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Abstract

Estimating multiple parameters simultaneously is of great importance to measurement science and
application. For a single parameter, atomic Ramsey interferometry (or equivalently optical Mach—
Zehnder interferometry) is capable of providing the precision at the standard quantum limit (SQL)
using unentangled probe states as input. In such an interferometer, the first beam splitter represented
by unitary transformation U generates a quantum phase sensing superposition state, while the second
beam splitter U~ ' recombines the phase encoded paths to realize interferometric sensing in terms of
population measurements. We prove that such an interferometric scheme can be directly generalized
to estimation of multiple parameters (associated with commuting generators) to the SQL precision
using multi-mode unentangled states, if (but not iff) Uis orthogonal, i.e. a unitary transformation
with only real matrix elements. We show that such a U can always be constructed experimentally in a
simple and scalable manner. The effects of particle number fluctuation and detection noise on such
multi-mode interferometry are considered. Our findings offer a simple solution for estimating
multiple parameters corresponding to mutually commuting generators.

1. Introduction

One of the central objectives of quantum metrology concerns improving measurement precision with finite sized
ensembles [ 1—4]. Most previous investigations have focused on single parameter estimation, of which the standard
quantum limit (SQL) or the classical limit, 1/ JN, represents the minimal phase uncertainty achievable in an
interferometric measurement using an ensemble of N uncorrelated particles [5]. Recently, the problem of estimating
multiple parameters has attracted much interests [6—41], where the focus shifts to finding efficient strategies for
estimating parameters corresponding to multiple commuting or non-commuting generators as precisely as possible.
Potential applications of such studies include quantum imaging [8, 15, 28], sensor networks [37, 40], measurements
of multidimensional fields [ 18], and joint measurements of multiple quadratures [ 10, 32—34], etc.

The main tasks in multi-parameter estimation are to generate an input quantum state capable of realizing the
optimal precision limited by the laws of quantum mechanics, and to find a corresponding measurement scheme that
achieves this precision. In the language of estimation theory, the former obtains a quantum state with the lowest
quantum Cramér—Rao bound (QCRB) for a set of parameters to be estimated, while the latter provides measurement
results of which the Cramér—Rao bound (CRB) equals the QCRB. For estimation of a single parameter, the latter can
always be fulfilled using interferometry in which the second beam splitter acts as the inverse transformation (time
reversed operation) to the first [42], such as in an atomic Ramsey interferometer and an optical Mach—Zehnder
interferometer. However, the same does not apply in general for multi-parameter estimation.

This work considers the more specific case of multi-mode interferometry for estimating a set of parameters
corresponding to mutually commuting generators using unentangled particles (as illustrated in figure 1). A
probe state is generated by splitting a pure single-mode state |i) into multiple modes using a multi-mode beam
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Figure 1. A standard (D + 1)-mode interferometer for unentangled particles. The interferometer starts with a pure single mode state
|i) followed by a unitary transformation U, (linear beam splitter), phase accumulation, and a second unitary transformation U,
(combining), and ends with particle number detection in every mode.

splitter represented by a unitary transformation U;. The prepared (D + 1)-mode probe state then undergoes
phase accumulation, and is subsequently transformed by U, at the second beam splitter. The measured particle
number distributions at the (D + 1)-outputs are used to estimate the D parameters in the end. Unlike the case of
single parameter estimation, setting U, = U, = U; ' does not guarantee CRB will be equal to the QCRB in
general when D > 1. Instead for a given U,, U, has to be optimized numerically to reach QCRB. This becomes a
cumbersome and tedious job particularly when the number of parameters to be estimated is large.

As amain result to be reported in this paper, we prove that the Ramsey interferometric scheme can be
straightforwardly generalized to estimation of multiple parameters (associated with commuting generators)
using multi-mode pure states, if (but not iff) Uis made orthogonal, i.e. when Uis unitary and has only real
matrix elements. We also illustrate how such orthogonal U can be constructed experimentally in a simple and
scalable way. The influences of particle number fluctuation and detection noise will also be discussed.

So far, most measurement schemes which saturate the QCRB for multi-parameter estimation, if they exist, are
found on a case by case basis. Important progresses have been made in this direction recently [8, 27, 32, 36, 39].
However many of the proposed measurement schemes are either not directly implementable or experimentally
prohibitive, particularly when they involve measurements on entangled particles [6—41]. Therefore, generalization of
Ramsey interferometry to multi-parameter estimation represents an interesting and timely advance.

This article is organized as follows: section 2 defines the problem we consider and gives the QCRB of a multi-
mode probe state. Section 3 proves that for an orthogonal U, the CRB from setting U, = U; ' is equal to the
QCRB. Section 4 illustrates how to determine the optimal probe state that gives the lowest QCRB. In section 5,
we show how an orthogonal U can always be constructed experimentally in a simple and scalable manner in an
optical or atomic system. Finally, we consider the influence of particle number fluctuation and detection noise
on the multi-mode Ramsey interferometer in sections 6 and 7, respectively. The article ends with appendices A
and B containing further calculation details.

2. General framework and the QCRB of a given probe state

In this section,we define the problem we consider and give the QCRB for a given probe state. As shown in
figure 1,the parameters we consider are encoded into quantum states with D + 1 modes,which can be
implemented with photons split into multiple paths,or atoms with large spins. For unentangled particles,the
interferometry can be discussed in terms of self-interference of individual particles [43]. Therefore,we consider
an arbitrary single particle initial state |i),and a probe state [1,) = Uj|i) = 3¢ ax|k) after transformation
U,with ay being the probability amplitude in mode k. We assume that the probe state is pure for the time being
and the interferometry is noiseless. The phase accumulation evolves the probe state into [14) = S el k).
Interference from the first order coherence allows D (out of the D + 1) phases to be measured in the absence of
an external reference. This is often carried out by choosing an arbitrary mode,say |0),as the reference,and
measuring the relative phase shifts 6y = ¢, — ¢, (k = 1,2,..,D). However,if the parameters of interest
® = {0, O,, ---,Op}arenotthesameas @ = {6, 6,, ...,0p}, optimized precision of 8 does not necessarily
give the best precision for ® in general. We assume in the following that each parameter of interest, ©y, is a linear
combination of { ¢, ¢,,---,¢p} in general, and the goal turns to finding a probe state that minimizes the total
phase variance (A®)? = Y7 (ABG;)2.

With © defined, the phases can in turn be written as ¢, = f, (®) (see appendix B for more details), and the
probe state after phase accumulation becomes [1)) = Zszo ek ® k), According to multi-parameter
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quantum estimation theory [44, 45], the lower bound of (A®)? with an unbiased estimator is determined by the
trace of the inverse of quantum Fisher information matrix (QFIM) F<:

(A@)* = Tr[(Ny FO ', (eY)

where Ny; is the number of experiments repeated (set to 1 hereafter for simplicity). Note that, the choice ofa
figure of merit for precision as the trace of the inverse of F? in equation (1) is fully general, since the weight of
each parameter ¢ can be adjusted by changing the coefficients of the linear combinationsin ¢, = £, (©).

For a pure state |1)), the matrix elements of F < are explicitly given by [44, 45]

Fi, = 4Re[(90,¥l00,06) — (Deplt's) (Vslde,vp)], )
wherel,n = 1,2, -+, D. The matrix elements of the D x D single-particle QFIM for [¢)) are thus given by

D D
7O — g 2 YO UG | o 5 UlO) %(®©)

20 12
2 "he, oo, 208, o8, [a]*| | |- (3
The QFIM is convex and additive [38]. For an uncorrelated but identically prepared N-particle product state,
[1hp)®N, it is nothing but just the sum (N-times) of the single-particle QFIM. According to equation (1), the probe
state that gives the best QCRB for estimating © can be obtained by minimizing the trace of (F?)~!, via varying
|ci|? under the normalization condition ZkD:O| ax|? = 1.1Itis clear from equation (3) that the QCRB of a probe
state depends only on the distribution of the particles |y |> but not on the phase of a.

3. Ramsey interferometry for multi-parameter estimation

In the above section, we discuss how to calculate the ultimate sensitivity bound for a given beam splitting
transformation U, and for a given set of parameters corresponding to mutually commuting generators. To
saturate this bound, optimization of the second beam combining transformation (U,) is required on a case by
case basis, which is a tedious task for a large number of parameters. In this section, we prove that if (but not iff)
the multi-mode unitary transformation U; = Uis real (orthogonal), then U, = U' = U~! followed by particle
number detection afterwards gives the best precision allowed by the QCRB when ® ~ 0.

For Ramsey interferometry, the state after the full interferometric protocol (before particle number
detection) is represented by |¢hyy) = U HkD:(, el (KIA® 17]7), The CRB, which sets the minimal (A®)? given a
measurement scheme, can be calculated for any U using the classical Fisher information matrix (CFIM) [46]

2.1 9p(m|®) dp(m|®)

Fi(©) = ) 4
l,n( ) mgo p(m|®) 8@1 a@n ( )

where p(m|@®) = | (m| UTTI;_, /" %A@ Ui} > denotes the probability of finding a particle in mode ) for a
given ©.

To show that a Ramsey interferometric scheme can be used to estimate multiple parameters to the SQL
precision, we need to prove the CFIM given by equation (4) equals to QFIM given by equation (1) (since they
correspond to the CRB and the QCRB, respectively). For small ®, omitting the third order corrections, a Taylor
series expansion around © ~ 0 gives

S©) = {Z’ikfofk@)fk,(@xm U'Ik) (kI UL (3] U1K (K] Ulm) me i

L+ Yip—o O (©) | (il UTIK)PI(K| Uli) P = S ()] (il UTIK) P m = i.

The derivatives of equation (5) with respect to any ©, can also be calculated directly (see appendix A).
Substituting equation (5) and its derivatives into the definition of the CFIM (equation (4)) gives a complicated
equation that looks vastly different from the QFIM of equation (2). Indeed, for an arbitrary U, the CFIM for an
Ramsey interferometric scheme is not equal to the QFIM in most cases. We find, however, that when

(k| Ulm) = (m| U'|k) forall k, m (meaning that all elements of U are real and U is orthogonal), the equation
for the CFIM is simplified greatly and becomes (see appendix A)

D
FE@O~0) =43 Y (©) 3/, (©)

i| Utk (k| Ul UK (K1 UL 6
meikk— 001 00, (il U'k) (k| Ulm) (m| U'K") (K| Ul7) (6)

To further simplify the formula, we make use of the completeness of the basis |i)(i| + >
gives

|m){m| = 1. This

m=i
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In [27], Pezze et al found the necessary and sufficient conditions (iff) for projective measurements which
saturate the QCRB of a probe state. In their language, our measurement can be described by a set of projectors
{10G) (Vx| }, where | Yi) = Ulk). Inthelimit ©® ~ 0and given thatall elements of U are real, the projectors
{1T&) (Vx| } indeed satisfy the required condition given by their equation (7) in [27].

4. Determining the optimal probe state

In this section, we demonstrate how to determine the optimal probe state. As an illustration, we consider the
most common choice of Oy = 6 = ¢, — ¢,. In this case, the generator of parameter 6y is proportional to
|k) (k|. Computing equation (3) and taking the trace of (F Q)~! gives (after dividing by particle number N) (see
appendix B for more details)

D
(20) > %[‘Hzop +,§4|;k|2]' ®)
Minimizing equation (8) under the condition EkD:OI ax|? = 1gives the optimal probe state described by
low|* = VD /(D + VD), (9a)
lagl* = 1/(D + VD),  (for k = 0), (9b)
and the QCRB of
(AGyp)> = (D + VD)?/4N. (10)

This precision can be reached in the asymptotic regime of large Ny;.

For comparison, we consider an individual estimation scheme which divides the N particles into D equal
partitions, and uses each partition for measuring one 6 through two-mode interferometry between |0) and |k).
Since the SQL of each 6, in this case is 1 / \JN/D, thelowest bound for the phase variance becomes

(ABinq)? = D*/N. (11)

For D = 1asin single parameter estimation, both equations (10)and (11) reduce to 1 /N as expected (i.e. the
SQL). For larger D, the simultaneous estimation scheme (equation (10)) always outperforms the individual
estimation scheme (equation (11)).

We note that the results of equations (9) and (10) resemble an earlier study [8], where Humphreys et al considered
amulti-mode entangled NOON state |1);,) = [N, 0, ...,0) + a4]0, N,...,0) + ... + ap|0, 0,...,N). They
found an optimal probe defined also by equation (9) and a QCRB N times smaller than equation (10), in agreement
with the typical ratio between the SQL and the Heisenberg limit (HL). Their results reduce to ours when a multi-
mode NOON state for N = 1 is considered.

The value of the reference mode | oy |2 in equation (9) is /D times larger than the other modes. Because ¢ is
referenced tobyall 0y = ¢, — ¢, the measurement variance of ¢, therefore contributes D times more to (A@)? than
any other uncorrelated phases { ¢ }. Such a bias results from the choice of parameters. Consequently, equations (9) and
(10) cannot be always optimal if the parameters of interest are different. For instance, should we consider a different set
of parameters of interest, say, ¢, = ¢, — ¢,_, (k = 1, 2, .., D), i.e. therelative phase between the neighboring

modes, repeating the above same procedures gives a minimal variance of (A, ot )2 = ﬁ [V2(D — 1) + 2]2.Ifone

measures {6} instead of { ¢} using the probe state given by equation (9) and then derives { ¢, } from {6}, the
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laser

phase compensator

Figure 2. A multi-mode optical interferometer. A series of 2 X 2 beam splitters are used to form unitary transformations Uand U
with only real matrix elements. The splitting ratio of each beam splitter is chosen to distribute the input light according to the optimal
probe state found. After phase accumulation, a reversed unitary transformation U is implemented with another series of beam
splitters arranged in reverse order. The interferometer ends with photocurrent detection in every output port. (Inset) Each beam
splitter in dashed lines is a composite of four phase compensators and a physical beam-splitter to generate a local transformation with
all real elements.

resulting phase variance would be bounded by (A¢p)? = ﬁ [(1 + D)*+ 2(D — 1)(¥D + D)](for details
see appendix B), a result always larger than (Acpopt Y forD > 1.

5. Experimental realization of U

We now illustrate how a multi-mode Ramsey interferometer can be realized experimentally in a simple and
scalable way. Here, the task reduces to designing an orthogonal U that generates the optimal probe state. We
would illustrate our scheme first for an optical interferometer and then an atomic interferometer.

5.1. Multi-mode optical interferometer

We consider a design that employs a series of 2 x 2 non-polarizing beam splitters (BS, fork = 1,2,3, ---) for
splitting particles into the optimal distributions || as shown in figure 2. In this case, each U'® which
represents the transformation due to beam splitter BS; acts only on two of the adjacent modes, leaving other
modes untouched. The overall transformation U = UPUP~D ... UM must be unitary since each lossless
physical splitter U® is unitary.

To ensure that the resulting Uand U constructed from these beam splitters are real (orthogonal), the most
straightforward way is to make sure that each of the beam splitters behaves asareal 2 x 2 transformation. This
criterion, which requires zero (or multiple of 27) phase shifts for both the transmitted and reflected beams with
respect to both input beams, is not automatically satisfied for any beam splitters. Fortunately, it is always possible
to fulfil this criterion by adding respective phase compensating waveplate to each port of a beam splitter. After

compensation, the matrix elements of a real U® become Ulgkk) =y = cos(1;), U,Ekk) = U,E’i)l’ P =

k+1Lk+1
sin(7, ), and Ui(ﬁz (kk+1) = 0ij(the Kronecker delta function), where cos? 7, (sin®7),) represents the reflectance

(transmittance) of BS. Given an optimal distribution |ay|?, the reflectance of BS; should be chosen as

|cosml* = |, (12a)

|04k—1|2
P = (k = 2). (12b)
1— ool — |l - — legalP

|cos

In addition, extra phase compensators are needed in every arm of the interferometer to null out the
difference in optical path lengths and to tune every phase shift ¢, to the region where © can be measured most
sensitively. If there is no detection noise, this region is ® close to zero, otherwise, it is shifted away from ® ~ 0
(see section 7). We emphasize that compensating for ¢y to give the optimal sensitivity does not represent a flaw,
in fact, as such tuning is needed in practically all real interferometric measurements near the SQL precision.




10P Publishing

New J. Phys. 22 (2020) 043005 XLietal

Figure 3. Preparation of the optimal probe state with a sequence of two-photon Raman pulses between two adjacent states. This
example starts from the state |F, —F), although more generally the state preparation can start from any Zeeman sublevels to reach the
same final probability amplitude distribution of the optimal state.

5.2. Multi-mode atomic interferometer

In interferometry of atoms with hyperfine spin F, D = 2F different parameters can be estimated. Analogous to
the optical scheme, an arbitrary spin distribution can be constructed using a sequence of Rabi rotations between
two adjacent Zeeman sublevels. Such rotations can be realized, for instance, using a two-photon Raman
transition through an intermediate state as illustrated in figure 3. As long as the intermediate hyperfine levels
have a different Landé g-factor from those involved in interferometry, one could perform Rabi rotations
between any two adjacent sublevels by selectively detuned to a suitable intermediate states. To make sure that the

individual transformation is orthogonal, every rotation should be performed along the o, = ((1) _01) direction,

cos(B) —sin(B)
sin(Bx)  cos(Bk)
Zeeman sublevel exhibits different shift inside a magnetic field and thus different phase accumulation rate, one
would need to keep track of the phases of every levels and to account for them when performing individual Rabi
rotations. While this is possible with current technologies in cold atom experiments, the process is perhaps too
cumbersome to be practical, especially when atomic spin is large.

For the aforementioned reasons, we restrict the transformation in the following to a single-pulse multi-
mode Rabi rotation over an angle  along the F, direction (since the corresponding matrix U = exp(—iF, x) is
always orthogonal for any atomic spin F), and study the performance of the Ramsey interferometric protocol for
measuring 0. Experimentally, such a F, rotation can be realized using a radio-frequency resonant with adjacent
Zeeman sublevels, when the quadratic Zeeman shift is negligible. It transforms the initial state | F, ;) into
[1)p) = Zi;f F d,ﬁi,m (x)|F, m)with the Wigner’s (small) d-matrix. According to equation (8), the QCRB of this
state is given by

such that U® — exp(—io, By) = [ ], within the two-level subspace. However, as each of the

> (13)

1| 2F-1 N £ 1
aN |l L CoP  Edl L COP [

when |F, m,)is chosen as the reference mode. Figures 4 (a)—(c) present the values of equation (13) for F = 1, 3,
and 5, respectively (for mg = 0). This one-step-rotation scheme (OSRS), which employs the limited family of a
single SU(2) transformation, is found to always outperform the individual measurement scheme (equation (11),
grey dashed horizontal line) using a suitable initial state | F, m;) and a rotation angle y, atleastupto F = 5
(figure 4(d)). The same conclusion is reached for parameters { oy }.
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Figure 4. Total measurement variance (A@)? from OSRS for various atomic spin F (a)—(c) show (A@)? of OSRS, U = exp(—iF, x) as
afunction of rotation angle x, for F = 1, 3 and 5, respectively. The black solid lines and grey dashed—dotted lines denotes (Ayp)?
(equation (10)) and (AB;,q)? (equation (11)), respectively. The legends show the corresponding initial state |F, m;) before applying U.
Irrespective of m;, the phase shifts 6 are always defined with respect to the reference mode |F, 0). (d) Comparison between the optimal
(AB)? from OSRS to (AB;,4)? and (ABopt)z for F = {1, 2, 3, 4, 5}. The OSRS is found to be on par with the optimal simultaneous
scheme only for F = 1, butitalways performs better than the individual measurement scheme. N = 1 for all figures.

Such multi-parameter estimation scheme can be useful when atoms are subjected to different sources of
phase shifts simultaneously, as for example, with spin-1 *’Rb atoms dressed by near-resonant microwaves while
under a static magnetic field [47, 48], or spin-9,/2 ¥ Sr atoms placed in an optical lattice with polarization
dependent light shifts, and collisions with background or non-condensed atoms.

6. The effects of particle number fluctuation

In this section, we discuss the influence of particle number fluctuation of the probe state. Since quantum states
with a definite large particle number are often difficult to prepare, we consider the situation when the particle
number of the probe state fluctuates. Due to the superselection rule, such input state represents nothing but an
incoherent superposition of different Fock state p, = &>, Qn p™ in the absence of number coherences in
the probe state and/or in the measurement strategy [49-51], where p®™) is the density matrix of the N-particle
state and Qy the probability of having N particles. For coherent light of photons or an atomic Bose—Einstein
condensate, the particle number obeys Poisson distribution with the probability Qy = e NN~ /N!, where N
denotes the mean particle number. Since QFIM is additive under a direct sum of density matrix p® in
orthogonal subspaces [2], F(p;,) = FUByQn p™NM] = Ty Qu FUp™]. For unentangled N-particle states
ofthe form p™) = p?N = [[¢h,) (1| 1¥N, FpN | = NFQ ., with F&, . being the QFIM of the single

single single’ single

particle probe state g, .. One has therefore 7 Up,) = Sy QuNFL = FQ | N.Similarly, it can be readily

single single

shown that ¢ = 3, Qv F C[pgi\;] J=F gnglel\_l for input state p, [52]if particle numbers in all output ports
C ~

are measured without detection noise. Since the CFIM of a single particle probe, F ¢, ~ F ?ingle in our
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o/

Figure 5. Effectiveness of the proposed scheme for estimating two arbitrary #; and 6, with and without detection noise. The colored
figures show ¢, the ratio of the CRB for the proposed scheme to the QCRB of the individual measurement scheme in negative decibels,
considering (a) ideal atom-number detection and (b) atom-number resolution of 14 atoms. The area surrounded by the white
dashed curve in (a) denotes the parameter space where the proposed scheme outperforms the individual measurement scheme. (b)
The results of Monte Carlo simulations with 10* atoms and 1000 simulated experimental runs. The star denotes the position where the
minimum (A)? occurs, which is no longerat 8 ~ 0.

scheme, F¢ also equals approximately to F Q for probe state with fluctuating particle number and all our
conclusions outlined above remain intact.

7. The influence of detection noise

The conclusions in section 3 and appendix A are reached assuming noiseless particle number detections. When
detection noise is taken into consideration, the optimal sensitivity typically shifts away from & ~ 0. For
example, for single parameter estimation using Ramsey interferometry in an atomic clock, the measurement is
usually performed near § ~ 7/2, aregion least sensitive to detection noise.

Here, we study numerically the effects of detection noise to the multi-parameter Ramsey interferometry
using the example of two parameter estimation. We consider estimation of # ; and 8, using the optimal probe
state given by equation (9). Starting from the initial state |0) = (0, 1, 0)', we choose an orthogonal U given by
the SU(2) rotation of a spin-1 system along F,-direction

1 cos X siny 1 cosx

2T T 7 3 2

U=exp(—iEx) = S%X cos Y —S%X . (14)
1 cos x sin x 1 cos X
272 @ 2T

Here, x is set to 0.2774 to give the optimal probe state. The simulated procedure consists of applying U, phase
accumulation exp [i(0y]1) (1] + 6,|—1)(—1P] (1) = (1, 0, 0),|—1) = (0, 0, 1)"),and U, followed by
population detection with or without including noise.

When there exists no detection noise, the CFIM (equation (4)) of the aforementioned protocol is directly
computed and the trace of its inverse is used to obtain the CRB of (A#)?. Figure 5(a) compares the value of the
corresponding result to the QCRB of the individual measurement scheme (equation (11)) for {6, 6,} €(0, 7),
illustrated by the parameter ¢ = —101log,,[(AB)*/(ABin4)*]. The region surrounded by the white dashed curve
represents the {6, 0, }-space where the proposed scheme outperforms the individual estimation scheme. It
shows that the proposed scheme works well even for @ far away from zero. We emphasize that the probe state
defined by equation (9) gives always the best QCRB for any 6. However, application of the reversed
transformation U followed by a population measurement is not necessary the optimal measurement scheme
when 0 is away from zero, which explains the deficiency of the scheme over some parameter space.

When detection noise is present, we numerically simulate the estimation process of the two parameters {6, 6,}
using 10* three-mode (spin-1) atoms with a detection resolution (noise) of 14 atoms (typical numbers achievable in
cold-atom experiments [47, 48]). For each pair of {6, 8, }, we first compute the probability of detecting an atom in
the outputmode m, p(m|6,, 6,) = | (m| UT exp [i(6)|1) (1] + 62]—1) (—1])]U|0) |* . For each run, we perform
Monte-Carlo simulation on the outcome for each of the 10* atoms according to the distribution of p(m|6,, 6,) and
obtain N, (the total number of particles in mode m without detection noise). We then add to N, a random detection
noise featuring a normal distribution with an average of zero and a standard deviation of 14 to obtain N,,,. The
maximal likelihood method (which can saturate the CRB [46] in the asymptotic limit and is unbiased) is then used to
estimate {0,, 6, }. Thelikelihood function given by L (6, 65N, Ny, N-1) = [1,,_, o _, p(ml0), 0,)Nn is maximized
byvarying {6;, 6,} to obtain the estimated { ], §5}. The simulation is repeated independently over Ny; = 1000
times. The estimated results from the 1000 simulations are then used to obtain (A@)?, whose ratio to the QCRB of
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the individual measurement scheme using the same number of particles, is shown in figure 5(b). Although detection
noise degrades the sensitivity of the proposed scheme, the discussed scheme is seen to maintain its advantage over the
individual measurement scheme over a large parameter space. Similar to typical single parameter estimation scenario,
the position of the minimum (A)? is seen to shift away from zero. The star in figure 5(b) (near 6, = 6, = 0.37)
denotes the position of the maximum precision for the scenario we consider, where itis ¢ ~ 0.6 dB more sensitive
than the individual measurement scheme, but is 0.77 dB less than the optimal ¢ ~ 1.37 dB for noiseless detection.

In short, the influence of detection noise to a multi-mode Ramsey interferometer is similar to that to a
single-mode Ramsey interferometer.

8. Summary

In summary, we show that the Ramsey interferometric scheme can be extended to estimation of multiple
parameters (associated with commuting generators) using multi-mode pure states, if (but not iff) the multi-
mode beam splitter Uis orthogonal, i.e. all matrix elements of Uare realand UU T = 1. We then discuss how to
obtain the optimal probe state, and how to construct U experimentally in a simple and scalable manner. We find
that the proposed scheme remains intact even under particle number fluctuation and detection noise. The
results of this study can be useful to applications in multi-mode optical sensing and quantum phase imaging.
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Appendix A. Multi-mode Ramsey interferometric measurement scheme

In this section, we show in detail that the proposed Ramsey-like multi-mode interferometric scheme with
particle number measurement can always saturate the QCRB for small phase shift ©, given that the matrix
elements of the beam-splitting unitary transformation U are real (or Uis orthogonal). The proposed scheme
starts with splitting an initial state |i) by a unitary transformation U, followed by a phase accumulation process
and areversed transformation U, and finally ends with measuring the projection probability in mode |). The
projection probability in mode |m) after the Ramsey interferometer can be explicitly written as
D 2
p(ml®) = | (m| UT[] eWEL@U)) | . (AD)
k=0

Omitting the third order corrections, a Taylor series expansion around ® ~ 0 gives for m = i

D
p(m®) = > f(©)fi.(®)(m| U'|k) (k| Uli)(i| UT|K') (K'| Ulmy), (A2)
kk'=0
andform =i
p@l®) ~ 1 + Z @) [ (©)(i| UTIk)[*| (K| Uli) | ka(@)2 i| U'lk) . (A3)
ko k=

The derivatives p(i|®) with respect to any ©; is given by

. b 5 .
apa(;é)l@) - 2[ Z J© )fk (@) (i| UTIkyP(i| UTIKY? — f,(©)

00 00, ———f ®)|(i| UTk)[* |, (A4)
kk'=0 1 o

and the derivatives with respect to any ©; for m = i can be calculated as

dp(m|©) 3fk(@)

o D
00, 2=

—— 1 (©)(m| UTlk) (k| Uli)(i| U'IK') (K'| Ulm)

afk/ (©)

+ X k=0 fk<@>< m| U'Ik) (k| Uli)(i| UTIK') (K| Ulm). (A5)

The two terms in equation (A5) are equivalent if all the matrix elements of U (k| U|m)) are real numbers. In this
case, equation (A5) can be simplified by summing up two terms as

9
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D
RO _ 5 5~ YO @) ) UR) (kI UL (il UK (K] UL, = (46)
861 k,k’:0 8@[

By substituting equations (A2), (A3) and (A6) into the classical Fisher information matrix (CFIM) [46],
1 Op(m|®) Op(m|©)

Fi(©) = A7
wO) ; p(ml® 00, 00, A7
we obtain (when ® ~ 0and Im[(k|U|m)] = 0)
D s
A3 e e S @ ®) il UTIR) (k] U (i UK (k) Vo) (] UK (K1 U (1 U1k (k1 U|m>]
> 5
m=i Z ﬁ("(@)ﬁ(’”(@)<m| Uflk//> <k//| U|1> <1| U'rlk///><kl//| U|m>
K",k =0
(A8)

paO)
00,

The term m = iis missing from equation (A8) because ©? ~ 0while p(i|®) ~ 1. The numerator

of equation (A8) can be factorized as

D, 9f(©) 9 (©) + . .
— =~ (m|U"|k) (kU UKy (K'|U
4[}(’;0 ot (mIUIR) (UL (mIU1K) K115
D
X Y [ (©)fn(©) G UTK") (K"|\Ulm) G| UT|K") (k" |U|m) |, (A9)

K" k" =0

where the second summation cancels the denominator of equation (A8), giving a CFIM of the form

D
FEO~0) =43 3 ,(©) 9f,(©)

U'lk) (k| Uli UK (K] U]3). A10
22 o8 ol (m| UTk) (k| Uli) (m| U'|K') (K'| Uli) (A10)

To further simplify the formula, we use again the condition that the matrix elements of U (k| U|m)) are real
numbers, thus (m| Uf|k) = (k| U|m)and (k| U|i) = (i| UT|k). This gives

D, 9f(©) 9fy(©)
Fi(@©~0) ~ 4 K d
’ mzi:ik,kzio 3@1 a®n

4l D 9f,(®) If, (©)

(il UTk)k| U [m)(m|UTK)K| Uli)

m=i

2

k,k/:() 8@[ 8@n

D
{E e
k=0 ) n

2 9O 9, (©)
k,k,:() 8@[ 6@,1

lD U(© 0h©) L 04O f(©)

(il UTlk)(kl UQ = 1D UK (K UII')]

(il UTlk)k| Uli) (A1)

(il UTlk)(k] Uil U1K UIi)}

45 || >

2l 12 | = FQ
) > e ae o |ak|] F2,

In the first line of equation (A11), the completeness of the basis |i){i| + >, _.|m)(m| = 1isinvoked. The
final result is identical to F f?n given by equation (3). Thus this proves that the multi-mode Ramsey
interferometer we consider here can always saturate the QCRB.

The above proof also explains why we limit the beam splitter to orthogonal matrix. This is crucial for the
steps from equation (A5) to equation (A6) and from equation (A10) to (A11). Our proof by no means excludes
the existence of U with non-real matrix elements which saturates the QCRB. But the general structures of such U
are beyond our current knowledge.

In addition, the above proofalso requires all elements (m| U|k) to be real even when m, k = i, which is the
reason why it is insufficient to only require that the transformations from the input light in figure 2 to the
outputs of all BS are real. Instead, all beam splitters involved must actasreal 2 x 2 transformations.

m=i

Appendix B. The optimal probe state and the corresponding QCRB

As discussed in the main text, the probe state after phase accumulation takes the form |1)4) = ZkD:() agel®|k). If
the parameters of interest ® = {©,, O,, --+,0p} arelinear combinations of ¢;, the probe state can be expressed

10
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as|y) = ZkD:o ape'®|k), where 1, (©®) arelinear functions of ®. The derivative of the state above w.r.t. ©;is

D of,.(© 4
|06bg) =1 Makel‘fk(@)lk% (B1)
k= 0O
For a pure state |1)4), the matrix elements of 7 ? are explicitly given by [44, 45]
FP, = 4Re[{O09l00,0p) — (Dot | o) (Y | Do,Up)]; (B2)
wherel, n = 1, 2, ---,and D. Substituting equation (B1) into equation (B2) gives the matrix elements of

quantum Fisher information matrix (QFIM) of |1/4)
D@ of© & 9O 3O

FR=4> v 3

[l o | |- (B3)
=790, 06, S, 00, 00,

Inthecaseof Oy = O = ¢, — ¢, (k = 1, 2,---,D), onecan choose f,(®) = ¢, f,(®) = O + ¢, for

k =1, 2, --,D. The matrix elements of N-particle QFIM can be calculated with 0fak(()9)
O,

FQ = aN [P, — laPlagll. (B4)

= 0,1, leading to the result

Note that since thereare D 4 1 ¢, but only D O to be estimated, one of the f, (®) can chosen at will without
affecting the final results. For example, for ©, = ¢, — ¢, one canalso choose
[(©®) = ¢, f,(©) = ¢, — O, fL(O) = O + O, — ¢ fork = 2, ---,D. Substituting the so-chosen f, (©)
into equation (B3) gives the same results as equation (B4).

The inverse of equation (B4) can be obtained analytically as

L diag L ) L — + G > (B5)
N 4laaf 4l 4lapl 4 |avol?
where Gisad X dall-ones matrix. Taking the trace of equation (B5) gives
1| D A
(A0) > — + . (B6)
N[ 4]aol 1;4|04k|2

To find the optimal probe state and the corresponding total phase variance (optimal QCRB), we minimize
equation (B6) under the normalization condition 35 _j| oy |* = 1. Setting the derivatives O[(AB)?] /0| o |* to
zero foranyk = 1,2, ---,and D gives a set of equations

1 D
(P e Py Py 7
Solving the equations above gives the optimal probe state described by
laol* = VD /(D + VD), (B8a)
la? = 1/(D + VD),  (for k = 0), (B8b)
and a QCRB of
(ABop)? = (D + VD)?/4N. (B9)
In the scenario where the parameters are defined as ©, = ¢, = ¢, — ¢y, ...,Op = ¢, = ¢p — ¢p_;, 01
the phase difference between two neighboring modes, 8{;;?) = 1fork > land 3{;;(:)) = 0fork < I The matrix

elements of FQ therefore become

Fi= 4Nl ED: o> — (ED:WMZJ[ED:WHZ]}- (B10)

k>max (n,]) k'>1 k>n

Taking the trace of the inverse of equation (B10) gives the lower bound of (A¢)?

(Ap)* > i[ SR Dfé] (B11)
N\4lopl  4laol (22 lowf
Similarly, by minimizing equation (B11) under the normalization condition, the optimal probe reads
ool = lapl = 1/[V2(D = 1) + 21, (B12a)
lo> = V2/[N2(D — 1) + 2], (fork = 0, D), (B12b)

11
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and the corresponding QCRB is found to be
1
A, = E[ﬁ (D - 1)+ 2P (B13)

If one measures {6y, 65, ...,0p} with the input state given by equation (B8) and estimates {¢;, ©,, -**,¢op}
from the measured 6y, the (A¢)? is bounded by [46]

Q) > TrI(FH 1= ﬁ[(l + VD)’ +2(D - DD + D)), (B14)

0 Pk )
00,
equation (B13) for D > 1. Thus itis always better to estimate {¢,, ©,, ...,pp} directly using the probe state

given by equation (B12).

where J is the Jacobian matrix defined as J;; = . The result of equation (B14) is larger than that of
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