicting the spontaneous separation effect
of the pedestrian flow. In addition to the steady-state
behavior focused on in the above discussion, the present
model was also examined for transient response, and its
consistency with the molecular dynamics simulations was
confirmed to be within the parameter range where the
approximation of eq. (4) was valid, in other words, situ-
ations where the corridor area was not too wide and the
density to each side of the membrane varies uniformly.
More specifically, for the molecular dynamics simulation,
we measure the relaxation time taken to reach the steady
state exhibiting |Φ| ∼ 1, starting from the initial condition
with Φ = 0, in which the pedestrians traveling in both di-
rections distribute uniformly in the whole corridor. These
results are then compared with the corresponding relax-
ation time predicted by the model given in eq. (4). The
resulting model predictions agree well with the molecular
dynamics results under conditions in which W is not too
large (see fig. S9 in the SI).

Conclusion. – To summarize, we have shown that sim-
ple asymmetric obstacles emplaced in a corridor enable
us to control pedestrian flow patterns by inducing self-
organizing lane formations. As demonstrated in fig. 2,
the structured pedestrian flows are more efficient than
those of ordinary unstructured crowds. Thus, the present
results could contribute to developing new concepts for
engineering corridor designs in ways that create efficient
traffic lanes. Here, the asymmetry is generated by design-
ing the geometrical shape of obstacles. However, this is
merely an example for realizing the spontaneous separa-
tion of pedestrians. The original concept of the “social
force” employed in our molecular dynamics simulations
includes psychological interactions forces acting effectively
on the pedestrians. Therefore, designing psychological ob-
stacles, constructed by means of visual effects such as
photo-regulation, electronic signage, or some other meth-
ods, could provide alternative approaches, and will be in-
cluded among our future research topics.

Our membrane model for separation has shown good
agreements with the molecular dynamics simulation re-
sults, as shown in fig. 3. This is an example of the
analogies found in multidisciplinary studies, in which a
theory established for microscopic physics is used to ex-
plain macroscopic phenomena at a length scale that is

orders of magnitude higher than the original micro-scale.
We believe that our finding suggests a way forward for
the field of mobility and transportation, particularly when
viewed in tandem with ideas on various unobvious phe-
nomena present in microscopic transportation systems.
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[7] Gipps P. G. and Marksjö B., Math. Comput. Simul.,

27 (1985) 95.
[8] Virkler M. R. and Elayadath S., Transp. Res. Rec.,

1438 (1994) 51.
[9] Seyfried A., Steffen B., Klingsch W. and Boltes

M., J. Stat. Mech., 2005 (2005) P10002.
[10] Helbing D., Johansson A. and Al-Abideen H. Z.,

Phys. Rev. E, 75 (2007) 046109.
[11] Johansson A., Helbing D., Al-Abideen H. Z. and Al-

Bosta S., Adv. Complex Syst., 11 (2008) 497.
[12] Chattaraj U., Seyfried A. and Chakroborty P.,

Adv. Complex Syst., 12 (2009) 393.
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