
1 © 2020 IOP Publishing Ltd  Printed in the UK

Introduction

The interactions between microscopic particles forming col-
loidal suspensions give rise to unique physical behaviors. 
Such systems are ubiquitous in nature and find applications 
in different biology, cosmetics, and food technologies. They 
are also of particular interest for a range of smart materials as 
their properties can be tuned by nanofabrication of colloidal 
particles to produce desired mechanical behaviors and micro-
structures in a finely controlled way [1–8]. The unique and 
striking physical features of colloidal systems are also of sig-
nificant importance for the fundamental understanding of the 
condensed soft matter [9, 10]. Among such features is their 

ability to form soft gels: metastable spanning arrested network 
structures that could resist mechanical stress.

Gelation is a complex thermodynamic and kinetic process 
that depends on the volume fraction and the specific form of 
interparticle interactions. At high volume fractions, an amor-
phous solid can be formed because of jamming and crowding 
of colloidal particles. With decreasing the volume fraction, 
gels and network structures start to form. The gelation process 
has been explained via several mechanisms such as phase sep-
aration, glass-like kinetic arrest, percolation, and/or formation 
of locally favored structures [11–14]. At low volume frac-
tions (φ  <  15%), colloidal particles form gels by aggregating 
into fractal clusters as a result of spinodal decomposition 
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and diffusion-limited aggregation [15]. Experimental studies 
using confocal microscopy showed that gels at low volume 
fractions are indeed open connected clusters composed of 
chains of colloidal particles, which can resist bending defor-
mations [16–19].

Computer simulations of colloidal gels could be used to 
better understand their microstructural and mechanical char-
acteristics. The potentials that are used to represent the inter-
action between colloidal particles are expected to affect the 
predictions of these numerical studies. For example, numer
ical models using centrosymmetric effective interactions have 
successfully reproduced experimentally observed behavior 
of gels at moderate volume fraction such as the aggregation 
of particles into spanning clusters [20, 21]. Nevertheless, 
these models tend to undergo phase separation at low volume 
fraction rather than forming stable gel networks, which are 
observed experimentally. Open gel structures will be obtained 
if anisotropic effective interactions are introduced using 
dipolar, patchy or maximum-valence particles, or repulsive 
many-body interactions [22–30].

In addition to their microstructure, the nonlinear mechan-
ical response of gels has been studied numerically [31, 32]. 
These previous numerical studies have provided valuable 
insight into the origin of complex mechanical response of 
gels and its relation to their topology. However, these recent 
results have been obtained with only one specific type of 
many body potentials [31, 32]. This particular form of inter-
action potential has been written using one convenient set of 
parameters in order to facilitate gelation under isothermal 
conditions and capture important physical aspects of colloidal 
gels. It is known that the mechanical behavior of gels strongly 
depends on their microstructure and physical processes occur-
ring at small length scales [9]. Thus, possible effects of dif-
ferent forms of interaction potentials on the mechanics of gels 
should be addressed. In other words, it is important to inves-
tigate whether other forms of many body potentials could 
result in similar network structures at low volume fractions 
and whether the numerical predictions for the mechanical 
response of such colloidal gels depend on the ad hoc selection 
of the potentials.

In this paper, we focus on the relationship between poten-
tial interactions of colloidal particles and mechanical behavior 
of soft gels with the primary objectives of (a) determining the 

processes by which different effective interactions contribute 
to the mechanical properties, (b) providing a link between 
macroscopic stress and microstructural changes taking place 
during deformation, and (c) identifying universal interaction-
independent mechanical properties, if any. To this end, we use 
a short-range effective interaction for modeling the mechan-
ical behavior of gels. We first discuss the methodology used to 
assemble gel networks and detail the numerical investigation 
carried out to obtain their mechanical behavior. Afterwards, 
microstructural properties of the gels and their mechanical 
response to shear deformation are studied. In particular, the 
homogenized stress–strain response and local geometric prop-
erties of the gels are of interest. Analytical study of the poten-
tials is conducted in order to discuss the mechanical behavior 
of gels in terms of the mathematical formulation of their effec-
tive interactions. Furthermore, the findings are compared with 
those from two other existing gel models, using repulsive 
many-body interactions, in order to better assess the influence 
of the potential selection.

Computer models and numerical simulations

The microstructural properties and mechanical behavior of 
soft gels are investigated by a numerical particle gel model in 
which particles can self-assemble into random network struc-
tures [23]. Among different models used for this purpose [29], 
this work assumes that gel networks can be generated from a 
set of N particles of diameter d and mass m interacting through 
a potential Ψ with 2-body and 3-body terms ψ2 and ψ3:

Ψ = ε
∑

Aψ2 (r)+Bψ3 (r, r′) .� (1)

In the above equation, constants A and B control the rela-
tive intensity of the 2-body and 3-body terms. The 2-body term 
ψ2 is responsible for the attractive interactions between parti-
cles and is a function of the bond vector r of length r  =  |r|, 
figure 1(a). The 3-body term ψ3 maintains the open network 
structure by means of repulsive interactions.

At a given volume fraction φ and temperature T, the onset 
of gelation depends on the attraction intensity, or energy 
scale ε, as well as the range of the attractive potential [15]. 
The energy scale ε determines the phase behavior of the sys-
tems. For a given thermal energy kBT, the choice of ε/kBT 

Figure 1.  (a) Three interacting particles forming a bond angle θ, (b) typical get networks obtained using the present model at φ  =  0.05.
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controls the gelation process: at high temperatures, we obtain 
a colloidal suspension with particles in a gas phase, at low 
temperatures, we obtain a gel made up of connected chains 
of particles. The range of interaction potentials has conse-
quences on the topology and possibly mechanical properties 
of the gels: short-range interactions generate short chains of 
particles that can resist bending, and long-range interactions 
generate longer chains whose stability is provided by interac-
tions with other chains [16].

For real systems, the precise expression of the inter-
particle interactions is rarely known. Here, a generalized 
Lennard-Jones potential is selected for the 2-body term ψ2 
in equation  (1) [10, 21, 23]. The width of the well of this 
centrosymmetric potential determines whether interactions 
between particles are short-ranged (narrow well) or long-
ranged (wide well). Because particles interacting with each 
other only through a centrosymmetric 2-body potential aggre-
gate into a single solid phase, a 3-body term is required for 
enforcing the particles to form an open fractal geometry. This 
3-body term must be repulsive in order to generate open gel 
networks whose microstructure resembles what has been 
observed experimentally [18, 33].

The 2-body and 3-body terms are assumed to have the fol-
lowing general forms:

ψ2 (r) = Λ2 (r) f2 (r)� (2a)

ψ3 (r, r′) = Λ3 (r) Λ3 (r′) f3 (θ)� (2b)

where θ  =  acos(r · r′/r r′) is the angle between two bond vec-
tors r  =  rij and r′  =  rik departing from a particle, figure 1(a), 
r and r′ are bond vector lengths, Λ2 and f 2 are 2-body modu-
lation and potential function, respectively, and Λ3 and f 3 are 
3-body modulation and potential function, respectively. The 
radial modulation terms ensure continuity of interaction 
potentials; they are zero at the cutoff distance and increase as 
the interparticle distance approaches the particle diameter in 
the present work. Thus, only particles that are close enough 
to one another could interact with each other. The choice of 
potential terms ψ2 and ψ3 determines the exact form of the 
network microstructure. For instance, 3-body terms that are 
repulsive for all values of bond angles favor straight chains 
[27]. Furthermore, 3-body terms which are only repulsive for 
low bond angles allow multiple equilibrium configurations 
with large bond angles [28]. The latter may result in systems 
with multiple equilibria and with zero-energy deformation 
modes.

Here, we consider the following potential for the interac-
tion between particles,

f2 (r) =
b

r18 − 1
r16 , Λ2 (r) = e

1
r−a� (3a)

f3 (θ) = (cos θ + α)
2, Λ3 (r) = e

Γ
r−a .� (3b)

The above equations  are obtained from modifying the 
Stillinger-Weber potential, which was initially developed to 
model crystalline silicon and has been successfully modi-
fied for modeling other media such as amorphous silicon, 
glasses, quasi-brittle materials and long-range colloidal gels 

[27, 34–38]. By selecting the parameters of the 2-body term 
(3a) and 3-body term (3b) as A  =  29.215, b  =  0.896, a  =  1.9, 
B  =  40, α  =  1 and Γ  =  2, we obtain a particle gel model 
capable of producing gels with desired properties such as 
stable short chains with bending resistance, preferred straight 
configuration, and no zero-energy deformation modes. In 
the sequel, ’potential’, ’model’ and ’effective interactions’ 
are used interchangeably. Furthermore, the length, mass and 
energy values are reported in reduced units of d, m, and ε, 
respectively.

For comparison purposes, the numerical results from two 
other forms of interaction potentials are also considered. The 
particle gel model based on the short-range effective interac-
tion with a Gaussian 3-body term, referred to here as the SRG 
model, has been successful in capturing different aspects of 
the mechanical behavior of colloidal gels [28, 31, 32, 39, 40]. 
The 2-body term of the SRG model is given by the short-range 
attractive interaction and without any radial modulation, i.e.

f SRG
2 (r) =

b
r18 − 1

r16 , ΛSRG
2 (r) = 1� (4a)

and the 3-body potential term is given by

f SRG
3 (θ) = exp

Ç
− (cos θ − cos θ0)

2

w2

å
,

ΛSRG
3 (r) =

1
r10

Å
1 −

( r
2

)10
ã2

.
�

(4b)

The effective interaction is defined by choosing A  =  6.27, 
a  =  0.85, B  =  67.27, θ0  =  65° and w  =  0.3. This set of 
parameters is one convenient choice (among yet unexplored 
other choices) that facilitates self-assembly of particles under 
isothermal conditions.

Furthermore, the modified Strillinger-Weber potential, 
referred to here as the MSW model, is based on the Stillinger–
Weber potential, which was initially developed to model 
crystalline silicon [27, 34]. Different versions of this poten-
tial have been used to model the behavior of gels, amorphous 
silicon, glasses, and quasi-brittle materials [27, 35–38]. The 
2-body and 3-body potential functions of the MSW model are 
given by

f MSW
2 (r) =

b
r4 − 1, ΛMSW

2 (r) = e
1

r−a

� (5a)

f MSW
3 (θ) = (cos θ + α)

2, ΛMSW
3 (r) = e

Γ
r−a .� (5b)

The models parameters are chosen as A  =  7.0496, b  =  0.6022, 
a  =  1.8, B  =  10, α  =  1.49, Γ  =  1.2. Similarly as the SRG 
model, this set of parameters is one possible choice that gen-
erates networks composed of many interconnected particle 
chains [38].

Gelation protocol

The numerical gel networks are obtained from colloidal par-
ticles using the following procedure [23]. Starting from a gas 
phase of randomly placed particles in a box, we bring the 
system to a temperature ε/kBT  =  20 using the Nosé–Hoover 
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thermostat over 5  ×  106 time steps. As the temperature is 
decreased, the particles gradually aggregate into clusters until 
they form arrested networks spanning the entire simulation 
box. The networks obtained at that temperature are persistent 
because the thermal energy kBT is small enough compared to 
the energy scale of the interactions ε, i.e. thermal fluctuations 
cannot break the bonds formed between the particles. The 
systems are equilibrated by a thermostatted run at the final 
temperature for another 5  ×  106 time steps. In order to solely 
identify the role of the enthalpic potential and to cancel out the 
effects of thermal fluctuations, we subsequently quench the 
system using the damped dynamics, i.e.

mẍ + ξẋ +∇Ψ = 0� (6)

until the thermal energy becomes negligible compared to 
the potential energy [28]. The value of the damping param
eter is taken as m/ξ  =  1.0 τ and the characteristic time 
τ  =  (md2/ε)1/2 is defined by the scales of energy ε, length d, 
and mass m [31]. The above protocol is used to generate net-
works from N  =  50 000 particles in cubic periodic boxes of 
size L  =  80.60d, 63.97d and 55.88d, corresponding to volume 
fractions f   =  0.05, 0.10, 0.15, respectively, figure  1(b). All 
numerical simulations have been done using the LAMMPS 
Molecular Dynamics software [41].

Mechanical characterization

The mechanical response of the particle gel model stems 
from the same effective interaction Ψ responsible for the self-
assembly of colloidal particles into a network structure. We 
investigate the athermal nonlinear mechanical response of 
particle gel models under strain-controlled volume-preserving 
simple shear deformation. For a given strain level γ, the shear 
kinematics is characterized by:

xi = ΓXi, Γ = Γmnemen, m, n = 1, 2, 3 and i = 1 . . .N�
(7)

where xi and Xi are the respective position vectors of the ith 
particle after and before deformation. Γ11  =  Γ22  =  Γ33  =  1, 
and Γ12  =  γ are the nonzero components of Γ. Strain deforma-
tion is applied in finite steps dγ  =  0.01 until yielding occurs. 
At each step, all particles are first deformed affinely. Following 
this affine shear step, the system will be out of equilibrium. 
Thus, the position of particles should be relaxed to reach 
equilibrium in the deformed configuration. To assess the sole 
contribution of the potential and the topology of gel networks, 
disregarding viscous effects introduced by (6), relaxation is 
performed using athermal quasistatic shear (AQS) [42, 43]. 
This methodology determines the relaxed configuration of the 
system by solving  ∇Ψ  =  0 using the classical energy minimi-
zation techniques, instead of solving (6) by finite shear rate 
simulations [39]. It is noted that both finite shear rate and AQS 
techniques are equivalent in the limit of very low shear rate ( ẍ 
~ 0 and ẋ ~ 0).

We study the homogenized stress–strain response of 
the gels when they are subjected to shear deformation. The 
homogenized shear stress is given by the virial stress [44], i.e. 
the shear stress at each increment is obtained from

σ12 =
1
V

∑
i,j

∂Ψ

∂rij
1

rij
2� (8)

where V denotes the volume of simulation box, and σ12 is the 
shear stress corresponding to the applied shear strain. The 
formula (8) might cause slight errors in stress estimates near 
the boundaries of the simulation box. The differential modulus 
K  =  ∂σ12/∂γ is calculated from the stress–strain response at 
each strain increment; the initial differential modulus is referred 
to as G. We investigate the microscopic rearrangements of the 
gel network topology during various phases of the deformation 
in order to provide a quantified space-resolved microscopic 
explanation for their nonlinear mechanical response. Results 
obtained for the particle gel model of the present study are 
compared with those from other well-documented gel models, 
belonging to the general class of potentials (2), in order to 
assess the influence of the potential selection on the response 
of particle gel models. Specifically, we consider the short-
range effective interactions with a Gaussian 3-body term, 
and the modified Stillinger–Weber potential [27, 28, 34, 38].  
The SRG model produces spanning networks made up of 
chains of particles, joint at nodes with coordination 3 and has 
successfully provided numerical insight into key aspects of 
gel behavior such as the microscopic origins of non-local pro-
cesses, the self-assembly dynamics, the mechanical behavior 
and its link with network topology as well as aging [18, 28, 
31–33, 39, 44]. All data reported for the SRG model in the 
present work have been obtained from the literature [28, 31, 
39, 40]. The MSW model, differs from the SRG model in its 
formulation; yet, it similarly produces spanning networks of 
chains connected at nodes with coordination 3 and could be 
used to investigate the equilibrium dynamics of gels. Since 
the data required for comparing the results of the present work 
with those of the MSW model are unavailable in the litera-
ture, numerical simulations using the MSW model are also 
performed here.

Results and discussion

Homogenized response to shear deformation

The variation of the homogenized shear stress component 
σ with the applied shear strain is schematically depicted in 
figure 2(a). The numerical stress–strain response is in agree-
ment with experimental data for colloidal and polymer gels 
under direct shear [9, 45, 46]. The nonlinear response presents 
four different phases. At small strain, the systems are very soft 
with an initial shear modulus G. In this first region, particle 
gel models often exhibit slight softening where the differential 
modulus K  =  ∂σ12/∂γ, corresponding to the slope of the 
stress–strain curve, decreases with increasing the strain. The 
softening continues up to the strain γl (and the corresponding 
stress σl) where K reaches a local minimum. It is noted that 
some systems may not exhibit the initial softening and show 
a purely linear initial response with a constant differential 
modulus up to the strain γl (represented by the dashed line 
in figure 2(a)). Afterwards, the second phase of the response 
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begins and strong strain hardening is observed. The differ
ential modulus can span multiple orders of magnitude as 
observed in biopolymer gels [45].It is known that the non-
affine bending of the filaments affects the hardening behavior 
of semiflexible fiber networks [47–49]. However, the non-
affinity is expected to promote strain softening response in 
particle-based models [42, 50]. The systems reach their max-
imum stiffness at the critical strain γc (and the corresponding 
critical stress σc). Then, the response enters the damage 
region, which corresponds to the development of irrevers-
ible mechanisms and damage accumulation because of local 
breaking of interparticle bonds. The stiffness of the systems 
decreases until it vanishes. The maximum stress occurs at the 
yield strain γy, after which systems enter the complete failure 
region and undergo shear flow [51]. The normalized differ
ential modulus K/G is plotted against the strain for the present 
model in order to show the effect of volume fraction on the 
mechanical response (figure 2(b)). We can easily determine 
the nature of the initial response and identify the different 
phases of the deformation. The proposed model shows strain-
softening at low volume fractions (φ  =  0.05 and φ  =  0.10) 
with a decrease of the normalized differential modulus to 
values lower than 1. The minimum differential modulus is 
smaller at the lowest volume fraction. At φ  =  0.15, the curve 
is initially horizontal, indicating a constant differential mod-
ulus and a purely linear response at small strain. The strain 
γl decreases with increasing volume fraction and the shift to 
the strain-hardening phase occurs at smaller deformation. The 
critical strain and the maximum value of differential modulus 
during the strain hardening phase decrease with increasing 
volume fraction. These observations indicate that microstruc-
tural reorganizations are more important at low volume frac-
tions where gel networks are more fibrillar and composed of 
loosely connected chains.

The softening at low volume fractions and the brittle 
response of gels at high volume fractions have also been 
reported for particle gel models constructed using the SRG 
model [31]. Thus, the results obtained with the present model 
indicate that different potentials can lead to comparable 
mechanical responses, offering new possibilities of potential 

selection for modeling of the mechanical response of soft 
gels. Figure 3 compares the normalized differential modulus 
K/G for the SRG and MSW models at φ  =  0.10 to that of the 
present model, figure 3. As described previously, the present 
model shows initial strain-softening followed by a significant 
increase in K of several orders of magnitude. The differential 
modulus scales as power-law with the stress K ~ σν⩾1 over the 
strain hardening-phase, a typical behavior of semiflexible fiber 
networks [47, 52–54]. The SRG model also shows an almost 
initial linear response followed by a strain-hardening region, 
but the scaling has a smaller exponent ν ~ 1 compared to ν ~ 
1.5 of the present model. On the other hand, the MSW Model 
shows very little hardening (ν  =  1) following the initial sof-
tening region and barely reaches the value of the initial shear 
modulus even at very large shear strains. These differences in 
the behavior of particle gel models generated with different 
potentials indicate that the volume fraction alone cannot fully 
determine their mechanical response and different responses 
could be obtained using distinct potential formulations.

Figure 2.  (a) Schematics of the stress–strain response along with all different phases of the deformation. The dashed line represents the 
case of an initially linear response. (b) Variation of the normalized differential modulus K/G against the applied shear strain for the present 
model at three different volume fractions.

Figure 3.  Comparison of the normalized differential modulus 
versus normalized stress for different gel models at φ  =  0.10. The 
dashed lines show that the differential modulus scales as power-
law with exponents of 1 and 1.5 for the present and SRG models, 
respectively.
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Interaction potential properties and gel topology

The physical origins of the homogenized response of particle 
gel models can be determined by analyzing their mathemat-
ical formulation and specific properties of their interaction 
potentials. The 2-body term A ψ2 is plotted as a function of 
the bond length r in figure 4(a). The present model is clearly 
a short-range one because of the narrow width of its potential 

well, i.e. local particle interactions dominate the mechanical 
behavior of the particle gel model. The 3-body term Bf 3 is 
plotted as a function of the bond angle θ in figure 4(b). The 
present model has a repulsive 3-body term with the preferred 
equilibrium value α  =  1, i.e. a stable equilibrium exists for 
straight chains (θ  =  180°). Studying the equilibrium response 
of the 3-particle system shown in figure  1(a) will provide 
additional insight into the possible equilibrium configuration 

Figure 4.  Comparison of the effective interactions of the present model, SRG model, and MSW model: (a) 2-body term A ψ2; (b) 3-body 
potential function Bf3; (c) potential Ψ for 3-particle system, flat regions indicate equilibrium configurations. Comparison of topology of gel 
models, i.e. (d) mean chain length lc, (e) proportion of bonds c participating in nodes of coordination 3. (f) bond equilibrium length req as a 
function of the bond angle. The increase of req at low angles is possibly because of the repulsive effect of the 3-body term.
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of particle assemblies. For various values of the bond angle θ, 
we find the equilibrium configuration of the 3-particle system 
by minimizing the potential Ψ, which is equal to the sum of 
all 2-body, i.e. (i–j, j –k, k–i), and 3-body interaction terms, i.e. 
(i–j/k, j–i/k, k–i/j ), between the three neighboring particles. 
The potential at equilibrium is plotted for all values of θ in 
figure 4(c). At small angles where the 3-body modulation is 
zero, the potential Ψ vanishes for the model proposed in the 
present study. Furthermore, a stable equilibrium state exists 
at θ  =  180° where the bonds are perfectly aligned. Next, the 
effects of the present potential formulation on the gel topo-
logical parameters are discussed. Figure 4(d) confirms that the 
mean length lc of the chains between two nodes of coordina-
tion 3 is rather short and decreases with the volume fraction. 
The proportion of interparticle bonds attached to the network 
nodes of coordination 3, denoted by χ [31], is strongly depen-
dent on the gel volume fraction φ, figure 4(e). At low volume 
fractions, the gel networks are loose and fibrillar with longer 
chains while at higher volume fractions, they are composed 
of densely connected short chains. Figure 4(f) shows that the 
equilibrium length of the bonds req(θ) in the gels created by 
the present model depends on the bond angle. Should the 
bond length only depend on the 2-body term, the equilibrium 
length would be independent of the bond angle and equal to 
the length that minimizes the 2-body term (dashed lines in 
figure 4(f)). For the present model, the equilibrium length is 
almost equal to 2-body equilibrium length and shows little 
variations for large bond angles θ  >  110°.

Next, the features of other particle gel models are dis-
cussed in comparison with the present model. Because of the 
wide potential well of the MSW model, remote interactions 
between particles will influence the behavior of gel models 
constructed using this long-range model. The SRG Model 
has a nearly identical 2-body term as the proposed model in 
this work (figure 4(a)); yet gels with different topology and 
mechanical response are obtained. Therefore, the short-range 
2-body term does not fully characterize the behavior of these 
gel networks and the 3-body term plays a strong role. In par
ticular, the repulsive Gaussian form of the 3-body term in 
the SRG model makes small angles unlikely. For the MSW 
model, the equilibrium angle, corresponding to the 3-body 
term, is not chosen by the systems; thus, a repulsive branch 
without stable equilibrium exists, figure 4(b). It is interesting 
to note that all models have a configurational equilibrium for 
the angle θ  =  60° where particles arrange themselves into a 
self-stable self-stressed equilateral triangle, figure  4(c). The 
SRG Model shows two flat regions, θ  <  80° and θ  >  140°, 
with constant and vanishing potential. Because the potential is 
constant for a number of different configurations, there exists 
multiple equilibria which may explain reported difficulties to 
perform energy minimization for the particle gel models cre-
ated by the SRG model [31]. For the long-range MSW model, 
the potential continuously decreases with increasing the bond 
angle and never reaches a stable equilibrium. Thus, the most 
favorable region of the equilibrium should be reached at large 
angles, where the potential variations are smaller. Because the 
potential has no stable minimum, the stability and equilibrium 

of the gel model is more likely to be conferred by the inter-
actions with other particles; this statement agrees with pre-
vious numerical results and experimental observations [16]. 
In terms of the network geometry, the SRG model and MSW 
model, respectively, have shorter and longer chains than the 
present model. The length distribution is similar for all models 
with the standard deviation nearly equal to the mean chain 
length, regardless of the volume fraction, figure  4(d). The 
bond proportion χ is nearly identical for short-range models 
and much larger than that of the long-range MSW model. 
The latter maintains a fibrillar topology, with long chains and 
few nodes, even at moderate volume fractions, figure  4(e). 
The differences in chain length lc for identical node density 
χ for the present model and SRG model indicate differences 
in the connectivity of the networks resulting from clear dif-
ferences between 3-body terms. Similar to the present model, 
the equilibrium bond length req is constant at large angles 
(θ  >  110°) for the short-range SRG model and the value of 
the equilibrium length is equal to the 2-body equilibrium 
length, figure 4(f). The bond angle distribution for the SRG 
model indicates that networks assemble with angles larger 
than 110°. For the long-range MSW model, the equilibrium 
distance decreases but remains larger than that of the corre
sponding 2-body term, even for the aligned bonds (θ  =  180°). 
This observation indicates that the 3-body term i–j/k gener-
ates repulsive forces in the direction of the bonds, which is a 
consequence of the radial modulation term Λ3 in the 3-body 
interaction potential. Indeed, taking the derivative of (2b) with 
respect to one bond vector r results in a repulsive force in the 
direction of that bond vector for large values of the potential 
function f 3(θ) and the derivative of the modulation ∂Λ3/∂r. 
The axial interplay between the 2-body and 3-body terms has 
two major consequences on the mechanical response of gel 
networks generated by the MSW model. First, because of 
the axial contribution of the 3-body term, it is not possible 
to independently assign the 2-body and 3-body terms to the 
stretching and bending processes, respectively. For the MSW 
model, the 3-body term varies when the particle bonds are 
stretched at a constant bond angle. Second, because the equi-
librium bond length decreases with increasing the bond angle, 
chains of multiple bonds at equilibrium have shorter contour 
lengths when they are straight than when they are curved. As 
discussed in the following section, this latter observation could 
have important consequences on the mechanical behavior and 
evolution of the network microstructure during deformation.

Mechanical stress breakdown

The nature of local processes is highlighted by separating the 
stress into contributions from the 2-body and 3-body terms. 
Because of the evolution of the gel microstructure under 
large strains, different physical phenomena are expected 
to dominate their mechanical response at different phases 
of the deformation. Here, we study the homogenized shear 
stress breakdown for low (φ  =  0.05) and moderate (φ  =  0.15) 
volume fraction gels in order to highlight the influence of 
the volume fractions, figure 5. For the gels created using the 
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potential functions proposed in this work (figures 5(a) and 
(d)), the bonds primarily resist deformation by stretching, i.e. 
the 2-body potential term contributes the most to the stress 
response. Interestingly, the 3-body term initially favors the 
deformation with negative contribution to the stress. This 
negative contribution is observed because curly chains uncoil 
into a straight configuration, thereby releasing their residual 
stress. The 3-body term, especially in gels with high volume 
fractions, will have a positive contribution to the load-bearing 

capacity of the gels when the applied shear strain becomes 
large. Similar mechanical stress breakdown is seen for the 
SRG model at low volume fraction, figure  5(b). For that 
model, the 2-body and 3-body terms equally contribute to the 
stress response at moderate volume fraction, figure 5(e). The 
origin of the 3-body contribution to the homogenized shear 
stress of these particle gel models can be explained in terms of 
their denser topology compared to that of the networks gen-
erated using the MSW model, figure  4(d). Short chains are 

Figure 5.  2-body and 3-body stress breakdown for all models at low volume fraction φ  =  0.05 using (a) present model, (b) SRG model, (c) 
MSW model, and moderate volume fraction φ  =  0.15 using (d) present model, (e) SRG model, (f) MSW model. Stress is mostly borne by 
stretching while the initial release of residual bending stress makes the 3-body stress contribution negative. The different response of MSW 
model indicates that the behavior of these systems is mainly dominated by volume exclusion constraint and contact between chains, rather 
than bending and stretching of chains. The insets show pictorially how the particle chains resist the external deformation.
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straighter and bend around nodes; thus, the 2-body term and 
3-body component of the potential resist the applied defor-
mation by stretching and bending of the chains, respectively. 
The response of networks created by the MSW model greatly 
differs from that of the short-range models; this is expected 
because of clear differences in the geometry of these gels. 
At low volume fractions (figure 5(c)), the stress breakdown 
resembles that of the other models at low strain. However, 
significantly different response is seen during the non-linear 
phase of the deformation, which is because the 3-body inter-
action term strongly resists the deformation. In other words, 
both 2-body and 3-body terms participate equally in the stress 
response up to the maximum stress. At the beginning of the 
damage region, breakage of bonds releases the axial stress and 
the 2-body term favors while 3-body term resists deformation. 
As the volume fraction is increased (figure 5(f)), we observe a 
different response where the 2-body term favors the deforma-
tion while the 3-body term resists it. Such behavior, especially 
the negative contribution of the 2-body term, cannot solely 
be explained by stretching and bending mechanisms. These 
results suggest that the fibrillar topology of the MSW model 
at larger volume fraction causes the response to be domi-
nated by the excluded volume constraint and remote interac-
tions between fully formed chains of particles. As two chains 
approach one another, they are pulled together by the long-
range 2-body term and strongly repelled by the 3-body axial 
repulsion. Such mechanism does not occur for the model pro-
posed in the present study since the interactions have shorter 
range. Moreover, the present particle network models are 
more densely connected and less fibrillar; thus, the contact 
between fully formed chains is less likely to occur.

Particle network models show negative normal stress and 
all components of the stress tensor are expected to participate 
in resisting the applied deformation [55]. This phenomenon 
can be further investigated by analyzing the evolution of prin-
cipal homogenized stresses. The eigenvectors of the stress 
tensor σ give the principal directions of stress vI, vII, vIII and 
the corresponding eigenvalues give the principal stress values 
σI, σII, σIII. For the proposed model (figure 6), the stress is 
mostly borne by tensile stress σI in the principal direction vI, 
nearly overlapping with the direction (1,1,0) of the simulation 
box. The principal stress σII in the transverse direction vII and 
σIII in the out-of-plane direction vIII are small compared to 
σI. The breakdown of principal stresses between 2-body and 
3-body is shown in the figure 6(b). We can observe that there 
exists a competition between the 2-body and 3-body terms. 
Most of the 2-body principal stress is in the vI direction. In the 
other directions, the 3-body term, with an opposite sign but 
almost equal value to the 2-body term, results in low principal 
stresses σII and σIII. The networks created by the MSW model 
(figure 7(a)) show a similar response with large principal 
tensile stress σI in the vI direction and small stress in other 
directions. The breakdown into 2-body and 3-body principal 
stress; however, differs significantly, figure 7(b). We observe 
very large values of both 2-body and 3-body principal stresses 
in every direction, even in the directions vII and vIII, where 
the total stress is small. These values can be twice as large 
as the total maximum principal stress and point to the strong 

competition between the 2-body and 3-body terms. The above 
discussion further explains the stress breakdown shown in 
figure 5 and highlights the importance of 2-body and 3-body 
interactions between colloidal particles in load-bearing prop-
erties of colloidal gels; these interactions cannot be simply 
mapped to stretching and bending processes especially for 
long-range models.

Physical origins of the initial softening

Strain softening has been observed experimentally and 
numerically in soft colloidal gels of different nature and 
under various loading conditions [31, 56, 57]. This behavior 
is believed to arise from the complex interplays of entropic 
and enthalpic contributions in the systems whose topology 
is primarily fibrillar such as polymer and colloidal gels [16, 
27, 28, 58]. Most experimental work addressing the stiffness 
of gels focuses on rheology tests, i.e. the use of oscillatory 
shear experiments [56, 57, 59]. Numerical models have dem-
onstrated strain softening of low volume fraction colloidal 
gels under direct shear using finite shear rate simulations 
with viscous effects [31]. However, this approach cannot fully 
separate the entropic and enthalpic contributions, and sub-
sequently could only provide an overall picture of the initial 
strain softening behavior of gels. Here, AQS simulations are 
performed on particle gel models in order to account for the 
sole enthalpic contribution in their strain softening behavior. 
This approach allows us to study the mechanical behavior 
resulting only from the gel network topology and the inter-
particle interactions, canceling out possible effects of the vis-
cosity and thermal fluctuations. The stress–strain behavior in 
the initial phase, i.e. when the strain is lower than the strain 
γl, is a consequence of the stress breakdown. In other words, 
2-body and 3-body processes compete with each other and the 
rate at which each process increases with the strain determines 
the softening behavior of the gels. Because colloidal particles 
form connected chains, the topology of gel models resembles 
that of fiber network models, which are widely used to inves-
tigate the mechanical behavior of polymer networks [52, 60]. 
For such systems, it has been observed that geometric reor-
ganization, such as rotation and stretching of the fibers, influ-
ences their nonlinear mechanical response [47, 48, 61, 62].

In this section, we investigate how individual bonds par-
ticipate in the overall mechanical response of particle gel 
models. It is seen that the stress becomes concentrated in 
selected bonds oriented in their bond vector direction ̂r = r/r . 
We define the following measure,

Θ = |r · vI |� (9)

which characterizes the alignment of bonds in the direc-
tion vI of the maximum principal stress σI. We evaluate the 
Pearson correlation coefficient (PCC) between the bond align-
ment Θ and the bond stretch r/d for all interparticle bonds in 
the system, figure 8. Initially, the systems are unstrained and 
isotropic; thus, no correlation between stretch and alignment 
exists. As the strain is increased, microstructural reorganiza-
tions occur and we observe an initial decrease of the PCC to 
negative values, i.e. the stretch in fibers and their alignment 
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in the principal stress direction have an anticorrelation. This 
anticorrelation provides additional explanation for the origin 
of the initial softening phase of the stress–strain response that 
is observed in figure 2. In particular, it can be noticed that net-
works exhibiting the most softening (figure 2(b)) also have the 
largest anticorrelation, figure 8. In literature [31], this shear 
softening has been attributed to the disturbance of the initial 

self-stressed arrangement of curly chains whose equilibrium 
configuration is straight, i.e. the initial 3-body bending energy 
of curly chains is released during the deformation and as they 
become straight. This argument is supported by the observa-
tion that polymer networks with comparable topologies, but 
without residual bending stress, do not show the initial shear 
softening response [52, 63]. The findings of the present study; 

Figure 6.  (a) Normalized principal stresses as a function of normalized shear for the present model at φ  =  0.05. (b) The 2-body and 3-body 
breakdown in each principal direction.
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however, suggest that the bond stretch, associated with local 
2-body stresses, could be another important mechanism. In 
other words, in addition to the release of 3-body bending 
stress because of chain uncoiling, the initial rearrangement of 
the chains redirects their 2-body stretching stress away from 
the direction of global principal stress. Following the initial 

decrease, the correlation increases to positive values and 
reaches a maximum value at strain levels around the critical 
strain. During this phase, straightened out fibers elongate as a 
result of the applied deformation and the correlation is posi-
tive for all models. In the damage region, the correlation stabi-
lizes or decreases again as strong topological reorganizations 

Figure 7.  (a) Normalized principal stresses as a function of normalized shear for the MSW model at φ  =  0.05. (b) The 2-body and 3-body 
breakdown in each principal direction.
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occur because of breaking and forming new interparticle 
bonds. Bonds aligned in the direction of principal stress carry 
less stress, explaining the decrease of stress during the final 
shear flow, i.e. complete failure region, figure 2(a). The above 
discussion suggests that non-affine displacements play a sig-
nificant role in the observed nonlinear stress–strain behavior 
and could be used to provide a better microscopic interpre-
tation of the mechanical response of particle gel models  
[64, 65]. However, such studies are beyond the scope of the 
present work.

Conclusion

The present paper investigated the influence of the effec-
tive interaction potential between colloidal particles on the 
mechanical behavior of particle gel models. First, we defined a 
general class of effective interactions with 2-body and 3-body 
terms and used a new interparticle potential to numerically 
model colloidal gels at low volume fractions. We then con-
structed particle gel models and investigated their mechanical 
response under large shear deformation. We discussed the 
mechanical behavior in terms of the gel topology, which is 
directly related to the specific form of the potential. Finally, 
we compared the findings of the present study with those 
from models previously developed for the numerical analysis 
of colloidal gels. This comparison was done in order to high-
light possible effects that a specific choice of potential for
mulation could have on the mechanical properties of particle 
gel models.

A potential with a 2-body term and a 3-body term was 
used to express the interaction between colloidal particles 
at low volume fractions. It was found that the 2-body term 
would influence the locality of the interactions. In particular, 
a long-range potential with a wide well makes the systems 
more prone to phase separation and requires a strong repulsive 

3-body term to maintain the open structure of soft gels. On the 
other hand, a short-range potential with a narrow well corre-
sponds to a diffusion-limited aggregation process. Numerical 
models, having an identical 2-body term, showed different 
network topology and mechanical response, which indicates 
that the formulation of the 3-body term has a strong effect 
on the behavior of soft gels. In particular, a potential with no 
preferred, or multiple, equilibrium configurations can lead to 
systems that are not statically determinate; performing numer
ical energy minimization for these systems can be very chal-
lenging. Moreover, the use of a radial modulation function in 
the 3-body term can cause this term to have an axial repulsive 
effect in the direction of the bonds in addition to its influence 
on the angle between neighboring bonds. Thus, the 2-body 
and 3-body terms cannot be directly mapped to the stretching 
and bending modes of deformation, respectively [52, 60].

The current study also provided microscopic explana-
tions for the strain softening behavior of the gels under shear 
deformation. AQS simulations were performed in order to 
demonstrate that strain-softening is not solely due to rheo-
logical effects at finite temperature. To support the above 
statement, we computed the correlation between the stretch of 
interparticle bonds and their alignment in the direction of the 
maximum principal stress of the network. An anticorrelation 
was observed between these two quantities during the initial 
softening phase of the stress–strain behavior. This suggests 
that besides the release of residual bending stress (3-body 
term) during the straightening of curly chains, reorientation 
of stressed axial bonds between particles (2-body term) could 
play an important role in the initial softening response of low 
volume fraction gel models.

Finally, the numerical simulations of this work showed that 
topology and mechanical behavior of gels are not bounded 
to a single choice of effective interactions. We obtained 
qualitatively similar behavior and results for models whose 
mathematical formulation differs from each other [27, 28]. 
Thus, both the topology and the local mechanical interactions 
between colloidal particles are important in defining an appro-
priate potential, with a 2-body term and a 3-body term, for 
the mechanical response of soft gels. In the end, it is noted 
that although the current work was able to provide some new 
insight into certain aspects of the behavior of colloidal gel 
networks, future synergistic numerical modeling and exper
imental studies are required for better understanding of their 
behavior. Furthermore, the three gel models studied here and 
in literature have used specific choices of model parameters, 
i.e. no parametric studies have been done to demonstrate pos-
sible effects of different choices on the numerical predictions. 
Future studies are required to address this important drawback 
by investigating whether there exists a general framework for 
choosing model parameters and assessing their influence on 
numerical results. Finally, it is noted that the conclusions of 
the present work are primary valid for the interaction poten-
tial proposed here, i.e. different mechanics and microstructure 
may be seen if other potential functions [29] are used.

Figure 8.  PCC between the alignment Θ and the stretch for 
all interparticle bonds in the present model at different volume 
fractions.
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