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Abstract
Estimatingmultiple parameters simultaneously is of great importance tomeasurement science and
application. For a single parameter, atomic Ramsey interferometry (or equivalently opticalMach–
Zehnder interferometry) is capable of providing the precision at the standard quantum limit (SQL)
using unentangled probe states as input. In such an interferometer, thefirst beam splitter represented
by unitary transformationU generates a quantumphase sensing superposition state, while the second
beam splitterU−1 recombines the phase encoded paths to realize interferometric sensing in terms of
populationmeasurements.We prove that such an interferometric scheme can be directly generalized
to estimation ofmultiple parameters (associatedwith commuting generators) to the SQLprecision
usingmulti-mode unentangled states, if (but not iff)U is orthogonal, i.e. a unitary transformation
with only realmatrix elements.We show that such aU can always be constructed experimentally in a
simple and scalablemanner. The effects of particle number fluctuation and detection noise on such
multi-mode interferometry are considered. Ourfindings offer a simple solution for estimating
multiple parameters corresponding tomutually commuting generators.

1. Introduction

Oneof the central objectives of quantummetrology concerns improvingmeasurementprecisionwithfinite sized
ensembles [1–4].Most previous investigationshave focusedon single parameter estimation, ofwhich the standard
quantum limit (SQL)or the classical limit, N1 , represents theminimal phase uncertainty achievable in an
interferometricmeasurementusing an ensemble ofNuncorrelatedparticles [5]. Recently, the problemof estimating
multiple parameters has attractedmuch interests [6–41],where the focus shifts tofinding efficient strategies for
estimatingparameters corresponding tomultiple commutingornon-commuting generators as precisely as possible.
Potential applications of such studies includequantum imaging [8, 15, 28], sensornetworks [37, 40],measurements
ofmultidimensionalfields [18], and jointmeasurements ofmultiple quadratures [10, 32–34], etc.

Themain tasks inmulti-parameter estimation are to generate an input quantumstate capable of realizing the
optimal precision limited by the lawsof quantummechanics, and tofinda correspondingmeasurement scheme that
achieves this precision. In the languageof estimation theory, the former obtains a quantumstatewith the lowest
quantumCramér–Raobound (QCRB) for a set of parameters tobe estimated,while the latter providesmeasurement
results ofwhich theCramér–Raobound (CRB) equals theQCRB. For estimationof a single parameter, the latter can
always be fulfilledusing interferometry inwhich the secondbeamsplitter acts as the inverse transformation (time
reversedoperation) to thefirst [42], such as in anatomicRamsey interferometer and anopticalMach–Zehnder
interferometer.However, the samedoesnot apply in general formulti-parameter estimation.

This work considers themore specific case ofmulti-mode interferometry for estimating a set of parameters
corresponding tomutually commuting generators using unentangled particles (as illustrated infigure 1). A
probe state is generated by splitting a pure single-mode state ñi∣ intomultiplemodes using amulti-mode beam
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splitter represented by a unitary transformationU1. The prepared (D+1)-mode probe state then undergoes
phase accumulation, and is subsequently transformed byU2 at the second beam splitter. Themeasured particle
number distributions at the (D+1)-outputs are used to estimate theD parameters in the end.Unlike the case of
single parameter estimation, setting = = -U U U2 1 1

1† does not guarantee CRBwill be equal to theQCRB in
general whenD>1. Instead for a givenU1,U2 has to be optimized numerically to reachQCRB. This becomes a
cumbersome and tedious job particularly when the number of parameters to be estimated is large.

As amain result to be reported in this paper, we prove that the Ramsey interferometric scheme can be
straightforwardly generalized to estimation ofmultiple parameters (associatedwith commuting generators)
usingmulti-mode pure states, if (but not iff)U ismade orthogonal, i.e. whenU is unitary and has only real
matrix elements.We also illustrate how such orthogonalU can be constructed experimentally in a simple and
scalable way. The influences of particle numberfluctuation and detection noise will also be discussed.

So far,mostmeasurement schemeswhich saturate theQCRB formulti-parameter estimation, if they exist, are
foundona case by case basis. Important progresses havebeenmade in this direction recently [8, 27, 32, 36, 39].
Howevermanyof theproposedmeasurement schemes are either not directly implementable or experimentally
prohibitive, particularlywhen they involvemeasurements on entangledparticles [6–41]. Therefore, generalizationof
Ramsey interferometry tomulti-parameter estimation represents an interesting and timely advance.

This article is organized as follows: section 2 defines the problemwe consider and gives theQCRBof amulti-
mode probe state. Section 3 proves that for an orthogonalU1, the CRB from setting = -U U2 1

1 is equal to the
QCRB. Section 4 illustrates how to determine the optimal probe state that gives the lowestQCRB. In section 5,
we showhow an orthogonalU can always be constructed experimentally in a simple and scalablemanner in an
optical or atomic system. Finally, we consider the influence of particle number fluctuation and detection noise
on themulti-modeRamsey interferometer in sections 6 and 7, respectively. The article endswith appendices A
andB containing further calculation details.

2.General framework and theQCRBof a given probe state

In this section,we define the problemwe consider and give theQCRB for a given probe state. As shown in
figure 1,the parameters we consider are encoded into quantum states withD+1modes,which can be
implementedwith photons split intomultiple paths,or atomswith large spins. For unentangled particles,the
interferometry can be discussed in terms of self-interference of individual particles [43]. Therefore,we consider
an arbitrary single particle initial state ñi∣ ,and a probe state y añ = ñ = å ñ=U i kk

D
kp 1 0∣ ∣ ∣ after transformation

U1,with ak being the probability amplitude inmode k.We assume that the probe state is pure for the time being
and the interferometry is noiseless. The phase accumulation evolves the probe state into y añ = å ñf

f
= kek

D
k0

i k∣ ∣ .
Interference from the first order coherence allowsD (out of theD+1) phases to bemeasured in the absence of
an external reference. This is often carried out by choosing an arbitrarymode,say ñ0∣ ,as the reference,and
measuring the relative phase shifts q f fº -k k 0 (k=1,2,..,D). However,if the parameters of interest
Q º Q Q Q, , , D1 2{ } are not the same as q q q qº ¼, , , D1 2{ }, optimized precision of q does not necessarily
give the best precision forQ in general.We assume in the following that each parameter of interest,Θk, is a linear
combination of f f f, , , D0 1{ } in general, and the goal turns tofinding a probe state thatminimizes the total

phase variance QD = å DQ=k
D

k
2

1
2( ) ( ) .

WithQ defined, the phases can in turn bewritten as f Q= fk k ( ) (see appendix B formore details), and the
probe state after phase accumulation becomes y añ = å ñf

Q
= kek

D
k

f
0

i k∣ ∣( ) . According tomulti-parameter

Figure 1.A standard (D+1)-mode interferometer for unentangled particles. The interferometer starts with a pure singlemode state
ñi∣ followed by a unitary transformationU1 (linear beam splitter), phase accumulation, and a second unitary transformationU2

(combining), and endswith particle number detection in everymode.
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quantum estimation theory [44, 45], the lower bound of QD 2( ) with an unbiased estimator is determined by the
trace of the inverse of quantumFisher informationmatrix (QFIM) Q:

QD - NTr , 1M
Q2 1( ) [( ) ] ( )ˆ

where NM̂ is the number of experiments repeated (set to 1 hereafter for simplicity). Note that, the choice of a
figure ofmerit for precision as the trace of the inverse of Q in equation (1) is fully general, since theweight of
each parameterfk can be adjusted by changing the coefficients of the linear combinations in f Q= fk k ( ).

For a pure state y ñf∣ , thematrix elements of Q are explicitly given by [44, 45]

y y y y y y= á¶ ¶ ñ - á¶ ñá ¶ ñf f f f f fQ Q Q Q 4 Re , 2l n
Q
, l n l n[ ∣ ∣ ∣ ] ( )

where l, n=1, 2,L,D. Thematrix elements of theD×D single-particle QFIM for y ñf∣ are thus given by

å åa a a
Q Q Q Q

=
¶

¶Q

¶

¶Q
-

¶

¶Q

¶

¶Q= ¢=

¢
¢

f f f f
4 . 3l n

Q

k

D
k

l

k

n
k

k k

D
k

l

k

n
k k,

0

2

, 0

2 2
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( ) ( )
∣ ∣

( ) ( )
∣ ∣ ∣ ∣ ( )

TheQFIM is convex and additive [38]. For an uncorrelated but identically preparedN-particle product state,
y ñf ÄN∣ , it is nothing but just the sum (N-times) of the single-particle QFIM.According to equation (1), the probe
state that gives the bestQCRB for estimatingQ can be obtained byminimizing the trace of -Q 1( ) , via varying
ak

2∣ ∣ under the normalization condition aå == 1k
D

k0
2∣ ∣ . It is clear from equation (3) that theQCRBof a probe

state depends only on the distribution of the particles ak
2∣ ∣ but not on the phase ofαk.

3. Ramsey interferometry formulti-parameter estimation

In the above section, we discuss how to calculate the ultimate sensitivity bound for a given beam splitting
transformationU1 and for a given set of parameters corresponding tomutually commuting generators. To
saturate this bound, optimization of the second beam combining transformation (U2) is required on a case by
case basis, which is a tedious task for a large number of parameters. In this section, we prove that if (but not iff)
themulti-mode unitary transformationU1=U is real (orthogonal), then = = -U U U2

1† followed by particle
number detection afterwards gives the best precision allowed by theQCRBwhenQ ~ 0.

For Ramsey interferometry, the state after the full interferometric protocol (before particle number
detection) is represented by y ñ =  ñQ

=
ñáU U iek

D k k f
out 0

i k∣ ∣† ∣ ∣ ( ) . TheCRB,which sets theminimal QD 2( ) given a
measurement scheme, can be calculated for anyU using the classical Fisher informationmatrix (CFIM) [46]

åQ
Q

Q Q
=

¶
¶Q

¶
¶Q=


p m

p m p m1
, 4l n

C

m

D

l n
,

0

( )
( ∣ )

( ∣ ) ( ∣ )
( )

where Q = á  ñQ
=

ñáp m m U U iek
D k k f

0
i 2k( ∣ ) ∣ ∣ ∣ ∣† ∣ ∣ ( ) denotes the probability offinding a particle inmode ñm∣ for a

givenQ.
To show that a Ramsey interferometric scheme can be used to estimatemultiple parameters to the SQL

precision, we need to prove theCFIMgiven by equation (4) equals toQFIMgiven by equation (1) (since they
correspond to theCRB and theQCRB, respectively). For smallQ, omitting the third order corrections, a Taylor
series expansion aroundQ ~ 0 gives

Q
Q Q

Q Q Q

å á ñá ñá ¢ñá ¢ ñ ¹

+ å á ñ á ¢ ñ - å á ñ =
¢= ¢

¢= ¢ =

p m
f f m U k k U i i U k k U m m i

f f i U k k U i f i U k m i

,

1 .
5

k k
D

k k

k k
D

k k k
D

k

, 0

, 0
2 2

0
2 2

⎪

⎪

⎧
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⎩

( ∣ )
( ) ( ) ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

( ) ( ) ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( ) ∣ ∣ ∣ ∣
( )

† †

† †


The derivatives of equation (5)with respect to anyΘl can also be calculated directly (see appendix A).
Substituting equation (5) and its derivatives into the definition of theCFIM (equation (4)) gives a complicated
equation that looks vastly different from theQFIMof equation (2). Indeed, for an arbitraryU, the CFIM for an
Ramsey interferometric scheme is not equal to theQFIM inmost cases.Wefind, however, that when
á ñ = á ñk U m m U k∣ ∣ ∣ ∣† for all k,m (meaning that all elements ofU are real andU is orthogonal), the equation
for theCFIM is simplified greatly and becomes (see appendix A)

å åQ
Q Q

~
¶

¶Q

¶

¶Q
á ñá ñá ¢ñá ¢ ñ

¹ ¢=

¢
f f

i U k k U m m U k k U i0 4 . 6l n
C

m i k k

D
k

l

k

n
,

, 0

( )
( ) ( )

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )† †

To further simplify the formula, wemake use of the completeness of the basis + å =¹i i m m 1m i∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ . This
gives
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In [27], Pezzè et al found the necessary and sufficient conditions (iff) for projectivemeasurements which
saturate theQCRBof a probe state. In their language, ourmeasurement can be described by a set of projectors
¡ ñá¡k k{∣ ∣}, where ¡ ñ = ñU kk∣ ∣ . In the limitQ ~ 0 and given that all elements ofU are real, the projectors
¡ ñá¡k k{∣ ∣} indeed satisfy the required condition given by their equation (7) in [27].

4.Determining the optimal probe state

In this section, we demonstrate how to determine the optimal probe state. As an illustration, we consider the
most common choice of q f fQ = º -k k k 0. In this case, the generator of parameter θk is proportional to
ñák k∣ ∣. Computing equation (3) and taking the trace of -Q 1( ) gives (after dividing by particle numberN) (see

appendix B formore details)

åq
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=


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4
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∣ ∣ ∣ ∣
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Minimizing equation (8) under the condition aå == 1k
D

k0
2∣ ∣ gives the optimal probe state described by

a = +D D D a, 90
2∣ ∣ ( ) ( )

a = + ¹D D k b1 , for 0 , 9k
2∣ ∣ ( ) ( ) ( )

and theQCRBof

qD = +D D N4 . 10opt
2 2( ) ( ) ( )

This precision can be reached in the asymptotic regime of large NM̂ .
For comparison, we consider an individual estimation schemewhich divides theN particles intoD equal

partitions, and uses each partition formeasuring one qk through two-mode interferometry between ñ0∣ and ñk∣ .

Since the SQL of each θk in this case is N D1 , the lowest bound for the phase variance becomes

qD = D N . 11ind
2 2( ) ( )

ForD=1 as in single parameter estimation, both equations (10) and (11) reduce to N1 as expected (i.e. the
SQL). For largerD, the simultaneous estimation scheme (equation (10)) always outperforms the individual
estimation scheme (equation (11)).

Wenote that the results of equations (9) and (10) resemble an earlier study [8], whereHumphreys et al considered
amulti-mode entangledNOONstate y a a añ = ¼ ñ + ¼ ñ +¼+ ¼ ñN N N, 0, ,0 0, , , 0 0, 0, ,Din 0 1∣ ∣ ∣ ∣ . They
foundanoptimal probedefined also by equation (9) and aQCRBN times smaller than equation (10), in agreement
with the typical ratio between the SQLand theHeisenberg limit (HL). Their results reduce toourswhen amulti-
modeNOONstate forN=1 is considered.

Thevalueof the referencemode a0
2∣ ∣ in equation (9) is D times larger than theothermodes. Becausef0 is

referenced tobyall q f fº -k k 0, themeasurement varianceoff0 therefore contributesD timesmore to qD 2( ) than
anyotheruncorrelatedphases{fk}. Suchabias results from the choiceof parameters.Consequently, equations (9) and
(10) cannotbe alwaysoptimal if theparameters of interest aredifferent. For instance, shouldwe consider adifferent set
of parameters of interest, say,j f fº - =- k D1, 2, ..,k k k 1 ( ), i.e. the relativephasebetween theneighboring

modes, repeating the above sameprocedures gives aminimal varianceof jD = - +
N

D
1

4
2 1 2opt

2 2( ) [ ( ) ] . If one
measures{θk} insteadof{jk}using theprobe state givenby equation (9) and thenderives{jk} from{θk}, the
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resultingphase variancewouldbeboundedby jD = + + - +
N

D D D D
1

4
1 2 12 2( ) [( ) ( )( )](for details

see appendixB), a result always larger than jD opt
2( ) forD>1.

5. Experimental realization ofU

Wenow illustrate how amulti-mode Ramsey interferometer can be realized experimentally in a simple and
scalable way.Here, the task reduces to designing an orthogonalU that generates the optimal probe state.We
would illustrate our scheme first for an optical interferometer and then an atomic interferometer.

5.1.Multi-mode optical interferometer
Weconsider a design that employs a series of 2×2 non-polarizing beam splitters (BSk, for k=1, 2, 3,L) for
splitting particles into the optimal distributions ak

2∣ ∣ as shown infigure 2. In this case, eachU( k)which
represents the transformation due to beam splitter BSk acts only on two of the adjacentmodes, leaving other
modes untouched. The overall transformation = -U U U UD D 1 1( ) ( ) ( ) must be unitary since each lossless
physical splitterU( k) is unitary.

To ensure that the resultingU andU † constructed from these beam splitters are real (orthogonal), themost
straightforwardway is tomake sure that each of the beam splitters behaves as a real 2×2 transformation. This
criterion, which requires zero (ormultiple of 2π) phase shifts for both the transmitted and reflected beamswith
respect to both input beams, is not automatically satisfied for any beam splitters. Fortunately, it is always possible
to fulfil this criterion by adding respective phase compensatingwaveplate to each port of a beam splitter. After
compensation, thematrix elements of a realU( k) become h= = = - =+ + + +U U U Ucos ,k k

k
k k

k
k k k

k
k k

k
, 1, 1 , 1 1,( )( ) ( ) ( ) ( )

hsin k( ), and d=Î +Ui j k k
k

i j, , 1 ,{ }
( ) (the Kronecker delta function), where hcos k

2 ( hsin k
2 ) represents the reflectance

(transmittance) of BSk. Given an optimal distribution ak
2∣ ∣ , the reflectance of BSk should be chosen as

h a= acos , 121
2

0
2∣ ∣ ∣ ∣ ( )

h
a

a a a
=

- - -
-

-
k bcos

1
2 . 12k

k

k

2 1
2

0
2

1
2

2
2

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣

( ) ( )


In addition, extra phase compensators are needed in every armof the interferometer to null out the
difference in optical path lengths and to tune every phase shift fk to the regionwhereQ can bemeasuredmost
sensitively. If there is no detection noise, this region isQ close to zero, otherwise, it is shifted away fromQ ~ 0
(see section 7).We emphasize that compensating forfk to give the optimal sensitivity does not represent aflaw,
in fact, as such tuning is needed in practically all real interferometricmeasurements near the SQL precision.

Figure 2.Amulti-mode optical interferometer. A series of 2×2 beam splitters are used to formunitary transformationsU andU †

with only realmatrix elements. The splitting ratio of each beam splitter is chosen to distribute the input light according to the optimal
probe state found. After phase accumulation, a reversed unitary transformationU † is implementedwith another series of beam
splitters arranged in reverse order. The interferometer endswith photocurrent detection in every output port. (Inset)Each beam
splitter in dashed lines is a composite of four phase compensators and a physical beam-splitter to generate a local transformationwith
all real elements.
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5.2.Multi-mode atomic interferometer
In interferometry of atomswith hyperfine spin =F D F, 2 different parameters can be estimated. Analogous to
the optical scheme, an arbitrary spin distribution can be constructed using a sequence of Rabi rotations between
two adjacent Zeeman sublevels. Such rotations can be realized, for instance, using a two-photonRaman
transition through an intermediate state as illustrated infigure 3. As long as the intermediate hyperfine levels
have a different Landé g-factor from those involved in interferometry, one could performRabi rotations
between any two adjacent sublevels by selectively detuned to a suitable intermediate states. Tomake sure that the

individual transformation is orthogonal, every rotation should be performed along the s = -0 i
i 0y ⎜ ⎟

⎛
⎝

⎞
⎠ direction,

such that s b
b b
b b

= - =
-

U exp i
cos sin

sin cos
k

y k
k k

k k

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

( ) ( )
( ) , within the two-level subspace. However, as each of the

Zeeman sublevel exhibits different shift inside amagnetic field and thus different phase accumulation rate, one
would need to keep track of the phases of every levels and to account for themwhen performing individual Rabi
rotations.While this is possible with current technologies in cold atom experiments, the process is perhaps too
cumbersome to be practical, especially when atomic spin is large.

For the aforementioned reasons, we restrict the transformation in the following to a single-pulsemulti-
modeRabi rotation over an angleχ along the Fy direction (since the correspondingmatrix c= -U Fexp i y( ) is
always orthogonal for any atomic spin F), and study the performance of the Ramsey interferometric protocol for
measuring q. Experimentally, such a Fy rotation can be realized using a radio-frequency resonant with adjacent
Zeeman sublevels, when the quadratic Zeeman shift is negligible. It transforms the initial state ñF m, i∣ into
y cñ = å ñ=- d F m,m F

F
m m
F

p ,i∣ ( )∣ with theWigner’s (small) d-matrix. According to equation (8), theQCRBof this
state is given by

å
c c

-
+

=-N

F

d d

1

4

2 1 1
, 13

m m
F

m F

F

m m
F

,
2

,
2

i0 0

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∣ ( )∣ ∣ ( )∣

( )

when ñF m, 0∣ is chosen as the referencemode. Figures 4 (a)–(c) present the values of equation (13) for F=1, 3,
and 5, respectively (form0=0). This one-step-rotation scheme (OSRS), which employs the limited family of a
single SU(2) transformation, is found to always outperform the individualmeasurement scheme (equation (11),
grey dashed horizontal line) using a suitable initial state ñF m, i∣ and a rotation angleχ, at least up to F=5
(figure 4(d)). The same conclusion is reached for parameters {jk}.

Figure 3.Preparation of the optimal probe state with a sequence of two-photonRaman pulses between two adjacent states. This
example starts from the state - ñF F,∣ , althoughmore generally the state preparation can start from anyZeeman sublevels to reach the
same final probability amplitude distribution of the optimal state.
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Suchmulti-parameter estimation scheme can be useful when atoms are subjected to different sources of
phase shifts simultaneously, as for example, with spin-1 87Rb atoms dressed by near-resonantmicrowaves while
under a staticmagnetic field [47, 48], or spin-9/2 87Sr atoms placed in an optical lattice with polarization
dependent light shifts, and collisionswith background or non-condensed atoms.

6. The effects of particle numberfluctuation

In this section, we discuss the influence of particle numberfluctuation of the probe state. Since quantum states
with a definite large particle number are often difficult to prepare, we consider the situationwhen the particle
number of the probe statefluctuates. Due to the superselection rule, such input state represents nothing but an
incoherent superposition of different Fock state r r= Å =

+¥ QN N
N

in 0
( ) in the absence of number coherences in

the probe state and/or in themeasurement strategy [49–51], where r N( ) is the densitymatrix of theN-particle
state and QN the probability of havingN particles. For coherent light of photons or an atomic Bose–Einstein
condensate, the particle number obeys Poisson distributionwith the probability = -Q N NeN

N N¯ !¯ , where N̄
denotes themean particle number. SinceQFIM is additive under a direct sumof densitymatrix r N( ) in
orthogonal subspaces [2], r r r= Å = å  Q QQ Q

N N
N

N N
Q N

in( ) [ ] [ ]( ) ( ) . For unentangledN-particle states

of the form r r y y r= = ñá =Ä Ä  N,N N N Q N Q
single p p single[∣ ∣] [ ]( ) ( ) , with Q

single being theQFIMof the single

particle probe state rsingle. One has therefore r = å =  Q N NQ
N N

Q Q
in single single( ) ¯ . Similarly, it can be readily

shown that r= å =Ä  Q NC
N N

C N C
single single[ ] ¯ for input state rin [52] if particle numbers in all output ports

aremeasuredwithout detection noise. Since theCFIMof a single particle probe, » C Q
single single in our

Figure 4.Totalmeasurement variance qD 2( ) fromOSRS for various atomic spin F (a)–(c) show qD 2( ) ofOSRS, c= -U Fexp i y( ) as
a function of rotation angleχ, for F=1, 3 and 5, respectively. The black solid lines and grey dashed–dotted lines denotes qD opt

2( )
(equation (10)) and qD ind

2( ) (equation (11)), respectively. The legends show the corresponding initial state ñF m, i∣ before applyingU.
Irrespective ofmi, the phase shifts q are always definedwith respect to the referencemode ñF, 0∣ . (d)Comparison between the optimal
qD 2( ) fromOSRS to qD ind

2( ) and qD opt
2( ) for =F 1, 2, 3, 4, 5{ }. TheOSRS is found to be on parwith the optimal simultaneous

scheme only for F=1, but it always performs better than the individualmeasurement scheme.N=1 for allfigures.
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scheme,  C also equals approximately to Q for probe statewith fluctuating particle number and all our
conclusions outlined above remain intact.

7. The influence of detection noise

The conclusions in section 3 and appendix A are reached assuming noiseless particle number detections.When
detection noise is taken into consideration, the optimal sensitivity typically shifts away fromQ ~ 0. For
example, for single parameter estimation using Ramsey interferometry in an atomic clock, themeasurement is
usually performed near θ∼π/2, a region least sensitive to detection noise.

Here, we study numerically the effects of detection noise to themulti-parameter Ramsey interferometry
using the example of two parameter estimation.We consider estimation of θ 1 and θ2 using the optimal probe
state given by equation (9). Starting from the initial state ñ =0 0, 1, 0∣ ( )†, we choose an orthogonalU given by
the SU(2) rotation of a spin-1 system along Fy-direction

c c= - =

+ - -

-

- +

c c c

c c

c c c

U Fexp i cos . 14y

1

2

cos

2

sin

2

1

2

cos

2

sin

2

sin

2

1

2

cos

2

sin

2

1

2

cos

2

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( ) ( )

Here,χ is set to 0.2774π to give the optimal probe state. The simulated procedure consists of applyingU, phase
accumulation q qñá + - ñá-exp i 1 1 1 11 2[ ( ∣ ∣ ∣ ∣)] ( ñ =1 1, 0, 0∣ ( )†, - ñ =1 0, 0, 1∣ ( )†), andU †, followed by
population detectionwith orwithout including noise.

When there exists no detection noise, the CFIM (equation (4)) of the aforementioned protocol is directly
computed and the trace of its inverse is used to obtain theCRBof qD 2( ) . Figure 5(a) compares the value of the
corresponding result to theQCRBof the individualmeasurement scheme (equation (11)) for {θ1, θ2}ä(0,π),
illustrated by the parameter q qz = - D D10 log10

2
ind

2[( ) ( ) ]. The region surrounded by thewhite dashed curve
represents the {θ1, θ2}-space where the proposed scheme outperforms the individual estimation scheme. It
shows that the proposed schemeworks well even for q far away from zero.We emphasize that the probe state
defined by equation (9) gives always the best QCRB for any q. However, application of the reversed
transformationU † followed by a populationmeasurement is not necessary the optimalmeasurement scheme
when q is away from zero, which explains the deficiency of the scheme over some parameter space.

Whendetectionnoise is present,wenumerically simulate the estimationprocess of the twoparameters q q,1 2{ }
using 104 three-mode (spin-1) atomswith adetection resolution (noise)of 14 atoms (typical numbers achievable in
cold-atomexperiments [47, 48]). For eachpair of{θ1,θ2},wefirst compute theprobability of detecting anatom in
theoutputmode q q q q= á ñá + - ñá- ñm p m m U U, , exp i 1 1 1 1 01 2 1 2

2( ∣ ) ∣ ∣ [ ( ∣ ∣ ∣ ∣)] ∣ ∣† . For each run,weperform
Monte-Carlo simulationon theoutcome for eachof the 104 atoms according to thedistributionof q qp m ,1 2( ∣ ) and
obtain ¢Nm (the total numberof particles inmodemwithoutdetectionnoise).We then add to ¢Nm a randomdetection
noise featuring anormal distributionwith an average of zero and a standarddeviationof 14 toobtainNm. The
maximal likelihoodmethod (which can saturate theCRB [46] in the asymptotic limit and is unbiased) is thenused to
estimate{θ1, θ2}. The likelihood function givenby q q q q= - = -L N N N p m, , , ,m

N
1 2 1 0 1 1,0, 1 1 2 m( ∣ ) ( ∣ ) ismaximized

by varying{θ1,θ2} to obtain the estimated q q¢ ¢,1 2{ }. The simulation is repeated independently over =N 1000M̂

times. The estimated results from the 1000 simulations are thenused to obtain qD 2( ) ,whose ratio to theQCRBof

Figure 5.Effectiveness of the proposed scheme for estimating two arbitrary θ1 and θ2 with andwithout detection noise. The colored
figures show ζ, the ratio of theCRB for the proposed scheme to theQCRBof the individualmeasurement scheme in negative decibels,
considering (a) ideal atom-number detection and (b) atom-number resolution of±14 atoms. The area surrounded by thewhite
dashed curve in (a) denotes the parameter spacewhere the proposed scheme outperforms the individualmeasurement scheme. (b)
The results ofMonte Carlo simulations with 104 atoms and 1000 simulated experimental runs. The star denotes the positionwhere the
minimum qD 2( ) occurs, which is no longer at q ~ 0.

8

New J. Phys. 22 (2020) 043005 XLi et al



the individualmeasurement schemeusing the samenumberof particles, is shown infigure 5(b). Althoughdetection
noisedegrades the sensitivity of the proposed scheme, thediscussed scheme is seen tomaintain its advantageover the
individualmeasurement schemeover a large parameter space. Similar to typical single parameter estimation scenario,
the positionof theminimum qD 2( ) is seen to shift away fromzero.The star infigure 5(b) (near q q p= = 0.31 2 )
denotes thepositionof themaximumprecision for the scenariowe consider,where it is z 0.6 dB more sensitive
than the individualmeasurement scheme, but is 0.77dB less than theoptimal z 1.37 dB for noiseless detection.

In short, the influence of detection noise to amulti-mode Ramsey interferometer is similar to that to a
single-mode Ramsey interferometer.

8. Summary

In summary, we show that the Ramsey interferometric scheme can be extended to estimation ofmultiple
parameters (associatedwith commuting generators) usingmulti-mode pure states, if (but not iff) themulti-
mode beam splitterU is orthogonal, i.e. allmatrix elements ofU are real and =UU 1† .We then discuss how to
obtain the optimal probe state, and how to constructU experimentally in a simple and scalablemanner.Wefind
that the proposed scheme remains intact even under particle number fluctuation and detection noise. The
results of this study can be useful to applications inmulti-mode optical sensing and quantumphase imaging.
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AppendixA.Multi-modeRamsey interferometricmeasurement scheme

In this section, we show in detail that the proposedRamsey-likemulti-mode interferometric schemewith
particle numbermeasurement can always saturate theQCRB for small phase shiftQ, given that thematrix
elements of the beam-splitting unitary transformationU are real (orU is orthogonal). The proposed scheme
starts with splitting an initial state ñi∣ by a unitary transformationU, followed by a phase accumulation process
and a reversed transformationU †, andfinally ends withmeasuring the projection probability inmode ñm∣ . The
projection probability inmode ñm∣ after the Ramsey interferometer can be explicitly written as

Q = á ñQ

=

ñáp m m U U ie . A1
k

D
k k f

0

i

2

k( ∣ ) ∣ ∣ ( )† ∣ ∣ ( )

Omitting the third order corrections, a Taylor series expansion aroundQ ~ 0 gives for ¹m i

åQ Q Q á ñá ñá ¢ñá ¢ ñ
¢=

¢p m f f m U k k U i i U k k U m , A2
k k

D

k k
, 0

( ∣ ) ( ) ( ) ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )† †

and form=i

å åQ Q Q Q+ á ñ á ¢ ñ - á ñ
¢=

¢
=

p i f f i U k k U i f i U k1 . A3
k k

D

k k
k

D

k
, 0

2 2

0

2 2( ∣ ) ( ) ( )∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( ) ∣ ∣ ∣ ∣ ( )† †

The derivatives Qp i( ∣ )with respect to anyQl is given by

å å
Q Q

Q
Q

Q
¶
¶Q

=
¶

¶Q
-

¶

¶Q=

¢

=¢

¢
p i f

f i U k i U k
f

f i U k2 , A4
l k k

D
k

l
k

k

D
k

l
k

, 0
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⎡
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⎥⎥

( ∣ ) ( )
( )∣⟨ ∣ ∣ ⟩∣ ⟨ ∣ ∣ ⟩∣

( )
( )∣⟨ ∣ ∣ ⟩∣ ( )† † †

and the derivatives with respect to anyQl for ¹m i can be calculated as

Q Q
Q

Q
Q

¶
¶Q

= å
¶

¶Q
á ñá ñá ¢ñá ¢ ñ

+ å
¶

¶Q
á ñá ñá ¢ñá ¢ ñ
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f
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† †
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The two terms in equation (A5) are equivalent if all thematrix elements ofU (á ñk U m∣ ∣ ) are real numbers. In this
case, equation (A5) can be simplified by summing up two terms as
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Q Q
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By substituting equations (A2), (A3) and (A6) into the classical Fisher informationmatrix (CFIM) [46],
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Q Q
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we obtain (whenQ ~ 0 and á ñ =k U mIm 0[ ∣ ∣ ] )
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The termm=i ismissing from equation (A8) because
Q¶

¶Q
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while Q »p i 1( ∣ ) . The numerator

of equation (A8) can be factorized as
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where the second summation cancels the denominator of equation (A8), giving aCFIMof the form
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To further simplify the formula, we use again the condition that thematrix elements ofU (á ñk U m∣ ∣ ) are real
numbers, thus á ñ = á ñm U k k U m∣ ∣ ∣ ∣† and á ñ = á ñk U i i U k∣ ∣ ∣ ∣† . This gives
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In thefirst line of equation (A11), the completeness of the basis + å =¹i i m m 1m i∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ is invoked. The
final result is identical to  l n

Q
, given by equation (3). Thus this proves that themulti-mode Ramsey

interferometer we consider here can always saturate theQCRB.
The above proof also explains whywe limit the beam splitter to orthogonalmatrix. This is crucial for the

steps from equation (A5) to equation (A6) and from equation (A10) to (A11). Our proof by nomeans excludes
the existence ofUwith non-realmatrix elements which saturates theQCRB. But the general structures of suchU
are beyond our current knowledge.

In addition, the above proof also requires all elements á ñm U k∣ ∣ to be real evenwhen ¹m k i, , which is the
reasonwhy it is insufficient to only require that the transformations from the input light infigure 2 to the
outputs of allBSk are real. Instead, all beam splitters involvedmust act as real 2×2 transformations.

Appendix B. The optimal probe state and the correspondingQCRB

As discussed in themain text, the probe state after phase accumulation takes the form y añ = å ñf
f

= kek
D

k0
i k∣ ∣ . If

the parameters of interestQ º Q Q Q, , , D1 2{ } are linear combinations of fk, the probe state can be expressed
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as y añ = å ñf
Q

= kek
D

k
f

0
i k∣ ∣· ( ) , where Qfk ( ) are linear functions ofQ. The derivative of the state abovew.r.t.Ql is
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For a pure state y ñf∣ , thematrix elements of Q are explicitly given by [44, 45]

y y y y y y= á¶ ¶ ñ - á¶ ñá ¶ ñf f f f f fQ Q Q Q 4 Re , B2l n
Q
, l n l n[ ∣ ∣ ∣ ] ( )

where =l n, 1, 2, , andD. Substituting equation (B1) into equation (B2) gives thematrix elements of
quantumFisher informationmatrix (QFIM) of y ñf∣
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In the case of q f fQ = = -k k k 0 =k D1, 2, ,( ) , one can choose f fQ Q= = Q +f f, k k0 0 0( ) ( ) for

=k D1, 2, ,··· . Thematrix elements ofN-particleQFIMcanbe calculatedwith d=Q¶

¶Q

f
k l,

k

l

( )
, leading to the result

a d a a= - N4 . B4n l
Q
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2

,
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Note that since there areD+1fk but onlyDΘk to be estimated, one of the Qfk ( ) can chosen at will without
affecting thefinal results. For example, for f fQ = -k k 0, one can also choose

f f fQ Q Q= = - Q = Q + Q -f f f, , k k1 1 0 1 1 1 1( ) ( ) ( ) for =k D2, ,··· . Substituting the so-chosen Qfk ( )
into equation (B3) gives the same results as equation (B4).

The inverse of equation (B4) can be obtained analytically as
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whereG is a d×d all-onesmatrix. Taking the trace of equation (B5) gives
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Tofind the optimal probe state and the corresponding total phase variance (optimalQCRB), weminimize
equation (B6) under the normalization condition aå == 1k

D
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2∣ ∣ . Setting the derivatives q a¶ D ¶ k
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Solving the equations above gives the optimal probe state described by
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Taking the trace of the inverse of equation (B10) gives the lower bound of jD 2( )
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⎞
⎠⎟( )

∣ ∣ ∣ ∣ ∣ ∣
( )

Similarly, byminimizing equation (B11) under the normalization condition, the optimal probe reads

a a= = - +D a1 2 1 2 , B12D0
2 2∣ ∣ ∣ ∣ [ ( ) ] ( )

a = - + ¹D k D b2 2 1 2 , for 0, , B12k
2∣ ∣ [ ( ) ] ( ) ( )
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and the correspondingQCRB is found to be

jD = - +
N

D
1

4
2 1 2 . B13opt

2 2( ) [ ( ) ] ( )

If onemeasures q q q¼, , , D1 2{ }with the input state given by equation (B8) and estimates j j j, , , D1 2{ }
from themeasured qk, the jD 2( ) is bounded by [46]

jD = + + - +q
- J J

N
D D D DTr

1

4
1 2 1 , B14Q T2 1 2( ) [ ( ) ] [( ) ( )( )] ( )

where J is the Jacobianmatrix defined as
qj

q
=

¶
¶

Jk l
k

l
,

( )
. The result of equation (B14) is larger than that of

equation (B13) forD>1. Thus it is always better to estimate j j j¼, , , D1 2{ }directly using the probe state
given by equation (B12).
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