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Effect of the new extended uncertainty principle
on black hole thermodynamics
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Abstract – In this paper we study the thermodynamic properties of the Schwarzschild black
hole using a new form of the extended uncertainty principle. By calculating the corrected
mass-temperature relation, we investigate the limit of lower bound for the extended-uncertainty-
principle–corrected black hole temperature. Also, we obtain the extended-uncertainty-principle–
corrected entropy and heat capacity. We compare the behaviors of the usual form and the corrected
form of thermodynamic properties for the static black hole.
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Introduction. – The ordinary Heisenberg uncertainty
principle is obtained as ΔXΔP � �/2 and by a deforma-
tion of the ordinary Heisenberg uncertainty principle also
known as the generalized uncertainty principle (GUP),
the concept of minimum measurable length into quantum
mechanics is introduced [1–31]. Also, in order to study
both the velocity of light and Planck energy as universal
constants, another kind of deformation of the Heisenberg
algebra known as Doubly Special Relativity (DSR) has
been proposed [32–35].

Recently extending the Heisenberg uncertainty principle
has been proposed in the context of Extended Uncertainty
Principle (EUP), which describes the concept of minimum
measurable momentum into quantum mechanics [36–43].
Also, the Hawking temperatures of the Schwarzschild-
(anti-) de Sitter black holes under EUP have been repro-
duced, while it has been shown that GUP increases the
Hawking temperature [6–8]. In ref. [9], by defining the new
GUP, the authors have proposed the existence of a mini-
mum observable momentum. The GUP-corrected energy
of the quantum harmonic oscillator for all energy levels
to first- and second-order perturbation is calculated [13].
In refs. [14] and [15], the deformed Lifshitz gauge theory
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based on GUP and the deformation of the Heisenberg al-
gebra, which are consistent with both the GUP and DSR
theory, are analyzed, respectively. We can see in ref. [38]
that the uncertainty principle derivation of the Hawking
temperature can be extended to (anti-) de Sitter-like black
holes and the thermodynamics of the black holes is inves-
tigated starting from the Uncertainty Principle of string
theory and non-commutative geometry. Also, in ref. [39]
the connection between the extended generalized uncer-
tainty principle (EGUP) and triply special relativity is
studied. In ref. [40], by introducing EGUP with the area
theorem, the correction value of black hole entropy for
the three types of space-time is calculated. In ref. [41],
the thermodynamics of the Friedmann-Robertson-Walker
(FRW) universe under GUP and EUP has been obtained.
In ref. [42], the measurable properties of a black hole hori-
zon are modified by introducing a large mass scale correc-
tion to the Schwarzschild metric inspired by EUP.

In this paper we study the thermodynamic properties
of the Schwarzschild black hole by using the new form
of the EUP. This paper is organized as follows: In the
next section a new form of EUP has been introduced.
In the third section we discuss the black hole thermody-
namic properties. In the subsection “The EUP-corrected
mass-temperature relation” we obtain the corrected mass-
temperature relation for EUP black hole and minimal tem-
perature of black hole. In the subsection “The EUP black
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hole heat capacity” the EUP black hole heat capacity has
been calculated. In the subsection “The EUP black hole
entropy” by calculating the corrected heat capacity, we
find the EUP black hole entropy. Finally, a conclusion is
presented in the last section.

The new extended uncertainty principle. – In this
section, in order to investigate the concept of minimum
measurable momentum into quantum mechanics, we have
considered the following new form of deformed Heisenberg
algebra for one spatial dimensional case which is called
EUP:

[X, P ] � i�

1 − q|X | , (1)

where q is a parameter and we choose 0 � q � 1, the EUP
is then given by

ΔXΔP � �

2

〈
1

1 − q |X |
〉

� �

2
[1+q〈|X |〉+q2X2+q3|X |X2+q4(X2)

2
+· · ·]

� �

2
[−q(ΔX) + q(ΔX) + 1 + q 〈|X |〉 + · · ·]

� �

2

[
−q(ΔX) +

1
1 − q(ΔX)

]
. (2)

The momentum for this new EUP is given by

ΔP � �

2

[
−q +

1
ΔX(1 − q(ΔX))

]
, (3)

by solving the above quadratic equation, the EUP gives
the minimal momentum as

ΔP � 3
2
q�. (4)

Black hole thermodynamics. –

The EUP-corrected mass-temperature relation. By
characterizing the momentum uncertainty, for any mass-
less quantum particle near the Schwarzschild black hole
horizon with mass M, its temperature can be written as

T =
cΔP

κ
, (5)

where c is the speed of light and κ is the Boltzmann con-
stant. Using this equation and the obtained minimal mo-
mentum, we can calculate the lower bound for the black
hole temperature as follows:

T � Tmin =
3
2

cq�

κ
; (6)

by defining the Schwarzschild radius of the black hole as

rS =
2GM

c2 , (7)

where G is the Newton universal gravitational constant
we can consider the position uncertainty of a particle as
the order of the Schwarzschild black hole radius near the

black hole horizon,

ΔX = γrS , (8)

where γ is a scale factor, rs is the Schwarzschild radius.
Regarding the thermodynamics, the properties of black
hole remnants have been extensively studied in ref. [44].
In ref. [12], the minimum masses of Schwarzschild black
hole have been obtained from GUP and the authors have
compared the mass of Schwarzschild black hole in the pres-
ence of generalized uncertainty principle with the obtained
mass of Schwarzschild black hole from the ordinary Heisen-
berg uncertainty principle. Here, by inserting the eq. (5)
and the eq. (8) into eq. (3), the relationship corresponding
to the black hole mass has been obtained as

�

2

(
−2γqGM

c2 +
1

1 − 2γqGM
c2

)
=

2γGMκT

c3 ; (9)

by solving the above equation for M , we get

M =
c2

4Gγq

[
1 −

(
1 − 4c�q

c�q + 2κT

) 1
2
]
; (10)

by introducing mp as the Planck mass and considering the
relationship (mP c)2 = �c3

G , eq. (10) reduces to

M =
(mP c)2

2γ(c�q + 2κT )
, (11)

and in the absence of correction due to EUP, the above
equation reduces to M = (mP c)2

4γκT , where our obtained re-
sult for the black hole mass is consistent with the previ-
ous obtained result of other works in the literature when
q = 0 [36].

By comparing the black hole mass in the absence of
correction due to EUP with the Hawking temperature
TH = (mP c)2

8πκM , we can obtain γ = 2π. Then the total
form of the mass-temperature relation can be rewritten as

M =
c2

8πGq

[
1 −

(
1 − 4c�q

c�q + 2κT

) 1
2
]

, (12)

and for a small value of q, the black hole mass can be
extended as

M =
(mP c)2

8πκ

(
1
T

− c�q

2κT 2 +
(c�q)2

4κ2T 3 + · · ·
)

, (13)

as we can see for the limit of value q = 0 or in the absence
of correction due to EUP, we reach M = (mP c)2

8πκT = �c3

8πGκT
which is consistent with the previously obtained result for
the usual form of the black hole mass in ref. [36].

The EUP black hole heat capacity. We can investigate
the heat capacity of the black hole under EUP. The EUP-
corrected heat capacity relationship can be calculated as

C = c2 dM

dT
= − m2

pc
4κ

2π(2κT + c�q)2
. (14)
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In order to verify obtained relationship for the EUP-
corrected heat capacity, we can calculate eq. (14) for a
small value of q and then compare its limit value for q = 0
and the usual form of the black hole heat capacity. For a
small value of q we have

C = −m2
pc

4

8πκ

[
1

T 2 − c�q

κT 3 +
3(c�q)2

κ2T 4 + · · ·
]

, (15)

and for q = 0, eq. (15) reduces to C = − m2
pc4

8πκT 2 that is
consistent with the previous obtained result for the usual
form in the absence of correction due to EUP [36].

The EUP black hole entropy. We can determine the
EUP black hole entropy by using the first law of black hole
thermodynamics,

S = c2
∫ M(T )

M(Tmin)

dM

T
=

∫ T

Tmin

C(T )
dT

T
,

= − (mpc)
2
κ

8πq2�2

[
0.15 + 4Ln(2) +

4c�q

c�q + 2κT

+4Ln
(

κT

c�q + 2κT

)]
+ S0, (16)

where S0 is the integration constant. Expanding the black
hole entropy relationship eq. (16) for a small value of q,
we get

S = S0 − 0.15(mpc)
2
κ

8πq2�2 +

(
mpc

2
)2

κ

16π(κT )2
−

(
mpc

2
)2 (c�q)κ

24π(κT )3

+
3
(
mpc

2
)2(c�q)2κ

128π(κT )4
+ · · · , (17)

and by fixing the value of S0 as S0 = 0.15(mpc)2κ
8πq2�2 , the

total corrected entropy form of the EUP black hole can be
rewritten as

S = − (mpc)
2κ

8πq2�2

[
4Ln(2) +

4c�q

c�q + 2κT

+4Ln
(

κT

c�q + 2κT

)]
. (18)

For a small value of q we get

S =

(
mpc

2
)2

κ

8πκT

[
1

2κT
− c�q

3(κT )2
+

3(c�q)2

16(κT )3
+ · · ·

]
, (19)

and in the absence of correction due to EUP, eq. (19)

reduces to S = (mpc2)2
κ

16π(κT )2 for the ordinary form of entropy,
where the obtained black hole entropy is consistent with
the result obtained in ref. [36] when α = 0.

Also, the entropy can be rewritten in terms of the area
of the horizon A = 4πr2

S = 4�2
P

(
S0
κ

)
, where rS = 2GM

c2

is the Schwarzschild radius of the black hole and �P is
the Planck length and S0 is the semi-classical Bekenstein-
Hawking entropy for the Schwarzschild black hole.

Fig. 1: The EUP-corrected mass vs. T for mp = 0.5, c = � =
κ = 1.

From the mass-temperature relation for EUP black hole
eq. (12), the temperature of a black hole can be generally
calculated as

T =
−c5

� + 4c3G�Mπq − 16cG2
�M2π2q2

8πκGM (−c2 + 4GMπq)
, (20)

where for q = 0, the above equation reduces to T =
c3

�

8πκGM = (mP c)2

8πκM , which is consistent with the previously
obtained result in the usual form for the temperature of a
Schwarzschild black hole in the absence of correction due
to EUP [36]. Substituting eq. (20) into eq. (19) and by
considering A = 4πr2

S = 16πG2M2

c4 , the entropy in terms of
the area of the horizon is given by

S =
m2

P κ2c6
(
c2 − 4GMπq

)2

2�2(c4 − 4c2GMπq + 16G2M2π2q2)2

×
[

A

2κ
− 8πqAGM

(
c2 − 4πqGM

)
3κ (c4 − 4πqc2GM + 16π2q2G2M2)

+
12π2q2AG2M2

(
c2 − 4πqGM

)2

κ(c4 − 4πqc2GM + 16π2q2G2M2)2
+ · · ·

]
, (21)

with q = 0 and considering the relationships giving the
Planck length as �2

P = �G
c3 and the Planck mass as

(mP c)2 = �c3

G , the entropy relationship reduces to

S0 =
κ2m2

P c2A

4κ�2 =
κA

4�2
P

. (22)

We can see that, in the absence of correction due to EUP
(q = 0), the relationship obtained for entropy reduces
to the semiclassical Bekenstein-Hawking entropy for the
Schwarzschild black hole.

We have investigated the EUP-corrected black hole
thermodynamics in figs. 1–3. We have investigated in fig. 1
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Fig. 2: The EUP-corrected heat capacity vs. T for mp =
0.5, c = � = κ = 1.

Fig. 3: The EUP-corrected entropy vs. T for mp = 0.5, c =
� = κ = 1.

the EUP-corrected mass of AdS black hole vs. the black
hole temperature T . Figure 2 is included to give a bet-
ter insight of the EUP-corrected black hole heat capac-
ity vs. T . Also, we have investigated the entropy of a
black hole under the conditions of the EUP-corrected case
for q �= 0 vs. the black hole temperature in fig. 3. We
can see from fig. 1 that although the EUP-corrected mass
of AdS black hole increases as q increases, it decreases
as T increases. In fig. 2, by taking a set of parameters
mp = 0.5, c = � = κ = 1, we have investigated the ef-
fects of the q-parameter and the black hole temperature
T on the black hole heat capacity under the conditions of
the EUP correction and we can see that the black hole
heat capacity increases with increasing q and T . Figure 3
shows the EUP-corrected entropy is always positive while
the EUP-corrected heat capacity is always negative. The
behavior of the black hole entropy vs. T is satisfied and
we have investigated the effects of the q-parameter and
T on the black hole entropy under the conditions of the

EUP correction in fig. 3. We can see that the entropy de-
creases with increasing q and T . Our obtained results have
been compared with the previous works of other authors in
the literature and our obtained results for thermodynamic
properties when q = 0 reduced to the work reported [36]
in the absence of correction due to deformation of the or-
dinary Heisenberg uncertainty principle or when α = 0.

Conclusions. – In this paper we have investigated
the thermodynamic properties of the Schwarzschild black
hole by using the EUP. We have obtained the mass-
temperature relation for EUP black hole. From the mini-
mal momentum of EUP we found that a lower bound for
the EUP black hole temperature should exist. Also by
using the EUP black hole corrected mass-temperature re-
lation, we have obtained the heat cepacity and entropy
of the EUP-corrected Schwarzschild black hole in terms
of the black hole temperature. We have found that the
heat capacity is always negative and increasing with the
temperature. Moreover, the obtained results in this work
have been compared with the previous ones already given
in the literature.
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