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1.  Introduction

Since the dawn of electricity, it has been important to find 
a way to efficiently store electrical energy. This has led to 
the development of multiple technologies used for energy 
storage. One such category of devices is supercapacitors 
(SCs). SCs are high-capacitance energy storage devices with 
higher charging/discharging rates than those of batteries. 
Electrochemical double layer capacitors (EDLCs) are one 
type of SC being used today. First patented by Becker in 1957 
[1], they store potential energy at the electrode/electrolyte 
interface via charge separation between the electrical double 
layers (EDLs) in the electrolyte at the cathode and the anode 
[2]. Due to the nanoscale separation between the charge of 

each electrode and the centre of mass of the counter charge 
in the electrolyte, EDLCs are able to achieve much higher 
capacitances and hence much higher stored energy densities 
than classical dielectric capacitors [3]. In addition, since the 
process used to charge EDLCs is non-Faradaic, they have far 
longer lifetimes than rechargeable batteries, and so can typi-
cally be cycled upwards of a million times [4].

The capacitances of the double layers at the cathode and 
anode, combined in series, are each inversely proportional to 
the distance from the electrode to the centre-of-mass of the 
counter charge. Since this distance is of nanoscale, the capac-
itance per unit surface area reaches tens of microfarads per 
cm2. However, the related increase of stored energy densi-
ties comprises only a tiny fraction of the energy density of 
advanced batteries [5, 6]. As the capacitance and energy den-
sity are roughly proportional the overall area of the electrode/
electrolyte interface, one way to increase the energy storage 
in EDLCs is to increase that area. Nanostructured electrodes 
with volume filling surfaces are therefore widely used to boost 
the volumetric (and gravimetric) energy density.
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In order to achieve the highest surface-to-volume ratio, 
one uses nanoporous electrodes. As long as the pores in the 
electrode are still wide enough to endorse a full EDL at the 
pore walls, the capacitance will indeed scale proportionally 
to the interface area [7]. Hence such porous electrodes will 
provide the same normalised capacitance (capacitance per 
electrode surface area) as a flat electrode, but a higher overall 
capacitance for a device of the same size. However, the simple 
proportionality of capacitance to the interface area no longer 
holds true when the pore sizes become of the order of the size 
of ions. That interesting nanoscale effect was first observed 
in [8, 9], where it was found that the normalised capacitance 
of carbide-derived-carbon nanoporous electrodes increases as 
the average pore width decreases and approaches the size of 
the ion. This result boosted further research of supercapacitors 
with ultrananoporous/nanostructured electrodes.

These experimental findings motivated many groups to 
research and justify the observed ‘anomalous’ normalised 
capacitance rise for nanoscale pores. A number of theoretical 
models were constructed to investigate and predict capaci-
tance changes with respect to factors such as pore width, ion 
diameter and pore ionophilicity [10–15]. One such expla-
nation attributed the effect to the formation of a, so called, 
‘superionic state’, in which interionic interactions between 
neighbouring ions are screened by electrons in the pore walls, 
allowing more ions of the same charge to pack into the pore 
for a given voltage. This results in a higher capacitance and 
energy density [11, 12]. Using this explanation, it was made 
possible to theoretically replicate a number of experimentally 
observed trends in equilibria as well as charging dynamics 
[11, 12, 16, 17].

In the course of these investigations, a simple model of a 
‘single-file nanopore’ was proposed [14]. The model consid-
ered a metallic, cylindrical pore of infinite length containing a 
single row of ions. The approach of [14] may look similar to 
treating ions as hard spheres with point charges at their centres 
(as per the restrictive primitive model, shown to be an accept-
able approximation when comparing with more realistic ionic 
structures [18]), but in fact it is more ‘phenomenological’ and 
thereby more general.

The model relies on several key assumptions: firstly, that 
the pore is ionophilic and hence always packed with ions. 
Secondly, that the electrostatic interactions between ions 
are screened by image forces, and so decay exponentially in 
the lateral direction [14] so that only nearest neighbour ions 
interact with each other. Hence the system can be mapped 
onto an exactly solvable one row, two-state Ising model, in 
which the charges of the ions and the applied potential are 
analogous to the spins and magnetic field of the Ising model, 
respectively [19]. Thus, the system energy can be modelled 
via the thermally-scaled Hamiltonian of the 1D Ising model 
with nearest neighbour interactions in the presence of an 
external field (applied potential):

H
kBT

=
∑

i

α

2
(sisi+1 + sisi−1) + usi.� (1)

Here kBT  is the thermal energy, the charge of ions i and i  +  1 
is denoted by si and si+1, respectively, u is the dimensionless 

electrostatic potential inside the pore, scaled to thermal 
voltage kBT/e, where e is the elementary charge, and α is the 
coupling constant between nearest neighbour ions at closest 
approach, given by [14]:

α =
U(d)
kBT

� (2)

where U(d) is the interaction potential between ions of the 
same sign and d is the diameter of the ions in the pore, which 
determines the distance of closest approach between them. 
For an ideal metal:

α ≈ 3.08
LB

a
exp (−2.4d

a
)� (3)

with a, the pore radius, and LB, the Bjerrum length given by 
LB = e2/εkBT  (in Gaussian units, used throughout this paper) 
where ε is the effective dielectric constant.

For this system, exact solutions of the averaged value of 
‘spin’ (in this case, charge) and its derivative with respect to 
voltage, the response function χ(u), can be found [20]. This 
gives the normalised differential capacitance:

C(u) = − εLB

2πad
χ(u).� (4)

This model shows that (at least at small deviations from the 
potential of zero charge of the electrode), for a single file row 
of ions, maximum normalised capacitance indeed occurs for a 
pore of the same width as the ion diameter [14]. Furthermore, 
as the pore widens, the normalised capacitance decreases due 
to lower screening of the interactions between ions. This result 
is to be expected; as the interactions between neighbouring 
ions become stronger, the energetic barrier which needs to 
be overcome to pack many counter-ions into close proximity 
increases and hence the capacitance falls.

However, while single file pores achieve the highest nor-
malised capacitances at small voltages, as first shown exper
imentally [8, 9], they have shortcomings in other respects 
that need addressing. One of them relates to their charging 
dynamics, which directly affect the power density of an EDLC 
containing such pores. As simple steric arguments would sug-
gest, ultra-narrow pores should lead to slower charging than 
wider pores. Several studies looking at the charging dynamics 
of nanopores of varying widths confirmed this [17, 21]. 
This problem is usually mitigated by implementing a hierar-
chical structure of pores containing both narrow nanopores 
(for achieving maximum capacitance) and wider pores (for 
achieving better ion transport and accessibility) [22].

As well as this, one also needs to take into account how 
the charge storage depends on the applied voltage. A study in 
[16] found that, while at lower voltages a narrower pore was 
able to store more energy, as the voltage was increased wider 
pores performed better in this respect. But that conclusion was 
proved for single file cylindrical and single ion layer slit pores. 
Thus, it would be interesting to test this important conclusion 
for wider pores, containing multiple ion rows.

When considering multiple rows of ions, a number of 
new factors need to be accounted for. Firstly, extending the 
Ising model approach adopted for the single file [14] onto the 
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multi-row case, the transfer matrix used in finding the solutions 
for average charge, response function and normalised capaci-
tance [15, 23] becomes much larger. Hence, the previously 
used method of finding the eigenvalues of this matrix alge-
braically becomes unfeasible, and a new approach is required. 
Secondly, whereas in the 1D case only interactions between 
nearest neighbours along one axis need to be considered, now 
we need to account for interactions both along and between the 
rows of ions. Next, whereas for the 1D model it is roughly suf-
ficient to know the interactions between ions along the central 
axis of the pore, for the multi-row cases we have to account 
for the electrostatic interactions of the ions positioned eccentri-
cally with respect to the axis, which results in a more complex 
expression for the coupling constant. Finally, the ions can now 
be arranged in many distinct ways with respect to each other. 
For example, for a model with two rows of ions, the ions could 
be placed in two parallel lines in line with each other, or shifted 
vertically with respect to each other, or twisted with respect to 
each other. These countless ways of arranging the ions make 
the analysis of such models more challenging.

In this investigation, the previous Ising model approach 
taken in [14] in analysing a single file system is extended to 
the case of multiple ion rows. This is done by presenting a 
novel semi-numerical method for dealing with larger transfer 
matrices and hence evaluating the capacitance and charge 
storage of wider cylindrical pores. A number of static con-
figurations are also considered to begin comparing stability 
of different arrangements of ions for a given number of rows.

2.  Model

2.1.  Hamiltonians and transfer matrices for multi-row models

Figure 1 shows a schematic of possible two and three row 
configurations, as well as a one row model for comparison. As 
mentioned in the Introduction, unlike in the single file model, 
nearest neighbour ion interactions now need to be considered 
both along and between the rows. Therefore, the Hamiltonians 
for such systems become far more complicated than that of 
the single file system presented in equation (1). This is made 
easier to deal with by assigning to each group of inter-row 
nearest neighbours a single ‘supercharge’, si , which contains 
as many charges as there are rows.

Using supercharge notations, and in units of kBT , the 
Hamiltonian

H =
∑

i

h(si, si+1)� (5)

reads differently for the two and three row cases. Unlike the 
single file Hamiltonian presented in equation (1), which only 
considers nearest neighbour interactions along the single 
row, the multi-row Hamiltonians also consider interactions 
between ions in neighbouring rows (see figure 1).

For the two row case, si =

(
pi

qi

)
, where pi, qi ∈ {±1} and:

h(si, si+1) = α1( pipi+1 + qiqi+1) + α2piqi

+ α3piqi+1 + α4qipi+1 + u( pi + qi)
�

(6)

where α1−4 correspond to coupling constants between neigh-
bouring ions; u is the dimensionless electrostatic potential of 
the pore as in the model of [14].

The set of possible supercharge combinations for this 
system is:

SC =

[(
−1
−1

)
,

(
−1
1

)
,

(
1
−1

)
,

(
1
1

)]
.� (7)

These combinations will be used when building the transfer 
matrix T for the two row model.

The three row model is constructed via the same method, 
but now each supercharge consists of three charges, such that 

si =




pi

qi

ri


 and pi, qi, ri ∈ {±1} and:

h(si, si+1) = α1( pipi+1 + qiqi+1 + riri+1)

+ α2( piqi + piri + qiri)

+ α3( piqi+1 + piri+1 + qipi+1

+ qiri+1 + ripi+1 + riqi+1) + u( pi + qi + ri)
� (8)
where α1−3 correspond to coupling constants between neigh-
bouring ions.

The set of possible supercharge combinations for this 
system is:

SC =

[

−1
−1
−1


 ,



−1
−1
1


 ,



−1
1
−1


 ,



−1
1
1


 ,




1
−1
−1


 ,




1
−1
1


 ,




1
1
−1


 ,




1
1
1




]
.

� (9)
For both models, the transfer matrix is constructed using 

the supercharge combinations given by equations (7) and (9) 
for the two and three row models, respectively. Each element 
of the transfer matrix T is given by:

Tmn = e−h(SCm,SCn)� (10)

where indices m and n indicate the element in the SC row 
matrix. They run from 1 to 4 for the two row model and 1 to 8 
for the three row model. Thus, the transfer matrix is a 4 × 4 
and 8 × 8 matrix for the two and three row cases, respec-
tively. The details of the application of transfer matrix theory 
are described in section 4.

2.2. The quantities to calculate: average charge, capacitance, 
stored energy

To find the important properties (average charge, response 
function, normalised capacitance and energy density) of the 
systems, transfer matrix theory is used. In the limit of an infi-
nite lattice (as for the cases presented here) only the largest 
eigenvalue of the transfer matrix, λ1, and its derivatives with 
respect to u are needed. See section 4.1 for the explanation as 
to why. The average charge per supercharge is given by:

〈Si〉 = − 1
λ1

∂λ1

∂u
.� (11)
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Therefore, the ionic charge per unit surface area of the pore, 
σ, is found as in [15]:

σ =

(
e

pd

)
〈Si〉� (12)

where p  is the pore circumference. Since the response func-
tion, χ(u), is the derivative of 〈Si〉 with respect to u, it can be 
expressed as:

χ(u) =
1
λ2

1

(
∂λ1

∂u

)2

− 1
λ1

∂2λ1

∂u2 .� (13)

By combining equations  (4) and (13), an expression for the 
normalised capacitance in terms of λ1 and its derivatives can 
be found:

C(u) = − e
kBT

dσ
du

= − εLB

2πad

[
1
λ2

1

(
∂λ1

∂u

)2

− 1
λ1

∂2λ1

∂u2

]
.� (14)

Finally, the energy stored by the pore after charging the elec-
trode from u  =  0 to u = u, in units of kBT , is given by [16]:

E =
kBT
e2

∫ u

0
u · C(u)du� (15)

which can be evaluated such that E is expressed in terms of λ1 
and its derivatives:

E =
1

2πad

(
u · λ

′
1(u)

λ1(u)
+ ln

[
λ1(0)
λ1(u)

])
.� (16)

Equation (16) is derived in section  4.3. The novel semi-
numerical approach for calculating λ1 and its derivatives for 
large transfer matrices is explained in section 4.

2.3.  Coupling constants

As mentioned above, when it comes to calculating the coupling 
constants between ions in the multi-row models, a different 
equation from the one used in the single file case, equation (2), 
is needed. Therefore, the energy of the electrostatic interac-
tion between ions in eccentric position with respect to the axis 
of the cylindrical pore is given by the following expression. 
Using cylindrical coordinates, the potential between two point 
charges (of the same sign) placed at (0,ρ0,0) and (z,ρ ,φ) in a 
metallic pore of radius a is given by [24]:

U(z, ρ,ϕ) =
e2

ε

2
a

∞∑
m=0

lmcos(mϕ)
∞∑

n=1

Jm(
knmρ0

a )Jm(
knmρ

a )

knmJ2
m+1(knm)

e−
knm|z|

a

� (17)
where z is the lateral distance between the charges, ρ  and ρ0 
are the radial distances of the charges from the central axis, ϕ 
is the azimuthal angle between the charges, lm  =  1 for m  =  0 
and lm  =  2 for m  >  0, Jm is the cylindrical Bessel function of 
the first kind of order m, and knm is the nth positive root of 
Jm(x). As in equation (3), e is the elementary charge and ε is 
the effective permittivity of the pore interior due to polari-
sability of the ions. Equation (17) simplifies to equation (3) 
when considering ions on the pore axis and when |z| � a

knm
.

The coupling constant α is related to the interionic poten-
tial as per equation (2):

α =
U(z, ρ,ϕ)

kBT
.� (18)

Equations (17) and (18) allow us to describe interactions of 
charges of ions in any arrangement with respect to each other 
and the axis of the pore. For a system with a given number 
of rows, the same Hamiltonian can be used, altering only the 
coupling constants α to reflect the specific arrangement of 
ions.

2.4.  Approximations

As in the model of [14], the pore is assumed to be ionophilic, 
so that the ions in the pore are closely packed. The intra-ion 
charge distributions are modelled with point charges at their 
centres. The ions are assumed to be of the same size, so that 
the ion centres in each row occupy the sites of a 1D lattice 
with a lattice constant equal to their diameter (for a single file 
model the extension of the case when cations and anions have 
different sizes was investigated in [23]).

The exponential screening of electrostatic interactions 
of ions in the lateral-direction which facilitates the dense 
packing of ions of the same charge is still present for the wider 
row models, as confirmed by the e−|z| term in equation (17). 
This allows us to account only for the nearest neighbour 
interactions in our Hamiltonians. But note that equation (17) 
considers the electrode to be ideally metallic, whereas most 
modern EDLCs are made up of carbon materials. Therefore it 

Figure 1.  Sketches of the (a) one row model, (b) two row model, (c) two row model with the two rows shifted with respect to each and (d) 
three row model. The top logos depict the placement of the ionic rows within the pore. The middle cross-sections show the side-on view of 

the ions in the pore. The bottom line assigns the ‘spins’ si to each site in a single file pore, and ‘superspins’ si =
(

pi
qi

)
 for a double file pore 

and si =
(

pi
qi
ri

)
 for a triple file pore (see main text).
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is appropriate to question whether the exponential screening 
is still applicable in such a case. A study performed in [13], 
which took into account field penetration into the electrode 
pore walls, suggested that the screening was not as strong 
as in ideal metals, but was still exponential. Furthermore, a 
study in [25] used density functional theory to investigate 
the nature of the screening for different ions inside gold and 
carbon nanotubes. Once again, the results showed that, while 
the screening in gold was stronger, both the gold and carbon 
nanotubes showed sufficiently strong screening for narrow 
tubes. The screening was considered to be strong enough to 
result in the superionic state for pore widths of a similar mag-
nitude to ion diameter. This justifies the use of approximation 
of exponential screening, on the condition that the pore-walls 
are not atomically thin.

3.  Results and discussion

For all the plots presented, the ion diameter d was set to 
0.7 nm. The temperature T was taken as room temperature, 
298.15  K, and the dielectric permittivity ε as 2 (due to the 
electronic polarisability of ions for a densely packed pore). 
For these conditions, the Bjerrum length LB is equal to 28 nm.

3.1.  Comparison of charge and capacitance for one, two and 
three row models

From the single row model investigation of [14], it follows 
that before a second row of ions can fit, maximum capaci-
tance in the low voltage regime is achieved when the pore 
diameter is the same size as that of the ions and it decreases 
for wider pores. In the present section the one, two and three 
row two-state models are investigated in the broad range of 
electrode polarizations. These cases are specifically analysed 
for pore diameters of 0.70, 1.40 and 1.51 nm, respectively. The 
ionic charge per unit surface area and differential capacitance 
against the voltage drop between the electrode and the bulk of 
the electrolyte for these cases are shown in figure 2.

As shown by the σ − V  plot, the multi-row models require 
a significantly higher applied voltage to begin replacing co-
ions with counter-ions than the single row model. This is 
intuitively clear and can be explained by two reasons; firstly, 
the pore for the one row case is much narrower than for the 
multi-row cases. This leads to higher screening of interionic 
interactions. Secondly, in the multi-row models each ion has 
more ion neighbours to interact with. Combining these two 
factors, the ions in the multi-row models have stronger and 
more numerous interactions with other ions than the one row 
model. This manifests itself in two ways: firstly, a more stable 
arrangement is adopted by the ions at zero applied voltage. 
Therefore, the system needs to overcome a higher energy 
barrier to leave this initial stable state and a higher applied 
voltage is needed to push it to do so. This explains why the σ 
value in figure 2(a) remains at zero for larger voltages for the 
multi-row cases than for the one row model when the voltage 
is increased. Secondly, even once the arrangement of anions/
cations begins changing in the multi-row models, there will 
be intermediate stable arrangements before the final state 
consisting of only counter-ions is reached. This explains why 
plateaus are observed in the σ − V  plots. The width of each 
plateau indicates how stable that arrangement is; a more stable 
configuration will require a higher energy step to shift from 
it and hence the voltage will need to be increased by a larger 
increment, i.e.: the plateaus will be wider for more stable con-
figurations. From the σ value of a plateau, the stable configu-
rations can also be inferred, as will be shown in section 3.2.

The differential capacitance for these models is shown in 
figure 2(b). As expected, the number of peaks for each model 
corresponds to the number of transitions between stable 
arrangements in the ionic charge per unit surface area case. 
Hence, the two and three row models have two and three 
capacitance peaks, respectively. The height of these peaks cor-
responds to the gradient of σ(V) between the plateaus. Hence, 
as per the stability explanation offered above, it is unsur-
prising to see the maximum capacitance decrease as the pore 
size increases. This is because the higher row systems have 
more stable states due to the stronger and more numerous 

Figure 2.  Plots comparing the (a) dimensionless ionic charge per unit surface area ( pd/e)σ and (b) differential capacitance per unit surface 
area as a function of voltage for increasing number of rows. Plots are only taken for V > 0 due to symmetry of functions about V  in the 
standard model (the symmetry will break if cations and anions have different sizes and/or different adsorption energies in pores of non-
polarised electrodes [23]).
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interactions, and so change from those states less readily than 
lower stability states as the voltage is increased.

3.2.  Comparison of stability for two row configurations

The two row two-state model was tested for three distinct 
cases, with a different ion configuration in the pore for each 
case. These cases are sketched in figure 4(a). It is important to 
note that, although the ions are configured differently in each 
case, the ion density is the same for all three cases. Each case 
corresponds to a 1.4 nm wide pore, so exactly two ions can 
fit side-by-side. The coupling constants α1−4 for each case 
are calculated subject to equation  (18). Up to two decimal 
places, they are given in table 1 below. The highest value of 
α, 9.97, corresponds to the interaction of ions with no lateral 
separation between them. Clearly, the interionic interaction 
screening by the pore is weakest for this case.

The three cases were compared by looking at the ionic 
charge per unit surface area and differential capacitance for 
each configuration over a potential range. These quantities 
were calculated using equations  (12) and (14), respectively. 
Corresponding plots can be seen in figure 3.

A lot of useful information can be gained from the plots 
in figure  3. Looking initially at the σ − V  plot, it is clear 
that each of the three configurations respond to the applied 
voltage differently. Initially, when the electrode is not polar-
ised, all of the configurations maintain a charge-neutral state. 
However, when the applied voltage gets high enough, the 
driving force for counter-ions (for this electrode polarisation: 
anions) to fill the pore becomes sufficiently strong. Hence co-
ions become replaced by counter-ions, resulting in the average 
charge inside the pore decreasing. Configuration 1 requires 
the highest applied voltage for this to happen, suggesting that 
it has the most stable charge-neutral state of the three.

Surprisingly, however, once the initial state is disrupted, 
the rate of counter-ions replacing co-ions continues to vary. 
This manifests itself in intermediate plateaus in the σ-V  plots, 
as seen above. Importantly, the value of ( pd/e)σ at these 
intermediate arrangements gives an indication as to how these 
arrangements might look. Configurations 1, 2 and 3 have pla-
teaus occurring at ( pd/e)σ values of  −1, − 2

3 and  −1, respec-
tively. Hence for configurations 1 and 3, one in every four ions 

is a cation, whereas for configuration 2, one in every three ions 
is a cation. Thus, we decipher the arrangements of the ions in 
these stable regions, as shown in figure 4(b).

The transitions between the regions described above lead 
to the capacitance peaks shown in figure 3(b). Since differ
ential capacitance, given by equation  (14), depends on the 
derivative of ionic charge density, the height of the capaci-
tance peaks depends on the gradient of σ with respect to 
voltage. This explains why the capacitance plot has multiple 
peaks for each configuration, as they correspond to the trans
itions in the σ − V  plot.

Figure 3.  Plots comparing three different configurations of ions for a two row two-state model. The plots show the (a) dimensionless ionic 
charge per unit surface area ( pd/e)σ and (b) normalised differential capacitance as a function of voltage. As in figure 2, the plots are only 
displayed for V > 0.

Figure 4.  Ion configurations for three distinct two row 
arrangements. (a) The structural arrangement of the ions. (b) The 
proposed intermediate stable configurations of the ions, with red 
and blue ions corresponding to cations and anions, respectively.

Table 1.  Values of coupling constants α1−4 for each of the two row 
cases.

Case 1 Case 2 Case 3
α1 7.31 7.31 4.69
α2 9.97 7.46 9.97
α3 3.42 7.46 4.69
α4 3.42 1.25 4.69
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The values of the coupling constants play a critical role 
in the shapes of all three plots; the stronger the interaction 
between the ions, the higher the applied voltage will be needed 
to overcome the attraction between cations and anions and the 
unfavourable ion-ion repulsions when the pore is filled mainly 
with counter-ions. This is the basis of the superionic state first 
proposed in [11]. As the pore widens, the screening of elec-
trostatic potential between ions also decreases, resulting in 
the ions interacting more strongly together and so requiring 
higher applied voltages to achieve a pore containing only ions 
of the same charge. The strength of the coupling constants 
also determines the positions of the plateaus.

The analysis of two row two-state stability is only per-
formed here for three configurations, in which the ions are 
held in rigid positions with respect to each other. This is a 
highly idealised model, as one would expect the position of 
the ions to be flexible, shifting to adopt whichever arrange-
ment had the lowest energy for a given voltage. Adding more 
configurations and testing their energies, one could reach a 
plot resembling how a real two row system might act.

3.3.  Energy density

The energy stored by the pores of different sizes, per their 
unit surface area, as a function of applied voltage, was also 
investigated. The configurations for the one, two and three 
row models were the same as in section 3.1. The results are 
plotted in figure  5. They show a very similar trend to that 
found in [16]; the narrower, one row system stores a higher 
energy at lower voltages while the multi-row models store 
significantly higher energies when the applied voltage is 
increased. This is not an unexpected result, and can be justi-
fied by the same reasoning as in section 3.1; the multi-row 
models have more stable initial states, due to the stronger and 
more numerous interionic interactions present. Therefore a 
higher voltage needs to be applied to begin filling the pore 

with predominantly counter-ions. Hence the multi-row pores 
can only store more energy when a sufficiently large potential 
is applied (see: the ‘pressing-a-spring’ concept [26]).

As well as this, the plateaus previously seen in ionic charge 
per unit surface area are once again observed. This is also to 
be expected, since the intermediate stable states will be dis-
rupted at higher potentials. In this respect, the correspondence 
between figures 5 and 2(a) can be clearly seen, with the pla-
teaus occurring in the same voltage ranges.

These results show that, while narrow pores can achieve 
optimal energy density at low voltages, wider pores perform 
significantly better when the applied voltage is increased. 
Clearly, the type of pore used should depend on the specific 
application. However, it does open the avenue of multi-row 
pores being used for capacitors with higher applied voltages2.

3.4.  Model limitations

The model presented has a number of limitations. The first of 
these is that the ions are fixed in rigid positions with respect 
to each other. In reality, the ions would be able to shift slightly 
to take on more stable arrangements. This would result in 
less well defined plateaus in the σ − V  plots as the different 
arrangements would each have different corresponding stable 
configurations. Secondly, the arrangement of ions is kept 
the same for each row model until a new row can be added. 
Depending on the system, the more stable arrangements for 
wider pores could result in the ions of like-charge trying to 
reduce repulsions by shifting to the sides of the pore. For 
example, this would explain a smoother transition between a 
single row and two row model as the pore is widened.

This model also does not consider a number of other fac-
tors which could affect the results; firstly, it does not take into 
account differences in ion sizes, which would lead to different 
packing for the cation rich and anion rich cases [23]. It also 
does not consider van der Waals forces between ions (which 

Figure 5.  Plot showing the energy stored in the pore per its unit surface area for the one, two and three row models as a function of applied 
voltage. The pore diameters for the one, two and three row models are taken to be 0.70, 1.40 and 1.51 nm, respectively.
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would differ for cation/cation, cation/anion and anion/anion 
neighbours), imperfect screening by electrons in the pore 
walls [13] or interactions of ions across the pore walls [27], as 
well as likely other phenomena.

Furthermore, the cases studied thus far here all refer to 
pores containing a small number of ion rows, with all of the 
ions being adsorbed to the electrode surface. It would be 
interesting to increase the width such that non-adsorbed ions 
could appear, to see whether a bulk phase would form and 
how this would be reflected in the normalised capacitance. 
Unfortunately, as the number of rows increases, the size of 
the transfer matrix for the system grows exponentially, and 
hence higher computational power would be required. In 
such cases, direct Monte-Carlo will be a much better way 
forward.

Finally, experimental testing of the observed trends on 
well-structured monodispersed samples would be needed to 
confirm the results found, particularly to approve the exist-
ence of the intermediate stable ion arrangements. The geo-
metrical model that we studied here is very idealised, and does 
not consider many factors, such as pore size dispersion and 
non-uniform pore width.

However, as a model for densely packed, ionophilic cylin-
drical structures of straight, narrow, multi-row pores, that 
could be fabricated in the near future, it presents a good 
‘starting point’. It be developed over time to go beyond the 
mentioned constraints.

4.  Methods

4.1. Transfer matrix theory

The transfer matrix theory is most easily introduced for the 
simple one row, two-state Ising model. This model is defined 
by several parameters:

si ∈ {±1} The charge at any site i can be ±1

s := (s1, s2, ..., sN) This is the configuration of 
charges in the system

Ω = {±1,±1, ... ±1}N This is the space of charge 
configurations, of length N

The Hamiltonian for this system is given by:

H(s)
kBT

= α
N−1∑
k=1

sksk+1 + u
N∑

k=1

sk� (19)

where α and u are the coupling constant and dimensionless 
electrostatic potential, respectively, as given in equation (1). 
The probability distribution of charge configurations on Ω is 
given by:

P(s) =
1

ZN
exp (−βH(s))� (20)

where ZN is the partition function and β = 1/kBT . In this 
analysis, energy is taken in units of kBT , which is formally 
equivalent to taking β = 1. By definition, the probability of all 

the individual charge configurations will sum to 1, allowing 
the partition function to be defined as:

ZN =
∑
s∈Ω

exp (−H(s)).
� (21)

For such systems, the average charge per site, 〈Si〉, is found as:

〈Si〉 = E

[
1
N

N∑
i=1

si

]

=
∑
s∈Ω

1
N

(
N∑

i=1

si

)
exp (−H(s))

ZN
.

�

(22)

Taking the partition function as a function of the external field, 
u, the following derivation can be performed:

∂

∂u
ln (ZN) =

1
ZN

∂

∂u
ZN

=
1

ZN

∂

∂u

∑
s∈Ω

exp (−H(s))

=
1

ZN

∑
s∈Ω

(
−

N∑
k=1

sk

)
exp (−H(s))

= −N〈Si〉.

Therefore, the average charge per site is given by:

〈Si〉 = − 1
N

∂

∂u
ln (ZN).� (23)

Hence the situation is reduced to the evaluation of the partition 
function. Since in this model the length of the pore is taken to 
be much larger than the ion size, analysing the system in the 
limit N → ∞ gives a good approximation. Equation (19) can 
be re-written:

HN =

N∑
k=1

h(sk, sk+1)� (24)

where

h(sk, sk+1) = αsksk+1 + usk.� (25)

For this Hamiltonian, the partition function ZN can be 
evaluated:

ZN =
∑
s∈Ω

N∏
k=1

exp (−h(sk, sk+1))

= Tr(TN)

�

(26)

where T is the transfer matrix defined as:

T =

(
e−h(−1,−1) e−h(1,−1)

e−h(−1,1) e−h(1,1)

)
.� (27)

Computing TN would require significant calculation. However, 
only its trace needs to be found. Since T is a square matrix, via 
the eigen decomposition it can be diagonalised:

T = U · D · U−1� (28)

where U is a matrix composed of the eigenvectors of T, U−1 is 
its inverse and D is a diagonal matrix defined as:
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D =

(
λ1 0
0 λ2

)
� (29)

where λ1 and λ2 are the eigenvalues of T such that 
|λ1| > |λ2|.Therefore, the trace of TN can be found by:

Tr(TN) = Tr(UDU−1)N = Tr(UDNU−1)

= Tr(DN).
� (30)

Hence:

Tr(TN) = Tr(DN) = λN
1 + λN

2 .� (31)

Therefore, since |λ1| > |λ2|, in the limit N → ∞ only the 
largest eigenvalue of T contributes to the value of the partition 
function. So, the partition function can be expressed as:

ZN ≈ λN
1 .� (32)

By combining equations (23) and (32), an expression for the 
average charge per site in terms of the largest eigenvalue of 
the transfer matrix can be obtained:

〈Si〉 = − ∂

∂u
ln (λ1)� (33)

which is the same expression as equation (11) and also allows 
the derivation of equations (13) and (14) to find the response 
function and normalised capacitance, respectively.

From the analysis performed thus far, it is clear that several 
key quantities need to be found to calculate the average charge 
per site, response function and differential capacitance: λ1, 
∂λ1/∂u and ∂2λ1/∂u2. For the one row model, it is relatively 
simple to obtain expressions for these terms algebraically. λ1 
is found by evaluating the expression:

det(T − λ · I) = 0� (34)

where T is the transfer matrix defined in equation  (27). 
Solving equation (34) gives a quadratic equation for λ:

λ2 − 2e−α cosh(u)λ− 2 sinh(2α) = 0.� (35)

Solving this expression for the maximum value of λ yields:

λ1 = e−α cosh(u) +
√

e2α + e−2α(cosh2(u)− 1).� (36)

Hence an expression for the largest eigenvalue of the transfer 
matrix has been obtained and can be used to find the desired 
properties of the system. The situation with multi-row systems 
is, however, more complicated.

4.2.  Semi-numerical approach for large transfer matrices

The method presented above, in which equation (34) is used to 
find the largest eigenvalue of the transfer matrix, becomes increas-
ingly difficult to use as the size of the transfer matrix grows. For 
example, it would be unfeasible to find algebraic expressions for 
the largest eigenvalues of the transfer matrices presented for the 
two and three row systems in section 2.1. Should an even higher 
number of rows be used, the matrices become even larger. Hence 
a new method is presented, in which the values are instead com-
puted semi-numerically. Via numerical computation, it is trivial 
to find the largest eigenvalue of a given transfer matrix. However, 

finding its derivatives is not so simple, and requires the use of 
Jacobi’s formula and its second derivative analogue:

d
dt

det(B(t)) = Tr
(

adj (B(t)) · dB(t)
dt

)
� (37)

d2

dt2 det(B(t)) = Tr
(

adj (B(t)) · d2B(t)
dt2

)

+ Tr
(

d
dt

(adj (B(t))) · dB(t)
dt

)

�

(38)

where the adjugate adj() of a square matrix is the transpose of 
its cofactor matrix [28]. For the derivations of these expres-
sions, see the appendix.

Now consider a matrix B(t) = A(t)− λ(t) · I, where λ(t) 
is an eigenvalue of A(t) such that:

det (A(t)− λ(t) · I) = 0.� (39)

Therefore:

d
dt

det (A(t)− λ(t) · I) = 0 , ∀ t� (40)

d2

dt2 det (A(t)− λ(t) · I) = 0 , ∀ t.� (41)

Combining equations  (37) and (40) allows the derivation of 
the expression:

∂λ(t)
∂t

=
Tr (adj (A(t)− λ(t) · I) · A′(t))

Tr (adj (A(t)− λ(t) · I))
.� (42)

This expression allows the calculation of ∂λ1/∂u and hence 
〈Si〉. Analogous to this, the solution for the second derivative 
of λ can be found by combining equations (38) and (41):

∂2λ

∂t2 = [Tr(adj(A − λ · I))]−1 · [Tr(adj(A − λ · I) · A′′

+ (adj(A − λ · I))′ · (A′ − λ′ · I))]
�

(43)

where λ and A are functions of t. This expression in turn 
allows the calculation of ∂2λ1/∂u2 and hence χ(u) and nor-
malised differential capacitance, C(u).

This semi-numerical method can be used to find the differ
ential capacitance for multi-row Ising models with large 
transfer matrices. Its strength is that it can be so easily applied 
to different models, with only the Hamiltonian and corre
sponding transfer matrix needing to be altered.

4.3.  Energy calculation

The energy for a system charged to the potential value u = u 
can also be found in terms of λ1 and its first derivative with 
respect to u. This is done by evaluating the following integral 
[16]:

E =
kBT
e2

∫ u

0
u · C(u)du.� (44)

Remembering equation (23), the response function, χ(u), can 
be written in the form:
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χ(u) = − 1
N

∂2

∂u2 ln[ZN(u)].� (45)

Finally, the capacitance can now be written as C(u) = −C∗χ(u), 
where C* is a constant defined as C∗ = εLB

2πad. Therefore the 
integral in equation (44) can now be evaluated via integration 
by parts:

E =
kBT
e2

C∗

N

∫ u

0
u · ∂2

∂u2 ln[ZN(u)]du

=
kBT
e2

C∗

N

(
u · ∂

∂u
ln[ZN(u)]− ln[ZN(u)] + ln[ZN(0)]

)
.

Then, by using equation  (32), the final expression for the 
energy is obtained:

E =
1

2πad

(
u · λ

′
1(u)

λ1(u)
+ ln

[
λ1(0)
λ1(u)

])
.� (46)

Once again the semi-numerical method presented in sec-
tion 4.2 can be used to find the first derivative of λ1 at u = u. 
As noted throughout the paper, Gaussian units are used and 
energy is given in units of kBT .

5.  Conclusion

A semi-numerical transfer matrix method has been presented 
to investigate the properties of EDLC nanopores containing 
multiple rows of ions. This method proposed the idea of 
‘supercharges’ to model multiple charges in a single layer. 
It can be extended to both multi-row and multi-state models 
easily.

The behaviour of multi-row models was studied for both 
two and three row two-state (cations and anions only, no 
voids or solvent molecules) systems. The results are signifi-
cantly different from those for single row pores. This can be 
attributed to the decreased inter-ion interaction screening for 
wider pores and the presence of more ions interacting with 
each other. The results reveal a possibility of stable interme-
diate configurations of anions/cations as the applied voltage 
is increased. These stable configurations give rise to multiple 
energy barriers that need to be overcome to fill the pore with 
counter-ions. The existence of these intermediate states was 
indicated via plateaus in the charge accumulation, σ, value 
when increasing applied voltage. The stability and arrange-
ment of the states could be inferred via the width and σ value 
of the plateaus, respectively. 

Once again, single-file pores were found to achieve max-
imum normalised capacitance at low electrode polarizations. 
This was justified by the easier packing of like-charge ions 
into the pore compared to multi-row models. However, the 
energy density investigation showed that whether a single- or 
multi-row pore option was preferred depended on the applied 
voltage, with single-file pores storing more energy at low volt
ages and multi-row pores becoming preferred as the voltage 
was increased. This result indicates that, whilst single row 
pores result in the highest normalised capacitances, the con-
sideration of operating voltage for energy density means that 

slightly wider pores may be the preferred option for larger 
voltages2.

In summary, a novel approach of analysing multi-row 
models allowed the investigation of densely packed iono-
philic pores. The results obtained indicate that, as the pore 
width increases, it becomes increasingly difficult to reach 
the Kondrat and Kornyshev ‘superionic’ state [11]. The 
results also open the door to follow-up investigations such as 
exploring the multi-row models for ionophobic pores. This 
could be done by adapting the model to consider holes as 
well as cations/anions, as in [15]. Also, as mentioned in sec-
tion 3.4, this model holds the ions in fixed positions within the 
pore. In reality, the ions would likely rearrange to the lowest 
energy arrangement for a given voltage. Therefore, Monte-
Carlo simulations could be used to model systems in which 
the ions change their packing arrangement in response to 
voltage changes. Such simulations would also test the qualita-
tive predictions of the present study. Experimental tests would 
require samples with ideal monodisperse cylindrical pores, 
but modern nanotechnology could provide such architecture 
in the near future.
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Appendix

A.1.  Derivation of Jacobi’s formula

In this project, the first and second derivatives of λ1, the largest 
eigenvalue of the transfer matrix T, were calculated. This 
was done by using Jacobi’s formula and its second derivative 
analogue, equations (37) and (38) in the main text. Here it is 
shown how these equations in this form were derived.
Taking a non-degenerate square matrix B(t) and performing a 
Taylor expansion:

B(t + δt) = B(t) + B′(t)δt +
1
2

B′′(t)δt2 +O(δt3)

= B
[

I + B−1B′δt +
1
2

B−1B′′δt2 +O(δt3)

]

2 Note that our conclusions referred to the energy per unit surface area of 
the pore. How will it translate to volumetric energy density of a sample 
electrode? Consider, e.g. an electrode as a slab of thickness L and flat 
area A. Let this sample be composed of parallel cylindrical pores of 
average radius r piercing the slab from front to back; each pore wi-
ill then have length L. The number of such pores in the sample will be 
Np = ΦA/πr2, where Φ is porosity. Surface area of each such pore will 
be Sp = 2πrL, and the total internal surface area of the pore-space will be 
S = NpSp = [ΦA/πr2]2πrL = Φ(A · L)/2r. The volumetric energy 
density will then be E(vol) = E · S/A · L = EΦ/2r , thus there will be a 
factor in volumetric energy density inversely proportional to the pore radius. 
Porosity, Φ, does not have a simple relation with the average pore radius, but 
in a dense system of pores it also increases with the decrease of the radius. 
The overall factor, Φ / 2r, could therefore counter-balance or weaken the 
possible effects of the increase of the energy E stored in each pore with the 
increase of the pore radius.
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where I is an identity matrix of the same size as B. Now a new 
term D(t) is defined:

D(t) = det(B(t)).� (A.1)

Hence, by using the property for square matrices that 
det(A · B) = det(A) · det(B):

D + D′δt +
1
2

D′′δt2 +O(δt3) = det(B) · det
[

I + B−1B′δt +
1
2

B−1B′′δt2 +O(δt3)

]
.

A new variable Y is now defined:

Y = B−1B′δt +
1
2

B−1B′′δt2 +O(δt3).� (A.2)

Therefore, using equations (A.1) and (A.2):

D + D′δt +
1
2

D′′δt2 +O(δt3) = D · det[I + Y].� (A.3)

Now, by using the relation ln(det(X)) = Tr(ln(X)) and set-
ting X = I + Y:

ln(det(I + Y)) = Tr(ln(I + Y)).� (A.4)

By applying the Taylor expansion ln(1 + x) = x − 1
2 x2 +O(x3) 

to (A.4), the following expression is obtained:

ln(det(I + Y)) = Tr
(

Y − 1
2

Y2 +O(Y3)

)
.

Hence:

det(I + Y) = eTr(Y− 1
2 Y2+O(Y3)).� (A.5)

Combining equations  (A.3) and (A.5) and using the trace 
property Tr(A + B) = Tr(A) + Tr(B) gives:

D + D′δt +
1
2

D′′δt2 +O(δt3) = D · eTr(Y)− 1
2 Tr(Y2)+O(Y3)

= D ·
(

1 + Tr(Y)− 1
2

Tr(Y2) +
1
2
(Tr(Y))2 +O(Y3)

)

where the second step is achieved via the Taylor expansion 
ex = 1 + x + x2 +O(x3). By taking this expression and sub-
stituting in the definition of Y from equation  (A.2), a large 
expression with δt and δt2 terms on both sides is obtained. 
Equating the δt terms on either side and using the definition of 
D from equation (A.1) gives:

d
dt

det(B) = det(B) · Tr(B−1B′).� (A.6)

Performing the same treatment for the δt2 terms on either side 
gives:

d2

dt2 det(B) = det(B) ·
[ (

Tr(B−1B′)
)2 − Tr(B−1B′B−1B′) + Tr(B−1B′′)

]
.

� (A.7)
Equations (A.6) and (A.7) are Jacobi’s formula and its second 
derivative analogue respectively. However, these forms of 
the equations  are not suitable due to containing B−1 terms; 

for the purpose of finding the derivative of λ, B is defined 
as B = A − λ · I , with det(A − λ · I) = 0, and it is therefore 
non-invertible. Therefore the expression

B−1 =
adj(B)
det(B)� (A.8)

is needed to remove the B−1 terms. Applying equation (A.8) 
to the B−1 terms in equations (A.6) and (A.7) yields the main 
text equations (37) and (38), respectively.
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